WorldWideScience

Sample records for city groundwater system

  1. Hydrogeochemical characterization of Bacolod City groundwater system

    International Nuclear Information System (INIS)

    Groundwater is constantly being recycled and replenished by rainfall. However, because of the uneven distribution of rain and the heavy use of water in certain areas, some regions are experiencing undue water shortage. Changes in land use, population growth, and economic development in the Bacolod City region, can result in an increase in water demand and the generation of additional pollution sources. To delineate the ground water recharge area for Bacolod City and at the same time, assess the vulnerability of the aquifer to pollution, water samples were collected in an attempt to relate chemical variations in ground water to the underlying differences in geology, availability and mechanism of recharge, and to define the natural versus anthropogenic influences in the groundwater system. Measurements of field data such as pH, conductivity, temperature and alkalinity were made. Several geochemical processes are recognized in the chemistry of the Bacolod aquifer system. The most important processes are: water-bedrock interaction, dissolution of connate halites , and seawater intrusion. Simple mass balance modeling shows that the feasible source of active recharge aside from direct precipitation, is infiltration from the Loygoy river. Rivers and tributaries transport water originated as precipitation falling at higher elevations. The ground water in Bacolod City is predominantly of the Ca-Mg-HCO3 type. Recharge becomes sodium dominated along its path, indicating a slow but active mechanism. The ground water near the coasts is brackish due to sea water infiltration. The possible presence of connate halites lying in the deep aquifers is also indicated. The information generated, when used in conjunction with isotopic techniques, will be important in the choice of sites for pumping stations and in the knowledge of the extent of potential pollution of ground water from streams/reservoirs. (author)

  2. Information Entropy Evolution for Groundwater Flow System: A Case Study of Artificial Recharge in Shijiazhuang City, China

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2014-08-01

    Full Text Available The groundwater flow system is typical dissipative structure system, and its evolution can be described with system information entropies. The information entropies of groundwater in Shijiazhuang City had been calculated between 1960 and 2005, and the results show that the entropies have a decreasing trend throughout the research period, and they can be divided into our stages based on the groundwater flow system entropy variation as follows: entropy steady period (1960–1965, entropy decreasing period (1965–1980, entropy increasing period (1980–1995 and secondary entropy decreasing period (1995–2005; understanding the major and significant driving the pattern changing forces of groundwater levels is essential to groundwater management,. A new method of grey correlation analysis has been presented, and the results show that, the grey correlation grade between groundwater flow system information entropies and precipitation series is γ01 = 0.749, the grey correlation grade between groundwater flow system information entropies and groundwater withdrawal series is γ02 = 0.814, as the groundwater withdrawal is the main driving force of groundwater flow system entropy variation; based on the numerical simulation results, information entropy increased with artificial recharge, and a smaller recharge water volume would enhance the information entropy drastically, but then doubled water would not increase the information correspondingly, which could be useful to assess the health state of groundwater flow systems.

  3. Kansas City plant ultraviolet/ozone/hydrogen peroxide groundwater treatment system overview

    International Nuclear Information System (INIS)

    The Kansas City Plant (KCP) has committed to the utilization of a groundwater treatment system, for removal of volatile organic compounds (VOCs), that discharges a minimal amount of pollutants to the environment. An advanced oxidation process (AOP) system utilizing ozone, ultraviolet radiation, and hydrogen peroxide serves in this capacity. Packed tower aeration and activated carbon filtration are listed as best available technologies (BATs) by the Environmental Protection Agency (EPA) for the removal of VOCs in water. The disadvantage to these BATs is that they transfer the VOCs from the water medium to the air or carbon media respectively. Operation of the system began in May 1988 at a flow rate of 22.7 liters per minute (lpm) (6 gallons per minute (gpm)). An additional 102.2 lpm (27 gpm) of flow were added in October 1990. Various efforts to optimize and track the treatment unites efficiency have been carried out. A maximum influent reading of 26,590 parts per billion (ppb) of total VOCs has been recorded. Following the addition of flows, removal efficiency has averaged approximately 95%. Both air and water effluents are factored into this calculation. (author)

  4. Behaviour of the groundwater system in the Santa Catarina area, Mexico City

    International Nuclear Information System (INIS)

    In the southeast area of Mexico City a line of 14 wells exist and are used as a potable water supply for surrounding towns. The average distance between each well is approximately 400 m. Each well was drilled to an approximate depth of 400 m. The results of vertical electrical soundings, performed as part of another study, indicated the presence of mineralized water down to a depth of approximately 200 m with potable water beneath. The granular aquifer is bounded by basaltic flows related to the Sierras de Santa Catarina in the north and the Chichinautzin in the south. To aid in the determination of the age and origin of the different groundwaters indicated by the geophysics, a geochemical and isotopic monitoring program was completed. Geochemical analysis was limited to the major ions. Isotopic analysis included 18O, 2H, 3H, 34S and 14C. Geochemical and isotopic data was significantly varied within the well field. The geochemical, isotopic and geophysical data was combined to produce a hydrogeological and hydrogeochemical qualitative model for the aquifer that exists around the Santa Catarina well field. (author). 11 refs, 3 figs, 7 tabs

  5. GROUNDWATER POTENTIAL ASSESSMENT USING GEOGRAPHIC INFORMATION SYSTEMS AND AHP METHOD (CASE STUDY: BAFT CITY, KERMAN, IRAN)

    OpenAIRE

    M. Zeinolabedini; A. Esmaeily

    2015-01-01

    The purpose of the present study is to use Geographical Information Systems (GISs) for determining the best areas having ground water potential in Baft city. To achieve this objective, parameters such as precipitation, slope, fault, vegetation, land cover and lithology were used. Regarding different weight of these parameters effect, Analytic Hierarchy Process (AHP) was used. After developing informational layers in GIS and weighing each of them, a model was developed. The final map of ground...

  6. GROUNDWATER POTENTIAL ASSESSMENT USING GEOGRAPHIC INFORMATION SYSTEMS AND AHP METHOD (CASE STUDY: BAFT CITY, KERMAN, IRAN

    Directory of Open Access Journals (Sweden)

    M. Zeinolabedini

    2015-12-01

    Full Text Available The purpose of the present study is to use Geographical Information Systems (GISs for determining the best areas having ground water potential in Baft city. To achieve this objective, parameters such as precipitation, slope, fault, vegetation, land cover and lithology were used. Regarding different weight of these parameters effect, Analytic Hierarchy Process (AHP was used. After developing informational layers in GIS and weighing each of them, a model was developed. The final map of ground waters potential was calculated through the above-mentioned model. Through applying our developed model four areas having high, average, low potential and without required potential distinguished. Results of this research indicated that 0.74, 41.23 and 45.63 percent of the area had high, average and low potential, respectively. Moreover, 12.38% of this area had no potential. Obtained results can be useful in management plans of ground water resources and preventing excessive exploitation.

  7. Groundwater Potential Assessment Using Geographic Information Systems and Ahp Method (case Study: Baft City, Kerman, Iran)

    Science.gov (United States)

    Zeinolabedini, M.; Esmaeily, A.

    2015-12-01

    The purpose of the present study is to use Geographical Information Systems (GISs) for determining the best areas having ground water potential in Baft city. To achieve this objective, parameters such as precipitation, slope, fault, vegetation, land cover and lithology were used. Regarding different weight of these parameters effect, Analytic Hierarchy Process (AHP) was used. After developing informational layers in GIS and weighing each of them, a model was developed. The final map of ground waters potential was calculated through the above-mentioned model. Through applying our developed model four areas having high, average, low potential and without required potential distinguished. Results of this research indicated that 0.74, 41.23 and 45.63 percent of the area had high, average and low potential, respectively. Moreover, 12.38% of this area had no potential. Obtained results can be useful in management plans of ground water resources and preventing excessive exploitation.

  8. Features of groundwater pollution and its relation to overexploitation of groundwater in Shijiazhuang city

    International Nuclear Information System (INIS)

    The groundwater pollution in Shijiazhuang city is characterized by an excess of some components and parameters over permitted values. The main pollutants are originated from the city sewage which is quite typical for groundwater pollution in many cities of China. On the basis of agonizingly features of groundwater pollution, the relationship between the groundwater pollution and the groundwater overexploitation is discussed in this paper, and the mechanism of intensifying the pollution by overexploitation has been revealed. Finally, it is proposed that the overexploitation of groundwater is an important inducing factor leading to the groundwater pollution in cities. (authors)

  9. Green Infrastructure, Groundwater and the Sustainable City

    Science.gov (United States)

    Band, L. E.

    2014-12-01

    The management of water is among the most important attributes of urbanization. Provision of sufficient quantities and quality of freshwater, treatment and disposal of wastewater and flood protection are critical for urban sustainability. Over the last century, two major shifts in water management paradigms have occurred, the first to improve public health with the provision of infrastructure for centralized sanitary effluent collection and treatment, and the rapid drainage and routing of stormwater. A current shift in paradigm is now occurring in response to the unintended consequences of sanitary and stormwater management, which have degraded downstream water bodies and shifted flood hazard downstream. Current infrastructure is being designed and implemented to retain, rather than rapidly drain, stormwater, with a focus on infiltration based methods. In urban areas, this amounts to a shift in hydrologic behavior to depression focused recharge. While stormwater is defined as surface flow resulting from developed areas, an integrated hydrologic systems approach to urban water management requires treatment of the full critical zone. In urban areas this extends from the top of the vegetation and building canopy, to a subsurface depth including natural soils, fill, saprolite and bedrock. In addition to matric and network flow in fracture systems, an urban "karst" includes multiple generations of current and past infrastructure, which has developed extensive subsurface pipe networks for supply and drainage, enhancing surface/groundwater flows and exchange. In this presentation, Band will discuss the need to focus on the urban critical zone, and the development and adaptation of new modeling and analytical approaches to understand and plan green infrastructure based on surface/groundwater/ecosystem interactions, and implications for the restoration and new design of cities.

  10. Isotopic and chemical characteristics of groundwater in Beijing city

    International Nuclear Information System (INIS)

    The characteristics of the alluvial-diluvial aquifer of the Beijing area were studied by means of environmental isotopes, especially tritium, which may be considered as a useful natural tracer to demonstrate the pollutant behavior in groundwater aquifer. The results of tritium monitoring indicate that the natural regime of the groundwater system of the Quaternary aquifer has been destroyed due to intensive exploitation. Two subsystems could be divided based on tritium data. Subsystem A with active circulation was formed in the course of exploitation. Subsystem B is of slow circulation. The δ2H and δ18O values of the groundwater are higher in the western suburb than that in eastern suburb. The sketch maps os δ2H and δ18O isolines reflect a mixing between ground waters from the base rock and from the local vertical recharge. The trace elements Sr, Ru and Rh have a very special distribution in groundwater system with very high concentrations in the north-eastern part of the old Beijing city. The results of 87Sr/86Sr measurement show that Sr in groundwater of the Quaternary aquifer is from the groundwater of the basement rock. High concentrations of Sr in groundwater of the Quaternary aquifer are not related to any special pollution source. (author)

  11. Shallow Groundwater Temperatures and the Urban Heat Island Effect: the First U.K City-wide Geothermal Map to Support Development of Ground Source Heating Systems Strategy

    Science.gov (United States)

    Patton, Ashley M.; Farr, Gareth J.; Boon, David P.; James, David R.; Williams, Bernard; Newell, Andrew J.

    2015-04-01

    The first UK city-wide heat map is described based on measurements of groundwater from a shallow superficial aquifer in the coastal city of Cardiff, Wales, UK. The UK Government has a target of reducing greenhouse gas emissions by 80% by 2050 (Climate Change Act 2008) and low carbon technologies are key to achieving this. To support the use of ground source heating we characterised the shallow heat potential of an urban aquifer to produce a baseline dataset which is intended to be used as a tool to inform developers and to underpin planning and regulation. We exploited an existing network of 168 groundwater monitoring boreholes across the city, recording the water temperature in each borehole at 1m depth intervals up to a depth of 20m. We recorded groundwater temperatures during the coldest part of 2014, and repeat profiling of the boreholes in different seasons has added a fourth dimension to our results and allowed us to characterise the maximum depth of seasonal temperature fluctuation. The temperature profiles were used to create a 3D model of heat potential within the aquifer using GOCAD® and the average borehole temperatures were contoured using Surfer® 10 to generate a 2D thermal resource map to support future assessment of urban Ground Source Heat Pumps prospectively. The average groundwater temperature in Cardiff was found to be above the average for England and Wales (11.3°C) with 90% of boreholes in excess of this figure by up to 4°C. The subsurface temperature profiles were also found to be higher than forecast by the predicted geothermal gradient for the area. Potential sources for heat include: conduction from buildings, basements and sub-surface infrastructure; insulation effects of the urban area and of the geology, and convection from leaking sewers. Other factors include recharge inhibition by drains, localised confinement and rock-water interaction in specific geology. It is likely to be a combination of multiple factors which we are hoping

  12. Environmental Effects of Groundwater Development in Xuzhou City, China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Xuzhou City is located in the most northwestern portion of Jiangsu Province, P. R. China. Karst groundwater in the Ordovician and Cambrian Limestone aquifers is the main source of water supply. There are 527 wells in urban areas to exploit the karst groundwater, yielding up to 35 000 m3 per day. After 1978, urbanization and industrialization of Xuzhou City have continued at a greatly accelerated pace; the population increased from 670 700 (1978) to 1 645 500 (2002), its GDP from 0.71 × 109$ to 42.7×109$ and the urban area from 184 km2 to 1,038 km2 (built-up city area from 41.3 km2 to 81.9 km2). The volume of karst groundwater withdrawal increased yearly before the operation of a supply plant of surface water in 1992, from 3.85×107 m3 (1978) to 1.34×108 m3 (1991) and now maintained at 0.1×109 m3 (2002). Intensive overexploitation of karst groundwater has caused a continuous descending of the piezometric level and the area of the depression cone increases year after year. These changes have increased the vulnerability of the karst groundwater system and have induced environmental problems such as depletion of water resources, water quality deterioration, groundwater contamination and karst collapse. The largest buried depth of karst groundwater is up to 100 m in the dry season in some areas, while 66 exhausted wells have been abandoned. A change in the thickness of the unsaturated zone due to the drawdown of the piezometric level has caused a change of the chemical environment which has an impact on the physical state and major chemical compositions in groundwater. The contents of Ca2+, Mg2+, NO3-, SO42- and Cl- in karst groundwater has increased significantly, total hardness (CaCO3 content) rises annually in most pumping wells and exceeds the Standard of Drinking Water of P.R. China. Point source pollution and belt-like pollution along the rivers has caused water quality deterioration. The sudden loss of buoyant support due to rapid drawdown of the

  13. Shallow groundwater temperatures and the urban heat island effect: the first U.K. city-wide geothermal map to support development of ground source heating systems strategy

    OpenAIRE

    Patton, A.M.; Farr, G.J.; Boon, D.P.; James, D R; Williams, B; Newell, A. J.

    2015-01-01

    U.K. Government aims to reduce greenhouse gas emissions by 80% by 2050 (Climate Change Act, 2008). Ground source heating systems could contribute to the U.K.’s energy future but uptake has been slow due to a lack of case studies. The aim of this work was to produce the 1st U.K. city-wide heat map to support the development of ground source heating. We also sought to describe groundwater temperature variation with lithology & estimate the available thermal energy beneath the cit...

  14. Urban Groundwater Mapping - Bucharest City Area Case Study

    Science.gov (United States)

    Gaitanaru, Dragos; Radu Gogu, Constantin; Bica, Ioan; Anghel, Leonard; Amine Boukhemacha, Mohamed; Ionita, Angela

    2013-04-01

    Urban Groundwater Mapping (UGM) is a generic term for a collection of procedures and techniques used to create targeted cartographic representation of the groundwater related aspects in urban areas. The urban environment alters the physical and chemical characteristics of the underneath aquifers. The scale of the pressure is controlled by the urban development in time and space. To have a clear image on the spatial and temporal distribution of different groundwater- urban structures interaction we need a set of thematic maps is needed. In the present study it is described the methodological approach used to obtain a reliable cartographic product for Bucharest City area. The first step in the current study was to identify the groundwater related problems and aspects (changes in the groundwater table, infiltration and seepage from and to the city sewer network, contamination spread to all three aquifers systems located in quaternary sedimentary formations, dewatering impact for large underground structures, management and political drawbacks). The second step was data collection and validation. In urban areas there is a big spectrum of data providers related to groundwater. Due to the fact that data is produced and distributed by different types of organizations (national agencies, private companies, municipal water regulator, etc) the validation and cross check process is mandatory. The data is stored and managed by a geospatial database. The design of the database follows an object-orientated paradigm and is easily extensible. The third step consists of a set of procedures based on a multi criteria assessment that creates the specific setup for the thematic maps. The assessment is based on the following criteria: (1) scale effect , (2) time , (3) vertical distribution and (4) type of the groundwater related problem. The final step is the cartographic representation. In this final step the urban groundwater maps are created. All the methodological steps are doubled

  15. ~(15)N Isotope Used for Study of Groundwater Nitrogen Pollution in Shijiazhuang City, China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Shijiazhuang City is the capital of Hebei province, China. Groundwater is the major water supply source for living and industry need of the city. Due to a rapid increase of population and development of industry and agriculture, a series of groundwater environmental problems are created. In the paper, the situation of groundwater pollution in Shijiazhuang city is reported. Based on the groundwater chemical data and ~(15)N measurement results both on groundwater and soils, the reason of groundwater nitra...

  16. GROUNDWATER QUALITY AND CONTAMINATION INDEX MAPPING IN CHANGCHUN CITY, CHINA

    Institute of Scientific and Technical Information of China (English)

    Hamadoun BOKAR; TANG Jie; LIN Nian-feng

    2004-01-01

    Groundwater in Changchun City, Jilin Province of China tends to be influenced by human activities.Chemical types of groundwater were detected in both shallow and deep groundwater were: HCO3- - Ca2+ and HCO3-of groundwater quality due to the increase of TDS, NO3- + NO2 (as Nitrogen) and TH contents have been observed from 1991 to 1998. Scatter analyses showed strong positive correlations between Ca2+, Cl- and NO3- ions and weak negative correlations between the depth of water table and Ca2+, 8O42-. C1- and NO3-ions. A mapping of contaminant index based on Chinese standard of groundwater showed that a large proportion of the groundwater in 1998 was deteriorated by human process. Despite their low values of sodium adsorption ratio (SAR), the most of the sampled wells were not suitable for drinking and agriculture purposes due to higher contents of NO3-, NO2 and Mn2+ ions.

  17. Utilization of Storm Runoff for Groundwater Recharge in Urban Areas- A Case Study of Gujranwala City in Pakistan

    Directory of Open Access Journals (Sweden)

    Saqib Eh san

    2013-12-01

    Full Text Available This research highlights the significance of storm runoff for groundwater recharge in urban areas. Due to excessive withdrawal of groundwater, the groundwater table is significantly depleting each year. The storm runoff in urban areas should be first stored then it can be used for possible groundwater recharge by adopting feasible recharge techniques. A proper storm drainage system should be functional in order to collect the surface run off from different parts of an urban area. As case study, the Gujranwala city in Pakistan has been taken into consideration. The city has strong potential for a storm water drainage system. Each year a significant amount of storm runoff in Gujranwala city is not utilized due to unavailability of a proper storm water drainage system. Different aspects of hydrology and hydrogeology of this city have been thoroughly studied. Further, design considerations for tube wells have also been elaborated. Based on the available data, different options for groundwater water recharge in city area have been investigated and also a typical design of an inverted well in city area has been proposed. This study strongly recommends the concerned authorities to first provide a suitable storm water drainage system in Gujranwala city and to investigate the feasible options of groundwater recharge keeping in view the hydrological and hydro-geological conditions. This research is intended to provide useful guidelines for feasibility of groundwater recharge techniques in other urban areas of Pakistan and also other parts of the world.

  18. Groundwater system analysis of south Yishu geosyncline

    Institute of Scientific and Technical Information of China (English)

    DAI Chang-lei; CHI Bao-ming; YI Shu-ping; LI Zhi-jun

    2004-01-01

    South Yishu geosyncline is 50 km southeast of Changchun City of Jilin Province, where an aquifer is thick,surface runoff is abundant and it has potential to develop water resources preferably. By means of system analysis, the authors analyse the structural characteristics, I/O characteristics, function characteristics and boundary and environment characteristics of the groundwater system, so as to search for a way of optimizing water resources arrangement and enhancing water resources'bearing capacity. Based on the analysis results, the authors abstract conceptual model and mathematical model of the groundwater system. The simulation results certify and enrich the knowledge about south Yishu geosyncline.

  19. Physicochemical and chemical quality of mailsi city groundwater

    International Nuclear Information System (INIS)

    Quality of groundwater samples in Mailsi city of district Vehari was assessed using physico-chemical and chemical parameters. Twenty seven (27) groundwater samples were collected for physico-chemical and major ion analysis. Absence of carbonate ions (CO/sub 3/-2) in all groundwater samples indicates presence of limestone dissolution giving rise to bicarbonate. Piper diagram reveals dominance with Ca-Mg-type of water in the studied area. pH of all samples were within WHO guidelines. The mean value of Total Dissolved Solids (TDS) for Mailsi groundwater is 755.1 mg/L having a range of 272 to 1667mg/L. The TDS for majority of samples lies above the guideline values as defined by the WHO. Twenty two (22) percent samples exhibit high nitrate levels; consumption of water samples with high nitrate content may produce harmful effects in children. (author)

  20. GROUNDWATER QUALITY ASSESSMENT FOR DRINKING PURPOSES USING GIS MODELLING (CASE STUDY: CITY OF TABRIZ

    Directory of Open Access Journals (Sweden)

    M. Jeihouni

    2014-10-01

    Full Text Available Tabriz is the largest industrial city in North West of Iran and it is developing rapidly. A large proportion of water requirements for this city are supplied from dams. In this research, groundwater quality assessed through sampling 70 wells in Tabriz and its rural areas. The purposes of this study are: (1 specifying spatial distribution of groundwater quality parameters such as Chloride, Electrical Conductivity (EC, pH, hardness and sulphate (2 mapping groundwater quality for drinking purpose by employing Analytic Hierarchy Process (AHP method in the study area using GIS and Geosatistics. We utilized an interpolation technique of ordinary kriging for generating thematic map of each parameter. The final map indicates that the groundwater quality esaeicni from North to South and from West to East of the study area. The areas located in Center, South and South West of the study area have the optimum quality for drinking purposes which are the best locations to drill wells for supplying water demands of Tabriz city. In critical conditions, the groundwater quality map as a result of this research can be taken into account by East Azerbaijan Regional Water Company as decision support system to drill new wells or selecting existing wells to supply drinking water to Tabriz city.

  1. Thermal footprints in groundwater of central European cities

    Science.gov (United States)

    Bayer, P.; Menberg, K.; Blum, P.

    2014-12-01

    Atmospheric thermal pollution in densely populated areas is recognized as a severe problem with consequences for human health, and considerable efforts are being taken to mitigate heat stress in cities. However, anthropogenic activities also influence the thermal environment beneath the ground level, with commonly growing temperatures that affect groundwater ecology and geothermal use efficiency. In our work, we identify the controlling mechanisms for the long-term evolution of such urban heat islands. The shallow groundwater temperatures in several central European cities such as Cologne, Karlsruhe, Munich, Berlin and Zurich were mapped at high spatial and temporal resolution. Thermal anomalies were found to be highly heterogeneous with local hot spots showing temperatures of more than 20°C. Accordingly, these urban regions show a considerable groundwater warming in comparison to undisturbed temperatures of 8-11°C. Examination of potential heat sources by analytical modelling reveals that increased ground surface temperatures and basements of buildings act as dominant drivers for the anthropogenic heat input into the groundwater. The factors are revealed to be case-specific and they may have pronounced local or regional effects. Typical local factors are for example buried district heating networks. In selected cities we find that the average urban heat flux is around one order of magnitude higher than the elevated ground heat flux due to recent climate change. Additionally, such as observed in Zurich, naturally controlled temperature variations can be substantial and they are shown to wash out anthropogenic thermal footprints.

  2. Spatial and temporal groundwater level variation geostatistical modeling in the city of Konya, Turkey.

    Science.gov (United States)

    Cay, Tayfun; Uyan, Mevlut

    2009-12-01

    Groundwater is one of the most important resources used for drinking and utility and irrigation purposes in the city of Konya, Turkey, as in many areas. The purpose of this study is to evaluate spatial and temporal changes in the level of groundwater by using geostatistical methods based on data from 91 groundwater wells during the period 1999 to 2003. Geostatistical methods have been used widely as a convenient tool to make decisions on the management of groundwater levels. To evaluate the spatial and temporal changes in the level of the groundwater, a vector-based geographic information system software package, ArcGIS 9.1 (Environmental Systems Research Institute, Redlands, California), was used for the application of an ordinary kriging method, with cross-validation leading to the estimation of groundwater levels. The average value of variogram (spherical model) for the spatial analysis was approximately 2150 m. Results of ordinary kriging for groundwater level drops were underestimated by 17%. Cross-validation errors were within an acceptable level. The kriging model also helps to detect risk-prone areas for groundwater abstraction. PMID:20099631

  3. Geological Environment Problems Caused by Controlling Groundwater Exploitation in Jiangyin City

    Institute of Scientific and Technical Information of China (English)

    DENG Qing-hai; MA Feng-shan; YUAN Ren-mao; YAO Bing-kui

    2007-01-01

    Geological environment effects caused by the control of groundwater exploitation in Jiangyin city are discussed thoroughly, including the dynamic variation of groundwater levels and quality and the development of land subsidence and ground fissures. According to the dynamic characteristics of groundwater levels, some advice about groundwater exploitation is offered. Our research will provide a basis for using groundwater resources and the prevention of geological disasters in Jiangyin city and the Suzhou-Wuxi-Changzhou area. The following results are deduced from our research. First, groundwater levels vary with the exploitation of groundwater in Jiangyin city and are affected by hydrogeological conditions. The groundwater levels remained rather stable before and after the implementation of control of groundwater exploitation in the northwest of Jiangyin city along the Yangtze River. A suitable level of exploitation should be allowed. In the southeast, the speed of recovery of the groundwater level has been rather rapid after the control of exploitation. We conclude that groundwater might be exploited locally after the groundwater level has recovered. In the southwest, the speed of recovery of the groundwater level is rather slow and exploitation of groundwater should be prohibited. Second, groundwater quality is stable in Jiangyin city and the contents of the main chemical indices of groundwater varied only slightly before and after the control of exploitation. Third, after controlling the exploitation, the speed of land subsidence has clearly slowed down and the development of ground fissures has been controlled effectively.

  4. GROUNDWATER QUALITY ASSESSMENT FOR DRINKING PURPOSES USING GIS MODELLING (CASE STUDY: CITY OF TABRIZ)

    OpenAIRE

    M. Jeihouni; Toomanian, A.; M. Shahabi; S. K. Alavipanah

    2014-01-01

    Tabriz is the largest industrial city in North West of Iran and it is developing rapidly. A large proportion of water requirements for this city are supplied from dams. In this research, groundwater quality assessed through sampling 70 wells in Tabriz and its rural areas. The purposes of this study are: (1) specifying spatial distribution of groundwater quality parameters such as Chloride, Electrical Conductivity (EC), pH, hardness and sulphate (2) mapping groundwater quality for drinking pur...

  5. Groundwater Depletion in Dhaka City, Bangladesh: A Spatio-temporal Analysis

    Science.gov (United States)

    Jerin, T.; Ishtiaque, A.

    2015-12-01

    Dhaka city, having a population of more than fifteen million, exclusively depends on groundwater as a source of quality drinking water. In recent decades the city is encountering groundwater diminution and the declining scenario is dissimilar in different parts of the city. This paper aims to discuss the groundwater depletion in different parts of Dhaka city from 1990 to 2012 along with the causes and consequences. Groundwater level data of different locations of Dhaka city were collected from Bangladesh Water Development Board (BWDB). The data were processed and analyzed using SPSS and Excel Worksheet; a contour map was generated using ArcGIS 10.0 to outline the contemporary groundwater scenario of Dhaka city and the spatial analyst tool, Inverse Distance Weighted (IDW) was used to prepare the map. In addition, experts' opinions were collected using an in-depth interview strategy in order to provide a better understanding of the causes and consequences of groundwater depletion. The research results show that groundwater in Dhaka city is depleting at an alarming rate; the central part has the worst situation followed by the south-western part. In contrast, northern part has relatively better groundwater condition. Moreover, the peripheral zone exhibits a better condition because of the existence of rivers and wetlands. The interviews reveal that population density and overexploitation are mainly responsible for groundwater depletion; however, various other factors such as the deliberate establishment of deep tube wells, reduction of recharge capacity due to rapid growth of urban structures altogether results in huge drop of water level throughout the city. Rapid decline in groundwater augments the city's exposure towards multiple risks including land subsidence, groundwater pollution and most importantly, paucity of available fresh water that might ultimately results into an urban disaster. Potential solutions to ameliorate this situation include urban greening

  6. Groundwater contamination by nitrates in the city of Konya, (Turkey): a GIS perspective.

    Science.gov (United States)

    Nas, Bilgehan; Berktay, Ali

    2006-04-01

    Groundwater is an essential drinking water source in the city of Konya, Turkey. Approximately 75% of the city's water consumption has been supplied from 198 groundwater wells for the last six years. Nitrate (NO(3)(-)) is one of the important water quality parameters and was measured in the water samples taken from 139 wells in 1998 and from 156 wells in 2001 within the study area of 427.5 km(2). To evaluate the nitrate data, a vector-based GIS software package ArcView GIS 3.2 was used. A hardcopy map of the city was digitized in the UTM projection system. The locations of the wells were obtained by a hand-held Global Positioning System (GPS) receiver. According to the maps produced, nitrate concentrations generally tend to increase in the city center, the average concentrations being 2.2 and 16.1mg/L for the years of 1998 and 2001, respectively. A statistical correlation procedure was also applied to well depths and nitrate concentrations. As a result, correlation coefficients of 0.259 and 0.261 were obtained for data collected in 1998 and 2001. It is concluded that the distribution of nitrate concentrations is not correlated with well depths within the study area. PMID:16143447

  7. Land subsidence caused by groundwater exploitation in Suzhou City, China

    Science.gov (United States)

    Chen, Chongxi; Pei, Shunping; Jiao, Jiu Jimmy

    2002-09-01

    Suzhou City, located at the lower reaches of the Yangtze River in southeastern Jiangsu Province, is one of the few cities in China which suffer from severe ground settlement. A research project was carried out to investigate this problem. Geological and hydrogeological studies show that there is a multi-layered aquifer system with three distinct, soft mud layers of marine and lagoonal origins. An examination of historical records of groundwater extraction, water levels, and ground settlement shows that the ground subsidence is associated with the continuously increasing groundwater extraction in the deep, confined aquifer. It is believed that the consolidation of the soft mud layers, especially the third layer which is thick and close to the main pumped aquifer, contributes to the ground settlement. A three-dimensional finite difference numerical model representing the multi-layered aquifer system was developed to study the ground settlement in response to groundwater extraction. By calibrating the model with both the measured groundwater level and ground settlement, the aquifer parameters were estimated. The model outputs fit reasonably well with the observed results, which indicates that the numerical model can reproduce the dynamic processes of both groundwater flow and soil consolidation. The hydraulic conductivity of the third mud layer near the center of the ground settlement has been reduced by over 30% in the last 14 years. The gradual deterioration in the hydraulic conductivity of the mud may have significant adverse effect on the sustainable groundwater resource of the deep confined aquifer, since the recharge from the shallow aquifers through the mud layer is the only source of water to the deep aquifer. An analysis of the spatial distributions of groundwater drawdown and ground settlement shows that the area with maximum drawdown is not necessarily the area with maximum ground settlement due to the occurrence of the soft mud layer. A simple reallocation

  8. Assessment of groundwater quality in Puri City, India: an impact of anthropogenic activities.

    Science.gov (United States)

    Vijay, Ritesh; Khobragade, Puja; Mohapatra, P K

    2011-06-01

    Puri City is situated on the east coast of India and receives water supply only from the groundwater sources demarcated as water fields. The objective of this paper is to assess and evaluate the groundwater quality due to impact of anthropogenic activities in the city. Groundwater samples were collected from the water fields, hand pumps, open wells, and open water bodies during post-monsoon 2006 and summer 2007. Groundwater quality was evaluated with drinking water standards as prescribed by Bureau of Indian Standards and Environmental Protection Agency to assess the suitability. The study indicated seasonal variation of water-quality parameters within the water fields and city area. Groundwater in the water fields was found to be suitable for drinking after disinfection. While in city area, groundwater quality was impacted by onsite sanitary conditions. The study revealed that groundwater quality was deteriorated due to the discharge of effluent from septic tanks, soak pits, pit latrines, discharges of domestic wastewater in leaky drains, and leachate from solid waste dumpsite. Based on observed groundwater quality, various mitigation measures were suggested to protect the water fields and further groundwater contamination in the city. PMID:20714928

  9. Nitrate in groundwater and the unsaturated zone, Shijiazhuang City, China

    International Nuclear Information System (INIS)

    In 2001, nitrate concentrations in water from wells in Shijiazhuang City, China ranged from 15 to about 160 mg/L as nitrate, with a median concentration of 50 mg/L. Agricultural return waters from lands irrigated with sewage or groundwater are believed to be the source of increasing nitrate, chloride, sulphate, and dissolved solids concentrations. Recharge rates estimated from chemical and tritium data are about 130 mm/y for non-irrigated agricultural land and exceed 200 mm/y for irrigated land. Nitrate concentrations in pore water in the unsaturated zone were as high as 930 mg/L. As much as 350 kg/ha of nitrogen is stored in the upper 18 m of the unsaturated zone beneath a groundwater irrigated site. As much as 780 kg/ha of nitrogen could be stored in thicker unsaturated zones within the study area and nitrogen storage beneath sewage irrigated sites is even probably greater. About 60% of the nitrate stored in the unsaturated zone is in the form of nitrate and 36% is in the form of ammonia. Denitrification in near-saturated fine-grained layers reduces the concentration of nitrate in with depth and at 18 m below land surface 60% of the nitrogen is in the form of ammonia. The δ15N composition of water from sampled wells ranged from 2.2 to 11.7 per mille, with median value of 6.1 per mille. Water from wells in the urban area had the highest average δ15N compositions with progressively lower values in the village and farmland areas. δ15N values in surficial soils averaged 1.0 per mille in natural sites, 9.5 per mille in sewage and manure amended sites, and 7.3 per mille in the chemically fertilized sites. Most δ15N values in water from wells are in the range of compositions expected from sewage and manure sources of nitrogen-with some denitrification, although extensive denitrification of nitrogen from chemical fertilizers also could produce observed δ15N values. (author)

  10. Hydrogeochemical characteristics of groundwater depression cones in Yinchuan City, Northwest China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Groundwater in Yinchuan City has been heavily over-exploited, thus leading to the formation of depression cones in confined and phreatic groundwater environments. The depression cones have an important influence on the hydrodynamic and hydrochemical fields of groundwaters. The evolution of depression cones was analyzed on the basis of the monitoring data on groundwater level accumulated in the past 14 years. The ratio of rCl-/rCa2+ showed that phreatic water circulation was intensified, and confined groundwater was affected by external factors. Mass balance of Cl- showed confined water mixed with about 11% phreatic water. It is shown that the alternative function of confined water was affected by external factors. At last, the evolution of groundwater hydrochemical field on the basis of groundwater chemical composition showed that phreatic water quality has been improved whereas confined water quality has been deteriorated. Saturation indices of minerals with respect to phreatic and confined waters were calculated by using PHREEQC.

  11. Spatial patterns and temporal variability in water quality from City of Albuquerque drinking-water supply wells and piezometer nests, with implications for the ground-water flow system

    Science.gov (United States)

    Bexfield, Laura M.; Anderholm, Scott K.

    2002-01-01

    Water-quality data for 93 City of Albuquerque drinking-water supply wells, 7 deep piezometer nests, and selected additional wells were examined to improve understanding of the regional ground-water system and its response to pumpage. Plots of median values of several major parameters showed discernible water-quality differences both areally and with depth in the aquifer. Areal differences were sufficiently large to enable delineation of five regions of generally distinct water quality, which are consistent with areas of separate recharge defined by previous investigators. Data for deep piezometer nests indicate that water quality generally degrades somewhat with depth, except in areas where local recharge influenced by evapotranspiration or contamination could be affecting shallow water. The orientations of the five water-quality regions indicate that the direction of ground-water flow has historically been primarily north to south. This is generally consistent with maps of predevelopment hydraulic heads, although some areas lack consistency, possibly because of differences in time scales or depths represented by water quality as opposed to hydraulic head. The primary sources of recharge to ground water in the study area appear to be mountain-front recharge along the Sandia Mountains to the east and the Jemez Mountains to the north, seepage from the Rio Grande, and infiltration through Tijeras Arroyo. Elevated concentrations of many chemical constituents in part of the study area appear to be associated with a source of water having large dissolved solids, possibly moving upward from depth. Hydraulic-head data for deep piezometer nests indicate that vertical head gradients differ in direction and magnitude across the study area. Hydraulic-head gradients are downward in the central and western parts of the study area and upward across much of the eastern part, except at the mountain front. Water-quality data for the piezometers indicate that the ground water is not

  12. Hackable Cities : From Subversive City Making to Systemic Change

    OpenAIRE

    de Lange, M.L.; de Waal, Martijn; Foth, Marcus; Verhoeff, Nanna; Martin, Brynskov

    2015-01-01

    The DC9 workshop takes place on June 27, 2015 in Limerick, Ireland and is titled "Hackable Cities: From Subversive City Making to Systemic Change". The notion of "hacking" originates from the world of media technologies but is increasingly often being used for creative ideals and practices of city making. "City hacking" evokes more participatory, inclusive, decentralized, playful and subversive alternatives to often top-down ICT implementations in smart city making. However, these discourses ...

  13. [Construction of groundwater contamination prevention mapping system].

    Science.gov (United States)

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-09-01

    Groundwater contamination prevention mapping is an important component of groundwater contamination geological survey and assessment work, which could provide the basis for making and implementing groundwater contamination prevention planning. A groundwater contamination prevention mapping system was constructed in view of the synthetic consideration on nature perspective derived from groundwater contamination sources and aquifer itself, social-economic perspective, policy perspective derived from outside. During the system construction process, analytic hierarchy process and relevant overlaying principles were used to couple groundwater contamination risk assessment, groundwater value as well as wellhead protection area zoning. Data processing and visualization of mapping results were achieved in the GIS environment. The research on groundwater contamination prevention mapping in Beijing Plain indicated that the final groundwater prevention map was in accordance with the actual conditions and well reflected the priorities of groundwater prevention, which could play a guidance role in designing and implementing further practical prevention and supervision measures. Besides, because of the dynamical properties of the system components, it was suggested to analyze the update frequency of the mapping. PMID:23243867

  14. Evapotranspiration Within the Groundwater Model Domain of the Tuba City, Arizona, Disposal Site Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a net groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.

  15. Groundwater intrusion into leaky sewer systems.

    Science.gov (United States)

    Wittenberg, H; Aksoy, H

    2010-01-01

    Vast volumes of groundwater are drained by urban sewer systems. This unwanted flow component intrudes into sewer systems through leaky joints or connected house drains. However, unlike urban storm drainage, it has a high seasonal variation corresponding to groundwater storage and long slow recessions similar to baseflow in rivers also fed by shallow groundwater exfiltrating into the surface waters. By applying the nonlinear reservoir algorithm as used for baseflow separation from total flow in a river, groundwater flow is separated from daily measured influents to treatment plants in Lower Saxony and Baden-Württemberg, Germany and in the Terkos Lake watershed near Istanbul, Turkey. While waste water flows vary only moderately within a year, separated intruded groundwater flows show recessions and seasonal variations correlated to baseflow in neighbouring rivers. It is possible to conclude that recession characteristics of treatment plant influents allow quantification and prediction of groundwater intrusion into sewer systems. PMID:20595758

  16. Analysis of Groundwater Quality of Aligarh City, (India: Using Water Quality Index.

    Directory of Open Access Journals (Sweden)

    Khwaja M. Anwar

    2014-12-01

    Full Text Available Water is essential for all living organisms for their existence and metabolic process. Unethical human intervention in natural system and over exploitation of groundwater resources induces degradation of its quality. In many instances groundwater is used directly for drinking as well as for other purposes, hence the evaluation of groundwater quality is extremely important. The present study is aimed to analyze the underground water quality at Aligarh. In this study 80 water samples were collected from 40 places and analyzed for 14 water quality parameters for pre-monsoon and post-monsoon seasons (2012. The water quality index of these samples ranges from 18.92 to 74.67 pre-monsoon and 16.82 to 70.34 during post-monsoon. The study reveals that 50 % of the area under study falls in moderately polluted category. The ground water of Aligarh city needs some treatment before consumption and it also needs to be protected from contamination.

  17. Extent, perception and mitigation of damage due to high groundwater levels in the city of Dresden, Germany

    OpenAIRE

    H. Kreibich; A. H. Thieken; H. Grunenberg; Ullrich, K; Sommer, T

    2009-01-01

    Flood risk analysis and management plans mostly neglect groundwater flooding, i.e. high groundwater levels. However, rising groundwater may cause considerable damage to buildings and infrastructure. To improve the knowledge about groundwater flooding and support risk management, a survey was undertaken in the city of Dresden (Saxony, Germany), resulting in 605 completed interviews with private households endangered by high groundwater levels. The reported relatively low floo...

  18. Hackable Cities : From Subversive City Making to Systemic Change

    NARCIS (Netherlands)

    de Lange, M.L.; de Waal, Martijn; Foth, Marcus; Verhoeff, Nanna; Martin, Brynskov

    2015-01-01

    The DC9 workshop takes place on June 27, 2015 in Limerick, Ireland and is titled "Hackable Cities: From Subversive City Making to Systemic Change". The notion of "hacking" originates from the world of media technologies but is increasingly often being used for creative ideals and practices of city m

  19. Groundwater Site Characterization: A Systems Perspective.

    Science.gov (United States)

    Wolf, Frederick

    1994-01-01

    Groundwater remedial actions are highly complex projects. During the past 10 years, many remedial actions have begun, but very few have been successfully completed. This paper describes the complexity of groundwater remediation and offers an alternative management approach involving systems movement successfully utilized at a site in the…

  20. Impacts of a large Sahelian city on groundwater hydrodynamics and quality: example of Niamey (Niger)

    Science.gov (United States)

    Hassane, Aïssata B.; Leduc, Christian; Favreau, Guillaume; Bekins, Barbara A.; Margueron, Thomas

    2016-03-01

    The management of groundwater resources is very important in the semiarid Sahel region, which is experiencing rapid urban development. Impacts of urbanization on groundwater resources were investigated in the unconfined aquifer of the Continental Terminal beneath the city of Niamey, Niger, using water level and chemical data. Hydrodynamic and chemical changes are best described by a combination of factors including the historical development of the city, current land use, water-table depth and topography. Seasonal groundwater recharge occurs with high spatial variability, as indicated by water-level monitoring in all wells, but there was no interannual trend over the 5-year study period. Groundwater salinity shows high spatial variability and a minor rising trend. The highest salinity is in the old city centre, with Na-NO3 dominant, and it increases seasonally with recharge. Salinity is much lower and more variable in the suburbs (Ca-HCO3, Ca-NO3, and Na-NO3 dominant). Nitrate is the main ionic contaminant and is seasonally or permanently above the international guidelines for drinking water quality in 36 % of sampled wells, with a peak value of 112 mg L-1 NO3-N (8 meq L-1). Comparison of urban and rural sites indicates a long-term increase in groundwater recharge and nitrate enrichment in the urban area with serious implications for groundwater management in the region.

  1. Regulatory issues associated with groundwater compliance at the Falls City, Texas, UMTRA site cleanup

    International Nuclear Information System (INIS)

    This paper discusses the problems associated with the application of supplemental standards for groundwater compliance for the disposal of uranium mill tailings at the DOE's Falls City UMTRA Project site. This includes a discussion of the difficulty in determining background water quality at the site. A discussion of the regulating agency's (NRC) concerns and the resolution of the various NRC issues with demonstrating Class III (limited use) groundwater is provided. An additional item of discussion is the problem of the conflict with the UMTRA definition of an uppermost aquifer and the 1986 EPA draft groundwater classification guidelines. (author)

  2. Man's Impact on Groundwater Systems

    International Nuclear Information System (INIS)

    Water is an essential component of ecosystems and man's health. As the world population is growing, the need for more food, man's shift to urban areas and the progressive industrialisation all affect water resources in a qualitative and quantitative way. Connected to these general developments the following problems arise: - water exploitation increasingly concentrates on local areas with high water demands at low cost; - urbanisation contributes to the disequilibration of groundwater recharge, either by sealing the surface against infiltration or by leakage processes from the underground water transport system; - the groundwater quality is affected by leakage and accidental spills of liquid and solid wastes gathered in a few places, generally untreated or unconditionedly released, thus presenting serious dangers of pollution; - the excessive use of agrochemicals influences the natural functioning of both the soil and the aquifer, thus hampering the self-attenuation processes; - emissions from fuel and waste combustion are concentrated in few places, in the vicinity of the emission source provoking strong and quasi immediate contamination, also in the more distant surroundings slowly increasing impacts on water resources and ecosystems by dry or wet deposition; - the expansion of man's activities in arid and semi-arid regions often lead to the deterioration of resources, either by overexploitation or by desertification; - deforestation disturbs the water balance and water quality, and enhances erosion. Since water resources react on changes of land and water use with a long delay time, man's activities should be better adapted to basic hydrodynamic conditions in order to better satisfy the needs of a safe drinking water supply, flood protection, and the food and industrial production. Such basic hydrodynamic conditions comprise e.g. resource replenishment, steady state or transient dynamics and chemical stratification, which all may contribute to develop

  3. Groundwater salinization mechanism of aquifers beneath Ho Chi Minh City area (Viet Nam)

    International Nuclear Information System (INIS)

    Water supplying for domestic and product activities in Hochiminh City is being taken from two both sources: surface water and groundwater. Environmental isotopes technique is emphasized to determine the salinisation mechanism of groundwater. The objectives studied are groundwater of two aquifers mainly being exploited in Hochiminh City area. Based on the national water monitoring wells existing in the studied area and the hydrogeological setting a network of 70 sampling points for both two aquifers was set up. Water samples were collected two times (in rainy season of 2001 and in the end of dry season of 2002). All collected samples were analyzed for hydrochemical and stable isotopes. 30 of them were analyzed for tritium and 15 of them were done for 14C. Analyzing hydrochemical results of collected samples show that the quality of groundwater varies from fresh to saline, soft to very hard and high iron contents in some regions. The analyses of cations and anions by Piper Trilinear Diagram show that in aquifers where saline groundwater distributed the cations are mainly sodium, calcium, and magnesium type while the anions are mainly chloride and sulfate type but in the part where fresh groundwater the cations are mainly sodium, calcium, and type while the anions are mainly bicarbonate, carbonate and nitrate type. According to TDS values the distribution of fresh and saline groundwater in studied aquifers is mapped and fresh-saline groundwater boundaries in 1990 and 2000 is also demonstrated. The distribution of groundwater samples collected along the GMWL show that groundwater in this area is recharged directly by rainfall and surface water. High tritium contents and 14C relative radioactivity of groundwater in the area also support this process. Delta values of 18O and Chloride contents plot show that it exists two main salinisation mechanism. The first one is the leaching process and the second one is mixing with seawater process and both these mechanisms are

  4. Separate process wastewaters, part A: Contaminated flow collection and treatment system for the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) to assist the agency in complying with the National Environmental Policy Act (NEPA) of 1969 as it applies to modification of ongoing groundwater treatment at DOE`s Kansas City Plant (KCP), located about 19 km (12 miles) south of the central business district of Kansas City, Missouri. The KCP is currently owned by DOE and is operated by the Kansas City Division of AlliedSignal Inc. The plant manufactures nonnuclear components for nuclear weapons. The purpose of and need for the DOE action is to treat identified toxic organic contaminated groundwater at the KCP to ensure that human health and the environment are protected and to comply with groundwater treatment requirements of the U.S. Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) 3008(h) Administrative Order on Consent and the discharge requirements of the Kansas City, Missouri, ordinances for the city sewer system. Four source streams of toxic organic contaminated groundwater have been identified that require treatment prior to discharge to the city sewer system. The toxic organic contaminants of concern consist of volatile organic compounds (VOCS) in the groundwater and polychlorinated biphenyls (PCBS) predominantly associated with some soils near the Main Manufacturing Building. The no-action alternative is to continue with the current combination of treatment and nontreatment and to continue operation of the KCP groundwater treatment system in its current configuration at Building 97 (B97). The DOE proposed action is to collect and treat all identified toxic organic contaminated groundwater prior to discharge to the city sewer system. The proposed action includes constructing an Organics Collection System and Organics Treatment Building, moving and expanding the existing groundwater treatment system, and operating the new groundwater treatment facility.

  5. Hydrogeological aspects of groundwater drainage of the urban areas in Kuwait City

    Science.gov (United States)

    Al-Rashed, Muhammad F.; Sherif, Mohsen M.

    2001-04-01

    Residential areas in Kuwait City have witnessed a dramatic rise in subsurface water tables over the last three decades. This water rise phenomenon is attributed mainly to over irrigation practices of private gardens along with leakage from domestic and sewage networks. This paper presents a comprehensive study for urban drainage in two selected areas representing the two hydrogeological settings encountered in Kuwait City. In the first area, a vertical drainage scheme was applied successfully over an area of 1 km2. The system has been under continuous operation and monitoring for more than 4 years without problems, providing a permanent solution for the water rise problem in this area. The hydrogeological system has approached steady state conditions and the water levels have dropped to about 3·5 m below the ground surface. In the second area a dual drainage scheme, composing of horizontal and vertical elements, is proposed. Horizontal elements are suggested in the areas where the deep groundwater contains hazardous gases that may pose environmental problems. The proposed drainage scheme in the second area has not yet been implemented. Field tests were conducted to assess the aquifer parameters in both areas and a numerical model has been developed to predict the long-term response of the hydrogeological system in the two areas under consideration.

  6. Basin wide Nitrate-Nitrogen pollution of groundwater, Miyakonojo, Japan, with the relation of the regional Groundwater flow system

    Science.gov (United States)

    Mikami, K.; Shimada, J.; Zikuzono, Y.

    2006-12-01

    Miyakonojo basin is well-known agriculture area in Southern Kyushu, Japan and highly depends on groundwater resources for their everyday use. Local unconfined groundwater aquifer is widely polluted by Nitrate-Nitrogen originated from agriculture. It will become serious problem if this unconfined Nitrate pollution enlarges into the confined aquifer system which is used for local city water source. However, the detailed groundwater flow system between unconfined and confined aquifer system has not been cleared yet. The detailed three dimensional groundwater flow system study has been done by using existing wells in a basin to understand the three dimensional distribution pattern of Nitrate-Nitrogen in the aquifer. The field sampling for unconfined, intermediate and confined groundwater was done in July, 2005 and February, 2006 for about 200 wells to analyze inorganic water chemistry, hydrogen / oxygen stable isotopes and tritium. For the unconfined groundwater, there exists clear difference for the groundwater flow pattern between the eastern and western basin, which is mostly affected by the surface topography. The unconfined groundwater flowed into the confined aquifer at the eastern part of a basin, while in the western part of a basin the unconfined groundwater on a plateau flowed into the confined aquifer somehow, but most part of the unconfined groundwater has been discharge out to small river valleys between plateaus. While for the confined groundwater, the topographic effect has been disappeared and basin scale groundwater flow from the basin margin toward the basin center is dominated. In the unconfined aquifer, basin wide distribution of Nitrate-Nitrogen content has been recognized and it is relatively higher in the western basin where the cattle farming are dominated. While in the confined aquifer, there are some high Nitrate-Nitrogen spots but do not have regional trend. It is considered that some part of the basin has not distributed the welded tuff

  7. Physico Chemical Assesment of Groundwater in Indore City

    Directory of Open Access Journals (Sweden)

    Monika Gurjar

    2013-04-01

    Full Text Available The present work deals with the assessment of the ground water of some selected area of the Indore city. The investigation was carried out in the month of March and April-2012. The sites were selected to cover the Indore city including residential, commercial, industrial and agriculture area. Various parameters were studied and compared with the IS specification. Some parameters have been found undesirable in some location, mainly Kabir Khedi and Pologround area which need proper attention. Rest of the sample area has deviation within desirable and undesirable extent of tolerance

  8. Studying the Probability of Using Groundwater in Baghdad City for Human, Animal, and Irrigation Use

    Directory of Open Access Journals (Sweden)

    Reem J. Channo

    2012-01-01

    Full Text Available Groundwater is an important source of fresh water especially in countries having a decrease in or no surface water; therefore itis essential to assess the quality of groundwater and find the possibility of its use in different purposes (domestic; agricultural; animal; and other purposes. In this paper samples from 66 wells lying in different places in Baghdad city were used to determine 13 water parameters, to find the quality of groundwater and evaluate the possibility of using it for human, animal and irrigation by calculating WQI, SAR, RSC and Na% and TDS indicators. WQI results showed that the groundwater in all wells are not qualified for human use, while SAR and RSC indicated that most samples are suitable for irrigation use, and TDS showed that 74% of samples are suitable for animal use especially for sheep and meat-livestock animals.

  9. Chemical response to groundwater extraction southeast of Mexico City

    Science.gov (United States)

    Huizar-Alvarez, R.; Carrillo-Rivera, J. J.; Ángeles-Serrano, G.; Hergt, T.; Cardona, A.

    An alternative procedure of pumping test data interpretation is used through a joint analysis of the standard time-drawdown curve and simultaneous field measurements of total dissolved solids (TDS); additional support is also provided by the temperature of extracted groundwater and the chemical composition of extracted water. The overall information was applied to characterise the groundwater flow system and its sources, the hydraulic conditions of the aquifer and hydraulic response of extraction boreholes. The analysis of this information suggests the presence of: (i) a local flow system that circulates at shallow depth through basalt units interstratified with fine grained sediments and pyroclastics; these materials contain water with TDS of 127-600 mg/L and Na of 24-178 mg/L, and temperature of 18-19.5 °C (ii) intermediate flow in granular material under reducing conditions by the oxidation of organic matter in aquitard sediments; this water has TDS and Na values of 203-940 and 30-370 mg/L, respectively, and temperatures of about 20-22 °C (iii) regional flow through volcanic rocks and limestone, with TDS content of 300-700 mg/L, Na of 80-230 mg/L and temperature of 23.0-24.8 °C. The hydraulic response and the chemical composition of the water produced by some boreholes are affected by the seepage inflow from sewage effluents, the input from an overlying aquitard unit and the inducement of regional flow. The conception of the flow regime thus obtained allowed the recognition of hydraulic conditions which were more consistent with the hydrogeological setting, than if only a time vs. drawdown test analysis would have been carried out. L'interprétation simultanée de pompages d'essais, des données de température et résidu sec (RS) de L'eau souterraine pompée, mesurées simultanément sur le terrain et la composition chimique de L'eau pompée comme un aide additionnelle, est utilisée comme une différent procédure pour interpréter les pompages d'essais. La

  10. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  11. Quantitative assessment of the groundwater-sewer network interaction in Bucharest city (Romania)

    Science.gov (United States)

    Boukhemacha, M. A.; Diaconescu, A.; Bica, I.; Gogu, C. R.; Gaitanaru, D.

    2012-04-01

    Groundwater management in urban area must take account of every possible and relevant phenomena arising from the complex interaction between subsurface water, surface water, and urban infrastructure. In Bucharest, the need of the sewer system rehabilitation initiated a study of the interaction between groundwater and the sewer network. Recent conclusions show that the sewer network acts mainly like a drainage system for the groundwater. However, it could be easily proven that several sewer segments located mainly in the unsaturated zone contaminate the groundwater by leakage. The groundwater infiltration in the sewer conduits can cause the decrease of the groundwater level leading to structures instability problems as well as to the increase flow-rates of the sewer system. The last one affects seriously the wastewater treatment plants efficiency. The sewer network leakage cause groundwater pollution and locally could increase the groundwater level triggering buildings instability or other urban operational problems. The current study focuses on the consequences of sealing a part of the sewer system and so disturbing the existing groundwater behavior which may lead to serious consequences. In this framework, the analysis results of a groundwater flow model used to quantify the interaction between the groundwater and the sewer network are presented. The two-layers groundwater flow model simulating the Colentina and Mostistea overlaid sedimentary aquifers covers about 75 km2. Its conceptual model relies on a 3D geological model made by using 23 accurate geological cross-sections of the studied domain. The model set-up and its calibration are done using pumping tests data, groundwater hydraulic heads, and water levels of the sewer system. Infiltration rates into sewers are modeled by applying a modified form of Darcy's law that uses the notion of infiltration factor. This last encompasses the hydraulic conductivity of the clogging layer, the infiltration area and the

  12. A hydrochemical elucidation of the groundwater composition under domestic and irrigated land in Jaipur City.

    Science.gov (United States)

    Tank, Dinesh Kumar; Chandel, C P Singh

    2010-07-01

    The study area Jaipur, the capital of Rajasthan, is one of the famous metropolises in India. In order to know the suitability of groundwater for domestic and irrigation purposes in Jaipur City, groundwater samples were composed of 15 stations during post-monsoon time of the year 2007-2008 (Nov 2007 to Feb 2008) and were analyzed for physicochemical characters. The physicochemical parameters of groundwater participate a significant role in classifying and assessing water quality. A preliminary characterization, carried out using the piper diagram, shows the different hydrochemistry of the sampled groundwater. This diagram shows that most of the groundwater samples fall in the field of calcium-magnesium-chloride-sulfate type (such water has permanent hardness) of water. Data are plotted on the US Salinity Laboratory diagram, which illustrates that most of the groundwater samples fall in the field of C2S1 and C3S1, which can be used for irrigation on almost all type of soil with little danger of exchangeable sodium. Based on the analytical results, chemical indices like %Na, SAR, and RSC were calculated which show that most of the samples are good for irrigation. PMID:19479331

  13. 234U/238U isotope data from groundwater and solid-phase leachate samples near Tuba City Open Dump, Tuba City, Arizona

    Science.gov (United States)

    Johnson, Raymond H.; Horton, Robert J.; Otton, James K.; Ketterer, Michael K.

    2012-01-01

    This report releases 234U/238U isotope data, expressed as activity ratios, and uranium concentration data from analyses completed at Northern Arizona University for groundwater and solid-phase leachate samples that were collected in and around Tuba City Open Dump, Tuba City, Arizona, in 2008.

  14. A CORRELATION AND REGRESSION STUDY ON THE GROUNDWATER QUALITY IN ALIGARH CITY, UTTAR PRADESH

    Directory of Open Access Journals (Sweden)

    Ummatul Fatima

    2015-07-01

    Full Text Available Ground water is the vital source of sustenance and survival of every living organism. The present study aimed at a statistical regression analysis of Groundwater at 16 locations of Aligarh city, Uttar Pradesh. A correlation study has been carried out amongst all possible pairs of 15 physico-chemical parameters viz., pH, total acidity, phenolphthalein alkalinity, total alkalinity, total hardness, calcium, magnesium, dissolved oxygen, chemical oxygen demand, turbidity, electrical conductivity, total solid, total dissolved solid, total suspended solid and chloride to assess groundwater quality. The correlation analysis provides an excellent tool for the prediction of parameter values within reasonable degree of accuracy. The existence of strong correlation between Total Hardness & Magnesium and Total Dissolved Solid & Total Solid are ascertained. The analysis reveals that the groundwater of the area needs some treatment before consumption and it also needs to be protected from the perils of contamination.

  15. The Characteristics of Leachate and Groundwater Pollution at Municipal Solid Waste Landfill of Ibb City, Yemen

    OpenAIRE

    Esmail A. Sabahi; S.A. Rahim; W. Y.W. Zuhairi; Fadhl A. Nozaily; Fares Alshaebi

    2009-01-01

    Problem statement: Yemen one of the developing country suffering from water pollution. Landfill is one of the source of water pollution. There are several boreholes located close to Ibb landfill used for drinking water. A study of composition of landfill leachate and groundwater pollution was conducted at Ibb landfill, which is located at Al-Sahool area, north of Ibb City, Yemen. Approach: The leachate was sampled at three different locations of the landfill, at the landfill itself and 15 and...

  16. Groundwater Systems and Resources in the Ordos Basin, China

    Institute of Scientific and Technical Information of China (English)

    HOU Guangcai; LIANG Yongping; SU Xiaosi; ZHAO Zhenghong; TAO Zhengping; YIN Lihe; YANG Yuncheng; WANG Xiaoyong

    2008-01-01

    The Ordos Basin is.a large-scalesedimentary basin in northwestern China. The hydrostratigraphic units from bottom to top are pre-Cambrian metamorphic rocks, Lower Paleozoic carbonate rocks, Upper Paleozoic to Mesozoic clastic rocks and Cenozoic deposits. The total thickness is up to 6000 m. Three groundwater systems are present in the Ordos Basin, based on the geological settings, I.e. The karst groundwater system, the Cretaceous dastic groundwater system and the Quaternary groundwater system. This paper describes systematically the groundwater flow patterns of each system and overall assessment of groundwater resources.

  17. Interaction between surface water areas and groundwater in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, T.; Kuroda, K.; Do Thuan, A.; Tran Thi Viet, N.; Takizawa, S.

    2012-12-01

    Hanoi is the capital of Viet Nam and the second largest city in this country (population: 6.45 million in 2009). Hanoi city has developed along the Red River and has many lakes, ponds and canals. However, recent rapid urbanization of this city has reduced number of natural water areas such as ponds and lakes by reclamation not only in the central area but the suburban area. Canals also have been reclaimed or cut into pieces. Contrary, number of artificial water areas such as fish cultivation pond has rapidly increased. On the other hand, various kind of waste water flows into these natural and artificial water areas and induces pollution and eutrophication. These waste waters also have possibility of pollution of groundwater that is one of major water resources in this city. In addition, groundwater in this area has high concentrations of Arsenic, Fe and NH4. Thus, groundwater use may causes re-circulation of Arsenic. However, studies on the interaction between surface water areas and groundwater and on the role of surface water areas for solute transport with water cycle are a few. Therefore, we focused on these points and took water samples of river, pond and groundwater from four communities in suburban areas: two communities are located near the Red River and other two are far from the River. Also, columnar sediment samples of these ponds were taken and pore water was abstracted. Major dissolved ions, metals and stable isotopes of oxygen and hydrogen of water samples were analyzed. As for water cycle, from the correlation between δ18O and δD, the Red River water (after GNIR) were distributed along the LMWL (δD=8.2δ18O+14.1, calculated from precipitation (after GNIP)). On the other hand, although the pond waters in rainy season were distributed along the LMWL, that in dry season were distributed along the local evaporation line (LEL, slope=5.6). The LEL crossed with the LMWL at around the point of weighted mean values of precipitation in rainy season and of

  18. Application of groundwater sustainability indicators to the Upper Pliocene aquifer in Ho Chi Minh city, Viet Nam

    Science.gov (United States)

    Ngo, T. M.; Lee, J.; Lee, H.; Woo, N. C.

    2013-12-01

    Groundwater plays an importance role for domestic, industrial, and agricultural uses in Ho Chi Minh city, Viet Nam. This study is objected to evaluate the sustainability of groundwater by using groundwater sustainability indicators (GWSIs) defined by UNESCO/IAEA/IAH Working Group on Groundwater Indicators at aquifer scale (the Upper Pliocene aquifer). There are four main indicators selected and one new indicator designed for the particular characteristic of Ho Chi Minh city which is under influence of by saline-water intrusion. The results indicated groundwater of the Upper Pliocene aquifer, the main groundwater supply source, is generally in the unsustainable state. The abstraction of groundwater, which was much greater than its capability, is probably causing the serious state of annual groundwater depletion and saline-water intrusion. The GWSIs, which expressed in such a simple way but scientifically-based and policy-relevant, proved its usefulness in evaluating the sustainability of groundwater at the aquifer scale in Ho Chi Minh city, and subsequently should be incorporated in water resource management practices.

  19. Volatile Short-chain Chlorinated Hydrocarbons in the Groundwater of the City of Zagreb

    Directory of Open Access Journals (Sweden)

    Marijanović-Rajčić, M.

    2008-01-01

    Full Text Available The aim of the study was to assess the quality of the groundwater sampled from private wells and the public water-supply system in terms of estimating the contamination caused by short-chain chlorinated hydrocarbons, as well as to estimate the exposure of the citizens dwelling in different suburbs to these pollutants of their drinking water (Fig. 1. The aim of the study was also to determine which suburb is supplied through the public water-supply system with water originating from the Sašnak spring that is contaminated with volatile chlorinated short-chain hydrocarbons.Drinking water samples were taken from 3 private wells and 1 public water-supply system situated in 3 Zagreb suburbs - Pešćenica, Trnje, and Trešnjevka. The sampling was carried out during 2003 and was undertaken on a seasonal basis. Short-chain chlorinated hydrocarbons - 1,1,1-trichloroethane, carbon tetrachloride, 1,1,2-trichloroethene and 1,1,2,2-tetrachloroethene - were determined by gas chromatography, following "liquid-liquid extraction" in pentane. For that purpose, we applied the gas chromatograph equipped with an electron-capture detector, thermo-programmable operations, and a suitable capillary column. The technique applied was that of split-injection.The groundwater of the City of Zagreb was found to be contaminated with volatile chlorinated hydrocarbons. The concentration level of 1,1,1-trichloroethane, determined in most of the samples, was found to be low (Fig. 2. On the other hand, 1,1,2-trichloroethene was present in all samples in concentrations of about 1 µg l-1- (Fig. 3. Only the drinking water samples taken from private wells in the suburb of Trnje contained somewhat higher mass concentrations of 1,1,1-trichloroethane, with the peak value of 19.03 µg l-1, measured in the winter season. In the samples taken from private wells in Trnje, the mass concentrations of 1,1,2,2-tetrachloroethene rangedfrom 15.30 µg l-1 to 18.65 µg l-1, as measured in autumn

  20. DENSER Cities: A System for Dense Efficient Reconstructions of Cities

    OpenAIRE

    Tanner, Michael; Pinies, Pedro; Paz, Lina Maria; Newman, Paul

    2016-01-01

    This paper is about the efficient generation of dense, colored models of city-scale environments from range data and in particular, stereo cameras. Better maps make for better understanding; better understanding leads to better robots, but this comes at a cost. The computational and memory requirements of large dense models can be prohibitive. We provide the theory and the system needed to create city-scale dense reconstructions. To do so, we apply a regularizer over a compressed 3D data stru...

  1. Assessment of Groundwater and Surface Water Pollution at Mitm Area, Ibb City, Yemen

    Directory of Open Access Journals (Sweden)

    Esmail A. Sabahi

    2009-01-01

    Full Text Available Groundwater and surface water samples were collected from Mitm area to study the possible impact of wastewater treatment percolation into the groundwater and surface water. The objective of the study is to assess the groundwater and surface water pollution due to wastewater treatment at Mitm area of Ibb city, in the Republic of Yemen. The concentrations of various physiochemical parameters include heavy metals (Pb, Zn, Ni, Cr, Cd, Cu pH, temperature, Electrical Conductivity (EC, Total Dissolved Solids (TDS, and Dissolved Oxygen (DO, anions and nutrients (F-, Cl-, SO4-2, NO2, NO3-,NH3-N, major cations (Fe, Na, K, Ca, Mg and parameters (COD, BOD5, and coliform group bacteria were measured from the groundwater samples. The results show that three out of five boreholes are contaminated, where the concentration of physic-chemical parameters are above the standard acceptable levels which required for drinking water adapted by Yemen's Ministry of Water and Environment (YMWE, 1999. On the other hand, surface water is affected by the discharge of untreated wastewater. The concentrations of physiochemical parameters are above the standard acceptable levels which required for irrigation purpose adopted by Yemen's Ministry of Water and Environment (YMWE, 1999. Boreholes 1 and 2 are suitable for drinking water, whereas boreholes 3, 4 and 5 are not suitable for drinking water. Therefore, urgency for wastewater treatment at this site is recommended to prevent further contamination to surface and groundwater.

  2. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating groundwater flow and contaminant transport at a former uranium mill site near Tuba City, Arizona. We estimated effects of temporal and spatial variability in evapotranspiration (ET) on recharge and discharge within a groundwater model domain (GMD) as part of this evaluation. We used remote sensing algorithms and precipitation (PPT) data to estimate ET and the ET/PPT ratios within the 3531 hectare GMD. For the period from 2000 to 2012, ET and PPT were nearly balanced (129 millimeters per year [mm yr-1] and 130 mm yr-1, respectively; ET/PPT = 0.99). However, seasonal and annual variability in ET and PPT were out of phase, and spatial variability in vegetation differentiated discharge and recharge areas within the GMD. Half of ET occurred during spring and early summer when PPT was low, and about 70% of PPT arriving in fall and winter was discharged as plant transpiration in the spring and summer period. Vegetation type and health had a significant effect on the site water balance. Plant cover and ET were significantly higher (1) during years of lighter compared to years of heavier grazing pressure, and (2) on rangeland protected from grazing compared to rangeland grazed by livestock. Heavy grazing increased groundwater recharge (PPT > ET over the 13-year period). Groundwater discharge (ET > PPT over the 13-year period) was highest in riparian phreatophyte communities but insignificant in desert phreatophyte communities impacted by heavy grazing. Grazing management in desert upland and phreatophyte communities may result in reduced groundwater recharge, increased groundwater discharge, and could be used to influence local groundwater flow.

  3. Isotopic evidence for identifying the mechanism of salinization of groundwater in Bacolod City,Negros Occidental

    International Nuclear Information System (INIS)

    Saline water is easily identified by measurement of the conductivity of the ionic species in the water. In groundwater, it is important to identify the mechanism of salinization for proper management of the resource. Salinization may come from: a) leaching of salts by percolating water, b) intrusion of modern saltwater bodies of connate water, and c) concentration of dissolved salts due to evaporation. The salinity and isotopic concentrations of 18O, 2H, and 3H of the water sources were used to assess the processes which lead to the salinization of groundwater in Bacolod City, Negros Occidental. The isotopic composition of deep groundwater, river water, and springs cluster along the LMWL with δ 18O ranging from -7.9 ''promille'' to -6.5 ''promille'' and δ 2H ranging from -52.6 ''promille'' to -39.1''promille''. Two isotopically distinct groups of deep groundwater were deleated; the higher elevation wells yielding isotopically depleted waters while the lowland wells yielding relatively enriched water with higher conductivity. The shallow coastal wells exhibited more enriched isotope values with δ 18O values from 6.10 ''promille''-5.61''promille'' and δ 2H from -43.1''promille'' to -38.8''promille'' and highest conductivity. The relative enrichment in the isotopic composition of the deep groundwater in the lowland and the shallow groundwater along the coast is attributed to saltwater intrusion. The process of salinization in these waters is differentiated based on the relationship between their isotopic compositions and the chlorine concentrations. The high salinity of the isotopically enriched and old deep groundwater inland is attributed to mixing with connate water. On the other hand , mixing with modern sea water is evident in the deep and shallow coastal wells. (author)

  4. The effect of remedial measures upon groundwater quality in connection with soil contamination by chlorinated hydrocarbons and the related costs - by example of the City of Hanover

    International Nuclear Information System (INIS)

    The effectiveness of remedial actions on the groundwater quality was investigated in the aquifer of the City of Hannover. The improvement of groundwater quality was related to the costs for the remedial actions. The attention was focussed on groundwater pollution by chlorinated hydrocarbons as the most important contaminants of groundwater in urban areas. (orig.)

  5. An expert system as a support to the decision making process for groundwater management of alluvial groundwater bodies in Slovenia

    OpenAIRE

    Petra Souvent; Goran Vižintin; Sašo Celarc; Barbara Čenčur Curk

    2014-01-01

    The expert decision support system for groundwater management in the shallow alluvial aquifers links numerical groundwater flow models with the water permits and concessions databases in order to help groundwater managers to quantify sustainable yield for a given groundwater body and provide additional information for sustainable groundwater management. Stand alone numerical groundwater models are used in the process of the assessment of groundwater quantitative status as well as ...

  6. IMPACT OF LEATHER PROCESSING INDUSTRIES ON CHROMIUM CONCENTRATION IN GROUNDWATER SOUTH OF CHENNAI CITY, INDIA

    Science.gov (United States)

    Elango, L.; Brindha, K.; G. Rajesh, V.

    2009-12-01

    The groundwater quality is under threat due to disposal of effluents from a number of industries. Poor practice of treatment of wastes from tanning industries or leather processing industries lead to pollution of groundwater. This study was carried out with the objective of assessing the impact of tanneries on groundwater quality in Chromepet area which is a part of the metropolitan area of Chennai, Tamil Nadu, India. This area serves as the home town for a number of small and large scale tanning industries. People in certain parts of this area depend on the groundwater for their domestic needs as there is no piped drinking water supply system. Topographically this region is generally flat with gentle slope towards east and north east. The charnockite rocks occur as basement at the depth of about 15m from the surface of this area. Weathered charnockite rock occurs at the depth from 7m to 15m from the ground surface. The upper layer consists of loamy soil. Groundwater occurs in the unconfined condition at a depth from 0.5m to 5m. Thirty six groundwater samples were collected during March 2008 and the groundwater samples were analysed for their heavy metal (chromium) content using atomic absorption spectrophotometer. Bureau of Indian Standards (BIS) recommended the maximum permissible limit of chromium in drinking water as 0.05 mg/l. Considering this, it was found that 86% of the groundwater samples possessed concentration of chromium above the maximum permissible limit recommended by BIS. The tanneries use chrome sulphate to strengthen the leather and make it water repellent. The excess of chromium gets washed off and remains in the wastewater. This wastewater is disposed into open uncovered drains either untreated or after partial treatment. Thus the chromium leaches through the soil and reaches the groundwater table. Apart from this, there is also huge quantity of solid waste resulting from the hides and skins which are dumped off without suitable treatment. The

  7. Risk of Giardia intestinalis infection in children from an artificially recharged groundwater area in Mexico City.

    Science.gov (United States)

    Cifuentes, Enrique; Suárez, Leticia; Espinosa, Martha; Juárez-Figueroa, Luis; Martínez-Palomo, Adolfo

    2004-07-01

    The objective of this study was to assess the risk of infection with Giardia intestinalis in children living in an area with artificial groundwater recharge and potable water reuse in Mexico City. Eligible wells and surrounding homesteads were defined by using a geographic information system. Five wells were tested for G. intestinalis cysts per 400 liters of water. A total of 750 eligible households were visited during two cross-sectional surveys. Stool samples were provided by 986 children in the rainy season study and 928 children during the dry season survey for parasitologic tests. Their guardians provided information on water, sanitation, hygiene, and socioeconomic variables. The prevalence rates of G. intestinalis infection were 9.4% in the rainy season and 4.4% in the dry season. Higher rates of infection were observed in older individuals (9.5% and 10.6%) and girls had a lower risk of infection than boys (odds ratio [OR] =0.55, 95% confidence interval [CI] = 0.34, 0.88 in the rainy season and OR = 0.47, 95% CI = 0.25, 0.90 in the dry season). During the wet season survey, a health risk was detected among those storing water in unprotected receptacles (OR = 4.00, 4.69, and 5.34 for those using uncovered jars, cisterns or tanks, and buckets, respectively), and bathing outside the dwelling, i.e., using a tap (OR = 1.93, 95% CI = 1.10, 3.39). A health risk was also detected among children from households with unsafe food hygiene practices (OR =2.41, 95% CI =1.10, 5.30) and those with no hand-washing habits (OR = 2.27, 95% CI = 1.00, 5.20). Groundwater reserves are at risk of fecal pollution, as indicated by the presence of G. intestinalis cysts. However, the endemic pattern of intestinal infection reflects low standards of personal hygiene and unsafe drinking water storage and food-related practices at household level. Prevention activities must address health education and environmental protection policies. PMID:15238691

  8. A Geo-Environmental Analysis of the Groundwater Resource vis-a-vis Surface Water Scenario in Guwahati City

    Directory of Open Access Journals (Sweden)

    Neelkamal Das

    2013-08-01

    Full Text Available Guwahati city is located on a unique geo-environmental setting with an interface of hills and valleys along with a prominent river front. The existence of various surface water sources, geo-hydrological set up and rainfall intensity play a significant role in the ground water regime of the city. However, rapid urbanisation of the city during the last few decades has altered the landscape of the city and disturbed the water retention capacity as well as the flow dynamics of various surface water sources, thereby affecting the infiltration rate to a great extent. Unprecedented rise in the population of the city has exerted more pressure on the various sources of water, particularly the groundwater resource. It has thus become imperative to utilise the various sources of water in a more systematic and scientific manner, giving due emphasis to the water requirement and the prevailing hydrological conditions of the area. Moreover, it is also observed that the city experiences an average annual rainfall of 162 cm with about 110 rainy days per year. The city thus has enough potential for harvesting the rainwater it receives, instead of allowing it to flow untapped. Rainwater can be tapped and utilised to revive the various surface water sources of the city, thereby facilitating natural groundwater recharge, as surface water bodies like wetlands, lakes and ponds do act as potential groundwater recharge zones.

  9. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  10. Fuzzy model for determination and assessment of groundwater quality in the city of Zrenjanin, Serbia

    Directory of Open Access Journals (Sweden)

    Kiurski-Milosević Jelena Ž.

    2015-01-01

    Full Text Available The application of the fuzzy logic for determination and assessment of the chemical quality of groundwater for drinking purposes in the city of Zrenjanin is presented. The degree of certainty and uncertainties are one of the problems in the most commonly used methods for assessing the water quality. Fuzzy logic can successfully handle these problems. Evaluation of fuzzy model was carried out on the samples from two representative wells that are located at depths of two aquifers from which water is taken to supply the population as drinking water. The samples were analyzed on 8 different chemical water quality parameters. In the research arsenic concentration (As3+, As5+ is considered as the dominant parameter due to its suspecting carcinogenic effects on human health. This type of research is for the first time conducted in the city of Zrenjanin, middle Banat region. [Projekat Ministarstva nauke Republike Srbije, br. MNTR174009 i br. TR34014

  11. Overflow and microbiological contamination in surface and groundwaters in La Costa city (Canelones department, Uruguay)

    International Nuclear Information System (INIS)

    In this paper the results of a geological risk study made during 2005 related to overflow and microbiological water contamination at Ciudad de la Costa City (Canelones department) are shown. This city has been showed a great urban growth for the last three decades. New hydrogeological studies looking forward the phreatic level and its bacteriological quality allow to know the level of the risk along 2005´s first semester. The top of the phreatic table in 40% of the studied area is below than 0.50 meter depth. The results of fourteen bacteriologic analyses in groundwater samples show extreme contamination values in faecal colliform, Pseudomona sp. and Aeruginosa content. Both surface drainage and beach water bacteriologic analyses did not show contamination values except those corresponding to Carrasco creek

  12. Overflow and microbiological contamination in surface and groundwaters in La Costa city (Canelones department, Uruguay)

    International Nuclear Information System (INIS)

    In this paper the results of a geological risk study made during 2005 related to overflow and microbiological water contamination at Ciudad de la Costa City (Canelones department) are shown. This city has been showed a great urban growth for the last three decades. New hydrogeological studies looking forward the phreatic level and its bacteriological quality allow to know the level of the risk along 2005 s first semester. The top of the phreatic table in 40% of the studied area is below than 0.50 meter depth. The results of fourteen bacteriologic analyses in groundwater samples show extreme contamination values in faecal colliform, Pseudo mona sp. and Aeruginosa content. Both surface drainage and beach water bacteriologic analyses did not show contamination values except those corresponding to Carrasco creek

  13. Evaluation of a multiport groundwater monitoring system

    International Nuclear Information System (INIS)

    In 1988 and 1989, Pacific Northwest Laboratory installed a multiport groundwater monitoring system in two wells on the Hanford Site: one near the 216-B-3 Pond in the center of the Hanford Site and one just north of the 300 Area near the Columbia River. The system was installed to provide the US Department of Energy with needed three-dimensional data on the vertical distribution of contaminants and hydraulic heads on the Hanford Site. This study evaluates the ability of the multiport system to obtain hydrogeologic data at multiple points vertically in a single borehole, and addresses the representativeness of the data. Data collected from the two wells indicate that the multiport system is well suited for groundwater monitoring networks requiring three-dimensional characterization of the hydrogeologic system. A network of these systems could provide valuable information on the hydrogeologic environment. However, the advantages of the multiport system diminish when the system is applied to long-term monitoring networks (30+ years) and to deeper wells (<300 ft). For shallow wells, the multiport system provides data in a cost-effective manner that would not be reasonably obtainable with the conventional methods currently in use at the Hanford Site. 17 refs., 28 figs., 6 tabs

  14. An Assesment of Groundwater Quality Index in Bommasandra Area,Bengaluru city,Karnataka State,India

    Directory of Open Access Journals (Sweden)

    Shivaprasad H

    2015-04-01

    Full Text Available Groundwater is a natural resource for drinking water .In addition to the population growth, urbanization and industrialization also extend the demand of water. Providing safe drinking water supply to the ever growing urban and sub-urban population is going to be a challenge to the civil authorities, city planners, policy makers and environmentalists. Groundwater is a major source of drinking water in both urban and rural areas of Bommasandra. Bommasandra city is rapidly raising population, changing lifestyle and intense competition among users- agriculture, industry and domestic sectors is driving the groundwater table lower. Besides, discharge of untreated wastewater through bores and leachate from unscientific disposal of solid wastes also contaminate groundwater, thereby reducing quality of fresh water resources.

  15. The Characteristics of Leachate and Groundwater Pollution at Municipal Solid Waste Landfill of Ibb City, Yemen

    Directory of Open Access Journals (Sweden)

    Esmail A. Sabahi

    2009-01-01

    Full Text Available Problem statement: Yemen one of the developing country suffering from water pollution. Landfill is one of the source of water pollution. There are several boreholes located close to Ibb landfill used for drinking water. A study of composition of landfill leachate and groundwater pollution was conducted at Ibb landfill, which is located at Al-Sahool area, north of Ibb City, Yemen. Approach: The leachate was sampled at three different locations of the landfill, at the landfill itself and 15 and 20 m downstream of this landfill. Groundwater samples collected from 5 boreholes to study possible impact of leachate percolation into groundwater. Leachate and groundwater samples were collected during dry season only, due to the excessive generation of leachate during this season. Objective of this study was significant to assess degree of groundwater pollution due to Ibb landfill leachate at Al-Sahool area. The leachate and groundwater were physically and chemically characterized by using spectrophotometer HACH, BOD Trak HACH, flame photometer (PFP 7 and Inductively Coupled Plasma of Optical Emission Spectrometry (ICP-OES model Vista MPX. Parameters measured were pH, temperature, Electrical Conductivity (EC, Total Dissolved Solids (TDS, Dissolved Oxygen (DO, Fluoride (F, Chloride (Cl, Sulphate (SO4, Nitrites (NO2, Nitrates (NO3, ammonia-N (NH3-N, heavy metals (Pb, Zn, Ni, Cr, Cd, Cu, major cations (Na, Mg, Ca, K, Fe and biological parameters (COD, BOD5 and coliform group bacteria. Results: The results showed that, leachate at landfill most likely in methanogenic phase, based on the alkaline pH value recorded (pH = 8.46. The results also showed that 4 out of 5 boreholes were contaminated, where concentration of physico-chemical parameters are above the standard acceptable levels which required for drinking water adapted by Yemen's ministry of water and environment and by word standard. Conclusion: Therefore, landfill is dangerous for environment so

  16. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  17. Complex Controls on Groundwater Quality in Growing Mid-sized Cities: A Case Study Focused on Nitrate and Emerging Contaminants

    Science.gov (United States)

    Ohr, C. A.; Godsey, S.; Welhan, J. A.; Larson, D. M.; Lohse, K. A.; Finney, B.; Derryberry, D.

    2015-12-01

    Many regions rely on quality groundwater to support urban growth. Groundwater quality often responds in a complex manner to stressors such as land use change, climate change, or policy decisions. Urban growth patterns in mid-sized cities, especially ones that are growing urban centers in water-limited regions in the western US, control and are controlled by water availability and its quality. We present a case study from southeastern Idaho where urban growth over the past 20 years has included significant ex-urban expansion of houses that rely on septic systems rather than city sewer lines for their wastewater treatment. Septic systems are designed to mitigate some contaminants, but not others. In particular, nitrates and emerging contaminants, such as pharmaceuticals, are not removed by most septic systems. Thus, even well-maintained septic systems at sufficiently high densities can impact down gradient water quality. Here we present patterns of nitrate concentrations over the period from 1985-2015 from the Lower Portneuf River Valley in southeastern Idaho. Concentrations vary from 0.03 to 27.09 nitrate-nitrogen mg/L, with average values increasing significantly over the 30 year time period from 3.15 +/- 0.065 to 3.57 +/- 0.43 mg/L. We examine temporal changes in locations of nitrate hotspots, and present pilot data on emerging contaminants of concern. Initial results suggest that high nitrate levels are generally associated with higher septic densities, but that this pattern is influenced by legacy agricultural uses and strongly controlled by underlying aquifer properties. Future work will include more detailed hydrological modeling to predict changes in hotspot locations under potential climate change scenarios.

  18. An Assessment of the Quality of Groundwater in a Textile Dyeing Industrial Area in Erode City, Tamilnadu, India

    OpenAIRE

    P. N. Palanisamy; S. K. Kavitha

    2010-01-01

    Groundwater samples were collected in Erode city, Tamilnadu, from an area having large number of textile dyeing units. Though people residing in this area use river water supplied by local bodies as their major source for drinking, groundwater is also used as complementary source. The samples collected were subjected to systematic analysis using the standard methods and procedures. The values obtained for different physicochemical parameters were compared with the standard values given by ISI...

  19. Groundwater contamination and risk assessment of industrial complex in Busan Metropolitan City, Korea

    Science.gov (United States)

    Hamm, S.-Y.; Ryu, S. M.; Cheong, J.-Y.; Woo, Y.-J.

    2003-04-01

    In Korea, the potential of groundwater contamination in urban areas is increasing by industrial and domestic waste waters, leakage from oil storage tanks and sewage drains, leachate from municipal landfill sites and so on. Nowadays, chlorinated organic compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE), which are driving residential area as well as industrial area, are recognized as major hazardous contaminants. As well known, TCE is wisely used industrial activities such as degreasing, metal stripping, chemical manufacturing, pesticide production, coal gasification plants, creosote operation, and also used in automobile service centers, photo shops and laundries as cleaning solvent. Thus, groundwater protection in urban areas is important issue in Korea This study is to understand groundwater quality and contamination characteristics and to estimate risk assessment in Sasang industrial complex, Busan Metropolitan City. Busan Metropolitan City is located on southeastern coast of the Korean peninsula and is the second largest city in South Korea with a population of 3.8 millions. The geology of the study area is composed of andesite, andesitic tuff, biotite granite and alluvium (Kim et al., 1998). However, geology cannot be identified on the surface due to pavement and buildings. According to drill logs in the study area, the geologic section consists in landfill, fine sand, clay, gravelly clay, and biotite granite from the surface. Biotite granite appears 5.5- 6 m depth. Groundwater samples were collected at twenty sites in Sasang industrial complex. The groundwater samples are plotted on Piper's trilinear diagram, which indicates Ca-Cl2 type. The groundwater may be influenced by salt water because Sasang industrial complex is located near the mouse of Nakdong river that flows to the South Sea. The Ca-Cl2 water type may be partly influenced by anthropogenic contamination in the study area, since water type in granite area generally belongs Ca

  20. CITIES: Centre for IT-Intelligent Energy Systems in Cities

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; O'Connell, Niamh; Heller, Alfred;

    2014-01-01

    between operations and planning. This extended abstract outlines the challenges to be met by city and energy planning bodies in an energy efficient future. The necessity of novel, data driven and IT intelligent solutions is stressed. A focus is placed on energy system planning in systems with high...... and aims at developing methodologies and ICT solutions for the analysis, operation, planning and development of fully integrated urban energy systems. A holistic research approach will be developed, to provide solutions at all levels between the appliance and the overall system, and at all-time scales...... penetrations of renewable energy, or those entirely independent of fossil fuels....

  1. Sustainability and Cities as Systems of Innovation

    DEFF Research Database (Denmark)

    Johnson, Bjørn; Lehmann, Martin

    Cities often constitute relevant environments for interactive learning and innovation potentially capable of tackling sustainability problems. In this paper we ask if the concept of systems of innovation can increase our understanding of city dynamics and help promoting the sustainable development...

  2. Performance assessment techniques for groundwater recovery and treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, G.L. [Environmental Resources Management, Inc., Exton, PA (United States)

    1993-03-01

    Groundwater recovery and treatment (pump and treat systems) continue to be the most commonly selected remedial technology for groundwater restoration and protection programs at hazardous waste sites and RCRA facilities nationwide. Implementing a typical groundwater recovery and treatment system includes the initial assessment of groundwater quality, characterizing aquifer hydrodynamics, recovery system design, system installation, testing, permitting, and operation and maintenance. This paper focuses on methods used to assess the long-term efficiency of a pump and treat system. Regulatory agencies and industry alike are sensitive to the need for accurate assessment of the performance and success of groundwater recovery systems for contaminant plume abatement and aquifer restoration. Several assessment methods are available to measure the long-term performance of a groundwater recovery system. This paper presents six assessment techniques: degree of compliance with regulatory agency agreement (Consent Order of Record of Decision), hydraulic demonstration of system performance, contaminant mass recovery calculation, system design and performance comparison, statistical evaluation of groundwater quality and preferably, integration of the assessment methods. Applying specific recovery system assessment methods depends upon the type, amount, and quality of data available. Use of an integrated approach is encouraged to evaluate the success of a groundwater recovery and treatment system. The methods presented in this paper are for engineers and corporate management to use when discussing the effectiveness of groundwater remediation systems with their environmental consultant. In addition, an independent (third party) system evaluation is recommended to be sure that a recovery system operates efficiently and with minimum expense.

  3. Preliminary study on arsenic concentration in groundwater in usual exploited aquifer in Ho Chi Minh City (pleistocene aquifer QIm)

    International Nuclear Information System (INIS)

    Recent days, As in groundwater is a hot spot in some countries in Asia (e.g India, Bangladesh, Myanmar, Thailand) that was revealed through Executive Meetings of RAS/8/084. In Vietnam, some reports on groundwater quality in Red River Delta and Mekong Delta (with few random groundwater samples selected to analyse randomly) brought an opinion that groundwater in some region in Vietnam contains a quantity of As is over WHO Limit to As concentration in drinking water. This project hat been carrying out in Ho Chi Minh City in order to survey and make a preliminary assessment on As content in groundwater in shallow aquifer which is usual exploited in one of important social-economic centers of Vietnam. (author)

  4. Recent developments in modeling groundwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.; Witherspoon, P.A.

    1977-05-20

    This paper reviews the developments in the mathematical modeling of groundwater systems over the past decde. The first part of the paper is devoted to a description of the physics of the different types of problems that are of interest in hydrogeology and a statement of the related initial-boundary-value problems. The various numerical techniques that have been employed to solve the governing equations are discussed in the second part. In the third section a few typical case histories are presented to illustrate the trend of progress that has occurred in the application of mathematical modeling to actual field problems.

  5. A Numerical Study on System Performance of Groundwater Heat Pumps

    OpenAIRE

    Jin Sang Kim; Yujin Nam

    2015-01-01

    Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs) are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomia...

  6. A Numerical Study on System Performance of Groundwater Heat Pumps

    Directory of Open Access Journals (Sweden)

    Jin Sang Kim

    2015-12-01

    Full Text Available Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomial equations from a catalog of performance data. The cooling and heating capacities of water-to-water heat pumps are determined using Energy Plus. Results show that system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system performance. The system COPs are used to compare the system performance of various system configurations. The groundwater pumping level and temperature provide the greatest effects on the system performance of groundwater heat pumps along with the submersible pumps and heat exchangers. The effects of groundwater pumping levels, groundwater temperatures, and the heat transfer coefficient in heat exchanger on the system performance are given and compared. This analysis needs to be included in the design process of groundwater heat pump systems, possibly with analysis tools that include a wide range of performance data.

  7. Groundwater flow system and Nitrogen cycle in volcanic aquifer of pyroclastic flow uplands, Japan

    Science.gov (United States)

    Mikami, K.; Shimada, J.; Tashiro, S.; Niimi, H.

    2007-12-01

    Study area is well-known agriculture area in Southern Kyushu, Japan and highly depends on groundwater resources for their everyday use. Local unconfined groundwater aquifer is widely polluted by Nitrate-Nitrogen originated from agriculture and cattle farming. It will become serious problem if this unconfined Nitrate pollution enlarges into the confined aquifer system which is used for local city water source. The detailed three dimensional groundwater flow system study has been done by using existing wells in the basin to understand the three dimensional distribution pattern of Nitrate-Nitrogen in the aquifer. However, the detailed groundwater age analysis by using Tritium for unconfined and confined groundwater has not been succeeded because of present low atmosphere tritium concentration. Thus we applied to challenge the CFCs dating method. Although the CFCs method has been widely used for dating the young groundwater instead of tritium in many countries, in Japan CFCs has been used only by Oceanographic study and has not been used in the field of Hydrology. The history and fate of Nitrate contamination have been shown in multidisciplinary local transect studies in areas with agricultural sources (Bohlke and Denver 1995). However, identification of Nitrogen sources can be difficult in larger regional studies because of co-occurrence of multiple anthropogenic Nitrogen sources and uncertainty in Nitrogen transformation pathways. Thus, the characterization of N geochemistry remains challenging, particularly in aquifer-scale assessments (Stephen 2006). In this study, the evidence of the shallow groundwater flowing towards deep aquifer was verified by the groundwater dating and the detailed Nitrogen reduction process was confirmed along the groundwater flow.

  8. Temporal and spatial variation of groundwater in quantity and quality in sand dune at coastal region, Kamisu city, central Japan.

    Science.gov (United States)

    Umei, Yohei; Tsujimura, Maki; Sakakibara, Koichi; Watanabe, Yasuto; Minema, Motomitsu

    2016-04-01

    The role of groundwater in integrated water management has become important in recent 10 years, though the surface water is the major source of drinking water in Japan. Especially, it is remarked that groundwater recharge changed due to land cover change under the anthropogenic and climatic condition factors. Therefore, we need to investigate temporal and spatial variation of groundwater in quantity and quality focusing on the change during recent 10-20 years in specific region. We performed research on groundwater level and quality in sand dune at coastal region facing Pacific Ocean, Kamisu city, Ibaraki Prefecture, which have been facing environmental issues, such as land cover change due to soil mining for construction and urbanization. We compared the present situation of groundwater with that in 2000 using existed data to clarify the change of groundwater from 2000 to 2015. The quality of water is dominantly characterized by Ca2+-HCO3‑ in both 2000 and 2015, and nitrate was not observed in 2015, though it was detected in some locations in 2000. This may be caused by improvement of the domestic wastewater treatment. The topography of groundwater table was in parallel with that of ground surface in 2015, same as that in 2000. However, a depletion of groundwater table was observed in higher elevation area in 2015 as compared with that in 2000, and this area corresponds to the locations where the land cover has changed due to soil mining and urbanization between 2015 and 2000. In the region of soil mining, the original soil is generally replaced by impermeable soil after mining, and this may cause a decrease of percolation and net groundwater recharge, thus the depletion of groundwater table occurred after the soil mining.

  9. Control of Groundwater Remediation Process as Distributed Parameter System

    OpenAIRE

    Mendel M.; Kovács T.; Hulkó G.

    2014-01-01

    Pollution of groundwater requires the implementation of appropriate solutions which can be deployed for several years. The case of local groundwater contamination and its subsequent spread may result in contamination of drinking water sources or other disasters. This publication aims to design and demonstrate control of pumping wells for a model task of groundwater remediation. The task consists of appropriately spaced soil with input parameters, pumping wells and control system. Model of con...

  10. Designing an enhanced groundwater sample collection system

    International Nuclear Information System (INIS)

    As part of an ongoing technical support mission to achieve excellence and efficiency in environmental restoration activities at the Laboratory for Energy and Health-Related Research (LEHR), Pacific Northwest Laboratory (PNL) provided guidance on the design and construction of monitoring wells and identified the most suitable type of groundwater sampling pump and accessories for monitoring wells. The goal was to utilize a monitoring well design that would allow for hydrologic testing and reduce turbidity to minimize the impact of sampling. The sampling results of the newly designed monitoring wells were clearly superior to those of the previously installed monitoring wells. The new wells exhibited reduced turbidity, in addition to improved access for instrumentation and hydrologic testing. The variable frequency submersible pump was selected as the best choice for obtaining groundwater samples. The literature references are listed at the end of this report. Despite some initial difficulties, the actual performance of the variable frequency, submersible pump and its accessories was effective in reducing sampling time and labor costs, and its ease of use was preferred over the previously used bladder pumps. The surface seals system, called the Dedicator, proved to be useful accessory to prevent surface contamination while providing easy access for water-level measurements and for connecting the pump. Cost savings resulted from the use of the pre-production pumps (beta units) donated by the manufacturer for the demonstration. However, larger savings resulted from shortened field time due to the ease in using the submersible pumps and the surface seal access system. Proper deployment of the monitoring wells also resulted in cost savings and ensured representative samples

  11. City seeds. Geography and the origins of the European city system

    OpenAIRE

    Bosker, Maarten; Buringh, Eltjo

    2010-01-01

    Geography is widely viewed as the important determinant of city location. This paper empirically disentangles the different roles of geography in shaping the European city system. We present a new database that covers all actual cities as well as potential city locations over the period when the foundations for the European city system were laid. We relate each location’s urban chances to its physical, first nature, geography characteristics, and develop a novel empirical strategy to assess h...

  12. Smart Cities and National Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    Energy system analysis follows two tracks, either through plans for future transitions of national energy systems, or local development of smart cities and regions. These two tracks seldom overlap. National plans neglect the local implementation of intermittent renewable technology and use of local...... resources, and smart cities and local development do not relate to national targets and fail to evaluate sub-optimization. Thus, there is a need for approaches that help researchers creating links between country analyses and local energy system transitions. This paper investigates the effects of such an...... approach, by investigating Western Denmark. By splitting Western Denmark into regions, it is possible to create individual energy systems for each region. Through interconnection, these regions can exchange electricity with each other. This enables analyses of interaction between smart cities and national...

  13. Smart Cities and National Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    Energy system analysis follows two tracks, either through plans for future transitions of national energy systems, or local development of smart cities and regions. These two tracks seldom overlap. National plans neglect the local implementation of intermittent renewable technology and use of local...... resources, and smart cities and local development do not relate to national targets and fail to evaluate sub-optimization. Thus, there is a need for approaches that help researchers creating links between country analyses and local energy system transitions. This paper investigates the effects...... of such an approach, by investigating Western Denmark. By splitting Western Denmark into regions, it is possible to create individual energy systems for each region. Through interconnection, these regions can exchange electricity with each other. This enables analyses of interaction between smart cities and national...

  14. A New Geochemical Reaction Model for Groundwater Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Through a survey of the literature on geology, hydrogeology and hydrogeochemistry, this paper presents a hydrogeochemical model for the groundwater system in a dross-dumping area of the Shandong Aluminium Plant. It is considered that the groundwater-bearing medium is a mineral aggregate and that the interactions between groundwater and the groundwater-bearing medium can be described as a series of geochemical reactions. On that basis, the principle of minimum energy and the equations of mass balance, electron balance and electric neutrality are applied to construct a linear programming mathematical model for the calculation of mass transfer between water and rock with the simplex method.

  15. Hierarchical Scaling in Systems of Natural Cities

    CERN Document Server

    Chen, Yanguang

    2016-01-01

    Hierarchies can be modeled by a set of exponential functions, from which we can derive a set of power laws indicative of scaling. These scaling laws are followed by many natural and social phenomena such as cities, earthquakes, and rivers. This paper is devoted to revealing the scaling patterns in systems of natural cities by reconstructing the hierarchy with cascade structure. The cities of America, Britain, France, and Germany are taken as examples to make empirical analyses. The hierarchical scaling relations can be well fitted to the data points within the scaling ranges of the size and area of the natural cities. The size-number and area-number scaling exponents are close to 1, and the allometric scaling exponent is slightly less than 1. The results suggest that natural cities follow hierarchical scaling laws and hierarchical conservation law. Zipf's law proved to be one of the indications of the hierarchical scaling, and the primate law of city-size distribution represents a local pattern and can be mer...

  16. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  17. In-situ remediation system for groundwater and soils

    Science.gov (United States)

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  18. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Early, T.O.

    1994-05-01

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants.

  19. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    International Nuclear Information System (INIS)

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants

  20. Groundwater monitoring plan for the Missouri River alluvial aquifer in the vicinity of the City of Independence, Missouri, well field

    Science.gov (United States)

    Wilkison, Donald H.

    2012-01-01

    Source contributions to monitoring and supply wells, contributing recharge areas, groundwater travel times, and current (2012) understanding of alluvial water quality were used to develop a groundwater monitoring plan for the Missouri River alluvial aquifer in the vicinity of the City of Independence, Missouri well field. The plan was designed to evaluate long-term alluvial water quality and assess potential changes in, and threats to, well-field water quality. Source contributions were determined from an existing groundwater flow model in conjunction with particle-tracking analysis and verified with water-quality data collected from 1997 through 2010 from a network of 68 monitoring wells. Three conjunctive factors - well-field pumpage, Missouri River discharge, and aquifer recharge - largely determined groundwater flow and, therefore, source contributions. The predominant source of groundwater to most monitoring wells and supply wells is the Missouri River, and this was reflected, to some extent, in alluvial water quality. To provide an estimate of the maximum potential lead time available for remedial action, monitoring wells where groundwater travel times from the contributing recharge areas are less than 2 years and predominately singular sources (such as the Missouri River or the land surface) were selected for annual sampling. The sample interval of the remaining wells, which have varying travel times and intermediate mixtures of river and land-surface contributions, were staggered on a 2-, 3-, or 4-year rotation. This was done to provide data from similar contributing areas and account for inherent aquifer variability yet minimize sample redundancy.

  1. Effects of land-use type on urban groundwater quality, Seoul metropolitan city, Korea

    Science.gov (United States)

    Yu, S.; Yun, S.; Chae, G.; So, C.; Kweon, S.; Lee, P.

    2001-12-01

    The progressive degradation of urban groundwater becomes an important environmental problem encountered in South Korea. This study aims to examine the relationships between land-use type and groundwater quality in Seoul metropolitan city, based on the results of hydrogeochemical monitoring. For this purpose, land-use type was divided into five categories (green zone, housing, agricultural, traffic, and industrialized). The mean concentrations of TDS (total dissolved solids) effectively reflect the degree of anthropogenic contamination and increase in the following order: green zone (152.5 mg/l), then agricultural (380.7 mg/l) and housing (384.2 mg/l), then traffic (457.0 mg/l), and finally industrialized area (554.5 mg/l). Among major dissolved solutes, the concentrations of Na, Ca, Mg, HCO3, and Cl increase with increasing TDS. In case of Na and Ca, de-icing salts and sewage are considered as major contamination sources. The corrosion of cements may also increase Ca. Nitrate concentration is characteristically very high in housing and agricultural areas, reflecting the severe contamination from domestic sewage and fertilizer. Sulfate and magnesium are enriched in industrialized area, possibly due to their derivation from industrial facilities. Chlorine ion is considered to be derived from de-chlorination of hydrocarbons as well as de-icing salts. Bicarbonate also increases with increasing TDS, for which cement dissolution and oxidation of organics are considered as source materials. However, enhanced water-rock(or construction materials) interaction also may increase the bicarbonate, because acidic wastewater in urban area is very corrosive. Trace metals and organic compounds generally does not show any distinct pattern of regional variation. However, Fe, Mn, Ni, Se, Zn, TCE, and PCE tend to increase locally in industrialized area, whereas high concentrations of Br, Ni, and Cu are found in traffic area. The groundwaters with very high concentrations of Fe, Zn, and

  2. Control of Groundwater Remediation Process as Distributed Parameter System

    Directory of Open Access Journals (Sweden)

    Mendel M.

    2014-12-01

    Full Text Available Pollution of groundwater requires the implementation of appropriate solutions which can be deployed for several years. The case of local groundwater contamination and its subsequent spread may result in contamination of drinking water sources or other disasters. This publication aims to design and demonstrate control of pumping wells for a model task of groundwater remediation. The task consists of appropriately spaced soil with input parameters, pumping wells and control system. Model of controlled system is made in the program MODFLOW using the finitedifference method as distributed parameter system. Control problem is solved by DPS Blockset for MATLAB & Simulink.

  3. Design of groundwater pollution expert system: forward chaining and interfacing

    International Nuclear Information System (INIS)

    The groundwater pollution expert system (GWPES was developed by C Language Integrate Production System (CLEPS). The control techniques of this system consider some conclusion and then attempts to prove it by searching for supportive information from the database. The inference process goes in forward chaining of this system such as predicting groundwater pollution vulnerability, predicting the effect of nitrogen fertiliser, agricultural impact and project development on groundwater pollution potential. In GWPES, forward chaining system begins with a matching of inputs with the existing database of groundwater environment and activities impact of the project development. While, interaction between an expert system and user is conducted in simple English language. The interaction is highly interactive. A basis design with simple Graphic User Interface (GUI) to input data and by asking simple questions. (author)

  4. Coastal Septic Systems and Submarine Groundwater Discharge: A Case Study

    OpenAIRE

    de Sieyes, Nicholas R.

    2011-01-01

    The focus of this dissertation is submarine groundwater discharge (SGD), the direct flow of groundwater from the seabed to the sea, and onsite wastewater treatment systems in coastal California. The research focuses primarily on a single coastal community in central California, Stinson Beach, where conventional onsite treatment systems, or septic systems, are used exclusively for wastewater disposal. The overarching goal of the work has been to quantify the magnitude and timing of SGD at the ...

  5. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    International Nuclear Information System (INIS)

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended

  6. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. (Oak Ridge National Lab., TN (United States)); Locke, D.A. (Oak Ridge Inst. for Science and Education, TN (United States))

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  7. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. [Oak Ridge National Lab., TN (United States); Locke, D.A. [Oak Ridge Inst. for Science and Education, TN (United States)

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy`s Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  8. Nitrate pollution of a karstic groundwater system

    International Nuclear Information System (INIS)

    The Bohemian karst, an extensive karst area formed by Devonian and Silurian limestone, is located SW of Prague. The largest of the karstic springs discharges in the village of Svaty Jan pod Skalou. With about 19 L/s of average discharge, the spring was formerly an important source of good quality drinking water in the ares. Because of increasing agricultural activity after World War II, both shallow and deep water resources, including the karstic systems, have been contaminated by infiltrating nitrates. The nitrate content of the Svaty Jan spring now varies from 40 mg/L to 60 mg/L. To specify the sources of nitrate pollution and collect sufficient data for possible prediction of future development, an extensive study of the spring was initiated in 1994. Flow dynamics, chemical, and isotopic composition (δ18O in water, δ15N in nitrate) are monitored in the spring and precipitation in the recharge area together with possible sources of nitrates (fertilizers, solutes in soil profile). The spring discharge responds to precipitation events very quickly but with a small amplitude and a low variability in δ18O (∼2 per mille). This reflects the large volume of the karstic system that dumps infiltrating precipitation and the low contribution of the direct discharge component. Even more contrasting is the relation between the low variability of nitrate content and periodic changes in δ15N of nitrate (from 5 per mille to 2 per mille). With regard to the specifics of the karstic groundwater system (piston-like flow) two alternative hypotheses of nitrate generation are suggested: (1) different rates of nitrate production in the recharge area and (2) different sources of nitrate localized along the recharge area. To verify the hypotheses, the record of fertilizer applied in the recharge area was studied together with actual nitrate content and its isotopic composition in deep soil profiles. (author)

  9. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India

    OpenAIRE

    Nagarajan Rajkumar; Thirumalaisamy Subramani; Lakshumanan Elango

    2012-01-01

    Abstract Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality. Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Zn) were determined in leachate samples and are reported. The concentrations of Cl-, NO3-, SO42-, NH4+ were found to be in considerable levels in the groundwater sa...

  10. Groundwater evolution beneath Hat Yai, a rapidly developing city in Thailand

    Science.gov (United States)

    Lawrence, A. R.; Gooddy, D. C.; Kanatharana, P.; Meesilp, W.; Ramnarong, V.

    2000-09-01

    Many cities and towns in South and Southeast Asia are unsewered, and urban wastewaters are often discharged either directly to the ground or to surface-water canals and channels. This practice can result in widespread contamination of the shallow groundwater. In Hat Yai, southern Thailand, seepage of urban wastewaters has produced substantial deterioration in the quality of the shallow groundwater directly beneath the city. For this reason, the majority of the potable water supply is obtained from groundwater in deeper semi-confined aquifers 30-50 m below the surface. However, downward leakage of shallow groundwater from beneath the city is a significant component of recharge to the deeper aquifer, which has long-term implications for water quality. Results from cored boreholes and shallow nested piezometers are presented. The combination of high organic content of the urban recharge and the shallow depth to the water table has produced strongly reducing conditions in the upper layer and the mobilisation of arsenic. A simple analytical model shows that time scales for downward leakage, from the surface through the upper aquitard to the semi-confined aquifer, are of the order of several decades. Résumé. De nombreuses villes du sud et du sud-est de l'Asie ne possèdent pas de réseaux d'égouts et les eaux usées domestiques s'écoulent souvent directement sur le sol ou dans des canaux et des cours d'eau de surface. Ces pratiques peuvent provoquer une contamination dispersée de la nappe phréatique. A Hat Yai (sud de la Thaïlande), les infiltrations d'eaux usées domestiques sont responsables d'une détérioration notable de la qualité de la nappe phréatique directement sous la ville. Pour cette raison, la majorité de l'eau potable est prélevée dans des aquifères semi-captifs plus profonds, situés entre 30 et 50 m sous la surface. Cependant, une drainance à partir de la nappe phréatique sous la ville constitue une composante significative de la recharge

  11. Hydro-chemical Survey and Quantifying Spatial Variations of Groundwater Quality in Dwarka, Sub-city of Delhi, India

    Science.gov (United States)

    Rawat, Kishan Singh; Tripathi, Vinod Kumar

    2015-06-01

    Hydrological and geological aspect of the region play vital role for water resources utilization and development. Protection and management of groundwater resources are possible with the study of spatio-temporal water quality parameters. The study was undertaken to assess the deterioration in groundwater quality, through systematic sampling during post monsoon seasons of the year 2008 by collecting water samples from thirty bore wells located in Dwarka, sub-city of Delhi, India. The average concentrations of groundwater quality parameters namely Calcium (Ca2+), Magnesium (Mg2+), Nitrate (NO3 -), Chloride (Cl-), sulphate (SO4 2-), total hardness (TH), total dissolved solids (TDS), and electrical conductivity were 300, 178, 26.5, 301, 103, 483, 1042 mg/l and 1909 μS/cm respectively. Estimated physico-chemical parameters revealed that 7 % of the groundwater samples shown nitrate concentrations higher than safe limit prescribed by World Health Organization (WHO). Groundwater quality the in study region was poor due to come out result that NO3 - concentration exceeding the threshold value of 50 mg/l, and main cause is disposal of sewage and animal wastes to Najafgarh drain. Dominant cations are Mg2+, Ca2+ and anions are SO4 2- and Cl-. The abundance of the major ions in groundwater is in the order: Ca2+ > Mg2+ and Cl- > SO4 2- > NO3. TH have strong correlation with Ca2+ (r = 0.81), Mg2+ (r = 0.82), Cl- (r = 0.86) but poor correlation with TDS (r = 0.52). Knowledge of correlation values between water quality parameters is helpful to take decision of appropriate management strategy for controlling groundwater pollution.

  12. Vadose Zone Monitoring System as a Tool for Groundwater Protection

    Science.gov (United States)

    Dahan, O.

    2007-05-01

    Subsurface monitoring for groundwater protection from pollution hazards has traditionally been based on culling information from the groundwater. This information is usually retrieved from boreholes penetrating the saturated section of the groundwater. Accordingly, the entire path and fate of pollutants transported from land surface through the vadose zone to the groundwater is evaluated from the chemical and physical state of the water which has been sampled from a well. That monitoring procedure is well founded in both scientific studies and through legislative acts which enforce groundwater monitoring for potential sources of pollution. However, this creates a paradox since, by definition, identification of pollution in groundwater means that the groundwater is already polluted. Moreover, since vertical transport in the vadose zone and lateral flow in the groundwater are very slow processes, pollution identification in a well may take years or decades. As a result, the total mass of pollutant that has penetrated the subsurface may be extremely high by the time it has been identified. Finally, pollution identification in a well usually reveals only the edges of a much larger pollutant plume. Accordingly, identification of pollution in the vadose zone right under the pollution source, long before it shows up in the groundwater, should be the key to groundwater protection. The need for real-time information on the quality of percolating water led to the development of a new vadose- zone monitoring system. The new monitoring system is designed to provide continuous measurements of the soil water content and water potential, while allowing pore-water sampling all along the vadose-zone cross section. The installation technique allows monitoring of the vadose-zone cross section under relatively undisturbed soil conditions. The new monitoring system is comprised of special flexible TDR (FTDR) probes, assembled with special vadose-zone sampling ports (VSPs) that function

  13. [Hydrogeochemical characteristics of a typical karst groundwater system in Chongqing].

    Science.gov (United States)

    Yang, Ping-Heng; Lu, Bing-Qing; He, Qiu-Fang; Chen, Xue-Bin

    2014-04-01

    The two-year hydrologic process, hydrochemistry, and a portion of deltaD, delta18O of both the surface water at the inlet and the groundwater at the outlet, were investigated to identify the spatial and temporal variations of hydrogeochemistry in the Qingmuguan karst groundwater system. Research results show that there are wet and dry periods in the groundwater system owing to the striking influence of seasonal rainfall. The evolution of the chemical compositions in the groundwater is significantly influenced by the water and rock interaction, anthropogenic activities and rainwater dilution. The variations of the chemical compositions in the groundwater exhibit obvious spatiality and temporality. The deltaD and delta18O of the surface water beneath the local Meteoric Water Line of Chonqing indicate that the surface water is strongly evaporated. Furthermore, the deltaD and delta18O of the surface water are more positive in the dry period than in the wet period, showing a distinct seasonal effect. The deltaD and delta18O of the groundwater are quite stable and much negative compared with those of the surface water, which suggests that the rainwater recharge the groundwater via two pathways, one directly through sinkholes and the other via the vadose zone. PMID:24946578

  14. Contributing recharge areas, groundwater travel time, and groundwater water quality of the Missouri River alluvial aquifer near the City of Independence, Missouri, well field, 1997-2008

    Science.gov (United States)

    Kelly, Brian P.

    2011-01-01

    The City of Independence, Missouri, operates a well field in the Missouri River alluvial aquifer. Contributing recharge areas (CRA) were last determined for the well field in 1996. Since that time, eight supply wells have been installed in the area north of the Missouri River and well pumpage has changed for the older supply wells. The change in pumping has altered groundwater flow and substantially changed the character of the CRA and groundwater travel times to the supply wells. The U.S Geological Survey, in a cooperative study with the City of Independence, Missouri, simulated steady-state groundwater flow for 2007 well pumpage, average annual river stage, and average annual recharge. Particle-tracking analysis was used to determine the CRA for supply wells and monitoring wells, and the travel time from recharge areas to supply wells, recharge areas to monitoring wells, and monitoring wells to supply wells. The simulated CRA for the well field is elongated in the upstream direction and extends to both sides of the Missouri River. Groundwater flow paths and recharge areas estimated for monitoring wells indicate the origin of water to each monitoring well, the travel time of that water from the recharge area, the flow path from the vicinity of each monitoring well to a supply well, and the travel time from the monitoring well to the supply well. Monitoring wells 14a and 14b have the shortest groundwater travel time from their contributing recharge area of 0.30 years and monitoring well 29a has the longest maximum groundwater travel time from its contributing recharge area of 1,701 years. Monitoring well 22a has the shortest groundwater travel time of 0.5 day to supply well 44 and monitoring well 3b has the longest maximum travel time of 31.91 years to supply well 10. Water-quality samples from the Independence groundwater monitoring well network were collected from 1997 to 2008 by USGS personnel during ongoing annual sampling within the 10-year contributing

  15. Dutch Risk Assessment System for New Chemicals: Soil Groundwater Module

    OpenAIRE

    Swartjes FA; Linden AMA van der; van den Berg R

    1993-01-01

    A new Soil-Groundwater Module has been developed for incorporation in the Dutch Risk Assessment System for New Chemicals. In this module, the exposure of humans and the environment to xenobiotic substances due to sewage sludge application have been determined. Exposure criteria were: 1. accumulation in the uppermost soil layer one year after sewage sludge application, and 2. the maximal substance-concentration of the deeper groundwater. The calculation procedure is incorporated in the menu dr...

  16. Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan

    Science.gov (United States)

    Chen, Chao-Shi; Tu, Chia-Huei; Chen, Shih-Jen; Chen, Cheng-Chung

    2016-01-01

    Contaminant transport in subsurface water is the major pathway for contamination spread from contaminated sites to groundwater supplies, to remediate a contaminated site. The aim of this paper was to set up the groundwater contaminant transport model for the Wang-Tien landfill site, in southwestern Taiwan, which exhibits high contamination of soil and groundwater and therefore represents a potential threat for the adjacent Hsu-Hsian Creek. Groundwater Modeling System software, which is the most sophisticated groundwater modeling tool available today, was used to numerically model groundwater flow and contaminant transport. In the simulation, the total mass of pollutants in the aquifer increased by an average of 72% (65% for ammonium nitrogen and 79% for chloride) after 10 years. The simulation produced a plume of contaminated groundwater that extends 80 m in length and 20 m in depth northeastward from the landfill site. Although the results show that the concentrations of ammonium nitrogen and chlorides in most parts are low, they are 3.84 and 467 mg/L, respectively, in the adjacent Hsu-Hsian Creek. PMID:27153078

  17. Geomatics for Mapping of Groundwater Potential Zones in Northern Part of the United Arab Emiratis - Sharjah City

    Science.gov (United States)

    Al-Ruzouq, R.; Shanableh, A.; Merabtene, T.

    2015-04-01

    In United Arab Emirates (UAE) domestic water consumption has increased rapidly over the last decade. The increased demand for high-quality water, create an urgent need to evaluate the groundwater production of aquifers. The development of a reasonable model for groundwater potential is therefore crucial for future systematic developments, efficient management, and sustainable use of groundwater resources. The objective of this study is to map the groundwater potential zones in northern part of UAE and assess the contributing factors for exploration of potential groundwater resources. Remote sensing data and geographic information system will be used to locate potential zones for groundwater. Various maps (i.e., base, soil, geological, Hydro-geological, Geomorphologic Map, structural, drainage, slope, land use/land cover and average annual rainfall map) will be prepared based on geospatial techniques. The groundwater availability of the basin will qualitatively classified into different classes based on its hydro-geo-morphological conditions. The land use/land cover map will be also prepared for the different seasons using a digital classification technique with a ground truth based on field investigation.

  18. Groundwater Quality Assessment Based on Geographical Information System and Groundwater Quality Index

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2015-06-01

    Full Text Available Iran is located in an arid and semi-arid part of the world. Accordingly, the management of the water resources in the country is a priority. In this regard, determining the quality and pollution of surface water and groundwater is very important, especially in areas where groundwater resources are used for drinking. Groundwater quality index (GQI checks the components of the available water with various quality levels. To assess the quality of drinking groundwater of Yazd-Ardakan plain according to GQI in geographical information system (GIS environment, the electrical conductivity, sodium, calcium, magnesium, chlorine, pH, sodium adsorption ratio, bicarbonate, sulfate, potassium, water hardness, and all substances dissolved in the waters of 80 wells were determined. The samples were obtained from Yazd Regional Water Organization from 2005 to 2014. Using this data, the map components were plotted by Kriging geostatistical method. Then, the map of GQI was prepared after normalizing each map component, switching to a rating map, and extracting the weight of each component from the rating map. Based on the GQI index map, the index point which was 87 in 2005 has increased to 81 in 2014. These maps show a decline in groundwater quality from west to the east region. This decline in groundwater quality is due to the existence of Neogene Organizations in the east and geomorphologic unit of the bare epandage pediment in the west. The map removal and single-parameter sensitivity analysis showed that GQI index in Yazd-Ardakan plain is more sensitive to the components of electrical conductivity (EC, total dissolved solids (TDS, and total hardness (TH. Therefore, these components should be monitored more carefully and repeatedly.

  19. Ecohydrological Investigations of a Groundwater-Lake System

    DEFF Research Database (Denmark)

    Frandsen, Mette Cristine Schou

    This PhD project is a cross-disciplinary study combining hydrological and biological methodology to better describes the lake-catchment interaction seen in an ecological perspective. The topics investigated were: •Does groundwater re- and discharge affect the growth of submerged vegetation? (Paper...... I). •Does dense bottom vegetation affect the small scale hydrology of the lake bed sediment? (Paper 2). •How can natural tracers (δ 18O) be used to quantify the temporal variation in groundwater seepage dynamics? (Paper 3). •Is it possible to combine ecological data of surface water chemistry and...... data on groundwater chemistry to stoichiometrically describe changes in the lake in a historical time frame? (Paper 4). he main conclusions from the study are: •When evaluating the ecology of a groundwater-lake system, both hydrological and biological parameters are needed to accurately describe the...

  20. Significant Movements in City School Systems. Bulletin, 1929, No. 16

    Science.gov (United States)

    Deffenbaugh, W. S.

    1929-01-01

    So extensive and so complex has the modern city school system become that it is impossible in a short chapter to discuss more than a few of the educational movements in the cities of the country, and these only briefly. In addition to day elementary and secondary schools, the activities of city school systems include night schools, continuation…

  1. The Kabu-ido system: a pioneering solution for uncoordinated groundwater pumping in Japan

    OpenAIRE

    Endo, T.

    2015-01-01

    The Kabu-ido system was a customary institution for groundwater management in a ring levee area of the Tokai region in Japan. It consists of three programs, a permit system for groundwater pumping, groundwater pricing, and economic compensation. The purpose of this paper is to clarify characteristics of the Kabu-ido as a groundwater management institution.

  2. Rule base system in developing groundwater pollution expert system: predicting model

    International Nuclear Information System (INIS)

    New techniques are now available for use in the protection of the environment. One of these techniques is the use of expert system for prediction groundwater pollution potential. Groundwater Pollution Expert system (GWPES) rules are a collection of principles and procedures used to know the comprehension of groundwater pollution prediction. The rules of groundwater pollution expert system in the form of questions, choice, radio-box, slide rule, button or frame are translated in to IF-THEN rule. The rules including of variables, types, domains and descriptions were used by the function of wxCLIPS (C Language Integrate Production System) expert system shell. (author)

  3. Groundwater availability of the Denver Basin aquifer system, Colorado

    Science.gov (United States)

    Paschke, Suzanne S., (Edited By)

    2011-01-01

    The Denver Basin aquifer system is a critical water resource for growing municipal, industrial, and domestic uses along the semiarid Front Range urban corridor of Colorado. The confined bedrock aquifer system is located along the eastern edge of the Rocky Mountain Front Range where the mountains meet the Great Plains physiographic province. Continued population growth and the resulting need for additional water supplies in the Denver Basin and throughout the western United States emphasize the need to continually monitor and reassess the availability of groundwater resources. In 2004, the U.S. Geological Survey initiated large-scale regional studies to provide updated groundwater-availability assessments of important principal aquifers across the United States, including the Denver Basin. This study of the Denver Basin aquifer system evaluates the hydrologic effects of continued pumping and documents an updated groundwater flow model useful for appraisal of hydrologic conditions.

  4. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments

    Directory of Open Access Journals (Sweden)

    Lorena Parra

    2015-08-01

    Full Text Available The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  5. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments.

    Science.gov (United States)

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-01-01

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring. PMID:26343653

  6. Simulation of groundwater flow, effects of artificial recharge, and storage volume changes in the Equus Beds aquifer near the city of Wichita, Kansas well field, 1935–2008

    Science.gov (United States)

    Kelly, Brian P.; Pickett, Linda L.; Hansen, Cristi V.; Ziegler, Andrew C.

    2013-01-01

    The Equus Beds aquifer is a primary water-supply source for Wichita, Kansas and the surrounding area because of shallow depth to water, large saturated thickness, and generally good water quality. Substantial water-level declines in the Equus Beds aquifer have resulted from pumping groundwater for agricultural and municipal needs, as well as periodic drought conditions. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project to store and later recover groundwater, and to form a hydraulic barrier to the known chloride-brine plume near Burrton, Kansas. In October 2009, the U.S. Geological Survey, in cooperation with the city of Wichita, began a study to determine groundwater flow in the area of the Wichita well field, and chloride transport from the Arkansas River and Burrton oilfield to the Wichita well field. Groundwater flow was simulated for the Equus Beds aquifer using the three-dimensional finite-difference groundwater-flow model MODFLOW-2000. The model simulates steady-state and transient conditions. The groundwater-flow model was calibrated by adjusting model input data and model geometry until model results matched field observations within an acceptable level of accuracy. The root mean square (RMS) error for water-level observations for the steady-state calibration simulation is 9.82 feet. The ratio of the RMS error to the total head loss in the model area is 0.049 and the mean error for water-level observations is 3.86 feet. The difference between flow into the model and flow out of the model across all model boundaries is -0.08 percent of total flow for the steady-state calibration. The RMS error for water-level observations for the transient calibration simulation is 2.48 feet, the ratio of the RMS error to the total head loss in the model area is 0.0124, and the mean error for water-level observations is 0.03 feet. The RMS error calculated for observed and simulated base flow gains or losses for the

  7. 贵阳市岩溶地下水污染风险与防控监管%Karst Groundwater Vulnerability and Pollution Risk Control in Guiyang City

    Institute of Scientific and Technical Information of China (English)

    丁贞玉; 孙宁; 孙运海; 储成君

    2015-01-01

    In view of the particularities of karst landform and urban development in Guiyang City, along with the full consideration of groundwater vulnerabilities, pollution factors and value functional attributes of bare karst areas, an effective analysis method and parameter system of groundwater pollution risks is used for discussion of a multi-factor comprehensive evaluation method that can differentiate groundwater vulnerabilities and pollution risks. The results show that the distribution of groundwater areas with high pollution risks is jointly determined by such factors as groundwater vulnerability, pollution source and functional value. In Guiyang City, the key areas of groundwater pollution control account for 96.3% of the total area, and the karst areas are with high vulnerabilities. Therefore, source control should be taken as the working focus and relevant relocation, prevention and monitoring solutions for major pollution sources existing in the nature reserves and areas for prior control should be developed. Pollution risks should be reduced maximally and policy regulation, risk investigation and emergency capacity building should be strengthened within the drinking water source protection areas. As karst groundwater is one of the special resources and environmental elements, it is required that pollution control regionalization should be integrated into the docking of urban planning, land planning and industrial planning, and policies should be proposed to guide the integration of urban development and groundwater pollution control.%针对贵阳市岩溶地貌及城市发展的特殊性,充分考虑裸露岩溶区地下水脆弱性、污染源要素及价值功能属性,应用有效的地下水污染风险分析方法与参数体系,探讨了岩溶区地下水脆弱性及污染风险分区的多因素综合评价方法。结果表明,地下水脆弱性、污染源及功能价值因素的共同作用决定了地下水高污染风险区分布。贵阳

  8. ICT Road map for supporting energy systems in smart cities

    OpenAIRE

    Sepponen, Mari; Fiès, Bruno; García Castro, Raul

    2014-01-01

    This paper introduces a road map for ICTs (Information and communication technologies) supporting planning, operation and management of energy systems in smart cities. The road map summarises different elements that form energy systems in cities and proposes research and technical development (RTD) and innovation activities for the development and innovation of ICTs for holistic design, planning and operation of energy systems. In addition, synergies with other ICT systems for smart cities ar...

  9. Isotope studies of groundwater degradation at a riverside pumping site in Lanzhou City

    International Nuclear Information System (INIS)

    One hundred and one water samples, including 27 precipitation, 18 surface water an 56 groundwater samples, were collected in the study area. The hydrochemical characteristics of the groundwater indicate that the degraded area is around the pumping cone of depression on Ma Beach. Deuterium and 18O were used in the calculation of the ratios of precipitation and Yellow River water, and fresh and salt water. Using the two end mixing model, the share of Yellow River water at Cui Beach was estimated to be about 85%, while the share of precipitation was 15%, whereas at Ma Beach, Yellow River water was 95% and precipitation only 5%. The ratios of riverside fresh water, mountainous fresh water and young salt water to degraded groundwater were calculated using the three end mixing model. Attention was also given to the mechanism of groundwater degradation and the origin of young salt water. (author). 7 figs, 4 tabs

  10. Impacts of Tanneries on Quality of Groundwater in Pallavaram, Chennai Metropolitan City

    OpenAIRE

    K.Ramesh,; V.Thirumangai

    2014-01-01

    The present study was carried out with the objective of determining the extent of groundwater pollution caused by tanning industries and solid waster dumpsite in Pallavaram area located south of Chennai (Madras), which is a town of number of small and large scale leather industries. About 22 groundwater samples were collected and analyzed for the concentration of physio-chemical parameters and trace ions during September 2011 and January 2012. Ca-Mg-Cl and Na-Cl are the major ...

  11. Improved aquifer characterization and the optimization of the design of brackish groundwater desalination systems

    KAUST Repository

    Malivaa, Robert G.

    2011-07-01

    well program for a new 66,200 m3/d (17.5 million US gal/d, MGD) brackish-water desalination plant for the City of Hialeah, Florida. Salinity and hydraulic conductivity data from the borehole logging program were used for both well design (determination of production zone) and groundwater modeling to optimize the production wellfield layout and predict future water quality. Advanced characterization techniques have general applicability for improving the design and predictability of well-based raw water supply systems, including alternative seawater intakes. © 2011 Desalination Publications. All rights reserved.

  12. Permafrost thaw in a nested groundwater-flow system

    Science.gov (United States)

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  13. Impacts of urbanization and climate on groundwater in a growing Africa city: the case of Ouagadougou (Burkina Faso)

    Science.gov (United States)

    Mouhouddine, Alihoumadi; Yameogo, Suzanne; Genthon, Pierre; Travi, Yves

    2016-04-01

    African cities are presently facing the combined impacts of growing urbanization and climate change. In several instances; providing safe drinking water for all is still a challenge, especially for cities located on basement aquifers, were groundwater is scarce. Here we assess the effects of climate change and land use change on groundwater amount and quality in the main city of Ouagadougou (Burkina Faso) taking advantage of the CIEH borehole, where a mostly continuous record lasts since 1978. This record spans most of the Great African Drought (1970-1990) and recovery from the Drought since the 2000s. A piezometric network of 14 wells and boreholes was setup around the CIEH borehole and monitored during the 2013-2014 hydrologic year. The piezometric network spans an old settlement, the Ouagadougou University, a vegetable gardening area and a natural forested area. Water balance estimates are provided by a 1D box model. The study area, although it lies partly on an old settlement in Ouagadougou and on the University area, presents a rather uniform runoff coefficient of 22% and ET amounting to 80-90 % of rainfall, which usually characterizes natural areas. It is suspected that the almost absence of asphalted surfaces, the presence of trees and flow of rainwater from roofs toward bare soils or sumps could be responsible of this budget. However, the two wells located in the forested Bangr Weogo recreational area are characterized by almost no runoff and a nearly 100 % ET. While drinking water can be pumped in several places in the city of Ouagadougou, chemical major analyses show that two mechanisms impact groundwater quality during the rainy season: (i) rise of the water table at pit latrine level, mainly in old settlements, and entrainment of harmful substances from soil to the aquifer in gardening area near some artisan activities. The CIEH borehole is not fully representative of its neighboring area since (i) it lies in a piezometric low, (ii) it presents the

  14. The contribution of geology and groundwater studies to city-scale ground heat network strategies: A case study from Cardiff, UK

    Science.gov (United States)

    Boon, David; Farr, Gareth; Patton, Ashley; Kendall, Rhian; James, Laura; Abesser, Corinna; Busby, Jonathan; Schofield, David; White, Debbie; Gooddy, Daren; James, David; Williams, Bernie; Tucker, David; Knowles, Steve; Harcombe, Gareth

    2016-04-01

    The development of integrated heat network strategies involving exploitation of the shallow subsurface requires knowledge of ground conditions at the feasibility stage, and throughout the life of the system. We describe an approach to the assessment of ground constraints and energy opportunities in data-rich urban areas. Geological and hydrogeological investigations have formed a core component of the strategy development for sustainable thermal use of the subsurface in Cardiff, UK. We present findings from a 12 month project titled 'Ground Heat Network at a City Scale', which was co-funded by NERC/BGS and the UK Government through the InnovateUK Energy Catalyst grant in 2015-16. The project examined the technical feasibility of extracting low grade waste heat from a shallow gravel aquifer using a cluster of open loop ground source heat pumps. Heat demand mapping was carried out separately. The ground condition assessment approach involved the following steps: (1) city-wide baseline groundwater temperature mapping in 2014 with seasonal monitoring for at least 12 months prior to heat pump installation (Patton et al 2015); (2) desk top and field-based investigation of the aquifer system to determine groundwater levels, likely flow directions, sustainable pumping yields, water chemistry, and boundary conditions; (3) creation of a 3D geological framework model with physical property testing and model attribution; (4) use steps 1-3 to develop conceptual ground models and production of maps and GIS data layers to support scenario planning, and initial heat network concept designs; (5) heat flow modelling in FEFLOW software to analyse sustainability and predict potential thermal breakthrough in higher risk areas; (6) installation of a shallow open loop GSHP research observatory with real-time monitoring of groundwater bodies to provide data for heat flow model validation and feedback for system control. In conclusion, early ground condition modelling and subsurface

  15. Assessment of impact on the groundwater quality due to urbanization by hydrogeochemical facies analysis in SE part of Pune city, India

    Directory of Open Access Journals (Sweden)

    M. R. G. Sayyed

    2013-06-01

    Full Text Available The groundwater from the south-eastern part of Pune city has been assessed for the seasonal variation in their quality parameters. Using Piper diagram the hydrogeochemical facies were identified and the groundwaters were classified with regards to the changes in their major chemical compositions. Based on the hydrogeochemical facies it has been found that the groundwater regime is severly deteriorated by the anthropogernic activities. Although the area of Manjari, Hadapsar and uruli Devachi show high influx of pollutants in rainy season the Mantarwadi and Fursungi area have strong influence of leachate throughout the year.

  16. 城市化对地下水补给的影响 ——以石家庄市为例%The Impact of Urbanization on Groundwater Recharge: a Case Study of Shijiazhuang City

    Institute of Scientific and Technical Information of China (English)

    于开宁

    2001-01-01

    results in the increase of groundwater recharge;②the inducing of groundwater from the well-field around the city and surface water by exploitation of groundwater and the importing of new recharge sources that results from the leakage of water-supply and water-discharge systems of the city seem to be the important mechanism that induces the recharge increase of groundwater by urbanization.

  17. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Nagarajan Rajkumar

    2012-12-01

    Full Text Available Abstract Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality. Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Zn were determined in leachate samples and are reported. The concentrations of Cl-, NO3-, SO42-, NH4+ were found to be in considerable levels in the groundwater samples particularly near to the landfill sites, likely indicating that groundwater quality is being significantly affected by leachate percolation. Further they were proved to be the tracers for groundwater contamination near Semur and Vendipalayam dumpyards. The presence of contaminants in groundwater particularly near the landfill sites warns its quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce further groundwater contamination via leachate percolation, the present study demands for the proper management of waste in Erode city.

  18. Screening assessment of radionuclide migration in groundwater from the 'Dneprovskoe' tailings impoundment (Dneprodzerzhynsk City) and evaluation of remedial options

    International Nuclear Information System (INIS)

    Full text: The paper presents results of mathematical modeling of the hydrogeological conditions at the 'Dneprovskoe' ('D') tailings impoundment - object of the former industrial association of 'Pridneprovsky Chemical Plant', which contains uranium ore processing wastes. This radioactively polluted site is located in a densely populated region (at the outskirts of Dneprodzerginsk City) near the major watercourse of the Ukraine - Dnieper River. The mathematical modeling utilized Visual Modflow (for groundwater flow) and Ecolego (Facilia AB, Sweden) radioecology modeling software (for radionuclide transport). Modeling results indicate the possibility of essential radioactive contamination in future of the phreatic aquifer in alluvial deposits between the 'D' tailings and the Dnieper River (mainly due to migration of uranium). Therefore long term management strategies should preclude water usage from the aquifer in the zone of the influence of the 'D' tailings. Filtration discharge of uranium to the Dniper River does not represent a significant risk due to large dilution by surface waters. The important modeling conclusion is that besides the uranium ore processing wastes inside the tailings, the major source of radionuclide migration to groundwater is represented by contaminated geological deposits below the tailings. This last source was formed due to leakage of wastewaters during the operational period of the 'D' tailings (1954-1968). Therefore an exemption and re-disposal of wastes from the 'D' tailings to a more safe storage location (proposed by some remedial plans) will not provide significant benefit from the viewpoint of minimizing of radionuclide transport to the groundwater and Dnieper River (especially in short-and medium-term perspective). The rational remedial strategy for the 'D' tailings is conservation of tailing wastes in-situ by means of specially designed 'zero flux' soil screen, which would minimize infiltration of meteoric waters to the body of

  19. Impacts of Tanneries on Quality of Groundwater in Pallavaram, Chennai Metropolitan City

    Directory of Open Access Journals (Sweden)

    K.Ramesh,

    2014-01-01

    Full Text Available The present study was carried out with the objective of determining the extent of groundwater pollution caused by tanning industries and solid waster dumpsite in Pallavaram area located south of Chennai (Madras, which is a town of number of small and large scale leather industries. About 22 groundwater samples were collected and analyzed for the concentration of physio-chemical parameters and trace ions during September 2011 and January 2012. Ca-Mg-Cl and Na-Cl are the major water types in this area. It is inferred that, total hardness falls in hard to very hard category. The water quality index rated as poor to very poor quality except few samples. The study reveals that the concentration of major ions and chromium are exceeding the permissible limit. Groundwater is unsuitable for human consumption as it contains higher concentration of major ions and chromium. Tannery uses a large number of chemicals during the process of discharging toxic wastes into open drains and municipality solid waste dumpsite to the nearby land is the major reasons deterioration of water quality in this area. Contamination of groundwater causes water scarcity for domestic purpose of this study is to highlight the impact of tannery effluent on groundwater

  20. Subterranean blue. Sustaining water lifelines for cities. Already half of the world's people live in urban areas, and more are moving in. Many of them depend on groundwater for living. But as cities grow, can subterranean water sources be sustained?

    International Nuclear Information System (INIS)

    Cities used to be centres of plague and illness. During the past 150 years urban sanitary engineering and medical epidemiology have promoted rapid improvements to human health in the cities of the industrial world. A celebrated example was the pioneering work of Dr. John Snow who, in the mid-19th century, traced the source of a London cholera epidemic to a public water pump on Broad Street. Most cities evolved from small settlements and the availability of a suitable water supply was often the primary factor in their location. Often, though, these original water sources quickly became inadequate in quality or quantity, and sometimes are now completely forgotten. New sources and larger quantities of water were required. Groundwater may have been drawn from deep aquifers, even from beyond city boundaries. Today, groundwater plays a critical but complex (and often largely unrecognized) role in the urban environment

  1. Urban groundwater baseflow influence upon inorganic river-water quality: The River Tame headwaters catchment in the City of Birmingham, UK

    Science.gov (United States)

    Rivett, Michael O.; Ellis, Paul A.; Mackay, Rae

    2011-03-01

    SummaryUnderstanding the linkage between urban land, groundwater, baseflow and river contamination at the city scale is lacking. This study evaluates the influence of inorganic (major/minor ions and metals) groundwater contamination in the Triassic sandstone-Quaternary deposits aquifer system underlying the City of Birmingham, UK upon the baseflow and water quality of the river Tame. Baseflow water-quality data have been collected from a riverbed piezometer network installed in the 7.4 km reach crossing the effluent unconfined sandstone aquifer and compared to river and aquifer water-quality data. Overall, the inorganic chemical quality of the baseflow was not as poor as potentially surmised from the urbanisation present. Baseflow impact upon river-water quality was also low. These conclusions were underpinned by evidences of: limited river-water quality changes along the reach; some river concentrations being diluted by better quality baseflow; only occasional breaching of water-quality criteria; limited impact upon river-reach quality local to elevated baseflow dicharges; natural attenuation occurrence within the riverbed; and, modest, albeit somewhat uncertain, baseflow mass fluxes. Baseflow fluxes to the reach were in the ranges 100-3500 t/yr for major ions, 1-50 t/yr for minor ions and 1-500 kg/yr for toxic metals with zinc and nickel most prominent. The sporadic occurrence of elevated baseflow concentrations was ascribed to discrete groundwater plume discharges. More detailed sub-reach studies would be required to fully resolve discrete plume baseflow contributions and improve mass flux estimates. Not uncommonly, the urban river studied was already contaminated and hence persistent baseflow fluxes may assume more importance if the river became cleaner through other control measures. Future research should hence consider the emergent significance of urban baseflows. There are needs to: conduct similar studies to investigate if city-scale baseflow impacts are

  2. The preliminary study of groundwater recharge system in Kathmandu Valley, Nepal

    International Nuclear Information System (INIS)

    This study aims to identify the groundwater recharge systems of Kathmandu Valley using isotopic compositions of water (δ18O and δ2H) along with other hydrochemistry data. The preliminary study consisted of 15 deep groundwater and 5 shallow groundwater samples that were collected from northern and central part of the valley. Three types of the deep groundwater isotope compositions were observed while δ18O is plotted against δ2H. The results indicate that the deep groundwater has two main aquifers: north part and central part aquifers. In addition, the oxygen isotopic values of all samples when plotted against chloride indicate that deep groundwater is not being recharged by the shallow groundwater of the sampled area. It was also observed that the third type of groundwater is formed by the mixing of first and second types of groundwater. The next study will be focused on detailed investigation in finding source and recharge of this groundwater. (author)

  3. Recharge source and hydrogeochemical evolution of shallow groundwater in a complex alluvial fan system, southwest of North China Plain

    Science.gov (United States)

    Li, Fadong; Pan, Guoying; Tang, Changyuan; Zhang, Qiuying; Yu, Jingjie

    2008-09-01

    Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca-HCO3 type water with depleted δ18O and δD (mean value of -8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca-Na-Mg-HCO3-Cl-SO4 type), and heavier δ18O and δD were observed (around -8‰ δ18O). Before the surface water with mean δ18O of -8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of -8.8‰ δ18O) were similar to those of transferred water (-8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca-HCO3, Na-HCO3, to Na-SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the

  4. Groundwater Flow Systems and Their Response to Climate Change: A Need for a Water-System View Approach

    OpenAIRE

    Joel J. Carrillo-Rivera; Antonio Cardona

    2012-01-01

    Problem statement: The interest in early hydrogeological studies was the aquifer unit, as it is the physical media that stores and permits groundwater transfers from the recharge zone to the discharge zone, making groundwater available to boreholes for water extraction. Approach: Recently, the aquifer concept has been complemented by the groundwater flow system theory, where groundwater may be defined by local, intermediate and regional flow systems. This implies that groundwater may travel f...

  5. Detection of Septic System Waste in the Groundwaters of Southern California Using Emerging Contaminants and Isotopic Tracers

    Science.gov (United States)

    Huang, W.; Conkle, J.; Sickman, J. O.; Lucero, D.; Pang, F.; Gan, J.

    2011-12-01

    In California, groundwater supplies 30-40% of the State's water and in rapidly growing regions like the Inland Empire, groundwater makes up 80-90% of the municipal water supply. However, anthropogenic contamination could adversely affect groundwater quality and thereby reduce available supplies. Appropriate tracers are needed to identify groundwater contamination and protect human health. Stable isotopes δ15N and δ 18O offer unique information about the importance of nitrate sources and processes affecting nitrate in aquifers. We investigated the influence of septic systems on groundwater quality in and around the city of Beaumont, CA during 2010-11. Groundwater samples were collected from 38 active wells and 10 surface water sites in the region (urban and natural streams, agricultural drainage and groundwater recharge basins supplied by the California State Water Project). Stable isotopes and pharmaceuticals and personal care products (PPCPs) were analyzed for all the water samples. The variations of δ15N and δ 18O of nitrate were 2 - 21 per mil and -4 - 9 per mil respectively. δ15N-NO3 values greater than 10 per mil have been associated with nitrate inputs from sewage and animal waste, but in the Beaumont wells, PPCP concentrations were at or below the detection limit in most wells with high isotope ratios. We also observed a strong linear relationship between δ15N and δ 18O of nitrate (slope of~ 0.5) in the vast majority of our samples including those with high isotope ratios. Our results suggest that denitrification was widespread in the Beaumont aquifer and strongly affected the isotope composition of nitrate. In some wells, PPCPs (carbamazepine, sulfamethoxazole, primidone, meprobamate and diuron) and isotope measurements indicated inputs from human waste, but these sites were affected primarily by local waste-water treatment plant effluent. A mixing model was developed using multiple tracers to determine sources and contributions of groundwater

  6. Groundwater economics: An object-oriented foundation for integrated studies of irrigated agricultural systems

    Science.gov (United States)

    An integrated foundation is presented to study the impacts of external forcings on irrigated agricultural systems. Individually, models are presented that simulate groundwater hydrogeology and econometric farm level crop choices and irrigated water use. The natural association between groundwater we...

  7. Subregions of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the subregions of the transient ground-water flow model of the Death Valley regional ground-water flow system (DVRFS). Subregions are...

  8. 台州地区地下水环境承载力评价研究%Study on the evaluation of groundwater environmental carrying capacity in Taizhou City

    Institute of Scientific and Technical Information of China (English)

    李垚奎; 张征; 娄华君; 梅兴新

    2012-01-01

    The present article intends to introduce a case study result of groundwater environmental carrying capacity by taking Taizhou, Zhejiang, as an example. It is known that there is no uniform concept of groundwater environmental carrying capacity. On the base of conceptual studies proposed by former researchers, we define groundwater environmental carrying capacity as the maximum sustainable-development level of human society that a regional water environment can support under a certain period of time and technical level. In order to evaluate the groundwater environmental carrying capacity in Taizhou city, we have adopted a well-known method of analytic hierarchy process to build up three-grade-evaluation index system, which consists of die target layer, the rule layer and the index layer. The rule layer includes natural index and social index. The index layer is made of 10 indexes, which are aquifer thickness of groundwater, groundwater level, net groundwater charge, nature of unsaturated zone, topographic slope, treatment efficiency of discharged water, population density, per capita GDP, per capita groundwater extraction and water consumption per 10000 industrial production. The judgment matrix of AHP is used to get the weights of all indexes in the system. The geographic information system (GIS) is used to obtain the digital distributions of every index. The results of our study show that the groundwater environmental carrying capacity in Taizhou city ranges from 0.380 4 to 0.743 2. The average capacity is 0.548 1, which belongs to the medium level. The maximum constraint to groundwater environmental carrying capacity changes in different areas, which is natural index in west but social in east. In all areas of Taizhou City, it is necessary to accelerate industrial restructuring and strengthen the planning and management of groundwater. It is an effective way to develop water-saving industry, which can promote the sustainable development of economy, population and

  9. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    : Belcher, Wayne R., (Edited By); Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  10. Evaluation of Background Mercury Concentrations in the SRS Groundwater System

    International Nuclear Information System (INIS)

    Mercury analyses associated with the A-01 Outfall have highlighted the importance of developing an understanding of mercury in the Savannah River Site groundwater system and associated surface water streams. This activity is critical based upon the fact that the EPA Ambient Water Quality Criteria (AWQC) for this constituent is 0.012mg/L, a level that is well below conventional detection limits of 0.1 to 0.2 mg/L. A first step in this process is obtained by utilizing the existing investment in groundwater mercury concentrations (20,242 records) maintained in the SRS geographical information management system (GIMS) database. Careful use of these data provides a technically defensible initial estimate for total recoverable mercury in background and contaminated SRS wells

  11. Molecular Communication Systems Design for Future City

    OpenAIRE

    Qiu, Song

    2014-01-01

    An area of interest in the modern age is the human migration from rural areas to cities. Cities are characterized by a dense concentration of buildings and key infrastructures. However, what has been lacking is a pervasive sensor technology that can monitor the performance of these structures. Partly, this is due to the fact that the information collected from sensors cannot be easily transported from the embedded location to an external data hub. Examples of health monitoring in structures i...

  12. A shared " passengers & goods " city logistics system

    OpenAIRE

    Trentini, Anna; Masson, Renaud; Lehuédé, Fabien; Malhéné, Nicolas; Péton, Olivier; Tlahig, Houda

    2012-01-01

    Many strategic planning models have been developed to help decision making in city logistics. Such models do not take into account, or very few, the flow of passengers because the considered unit does not have the same nature (a person is active and a good is passive). However, it seems fundamental to gather the goods and the passengers in one model when their respective transports interact with each other. In this context, we suggest assessing a shared passengers & goods city logistics syste...

  13. Is groundwater age the main control for slow turnover of nitrate in a fractured groundwater system?

    Science.gov (United States)

    Osenbrück, Karsten; Schwientek, Marc; Rügner, Hermann; Grathwohl, Peter

    2015-04-01

    Slow transformation processes are known to control the chemical, isotopic, and redox evolution of large-scale aquifers (Edmunds et al., 1982; Katz et al., 1995). However, at the field scale some of the crucial biogeochemical processes governing pollutant turnover and their interrelations with hydrology are poorly understood. Particularly, only little is known about denitrification in fractured rock aquifers. Therefore, the main objective of the presented study is to assess where and how slow turnover of nitrate ans other pollutants in the deeper subsurface take place. The studied fractured and partly karstified aquifer consisting of Triassic black limestones and dolomites is located in the catchment of the Ammer river (ca. 350 km²) close to Tübingen in southern Germany. Near the recharge area, the aquifer is covered by loess allowing intensive agriculture. Further downgradient, the cover consist of a series of mudstones and sandstones of variable permeability. The aquifer is used for drinking water purposes by regional water suppliers. Land-use is dominated by agriculture with arable land covering nearly 50% of the catchment. Over the last years a variety of groundwater samples have been collected from the groundwater system including 6 water supply wells, 4 karstic springs, and 9 monitoring wells in the recharge area. This allowed to identify spatial and temporal patterns of water quality including concentrations of major ions, dissolved organic carbon (DOC), organic pollutants (e.g., pesticides), and environmental isotopes. Groundwater age distributions at most of these locations were derived from tritium, 3He, CFCs and SF6. Groundwaters in the recharge area show high concentrations of nutrients (e.g. 20-51 mg/L of nitrate and 0.2 to 0.05 µg/L of phosphate). Of special concern are disparate nitrate concentrations ranging from below 0.4 to 20 mg/L in water supply wells although screen depths of the production wells are similar. Concentrations of dissolved

  14. Innovating Multi-agent Systems Applied to Smart City

    Directory of Open Access Journals (Sweden)

    Michela Longo

    2014-05-01

    Full Text Available The aim of study is to talk about a generic model of Smart City with a multi-agents system and the aspects correlated to Internet. Smart cities are made by a high level of Information and Communication Technology (ICT structures able to transmit energy, information flows multidirectional and connect a different sector that include mobility, energy, social, economy. These components are very important to offer intelligence in a city, as basic infrastructure for a definition of a model repeatable and exportable, as well as supported by the European Community, that is allocating considerable funds (Horizon 2020 for the creation of Smart City.

  15. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  16. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge...

  17. An integrated system for groundwater monitoring at Sellafield PNWR, U.K

    International Nuclear Information System (INIS)

    This paper presents details of the evolution and design of the groundwater monitoring system and methods by which monitoring data are obtained for Sellafield geological investigations. A Westbay MP55 multilevel groundwater monitoring system is being used to continuously record baseline groundwater pressures and natural fluxes. Groundwater pressure changes of 1 to 2 kilopascals at depths of 1000 m are discernible by refined data processing. The adoption of the monitoring system has provided a very flexible and cost effective approach to groundwater monitoring and testing

  18. The 3D simulation and optimized management model of groundwater systems based on ecoenvironmental water demand

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater's economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da'an in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.

  19. Radiocarbon dating in groundwater systems. Chapter 4

    International Nuclear Information System (INIS)

    The radioactive isotope of carbon, radiocarbon (14C), was first produced artificially in 1940 by Martin Kamen and Sam Ruben, who bombarded graphite in a cyclotron at the Radiation Laboratory at Berkeley, CA, in an attempt to produce a radioactive isotope of carbon that could be used as a tracer in biological systems (Kamen (1963) [101]; Ruben and Kamen (1941) [102]). Carbon-14 of cosmogenic origin was discovered in atmospheric CO2 in 1946 by Willard F. Libby, who determined a half-life of 5568 a. Libby and his co-workers (anderson et al. (1947) [103]; Libby et al. (1949) [104]) developed radiocarbon dating of organic carbon of biological origin, which revolutionized research in a number of fields, including archaeology and quaternary geology/climatology, by establishing ages and chronologies of events that have occurred over the past approximately 45 ka.

  20. Distribution of the catabolic transposon Tn5271 in a groundwater bioremediation system.

    OpenAIRE

    Wyndham, R. C.; Nakatsu, C.; Peel, M.; Cashore, A; Ng, J.; Szilagyi, F.

    1994-01-01

    The distribution of Tn5271-related DNA sequences in samples of groundwater and a groundwater bioremediation system at the Hyde Park (Niagara Falls, N.Y.) chemical landfill site was investigated. PCR amplification of target sequences within the cha genes of Tn5271 revealed similar sequences in the groundwater community and in samples from the sequencing batch reactors treating that groundwater. Cell dilution combined with PCR amplification indicated that cha sequences were carried in about 1 o...

  1. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Rajkumar Nagarajan

    2012-12-01

    Full Text Available Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality.Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Znwere determined in leachate samples and are reported. The concentrations of Cl-, NO3 - , SO4 2-, NH4 + were found to be in considerable levels in the groundwater samples particularly near to the landfill sites, likely indicating thatgroundwater quality is being significantly affected by leachate percolation. Further they were proved to be the tracers for groundwater contamination near Semur and Vendipalayam dumpyards. The presence of contaminants in groundwater particularly near the landfill sites warns its quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce furthergroundwater contamination via leachate percolation, the present study demands for the proper management of waste in Erode city.

  2. Intelligent City Traffic Management and Public Transportation System

    OpenAIRE

    Mulay, Snehal; Dhekne, Chinmay; Bapat, Rucha; Budukh, Tanmay; Gadgil, Soham

    2013-01-01

    Intelligent Transportation System in case of cities is controlling traffic congestion and regulating the traffic flow. This paper presents three modules that will help in managing city traffic issues and ultimately gives advanced development in transportation system. First module, Congestion Detection and Management will provide user real time information about congestion on the road towards his destination, Second module, Intelligent Public Transport System will provide user real time public...

  3. Studying The Contamination Status And The Sources Of Nitrogen Compounds In Groundwater In Ho Chi Minh City Area Using The Isotope Hydrology Techniques

    International Nuclear Information System (INIS)

    The obtained data on nitrate, ammonium and total nitrogen concentration of 100 groundwater samples collected from 3 main aquifers show that although the nitrate concentration is still lower than the authorized limit of this compound in groundwater but the concentration and, specially the distribution of nitrate in shallow aquifer (Pleistocene) shows the increasing tendency in pollution level while ammonium and also total nitrogen content exceeded the authorized limit of these compounds in groundwater. For deeper aquifers (Upper and Lower Pliocene) groundwater is less polluted by nitrogen compounds. Analysis data on isotopic composition δ15N and δ18O of nitrate of the collected groundwater samples in compiling with other environmental isotopes data as δ2H, δ18O of water and natural radioactive isotopes in groundwater (3H and 14C) show that nitrate in Pleistocene groundwater is derived from both sources, geogenic source such as organic matter buried in aquifer soil layers and anthropogenic source like fertilizers, manure and septic wastes with the dominance of anthropogenic source. At the same time, obtained isotopic data proved the geogenic source of nitrate in water of the deeper aquifers. Study results on infiltration rate and infiltration depth of fertilizers and water using tracer techniques in the zone specializing in legume cultivation of the study area show the possible infiltration into shallow groundwater of water and also fertilizers. The obtained results prove the need of better management of the use of fertilizers for cultivation activities in the study area and to apply the advanced cultural manners for minimizing amount of fertilizers used. At the same time to strengthen wastes management and treatment in whole study area, especially in the zones which intake rain water as a recharge source to shallow groundwater such as Cu Chi, Hoc Mon and also inner city districts. (author)

  4. City emergency medical services system issues

    Science.gov (United States)

    Persse, David E.; Bradley, Richard N.

    2003-09-01

    The City of Houston is continuously improving its preparedness for disasters and terrorism. This preparation requires strong and clear leadership. This includes a designated individual to lead the region"s preparation in the health and medical arena. An effective leader requires an effective command and control center. Real-time information on the situation is imperative.

  5. Systems approach to tracer data in groundwater hydrology

    International Nuclear Information System (INIS)

    A brief review of current mathematical methods for the analysis of tracer data in groundwater hydrology has been given. The description of the hydrological cycle as a whole or in part, by a system (compartment) or sub-system under linear and stationary conditions is discussed. Basic concepts of transit time, residence time, their distributions in time and response characteristics of a system are outlined. From the knowledge of tracer input, output and systems response function for a generalised system, reservoir capacity and storage for given period can be estimated. Use of a time series model for environmental tracer data in discreet time scale aimed at the solution of hydrological problems e.g. mean transit time and reservoir capacity is also explored. It is concluded that the combination of tracer data with systems approach can go a long way in the study of some complex hydrological problems. (author)

  6. An Integrated Approach on Groundwater Flow and Heat/Solute Transport for Sustainable Groundwater Source Heat Pump (GWHP) System Operation

    Science.gov (United States)

    Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.

    2015-12-01

    The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary

  7. Primacy analysis in the system of Bulgarian cities

    Science.gov (United States)

    Dimitrova, Zlatinka I.; Ausloos, Marcel

    2015-07-01

    The concept of "primacy" as introduced by Jefferson in 1939 in urban geography leads to the notion of "dominant city" also known as the primate city. Practically, the notion was extended by Sheppard in view of discussing some "hierarchy". The type of dominance is not universal nor any hierarchy reversal. Both can be time and sample dependent. Thus, as an example taking into consideration the existence of both pieces of the puzzle, we consider and discuss the Bulgarian urban system. It is also interesting to compare data on two groups of cities in different time intervals: (i) the whole Bulgaria city system which contains about 250 cities, - studied in the time interval between 2004 and 2011, and (ii) a system of 33 cities, - studied over the time interval 1887 till 2010. These latter cities are selected because the population was already over 10 000 inhabitants in 1946. It is shown that new additional indices are interestingly introduced in order to compensate defects in the Sheppard index. Numerical illustrations are illuminated through a "length ratio" measure, which allows to distinguish the (often) observed departures from the hyperbolic ranking seen by Jefferson.

  8. Groundwater Flow and Solute Transport in Fractured Lacustrine Clay Near Mexico City

    Science.gov (United States)

    Rudolph, D. L.; Cherry, J. A.; Farvolden, R. N.

    1991-09-01

    A network of piezometers was installed in a surficial lacustrine clay aquitard overlying a thin saline water aquifer of volcanoclastic origin at a study site near Mexico City in the Basin of Mexico. The aquifer is underlain by additional lacustrine sediments which in turn overlie a thick regional freshwater aquifer. The regional aquifer provides approximately 70% of the water supply for 20 million people in the Basin of Mexico. In the study area, major ions, oxygen 18, and deuterium in the pore water of the surficial aquitard exhibit large variations with depth. The nature of these variations suggests that the saline pore water is being displaced downward by infiltrating meteoric water. The infiltration has been induced by strong downward hydraulic gradients imposed two to three decades ago when heavy aquifer pumping of the thin saline water aquifer began. One-dimensional analytical models representing solute transport in both fractured and unfractured porous media were used to simulate the geochemical profiles in the surficial aquitard. The fractured porous medium model, using a realistic mean hydraulic gradient and fracture spacing (1.5 m) and small but significant fracture aperture (30 μm) provide nearly an exact match to the field data. From this we infer that, because of vertical fractures, there is a much greater potential for downward leakage of water and contaminants through the Mexico City clay into underlying aquifers than has been previously thought.

  9. Discussion on Groundwater Overexploitation Treatment in Hengshui City%衡水市地下水超采治理方案探讨

    Institute of Scientific and Technical Information of China (English)

    周慧; 周波

    2014-01-01

    This paper introduces the basic situation of water environment in Hengshui City,analyzes the present situation of water resources utilization and existing problems,finally proposes some effective countermeasures that can guarantee the sustainable using of groundwater resources in Hengshui city.%介绍了衡水市水环境基本情况,分析了该市的水资源利用现状及存在问题,提出地下水资源可持续利用的有效对策。

  10. Adaptive Cities: A Cybernetic Perspective on Urban Systems

    CERN Document Server

    Gershenson, Carlos; Ratti, Carlo

    2016-01-01

    Cities are changing constantly. All urban systems face different conditions from day to day. Even when averaged regularities can be found, urban systems will be more efficient if they can adapt to changes at the same speeds at which these occur. Technology can assist humans in achieving this adaptation. Inspired by cybernetics, we propose a description of cities as adaptive systems. We identify three main components: information, algorithms, and agents, which we illustrate with current and future examples. The implications of adaptive cities are manifold, with direct impacts on mobility, sustainability, resilience, governance, and society. Still, the potential of adaptive cities will not depend so much on technology as on how we use it.

  11. Earthquake effects on groundwater systems: an introductory review

    International Nuclear Information System (INIS)

    This report presents an introductory review of the potential effects of earthquakes on groundwater systems with respect to the performance of underground repositories for radioactive waste in Britain. An approach to modelling these effects within the scope of general environmental simulation codes is presented. The relevant literature is reviewed and it is concluded that, although pertinent information exists, no clear relationship between seismic intensity and the degree of fracturing has been established. Recommendations are made for further work on fracture development to complement existing research into the effects of long-term changes on the integrity of radioactive waste disposal facilities. (author)

  12. Assessment of aquifer system in the city of Lahore, Pakistan using isotopic techniques

    International Nuclear Information System (INIS)

    Isotopic and geochemical techniques were applied to assess the groundwater replenishment mechanism, pollution levels and pollution sources in the city of Lahore, the second largest city of Pakistan where water supply has been based on the abstraction of groundwater. Isotopic and chemical data indicates that groundwater has major contribution from the river water up to the center of the city while at remaining locations it seems base-flow recharged by rains of distant area or mixed recharge from river and rains. In case of shallow groundwater, different local sources like irrigation canals, sewerage drains, local rain and maybe the leaking main supply lines also contribute. High tritium values of deep groundwater fed by river show its quick movement up to 8-10 Km. Deep groundwater in the adjacent area towards the center of the city, although fed by the river shows residence time of about 45 years. Recharge to shallow aquifer is generally quick as most of the sampling locations have high tritium values. Chemical data shows that groundwater is mainly of sodium bicarbonate and calcium bicarbonate type. The infiltrating river water is of calcium bicarbonate type which changes to sodium bicarbonate type at few kilometers away from the river due to cation exchange and calcite precipitation processes. Water quality was assessed for drinking purpose and it was noted that concentrations of several parameters exceed the norms of good quality drinking water in case of shallow groundwater. This study clearly indicated an increasing trend of groundwater nitrate concentrations. δ15N values of high nitrate waters reveal the localized pollution from sewerage drains. Bacterial contamination of groundwater especially at locations near the drains also proves the penetration of urban recharge from sewerage drains. (author)

  13. Applicability and methodology of determining sustainable yield in groundwater systems

    Science.gov (United States)

    Kalf, Frans R. P.; Woolley, Donald R.

    2005-03-01

    There is currently a need for a review of the definition and methodology of determining sustainable yield. The reasons are: (1) current definitions and concepts are ambiguous and non-physically based so cannot be used for quantitative application, (2) there is a need to eliminate varying interpretations and misinterpretations and provide a sound basis for application, (3) the notion that all groundwater systems either are or can be made to be sustainable is invalid, (4) often there are an excessive number of factors bound up in the definition that are not easily quantifiable, (5) there is often confusion between production facility optimal yield and basin sustainable yield, (6) in many semi-arid and arid environments groundwater systems cannot be sensibly developed using a sustained yield policy particularly where ecological constraints are applied. Derivation of sustainable yield using conservation of mass principles leads to expressions for basin sustainable, partial (non-sustainable) mining and total (non-sustainable) mining yields that can be readily determined using numerical modelling methods and selected on the basis of applied constraints. For some cases there has to be recognition that the groundwater resource is not renewable and its use cannot therefore be sustainable. In these cases, its destiny should be the best equitable use. producciones sostenibles en cuenca, minado parcial (no sostenible) y total (no sostenible) que pueden determinarse fácilmente utilizando métodos de modelos numéricos y seleccionados en base a restricciones aplicadas. En algunos casos tiene que reconocerse que el recurso de agua subterránea no es renovable y que por lo tanto su uso no puede ser sostenible. En estos casos su destino debe de ser el uso más equitativo.

  14. A catchment-scale groundwater model including sewer pipe leakage in an urban system

    Science.gov (United States)

    Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    -202. itwh (2002). Modellbeschreibung, Institut für technisch-wissenschaftliche Hydrologie GmbH, Hannover. Karpf, C. & Krebs, P. (2013). Modelling of groundwater infiltration into sewer systems. Urban Water Journal, 10:4, 221-229, DOI: 10.1080/1573062X.2012.724077. Kolditz, O., Bauer, S. et al. (2012). OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Env. Earth Sci. 67(2):589-599. Wolf, L., Held, I., Eiswirth, M., & Hötzl, H. (2004). Impact of leaky sewers on groundwater quality. Acta Hydrochimica et Hydrobiologica, 32(4-5), 361-373. doi:10.1002/aheh.200400538. Wolf, L. (2006). Influence of leaky sewer systems on groundwater resources beneath the city of Rastatt, Germany. Dissertation, University of Karlsruhe.

  15. Health in cities: is a systems approach needed?

    Directory of Open Access Journals (Sweden)

    Ana V. Diez Roux

    2015-11-01

    Full Text Available Abstract This paper reviews the potential utility of using the concepts and tools of systems to understand and act on health in cities. The basic elements of systems approaches and the links between cities as systems and population health as emerging from the functioning of a system are reviewed. The paper also discusses implications of systems thinking for urban health including the development of dynamic conceptual models, the use of new tools, the integration of data in new ways and the identification of data gaps, and the formulation of different kinds of questions and identification of new policies. The paper concludes with a review of caveats and challenges.

  16. Health in cities: is a systems approach needed?

    Science.gov (United States)

    Diez Roux, Ana V

    2015-11-01

    This paper reviews the potential utility of using the concepts and tools of systems to understand and act on health in cities. The basic elements of systems approaches and the links between cities as systems and population health as emerging from the functioning of a system are reviewed. The paper also discusses implications of systems thinking for urban health including the development of dynamic conceptual models, the use of new tools, the integration of data in new ways and the identification of data gaps, and the formulation of different kinds of questions and identification of new policies. The paper concludes with a review of caveats and challenges. PMID:26648353

  17. Numerical simulation of seepage flow field in groundwater source heat pump system and its influence on temperature field

    Institute of Scientific and Technical Information of China (English)

    Jihua HU; Yanjun ZHANG; Danyan DU; Gang WU; Ziwang YU; Chen WANG; Fuquan NI

    2008-01-01

    Energy utilization in the aquifers is a new technology closely related to development of heat pump technique. It is significant for the flow distribution to be predicted in the aquifer surrounding the Groundwater Source Heat Pump System (GSHPS). The authors presented a new concept of "flow transfixion" by analyzing general features of aquifers, and then discussed interaction of the flow transfixion with the heat transfixion, which has practical significance to projects. A numerical model of groundwater flow was established based on the basic tenets of water-heat transferring in the aquifer. On this basis the flow field and the temperature field of GSHPS for a site in Shenyang City were numerically simulated. The basis of the flow transfixion was obtained; it was discussed for the influence of the flow transfixion on the heat transfixion. To a certain extent, the study offers some reference for the projects' design of GSHP in the studied area.

  18. Knowledge base to develop expert system prototype for predicting groundwater pollution from nitrogen fertilizer

    International Nuclear Information System (INIS)

    An expert system for prediction the impact of nitrogen fertilizer on groundwater pollution potential was established by using CLIPS (NASA's Jonson Space Centre). The knowledge base could be extracted from FAO reports, ministry of agriculture and rural development Malaysia report, established literature and domain expert for preparing an expert system skeleton. An expert system was used to correlate the availability of nitrogen fertilizer with the vulnerability of groundwater to pollution in Peninsula Malaysia and to identify potential groundwater quality problems. An n-fertilizer groundwater pollution potential index produced b using the vulnerability of groundwater to pollution yields a more accurate screening toll for identifying potential pollution problems than by considering vulnerability alone. An expert system can predict the groundwater pollution potential under several conditions of agricultural activities and existing environments. (authors)

  19. Impact of landfills, domestic and industrial waste on the aquifer in Raipur city and contribution of karst feature to the groundwater contaminations

    International Nuclear Information System (INIS)

    Karst features (landscapes that result from dissolution and surface drainage of carbonate terrains) are potentially a large source of water. They have distinctive features, which distinguish them from fissured and porous aquifers. These features include a general lack of permanent surface streams, existence of surface holes into which surface stream sink, presence of underground big channels and large springs etc. Karst environments are used for potable water supply as well as disposal sites for municipal, agricultural and industrial waste dumping. The peculiar geomorphologic and hydrological features of karst make them highly vulnerable for groundwater pollution. The ease with which they can be polluted make a fit case of taking protection measures in advance. Raipur is a major business, educational center as well as capital city of Chhattisgarh state in India. The city has been rapidly expanding during the last two decades, as a result of rapid industrialisation and various economic developments. Wastes generated from a wide variety of industrial, commercial, agricultural and domestic activities are dumped into pits or low - lying area around the Raipur City. The climate in the area is characterised by very hot summer and well distributed rain over four months during monsoon season. Monsoon precipitation begins from mid June and generally remains active till the end of September. The average annual precipitation is ∼1250 mm. In the study area, groundwater lies in the karstified nature of geological formation and is naturally susceptible to contamination by landfills, domestic and industrial wastes. The karstification feature is exposed to the surface in Raipur city at many places. Environmental isotopes (2H, 3H, 18O and 13C) as well as chemistry of the water samples were used to identify a few places, which are prone to contamination in Raipur city. Deterioration of the groundwater quality is not alarming due to thin shale (impervious layer) cover over the

  20. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    Science.gov (United States)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to

  1. Assessing the relative bioavailability of DOC in regional groundwater systems

    Science.gov (United States)

    Chapelle, Francis H.; Bradley, Paul M.; Journey, Celeste A.; McMahon, Peter B.

    2013-01-01

    It has been hypothesized that the degree to which a hyperbolic relationship exists between concentrations of dissolved organic carbon (DOC) and dissolved oxygen (DO) in groundwater may indicate the relative bioavailability of DOC. This hypothesis was examined for 73 different regional aquifers of the United States using 7745 analyses of groundwater compiled by the National Water Assessment (NAWQA) program of the U.S. Geological Survey. The relative reaction quotient (RRQ), a measure of the curvature of DOC concentrations plotted versus DO concentrations and regressed to a decaying hyperbolic equation, was used to assess the relative bioavailability of DOC. For the basalt aquifer of Oahu, Hawaii, RRQ values were low (0.0013 mM−2), reflecting a nearly random relationship between DOC and DO concentrations. In contrast, on the island of Maui, treated sewage effluent injected into a portion of the basalt aquifer resulted in pronounced hyperbolic DOC-DO behavior and a higher RRQ (142 mM−2). RRQ values for the 73 aquifers correlated positively with mean concentrations of ammonia, dissolved iron, and manganese, and correlated negatively with mean pH. This indicates that greater RRQ values are associated with greater concentrations of the final products of microbial reduction reactions. RRQ values and DOC concentrations were negatively correlated with the thickness of the unsaturated zone (UNST) and depth to the top of the screened interval. Finally, RRQ values were positively correlated with mean annual precipitation (MAP), and the highest observed RRQ values were associated with aquifers receiving MAP rates ranging between 900 and 1300 mm/year. These results are uniformly consistent with the hypothesis that the hyperbolic behavior of DOC-DO plots, as quantified by the RRQ metric, can be an indicator of relative DOC bioavailability in groundwater systems.

  2. Geomatics for Mapping of Groundwater Potential Zones in Northern Part of the United Arab Emiratis - Sharjah City

    OpenAIRE

    Al-Ruzouq, R.; Shanableh, A.; T. Merabtene

    2015-01-01

    In United Arab Emirates (UAE) domestic water consumption has increased rapidly over the last decade. The increased demand for high-quality water, create an urgent need to evaluate the groundwater production of aquifers. The development of a reasonable model for groundwater potential is therefore crucial for future systematic developments, efficient management, and sustainable use of groundwater resources. The objective of this study is to map the groundwater potential zones in northe...

  3. Surface modelling in 3D city information system

    Directory of Open Access Journals (Sweden)

    Igor Petz

    2009-10-01

    Full Text Available Geographical information systems deal with terrain, cartographical and urban information; these systems allow gathering, maintaining and presentation of the included data. The approach of combininggeographical information systems with visualization methods of virtual reality is presented in this article. Virtual 3D City Information System is a project which purpose is to model parts of the city to 3D graphics using polygonal modelling for modelling objects by representing their surfaces using polygons. Realappearance is provided by using textures. Usually 3D exterior contains large data set of polygons. Presented system contains three parts: editor (modelling part, database and visualisation part. Thesystem is controlled by script (Python language using too. In conclusion are described some results of visualization of 3D scene that is represented as Košice city part.

  4. Modelling climate change effects on a Dutch coastal groundwater system using airborne electromagnetic measurements

    Directory of Open Access Journals (Sweden)

    M. Faneca Sànchez

    2012-12-01

    Full Text Available The forecast of climate change effects on the groundwater system in coastal areas is of key importance for policy makers. The Dutch water system has been deeply studied because of its complex system of low-lying areas, dunes, land won to the sea and dikes, but nowadays large efforts are still being done to find out the best techniques to describe complex fresh-brackish-saline groundwater dynamic systems. In this paper, we describe a methodology consisting of high-resolution airborne electromagnetic (EM measurements used in a 3-D variable-density transient groundwater model for a coastal area in the Netherlands. We used the airborne EM measurements in combination with borehole-logging data, electrical conductivity cone penetration tests and groundwater samples to create a 3-D fresh-brackish-saline groundwater distribution of the study area. The EM measurements proved to be an improvement compared to older techniques and provided quality input for the model. With the help of the built 3-D variable-density groundwater model, we removed the remaining inaccuracies of the 3-D chloride field and predicted the effects of three climate scenarios on the groundwater and surface water system. Results showed significant changes in the groundwater system, and gave direction for future water policy. Future research should provide more insight in the improvement of data collection for fresh-brackish-saline groundwater systems as it is of high importance to further improve the quality of the model.

  5. Environmental isotopes as a tool for groundwater evaluation and management in Duitama city, Colombia

    International Nuclear Information System (INIS)

    Duitama city (100.000 inhabitants) lies in a plateau of the Colombian Andean Range. Fifty per cent of water supply is abstracted from the main aquifer and accounts for more than 80% during dry seasons. As far as piezometric level is declining progressively, it is suspected that ground water abstration is greater than natural replenishment and any increment in production wells and ground water abstraction may damage ground water sources for sustainable development and management. The main aquifer of the area is a Quaternary alluvial deposit consisting of sand, gravels and conglomerates, with a thickness up to 180 m, and overlain clay deposits, with have a thickness from 20 to 60 m, in most part of the aquifer. On the west and middle part of the plain, the Quaternary lies on Cretaceous sandstone, claystone and limestone formations: towards east, on Palaeozoic claystone and sandstone formations. A hydrogeological study was carried out by means of conventional and isotopes techniques, in order to identify ground water origin and particularly to investigate present infiltration and recharge

  6. Iodine mobilization in groundwater system at Datong basin, China: Evidence from hydrochemistry and fluorescence characteristics

    International Nuclear Information System (INIS)

    Characterizing the speciation of iodine in groundwater is essential for understanding its hydrogeochemical behavior in aquifer systems. To quantify the variations in iodine speciation and assess factors controlling the distribution and transformation of iodine, 82 groundwater samples and 1 rain water were collected from the Datong basin, northern China in this study. Factor analysis (FA) and excitation emission matrix with parallel factor analysis (EEM–PARAFAC) were used to clarify the potential relationships among iodine species and other hydrochemical parameters. The iodine concentrations of groundwater range from 6.23 to 1380 μg L−1 with 47% of samples exceeding its drinking water level of 150 μg L−1 as recommended by the Chinese government. 57% of samples have ratios of iodate to total iodine greater than 60%, while iodide as the major species in 22% of the samples. Significant amounts of organic iodine with concentrations higher than 100 μg L−1 were observed in 9 groundwater samples. Redox conditions of groundwater system strongly affect iodine concentration and speciation of inorganic iodine in groundwater, and extremely reducing condition restricts the iodine release from sediments into groundwater. The results of FA show that iodine mobilization in groundwater is related to the nature of dissolved organic matter. EEM-PARAFAC model demonstrates the dominance of terrestrial DOM sources and the presence of microbial activities in groundwater system of the Datong basin. It is proposed that degradation of organic matter and reductive dissolution of iron oxyhydroxides are major hydrogeochemical processes responsible for the mobilization of iodine release and the genesis of organic iodine. - Highlights: • Iodine species in groundwater was studied from Datong basin, northern China. • Weakly alkaline environment favors the accumulation of iodine in groundwater. • Iodate is the major species of iodine in groundwater from Datong basin. • Redox

  7. Global Quick Scan of the Vulnerability of Groundwater systems to Tsunamis

    Science.gov (United States)

    Oude Essink, Gualbert; Faneca Sànchez, Marta; Zamrsky, Daniel

    2014-05-01

    Fresh groundwater resources in deltaic areas are used for domestic, agricultural and industrial purposes. These resources in the coastal zone are threatened by salinization of the aquifers due to global change (increase of groundwater extraction due to population growth), climate change (including sea level rise), as well as natural disasters such as floods and tsunamis. Studies of how the coastal fresh groundwater resources are affected by the latter phenomena are often done a posteriori, especially the studies related to tsunami effects (e.g. the 2003 Sumatra Tsunami). Then it is often too late to take appropriated measures to counteract the negative effects (e.g. on drinking water supply). These complex studies are time consuming, and need data which might not be available at the time of the disaster when a fast reaction of the water authorities is needed, e.g. to facilitate a quick and easy to access fresh water supply system. In our study we present a Global Quick Scan of the vulnerability of the deltaic fresh groundwater resources to tsunamis. We created a global database including the data needed to generate fast and simple models on the salinization of groundwater systems in the coastal zone. These quantifications give water manager a first approximation of the effects that a tsunami would have on the salinization of the fresh groundwater. The data collected in this database has been used to generate a map showing the areas with coastal groundwater systems vulnerable to tsunami effects, as well as a dataset of 500 2D models representing the physical characteristics of the most frequent coastal groundwater systems in tsunami vulnerable areas. These 2D models simulate the loss in fresh groundwater volume of the system and the characteristic time of a system before it recovers 90% of the fresh groundwater that was available previous to the tsunami event. A similar approach could be adopted for assessing the effect of sea level rise and future increased

  8. Fate of human viruses in groundwater recharge systems

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Landry, E.F.

    1980-03-01

    The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations of viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.

  9. Linking Groundwater Use and Stress to Specific Crops Using the Groundwater Footprint in the Central Valley and High Plains Aquifer Systems, U.S.

    Science.gov (United States)

    Wada, Y.; Esnault, L.; Gleeson, T.; Heinke, J.; Gerten, D.; Flanary, E.; Bierkens, M. F.; Van Beek, L. P.

    2014-12-01

    A number of aquifers worldwide are being depleted, mainly by agricultural activities, yet groundwater stress has not been explicitly linked to specific agricultural crops. Using the newly-developed concept of the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services), we develop a methodology to derive crop-specific groundwater footprints. We illustrate this method by calculating high resolution groundwater footprint estimates of crops in two heavily used aquifer systems: the Central Valley and High Plains, U.S. In both aquifer systems, hay and haylage, corn and cotton have the largest groundwater footprints, which highlights that most of the groundwater stress is induced by crops meant for cattle feed. Our results are coherent with other studies in the High Plains but suggest lower groundwater stress in the Central Valley, likely due to artificial recharge from surface water diversions which were not taken into account in previous estimates. Uncertainties of recharge and irrigation application efficiency contribute the most to the total relative uncertainty of the groundwater footprint to aquifer area ratios. Our results and methodology will be useful for hydrologists, water resource managers, and policy makers concerned with which crops are causing the well-documented groundwater stress in semiarid to arid agricultural regions around the world.

  10. Interaction between the geothermal outflow of southern Negros geothermal field and the shallow groundwater aquifer in Dumaguete City, Negros Oriental, Philippines

    International Nuclear Information System (INIS)

    minor dilution effect from precipitation. Drawdown in the deep geothermal reservoir have induced more than 500 meters of drawdown in the center of the resource but not enough to revert the naturally outflowing fluids from the Palinpinon thermal springs. Hence, there exists continuous natural migration of slightly mineralized geothermal fluids into the shallow groundwater aquifer of Dumaguete City. (author)

  11. Groundwater flow in a transboundary fault-dominated aquifer and the importance of regional modeling: the case of the city of Querétaro, Mexico

    Science.gov (United States)

    Carrera-Hernández, J. J.; Carreón-Freyre, D.; Cerca-Martínez, M.; Levresse, G.

    2016-03-01

    The city of Querétaro, located near the political boundary of the Mexican states of Querétaro and Guanajuato, relies on groundwater as it sole water supply. Groundwater extraction in the city increased from 21 × 106 m3/yr in 1970 to 104 × 106 m3/yr in 2010, with an associated drawdown of 100 m in some parts of the aquifer. A three-dimensional numerical groundwater-flow model has been developed that represents the historical evolution of the aquifer's potentiometric levels and is used to simulate the effect of two scenarios: (1) a 40 % reduction in the extraction rate from public water supply wells in early 2011 (thus reducing the extraction to 62 × 106 m3/yr), and (2) a further reduction in 2021 to 1 × 106 m3/yr. The modeling results project a temporary recovery of the potentiometric levels after the 40 % reduction of early 2011, but a return to 2010 levels by 2020. If scenario 2 is implemented in 2021, the aquifer will take nearly 30 years to recover to the simulated levels of 1995. The model also shows that the wells located in the city of Querétaro started to extract water from part of the aquifer beneath the State of Guanajuato in the late 1970s, thus showing that the administrative boundaries used in Mexico to study and develop water resources are inappropriate, and consideration should be given to physical boundaries instead. A regional approach to studying aquifers is needed in order to adequately understand groundwater flow dynamics.

  12. Groundwater-flow model and effects of projected groundwater use in the Ozark Plateaus Aquifer System in the vicinity of Greene County, Missouri - 1907-2030

    Science.gov (United States)

    Richards, Joseph M.

    2010-01-01

    Recent and historical periods of rapid growth have increased the stress on the groundwater resources in the Ozark aquifer in the Greene County, Missouri area. Historical pumpage from the Ozark aquifer has caused a cone of depression beneath Springfield, Missouri. In an effort to ease its dependence on groundwater for supply, the city of Springfield built a pipeline in 1996 to bring water from Stockton Lake to the city. Rapid population growth in the area coupled with the expanding cone of depression raised concern about the sustainability of groundwater as a resource for future use. A groundwater-flow model was developed by the U.S. Geological Survey in cooperation with Greene County, Missouri, the U. S. Army Corps of Engineers, and the Missouri Department of Natural Resources to assess the effect that increased groundwater demand is having on the long-term availability of groundwater in and around Greene County, Missouri. Three hydrogeologic units were represented in the groundwater-flow model: the Springfield Plateau aquifer, the Ozark confining unit, and the Ozark aquifer. The Springfield Plateau aquifer is less than 350 feet thick in the model area and generally is a low yield aquifer suitable only for domestic use. The Ozark aquifer is composed of a more than 900-foot thick sequence of dolomite and sandstone in the model area and is the primary aquifer throughout most of southern Missouri. Wells open to the entire thickness of the Ozark aquifer typically yield 1,000 gallons per minute or more. Between the two aquifers is the Ozark confining unit composed of as much as 98 feet of shale and limestone. Karst features such as sinkholes, springs, caves, and losing streams are present in both aquifers, but the majority of these features occur in the Springfield Plateau aquifer. The solution-enlarged fracture and bedding plane conduits in the karst system, particularly in the Springfield Plateau aquifer, are capable of moving large quantities of groundwater through

  13. Isotopic study of a deep groundwater system near the Danube-river/South Germany

    International Nuclear Information System (INIS)

    The groundwater flow regime in the jurassic karst and tertiary terrain near the Danube-river in the area of Ingolstadt/South Germany has been well discussed and investigated for years. However, a stringent explanation of the complex deep groundwater system at the meeting-point of young, karstic groundwater from the north (open karst) and old deep groundwater in the south (covered karst) is still lacking. Today, because of the increasing water use for drinking water supply in the high industrialized area of Ingolstadt, reliable hydrogeological answers and a future sustainable groundwater management system are needed. First symptoms of overexploitation are visible by hydrochemical and isotopic measurements. Coming from the actual state of hydrogeological knowledge, the use of isotope techniques provide distinct explanation for the complex genesis of the occurring groundwaters

  14. Automated Monitoring System for Waste Disposal Sites and Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Rawlinson

    2003-03-01

    A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

  15. Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands

    NARCIS (Netherlands)

    Oude Essink, Gualbert; Van Baaren, Esther S.; De Louw, Perry G.B.

    2010-01-01

    Climate change in combination with increased anthropogenic activities will affect coastal groundwater systems throughout the world. In this paper, we focus on a coastal groundwater system that is already threatened by a relatively high seawater level: the low‐lying Dutch Delta. Nearly one third of t

  16. Groundwater Level and Salinity Degradation in Farm Land through Groundwater Pumping Irrigation System in Coastal Area of Takalar Regency

    OpenAIRE

    Darwis Darwis; Rakhim Nanda; Abubakar Idha

    2014-01-01

    This study is conducted to find out correlation between released groundwater volume and groundwater level and salinity degradation as well as to find effective infiltration holes formation for groundwater augmentation. It belongs to field experimental research. This study concludes some concerns, they are: (1) Groundwater condition in farm land of coastal area in Takalar Regency has undergone salinization and groundwater salinity escalation in every groundwater release is very high. Groundwat...

  17. Applicability and methodology of determining sustainable yield in groundwater systems

    Science.gov (United States)

    Kalf, Frans R. P.; Woolley, Donald R.

    2005-03-01

    There is currently a need for a review of the definition and methodology of determining sustainable yield. The reasons are: (1) current definitions and concepts are ambiguous and non-physically based so cannot be used for quantitative application, (2) there is a need to eliminate varying interpretations and misinterpretations and provide a sound basis for application, (3) the notion that all groundwater systems either are or can be made to be sustainable is invalid, (4) often there are an excessive number of factors bound up in the definition that are not easily quantifiable, (5) there is often confusion between production facility optimal yield and basin sustainable yield, (6) in many semi-arid and arid environments groundwater systems cannot be sensibly developed using a sustained yield policy particularly where ecological constraints are applied. Derivation of sustainable yield using conservation of mass principles leads to expressions for basin sustainable, partial (non-sustainable) mining and total (non-sustainable) mining yields that can be readily determined using numerical modelling methods and selected on the basis of applied constraints. For some cases there has to be recognition that the groundwater resource is not renewable and its use cannot therefore be sustainable. In these cases, its destiny should be the best equitable use. factores ligados a la definición de producción sostenible los cuales no son fácil de cuantificar, (5) frecuentemente existe confusión entre la producción optima de un establecimiento y la producción sostenible de unacuenca, (6) en muchos ambientes áridos a semi-áridos los sistemas de aguas subterráneas no pueden desarrollarse sensiblemente en base a una política de producción sostenible particularmente donde se aplican restricciones ecológicas. La derivación de producción sostenible utilizando principios de conservación de masa conduce a expresiones para producciones sostenibles en cuenca, minado parcial (no

  18. Spatio-temporal impact of climate change on the groundwater system

    OpenAIRE

    J. Dams; Salvadore, E.; T. Van Daele; V. Ntegeka; Willems, P; Batelaan, O.

    2012-01-01

    Given the importance of groundwater for food production and drinking water supply, but also for the survival of groundwater dependent terrestrial ecosystems (GWDTEs) it is essential to assess the impact of climate change on this freshwater resource. In this paper we study with high temporal and spatial resolution the impact of 28 climate change scenarios on the groundwater system of a lowland catchment in Belgium. Our results show for the scenario period 2070–2101 compared w...

  19. Relation of streams, lakes, and wetlands to groundwater flow systems

    Science.gov (United States)

    Winter, Thomas C.

    Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Résumé Les eaux de surface sont parties intégrantes des systèmes aquifères. Les eaux souterraines interagissent avec les eaux de surface dans presque tous les types d'environnements, depuis les petits ruisseaux, les lacs et les zones humides jusqu'aux bassins versants des vallées des grands fleuves et aux lignes de côte. Il est en général admis que les zones topographiquement hautes sont des lieux de recharge des aquifères et les zones basses des lieux de décharge, ce qui est le cas des grands systèmes aquifères régionaux. La superposition de systèmes locaux, associés à des eaux de surface, à l'organisation régionale d'écoulements souterrains résulte d'interactions complexes entre les eaux souterraines et les eaux de surface dans tous les environnements, quelle que soit la situation topographique régionale. Les processus

  20. Mapping Submarine Groundwater Discharge Using Radon and Geographic Information Systems

    Science.gov (United States)

    Grant, C. M.; Rapaglia, J. P.

    2013-05-01

    Fresh submarine groundwater discharge (SGD), which is likely the fraction of SGD most important for nutrient flux into the coastal zone, is driven by terrestrial hydraulic gradients. It is, therefore, logical to utilize this information in the search for SGD. The increased precision of digital elevation models (DEM) combined with the utility of geographic information systems (GIS) enables the researcher to pinpoint flow accumulation. ArcGIS 10 was used to find and quantify flow accumulation in Port Jefferson Harbor, NY and the Niantic River, CT. Both Port Jefferson and the Niantic are of similar geology being formed by glacial moraines marked by high hydraulic conductivity. In Port Jefferson, high flow was found in the southwestern and southeastern corners of the harbor. Here folds in land elevation focused water into the corners of the harbor. In the Niantic River flow accumulation was determined near anomalously high pockets of Nitrate-Nitrogen found previous to this study. Meanwhile, although radon has been used extensively as a tracer for SGD, few studies have used radon to map it. Radon was used to investigate groundwater seepage in both locations. An in-air radon monitor, RAD7, modified with a RAD Aqua, was used in a closed loop system to detect continuous Rn levels while steaming along the coastline. It was found that in areas with high flow accumulation as determined by the GIS analysis, Rn levels were similarly elevated (636 Bq/m3). This work complements research undertaken in the Baltic Sea, Germany, although the relatively smaller spatial scale of this study was, perhaps, more useful in matching radon activities and flow accumulation. While it may not be financially or logistically sensible to do extensive radon studies, this method of mapping fresh SGD may help researchers find the preverbal needle in a haystack.

  1. A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating

    Science.gov (United States)

    Han, Liang-Feng; Plummer, L. Niel; Aggarwal, Pradeep

    2012-01-01

    A graphical method is described for identifying geochemical reactions needed in the interpretation of radiocarbon age in groundwater systems. Graphs are constructed by plotting the measured 14C, δ13C, and concentration of dissolved inorganic carbon and are interpreted according to specific criteria to recognize water samples that are consistent with a wide range of processes, including geochemical reactions, carbon isotopic exchange, 14C decay, and mixing of waters. The graphs are used to provide a qualitative estimate of radiocarbon age, to deduce the hydrochemical complexity of a groundwater system, and to compare samples from different groundwater systems. Graphs of chemical and isotopic data from a series of previously-published groundwater studies are used to demonstrate the utility of the approach. Ultimately, the information derived from the graphs is used to improve geochemical models for adjustment of radiocarbon ages in groundwater systems.

  2. Development of sewage system for mega-city Karachi

    International Nuclear Information System (INIS)

    The growth of mega-cities in recent times has brought to the fore a large number of issues with respect environmental conditions such as development of slum areas, poor localities, solid waste disposal, management of sewage system, lack of open spaces and health facilities. One of the major issues effecting environment proper disposal of sewage and development of sewage system including recycling of sewage water and its use. The heavy pressure of population calls for adequate provision of sewage disposal in the new areas and remodeling of systems in the old areas of the cities to ensure a pollution-free environment. Recycling of sewage and prevention of sewage discharge into natural water channels and the sea has to be undertaken on urgent bases. The paper seeks to outline the present status of sewage system of the city of Karachi, the problems involved and the proposals for management and development of the system compatible with the need and requirement of mega-city population. (author)

  3. Geothermal energy systems plan for Boise City

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This is a plan for development of a downtown Boise geothermal district space heating system incorporating legal, engineering, organizational, geological, and economic requirements. Topics covered include: resource characteristics, system design and feasibility, economic feasibility, legal overview, organizational alternatives, and conservation. Included in appendices are: property ownership patterns on the Boise Front, existing hot well data, legal briefs, environmental data, decision point communications, typical building heating system retrofit schematics, and background assumptions and data for cost summary. (MHR)

  4. Assessment of Sustainable Development System in Suihua City, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sustainable development is a complex and systemic issue. It is essential to study it by the component analysis method from the view of system science. The urban developmental sustainability is one of focuses that people has paid more attention to, however, little common understanding how to measure and evaluate the sustainability has been gotten. In this paper, a framework is designed to evaluate the developmental sustainability of Suihua City, Heilongjiang Province in China from the aspects of economy, society, population, resources and environment. We adopt the Principal Components Analysis (PCA) to decrease dimensions and simplify the original indexes into 12 indexes. Also, the hierarchy and comprehensive multiple-criterion evaluative methods are employed to assess the sustainable development system in Suihua City. Then, the weights of indexes are attained by Analytic Hierarchy Process (AHP) method.Furthermore, urban comprehensive development level, developmental sustainability, coordinate degree are calculated and analyzed. By analyzing, we know the fluctuation of development level of subsystem, especially resources and environment subsystem, is acute. The comprehensive development level of sustainable development system in Suihua has been on the rise since 1999. That results from the effect of traditional economic development mode with high energy-consumed being decreased in the city after 1999. At the same time, it is obvious that there was an instability of development level in Suihua City during 1990-2002, with a turn in 1998, and the development could be sustainable,the status trend was more harmonious in 1999-2002.

  5. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale

    Science.gov (United States)

    Haaf, Ezra; Barthel, Roland

    2015-04-01

    Conducting groundwater modelling and resource analysis on the regional scale is often complicated by the scarcity and uneven distribution of observations over space and time, the uncertainty of structures, inputs and processes as well as the inherent heterogeneity and variability of hydrogeological conditions. In order to improve modelling and prediction of poorly-observed groundwater systems, information could be transferred from similar, but more well-explored and better understood systems analogous to PUB (Prediction in ungauged catchments). To achieve this, the overarching goal of this study is to develop an approach to statistically extract relevant information on structure and state from observed and well characterized locations in order to derive a classification scheme of functionally similar groups. At the core of the approach will be the classification of (i) static hydrogeological characteristics (such as aquifer geometry and hydraulic properties) (ii) dynamic changes of the boundary conditions (such as recharge) and (iii) dynamic groundwater system responses (groundwater head and chemical parameters) as well as the systematic use of the dependencies of system responses on explanatory factors. With a classification framework in place, insight can be gained into the behavior of less well-observed groundwater systems and underlying processes can be better understood. Furthermore, it is expected that regional conceptual models can be checked without the need of numerical groundwater models as well as that missing values in time series can be filled. Apart from illustrating the general approach and the main ideas of groundwater systems classification, we show a number of promising methods that can be used to establish a classification framework for groundwater systems assessment. The focus at the current stage is on finding relevant statistical methods that can be used for identifying and quantifying similarities/dissimilarities of groundwater hydrographs

  6. Salt Water Intrusion in a Three-dimensional Groundwater System in The Netherlands: a Numerical Study

    NARCIS (Netherlands)

    Oude Essink, Gualbert

    2001-01-01

    Salt water intrusion is investigated in a coastal groundwater system in the northern part of the province Noord-Holland, The Netherlands. Density dependent groundwater flow is modeled in three-dimensions withMOCDENS3D. This computer code is a version of MOC3D (Konikow et al., 1996) that has been ada

  7. Groundwater impact on geothermal systems; Impacto del agua subterranea en los sistemas geotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Katzenbach, R.; Wagner, I. M.

    2009-07-01

    Thermal behavior of geothermal systems is influenced by the presence and the velocity of the groundwater. The impact has to be accounted for during the dimensioning as well as during the construction. it is shown that the impact on the interference with neigh bored installation has to be controlled, especially in case of groundwater flow. (Author) 9 refs.

  8. Tracking reactive pollutants in large groundwater systems by particle-based simulations

    Science.gov (United States)

    Kalbacher, T.; Sun, Y.; He, W.; Jang, E.; Delfs, J.; Shao, H.; Park, C.; Kolditz, O.

    2013-12-01

    Worldwide, great amounts of human and financial resources are being invested to protect and secure clean water resources. Especially in arid and semi-arid regions civilization depends on the availability of freshwater from the underlying aquifer systems where water quality and quantity are often dramatically deteriorating. Main reasons for the mitigation of water quality are extensive fertilizer use in agriculture and waste water from cities and various industries. It may be assumed that climate and demographic changes will add further stress to this situation in the future. One way to assess water quality is to model the coupled groundwater and chemical system, e.g.to assess the impact of possible contaminant precipitation, absorption and migration in subsurface media. Currently, simulating such scenarios at large scales is a challenging task due to the extreme computational load, numerical stability issues, scale-dependencies and spatially and temporally infrequently distributed or missing data, which can lead e.g. to in appropriate model simplifications and additionally uncertainties in the results. The simulation of advective-dispersive mass transport is usually solved by standard finite differences, finite element or finite volume methods. Particle tracking is an alternative method and commonly used e.g. to delineate contaminant travel times, with the advantage of being numerically more stable and computational less expensive. Since particle tracking is used to evaluate groundwater residence times, it seems natural and straightforward to include reactive processes to track geochemical changes as well. The main focus of the study is the evaluation of reactive transport processes at large scales. Therefore, a number of new methods have been developed and implemented into the OpenGeoSys project, which is a scientific, FEM-based, open source code for numerical simulation of thermo-hydro-mechanical-chemical processes in porous and fractured media (www

  9. Numerical modeling of geothermal groundwater flow in karst aquifer system in eastern Weibei, Shaanxi Province, China

    Institute of Scientific and Technical Information of China (English)

    LI Ming; LI GuoMin; YANG Liao; DANG XueYa; ZHAO ChunHu; HOU GuangCai; ZHANG MaoSheng

    2007-01-01

    The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei,Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.

  10. Onsite Wastewater System Nitrogen Contributions to Groundwater in Coastal North Carolina

    Science.gov (United States)

    Humphrey, C.P.; O’Driscoll, M.A.; Deal, N.E.; Lindbo, D.L.; Thieme, S.C.; Zarate-Bermudez, M.A.

    2016-01-01

    The objective of the study described in this article was to evaluate the nitrogen contributions from two onsite wastewater systems (sites 1 and 2) to groundwater and adjacent surface waters in coastal Beaufort County, North Carolina. Groundwater levels and water quality parameters including total nitrogen, nitrogen species, temperature, and pH were monitored from October 2009 to May 2010. Nitrogen was also tested in groundwater from deeper irrigation or drinking water wells from the two sites and six additional neighboring residences. Mean total nitrogen concentrations in groundwater beneath onsite wastewater systems 1 and 2 were 34.3 ± 16.7 mg/L and 12.2 ± 2.9 mg/L, respectively, and significantly higher than background groundwater concentrations (Groundwater in the deeper wells appeared not to be influenced by the onsite systems. Groundwater nitrogen concentrations typically decreased with distance down-gradient from the systems, but were still elevated relative to background conditions more than 15 m from the systems and near the estuary. This was a pioneering effort to better understand the link of onsite systems, the fate of nitrogen in the environment, and public health. PMID:24437045

  11. Groundwater Pollution Characteristics and Hydrochemical Properties of Typical Plain River-net Area in Lower Yangtze River Delta, China: A Case Study in Suzhou City

    Science.gov (United States)

    Zhu, X.; Ruan, X.; Sun, H.; Pan, Z.

    2011-12-01

    Due to anthropogenic activities, tidal river water retention and other geological factors, groundwater quality in plain river-net area is vulnerable to pollution. Detailed chemical analysis results of 49 groundwater samples were carried out to identify groundwater pollution characteristics, hydrochemical properties and to assess groundwater quality and usability in Suzhou City, a typical plain area in Lower Yangtze River Delta, China. In order to protect, utilize and manage groundwater resources effectively, it is necessary to recognize the dominant processes responsible for hydrogeochemistry, groundwater pollution threats in study area. The results revealed ammonia concentration in confined and shallow groundwater ranges from 0.02 to 6.78 mg/L, 0.04 to 3.17 mg/L, respectively. Nitrite concentrations range from 0.004 to 1.01 mg/L, 0.004 to 3.66 mg/L, respectively. Iron concentrations range from 0.006 to 16.9 mg/L, 0.02 to 7.88 mg/L, respectively. Manganese concentrations range from 0.003 to 1.04 mg/L, 0.06 to 0.58 mg/L, respectively. On the basis of analytical results and water quality standards, majority of groundwater samples are not suitable for drinking, domestic as well as for industrial uses directly. Toxic metals and high levels ions should be removed if groundwater is supplied for different purposes. Salinity, sodium adsorption ratio, residual sodium carbonate and sodium percentage values revealed that most of groundwater samples are suitable for irrigation purposes except only a few. The salinity hazard of study area is regarded as low to medium, and special management for salinity control is required in scattered regions. Results of suitability for industrial purposes according to calculated Langeliar saturation index and Larson Ratio showed that majority of samples are calcium carbonate depositing, whereas a few are calcium carbonate dissolving in nature. Results show that sodium, calcium and bicarbonate are the dominant ions of groundwater. Na-HCO3

  12. Hydrochemistry of the groundwater flow systems in the Harwell region

    International Nuclear Information System (INIS)

    A comprehensive range of geochemical and isotopic parameters were analysed in the groundwater samples taken from the high permeability formations in the Harwell region. These analyses were undertaken as part of a hydro-chemical validation of groundwater circulation patterns derived from potentiometric data. Hydro-chemical investigations were concentrated upon the Corallian and Great Oolite formations since these respectively overlie and underlie the Oxford Clay. (author)

  13. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain....

  14. The use of isotope based modelling techniques for groundwater management in a quaternary aquifer system

    International Nuclear Information System (INIS)

    The investigation area (the Singen basin) is situated near the northwestern border of Lake Constance in southern Germany. It consists of a multilayered, porous aquifer system in Quaternary sediments with hydraulic contact to an underlying karst aquifer system. The system is an important resource for drinking water. Because the surface is mainly covered by industrial and urban areas, the quantity and quality of groundwater have been affected by anthropogenic contaminant inputs for several decades. The groundwater system has been greatly overexploited for more than ten years. As a result, persistent contaminants have been transported even into deep parts of the aquifer system. Within the project described in the paper, various isotope techniques in combination with hydrochemical studies were used for identification and determination of the groundwater budget and for detailing contaminant components. These techniques also helped to detect affected groundwater quality as a result of groundwater exploitation and gave information about the present and former dynamics for the flow system. In the aquifers studied, the spatial age distribution of groundwater, derived from tritium and krypton-85 results, made it possible to identify the complex leakage flux from the karst aquifer as a major part of the budget and the main reason for actual quality. A three dimensional numerical groundwater flow model has been created to support groundwater management. The isotope and hydrochemical studies provided essential knowledge about the circulation system, serving as a basis for the definition of model boundary conditions and model calibration. On the basis of the well known budget and contamination situation, the model is used for sustainable discharge management and for risk assessment in industrial and urban development areas at the surface. Model based groundwater management concepts will still require field monitoring, including isotope and hydrochemical studies. (author)

  15. Quantifying the Response Time of a Lake–Groundwater Interacting System to Climatic Perturbation

    OpenAIRE

    Yicheng Gong; Ganming Liu; Schwartz, Franklin W.

    2015-01-01

    Response time, describing how quickly a disturbed system would reach a new equilibrium, has been helpful to hydrogeologists in characterizing and understanding the hydrogeological systems. This study examined the complex response times associated with lake–groundwater perturbed by climate. Simulated hydraulic heads and lake stage values derived from a 3-D, MODFLOW-based model were used to calculate the response times for a closed, groundwater-fed lake system. Although obviously coupled, the r...

  16. Integrating Numerical Groundwater Modeling Results With Geographic Information Systems

    Science.gov (United States)

    Witkowski, M. S.; Robinson, B. A.; Linger, S. P.

    2001-12-01

    Many different types of data are used to create numerical models of flow and transport of groundwater in the vadose zone. Results from water balance studies, infiltration models, hydrologic properties, and digital elevation models (DEMs) are examples of such data. Because input data comes in a variety of formats, for consistency the data need to be assembled in a coherent fashion on a single platform. Through the use of a geographic information system (GIS), all data sources can effectively be integrated on one platform to store, retrieve, query, and display data. In our vadoze zone modeling studies in support of Los Alamos National Laboratory's Environmental Restoration Project, we employ a GIS comprised of a Raid storage device, an Oracle database, ESRI's spatial database engine (SDE), ArcView GIS, and custom GIS tools for three-dimensional (3D) analysis. We store traditional GIS data, such as, contours, historical building footprints, and study area locations, as points, lines, and polygons with attributes. Numerical flow and transport model results from the Finite Element Heat and Mass Transfer Code (FEHM) are stored as points with attributes, such as fluid saturation, or pressure, or contaminant concentration at a given location. We overlay traditional types of GIS data with numerical model results, thereby allowing us to better build conceptual models and perform spatial analyses. We have also developed specialized analysis tools to assist in the data and model analysis process. This approach provides an integrated framework for performing tasks such as comparing the model to data and understanding the relationship of model predictions to existing contaminant source locations and water supply wells. Our process of integrating GIS and numerical modeling results allows us to answer a wide variety of questions about our conceptual model design: - Which set of locations should be identified as contaminant sources based on known historical building operations

  17. Sustainable groundwater management system based on the regional hydrological cycle in the warm humid country, Japan

    Science.gov (United States)

    Shimada, J.; Crest Kumamoto Groundwater Team

    2011-12-01

    The increase of precipitation variability with the global warming and the rapid population growth lead to the shortage of water resources on a global scale. Groundwater bocome attracted as a relatively stable water resource because of its larger reservoir and a longer residence time. As our country belongs to a warm humid climate with much precipitation and a steep topography, the regional hydrological cycle is extremely active. Surface water could be taken easily and was often used to a water supply until now, but recently groundwater is taking the place of surface water because of the stability of water supply. While in our hydro-climatic condition, the sustainable use of groundwater is possible under the appropriative management, that is, groundwater pumping rate does not exceed the recharge rate in a basin. For the sustainable use of groundwater resources, this project aims to develop new technologies relating to the quantity and quality aspects of groundwater resources. For the precise understanding of groundwater flow system, new technologies will be developed, like frequency changeable electric resistivity exploration method to evaluate an aquifer structure. There are many problems about groundwater quality including nitrate-nitrogen contamination and toxic substances from the domestic and industrial waste disposals. It is necessary to understand the production mechanism to prevent groundwater contamination and the degradation process of nitrate-nitrogen contamination to improve the water quality. Therefore this project will develop new technologies including the reduction of NO3=N and natural toxic substances loads before groundwater recharge, the on-site removal of contaminants from aquifers, and simple and effective equipment to improve groundwater quality after pumping. Furthermore, this project will also develop a new biological monitoring technique for local groundwater users to notice the contamination at a glance; change colar fish by specific ion

  18. Isotopic study of the effect of Tarbela reservoir on the groundwater system in the downstream areas

    International Nuclear Information System (INIS)

    Isotopic studies were carried out on the right side of river Indus, downstream of Tarbela dam to study the effect of Tarbela Reservoir on the groundwater system. The main objectives of the study were to determine the hydraulic connection, if any, between the Tarbela Lake and the groundwater appearing in the ponds near Gadon Amazai, see the effect of Tarbela dam on the groundwater system in the downstream areas, compute the relative contribution of different recharge sources towards groundwater system and to estimate residence time of groundwater in the area. Isotopic data reveals that the ponds near Gadoon Amazai area are being recharged by local rains and there is no contribution of Tarbela lake. The area around Gadoon Amazai, Topi and Kalabat is solely recharged by local rains while the area around Swabi, Zaida and Lahor has mixed recharge with major contribution from local canal system. Tritium data suggests that the residence time of groundwater in the study area varies from a few years to 30 years. Te groundwater in the area has low dissolved salt contents and is, generally, of good quality. (author) 19 figs

  19. Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China

    Science.gov (United States)

    Wang, Shiqin; Shao, Jingli; Song, Xianfang; Zhang, Yongbo; Huo, Zhibin; Zhou, Xiaoyuan

    2008-10-01

    MODFLOW is a groundwater modeling program. It can be compiled and remedied according to the practical applications. Because of its structure and fixed data format, MODFLOW can be integrated with Geographic Information Systems (GIS) technology for water resource management. The North China Plain (NCP), which is the politic, economic and cultural center of China, is facing with water resources shortage and water pollution. Groundwater is the main water resource for industrial, agricultural and domestic usage. It is necessary to evaluate the groundwater resources of the NCP as an entire aquifer system. With the development of computer and internet information technology it is also necessary to integrate the groundwater model with the GIS technology. Because the geological and hydrogeological data in the NCP was mainly in MAPGIS format, the powerful function of GIS of disposing of and analyzing spatial data and computer languages such as Visual C and Visual Basic were used to define the relationship between the original data and model data. After analyzing the geological and hydrogeological conditions of the NCP, the groundwater flow numerical simulation modeling was constructed with MODFLOW. On the basis of GIS, a dynamic evaluation system for groundwater resources under the internet circumstance was completed. During the process of constructing the groundwater model, a water budget was analyzed, which showed a negative budget in the NCP. The simulation period was from 1 January 2002 to 31 December 2003. During this period, the total recharge of the groundwater system was 49,374 × 106 m3 and the total discharge was 56,530 × 106 m3 the budget deficit was -7,156 × 106 m3. In this integrated system, the original data including graphs and attribution data could be stored in the database. When the process of evaluating and predicting groundwater flow was started, these data were transformed into files that the core program of MODFLOW could read. The calculated water

  20. Temporal and spatial variation of hardness and total dissolved solids concentration in drinking water resources of Ilam City using Geographic Information System

    OpenAIRE

    Zabihollah Yousefi; Reza Ali Mohammadpour Tahmtan; Farzad Kazemi

    2015-01-01

    Background: In recent times, the decreasing groundwater reserves due to over-consumption of water resources and the unprecedented reduction of precipitation, during the past 1 decades, have resulted in a change in the volume and quality of water with time. The aim of this study was to determine the spatial and temporal variations of hardness and total dissolved solids in drinking water resources of Ilam city, using the GIS system. Methods: This cross-sectional study was carried out on 20 s...

  1. Interaction between groundwater and surface water in a coastal wetlands system in South Western Australia

    International Nuclear Information System (INIS)

    The Lake Warden wetlands system is located in Esperance, in South Western Australia and is formed within a basement rock depression. The wetlands system is connected to a certain extent to local and regional groundwater flow systems. As part of a larger investigation into the hydraulics of the wetlands system, temporal and spatial variations of the isotopic and chemical composition of water bodies within the system were investigated. Lake Warden is the largest surface water feature in the system, and is hypersaline In contrast, samples from Lake Warden itself are the most enriched in heavy isotopes. The data points representing the coastal plain and the inland groundwaters are close to the mean composition of the winter depleted precipitation and lie slightly below the LMWL. This may indicate that the groundwater is recharged by depleted winter precipitation which has been modified by some degree of evaporation during or prior to recharge. Seepage and creek water compositions show some enrichment with respect to inland groundwater, suggesting groundwater discharge into the creeks followed by evaporation. Winter lake samples evidence the highest degree of evaporation, with Lake Warden being the most enriched. The weekly isotopic results show that the enrichment in Lake Warden approaches a deuterium value before reversing as the salinity increases in the lake. The evaporation trend observed in the creeks and lakes is confirmed by the deuterium versus chloride relationship. The isotopic composition of groundwater beneath the wetland system has an intermediate composition between the inland and coastal groundwaters, lake and precipitation end members while the salinity is much higher. This suggests mixing between all endmembers accompanied with dissolution of salts. The preliminary findings demonstrate that the lakes in the wetland system are connected in some manner and dominated by groundwater discharge. These data also form the basis of a hydrologic budget of Lake

  2. Evapotranspiration Units for the Diamond Valley Flow System Groundwater Discharge Area, Central Nevada, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central...

  3. Hydrogeologic map of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset represents the surface hydrogeology of an approximately 45,000 square-kilometer area of the Death Valley regional ground-water flow system...

  4. Net infiltration of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Recharge in the Death Valley regional ground-water flow system (DVRFS) was estimated from net infiltration simulated by Hevesi and others (2003) using a...

  5. Groundwater Discharge Area for the Diamond Valley Flow System, Central Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central...

  6. Water Well Locations - MO 2010 Public Water System Wells 20 Year Groundwater Distance (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This shapefile represents the estimated distance groundwater around some public water system (PWS) wells will travel in a twenty-year period. See process description.

  7. Study area boundary for the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the Death Valley regional ground-water flow system (DVRFS) study area which encompasses approximately 100,000-square kilometers in...

  8. Iodine mobilization in groundwater system at Datong basin, China: Evidence from hydrochemistry and fluorescence characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Guo, Wei; Xie, Xianjun; Zhang, Liping; Liu, Yaqing; Kong, Shuqiong

    2014-01-01

    Characterizing the speciation of iodine in groundwater is essential for understanding its hydrogeochemical behavior in aquifer systems. To quantify the variations in iodine speciation and assess factors controlling the distribution and transformation of iodine, 82 groundwater samples and 1 rain water were collected from the Datong basin, northern China in this study. Factor analysis (FA) and excitation emission matrix with parallel factor analysis (EEM–PARAFAC) were used to clarify the potential relationships among iodine species and other hydrochemical parameters. The iodine concentrations of groundwater range from 6.23 to 1380 μg L{sup −1} with 47% of samples exceeding its drinking water level of 150 μg L{sup −1} as recommended by the Chinese government. 57% of samples have ratios of iodate to total iodine greater than 60%, while iodide as the major species in 22% of the samples. Significant amounts of organic iodine with concentrations higher than 100 μg L{sup −1} were observed in 9 groundwater samples. Redox conditions of groundwater system strongly affect iodine concentration and speciation of inorganic iodine in groundwater, and extremely reducing condition restricts the iodine release from sediments into groundwater. The results of FA show that iodine mobilization in groundwater is related to the nature of dissolved organic matter. EEM-PARAFAC model demonstrates the dominance of terrestrial DOM sources and the presence of microbial activities in groundwater system of the Datong basin. It is proposed that degradation of organic matter and reductive dissolution of iron oxyhydroxides are major hydrogeochemical processes responsible for the mobilization of iodine release and the genesis of organic iodine. - Highlights: • Iodine species in groundwater was studied from Datong basin, northern China. • Weakly alkaline environment favors the accumulation of iodine in groundwater. • Iodate is the major species of iodine in groundwater from Datong

  9. Heuksalim City Farming System and Native Seed Preservation Movement

    OpenAIRE

    Lee, Tae Geun

    2014-01-01

    Heuksalim is one of the leading organic agriculture associations in South Korea. It does research, training, seed preservation, certification, international cooperation work and carries out many urban agriculture projects in South Korea. Heuksalim has set up urban gardens in the cities and schools using traditional seeds and an innovative food wastes management system to train the publis and school children on the velue of organic agriculture, safe food and the value of food sufficiency.

  10. Transport of reactive carriers and contaminants in groundwater systems : a dynamic competitive happening

    OpenAIRE

    Weerd, van, J.

    2000-01-01

    Transport of contaminants constitutes a potential threat for public health and ecosystems. One of the potential pathways for contaminant transport in groundwater systems is transport adsorbed to carriers (colloidal particles, large molecules). Figure 1 shows a detail of a groundwater system with carriers and contaminants. In this thesis adsorption and transport models for carriers and contaminants are developed and applied in order to increase the understanding of the behavior of carriers and...

  11. Gods of the City? Reflecting on City Building Games as an Early Introduction to Urban Systems

    Science.gov (United States)

    Bereitschaft, Bradley

    2016-01-01

    For millions of gamers and students alike, city building games (CBGs) like SimCity and the more recent Cities: Skylines present a compelling initial introduction to the world of urban planning and development. As such, these games have great potential to shape players' understanding and expectations of real urban patterns and processes. In this…

  12. Designing groundwater visualization interfaces

    OpenAIRE

    Médard De Chardon, Cyrille

    2009-01-01

    Groundwater systems are inherently complex owing to their three-dimensional nature. The impacts of land use activities on groundwater quality and quantity, groundwater pumping, and the interaction of groundwater with surface waters are fundamental hydrogeologic concepts that require effective communication strategies. Using interactive visual interfaces may improve upon current educational techniques and encourage increased public participation in groundwater protection, conservation, and man...

  13. Development of Groundwater Modeling Support System Based on Service-Oriented Architecture

    Science.gov (United States)

    WANG, Y.; Tsai, J. P.; Hsiao, C. T.; Chang, L. C.

    2014-12-01

    Groundwater simulation has become an essential step on the groundwater resources management and assessment. There are many stand-alone pre and post processing software packages to alleviate the model simulation loading, but the stand-alone software do not consider centralized management of data and simulation results neither do they provide network sharing function. The model buildings are still implemented independently case to case when using these packages. Hence, it is difficult to share and reuse the data and knowledge (simulation cases) systematically within or across companies. Therefore, this study develops a centralized and network based groundwater model developing system to assist model simulation. The system is based on service-oriented architecture and allows remote user to develop their modeling cases on internet. The data and cases (knowledge) are thus easy to manage centralized. MODFLOW is the modeling engine of the system, which is the most popular groundwater model in the world. Other functions include the database management and variety of model developing assisted web services including auto digitalizing of geology profile map、groundwater missing data recovery assisting、graphic data demonstration and auto generation of MODFLOW input files from database that is the most important function of the system. Since the system architecture is service-oriented, it is scalable and flexible. The system can be easily extended to include the scenarios analysis and knowledge management to facilitate the reuse of groundwater modeling knowledge.

  14. Complex groundwater flow systems as traveling agent models

    CERN Document Server

    López-Corona, Oliver; Escolero, Oscar; González, Tomás; Morales-Casique, Eric

    2014-01-01

    Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits a complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow.

  15. Complex groundwater flow systems as traveling agent models

    Directory of Open Access Journals (Sweden)

    Oliver López Corona

    2014-10-01

    Full Text Available Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow.

  16. Screening Assessment of Radionuclide Migration in Groundwater from the “Dneprovskoe” Tailings Impoundment (Dneprodzerzhynsk City) and Evaluation of Remedial Options

    International Nuclear Information System (INIS)

    The paper presents results of mathematical modeling of the hydrogeological conditions at the “Dneprovskoe” (“D”) tailings impoundment –object of the former industrial association of “Pridneprovsky Chemical Plant”, which contains uranium ore processing wastes. This radioactively polluted site is located in a densely populated region (at the outskirts of Dneprodzerginsk City) near the major watercourse of the Ukraine — Dnieper River.The mathematical modeling utilized Visual Modflow (for groundwater flow) and Ecolego (Facilia AB, Sweden) radioecology modeling software (for radionuclide transport).Modeling results indicate the possibility of essential radioactive contamination in future of the phreatic aquifer in alluvial deposits between the “D” tailings and the Dnieper River (mainly due to migration of uranium). Therefore long-term management strategies should preclude water usage from the aquifer in the zone of the in-fluence of the “D” tailings. Filtration discharge of uranium to the Dnepr River does not represent a significant risk due to large dilution by surface waters. The important modeling conclusion is that besides the uranium ore processing wastes inside the tailings, the major source of radionuclide migration to groundwater is represented by contaminated geological deposits below the tailings. This last source was formed due to leakage of wastewaters during the operational period of the “D” tailings (1954–1968). Therefore an exemption and re-disposal of wastes from the “D” tailings to a more safe storage location (proposed by some remedial plans) will not provide significant benefit from the viewpoint of minimizing of radionuclide transport to the groundwater and Dnieper River (especially in short-and medium-term perspective). The rational remedial strategy for the “D” tailings is conservation of tailing wastes in-situ by means of specially designed “zero flux” soil screen, which would minimize infiltration of

  17. Groundwater arsenic content in Raigon Aquifer System (San Jose, Uruguay)

    International Nuclear Information System (INIS)

    As a Medical Geology research issue, an environmental arsenic risk assessment study in the most important sedimentary aquifer in southern Uruguay is presented. The Raigon Aquifer System is the most exploited in Uruguay. It has a surface extent of about 1,800 square kilometres and 10,000 inhabitants in San Jose Department, where it was studied. Agriculture and cattle breeding are the main economic activities and this aquifer is the basic support. The groundwater sampling was done on 37 water samples of PRENADER (Natural Resources Management and Irrigation Development Program) wells. Outcropping sediments of Raigon Formation and the overlying Libertad Formation were also sampled in the Kiyu region. The analyses were performed by inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS). The results showed 80% samples with arsenic levels exceeding the 10 μg/l of WHO as limit for waters, and 11% exceeds the 20 μg/l limit of uruguayan regulation. The median, maximum and minimum water arsenic concentrations determined have been 14.24, 24.19 and 1.44 μg/l, respectively. On the other hand, nine sediment samples of Raigon and Libertad Formations in Kiyu region were analysed and yielded median, maximum and minimum arsenic concentrations of 5.03, 9.82 and 1.18 ppm, respectively. This issue leads to the supposition that the population, as well as industrial and agricultural activities, are consuming water with arsenic concentrations over the national and international maximum recommended limit.

  18. A combined-water-system approach for tackling water scarcity: application to the Permilovo groundwater basin, Russia

    Science.gov (United States)

    Filimonova, Elena A.; Baldenkov, Mikhail G.

    2016-03-01

    The suitability of a combined water system (CWS) is assessed for meeting drinking-water demand for the city of Arkhangelsk (northwestern Russian Federation), instead of using the polluted surface water of the Northern Dvina River. An appropriate aquifer system (Permilovo groundwater basin) was found and explored in the 1980s, and there were plans then to operate an abstraction scheme using traditional pumping methods. However, the 1980s planned water system was abandoned due to projected impermissible stream depletion such that complete interception of the cone of depression with the riverbed would cause the riverbed to become dry. The design of a CWS is now offered as an approach to addressing this environmental problem. Several sets of major pumping wells associated with the CWS are located on the banks of Vaymuga River and induce infiltration from the stream. The deficiency of the stream flow in dry seasons is compensated for by pumping from aquifer storage. A numerical model was constructed using MODFLOW-2000. The results of the simulation showed the efficiency of the compensation pumping. The streamflow depletion caused by the CWS is equal to the minimum permissible stream flow and is lower than the depletion projected by the abandoned plan. Application of the CWS in the Permilovo groundwater basin makes it possible to meet water demands during water-limited periods and to avoid environmental problems.

  19. Improvement Possibilities of City Transportation System by Using PINAVIA Interchange

    Directory of Open Access Journals (Sweden)

    Aušrius Juozapavičius

    2010-10-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The article analyzes transportation system problems of a common city by taking an example of Vilnius city and reveals drawbacks of street infrastructure and traffic organization which are responsible for traffic congestion and its consequences in many cities including Vilnius. A new high capacity Pinavia road interchange is presented. Mathematical model of the new interchange is described enabling transport specialists to optimize and adapt it to a given location. Unique features of the new Pinavia interchange are used to develop an improvement strategy of a city transportation system.

  20. Hanford Site ground-water model: Geographic information system linkages and model enhancements, FY 1993

    International Nuclear Information System (INIS)

    Models of the unconfined aquifer are important tools that are used to (1) identify and quantify existing, emerging, or potential ground-water quality problems, (2) predict changes in ground-water flow and contaminant transport as waste-water discharge operations change, and (3) assess the potential for contaminants to migrate from the US Department of Energy's Hanford Site through the ground water. Formerly, most of the numerical models developed at the Hanford Site were two-dimensional. However, contaminant concentrations cannot be accurately predicted with a two-dimensional model, which assumes a constant vertical distribution of contaminants in the aquifer. Development of two- and three-dimensional models of ground-water flow based on the Coupled Fluid, Energy, and Solute Transport (CFEST) code began in the mid- 1980s. The CFEST code was selected because of its ability to simulate both ground-water flow and contaminant transport. Physical processes that can be modeled by CFEST include aquifer geometry, heterogeneity, boundary conditions, and initial conditions. The CFEST ground-water modeling library has been integrated with the commercially available geographic information system (GIS) ARC/INFO. The display and analysis capabilities of a GIS are well suited to the size and diversity of databases being generated at the Hanford Site. The ability to visually inspect large databases through a graphical analysis tool provides a stable foundation for site assessments and ground-water modeling studies. Any ground-water flow model being used by an ongoing project should be continually updated and refined to reflect the most current knowledge of the system. The two-dimensional ground-water flow model being used in support of the Ground-Water Surveillance Project has recently been updated and enhanced. One major enhancement was the extension of the model area to include North Richland

  1. Geographical Information System Techniques for Evaluation of Groundwater Quality

    Directory of Open Access Journals (Sweden)

    Shahram Ashraf

    2011-01-01

    Full Text Available Problem statement: The present paper tries to assess groundwater suitability for irrigation purpose in Damghan plain (5400 ha. Approach: Twenty four water samples were collected from the active wells. Parameters such as Electrical Conductivity (EC, pH, Total Dissolved Solids (TDS, were recorded in the field and major anions and cations (Ca2+, Mg2+, K+, Na+, CO32-, HCO3-, Cl-, SO42- and NO3- were analyzed in the laboratory. The data of water wells were imported into the GIS software and the different water quality maps were produced using point data. Then Suitability index of groundwater quality determined by overlaying of water quality maps. Results: Suitability index values revealed that the ground water in Amin Abad, Abdi, Abd Abad, Nasr Abad and parts of Shams Abad villages of study area had "Suitable" quality with the suitability index range between 75-100 and therefore can be used for irrigation usage. Suitability index of the groundwater in Hasnie, Gani Abad and parts of Shams Abad villages were "Moderate" quality with the range between 35-70 and Abas Abad, Abir Abad and Shaman villages had "unsuitable" quality and cannot be used for irrigation purposes. In respect of all evaluating criteria, villages of study areas that had "Suitable" and Moderate quality could safely be used for longterm irrigation purposes. Conclusion: The present study demonstrated high efficiency for GIS to analyze complex spatial data and groundwater quality suitability.

  2. Climate impact on groundwater systems: the past is the key to the future

    Science.gov (United States)

    van der Ploeg, Martine; Cendón, Dioni; Haldorsen, Sylvi; Chen, Jinyao; Gurdak, Jason; Tujchneider, Ofelia; Vaikmäe, Rein; Purtschert, Roland; Chkir Ben Jemâa, Najiba

    2013-04-01

    Groundwater is a significant part of the global hydrological cycle and supplies fresh drinking water to almost half of the world's population. While groundwater supplies are buffered against short-term effects of climate variability, they can be impacted over longer time scales through changes in precipitation, ,evaporation, recharge rate, melting of glaciers or permafrost, vegetation, and land-use. Moreover, uncontrolled groundwater extraction has and will lead to irreversible depletion of fresh water resources in many areas. The impact of climate variability and groundwater extraction on the resilience of groundwater systems is still not fully understood (Green et al. 2011). Groundwater stores environmental and climatic information acquired during the recharge process, which integrates different signals, like recharge temperature, origin of precipitation, and dissolved constituents. This information can be used to estimate palaeo recharge temperatures, palaeo atmospheric dynamics and residence time of groundwater within the aquifer (Stute et al. 1995, Clark and Fritz 1997, Collon et al. 2000, Edmunds et al. 2003, Cartwright et al. 2007, Kreuzer et al. 2009, Currell et al. 2010, Raidla et al. 2012, Salem et al. 2012). The climatic signals incorporated by groundwater during recharge have the potential to provide a regionally integrated proxy of climatic variations at the time of recharge. Groundwater palaeoclimate information is affected by diffusion-dispersion processes (Davison and Airey, 1982) and/or water-rock interaction (Clark and Fritz, 1997), making palaeoclimate information deduced from groundwater inherently a low resolution record. While the signal resolution can be limited, recharge follows major climatic events, and more importantly, shows how those aquifers and their associated recharge varies under climatic forcing. While the characterization of groundwater resources, surface-groundwater interactions and their link to the global water cycle are an

  3. Horizontal flow barriers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional features simulated as horizontal flow barriers in the Death Valley regional ground-water flow system...

  4. Altitudes of the top of model layers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the altitudes of the tops of 16 model layers simulated in the Death Valley regional ground-water flow system (DVRFS) transient flow...

  5. Management of the Arsenic Groundwater System Lagunera - MEXICO

    Science.gov (United States)

    Boochs, P. W.; Billib, M.; Aparicio, J.; Gutierrez, C.

    2007-05-01

    Arsenic in drinking water is considered one of the most important environmental causes of cancer mortality in the world. Groundwater resources of the Comarca Lagunera region (Northern Mexico), which represents the main source of drinking water for more than 2 million people in the area, show arsenic concentrations ranging from 5 to 750 micro g/l. Large areas have concentrations quite above the Mexican standard of 25 micro g/l for human use and consumption. The aquifer is overexploited and the groundwater levels at the central part of the aquifer are drawn down more than 100 m in less than 50 years. The drawdown provoked the dissolution and migration of the geogenic existing arsenic within the aquifer. The presence of arsenic has been related to several potential sources. It was found out, that the main source is geothermal activity, less mining and the use of arsenical pesticides. The process of the geneses of the arsenic pollution implicates, that the highest content is on the bottom of the aquifer. Data analysis showed, that arsenic concentration is correlated to the age of the groundwater. "Older" water has higher arsenic content than "younger" water and the oldest water can be found at the bottom of the aquifer. Before 1950 the groundwater level in the Comarca Lagunera was close to the surface and there were only dug and shallow wells with low groundwater abstraction. The water was pumped from the upper parts of the aquifer and because this was "young" water it had low arsenic content. Then after 1950 a lot of wells, mainly for irrigation, were built and in 2002 there were 2350 active wells with an abstraction of about 1088 Mio cbm/year. In consequence to this the groundwater level decreased extraordinary. More and more "older" water was pumped and the arsenic content increased. Furthermore at the beginning of 1960 the river Nazas was canalized and lined, so that the natural groundwater recharge by infiltration from the river was stopped. By this way, the

  6. Design of E-City Bus Tracking System

    Directory of Open Access Journals (Sweden)

    Shekhar Shinde

    2014-04-01

    Full Text Available E-city bus tracking system will serve as a viable notification system that will effectively assist passengers in making the decision of whether to wait for the bus or not. This system is a standalone system designed to display the real-time location(s of the buses with the use of GSM module technology. The system will consist of an IR transmitter module installed on the buses, receiver boards installed on the bus stops and GSM receiver connected with PC monitoring the whole arrangement. It will also have passenger information system software installed at the bus stops and which will provide user the relevant information regarding all the bus numbers going for his source to destination along with the route details. It will also transmit its bus numbers and route names, with the help of LED transmitter, continuously as soon as the bus comes within the range of the receiver at the bus stop.

  7. Simulation of ground-water flow in the Intermediate and Floridan aquifer systems in Peninsular Florida

    Science.gov (United States)

    Sepulveda, Nicasio

    2002-01-01

    A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.

  8. Isotopic analysis of groundwater flow systems in a wet alluvial fan, southern Nepal

    International Nuclear Information System (INIS)

    Results are reported of an isotopic and geochemical study of groundwater in wet alluvial fan deposits in the Terai Plain of southern Nepal. Local, intermediate, and regional scale groundwater flow systems are suggested by the areal and vertical distributions of the isotopes and dissolved solids along principal flow paths within the alluvial fan deposits. Most groundwater is recharged by precipitation during the annual monsoon and by the Tinau River where it leaves the Himalayan uplift. δ18O and δ2H of the groundwater range from -10.3 to -6.4 per mille and from -79 to -51 per mille, respectively (relative to SMOW), and plot on a line parallel to the global average meteoric water line. The δ18O and δ2H contents generally increase from the recharge area to the discharge area, and coincide with an increase in dissolved solids from about 100 to 400 mg/L. All groundwater is of the calcium-magnesium bicarbonate type. The tritium content of groundwater reflects variations in atmospheric bomb tritium during the past three decades. Tritium increases downgradient from approximately 20 TU in the recharge area to approximately 80 TU in the discharge area, and then decreases below detection limits (10 TU) near the southern margin of the study area. An average linear groundwater velocity of 2 to 3 metres per day, estimated from the tritium data, compares favourably with velocities determined from aquifer tests. (author). 15 refs, 3 figs, 1 tab

  9. Uranium series disequilibrium: application to studies of the groundwater system at Altnabreac, Caithness, U.K

    International Nuclear Information System (INIS)

    A study of uranium series disequilibrium signatures in terms of uranium and thorium content and 234U/238U, 230Th/ 234U, and 230Th/232Th activity ratios has been carried out on surface and ground waters at Altnabreac, Caithness. The aim of the study was to interpret various isotopic signatures found in this granitic system, in relation to their evolutionary patterns and groundwater residence time. For this purpose analytical techniques of isotope dilution and alpha spectrometry have been developed specifically for the analysis of water and rock samples. In agreement with hydrochemical and isotopic data, uranium series disequilibrium data have delineated two groups of groundwaters: surface and shallow groundwaters, and older deep groundwaters. Very old waters have been recognised at about 300m depth in one of the deep boreholes at the site and a simple model of the decay of 234U excess has yielded an estimated groundwater residence time of the order of tens of thousands years. This is in reasonable agreement with 14C and 4He data. The thorium content of these groundwaters, ranging from 0.4 to 0.5 μg kg-1, has shown a trend of diminishing concentrations with greater geochemical maturity of groundwaters at depth. (author)

  10. STATISTICAL INVESTIGATION OF THE GROUNDWATER SYSTEM IN DARB EL-ARBAEIN, SOUTHWESTERN DESERT, EGYPT

    Directory of Open Access Journals (Sweden)

    Kashouty Mohamed El

    2009-12-01

    Full Text Available In Darb El Arbaein, the groundwater is the only water resources. The aquifer system starts from Paleozoic-Mesozoic to Upper Cretaceous sandstone rocks. They overlay the basement rocks and the aquifer is confined. In the present research, the performance of the statistical analyses to classify groundwater samples depending on their chemical characters has been tested. The hydrogeological and hydrogeochemical data of 92 groundwater samples was obtained from the GARPAD authority in northern, central, and southern Darb El Arbaein. A robust classification scheme for partitioning groundwater chemistry into homogeneous groups was an important tool for the characterization of Nubian sandstone aquifer. We test the performance of the many available graphical and statistical methodologies used to classify water samples. R-mode, Q-mode, correlation analysis, and principal component analysis were investigated. All the methods were discussed and compared as to their ability to cluster, ease of use, and ease of interpretation. The correlation investigation clarifies the relationship among the lithology, hydrogeology, and anthropogenic. Factor investigation revealed three factors namely; the evaporation process-agriculturalimpact-lithogenic dissolution, the hydrogeological characteristics of the aquifer system, and the surface meteoric water that rechargethe aquifer system. Two main clusters that subdivided into four sub clusters were identified in groundwater system based on hydrogeological and hydrogeochemical data. They reflect the impact of geomedia, hydrogeology, geographic position, and agricultural wastewater. The groundwater is undersaturated with respect to most selected minerals. The groundwater was supersaturated with respect to iron minerals in northern and southern Darb El Arbaein. The partial pressure of CO2 of the groundwater versus saturation index of calcite shows the gradual change in PCO2 from atmospheric to the present aquifer

  11. USING GRACE TO DETECT GROUNDWATER STORAGE VARIATIONS: THE CASES OF CANNING BASIN AND GUARANI AQUIFER SYSTEM

    OpenAIRE

    Munier, Simon; Becker, Mélanie; Maisongrande, Philippe; Cazenave, Anny

    2012-01-01

    Monitoring groundwater resource is today challenging because of very scarce in situ measurement networks. Here we combine 7 years (2003-2009) of data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission with outputs of four Land Surface Models to detect Groundwater Storage (GWS, water stored below the 1-10 m upper layers) variations. The method is applied on two great aquifers with different climatic regime and anthropogenic forcing: the Guarani Aquifer System (South Ame...

  12. A methodology to quantify the risks of urbanisation on groundwater systems in South Africa / Johanna Margaretha van Rooyen

    OpenAIRE

    Van Rooyen, Johanna Margaretha

    2014-01-01

    Each year, the urbanised population grows exponentially and due to this growth, cities are forced to expand beyond their manageable borders resulting in greater pressure on the surrounding urban environment. Many South African towns or cities are dependent on surface water for water supply. These resources are slowly being depleted and the dependence on groundwater resources is becoming increasingly important. Due to increased mining, industrial and agricultural activities in South Africa the...

  13. ASSESSING THE IMPACT OF WASTE ROCKS ON GROUNDWATER QUALITY IN THE ABANDONED COAL MINE OF JERADA CITY (NORTH EASTERN MOROCCO

    Directory of Open Access Journals (Sweden)

    BENDRA B.

    2011-11-01

    Full Text Available The exponential growth of urban dwellers calls for an increased awareness of urban ecosystems and appropriate,long-term management practices. Especially the water supply needs to be secured, both in terms of quantity and quality. In Morocco, numerous urban mine sites were abandoned regardless rehabilitation strategy.Consequently, mining activity contributes massively to deteriorate air, soil and water quality, to degrade natural ecosystems and to menace public health. The abandoned coalmine of Jerada is located in north east of Morocco,in horst zone, in the productive geological formation of Westphalian C. The mining activity has generated along 65 years (1936-2001, 15 to 20 millions tons of washery waste rocks, cumulated principally in urban center. The groundwater (n=30 and waste rock (n=7 sampling was led in the middle of May 2008, which presents in local climatic context the end of rainy season and the beginning of sec season. Waste rocks are exhaustively black schist, with a paucity in pyrite (anthracite debris contain between 2 to 5% of synergic pyrite and predominance of calcareous minerals essentially as dolomite. Consequently, the majority of waste rock samples are not acid generators. The pyrite oxidation produces sulphuric acid, which will be quickly neutralized by carbonates. The alkaline tendency of pH classifies Jerada abandoned coal mine in circum neutral mining drainage type (NMD. The leaching through unsaturated and saturated zone will be facilitated due to a big pore size and a breakingtectonic having fractured Jerada coal basin. The deformed black schist alternative to sandstone permits a good water circulation. The massive product of mining drainage and the major pollutant of groundwater is undoubtedly S-SO4 (27/30 exceed WHO guideline. The spatial correlation between S-total and salinity illustrates the deterioration of groundwater quality due to pyrite oxidation. The alteration of schist and halite dissolution contribute to

  14. Simulating the influence of two shallow, flow-through lakes on a groundwater system: implications for groundwater mounds and hinge lines

    Science.gov (United States)

    Gosselin, David C.; Khisty, Mohan J.

    2001-10-01

    Groundwater mounds and hinge lines are important features related to the interaction of groundwater and lakes. In contrast to the transient formation of groundwater mounds, numerical simulations indicate that permanent groundwater mounds form between closely spaced lakes as the natural consequence of adding two net sinks to a groundwater flow system. The location of the groundwater mound and the position of the hinge lines between the two lakes are intimately related. As the position of the mound changes there is a corresponding shift in the position of the hinge line. This results in a change in the ratio of groundwater inflow to outflow (Qi/Qo) for the lake. The response of the lake is an increase or decrease in the lake level. Our simulations indicate that the movement of the hinge line in a natural system is a consequence of the dynamic interrelationships between recharge, the slope of the water table upgradient and downgradient of the lake, and the loss of water from the lake by evaporation. The extent of the seasonal movement of the hinge line will vary from one year to the next depending on local changes in the magnitude of the hydrologic variables.

  15. Development of a biotreatment system for the remediation of groundwater contaminated with hydrocarbons and trichloroethylene

    International Nuclear Information System (INIS)

    Inadvertent release of fuels and solvents into soil has resulted in groundwater contamination across the United States. This paper reports on the development of biologically based systems for treating mixtures of chemical contaminants which often requires knowledge of both degradative pathways and interactions between individual chemicals. These issues may necessitate the use of specialized microorganisms and/or treatment systems designed to overcome these limitations. One strategy for the treatment of chemical mixtures which cannot be source separated, such as contaminated groundwater, is a modular system to sequentially biodegrade groups of compatible chemicals. A two-stage bioreactor system was constructed for the treatment of groundwater contaminated with benzene and TCE. This treatment system is undergoing development for a field pilot demonstration. Successful implementation of this system should result in significant cost and time savings compared to competitive technologies

  16. The Evolution of Cooperation in Managed Groundwater Systems: An Agent-Based Modelling Approach

    Science.gov (United States)

    Castilla Rho, J. C.; Mariethoz, G.; Rojas, R. F.; Andersen, M. S.; Kelly, B. F.; Holley, C.

    2014-12-01

    Human interactions with groundwater systems often exhibit complex features that hinder the sustainable management of the resource. This leads to costly and persistent conflicts over groundwater at the catchment scale. One possible way to address these conflicts is by gaining a better understanding of how social and groundwater dynamics coevolve using agent-based models (ABM). Such models allow exploring 'bottom-up' solutions (i.e., self-organised governance systems), where the behaviour of individual agents (e.g., farmers) results in the emergence of mutual cooperation among groundwater users. There is significant empirical evidence indicating that this kind of 'bottom-up' approach may lead to more enduring and sustainable outcomes, compared to conventional 'top-down' strategies such as centralized control and water right schemes (Ostrom 1990). New modelling tools are needed to study these concepts systematically and efficiently. Our model uses a conceptual framework to study cooperation and the emergence of social norms as initially proposed by Axelrod (1986), which we adapted to groundwater management. We developed an ABM that integrates social mechanisms and the physics of subsurface flow. The model explicitly represents feedback between groundwater conditions and social dynamics, capturing the spatial structure of these interactions and the potential effects on cooperation levels in an agricultural setting. Using this model, we investigate a series of mechanisms that may trigger norms supporting cooperative strategies, which can be sustained and become stable over time. For example, farmers in a self-monitoring community can be more efficient at achieving the objective of sustainable groundwater use than government-imposed regulation. Our coupled model thus offers a platform for testing new schemes promoting cooperation and improved resource use, which can be used as a basis for policy design. Importantly, we hope to raise awareness of agent-based modelling as

  17. Aquifer-Circulating Water Curtain Cultivation System To Recover Groundwater Level And Temperature

    Science.gov (United States)

    Kim, Y.; Ko, K.; Chon, C.; Oh, S.

    2011-12-01

    Groundwater temperature, which generally ranges 14 to 16 degree of Celsius all year long, can be said to be 'constant' compared to the amplitude of daily variation of air temperature or surface water. Water curtain cultivating method utilizes this 'constant' groundwater temperature to warm up the inside of greenhouse during winter night by splash groundwater on the roof of inner greenhouse. The area of water curtain cultivation system have increased up to 107.5 square kilometers as of 2006 since when it is first introduced to South Korea in 1984. Groundwater shortage problem became a great issue in a concentrated water curtain cultivation area because the pumped and splashed groundwater is abandoned to nearby stream and natural recharge rate is reduced by greenhouses. The amount of groundwater use for water curtain cultivation system in South Korea is calculated to be 587 million cubic meters which is 35% of national agricultural use of groundwater. A new water curtain cultivation system coupled with aquifer circulating of the splashed groundwater and greenhouse roof-top rainwater harvesting is developed and applied to field site in Nonsan-si, Chungnam province to minimize groundwater shortage problem and recover groundwater level. The aquifer circulating water curtain cultivation system is consist of a pumping well and a injection well of 80 m deep, groundwater transfer and splashing system, recovery tank and rainwater collecting waterway. The distance between injection and pumping well is 15 m and an observation well is installed in the middle of the wells. To characterize hydrogeological properties of this site, hydraulic test such as pumping tests and tracer tests with dye tracer, thermal tracer and ion tracer. Once the integrated system is constructed in this site, hydraulic head in all the wells and temperature of air, recovery tank and groundwater in all the wells are monitored during the operation for 3months in winter season. Hydraulic test and tracer

  18. An introduction to geographic information systems as applied to a groundwater remediation program

    International Nuclear Information System (INIS)

    While the attention to environmental issues has grown over the past several years, so has the focus on groundwater protection. Addressing the task of groundwater remediation often involves a large-scale program with numerous wells and enormous amounts of data. This data must be manipulated and analyzed in an efficient manner for the remediation program to be truly effective. Geographic Information System's (GIS) have proven to be an extremely effective tool in handling and interpreting this type of groundwater information. The purpose of this paper is to introduce the audience to GIS technology, describe how it is being used at the Savannah River Site (SRS) to handle groundwater data and demonstrate how it may be used in the corporate Westinghouse environment

  19. Options of sustainable groundwater development in Beijing Plain, China

    Science.gov (United States)

    Zhou, Yangxiao; Wang, Liya; Liu, Jiurong; Li, Wenpeng; Zheng, Yuejun

    Overexploitation of groundwater resources has supported rapid social and economical developments in Beijing City in last 30 years. The newly constructed emergency well fields have saved Beijing from a critical water crisis caused by a long drought spell of eight consecutive years from 1999 to 2006. But this unsustainable development has resulted in serious consequences: discharges to rivers ceased, large number of pumping wells went dry, and land subsidence caused destruction of underground infrastructure. The completion of the middle route of South to North water transfer project to transfer water from Yangtze river to Beijing City by 2010 provides opportunity to reverse the trend of groundwater depletion and to achieve a long-term sustainable development of groundwater resources in Beijing Plain. Four options of groundwater development in Beijing Plain were formulated and assessed with a regional transient groundwater flow model. The business as usual scenario was used as a reference for the comparative analysis and indicates fast depletion of groundwater resources. The reduction of abstraction scenario has immediate and fast recovery of groundwater levels, especially at the cone of depression. The scenario of artificially enhanced groundwater recharge would replenish groundwater resources and maintain the capacity of present water supply well fields. The combined scenario of the reduction of abstraction and the increase of recharge could bring the aquifer systems into a new equilibrium state in 50 years. A hydrological sustainability of groundwater resources development could then be achieved in Beijing Plain.

  20. Groundwater flow systems in mountainous terrain, 1. Numerical modeling technique

    Science.gov (United States)

    Forster, Craig; Smith, Leslie

    1988-07-01

    A coupled model of fluid flow and heat transfer is developed to characterize steady groundwater flow within a mountain massif. A coupled model is necessary because high-relief terrain can enhance groundwater flow to depths where elevated temperatures are encountered. A wide range in water table form and elevation expected in high-relief terrain is accommodated using a free-surface method. This approach allows us to examine the influence of thermal conditions on the patterns and rates of groundwater flow and the position of the water table. Vertical fluid flow is assumed to occur within the unsaturated zone to provide a simple basis for modeling advective heat transfer above the water table. This approach ensures that temperatures at the water table, and throughout the domain, are consistent with temperature conditions specified at the bedrock surface. Conventional free-surface methods provide poor estimates of the water table configuration in high-relief terrain. A modified free-surface approach is introduced to accommodate recharge at upper elevations on the seepage face, in addition to recharge at the free surface.

  1. Modelling climate change effects on a Dutch coastal groundwater system using airborne Electro Magnetic measurements

    OpenAIRE

    M. Faneca Sànchez; J. L. Gunnink; E. S. van Baaren; Oude Essink, G.H.P.; B. Siemon; E. Auken; W. Elderhorst; de Louw, P.G.B.

    2012-01-01

    The forecast of climate change effects on the groundwater system in coastal areas is of key importance for policy makers. The Dutch water system has been deeply studied because of its complex system of low-lying areas, dunes, land won to the sea and dikes, but nowadays large efforts are still being done to find out the best techniques to describe complex fresh-brackish-saline groundwater dynamic systems. In this article, we describe a methodology consisting of high-resolution airborne Electro...

  2. Classification as a generic tool for characterising status and changes of regional scale groundwater systems

    Science.gov (United States)

    Barthel, Roland; Haaf, Ezra

    2016-04-01

    Regional hydrogeology is becoming increasingly important, but at the same time, scientifically sound, universal solutions for typical groundwater problems encountered on the regional scale are hard to find. While managers, decision-makers and state agencies operating on regional and national levels have always shown a strong interest in regional scale hydrogeology, researchers from academia tend to avoid the subject, focusing instead on local scales. Additionally, hydrogeology has always had a tendency to regard every problem as unique to its own site- and problem-specific context. Regional scale hydrogeology is therefore pragmatic rather than aiming at developing generic methodology (Barthel, 2014; Barthel and Banzhaf, 2016). One of the main challenges encountered on the regional scale in hydrogeology is the extreme heterogeneity that generally increases with the size of the studied area - paired with relative data scarcity. Even in well-monitored regions of the world, groundwater observations are usually clustered, leaving large areas without any direct data. However, there are many good reasons for assessing the status and predicting the behavior of groundwater systems under conditions of global change even for those areas and aquifers without observations. This is typically done by using rather coarsely discretized and / or poorly parameterized numerical models, or by using very simplistic conceptual hydrological models that do not take into account the complex three-dimensional geological setup. Numerical models heavily rely on local data and are resource-demanding. Conceptual hydrological models only deliver reliable information on groundwater if the geology is extremely simple. In this contribution, we present an approach to derive statistically relevant information for un-monitored areas, making use of existing information from similar localities that are or have been monitored. The approach combines site-specific knowledge with conceptual assumptions on

  3. Proceedings of the fifth international groundwater conference on the assessment and management of groundwater resources in hard rock systems with special reference to basaltic terrain

    International Nuclear Information System (INIS)

    Groundwater resources in hard rock regions with limited renewable potential have to be managed judiciously to ensure adequate supplies of dependable quantity and quality. It is a natural resource with economic, strategic and environmental value, which is under stress both due to changing climatic and anthropogenic factors. Therefore the management strategies need to be aimed at sustenance of this limited resource. In India, and also elsewhere in the world major parts of the semi-arid regions are characterized by hard rocks and it is of vital importance to understand the nature of the aquifer systems and its current stress conditions. Though the achievements through scientific development in exploration and exploitation are commendable, it has adversely affected the hard rock aquifer system, both in terms of quantity and quality; which is of major concern today. In order to reverse the situation, better management strategy of groundwater resources needs to be devised for prevention of further degradation of quality and meeting out the future demand of quantity. This necessitates: understanding the flow mechanism, evaluating the potential and evolving optimal utilization schemes, and assessing and monitoring quality in the changing scenario of anthropogenically induced agricultural, urban, industrial and climatic change. The groundwater flow mechanism through fractures in hard rocks is yet to be fully understood in terms of fracture geometry and its relation to groundwater flow. The characterization of flow geometry in basaltic aquifer is yet to be fully explored. Groundwater pollution due to anthropogenic factors is very slow process with long-term impacts on carbon cycle and global climatic change on one hand and quality on the other. It is generally recognized that the prevention of groundwater pollution is cheaper than its remedial measures in the long run. Furthermore, because of the nature of groundwater flow and the complexity and management uncertainty of

  4. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea

    International Nuclear Information System (INIS)

    In order to estimate the magnitude of submarine groundwater discharge (SGD) and the associated nutrient fluxes in Masan Bay on the southern coast of Korea, we measured the concentrations of 226Ra and nutrients in seawater, brackish groundwater, and stream water in May and August 2006. Gauging unidentified nutrient fluxes through SGD is very important in this bay since diatom red tides have been occurring from April to October every year since the 1980s. Based on a 226Ra mass balance model, the submarine inputs of coastal groundwater were estimated to be 4.8 x 106 and 5.7 x 106 m3 d-1 (61 and 71 L m-2 d-1) in May and August, respectively, which were approximately 840% and 540% of the surface water discharge into the bay. The fluxes of dissolved inorganic phosphorus (DIP) and silicate (DSi) through SGD were 2-3 fold higher than those via stream water, while the fluxes of dissolved inorganic nitrogen (DIN) were comparable to those from surface waters during both sampling periods. Nutrient fluxes through stream waters relative to those from SGD were more significant in the inner part of the bay, which appears to be due to the direct influence of heavily polluted stream waters. Our study shows that the large and continuous supply of inorganic nutrients through SGD may play an important role in eutrophication and the occurrence of red tides in this bay, which should be taken into consideration in the environmental management of the bay.

  5. Assessment of groundwater quality using geographical information system (GIS), at north-east Cairo, Egypt.

    Science.gov (United States)

    El-Shahat, M F; Sadek, M A; Mostafa, W M; Hagagg, K H

    2016-04-01

    The present investigation has been conducted to delineate the hydrogeochemical and environmental factors that control the water quality of the groundwater resources in the north-east of Cairo. A complementary approach based on hydrogeochemistry and a geographical information system (GIS) based protectability index has been employed for conducting this work. The results from the chemical analysis revealed that the groundwater of the Quaternary aquifer is less saline than that of the Miocene aquifer and the main factors that control the groundwater salinity in the studied area are primarily related to the genesis of the original recharging water modified after by leaching, dissolution, cation exchange, and fertilizer leachate. The computed groundwater quality index (WQI) falls into two categories: fair for almost all the Miocene groundwater samples, while the Quaternary groundwater samples are all have a good quality. The retarded flow and non-replenishment of the Miocene aquifer compared to the renewable active recharge of the Quaternary aquifer can explain this variation of WQI. The index and overlay approach exemplified by the DUPIT index has been used to investigate the protectability of the study aquifers against diffuse pollutants. Three categories (highly protectable less vulnerable, moderately protectable moderately vulnerable and less protectable highly vulnerable) have been determined and areally mapped. PMID:27105417

  6. The groundwater age in the Middle-Upper Devonian aquifer system, Lithuania

    Science.gov (United States)

    Mokrik, R.; Mažeika, J.; Baublytė, A.; Martma, T.

    2009-06-01

    3H, δ13C and hydrochemical data were used to estimate the corrected groundwater age derived from conventional 14C age of dissolved inorganic carbon (DIC). The Middle-Upper Devonian aquifer system from the Baltic upland recharge area in eastern Lithuania towards the discharge area on the Baltic Sea coast in the west was considered. The concentration of total dissolved solids (TDS) in groundwater changes from 300 to 24,000 mg/L and increases downgradient towards the coast. The other major constituents have the same trend as the TDS. The hydrochemical facies of groundwater vary from an alkali-earth carbonates facies at the eastern upland area to an alkali-earth carbonate-sulfate and chloride facies at transit and discharge areas. Meteoric water percolating through the Quaternary and Devonian aquifers regulate the initial 14C activities of groundwater involving two main members of DIC: soil CO2 with modern 14C activity uptake and dissolution of 14C-free aquifer carbonates. Other sources of DIC are less common. 14C activity of DIC in the groundwater ranged from 60 to 108 pMC at the shallow depths. With an increase of the aquifers depth the dolomitization of aqueous solution and leakage of the “old” groundwater from lower aquifers take place, traced by lower activities (7-30 pMC).

  7. Towards sustainable ground water management in Dar Es Salaam city, Tanzania

    International Nuclear Information System (INIS)

    Groundwater pollution in urban areas is a worldwide growing environmental problem in this millennium. Many major cities in the world depend on groundwater for water supplies. However, urbanization processes threaten its quality. The problem is more pronounced in urban areas in developing countries like Tanzania, which are characterized with inadequate infrastructure for waste management. In Tanzania, the situation is more threatening in Dar Es Salaam City, which experiences acute deficiency in infrastructure provision: housing, water supply, sanitation, transportation and energy. The existing challenge is to protect groundwater resources amidst rapid growing Dar Es Salaam city, of which failure can lead to escalating costs for provision of drinking water with overall results of decreased public health conditions. A research conducted from 1997 to 2002, revealed that almost 50% of the water supply in Dar Es Salaam city comes from groundwater and that groundwater is being threatened by indiscriminate disposal practices of both domestic and industrial wastes. For example about 88% of the urban population use on-site sanitation systems, which discharge partially treated sewage to the groundwater. About 60 tonnes/day of chemical oxygen demand (COD) are transported to the groundwater through domestic sewage. Analysis of groundwater quality in the city indicated that the unconfined aquifer is starting to degrade. For instance, more than 40% of groundwater samples analysed for nitrate, chloride and faecal coliform bacteria, did not comply with the national standards for drinking water. Recognising the fact that demand for groundwater is on the increase in the city and that the aquifers have shown signs of degradation, a groundwater management plan is required to ensure sustainable utilization of the resource. This paper discusses the groundwater situation in Dar Es Salaam city and finally puts forward measures towards establishment of a management strategy. (author)

  8. Longitudinal Study of Microbial Diversity and Seasonality in the Mexico City Metropolitan Area Water Supply System

    OpenAIRE

    Mazari-Hiriart, Marisa; López-Vidal, Yolanda; Ponce-de-León, Sergio; Calva, Juan José; Rojo-Callejas, Francisco; Castillo-Rojas, Gonzalo

    2005-01-01

    In the Mexico City metropolitan area (MCMA), 70% of the water for 18 million inhabitants is derived from the Basin of Mexico regional aquifer. To provide an overview of the quality of the groundwater, a longitudinal study was conducted, in which 30 sites were randomly selected from 1,575 registered extraction wells. Samples were taken before and after chlorine disinfection during both the rainy and dry seasons (2000-2001). Microbiological parameters (total coliforms, fecal coliforms, streptoc...

  9. Energy systems for smart cities; Energiesysteme fuer Smart Cities. Intelligente und integrierte urbane Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Apel, Rolf [Siemens AG, Nuernberg (Germany). Sektor Energy

    2010-05-31

    As of 2007, the number of people living in conurbations around the world surpassed that of those living in rural areas. As a consequence of this development, large cities worldwide account for 75 % of energy demand and, at the same time, are responsible for a large percentage of carbon dioxide emissions. A number of cities and greater city areas have therefore set ambitious goals for increasing the efficiency of their infrastructure to help reduce emissions, while at the same time providing the ever-increasing urban population with a continued high quality of life. (orig.)

  10. Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003

    Energy Technology Data Exchange (ETDEWEB)

    Michael T. Moreo; and Leigh Justet

    2008-07-02

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913–1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  11. Update to the Ground-Water Withdrawals Database for the Death Valley Regional Ground-Water Flow System, Nevada and California, 1913-2003

    Science.gov (United States)

    Moreo, Michael T.; Justet, Leigh

    2008-01-01

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913-1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  12. Assessment of Groundwater Resources Carrying Capacity in Xi'an City Based on Principal Component Analysis%基于主成分分析法的西安市地下水资源承载力评价

    Institute of Scientific and Technical Information of China (English)

    邢旭光; 史文娟; 张译丹; 谢金宇

    2013-01-01

    Assessment of groundwater resources carrying capacity is full of great significance for maintaining the local ecological environment security and promoting sustainable socio-economic development.This paper evaluated the groundwater resources carrying capacity in Xi'an City using seven evaluation indexes, such as rate of groundwater development, modulus of groundwater supply, groundwater recharge modulus, groundwater discharge modulus, per capita consumption of groundwater, water consumption per unit of GDP and water resources recycling, based on principal component analysis.The results show that the groundwater resources in Xi'an City has a certain carrying capacity, but its rate of exploitation is too high in total and the potential of further development is small.The evaluated value of urban in Xi'an City is 70.816, and its groundwater resources carrying capacity nearly saturates and the potential of further development is the smallest.The evaluated value of Zhouzhi County is -240.998 and the potential of further development is the largest.The results provide reference for rational use of groundwater resources.%区域地下水资源承载力评价对于维护区域生态环境安全和促进社会经济可持续发展具有重要意义.运用主成分分析法,根据地下水开发率、地下水供水模数、地下水补给模数、地下水排泄模数、人均地下水占有量、单位GDP用水量和水资源重复利用率等7项评价指标,对西安市地下水资源承载力进行评价.综合评价结果表明:西安市地下水资源有一定的承载力,但整体上地下水开发率过高,继续开发利用的潜力甚小.其中城六区综合评价值为70.816,地下水承载力趋于饱和且继续开发潜力最小,周至县综合评价值为-240.998,地下水开发潜力最大.评价结果为地下水资源的合理开发利用提供参考.

  13. Forecasting land-use change and its impact on the groundwater system of the Kleine Nete catchment, Belgium

    OpenAIRE

    J. Dams; Woldeamlak, S. T.; Batelaan, O.

    2007-01-01

    Land-use change and climate change, along with groundwater pumping are frequently indicated to be the main human-induced factors influencing the groundwater system. Up till now, research has mainly been focusing on the effect of the water quality of these human-induced changes on the groundwater system, often neglecting changes in quantity. The focus in this study is on the impact of land-use changes in the near future, from 2000 until 2020, on the groundwater quantity and the general hydrolo...

  14. It Takes a City to Raise a Systemic Reform: Early Outcomes from the Say Yes City-wide Turnaround Strategy in Syracuse

    OpenAIRE

    Steven M. Ross

    2013-01-01

    The focus of this paper is a systemic educational reform, “The Say Yes City-wide Turnaround Strategy,” designed to involve diverse city-wide partners in improving education and revitalizing the community and city. As an incentive and catalyst for change, college scholarships are offered to every high school graduate in the city. However, the major goal of the partnership is prepare all students for postsecondary education through improved classroom teaching, extended-learning opportunities, ...

  15. Strontium isotope geochemistry of groundwater affected by human activities in Nandong underground river system, China

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yongjun, E-mail: jiangjyj@swu.edu.cn [School of Geographical Sciences, Southwest University, Chongqing 400715 (China)] [Institute of Karst Environment and Rock Desertification Rehabilitation, Chongqing 400715 (China)

    2011-03-15

    Research highlights: {yields} Spatio-temporal variations of Sr concentrations and Sr isotopic composition of groundwater were investigated in a karst underground river system. {yields} Agricultural fertilizers and sewage effluents significantly modified the natural Sr isotopic signature of karst groundwater. {yields} Sr in the carbonate aquifers was relatively non-radiogenic, with low Sr concentrations, while anthropogenic Sr correlated with agricultural fertilizers and sewage effluents was relatively radiogenic, with higher Sr concentrations. {yields} {sup 87}Sr/{sup 86}Sr ratios can provide key information for natural and anthropogenic sources in karst groundwater. - Abstract: The Nandong Underground River System (NURS) is located in a typical karst area dominated by agriculture in SE Yunnan Province, China. Groundwater plays an important role in the social and economical development in the area. The effects of human activities (agriculture and sewage effluents) on the Sr isotope geochemistry were investigated in the NURS. Seventy-two representative groundwater samples, which were collected from different aquifers (calcite and dolomite), under varying land-use types, both in summer and winter, showed significant spatial differences and slight seasonal variations in Sr concentrations and {sup 87}Sr/{sup 86}Sr ratios. Agricultural fertilizers and sewage effluents significantly modified the natural {sup 87}Sr/{sup 86}Sr ratios signature of groundwater that was otherwise dominated by water-rock interaction. Three major sources of Sr could be distinguished by {sup 87}Sr/{sup 86}Sr ratios and Sr concentrations in karst groundwater. Two sources of Sr are the Triassic calcite and dolomite aquifers, where waters have low Sr concentrations (0.1-0.2 mg/L) and low {sup 87}Sr/{sup 86}Sr ratios (0.7075-0.7080 and 0.7080-0.7100, respectively); the third source is anthropogenic Sr from agricultural fertilizers and sewage effluents with waters affected having radiogenic {sup 87

  16. An innovative artificial recharge system to enhance groundwater storage in basaltic terrain: example from Maharashtra, India

    Science.gov (United States)

    Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep

    2016-03-01

    The management of groundwater poses challenges in basaltic terrain as its availability is not uniform due to the absence of primary porosity. Indiscriminate excessive withdrawal from shallow as well as deep aquifers for meeting increased demand can be higher than natural recharge, causing imbalance in demand and supply and leading to a scarcity condition. An innovative artificial recharge system has been conceived and implemented to augment the groundwater sources at the villages of Saoli and Sastabad in Wardha district of Maharashtra, India. The scheme involves resectioning of a stream bed to achieve a reverse gradient, building a subsurface dam to arrest subsurface flow, and installation of recharge shafts to recharge the deeper aquifers. The paper focuses on analysis of hydrogeological parameters like porosity, specific yield and transmissivity, and on temporal groundwater status. Results indicate that after the construction of the artificial recharge system, a rise of 0.8-2.8 m was recorded in the pre- and post-monsoon groundwater levels in 12 dug wells in the study area; an increase in the yield was also noticed which solved the drinking water and irrigation problems. Spatial analysis was performed using a geographic information system to demarcate the area of influence of the recharge system due to increase in yields of the wells. The study demonstrates efficacy, technical viability and applicability of an innovative artificial recharge system constructed in an area of basaltic terrain prone to water scarcity.

  17. An innovative artificial recharge system to enhance groundwater storage in basaltic terrain: example from Maharashtra, India

    Science.gov (United States)

    Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep

    2016-08-01

    The management of groundwater poses challenges in basaltic terrain as its availability is not uniform due to the absence of primary porosity. Indiscriminate excessive withdrawal from shallow as well as deep aquifers for meeting increased demand can be higher than natural recharge, causing imbalance in demand and supply and leading to a scarcity condition. An innovative artificial recharge system has been conceived and implemented to augment the groundwater sources at the villages of Saoli and Sastabad in Wardha district of Maharashtra, India. The scheme involves resectioning of a stream bed to achieve a reverse gradient, building a subsurface dam to arrest subsurface flow, and installation of recharge shafts to recharge the deeper aquifers. The paper focuses on analysis of hydrogeological parameters like porosity, specific yield and transmissivity, and on temporal groundwater status. Results indicate that after the construction of the artificial recharge system, a rise of 0.8-2.8 m was recorded in the pre- and post-monsoon groundwater levels in 12 dug wells in the study area; an increase in the yield was also noticed which solved the drinking water and irrigation problems. Spatial analysis was performed using a geographic information system to demarcate the area of influence of the recharge system due to increase in yields of the wells. The study demonstrates efficacy, technical viability and applicability of an innovative artificial recharge system constructed in an area of basaltic terrain prone to water scarcity.

  18. Groundwater flow systems in the great Aletsch glacier region (Valais, Switzerland)

    Science.gov (United States)

    Alpiger, Andrea; Loew, Simon

    2014-05-01

    Groundwater flow systems in Alpine areas are often complex and challenging to investigate due to special topographic and climatic conditions governing groundwater recharge and bedrock flow. Studies seeking to characterize high-alpine groundwater systems remain rare, but are of high interest, e.g. for water supply, hydropower systems, traffic tunnels or rock slope deformation and landslide hazards. The goal of this study is to better understand the current and past groundwater flow systems of the UNESCO World Heritage mountain ridge separating the great Aletsch glacier and the Rhone valley, considering climatic and glacier fluctuations during the Lateglacial and Holocene periods. This ridge is crossed by a hydropower bypass drift (Riederhornstollen) and is composed of fractured crystalline rocks overlain by various types of landslides and glacial deposits. Surface hydrology observations (fracture properties, groundwater seepage, spring lines and physico-chemical parameters) and hydropower drift inflow measurements contributed to the characterization of bedrock hydraulic conductivities and preferential groundwater pathways. Basic conceptual hydrogeological models were tested with observed drift inflows and the occurrence of springs using free-surface, variably saturated, vertical 2D groundwater flow models (using the code SEEP/W from GeoStudio 2007). Already simple two-layer models, representing profile sections orthogonal to the mountain ridge, provided useful results. Simulations show that differences in the occurrence of springs on each side of the mountain ridge are likely caused by the occurrence of glacial till (generating perched groundwater), the deep-seated sagging landslide mass, faults and asymmetric ridge topography, which together force the main groundwater flow direction to be oriented towards the Rhone valley, even from beyond the mountain ridge. Surprisingly, the most important springs (those with high discharge rates) are located at high elevations

  19. CAD-CAM at Bendix Kansas city: the BICAM system

    Energy Technology Data Exchange (ETDEWEB)

    Witte, D.R.

    1983-04-01

    Bendix Kansas City Division (BEKC) has been involved in Computer Aided Manufacturing (CAM) technology since the late 1950's when the numerical control (N/C) analysts installed computers to aid in N/C tape preparation for numerically controlled machines. Computer Aided Design (CAD) technology was introduced in 1976, when a number of 2D turnkey drafting stations were procured for printed wiring board (PWB) drawing definition and maintenance. In June, 1980, CAD-CAM Operations was formed to incorporate an integrated CAD-CAM capability into Bendix operations. In March 1982, a ninth division was added to the existing eight divisions at Bendix. Computer Integrated Manufacturing (CIM) is a small organization, reporting directly to the general manager, who has responsibility to coordinate the overall integration of computer aided systems at Bendix. As a long range plan, CIM has adopted a National Bureau of Standards (NBS) architecture titled Factory of the Future. Conceptually, the Bendix CAD-CAM system has a centrally located data base which can be accessed by both CAD and CAM tools, processes, and personnel thus forming an integrated Computer Aided Engineering (CAE) System. This is a key requirement of the Bendix CAD-CAM system that will be presented in more detail.

  20. Information-based system identification for predicting the groundwater-level fluctuations of hillslopes

    Science.gov (United States)

    Hong, Yao-Ming; Wan, Shiuan

    2011-09-01

    The analysis of pre-existing landslides and landslide-prone hillslopes requires an estimation of maximum groundwater levels. Rapid increase in groundwater levels may be a dominant factor for evaluating the occurrence of landslides. System identification—use of mathematical tools and algorithms for building dynamic models from measured data—is adopted in this study. The fluid mass-balance equation is used to model groundwater-level fluctuations, and the model is analytically solved using the finite-difference method. Entropy-based classification (EBC) is used as a data-mining technique to identify the appropriate ranges of influencing variables. The landslide area at Wushe Reservoir, Nantou County, Taiwan, is chosen as a field test site for verification. The study generated 65,535 sets of numbers for the groundwater-level variables of the governing equation, which is judged by root mean square errors. By applying cross-validation methods and EBC, limited numbers of validation samples are used to find the range of each parameter. For these ranges, a heuristic method is employed to find the best results of each parameter for the prediction model of groundwater level. The ranges for governing factors are evaluated and the resulting performance is examined.

  1. Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Hamid Balali

    2015-09-01

    Full Text Available In the recent decades, due to many different factors, including climate change effects towards be warming and lower precipitation, as well as some structural policies such as more intensive harvesting of groundwater and low price of irrigation water, the level of groundwater has decreased in most plains of Iran. The objective of this study is to model groundwater dynamics to depletion under different economic policies and climate change by using a system dynamics approach. For this purpose a dynamic hydro-economic model which simultaneously simulates the farmer’s economic behavior, groundwater aquifer dynamics, studied area climatology factors and government economical policies related to groundwater, is developed using STELLA 10.0.6. The vulnerability of groundwater balance is forecasted under three scenarios of climate including the Dry, Nor and Wet and also, different scenarios of irrigation water and energy pricing policies. Results show that implementation of some economic policies on irrigation water and energy pricing can significantly affect on groundwater exploitation and its volume balance. By increasing of irrigation water price along with energy price, exploitation of groundwater will improve, in so far as in scenarios S15 and S16, studied area’s aquifer groundwater balance is positive at the end of planning horizon, even in Dry condition of precipitation. Also, results indicate that climate change can affect groundwater recharge. It can generally be expected that increases in precipitation would produce greater aquifer recharge rates.

  2. Uncertainty quantification of surface-water/groundwater exchange estimates in large wetland systems using Python

    Science.gov (United States)

    Hughes, J. D.; Metz, P. A.

    2014-12-01

    Most watershed studies include observation-based water budget analyses to develop first-order estimates of significant flow terms. Surface-water/groundwater (SWGW) exchange is typically assumed to be equal to the residual of the sum of inflows and outflows in a watershed. These estimates of SWGW exchange, however, are highly uncertain as a result of the propagation of uncertainty inherent in the calculation or processing of the other terms of the water budget, such as stage-area-volume relations, and uncertainties associated with land-cover based evapotranspiration (ET) rate estimates. Furthermore, the uncertainty of estimated SWGW exchanges can be magnified in large wetland systems that transition from dry to wet during wet periods. Although it is well understood that observation-based estimates of SWGW exchange are uncertain it is uncommon for the uncertainty of these estimates to be directly quantified. High-level programming languages like Python can greatly reduce the effort required to (1) quantify the uncertainty of estimated SWGW exchange in large wetland systems and (2) evaluate how different approaches for partitioning land-cover data in a watershed may affect the water-budget uncertainty. We have used Python with the Numpy, Scipy.stats, and pyDOE packages to implement an unconstrained Monte Carlo approach with Latin Hypercube sampling to quantify the uncertainty of monthly estimates of SWGW exchange in the Floral City watershed of the Tsala Apopka wetland system in west-central Florida, USA. Possible sources of uncertainty in the water budget analysis include rainfall, ET, canal discharge, and land/bathymetric surface elevations. Each of these input variables was assigned a probability distribution based on observation error or spanning the range of probable values. The Monte Carlo integration process exposes the uncertainties in land-cover based ET rate estimates as the dominant contributor to the uncertainty in SWGW exchange estimates. We will discuss

  3. Contribution of the multi-attribute value theory to conflict resolution in groundwater management - application to the Mancha Oriental groundwater system, Spain

    Science.gov (United States)

    Apperl, B.; Pulido-Velazquez, M.; Andreu, J.; Karjalainen, T. P.

    2015-03-01

    The implementation of the EU Water Framework Directive demands participatory water resource management approaches. Decision making in groundwater quantity and quality management is complex because of the existence of many independent actors, heterogeneous stakeholder interests, multiple objectives, different potential policies, and uncertain outcomes. Conflicting stakeholder interests have often been identified as an impediment to the realisation and success of water regulations and policies. The management of complex groundwater systems requires the clarification of stakeholders' positions (identifying stakeholder preferences and values), improving transparency with respect to outcomes of alternatives, and moving the discussion from the selection of alternatives towards the definition of fundamental objectives (value-thinking approach), which facilitates negotiation. The aims of the study are to analyse the potential of the multi-attribute value theory for conflict resolution in groundwater management and to evaluate the benefit of stakeholder incorporation into the different stages of the planning process, to find an overall satisfying solution for groundwater management. The research was conducted in the Mancha Oriental groundwater system (Spain), subject to intensive use of groundwater for irrigation. A complex set of objectives and attributes was defined, and the management alternatives were created by a combination of different fundamental actions, considering different implementation stages and future changes in water resource availability. Interviews were conducted with representative stakeholder groups using an interactive platform, showing simultaneously the consequences of changes in preferences to the alternative ranking. Results show that the approval of alternatives depends strongly on the combination of measures and the implementation stages. Uncertainties in the results were notable, but did not influence the alternative ranking heavily. The

  4. Contribution of the Multi Attribute Value Theory to conflict resolution in groundwater management. Application to the Mancha Oriental groundwater system, Spain

    Science.gov (United States)

    Apperl, B.; Andreu, J.; Karjalainen, T. P.; Pulido-Velazquez, M.

    2014-09-01

    The implementation of the EU Water Framework Directive demands participatory water resource management approaches. Decision making in groundwater quantity and quality management is complex because of the existence of many independent actors, heterogeneous stakeholder interests, multiple objectives, different potential policies, and uncertain outcomes. Conflicting stakeholder interests have been often identified as an impediment to the realization and success of water regulations and policies. The management of complex groundwater systems requires clarifying stakeholders' positions (identifying stakeholders preferences and values), improving transparency with respect to outcomes of alternatives, and moving the discussion from the selection of alternatives towards definition of fundamental objectives (value-thinking approach), what facilitates negotiation. The aims of the study are to analyse the potential of the multi attribute value theory for conflict resolution in groundwater management and to evaluate the benefit of stakeholder incorporation in the different stages of the planning process to find an overall satisfying solution for groundwater management. The research was conducted in the Mancha Oriental groundwater system (Spain), subject to an intensive use of groundwater for irrigation. A complex set of objectives and attributes were defined, and the management alternatives were created by a combination of different fundamental actions, considering different implementation stages and future changes in water resources availability. Interviews were conducted with representative stakeholder groups using an interactive platform, showing simultaneously the consequences of changes of preferences to the alternative ranking. Results show that the acceptation of alternatives depends strongly on the combination of measures and the implementation stages. Uncertainties of the results were notable but did not influence heavily on the alternative ranking. The expected

  5. Contribution of the Multi Attribute Value Theory to conflict resolution in groundwater management. Application to the Mancha Oriental groundwater system, Spain

    Directory of Open Access Journals (Sweden)

    B. Apperl

    2014-09-01

    Full Text Available The implementation of the EU Water Framework Directive demands participatory water resource management approaches. Decision making in groundwater quantity and quality management is complex because of the existence of many independent actors, heterogeneous stakeholder interests, multiple objectives, different potential policies, and uncertain outcomes. Conflicting stakeholder interests have been often identified as an impediment to the realization and success of water regulations and policies. The management of complex groundwater systems requires clarifying stakeholders' positions (identifying stakeholders preferences and values, improving transparency with respect to outcomes of alternatives, and moving the discussion from the selection of alternatives towards definition of fundamental objectives (value-thinking approach, what facilitates negotiation. The aims of the study are to analyse the potential of the multi attribute value theory for conflict resolution in groundwater management and to evaluate the benefit of stakeholder incorporation in the different stages of the planning process to find an overall satisfying solution for groundwater management. The research was conducted in the Mancha Oriental groundwater system (Spain, subject to an intensive use of groundwater for irrigation. A complex set of objectives and attributes were defined, and the management alternatives were created by a combination of different fundamental actions, considering different implementation stages and future changes in water resources availability. Interviews were conducted with representative stakeholder groups using an interactive platform, showing simultaneously the consequences of changes of preferences to the alternative ranking. Results show that the acceptation of alternatives depends strongly on the combination of measures and the implementation stages. Uncertainties of the results were notable but did not influence heavily on the alternative ranking

  6. Effects of sea-level rise on barrier island groundwater system dynamics: ecohydrological implications

    Science.gov (United States)

    Masterson, John P.; Fienen, Michael N.; Thieler, E. Robert; Gesch, Dean B.; Gutierrez, Benjamin T.; Plant, Nathaniel G.

    2014-01-01

    We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater response to island morphology by evaluating changes at three sites. This interdependence can have a profound effect on ecosystem composition in these fragile coastal landscapes under long-term changing climatic conditions.

  7. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

    2003-01-08

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

  8. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    International Nuclear Information System (INIS)

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units

  9. Lockheed Martin Energy Systems, Inc., Groundwater Program Office. Annual report for fiscal year 1994

    International Nuclear Information System (INIS)

    This edition of the Lockheed Martin Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems Groundwater Program Office (GWPO) for fiscal year (FY) 1994. The GWPO is responsible for coordination and oversight for all components of the groundwater programs at the three Oak Ridge facilities [Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants (PGDP and PORTS, respectively.) This report describes the administrative framework of the GWPO including staffing, organization, and funding sources. In addition, summaries are provided of activities involving the Technical Support staff at the five facilities. Finally, the results of basic investigations designed to improve our understanding of the major processes governing groundwater flow and contaminant migration on the Oak Ridge Reservation (ORR) are reported. These investigations are conducted as part of the Oak Ridge Reservation Hydrology and Geology Studies (ORRHAGS) program. The relevance of these studies to the overall remediation responsibilities of Energy Systems is discussed

  10. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation

    NARCIS (Netherlands)

    De Biase, C.; Carminati, A.; Oswald, S.E.; Thullner, M.

    2013-01-01

    Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile l

  11. Quantifying Groundwater and Contaminant Flux in Fractured Rock Systems

    Science.gov (United States)

    Cho, J.; Newman, M. A.; Klammler, H.; Hatfield, K.; Annable, M. D.; Parker, B. L.; Cherry, J.; Kroeker, R.; Pedler, W. H.

    2011-12-01

    Complex hydrogeologic conditions such as fractured and karst bedrock settings pose substantial economic and technical challenges both to the characterization and remediation of DNAPL source zones. The objective of this project is to demonstrate and validate the fractured rock passive flux meter (FRPFM) as new technology for measuring the magnitudes and directions of cumulative water and contaminant fluxes in fractured rock aquifers. The sensor consists of an inflatable core that compresses a reactive fabric against the wall of a borehole and to any water-filled fractures intersected by a borehole. The reactive fabric is designed to intercept and retain target groundwater contaminants (e.g. TCE, DCE, VC); in addition, the fabric releases non-toxic tracers, some of which visibly indicate active fracture location, aperture, orientation, and direction of fracture flow along a borehole, while others quantify cumulative groundwater discharge within the fractures. Field demonstration tests are ongoing at a site in Guelph, Ontario and at the Naval Air Warfare Center (NAWC) in West Trenton, NJ. The tests are comparing multiple technologies including fractured rock passive flux meters, hydrophysical logging, temperature logging, and borehole dilution tests. The technologies are being evaluated based upon their ability to: identify flowing fractures, determine flow direction, and quantify both water and contaminant mass flux in flowing fractures. Laboratory tests comparing the capabilities of each technology were previously performed in two separate flow simulators representing a range of likely field conditions: a planar single fracture simulator (fracture aperture = 0.5 mm; specific discharge range 25 - 2500 cm/day) and a large-scale three-dimensional aquifer box with layered high contrast flow zones simulating fractured zones (physical flow domain 2 m length, 0.5 m width, and 1 m height; specific discharge range 25 to 4000 cm/day (per layer)). Based upon initial field and

  12. The groundwater buffering effect on heat waves and precipitation: coupled groundwater-atmosphere simulations over Europe and North America with a WRF-LEAFHYDRO system.

    Science.gov (United States)

    Miguez-Macho, Gonzalo; Gómez, Breogán; Regueiro-Sanfiz, Sabela; Georgescu, Matei

    2016-04-01

    We present coupled atmosphere-hydrology simulations with the WRF regional climate model and the LEAFHYDRO LSM, including groundwater dynamics. Simulations are carried out for the coupled system for the growing season (February to October) over Europe at 2.5km resolution over land and 20km over the atmosphere. Initial conditions for the land surface, groundwater and rivers are from 10 year off-line simulations, performed continuously over the same domain and period, forced by atmospheric data from the Earth2Observe FP7 project. We show that the presence of a shallow water table over portions of the European continent enhances evapotranspiration in dry periods under increasing atmospheric demand. The impact of the coupling between groundwater and the soil vegetation system on land surface fluxes results in decreases in air temperature and an increase in low level mixing ratios, which under certain convective regimes induces more precipitation. We illustrate for the heat wave of 2003 that models that do not include this groundwater buffering effect may enhance significantly the intensity of such temperature extreme cases. The effect on precipitation is mostly seen over inland areas where warm season convection is important. We show with results of additional simulations over North America, where summer convection over the interior of the continent is very relevant, that the effect of groundwater-enhanced evapotranspiration may have a sizeable impact on climate at the global scale.

  13. EVALUATION OF THE REFUSE MANAGEMENT SYSTEM AT THE JERSEY CITY OPERATION BREAKTHROUGH SITE

    Science.gov (United States)

    This study evaluates the solid waste management system at the Jersey City Operation Breakthrough site and assesses the economic and technical practicality of the system application for future residential complexes. The installation was the first pneumatic trash collection system ...

  14. Evaluating pollution potential of leachate from landfill site, from the Tangier city and its impact on groundwater (Tangier - Northern Morocco

    Directory of Open Access Journals (Sweden)

    A. Bader1

    2014-12-01

    Full Text Available Leachate from municipalities’ landfills represents a potential health risk to ecosystems in generally and human populations in particularly. This study which was taken during year from 2010 to 2011was focused to study the physicochemical evaluation of the leachate from the landfill of the Tangier city (north of Morocco. The analyses of the sampled leachate revealed strong content of biodegradable organic matter (BOD =166.78 mg/l, COD=2397.25 mg/l and BOD/COD=0.069 and of SM (SM = 577.97 mg/l. Contents in nitrate (NO3=199.77 mg/l were also revealed. The discharge of the Tangier city is characterized by an old leachate. The long-term monitoring of the evaluation of physicochemical parameters in polluted leachate, on how environmental conditions change over time, could then lead to models useful in the prediction of natural attenuation in aquifers. Therefore, an adaptable and efficient treatment process must be used to eliminate the wide range of pollutants present in leachate.

  15. Evaluation of an integrated treatment system for MGP site groundwaters

    International Nuclear Information System (INIS)

    Initially studied at bench scale, process sequences comprising dissolved air flotation (DAF), aerobic biological oxidation, air stripping, filtration, and carbon adsorption were demonstrated at pilot scale at a manufactured gas plant (MGP) site in New Jersey. Benzene, toluene, ethylbenzene, and xylenes (BTEX), and polycyclic aromatic hydrocarbons (PAHs) were the primary organics in the groundwater, ranging from levels of 2 to 8 mg/L and 0.3 to 27 mg/L, respectively; chemical oxygen demand (COD) levels were from 60 to 4,500 mg/L. Significant levels of dense, emulsified, and nonaqueous tars and oils were present in the more highly contaminated waters and were effectively removed by DAF. Carbon-based fluidized-bed biological treatment of the DAF subnatant at COD loadings between 2 and 4 g/L-d yielded effluent-soluble COD levels between 40 and 60 mg/L, with both residual BTEX and PAH concentrations ranging from nondetect levels to 0.1 mg/L. Subsequent polishing by filtration and carbon adsorption resulted in additional COD removal and nondetect levels of volatiles and semivolatiles. Air stripping was effective in lieu of the biological process for both volatile organic compound (VOC) and PAH removal

  16. Groundwater thermal-effective injection systems in shallow aquifers: possible alternatives to vertical water wells

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2014-05-01

    Urbanized areas have environmental features that may influence the development of low-enthalpy geothermal systems and the choice of the most suitable among the available (roughly earth-coupled closed-loop and groundwater open-loop type). In particular, if compared to less anthropized areas, some characteristic urban elements require particular attention: underground extensive use, contamination of groundwater, interference between the systems, authorization procedures and planning restrictions, the competition with cogeneration systems and the impact on emissions of pollutants. In this general context, the increasing implementation in several areas of the world of the open-loop groundwater heat pumps technology which discharge into the aquifer for cooling and heating buildings, could potentially cause, even in the short term, a significant environmental impact associated with thermal interference with groundwater, particularly in the shallow aquifers. The discharge of water at different temperatures compared to baseline (warmer in summer and colder in winter) poses a number of problems in relation to the potential functionality of many existing situations of use of the groundwater (drinking water wells, agricultural, industrial, etc.). In addition, there may be cases of interference between systems, especially in the more densely urbanized areas. Appropriate hydrogeological investigations should be performed for the characterization of the main hydrogeological parameters of the subsoil at the considered site in order to minimize the environmental impact of discharges into aquifers. The current Italian legislation related to withdrawals and discharges into aquifers designs a framework suitable for the protection of groundwater and induce deciding the best configuration of the plant with a case by case approach. An increased contact area between the dispersant system and the ground makes it possible to affect a greater volume of aquifer and, consequently, reduce the

  17. A niched Pareto tabu search for multi-objective optimal design of groundwater remediation systems

    Science.gov (United States)

    Yang, Yun; Wu, Jianfeng; Sun, Xiaomin; Wu, Jichun; Zheng, Chunmiao

    2013-05-01

    This study presents a new multi-objective optimization method, the niched Pareto tabu search (NPTS), for optimal design of groundwater remediation systems. The proposed NPTS is then coupled with the commonly used flow and transport code, MODFLOW and MT3DMS, to search for the near Pareto-optimal tradeoffs of groundwater remediation strategies. The difference between the proposed NPTS and the existing multiple objective tabu search (MOTS) lies in the use of the niche selection strategy and fitness archiving to maintain the diversity of the optimal solutions along the Pareto front and avoid repetitive calculations of the objective functions associated with the flow and transport model. Sensitivity analysis of the NPTS parameters is evaluated through a synthetic pump-and-treat remediation application involving two conflicting objectives, minimizations of both remediation cost and contaminant mass remaining in the aquifer. Moreover, the proposed NPTS is applied to a large-scale pump-and-treat groundwater remediation system of the field site at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts, involving minimizations of both total pumping rates and contaminant mass remaining in the aquifer. Additional comparison of the results based on the NPTS with those obtained from other two methods, namely the single objective tabu search (SOTS) and the nondominated sorting genetic algorithm II (NSGA-II), further indicates that the proposed NPTS has desirable computation efficiency, stability, and robustness and is a promising tool for optimizing the multi-objective design of groundwater remediation systems.

  18. Building Management Information Systems to Coordinate Citywide Afterschool Programs: A Toolkit for Cities. Executive Summary

    Science.gov (United States)

    Kingsley, Chris

    2012-01-01

    This executive summary describes highlights from the report, "Building Management Information Systems to Coordinate Citywide Afterschool Programs: A Toolkit for Cities." City-led efforts to build coordinated systems of afterschool programming are an important strategy for improving the health, safety and academic preparedness of children and…

  19. Potential structural barriers to ground-water flow, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional geologic structures designated as potential ground-water flow barriers in an approximately 45,000...

  20. Numerical modeling of groundwater flow in the coastal aquifer system of Taranto (southern Italy)

    Science.gov (United States)

    De Filippis, Giovanna; Giudici, Mauro; Negri, Sergio; Margiotta, Stefano; Cattaneo, Laura; Vassena, Chiara

    2014-05-01

    The Mediterranean region is characterized by a strong development of coastal areas with a high concentration of water-demanding human activities, resulting in weakly controlled withdrawals of groundwater which accentuate the saltwater intrusion phenomenon. The worsening of groundwater quality is a huge problem especially for those regions, like Salento (southern Italy), where a karst aquifer system represents the most important water resource because of the deficiency of a well developed superficial water supply. In this frame, the first 2D numerical model describing the groundwater flow in the karst aquifer of Salento peninsula was developed by Giudici et al. [1] at the regional scale and then improved by De Filippis et al. [2]. In particular, the estimate of the saturated thickness of the deep aquifer highlighted that the Taranto area is particularly sensitive to the phenomenon of seawater intrusion, both for the specific hydrostratigraphic configuration and for the presence of highly water-demanding industrial activities. These remarks motivate a research project which is part of the research program RITMARE (The Italian Research for the Sea), within which a subprogram is specifically dedicated to the problem of the protection and preservation of groundwater quality in Italian coastal aquifers and in particular, among the others, in the Taranto area. In this context, the CINFAI operative unit aims at providing a contribution to the characterization of groundwater in the study area. The specific objectives are: a. the reconstruction of the groundwater dynamic (i.e., the preliminary identification of a conceptual model for the aquifer system and the subsequent modeling of groundwater flow in a multilayered system which is very complex from the hydrostratigraphical point of view); b. the characterization of groundwater outflows through submarine and subaerial springs and the water exchanges with the shallow coastal water bodies (e.g. Mar Piccolo) and the off

  1. Groundwater flow system stability in shield settings a multi-disciplinary approach

    International Nuclear Information System (INIS)

    Within the Deep Geologic Repository Technology Program (DGRTP) several Geoscience activities are focused on advancing the understanding of groundwater flow system evolution and geochemical stability in a Shield setting as affected by long-term climate change. A key aspect is developing confidence in predictions of groundwater flow patterns and residence times as they relate to the safety of a Deep Geologic Repository for used nuclear fuel waste. A specific focus in this regard has been placed on constraining redox stability and groundwater flow system dynamics during the Pleistocene. Attempts are being made to achieve this through a coordinated multi-disciplinary approach intent on; i) demonstrating coincidence between independent geo-scientific data; ii) improving the traceability of geo-scientific data and its interpretation within a conceptual descriptive model(s); iii) improving upon methods to assess and demonstrate robustness in flow domain prediction(s) given inherent flow domain uncertainties (i.e. spatial chemical/physical property distributions; boundary conditions) in time and space; and iv) improving awareness amongst geo-scientists as to the utility various geo-scientific data in supporting a repository safety case. Coordinated by the DGRTP, elements of this program include the development of a climate driven Laurentide ice-sheet model to constrain the understanding of time rate of change in boundary conditions most affecting the groundwater flow domain and its evolution. Further work has involved supporting WRA Paleo-hydrogeologic studies in which constrained thermodynamic analyses coupled with field studies to characterize the paragenesis of fracture infill mineralogy are providing evidence to premise understandings of possible depth of penetration by oxygenated glacial recharge. In parallel. numerical simulations have been undertaken to illustrate aspect of groundwater flow system stability and evolution in a Shield setting. Such simulations

  2. Tafilalet OASIS System: Water Resources Management and Investigation by GIS and Groundwater Flow Model

    Science.gov (United States)

    Bouaamlat, I.; Larabi, A.; Faouzi, M.

    2014-12-01

    The geographical location of Tafilalet oasis system (TOS) in the south of the valley of Ziz (Morocco) offers him a particular advantage on the plane of water potential. The surface water which comes from humid regions of the High Atlas and intercepted by a dam then converged through the watercourse of Ziz towards the plain of the TOS, have created the conditions for the formation of a water table relatively rich with regard to the local climatic conditions (arid climate with recurrent drought). Given the role of the water table in the economic development of the region, a hydrogeological study was conducted to understand the impact of artificial recharge and recurrent droughts on the development of the groundwater reserves of TOS. In this study, a three-dimensional model of groundwater flow was developed for the TOS, to assist the decision makers as a "management tool" in order to assess alternative schemes for development and exploitation of groundwater resources based on the variation of artificial recharge and drought. The results from this numerical investigation of the TOS aquifer shows that the commissioning of the dam to control the flows of extreme flood and good management of water releases, has avoided the losses of irrigation water and consequently the non-overexploitation of the groundwater. So that with one or two water releases per year from the dam of flow rate more than 28 million m3/year it is possible to reconstruct the volume of water abstracted by wells. The idea of lowering water table by pumping wells is not exactly true, as well the development of groundwater abstraction has not prevented the wound of water table in these last years, the pumping wells accompanied more than it triggers the lowering of water table and it is mainly the succession of dry periods causing the decreases of the piezometric level. This situation confirms the important role that groundwater plays as a "buffer" during the drought periods.

  3. Effects of irrigation pumping on the ground-water system in Newton and Jasper Counties, Indiana

    Science.gov (United States)

    Bergeron, Marcel P.

    1981-01-01

    Flow in the ground-water system in Newton and Jasper Counties, Indiana, was simulated in a quasi-three-dimensional model in a study of irrigation use of ground water in the two counties. The ground-water system consists of three aquifers: (1) a surficial coarse sand aquifer known as the Kankakee aquifer, (2) a limestone and dolomite bedrock aquifer, and (3) a sand and gravel bedrock valley aquifer. Irrigation pumping, derived primarily from the bedrock, was estimated to be 34.8 million gallons per day during peak irrigation in 1977. Acreage irrigated with ground water is estimated to be 6,200 acres. A series of model experiments was used to estimate the effects of irrigation pumping on ground-water levels and streamflow. Model analysis indicates that a major factor controlling drawdown due to pumping in the bedrock aquifer are the variations in thickness and in vertical hydraulic conductivity in a semiconfining unit overlying the bedrock. Streamflow was not significantly reduced by hypothetical withdrawals of 12.6 million gallons per day from the bedrock aquifer and 10.3 million gallons per day in the Kankakee aquifer. Simulation of water-level recovery after irrigation pumping indicated that a 5-year period of alternating between increasing pumping and recovery will not cause serious problems of residual drawdown or ground-water mining. 

  4. An Interactive Wireless Communication System for Visually Impaired People Using City Bus Transport

    OpenAIRE

    Hsiao-Lan Wang; Ya-Ping Chen; Chi-Lun Rau; Chung-Huang Yu

    2014-01-01

    Visually impaired people have difficulty accessing information about public transportation systems. Several systems have been developed for assisting visually impaired and blind people to use the city bus. Most systems provide only one-way communication and require high-cost and complex equipment. The purpose of this study is to reduce the difficulties faced by visually impaired people when taking city buses, using an interactive wireless communication system. The system comprised a user modu...

  5. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    Directory of Open Access Journals (Sweden)

    T. Y. Stigter

    2009-01-01

    Full Text Available This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells.

    For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s−1 of high quality groundwater (55% of the regional demand, requiring only disinfection (900 l s−1 or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make

  6. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    Directory of Open Access Journals (Sweden)

    H. Lucas

    2009-07-01

    Full Text Available This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells.

    For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s−1 of high quality groundwater (55% of the regional demand, requiring only disinfection (900 l s−1 or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make

  7. Projecting Impacts of Uncertain Sea Level Variability and Rise on Coast Groundwater Systems: South Florida Applications

    Science.gov (United States)

    Thenault, F.; Karamperidou, C.; Lall, U.; Engel, V.; Kwon, H.; Obeysekera, J.

    2009-12-01

    Sea level change is a major concern for most coastal areas, with impacts on ecosystems, infrastructure, water supply facilities, and aspects of the socioeconomic structure of coastal communities. A potential impact of sea level changes is salinization of groundwater resources, with the attendant need to relocate water supply facilities on one hand, and to address the consequences on sensitive ecosystems on the other. South Florida epitomizes such concerns, due to the growing population, and the need to protect the Everglades National Park (ENP), where a hydrologic and ecologic restoration project is underway. We postulate that the dynamic fluctuations in sea levels, in addition to the projected anthropogenic rise may be important to assess. There is considerable uncertainty as to how much sea level may rise on average in the 21st century. However, fluctuations in sea level due to natural variability in ocean and atmospheric circulation patterns is evident from the long tidal gauge records in the region. These variations occur at the time scales of synoptic events such as hurricanes, and also at seasonal, inter-annual and decadal time scales. The dynamic response to such fluctuations is important for management of the Everglades ecosystem, where the surface and shallow groundwater systems are tightly coupled, and where the ecosystem structure is very sensitive to salinization, particularly if the baseline sea level keeps increasing. For the deeper groundwater system in the region that is used for water supply, the frequency of chronic salinization as pumping increases in response to population growth is a concern. In this initial work, we parametrically explore the response of the ENP groundwater system to changes in sea level at different time scales, and also to potential scenarios for groundwater pumping, via statistical and numerical modeling.

  8. Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil

    OpenAIRE

    Oliveira, Helena M. B.; Cledir Santos; Paterson, R. Russell M.; Norma B. Gusmão; Nelson Lima

    2016-01-01

    Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife—Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration....

  9. Review of passive groundwater remediation systems: Lessons learned Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    One of the proposed solutions for treatment of the contaminated groundwater in the Bear Creek Valley is the installation of a passive treatment system. Such a system would use a reactive media installed in a continuous trench or in a gate as part of a barrier wall and gate system. This report evaluates information on five similar systems [no information was available on two additional systems] and evaluates the shortcomings and the advantages of each. Section 5 provides a short summary of the findings and presents some recommendations on how to avoid some of the common problems encountered with the existing systems.

  10. Policy options and system supplies on socialization standard management of city agricultural laborers

    Institute of Scientific and Technical Information of China (English)

    SUN Yujuan

    2007-01-01

    It is a social system engineering to solve problems of city agricultural laborers, inevitably concerning series of social phenomenon and the social issues of the city and countryside relations, the government function, the city management, the fair efficiency, the population flows, the labor employment, the social security, and so on. Furthermore, it also involves the profoundly political and economic system reforms, the transformation of government functions, the system perfection, legal administration, the social stability in China. The city government, as the direct superintendent of the agricultural laborers, should adopt the conception of the system engineering to construct anew mechanism of the city agricultural laborers socialization standard management, which has a profound theoretical and practical significance.

  11. Effective groundwater modeling of the data-poor Nubian Aquifer System (Chad, Egypt, Libya, Sudan) - use of parsimony and 81Kr-based groundwater ages (Invited)

    Science.gov (United States)

    Voss, C. I.; Soliman, S. M.; Aggarwal, P. K.

    2013-12-01

    Important information for management of large aquifer systems can be obtained via a parsimonious approach to groundwater modeling, in part, employing isotope-interpreted groundwater ages. ';Parsimonious' modeling implies active avoidance of overly-complex representations when constructing models. This approach is essential for evaluation of aquifer systems that lack informative hydrogeologic databases. Even in the most remote aquifers, despite lack of typical data, groundwater ages can be interpreted from isotope samples at only a few downstream locations. These samples incorporate hydrogeologic information from the entire upstream groundwater flowpath; thus, interpreted ages are among the most-effective information sources for groundwater model development. This approach is applied to the world's largest non-renewable aquifer, the transboundary Nubian Aquifer System (NAS) of Chad, Egypt, Libya and Sudan. In the NAS countries, water availability is a critical problem and NAS can reliably serve as a water supply for an extended future period. However, there are national concerns about transboundary impacts of water use by neighbors. These concerns include excessive depletion of shared groundwater by individual countries and the spread of water-table drawdown across borders, where neighboring country near-border shallow wells and oases may dry. Development of a parsimonious groundwater flow model, based on limited available NAS hydrogeologic data and on 81Kr groundwater ages below oases in Egypt, is a key step in providing a technical basis for international discussion concerning management of this non-renewable water resource. Simply-structured model analyses, undertaken as part of an IAEA/UNDP/GEF project, show that although the main transboundary issue is indeed drawdown crossing national boundaries, given the large scale of NAS and its plausible ranges of aquifer parameter values, the magnitude of transboundary drawdown will likely be small and may not be a

  12. Application of Set Pair Analysis Method Based on Entropy Weight in Groundwater Quality Assessment -A Case Study in Dongsheng City, Northwest China

    OpenAIRE

    Li Pei-Yue; Qian Hui; Wu Jian-Hua

    2011-01-01

    Groundwater quality assessment is an essential study which plays important roles in the rational development and utilization of groundwater. Groundwater quality greatly influences the health of local people. However, most traditional water quality comprehensive assessment methods which have complicated formulas are difficult to apply in water quality assessment. In this paper, a novel method for groundwater quality assessment called set pair analysis was introduced and entropy weight was assi...

  13. Smart Sentinel: Monitoring and Prevention System in the Smart Cities

    OpenAIRE

    Sánchez Bernabeu, José Manuel; Berná Martínez, José Vicente; Maciá Pérez, Francisco

    2014-01-01

    Today, faced with the constant rise of the Smart cities around the world, there is an exponential increase of the use and deployment of information technologies in the cities. The intensive use of Information Technology (IT) in these ecosystems facilitates and improves the quality of life of citizens, but in these digital communities coexist individuals whose health is affected developing or increasing diseases such as electromagnetic hypersensitivity. In this paper we present a monitoring, d...

  14. Ground-water quality at the Management Systems Evaluation Area (MSEA) near Princeton, Minnesota, 1991

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.; Lamb, J.A.; Guo, Laodong

    1993-01-01

    The northern cornbelt sand-plains Management Systems Evaluation Area (MSEA) program is a multiagency, multistate initiative to evaluate the effects of modified and prevailing fanning systems on water quality in a sand-plain area in Minnesota and at satellite areas in North and South Dakota, and Wisconsin (Delin and others, 1992). The primary objective of the northern cornbelt sand-plains MSEA is to evaluate the effects of ridge-tillage practices in a corn and soybean farming system on ground-water quality. The Minnesota MSEA program is a cooperative study primarily between the U.S. Department of Agriculture-Agricultural Research Service, the University of Minnesota Soil Science Department, and the U.S. Geological Survey. The Minnesota Pollution Control Agency and the Department of Geology and Geophysics at the University of Minnesota are also cooperating in the evaluation of ground-water quality at the MSEA.

  15. Ground-water quality at the Management Systems Evaluation Area near Princeton, Minnesota, 1991-92

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.; Lamb, J.A.; Guo, Lei

    1993-01-01

    The northern cornbelt sand-plains Management Systems Evaluation Area (MSEA) program is a multiagency, multistate initiative to evaluate the effects of modified and prevailing farming systems on water quality in a sand-plain area in Minnesota and at satellite areas in North and South Dakota, and Wisconsin. The primary objective of Minnesota MSEA is to evaluate the effects of ridge-tillage practices in a corn and soybean farming system on ground-water quality. The Minnesota MSEA program is a cooperative study primarily between the U.S. Department of Agriculture Agricultural Research Service, the University of Minnesota Soil Science Department, and the U.S. Geological Survey. The Minnesota Pollution Control Agency and the Department of Geology and Geophysics at the University of Minnesota are also cooperating in the evaluation of groundwater quality at the MSEA.

  16. Multivariate analysis of the heterogeneous geochemical processes controlling arsenic enrichment in a shallow groundwater system.

    Science.gov (United States)

    Huang, Shuangbing; Liu, Changrong; Wang, Yanxin; Zhan, Hongbin

    2014-01-01

    The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phosphorus, iron, manganese, fluorescence index, pH, and siderite saturation. These data suggest that reductive dissolution of iron/manganese oxides, phosphate-competitive adsorption, pH-dependent desorption, and siderite precipitation could integrally affect arsenic concentration. Analysis of the MLR models indicated that reductive dissolution of iron(III) was primarily responsible for arsenic mobilization in groundwaters with low arsenic concentration. By contrast, for groundwaters with high arsenic concentration (i.e., > 170 μg/L), reductive dissolution of iron oxides approached a dynamic equilibrium. The desorption effects from phosphate-competitive adsorption and the increase in pH exhibited arsenic enrichment superior to that caused by iron(III) reductive dissolution as the groundwater chemistry evolved. The inhibition effect of siderite precipitation on arsenic mobilization was expected to exist in groundwater that was highly saturated with siderite. The results suggest an evolutionary dominance of specific geochemical process over other factors controlling arsenic concentration, which presented a heterogeneous distribution in aquifers. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file. PMID:24345245

  17. EUGRIS: ''European Substainable Land and Groundwater Management Information System''

    Energy Technology Data Exchange (ETDEWEB)

    Frauenstein, J. [Federal Environmental Agency (UBA), Berlin (Germany)

    2003-07-01

    The presentation outlines and Accompanying Measure with the FP 5 to develop an web based EUropean Sustainable Land and GRoundwater Management Information System information system (EUGRIS). The management of contaminated land and groundwater requires an interdisciplinary approach and a considerable amount of supporting technical information and knowledge. EUGRIS will provide a generally available comprehensive and overarching information and innovation resource, to support both research and practical contaminated land and groundwater management. EUGRI is a gateway to provide a 'one stop shop' for information provided by research projects, legislation, standards, best practice and other technical guidance and policy/regulatory publications from the EC, participating Member and Accession States and from various international networks dealing with groundwater and land management issues. Different types of user can access information through different windows according to their needs. EUGRIS will provide its visitors with summary information (digests) and links to sources of more detailed and/or original information in a scaleable holistic and contexturally meaningful way. EUGRIS is being built in three stages: the design of the information system, the development of its software implementation, and the population of the system with information. The presentation is focussed on the concept of the development of the information system with the individual work packages. In the second part of the lecture in particular the work procedures are presented for the content wise replenishment by EUGRIS. The data collation for the proven pilot countries and the production of a European research data base, which opens contents and results of European-wide locked and current projects, form the emphasis thereby. (orig.)

  18. Groundwater Flow Systems and Their Response to Climate Change: A Need for a Water-System View Approach

    Directory of Open Access Journals (Sweden)

    Joel J. Carrillo-Rivera

    2012-01-01

    Full Text Available Problem statement: The interest in early hydrogeological studies was the aquifer unit, as it is the physical media that stores and permits groundwater transfers from the recharge zone to the discharge zone, making groundwater available to boreholes for water extraction. Approach: Recently, the aquifer concept has been complemented by the groundwater flow system theory, where groundwater may be defined by local, intermediate and regional flow systems. This implies that groundwater may travel from one aquifer unit to another aquifer unit (or more located above or below the former. Water in a local flow system takes months or several years to travel from the recharge to the discharge zone. These flows usually transfer the best natural quality water, so a reduction in precipitation would lessen recharge and diminish stored water, making them more vulnerable to contamination and variability in climatic conditions. Thus, there is a need to define local flows and to enhance actions to protect them from contamination and inefficient extraction. Results: In contrast to local flows, intermediate and regional flows travel from a region, or country, into another, with their recharge processes usually taking place in a zone located far away from the discharge zone (natural or by boreholes. There is a need of groundwater flow systems evaluation by means of an integrated wide system-view analysis of partial evidence represented by surface (soil and vegetation covers as well as hydraulic, isotopic and chemical groundwater characterization in the related geological media where the depth of actual basement rock is paramount as well as discharge areas. The flow system definition may assist in extraction management strategies to control related issues as subsidence, obtained the water quality change, desiccation of springs and water bodies, soil erosion, flooding response, contamination processes in recharge areas, among others; many of which could be efficiently

  19. Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.

  20. Transport of Nitrogen and Phosphorus from Onsite Wastewater Treatment Systems to Shallow Groundwater

    Science.gov (United States)

    Toor, G.

    2014-12-01

    The knowledge about the nutrients transport from the vadose zone of onsite wastewater treatment systems (commonly called septic systems) is crucial to protect groundwater quality as 25% of US population uses septic systems to discharge household wastewater. For example, our preliminary data showed that about 47% of applied water was recovered at 60-cm below drainfield of septic systems. This implies that contaminants present in wastewater, if not attenuated in the vadose zone, can be transported to shallow groundwater. This presentation will focus on the biophysical and hydrologic controls on the transport of nitrogen (N) and phosphorus (P) from the vadose of two conventional (drip dispersal, gravel trench) and an advanced (with aerobic and anaerobic medias) system. These systems were constructed using two rows of drip pipe (37 emitters/mound) placed 0.3 m apart in the center of 6 m x 0.6 m drainfield. Each system received 120 L of wastewater per day. During 20-month period (May 2012 to December 2013), soil-water samples were collected from the vadose zone using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected from piezometers installed at 3-3.30 m depth below the drainfield. A complimentary 1-year study using smaller drainfields (0.5 m long, 0.9 m wide, 0.9 m high) was conducted to obtain better insights in the vadose zone. A variety of instruments (multi-probe sensors, suction cup lysimeters, piezometers, tensiometers) were installed in the vadose zones. Results showed that nitrification controlled N evolution in drainfield and subsequent transport of N plumes (>10 mg/L) into groundwater. Most of the wastewater applied soluble inorganic P (>10 mg/L) was quickly attenuated in the drainfield due to fixation (sorption, precipitation) in the vadose zone (95% N from wastewater, but was less effective at removing P. This presentation will conclude with importance of better septic system design and soil

  1. Analysis of Ground-Water Flow in the Madison Aquifer using Fluorescent Dyes Injected in Spring Creek and Rapid Creek near Rapid City, South Dakota, 2003-04

    Science.gov (United States)

    Putnam, Larry D.; Long, Andrew J.

    2007-01-01

    The Madison aquifer, which contains fractures and solution openings in the Madison Limestone, is used extensively for water supplies for the city of Rapid City and other suburban communities in the Rapid City, S. Dak., area. The 48 square-mile study area includes the west-central and southwest parts of Rapid City and the outcrops of the Madison Limestone extending from south of Spring Creek to north of Rapid Creek. Recharge to the Madison Limestone occurs when streams lose flow as they cross the outcrop. The maximum net loss rate for Spring and Rapid Creek loss zones are 21 and 10 cubic feet per second (ft3/s), respectively. During 2003 and 2004, fluorescent dyes were injected in the Spring and Rapid Creek loss zones to estimate approximate locations of preferential flow paths in the Madison aquifer and to measure the response and transit times at wells and springs. Four injections of about 2 kilograms of fluorescein dye were made in the Spring Creek loss zone during 2003 (sites S1, S2, and S3) and 2004 (site S4). Injection at site S1 was made in streamflow just upstream from the loss zone over a 12-hour period when streamflow was about equal to the maximum loss rate. Injections at sites S2, S3, and S4 were made in specific swallow holes located in the Spring Creek loss zone. Injection at site R1 in 2004 of 3.5 kilograms of Rhodamine WT dye was made in streamflow just upstream from the Rapid Creek loss zone over about a 28-hour period. Selected combinations of 27 wells, 6 springs, and 3 stream sites were monitored with discrete samples following the injections. For injections at sites S1-S3, when Spring Creek streamflow was greater than or equal to 20 ft3/s, fluorescein was detected in samples from five wells that were located as much as about 2 miles from the loss zone. Time to first arrival (injection at site S1) ranged from less than 1 to less than 10 days. The maximum fluorescein concentration (injection at site S1) of 120 micrograms per liter (ug/L) at well CO

  2. Quantitative evaluation of flow systems, groundwater recharge and transmissivities using environmental tracers

    International Nuclear Information System (INIS)

    This chapter provides an overview of the basic concepts and formulations on the compartmental (mixing-cell) approach for interpretation of isotope and natural tracer data to arrive at quantitative estimates related to groundwater systems. The theoretical basis of the models and the specific solution algorithms used are described. The application of this approach to field cases are described as illustrative examples. Results of sensitivity analyses of the model to different parameters are provided. (author). 81 refs, 13 figs, 8 tabs

  3. Research on optimum management model for Dalian groundwater resource system%大连市地下水资源优化管理模型

    Institute of Scientific and Technical Information of China (English)

    王国利; 周惠成

    2001-01-01

    This paper gives a sketchy introduction to the current status andbackground of saline intrusion in Dialian City. According to the common problem of saline intrusion existing in the coastal areas around the globe and problems in the model of response-matrix of groundwater level draw-down corresponding to unit pulse when it is used to deal with the problem of saline intrusion, it details the nece ssity and possibility of the establishment of response-matrix of saline intrusi on corresponding to unit pulse. Based on the actual practice of groundwater deve lopment of Dalian City, this paper develops two response matrixes: matrix of unit pulse to saline intrusion at boundary nodes of computation groundwater area along the coast and that of unit pulse to groundwater draw-down at internal nodes . After the combination of these two matrixes with simulation model of groundwater flow, it establishes a new optimization model of the studied groundwater system. Two optimal schemes were obtained from the model. They can be used as a refe rence to guide future groundwater development in Dalian City and to solve the si milar problems of saline intrusion along the coastal areas in the world.%介绍了大连市海水入侵现状及产生背景;针对国内外沿海地区普遍存在的海水入侵问题,分析了实践中广泛采用的单位脉冲-水位降深响应矩阵在解决海水入侵问题中存在的不足,阐述了建立单位脉冲-海水入侵响应矩阵的必要性和可行性.以大连市地下水资源开发为实际背景,分别建立了沿海边界节点的单位脉冲-海水入侵响应矩阵和研究区内部节点的单位脉冲-水位降深响应矩阵,并使二者与地下水水流模拟模型相结合,构造了地下水系统优化管理模型.根据大连市地下水资源的开发现状提出了2个方案的优化管理,可指导大连市未来的地下水开发;该模型还可用于解决国内外沿海地区类似的海水入侵问题.

  4. Towards a comprehensive system of methodological considerations for cities' climate targets

    International Nuclear Information System (INIS)

    Climate targets for cities abound. However, what these targets really imply is dependent on a number of decisions regarding system boundaries and methods of calculation. In order to understand and compare cities' climate targets, there is a need for a generic and comprehensive framework of key methodological considerations. This paper identifies eight key methodological considerations for the different choices that can be made when setting targets for GHG emissions in a city and arranges them in four categories: temporal scope of target, object for target setting, unit of target, and range of target. To explore how target setting is carried out in practice, the climate targets of eight European cities were analysed. The results showed that these targets cover only a limited part of what could be included. Moreover, the cities showed quite limited awareness of what is, or could be, include in the targets. This makes comparison and benchmarking between cities difficult. - Highlights: • Cities' climate targets are almost impossible to compare and benchmark. • There is a need for consistent protocols and frameworks supporting target setting. • A framework with key methodological considerations for cities' climate targets is identified. • The framework is used to explore the climate targets for eight European cities. • The difference between production- and consumption based accounting is illustrated in a new way

  5. Groundwater processes, sandplain seeps and interactions with regional aquifer systems in South-Western Australia

    Science.gov (United States)

    George, Richard J.

    1992-06-01

    Groundwater systems were studied in the 4200 ha East Belka catchment in a dryland farming area 300 km east of Perth, W.A., to determine the cause of sandplain seeps. Detailed investigations were carried out on a 200 ha hillslope to determine the characteristics of a shallow aquifer system responsible for the salinization of previously productive agricultural soils. The impact of the shallow aquifer on the regional system was investigated. A shallow (less than 8 m), perched, perennial aquifer was encountered in the deep sandplain materials. Groundwater discharge of about 1000 kl year -1 from the perched aquifer maintained saline soils across a 5 ha sandplain seep. Perching is due to the decreased permeability, geometry and silicification of the top of the mottled and pallid zones, and the convergence of perched ground waters near the seep. Slug test measurements suggest that the sandplain soils have a relatively low hydraulic conductivity (0.15 m day -1). Water qualities in the perched aquifer ranged from brackish to saline (3000-8000 mg l -1 TDS), peaking in the salt-affected area (12 000 mg l -1 TDS). High nitrate and Cl/Br ratios occur in the shallow aquifer and in the regional ground water beneath the sandplain seep. Recharge to the deep aquifer takes place throughout the catchment, but is greatest beneath the sandplain seep, where a perennial groundwater mound occurs. Recharge to the regional aquifer was estimated to be 6 to 15 mm year -1, increasing to between 20 and 60 mm year -1 beneath the seep. By contrast, less than 0.3 mm year -1 is able to leave the catchment as regional groundwater flow. Water-levels in the deep bores are consequently rising by 0.05 to 0.25 m year -1. Recharge to the deep aquifer beneath the seep, and low groundwater gradients, create the potential for groundwater flow to take place beneath the topographic divide and towards the adjoining catchment. However, as the vertical flux to the aquifer is two orders of magnitude greater than

  6. On the Design of Simulation System of Intelligent City Taxi Call

    OpenAIRE

    Xudong Zhu; Zhiyun Hu

    2013-01-01

    The city taxi system is characterized as inconvenience information interaction with passengers and regional imbalance. With the development of wireless network technology, VANET can realize the real-time information interaction between taxi and passengers. Thus to conduct reasonable taxi scheduling and improve the efficiency of the taxi system. In order to validate the effectiveness of intelligent call system of city taxi which adopts the wireless network technology, this study provides a tax...

  7. Automated system for monitoring groundwater levels at an experimental low-level waste disposal site

    International Nuclear Information System (INIS)

    One of the major problems with disposing of low-level solid wastes in the eastern United States is the potential for water-waste interactions and leachate migration. To monitor groundwater fluctuations and the frequency with which groundwater comes into contact with a group of experimental trenches, work at Oak Ridge National Laboratory's Engineered Test Facility (ETF) has employed a network of water level recorders that feed information from 15 on-site wells to a centralized data recording system. The purpose of this report is to describe the monitoring system being used and to document the computer programs that have been developed to process the data. Included in this report are data based on more than 2 years of water level information for ETF wells 1 through 12 and more than 6 months of data from all 15 wells. The data thus reflect both long-term trends as well as a large number of short-term responses to individual storm events. The system was designed to meet the specific needs of the ETF, but the hardware and computer routines have generic application to a variety of groundwater monitoring situations. 5 references

  8. MODFLOW-USG model of groundwater flow in the Wood River Valley aquifer system in Blaine County, Idaho

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A three-dimensional numerical groundwater flow model (MODFLOW-USG) was developed for the Wood River Valley (WRV) aquifer system, south-central Idaho, to evaluate...

  9. Summer Mean Enhanced Vegetation Index for the Diamond Valley Flow System Groundwater Discharge Area, Central Nevada, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central...

  10. Semi-analytical solution of groundwater flow in a leaky aquifer system subject to bending effect

    Science.gov (United States)

    Yu, Chia-Chi; Yang, Shaw-Yang; Yeh, Hund-Der

    2013-04-01

    SummaryThe bending of aquitard like a plate due to aquifer pumping and compression is often encountered in many practical problems of subsurface flow. This reaction will have large influence on the release of the volume of water from the aquifer, which is essential for the planning and management of groundwater resources in aquifers. However, the groundwater flow induced by pumping in a leaky aquifer system is often assumed that the total stress of aquifer maintains constant all the time and the mechanical behavior of the aquitard formation is negligible. Therefore, this paper devotes to the investigation of the effect of aquitard bending on the drawdown distribution in a leaky aquifer system, which is obviously of interest in groundwater hydrology. Based on the work of Wang et al. (2004) this study develops a mathematical model for investigating the impacts of aquitard bending and leakage rate on the drawdown of the confined aquifer due to a constant-rate pumping in the leaky aquifer system. This model contains three equations; two flow equations delineate the transient drawdown distributions in the aquitard and the confined aquifer, while the other describes the vertical displacement in response to the aquitard bending. For the case of no aquitard bending, this new solution can reduce to the Hantush Laplace-domain solution (Hantush, 1960). On the other hand, this solution without the leakage effect can reduce to the time domain solution of Wang et al. (2004). The results show that the aquifer drawdown is influenced by the bending effect at early time and by the leakage effect at late time. The results of sensitivity analysis indicate that the aquifer compaction is sensitive only at early time, causing less amount of water released from the pumped aquifer than that predicted by the traditional groundwater theory. The dimensionless drawdown is rather sensitive to aquitard's hydraulic conductivity at late time. Additionally, both the hydraulic conductivity and

  11. Numerical evaluation of the groundwater drainage system for underground storage caverns

    Science.gov (United States)

    Park, Eui Seob; Chae, Byung Gon

    2015-04-01

    A novel concept storing cryogenic liquefied natural gas in a hard rock lined cavern has been developed and tested for several years as an alternative. In this concept, groundwater in rock mass around cavern has to be fully drained until the early stage of construction and operation to avoid possible adverse effect of groundwater near cavern. And then rock mass should be re-saturated to form an ice ring, which is the zone around cavern including ice instead of water in several joints within the frozen rock mass. The drainage system is composed of the drainage tunnel excavated beneath the cavern and drain holes drilled on rock surface of the drainage tunnel. In order to de-saturate sufficiently rock mass around the cavern, the position and horizontal spacing of drain holes should be designed efficiently. In this paper, a series of numerical study results related to the drainage system of the full-scale cavern are presented. The rock type in the study area consists mainly of banded gneiss and mica schist. Gneiss is in slightly weathered state and contains a little joint and fractures. Schist contains several well-developed schistosities that mainly stand vertically, so that vertical joints are better developed than the horizontals in the area. Lugeon tests revealed that upper aquifer and bedrock are divided in the depth of 40-50m under the surface. Groundwater level was observed in twenty monitoring wells and interpolated in the whole area. Numerical study using Visual Modflow and Seep/W has been performed to evaluate the efficiency of drainage system for underground liquefied natural gas storage cavern in two hypothetically designed layouts and determine the design parameters. In Modflow analysis, groundwater flow change in an unconfined aquifer was simulated during excavation of cavern and operation of drainage system. In Seep/W analysis, amount of seepage and drainage was also estimated in a representative vertical section of each cavern. From the results

  12. Test of two hypotheses explaining the size of populations in a system of cities

    CERN Document Server

    Vitanov, Nikolay K

    2015-01-01

    Two classical hypotheses are examined about the population growth in a system of cities: Hypothesis 1 pertains to Gibrat's and Zipf's theory which states that the city growth-decay process is size independent; Hypothesis 2 pertains to the so called Yule process which states that the growth of populations in cities happens when (i) the distribution of the city population initial size obeys a log-normal function, (ii) the growth of the settlements follows a stochastic process. The basis for the test is some official data on Bulgarian cities at various times. This system was chosen because (i) Bulgaria is a country for which one does not expect biased theoretical conditions; (ii) the city populations were determined rather precisely. The present results show that: (i) the population size growth of the Bulgarian cities is size dependent, whence Hypothesis 1 is not confirmed for Bulgaria; (ii) the population size growth of Bulgarian cities can be described by a double Pareto log-normal distribution, whence Hypothe...

  13. Formation and modelling assessment perculiarities of the Quaternary aquifer system groundwater resources in the Southeastern part of Lithuania

    OpenAIRE

    Štuopis, Anicetas

    2014-01-01

    The aim of the research was accomplish an assessment of the groundwater resources (budget, distribution and formation) and reveal their formation peculiarities in the Quaternary aquifer system of the southeaster part of Lithuania. Substantiation and formulation of schematization principles of the Quaternary multi-aquifer system for conceptualization of groundwater flow model based on the complex of lithologic, hydrogeochemistry, isotopic and hydraulic data have been developed by this disserta...

  14. On Index System and Quantitative Assessment of Eco-cities:A Case Study on Urban Agglomeration of the Yangtze Delta

    Institute of Scientific and Technical Information of China (English)

    Xiao Yali; Jiang Dahe; Wang Dan

    2007-01-01

    Urban agglomeration of the Yangtze Delta(UAYD),one of the most developed regions of China,has witnessed an increasing prevalence in building ecological cities when the ecological cities are pursued by many modem cities,and great achievements have been made in this regard.It is inevitable,however,that certain problems exist during the construction of ecological city,which include but not limited to non-harmonious development of urban complex ecosystem,and the difficulty in quantifying eco-city construction or incomplete quantification in assessing the construction of present and future eco-city.Based on the analysis on social-economic conditions and regional conditions of the UAYD,this paper attempts to set up an index system of eco-cities combining with local characteristics,and to adopt the indices of eco-city,urban harmony,and eco-city colligate to evaluate the ecological level,urban harmonious development and eco-city construction of cities within the UAYD.Results indicate that among 15 cities in UAYD,Suzhou City ranks the highest in terms of eco-city construction,whereas Nantong ranks relatively lower;sustainable eco-city construction is possible only when cities are developed in every respect of harmony.

  15. Groundwater flow and mixing in a wetland–stream system

    DEFF Research Database (Denmark)

    Karan, Sachin; Engesgaard, Peter Knudegaard; Zibar, Majken Caroline Looms;

    2013-01-01

    We combined electrical resistivity tomography (ERT) on land and in a stream with zone-based hydraulic conductivities (from multi-level slug testing) to investigate the local geological heterogeneity of the deposits in a wetland–stream system. The detailed geology was incorporated into a numerical...... the top of the aquifer and immediately underneath the streambed no NO3- was detected deeper within the aquifer. An inverse relationship between NO3- and SO42- suggests that pyrite oxidation takes place in the deeper parts of the aquifer. Simulated flow path lines showed very different origins for...

  16. Evolution of the groundwater system under the impacts of human activities in middle reaches of Heihe River Basin (Northwest China) from 1985 to 2013

    Science.gov (United States)

    Mi, Lina; Xiao, Honglang; Zhang, Jianming; Yin, Zhenliang; Shen, Yongping

    2016-06-01

    Investigation of the evolution of the groundwater system and its mechanisms is critical to the sustainable management of water in river basins. Temporal and spatial distributions and characteristics of groundwater have undergone a tremendous change with the intensity of human activities in the middle reaches of the Heihe River Basin (HRB), the second largest arid inland river basin in northwestern China. Based on groundwater observation data, hydrogeological data, meteorological data and irrigation statistical data, combined with geostatistical analyses and groundwater storage estimation, the basin-scaled evolution of the groundwater levels and storage (from 1985 to 2013) were investigated. The results showed that the unbalanced allocation of water sources and expanded cropland by policy-based human activities resulted in the over-abstraction of groundwater, which induced a general decrease in the water table and groundwater storage. The groundwater level has generally fallen from 4.92 to 11.49 m from 1985 to 2013, especially in the upper and middle parts of the alluvial fan (zone I), and reached a maximum depth of 17.41 m. The total groundwater storage decreased by 177.52 × 108 m3; zone I accounted for about 94.7 % of the total decrease. The groundwater balance was disrupted and the groundwater system was in a severe negative balance; it was noted that the groundwater/surface-water interaction was also deeply affected. It is essential to develop a rational plan for integration and management of surface water and groundwater resources in the HRB.

  17. Evolution of the groundwater system under the impacts of human activities in middle reaches of Heihe River Basin (Northwest China) from 1985 to 2013

    Science.gov (United States)

    Mi, Lina; Xiao, Honglang; Zhang, Jianming; Yin, Zhenliang; Shen, Yongping

    2016-01-01

    Investigation of the evolution of the groundwater system and its mechanisms is critical to the sustainable management of water in river basins. Temporal and spatial distributions and characteristics of groundwater have undergone a tremendous change with the intensity of human activities in the middle reaches of the Heihe River Basin (HRB), the second largest arid inland river basin in northwestern China. Based on groundwater observation data, hydrogeological data, meteorological data and irrigation statistical data, combined with geostatistical analyses and groundwater storage estimation, the basin-scaled evolution of the groundwater levels and storage (from 1985 to 2013) were investigated. The results showed that the unbalanced allocation of water sources and expanded cropland by policy-based human activities resulted in the over-abstraction of groundwater, which induced a general decrease in the water table and groundwater storage. The groundwater level has generally fallen from 4.92 to 11.49 m from 1985 to 2013, especially in the upper and middle parts of the alluvial fan (zone I), and reached a maximum depth of 17.41 m. The total groundwater storage decreased by 177.52 × 108 m3; zone I accounted for about 94.7 % of the total decrease. The groundwater balance was disrupted and the groundwater system was in a severe negative balance; it was noted that the groundwater/surface-water interaction was also deeply affected. It is essential to develop a rational plan for integration and management of surface water and groundwater resources in the HRB.

  18. Computation of average seasonal groundwater flows in phreatic aquifer-river system

    Science.gov (United States)

    Rastogi, A. K.

    1991-03-01

    A simplified approach to reduce a time-variant problem into a steady-state problem is considered by averaging the groundwater head over a seasonal period. This averaging is applicable to those areas (countries) where a year can be divided into three distinct monsoon, pre- and post-monsoon periods and where the annual watertable variation is not large compared with the saturated aquifer thickness. This scheme is applied to solve a two-dimensional problem using a standard finite difference technique of solution. The phreatic aquifer system considered is bounded by two reservoirs and an impervious base. It also contains a partially penetrating river near the centre of the aquifer. Periodic contribution to the phreatic aquifer from the higher head reservoir, groundwater recharge from river seepage, net-free surface flux and the total groundwater flow towards lower head reservoir are worked out. These terms aid in estimating the net volume of ground water that is available from the aquifer system in a particular seasonal period.

  19. Effects of heterogeneous porous geology on ground-water flow and transport modeling in multiaquifer systems

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, D.E.; Duffield, G.M.; Buss, D.R.; Wadsworth, T.D.

    1989-01-01

    A three-dimensional model was used to investigate the influence of simple heterogeneities and discontinuities in an acquitard on ground-water flow and transport in a 17 mi/sup 2/ region of Savannah River Plant (SRP) where geologic and hydrologic control exists. Simple ''holes'' and faults in the confining bed were studied. These features produced variations in the distribution of hydraulic heads that could be difficult to detect without closely spaced monitoring wells in the vicinity of the feature. In terms of solute transport, however, significant changes in flow directions and rates resulted from the presence of the feature. The simulations showed that such heterogeneities and discontinuities can reverse flow directions near the feature and significantly reduce contaminant travel times to lower aquifers. The results of these model simulations indicate the importance of adequate geologic control for the accurate prediction of ground-water flowpaths in multiaquifer systems with implications for ground-water monitoring strategies, remedial system design, and risk assessments. 18 refs., 18 figs.

  20. Towards a System of Open Cities in China: Home Prices, FDI Flows and Air Quality in 35 Major Cities

    OpenAIRE

    Siqi Zheng; Kahn, Matthew E.; Hongyu Liu

    2009-01-01

    Over the last thirty years, China's major cities have experienced significant income and population growth. Much of this growth has been fueled by urban production spurred by world demand. Using a unique cross-city panel data set, we test several hypotheses concerning the relationship between home prices, wages, foreign direct investment and ambient air pollution across major Chinese cities. Home prices are lower in cities with higher ambient pollution levels. Cities featuring higher per-capi...

  1. Using 3H and 14C to constrain the degree of closed-system dissolution of calcite in groundwater

    International Nuclear Information System (INIS)

    Highlights: ► δ13C and 87Sr/86Sr in Ovens groundwater imply substantial carbonate dissolution. ► 3H vs. 14C imply negligible closed-system calcite dissolution. ► Calcite dissolution largely open-system process. ► Recognising open-system calcite dissolution important for dating deeper groundwater. - Abstract: This study uses 3H concentrations, 14C activities (a14C), 87Sr/86Sr ratios, and δ13C values to constrain calcite dissolution in groundwater from the Ovens catchment SE Australia. Taken in isolation, the δ13C values of dissolved organic C (DIC) and 87Sr/86Sr ratios in the Ovens groundwater imply that there has been significant calcite dissolution. However, the covariance of 3H and 14C and the calculated initial 14C activities (a014C) imply that most groundwater cannot have dissolved more than 20% of 14C-free calcite under closed-system conditions. Rather, calcite dissolution must have been partially an open-system process allowing 13C and 14C to re-equilibrate with CO2 in the unsaturated zone. Recognising that open-system calcite dissolution has occurred is important for dating deeper groundwater that is removed from its recharge area in this and other basins. The study is one of the first to use 14C and 3H to constrain the degree of calcite dissolution and illustrates that it is a valuable tool for assessing geochemical processes in recharge areas

  2. Groundwater and stream E. coli concentrations in coastal plain watersheds served by onsite wastewater and a municipal sewer treatment system.

    Science.gov (United States)

    Humphrey, Charles; Finley, Algernon; O'Driscoll, Michael; Manda, Alex; Iverson, Guy

    2015-01-01

    The goal of this study was to determine if onsite wastewater treatment systems (OWS) were influencing groundwater and surface water Escherichia coli concentrations in a coastal plain watershed. Piezometers for groundwater monitoring were installed at four residences served by OWS and five residences served by a municipal wastewater treatment system (MWS). The residences were located in two different, but nearby (<3 km), watersheds. Effluent from the four septic tanks, groundwater from piezometers, and the streams draining the OWS and MWS watersheds were sampled on five dates between September 2011 and May 2012. Groundwater E. coli concentrations and specific conductivity were elevated within the flow path of the OWS and near the stream, relative to other groundwater sampling locations in the two watersheds. Groundwater discharge in the OWS watershed could be a contributor of E. coli to the stream because E. coli concentrations in groundwater at the stream bank and in the stream were similar. Stream E. coli concentrations were higher for the OWS in relation to MWS watersheds on each sampling date. Water quality could be improved by ensuring OWS are installed and operated to maintain adequate separation distances to water resources. PMID:26540548

  3. The Development of the Model for the Park and Ride System in the Major Lithuanian Cities

    Directory of Open Access Journals (Sweden)

    Vytautas Palevičius

    2014-10-01

    Full Text Available Park and Ride (P&R is the original transport system of public passengers, acting as a traditional supplement of public transport. The system is becoming widely popular in European cities. The central core of this system is composed of parking facilities in the specified parking areas at the approaches to the city with connections to public transport or special buses that allow people reach the city centre. The P&R system is based on a reduction in car density in the city centre as well as on a decrease in traffic noise, air and visual pollution. Furthermore, the P&R system is an economical and time-saving way to travel. This article has been prepared according to structural support provided by the European Union (EU for the purpose of developing the P&R system in five major Lithuanian cities – Vilnius, Kaunas, Klaipeda, Siauliai and Panevezys. Therefore, this paper is aimed at the development and application of the theoretical model of the P&R system to Lithuanian cities according to external good and bad practice.

  4. Interaction between groundwater and surface water in a coastal wetlands system in South Western Australia

    International Nuclear Information System (INIS)

    The Lake Warden wetlands system is located in Esperance, in South Western Australia and is formed within a basement rock depression. The wetlands system is connected to a certain extent to local and regional groundwater flow systems. As part of a larger investigation into the hydraulics of the wetlands system, temporal and spatial variations of the isotopic and chemical composition of water bodies within the system were investigated. Lake Warden is the largest surface water feature in the system, and is hypersaline with chloride concentrations ranging from 26,000 to 46,000 mgL-1. The chloride concentrations of groundwater taken from within the boundaries of the wetland system range widely from 7000 to 139000 mgL-1. Creeks feeding into the wetlands range from brackish to saline (4600-19,600 mgL-1) while groundwater taken from inland of the system is fresh to brackish (129-5500 mgL-1). The coastal aquifer is the freshest water body in the region with chloride concentrations ranging from 96 to 538 mgL-1. Groundwater samples from inland and from the coastal plain are depleted in heavy isotopes, ranging from -31 per mille to -22 per mille (VSMOW) and -6.8 per mille to -5.3 per mille for δ2H and δ18O respectively. In contrast, samples from Lake Warden itself are the most enriched in heavy isotopes with values ranging from +17.4 per mille to +29.40 per mille and +0.65 per mille to +3.35 per mille for δ2H and δ18O, respectively. The values of the isotopic composition of deuterium (δ2H) and oxygen-18 (δ18O) reported for all samples have been corrected for salt effect. The activity-corrected stable isotopic data (corrected for salt effect) are plotted in Figure 2. The isotopic composition of the weekly precipitation for the Esperance region (from April 2002 to September 2002) ranges from -54 per mille to -5 per mille and -9.7 per mille to -2.8 per mille for δ2H and δ18O respectively, defining the Local Meteoric Water Line, (LMWL): δ2H = 6.7 δ18O + 17.1. Most of the

  5. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    Science.gov (United States)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  6. Presenting national heritage with web geographical information system "mobile city guide"

    OpenAIRE

    Zdravković, Ivan; Momčilović, Svetislav; Panić, Marjan

    2005-01-01

    We describe usage of Web GIS "Mobile City Guide" for presentation and promotion of national heritage. This system enables citizens and city visitors' easy access to cultural heritage information and important objects easy find using mobile devices. Information is organized thematically into hierarchically intuitive category structure. This system use Web Services to collect information from basic websites. Optimal routes to objects are presented on navigabl...

  7. Investments in Building Citywide Out-of-School-Time Systems: A Six-City Study

    Science.gov (United States)

    Hayes, Cheryl; Lind, Christianne; Grossman, Jean Baldwin; Stewart, Nichole; Deich, Sharon; Gersick, Andrew; McMaken, Jennifer; Campbell, Margo

    2009-01-01

    This report is the last in a series funded by The Wallace Foundation and developed by Public/Private Ventures (P/PV) and The Finance Project to document the costs of out-of-school-time (OST) programs and the city-level systems that support them. The report examines the development of OST systems in six cities across the country and summarizes the…

  8. Connotation and denotation of the groundwater system%地下水系统的内涵与外延

    Institute of Scientific and Technical Information of China (English)

    王晓明; 贾晓鹏; 曹永国; 王秀辉

    2013-01-01

    On the basis of introducing general system theory and method, this paper analyzes the limitation of clas-sic groundwater aquifer system and groundwater flow system in their meaning and content. The concepts of groundwater aquifer system and the groundwater flow system manifest more the integrity and overall view of the system theory, and do not reflect the basic idea and method of the system theory. In view of this, the paper gives a reasonable groundwater system concept which can more conform to general system theory concept, so as to rede-fine the connotation and research content of groundwater system, therefore enriching and developing the ground-water system theory.%  在介绍一般系统论思想与方法的基础上,分析了经典的地下水含水系统与地下水流动系统在内涵与研究内容上的局限性。地下水含水系统和地下水流动系统的概念更多的体现了系统论中整体性和全局性的观点,并没有体现系统论的基本思想与方法。鉴此,给出了更符合一般系统论系统概念的地下水系统概念,以重新界定地下水系统的内涵与研究内容,从而丰富与发展地下水系统理论。

  9. Groundwater Flow Model of Göksu Delta Coastal Aquifer System

    Science.gov (United States)

    Erdem Dokuz, Uǧur; Çelik, Mehmet; Arslan, Şebnem; Engin, Hilal

    2016-04-01

    Like many other coastal areas, Göksu Delta (Mersin-Silifke, Southern Turkey) is a preferred place for human settlement especially due to its productive farmlands and water resources. The water dependent ecosystem in Göksu delta hosts about 332 different plant species and 328 different bird species besides serving for human use. Göksu Delta has been declared as Special Environmental Protection Zone, Wildlife Protection Area, and RAMSAR Convention for Wetlands of International Importance area. Unfortunately, rising population, agricultural and industrial activities cause degradation of water resources both by means of quality and quantity. This problem also exists for other wetlands around the world. It is necessary to prepare water management plans by taking global warming issues into account to protect water resources for next generations. To achieve this, the most efficient tool is to come up with groundwater management strategies by constructing groundwater flow models. By this aim, groundwater modeling studies were carried out for Göksu Delta coastal aquifer system. As a first and most important step in all groundwater modeling studies, geological and hydrogeological settings of the study area have been investigated. Göksu Delta, like many other deltaic environments, has a complex structure because it was formed with the sediments transported by Göksu River throughout the Quaternary period and shaped throughout the transgression-regression periods. Both due to this complex structure and the lack of observation wells penetrating deep enough to give an idea of the total thickness of the delta, it was impossible to reveal out the hydrogeological setting in a correct manner. Therefore, six wells were drilled to construct the conceptual hydrogeological model of Göksu Delta coastal aquifer system. On the basis of drilling studies and slug tests that were conducted along Göksu Delta, hydrostratigraphic units of the delta system have been obtained. According to

  10. Why Groundwater Matters: An Innovative Look at Pumping, Irrigation, System Dynamics and Sustainability

    Science.gov (United States)

    Condon, L. E.; Maxwell, R. M.

    2013-12-01

    Regional impacts from irrigation and groundwater pumping have been the subject of much research. Connections between pumping, drawdown, increased evapotranspiration and decreased runoff are well established; however, the effect of groundwater fed irrigation on system dynamics has not been explored thoroughly and has potentially important implications for the ability of a watershed to respond to stress as well as future sustainability. We use a fully-integrated hydrologic model, ParFlow, to simulate moisture-dependent irrigation in the Little Washita basin USA. Three, twenty-year simulations are completed for the ~1,700 km2 domain using hourly historical meteorological forcings from 1990 to 2009 for three scenarios with varying levels of farm coverage. As would be expected, analysis shows spatiotemporal variability at a range of frequencies and correlation lengths. However, local behavior is highly variable and can be impacted by a number of physical parameters and transient forcings. To better quantify system behavior, a classification scheme was developed that groups time series based on annual trends and the ratio of intra-annual variability to inter-annual variability. This scheme is demonstrated using time series of end of month water table depth. Analysis, of the baseline scenario with no agriculture shows spatial organization of classification groups. Along the river, where groundwater is shallow, water table depths have a strong intra-annual cycle but relatively constant long term average. Conversely, near the hilltops, where the water table is deepest, monthly variability is small compared to the longer term oscillations. Contrasting classifications from the baseline case to the irrigation scenarios, there are significant shifts in water table dynamics. The imposition of an annual pumping cycle in a small portion of the domain (~10 - 23%) leads to larger intra-annual variability throughout nearly the entire study area and increases the area where intra

  11. Pollutants transport and distribution studies in groundwater system by nuclear, geophysics and hydrogeochemical methods

    International Nuclear Information System (INIS)

    In Malaysia, the most common means of managing municipal refuse is by dumping it indiscriminately in piles on the selected open land. Leachate that is formed primarily in association with precipitation that infiltrates through the refuse normally results in the migration of leachate into underlying groundwater zone. The study of pollutant transport derived from domestic refuse and their impact on water quality in groundwater system has been performed in a selected landfill site at Gemencheh, Negeri Sembilan. The study involved the determination of flow velocity and flow direction of pollutants by nuclear techniques and a detail survey by geophysical method as well as hydrogeochemical approach as a supporting evidence of pollution occurrence. Hydrogeochemical approach involved the determination of pollutants species such as chloride and nitrate. A network of about 30 observation points had been identified and sampled. The results of the study have shown that the pollutants were concentrated at the middle of the dumping site and transported with the flow velocity between 0.2-15.4 metres per day toward northeast direction. Furthermore, the study established that the municipal or domestic landfalls are considered as one of the potential sources of groundwater pollution in Malaysia

  12. Supplemental Assessment of the Y-12 Groundwater Protection Program Using Monitoring and Remediation Optimization System Software

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC; GSI Environmental LLC

    2009-01-01

    A supplemental quantitative assessment of the Groundwater Protection Program (GWPP) at the Y-12 National Security Complex (Y-12) in Oak Ridge, TN was performed using the Monitoring and Remediation Optimization System (MAROS) software. This application was previously used as part of a similar quantitative assessment of the GWPP completed in December 2005, hereafter referenced as the 'baseline' MAROS assessment (BWXT Y-12 L.L.C. [BWXT] 2005). The MAROS software contains modules that apply statistical analysis techniques to an existing GWPP analytical database in conjunction with hydrogeologic factors, regulatory framework, and the location of potential receptors, to recommend an improved groundwater monitoring network and optimum sampling frequency for individual monitoring locations. The goal of this supplemental MAROS assessment of the Y-12 GWPP is to review and update monitoring network optimization recommendations resulting from the 2005 baseline report using data collected through December 2007. The supplemental MAROS assessment is based on the findings of the baseline MAROS assessment and includes only the groundwater sampling locations (wells and natural springs) currently granted 'Active' status in accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP). The results of the baseline MAROS assessment provided technical rationale regarding the 'Active' status designations defined in the MOP (BWXT 2006). One objective of the current report is to provide a quantitative review of data collected from Active but infrequently sampled wells to confirm concentrations at these locations. This supplemental MAROS assessment does not include the extensive qualitative evaluations similar to those presented in the baseline report.

  13. Using a fuzzy expert system to generate a holistic quantitative index of groundwater sustainability

    Science.gov (United States)

    Fleming, S. W.; Wong, C.; Graham, G.

    2011-12-01

    Indicators and indices can be an effective method for tracking environmental conditions over time, and thus for assessing the effectiveness of policy measures or remediation activities. Relative to surface water resources, however, groundwater has received little attention in this regard. This is problematic: about 30% and 44% of the Canadian and American populations depend on groundwater resources, with localized reliance of up to 100%. Aquifers can also serve key functions in watershed hydrology by attenuating peak flows, providing baseflow and associated aquatic habitat, moderating water temperature, and providing transport pathways for contaminants from the land surface to the open freshwater environment. Here, we introduce a prototype groundwater sustainability index. It is holistic in the sense that it incorporates both quantity and quality indicators. The former is based on the signal-to-noise ratio of long-term water level trends as estimated via robust (rank-based) regression, whereas the latter is based on concentration of the chief contaminant of concern. A fuzzy inference system is employed to integrate these unlike metrics, and has the additional advantages of explicitly encoding expert knowledge and directly acknowledging subjectivity in environmental condition "grading" through the use of linguistic rules and fuzzy sets, respectively. The rule base is constructed such that poor environmental conditions captured by one measure would not be hidden by good environmental performance in another. A standard Mamdani (max-min) inference engine is used in conjunction with centroid defuzzification. The outcome is a fuzzy logic-based groundwater sustainability index (FGWSI) ranging from 0 to 100. The index is demonstrated using both synthetic and observational datasets, including examples from the Abbotsford-Sumas aquifer, an important and managerially challenging transboundary (Canada-US) water resource.

  14. Application of groundwater flow meter with single well to groundwater flow survey in fractured rock, (1)

    International Nuclear Information System (INIS)

    In this study, we applied the groundwater flow meter developed by CRIEPI to the groundwater flow survey with single well named AN-1 of Tounou mine that is owned by PNC and located in Mizunami-city, Gifu-prefecture. This study forms a link in the chain of a cooperative research work, that is aimed to establish the technique for evaluation of the characteristics of fractured rocks, between CRIEPI and PNC. The principal results are summarized as follows. 1) We improved the structure of this groundwater flow meter into having newly a intermediate air packer made with rubber, so that the measurements of local flow characteristics (velocity and direction) of groundwater flow could be performed more effectively. 2) The groundwater flow velocity in rocks is generally so low that we can't ignore the effect of diffusion of the tracer (distilled water) in comparison with advection. Then, we introduced a method of analysis, that is based on a advective-diffusion equation and is able to specify the advective component (flow), on the velocity and direction of groundwater flow. From a experimental results, we had good prospects for being able to detect the groundwater flow with velocity that is so low as to be a few cm per year, by using the groundwater flow meter system above mentioned. 3) We applied this type of groundwater flow meter to a field test that has three measurement points within about 150 m depth with AN-1 well in Tounou mine, so that the groundwater velocity of each points were measured to be from a few m to a few cm per year. (author)

  15. Optimal Strategic Plan for Sustainable Urban Transport System in Kathmandu City Centre : Using Decision Support Systems

    OpenAIRE

    Shrestha, Amit

    2012-01-01

    There are many factors associated with an urban environment that enrich or  diminish the experience of the environment. These factors have a significant influence on how  an urban morphology is appraised within the social, economical, and environmental  framework. One of such factors is the urban transport system that represents the mobility of  the people and accessibility to public services. This thesis is an assessment of a current  transport system in Kathmandu city centre in comparison t...

  16. A two-dimensional analytical model describing groundwater level fluctuations in an anisotropic and bending leaky aquifer system near estuary

    Science.gov (United States)

    Yeh, Hund-Der; Chuang, Mo-Hsiung

    2014-05-01

    Tide-induced head fluctuation in a two-dimensional estuarine aquifer system is complicated and rather important in dealing with many groundwater management or remediation problems. The conceptual model of the aquifer system we considered is anisotropic, multi-layered with a bending estuarine bank, and subject to the tidal fluctuation effects from both the sea shore and estuarine river. The solution of the model describing the groundwater head distribution in such a coastal aquifer system is developed based on the method of separation of variables and a coordinate transformation applied to the river boundary at the bend with an angle of arbitrary degree to the line perpendicular to the sea shore. The solutions by Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour. Res. 1997; 33:1429-35) as well as Tang and Jiao (Tang Z. and J. J. Jiao, A two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal water, Hydrological Processes, 2001; 15: 573-585) can be shown to be special cases of the present solution if the degree of the bending angle is zero. On the basis of the analytical solution, the groundwater head distribution in response to estuarine boundary is examined and the influences of anisotropy, leakage, hydraulic parameters, and bending angle on the groundwater head fluctuation are investigated and discussed.

  17. A City Parking Integration System Combined with Cloud Computing Technologies and Smart Mobile Devices

    Science.gov (United States)

    Yeh, Her-Tyan; Chen, Bing-Chang; Wang, Bo-Xun

    2016-01-01

    The current study applied cloud computing technology and smart mobile devices combined with a streaming server for parking lots to plan a city parking integration system. It is also equipped with a parking search system, parking navigation system, parking reservation service, and car retrieval service. With this system, users can quickly find…

  18. Arsenic transport in groundwater, surface water, and the hyporheic zone of a mine-influenced stream-aquifer system

    OpenAIRE

    Brown, Brendan

    2005-01-01

    We investigated the transport of dissolved arsenic in groundwater, surface water and the hyporheic zone in a stream-aquifer system influenced by an abandoned arsenopyrite mine. Mine tailing piles consisting of a host of arsenic-bearing minerals including arsenopyrite and scorodite remain adjacent to the stream and represent a continuous source of arsenic. Arsenic loads from the stream, springs, and groundwater were quantified at the study reach on nine dates from January to August 2005 and ...

  19. A studies on characteristics of groundwater system in discontinuous rockmass for evaluation of safety on disposal site of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Hoon; Han, Jeong Sang; Kim, Kyu Sang; Shin, Hyeon Joon; Lee, Chee Hyeong [Yonsei Univ., Seoul (Korea, Republic of)

    1997-07-15

    This study contains the development of numerical model of groundwater system and its application for the evaluation of safety in disposal site of radioactive waste. Through the identification of hydraulic properties, characteristics of discontinuity and selection of discontinuity model around LPG underground storage facility, the application of continuum model and discrete fracture network model was evaluated for the analysis of groundwater flow and solute transport.

  20. Spatial Distribution of Fecal Indicator Bacteria in Groundwater beneath Two Large On-Site Wastewater Treatment Systems

    OpenAIRE

    Charles Humphrey; Michael O'Driscoll; Jonathan Harris

    2014-01-01

    On-site wastewater treatment systems (OWS) are a common means of wastewater treatment in coastal North Carolina, where the soils are sandy and groundwater is relatively close to the surface (<5 m). Wastewater contains elevated concentrations of pathogenic microorganisms that can contaminate groundwater and surface water if OWS are not operating efficiently and distributing wastewater equally to all drainfield trenches. The objectives of this study were to compare the distribution of fecal ...

  1. A studies on characteristics of groundwater system in discontinuous rockmass for evaluation of safety on disposal site of radioactive waste

    International Nuclear Information System (INIS)

    This study contains the development of numerical model of groundwater system and its application for the evaluation of safety in disposal site of radioactive waste. Through the identification of hydraulic properties, characteristics of discontinuity and selection of discontinuity model around LPG underground storage facility, the application of continuum model and discrete fracture network model was evaluated for the analysis of groundwater flow and solute transport

  2. Columbia River System Operation Review final environmental impact statement. Appendix L: Soils, geology and groundwater

    International Nuclear Information System (INIS)

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix addresses the study of geology, soils, and groundwater concerns relative to the System Operation Review (SOR). Chapter 1 provides an overview of the study, scope, and process for this resource area. In order, the respective sections of this chapter discuss the relevant issues for the study, and the means by which the SOR team carried out the study

  3. Hydraulic characterization of a small groundwater flow system in fractured monzonitic gneiss

    International Nuclear Information System (INIS)

    The hydraulic characteristics of a small groundwater flow system active in a 200-m by 150-m by 50-m deep block of fractured monzonitic gneiss located at Chalk River, Ontario have been determined from surface and bore-hole investigations. Surface investigations including air photo lineament analysis, ground and airborne geophysics and fracture mapping were used to define the local and regional fracture system, locate the study site and direct the exploratory drilling program. Subsurface investigations were completed in 17 boreholes and included fracture logging, systematic straddle-packer injection testing, hydraulic interference testing and long-term hydraulic head monitoring. The interference tests and monitoring were conducted in 90 packer-isolated test intervals created by installation of multiple-packer casings in each borehole. Hydraulic interference tests provided detailed information on the equivalent single-fracture aperture and storativity of four major (≥ 50-m extent) fracture zones and the vertical hydraulic diffusivity of the rock mass of the study site. Fracture logs and injection test data were combined to generate a tensoral representation of hydraulic conductivity for each test interval. The results of the detailed investigations are presented and interpreted to provide a complete three-dimensional description of the groundwater flow system. A gravity-controlled flow system occurs at the Chalk River study site. Groundwater flow in the rock is primarily vertical to a low-hydraulic head, fracture zone at 33 to 50 m depth with a horizontal component of flow determined by surface topography. An impermeable diabase dyke and three additional high-permeability fracture zones are important hydrogeologic features influencing flow at the study site. The results of the investigations also show that characterization of the geometric and hydraulic properties of large structural discontinuities is essential in understanding the flow of fluids in fractured rocks

  4. Migration of infiltrated NH4 and NO3 in a soil and groundwater system simulated by a soil tank

    Institute of Scientific and Technical Information of China (English)

    WANG Chao; WANG Pei-Fang

    2008-01-01

    The infiltration of water contaminants into soil and groundwater systems can greatly affect the quality of groundwater.A laboratory-designed large soil tank with periodic and continuous infiltration models,respectively,was used to simulate the migration of the contaminants NHa and NO3 in a soil and groundwater system,including unsaturated and saturated zones.The unsaturated soil zone had a significant effect on removing NH4 and NO3 infiltrated from the surface water.The patterns of breakthrough curves of NH4 and NO3 in the unsaturated zone were related to the infiltration time.A short infiltration time resulted in a single sharp peak in the breakthrough curve,while a long infiltration time led to a plateau curve.When NHa and NO3 migrated from the unsaturated zone to the saturated zone,an interfacial retardation was formed,resulting in an increased contaminant concentration on the interface.Under the influence of horizontal groundwater movement,the infiltrated contaminants formed a contamination-prone area downstream.As the contaminants migrated downstream,their concentrations were significantly reduced.Under the same infiltration concentration,the concentration of NO3 was greater than that of NH4 at every corresponding cross-section in the soil and groundwater tank,suggesting that the removal efficiency of NH4 was greater than that of NO3 in the soil and groundwater system.

  5. Concentration comparison of selected constituents between groundwater samples collected within the Missouri River alluvial aquifer using purge and pump and grab-sampling methods, near the city of Independence, Missouri, 2013

    Science.gov (United States)

    Krempa, Heather M.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the City of Independence, Missouri, Water Department, has historically collected water-quality samples using the purge and pump method (hereafter referred to as pump method) to identify potential contamination in groundwater supply wells within the Independence well field. If grab sample results are comparable to the pump method, grab samplers may reduce time, labor, and overall cost. This study was designed to compare constituent concentrations between samples collected within the Independence well field using the pump method and the grab method.

  6. Simulation of large-scale soil water systems using groundwater data and satellite based soil moisture

    Science.gov (United States)

    Kreye, Phillip; Meon, Günter

    2016-04-01

    Complex concepts for the physically correct depiction of dominant processes in the hydrosphere are increasingly at the forefront of hydrological modelling. Many scientific issues in hydrological modelling demand for additional system variables besides a simulation of runoff only, such as groundwater recharge or soil moisture conditions. Models that include soil water simulations are either very simplified or require a high number of parameters. Against this backdrop there is a heightened demand of observations to be used to calibrate the model. A reasonable integration of groundwater data or remote sensing data in calibration procedures as well as the identifiability of physically plausible sets of parameters is subject to research in the field of hydrology. Since this data is often combined with conceptual models, the given interfaces are not suitable for such demands. Furthermore, the application of automated optimisation procedures is generally associated with conceptual models, whose (fast) computing times allow many iterations of the optimisation in an acceptable time frame. One of the main aims of this study is to reduce the discrepancy between scientific and practical applications in the field of hydrological modelling. Therefore, the soil model DYVESOM (DYnamic VEgetation SOil Model) was developed as one of the primary components of the hydrological modelling system PANTA RHEI. DYVESOMs structure provides the required interfaces for the calibrations made at runoff, satellite based soil moisture and groundwater level. The model considers spatial and temporal differentiated feedback of the development of the vegetation on the soil system. In addition, small scale heterogeneities of soil properties (subgrid-variability) are parameterized by variation of van Genuchten parameters depending on distribution functions. Different sets of parameters are operated simultaneously while interacting with each other. The developed soil model is innovative regarding concept

  7. A New Approach for Solid Waste Handling in Mosul City, Comparison Study with the Existing System

    OpenAIRE

    Amar T. Hamad; Mohamed A. Saeed

    2013-01-01

     Municipal Solid waste management constitutes a serious problem in many developing countries. Cities spend increasing resources  to improve their Municipal solid waste management. Based on the concept that solid waste is a resource containing significant amounts of valuable materials, new approaches of solid waste management are adopted. The present work proposes a policy framework for improving a low-cost waste management system in Mosul city. The new approach induces additional services to ...

  8. Pioneering Driverless Electric Vehicles in Europe: The City Automated Transport System (CATS)

    OpenAIRE

    Christie, Derek Pierre; Koymans, Anne; Chanard, Thierry; Lasgouttes, Jean-Marc; Kaufmann, Vincent

    2016-01-01

    The City Automated Transport System (CATS) was a collaborative FP7 European project that lasted from 2010 to 2014. Its objective was to evaluate the feasibility and acceptability of driverless electric vehicles in European cities. This contribution explains how the project was implemented by 11 teams in five countries, culminating with practical trials of driverless vehicles in Strasbourg, France; Ploiesti, Romania; and Lausanne, Switzerland. The Navya vehicles used were able to transport up ...

  9. The Regional Innovation Systems in the City of Casey: Perspective Evaluation

    OpenAIRE

    Ameeta Jain

    2005-01-01

    The City of Casey in Victoria is the third most rapidly growing region of Australia in terms of population expansion and housing development. Infrastructure and services development do not appear to be growing at the same pace. Job leakages into the surrounding regions are high being around 80%. The city of Casey is unable to provide education, medical, social and employment opportunities to the current residents. From our review it appears that there is a poor Regional Innovation System (RIS...

  10. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  11. Interconnecting PV on New York City's Secondary Network Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K; Coddington, M; Burman, K; Hayter, S; Kroposki, B; Watson, and A

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and

  12. Analytical solutions of tidal groundwater flow in coastal two-aquifer system

    Science.gov (United States)

    Li, Hailong; Jiao, Jiu Jimmy

    This paper presents a complete analytical solution to describe tidal groundwater level fluctuations in a coastal subsurface system. The system consists of two aquifers and a leaky layer between them. Previous solutions of Jacob [Flow of groundwater, in: H. Rouse (Ed.), Engineering Hydraulics, Wiley, New York, 1950, pp. 321-386], Jiao and Tang [Water Resour. Res. 35 (3) (1999) 747], Li and Jiao [Adv. Water Resour. 24 (5) (2001a) 565], Li et al. [Water Resour. Res. 37 (2001) 1095] and Jeng et al. [Adv. Water Resour. (in press)] are special cases of the new solution. The present solution differs from previous work in that both the effects of the leaky layer's elastic storage and the tidal wave interference between the two aquifers are considered. If the upper and lower aquifers have the same storativities and transimissivities, the system can be simplified into an equivalent double-layered, aquifer-aquitard system bounded by impermeable layers from up and down. It is found that the leaky layer's elastic storage behaves as a buffer to the tidal wave interference between the two aquifers. The buffer capacity increases with the leaky layer's thickness, specific storage, and decreases with the leaky layer's vertical permeability. Great buffer capacity can result in negligible tidal wave interference between the upper and lower aquifers so that the Li and Jiao (loc. cit.) solution applies.

  13. Comprehensive studies of hydrogeochemical processes and quality status of groundwater with tools of cluster, grouping analysis, and fuzzy set method using GIS platform: a case study of Dalcheon in Ulsan City, Korea.

    Science.gov (United States)

    Venkatramanan, S; Chung, S Y; Rajesh, R; Lee, S Y; Ramkumar, T; Prasanna, M V

    2015-08-01

    This research aimed at developing comprehensive assessments of physicochemical quality of groundwater for drinking and irrigation purposes at Dalcheon in Ulsan City, Korea. The mean concentration of major ions represented as follows: Ca (94.3 mg/L) > Mg (41.7 mg/L) > Na (19.2 mg/L) > K (3.2 mg/L) for cations and SO4 (351 mg/L) > HCO3 (169 mg/L) > Cl (19 mg/L) for anions. Thematic maps for physicochemical parameters of groundwater were prepared, classified, weighted, and integrated in GIS method with fuzzy logic. The maps exhibited that suitable zone of drinking and irrigation purpose occupied in SE, NE, and NW sectors. The undesirable zone of drinking purpose was observed in SW and central parts and that of irrigation was in the western part of the study area. This was influenced by improperly treated effluents from an abandoned iron ore mine, irrigation, and domestic fields. By grouping analysis, groundwater types were classified into Ca(HCO3)2, (Ca,Mg)Cl2, and CaCl2, and CaHCO3 was the most predominant type. Grouping analysis also showed three types of irrigation water such as C1S1, C1S2, and C1S3. C1S3 type of high salinity to low sodium hazard was the most dominant in the study area. Equilibrium processes elucidated the groundwater samples were in the saturated to undersaturated condition with respect to aragonite, calcite, dolomite, and gypsum due to precipitation and deposition processes. Cluster analysis suggested that high contents of SO4 and HCO3 with low Cl was related with water-rock interactions and along with mining impact. This study showed that the effluents discharged from mining waste was the main sources of groundwater quality deterioration. PMID:25779109

  14. Analysis of TCE Fate and Transport in Karst Groundwater Systems Using Statistical Mixed Models

    Science.gov (United States)

    Anaya, A. A.; Padilla, I. Y.

    2012-12-01

    Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are trichloroethylene, (TCE) and Di-(2-Ethylhexyl) phthalate (DEHP). These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. Both of these contaminants have been found in the karst groundwater formations in this area of the island. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the use of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes, and their application in the analysis of fate and transport of TCE. Multidimensional, laboratory-scale Geo-Hydrobed models (GHM) were used for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models integrates a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entails injecting dissolved CaCl2 tracers and TCE in the upstream boundary of the GHM while monitoring TCE and tracer concentrations spatially and temporally in the limestone under different groundwater flow regimes. Analysis of the temporal and spatial concentration distributions of solutes

  15. Basic concepts and formulations for isotope geochemical modelling of groundwater systems

    International Nuclear Information System (INIS)

    This chapter describes the basic chemical principles and methodologies for geochemical models and their use in the field of isotope hydrology. Examples of calculation procedures are given on actual field data. Summary information on available PC software for geochemical modeling is included. The specific software, NETPATH, which can be used for chemical speciation, mass balance and isotope balance along a flow path in groundwater systems, is discussed at some length with an illustrative example of its application to field data. (author). Refs, 14 figs, 15 tabs

  16. Organic Contaminants in Riverine and Groundwater Systems: Aspects of the Anthropogenic Contribution

    Science.gov (United States)

    Schwarzbauer, Jan

    This book summarizes a selection of organic-geochemical investigations, which deal with the characterization and environmental behaviour of organic contaminations of German river and groundwater systems. The aim is to resume and present an overview of comprehensive current research activities, which have been published diversely in specialised scientific journals and, are therefore not easily available in a concise and clearly arranged way. Important topics include comprehensive non-target screening as well as isotope analysis of contaminants in water and sediments, detailed characterisation of bound residues, recording river ine pollution histories and an extensive application of the anthropogenic marker approach.

  17. Understanding the systemic nature of cities to improve health and climate change mitigation.

    Science.gov (United States)

    Chapman, Ralph; Howden-Chapman, Philippa; Capon, Anthony

    2016-09-01

    Understanding cities comprehensively as systems is a costly challenge and is typically not feasible for policy makers. Nevertheless, focusing on some key systemic characteristics of cities can give useful insights for policy to advance health and well-being outcomes. Moreover, if we take a coevolutionary systems view of cities, some conventional assumptions about the nature of urban development (e.g. the growth in private vehicle use with income) may not stand up. We illustrate this by examining the coevolution of urban transport and land use systems, and institutional change, giving examples of policy implications. At a high level, our concern derives from the need to better understand the dynamics of urban change, and its implications for health and well-being. At a practical level, we see opportunities to use stylised findings about urban systems to underpin policy experiments. While it is now not uncommon to view cities as systems, policy makers appear to have made little use so far of a systems approach to inform choice of policies with consequences for health and well-being. System insights can be applied to intelligently anticipate change - for example, as cities are subjected to increasing natural system reactions to climate change, they must find ways to mitigate and adapt to it. Secondly, systems insights around policy cobenefits are vital for better informing horizontal policy integration. Lastly, an implication of system complexity is that rather than seeking detailed, 'full' knowledge about urban issues and policies, cities would be well advised to engage in policy experimentation to address increasingly urgent health and climate change issues. PMID:27126780

  18. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35 degrees N., long 115 degrees W and lat 38 degrees N., long 118 degrees W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system

  19. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  20. Radon-gas extraction and counting system for analyzing radon and radium in groundwater in seismically active areas

    International Nuclear Information System (INIS)

    A high concentration of radon in groundwater has attracted recent attention as a precursor of seismic activity. We have constructed a system that extracts and counts radon gas from solid, liquid, and gas samples. The radon is extracted in a closed system onto activated charcoal. The desorbed radon is then measured in a phosphored acrylic cell by scintillation counting of gross alpha radiation. The efficiency of the total system (extraction plus counting) is 90 +- 3% or better. Compact design and sturdy construction make the system completely portable and well suited to field operations in remote loations. Results are given for radon and radium in groundwaters in the Livermore area

  1. Study of groundwater vulnerability to pollution using the DRASTIC method coupled with a geographic information system (GIS): application to groundwater Beni Amir, Morocco

    Science.gov (United States)

    Knouz, Najat; Boudhar, Abdelghani; Bachaoui, El Mostafa

    2016-04-01

    Fresh water is the condition of all life on Earth for its vital role in the survival of living beings and in the social, economic and technological development. The Groundwater, as the surface water, is increasingly threatened by agricultural and industrial pollution. In this respect, the groundwater vulnerability assessment to pollution is a very valuable tool for resource protection, management of its quality and uses it in a sustainable way. The main objective of this study is the evaluation of groundwater vulnerability to pollution of the study area, Beni Amir, located in the first irrigated perimeter of Morocco, Tadla, using the DRASTIC method (depth to water, net recharge, aquifer media, soil media, Topography, impact of Vadose zone and hydraulic conductivity), and assessing the impact of each parameter on the DRASTIC vulnerability index by a sensitivity analysis. This study also highlights the role of geographic information systems (GIS) in assessing vulnerability. The Vulnerability index is calculated as the sum of product of ratings and weights assigned to each of the parameter DRASTIC. The results revealed four vulnerability classes, 7% of the study area has a high vulnerability, 31% are moderately vulnerable, 57% have a low vulnerability and 5% are of very low vulnerability.

  2. The combined water system as approach for tackling water scarcity in Permilovo groundwater basin

    Science.gov (United States)

    Filimonova, Elena; Baldenkov, Mikhail

    2014-05-01

    The water scarcity accepts now global scales. The depletion of water resources is especially significant for the small stream basins where the water demand is higher than the low-water flow. The application of combined water use is one of the ways to solve this problem. The combined water system (CWS) is a complex technology comprising two separate wells, major catchment-zone wells and compensation pumping wells, located inside a single stream basin. The pumping rate of a major well in a CWS is determined by the difference between the current stream flow and the minimum permissible stream flow (stream flow required for maintenance water budget and for normal living of aquatic and terrestrial ecosystems). The deficiency of the stream flow in dry seasons can be compensated for by the short-term pumping of groundwater. The pumping rate of a compensation well (CW) is determined by the difference between water demand and the permissible water withdrawal of the major well. The source for the compensation well is the aquifer storage. Short-term groundwater pumping allows the use of aquifer storage instead of stream flow until drawdowns of groundwater levels do reach the edge of the stream. Some hydrogeological problems exist in the determination of the best location for the compensation well: 1) The delayed stream depletion produced by the CW; 2) The draining of storage recovery due to natural processes or artificial recharge; 3) The delayed effects of CW pumping that cause stream flow depletion, which occurs after pumping during high water level periods. Three typical hydraulic cases of combined water systems were classified depending on their the relationship between surface water and groundwater: (a) perfect hydraulic connection between the stream and aquifer; (b) imperfect hydraulic connection between the stream and aquifer; and (c) essentially imperfect hydraulic connection between the stream and the underlying confined aquifer. The numerical model of Permilovo

  3. Use of environmental isotopes in organic contaminants research in groundwater systems

    International Nuclear Information System (INIS)

    The paper presents two case studies that explore the use of environmental isotopes (13Cl, 37Cl) in organic contaminants research in groundwater systems. Carbon-13 data on soil CO2 were collected at a gas plant site where the degradation of organic contaminants by bioventing is being investigated. The isotope study was done to contribute to the evaluation of biodegradation of organic contaminants, especially under field conditions where results obtained by standard techniques are not conclusive. The results show enriched δ13C values on soil CO2, in comparison with the natural gas condensate source, a by-product of gas plants. Degradation of the condensate in a controlled laboratory microcosm did not show any significant isotopic fractionation during degradation. These results suggest that preferential degradation of enriched 13C hydrocarbons is occurring during bioventing. This hypothesis is being tested under field and laboratory conditions. The isotope research on chlorinated solvents aims to evaluate the use of 37Cl and 13C as tracers to provide information about sources and transformation of chlorinated solvents in groundwater systems. Chlorine-37 and 13C data in chlorinated solvents, perchlorethylene (PCE), trichloroethylene (TCE) and 1,1,1, trichloroethane (TCA), supplied by different manufacturers range from -3.5 to +6.0 per mille for δ37Cl and from -37.2 to -23.3 per mille for δ13C. These results indicated that these compounds have a different and distinct isotopic composition, which results from the individual manufacturing practices. These results show the potential of 37Cl and 13Cl as tracers to provide information to identify source areas of chlorinated solvent plumes in groundwater. (author). 25 refs, 3 figs

  4. Hydrological feedbacks in groundwater dominated systems: approaches, challenges and projections of future change

    Science.gov (United States)

    Mijic, A.; Tsarouchi, G.; Chawla, I.; Moulds, S.; O'Keeffe, J.; Turner, A. G.; Williams, C. J.; Chakraborty, A.; Mackay, J. D.; McKenzie, A.; Jackson, C. R.; Sekhar, M.; Garg, R.; Neupane, B.; Sinha, R.; Ojha, C. S.; Butler, A. P.; Buytaert, W.; Mujumdar, P.

    2013-12-01

    Land-use change and related changes in water use are key drivers of changes in the regional water cycle. This is especially the case for large-scale changes from bare and forested land into irrigated agriculture. Over the last decades, the Gangetic plains in northern India have undergone the world's largest and fasted increase in irrigated agriculture. Groundwater extraction for irrigation is decreasing the water table levels over an extensive region, thus putting potential pressure on local water resources. However, determining the risks of water scarcity at a local scale, and predicting future trends requires a much more detailed assessment of local water fluxes. Land use change is affecting the partitioning of water fluxes, thus driving changes in recharge and runoff. These changes will affect surface and groundwater resources, while changes in evapotranspiration and soil moisture may feed back to atmospheric processes. Given the interactions between different hydrometeorological processes, a systems approach is needed. In this study, we present a modeling setup that implements an integrated systems approach to simulating the hydrometeorological cycle of the Ganges basin, which is needed to resolve local and regional feedbacks to the water cycle that determine water resources and risks. We discuss both the technical and scientific challenges to integrate modeling components dealing with groundwater, surface water, atmospheric and irrigation processes. Some of the major challenges include the assimilation of heterogeneous data, model component evaluation and improvement, and uncertainty quantification. The project is part of a concerted effort to improve our understanding about historic and future changing water cycle, coordinated by the eponymous UK research council funding initiative. The projects funded under this programme jointly explore the complex interactions between various components in the hydrological cycle and changes as a consequence of climate and

  5. Structure and application of an interface program between a geographic-information system and a ground-water flow model

    Science.gov (United States)

    Van Metre, P.C.

    1990-01-01

    A computer-program interface between a geographic-information system and a groundwater flow model links two unrelated software systems for use in developing the flow models. The interface program allows the modeler to compile and manage geographic components of a groundwater model within the geographic information system. A significant savings of time and effort is realized in developing, calibrating, and displaying the groundwater flow model. Four major guidelines were followed in developing the interface program: (1) no changes to the groundwater flow model code were to be made; (2) a data structure was to be designed within the geographic information system that follows the same basic data structure as the groundwater flow model; (3) the interface program was to be flexible enough to support all basic data options available within the model; and (4) the interface program was to be as efficient as possible in terms of computer time used and online-storage space needed. Because some programs in the interface are written in control-program language, the interface will run only on a computer with the PRIMOS operating system. (USGS)

  6. Study on protection and reclamation for the groundwater resources in Busan area

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ig-Hwan; Cho, Byong-Wook; Lee, Byung-Dae [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This research was carried out to investigate the protection of contaminated groundwater and reclamation in the Pusan area. Groundwater Busan city is highly subjected to groundwater contamination due to its unfavorable geographical features; it is located in the estuaries of the Nakdong river, most of the urban area are composed of highlands, and the large population resides in the downhill. Heavy pumping and deterioration of groundwater are currently found to be significant compared to other major cities, resulting in shortage of water resources and contamination of groundwater. The first step of the research aims at investigating hydrogeological features which includes analysis of climate and hydrologic data, investigation of geology and structural pattern, acquisition of hydrological data, inspection of wells, measurement of groundwater level, analysis of water samples, investigation of groundwater contamination, isotope analysis, and monitoring water level by automated data logger to identify seawater intrusion. The second step is to simulate the two-dimensional flow model after construction of the database. Aside from this, abandoned wells were transformed into observation wells. An effort for remedy of contaminated groundwater was made and the water quality was constantly monitored to improve the deteriorated water to the drinking water. Kriging analysis and geostatistical analysis were carried out in order to verify the effect of seawater intrusion, showing that there is no clear evidence of seawater intrusion. Instead, it is clear that groundwater in the inland district was preferentially contaminated by pollutants originated from human activities. Based on the two-dimensional flow model, only 0.021 m{sup 3} may be allocated to each person a day from public wells for emergency. In order to ensure that protection and remediation of groundwater of the Busan area are able to accomplish, well-controlled management of aquifer systems needs to be maintained and

  7. ArcNLET: A GIS-based software to simulate groundwater nitrate load from septic systems to surface water bodies

    Science.gov (United States)

    Rios, J. Fernando; Ye, Ming; Wang, Liying; Lee, Paul Z.; Davis, Hal; Hicks, Rick

    2013-03-01

    Onsite wastewater treatment systems (OWTS), or septic systems, can be a significant source of nitrates in groundwater and surface water. The adverse effects that nitrates have on human and environmental health have given rise to the need to estimate the actual or potential level of nitrate contamination. With the goal of reducing data collection and preparation costs, and decreasing the time required to produce an estimate compared to complex nitrate modeling tools, we developed the ArcGIS-based Nitrate Load Estimation Toolkit (ArcNLET) software. Leveraging the power of geographic information systems (GIS), ArcNLET is an easy-to-use software capable of simulating nitrate transport in groundwater and estimating long-term nitrate loads from groundwater to surface water bodies. Data requirements are reduced by using simplified models of groundwater flow and nitrate transport which consider nitrate attenuation mechanisms (subsurface dispersion and denitrification) as well as spatial variability in the hydraulic parameters and septic tank distribution. ArcNLET provides a spatial distribution of nitrate plumes from multiple septic systems and a load estimate to water bodies. ArcNLET's conceptual model is divided into three sub-models: a groundwater flow model, a nitrate transport and fate model, and a load estimation model which are implemented as an extension to ArcGIS. The groundwater flow model uses a map of topography in order to generate a steady-state approximation of the water table. In a validation study, this approximation was found to correlate well with a water table produced by a calibrated numerical model although it was found that the degree to which the water table resembles the topography can vary greatly across the modeling domain. The transport model uses a semi-analytical solution to estimate the distribution of nitrate within groundwater, which is then used to estimate a nitrate load using a mass balance argument. The estimates given by ArcNLET are

  8. Effects of farming systems on ground-water quality at the management systems evaluation area near Princeton, Minnesota, 1991-95

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.; Lamb, J.A.; Anderson, J.L.; Dowdy, R.H.

    1998-01-01

    Ground-water quality in an unconfined sand and gravel aquifer was monitored during 1991-95 at the Minnesota Management Systems Evaluation Area (MSEA) near Princeton, Minnesota. The objectives of the study were to:

  9. Flow system boundary by D'Agnese and others (1997) for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the flow-system boundary encompassing the regional ground-water flow model by D'Agnese and others (1997). The boundary encompasses an...

  10. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    OpenAIRE

    Hernández-Antonio, A.; Mahlknecht, J.; C. Tamez-Meléndez; Ramos-Leal, J.; A. Ramírez-Orozco; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-01-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Bas...

  11. Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India

    Science.gov (United States)

    Krishna kumar, S.; Logeshkumaran, A.; Magesh, N. S.; Godson, Prince S.; Chandrasekar, N.

    2015-12-01

    In the present study, the geochemical characteristics of groundwater and drinking water quality has been studied. 24 groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, carbonate, bicarbonate, chloride, sulphate, nitrate, calcium, magnesium, sodium, potassium and total hardness. The results were evaluated and compared with WHO and BIS water quality standards. The studied results reveal that the groundwater is fresh to brackish and moderately high to hard in nature. Na and Cl are dominant ions among cations and anions. Chloride, calcium and magnesium ions are within the allowable limit except few samples. According to Gibbs diagram, the predominant samples fall in the rock-water interaction dominance and evaporation dominance field. The piper trilinear diagram shows that groundwater samples are Na-Cl and mixed CaMgCl type. Based on the WQI results majority of the samples are falling under excellent to good category and suitable for drinking water purposes.

  12. Hydrochemical profiles in urban groundwater systems: New insights into contaminant sources and pathways in the subsurface from legacy and emerging contaminants.

    Science.gov (United States)

    White, D; Lapworth, D J; Stuart, M E; Williams, P J

    2016-08-15

    It has long been known that groundwaters beneath urban areas carry a fingerprint from urban activities but finding a consistent tracer for anthropogenic influence has proved elusive. The varied sources of urban contaminants means that a single consistent and inexpensive means of tracing the fate of urban contaminants is not generally possible and multiple tracers are often required to understand the contaminant sources and pathways in these complex systems. This study has utilized a combination of micro-organic (MO) contaminants and inorganic hydrochemistry to trace recharge pathways and quantify the variability of groundwater quality in multi-level piezometers in the city of Doncaster, UK. A total of 23 MOs were detected during this study, with more compounds consistently detected during higher groundwater table conditions highlighting the importance of sampling under different hydrological conditions. Four of the compounds detected are EU Water Framework Directive priority substances: atrazine, simazine, naphthalene and DEHP, with a maximum concentration of 0.18, 0.03, 0.2, 16μg/l respectively. Our study shows that the burden of the banned pesticide atrazine persists in the Sherwood Sandstone and is detected at two of the three study sites. Emerging contaminants are seen throughout the borehole profiles and provide insights into transient pathways for contaminant migration in the sub-surface. Long term changes in inorganic hydrochemistry show possible changes in contaminant input or the dissolution of minerals. Nitrate was detected above 50mg/l but on the whole nitrate concentrations have declined in the intervening years either due to a reduction of nitrate application at the surface or a migration of peak nitrate concentrations laterally or to greater depth. This study shows that multiple tracers together with multi-level piezometers can give a better resolution of contaminant pathways and variable flow regimes within the relatively uncomplicated aquifer of

  13. Evaluation of groundwater residence time in a high mountain aquifer system (Sacramento Mountains, USA): insights gained from use of multiple environmental tracers

    Science.gov (United States)

    Land, Lewis; Timmons, Stacy

    2016-06-01

    The New Mexico Bureau of Geology and Mineral Resources (USA) has conducted a regional investigation of groundwater residence time within the southern Sacramento Mountains aquifer system using multiple environmental tracers. Results of the tracer surveys indicate that groundwater in the southern Sacramento Mountains ranges in age from less than 1 year to greater than 50 years, although the calculated ages contain uncertainties and vary significantly depending on which tracer is used. A distinctive feature of the results is discordance among the methods used to date groundwater in the study area. This apparent ambiguity results from the effects of a thick unsaturated zone, which produces non-conservative behavior among the dissolved gas tracers, and the heterogeneous character and semi-karstic nature of the aquifer system, which may yield water from matrix porosity, fractures, solution-enlarged conduits, or a combination of the three. The data also indicate mixing of groundwater from two or more sources, including recent recharge originating from precipitation at high elevations, old groundwater stored in the matrix, and pre-modern groundwater upwelling along fault zones. The tracer data have also been influenced by surface-water/groundwater exchange via losing streams and lower elevation springs (groundwater recycling). This study highlights the importance of using multiple tracers when conducting large-scale investigations of a heterogeneous aquifer system, and sheds light on characteristics of groundwater flow systems that can produce discrepancies in calculations of groundwater age.

  14. Evaluation of groundwater residence time in a high mountain aquifer system (Sacramento Mountains, USA): insights gained from use of multiple environmental tracers

    Science.gov (United States)

    Land, Lewis; Timmons, Stacy

    2016-04-01

    The New Mexico Bureau of Geology and Mineral Resources (USA) has conducted a regional investigation of groundwater residence time within the southern Sacramento Mountains aquifer system using multiple environmental tracers. Results of the tracer surveys indicate that groundwater in the southern Sacramento Mountains ranges in age from less than 1 year to greater than 50 years, although the calculated ages contain uncertainties and vary significantly depending on which tracer is used. A distinctive feature of the results is discordance among the methods used to date groundwater in the study area. This apparent ambiguity results from the effects of a thick unsaturated zone, which produces non-conservative behavior among the dissolved gas tracers, and the heterogeneous character and semi-karstic nature of the aquifer system, which may yield water from matrix porosity, fractures, solution-enlarged conduits, or a combination of the three. The data also indicate mixing of groundwater from two or more sources, including recent recharge originating from precipitation at high elevations, old groundwater stored in the matrix, and pre-modern groundwater upwelling along fault zones. The tracer data have also been influenced by surface-water/groundwater exchange via losing streams and lower elevation springs (groundwater recycling). This study highlights the importance of using multiple tracers when conducting large-scale investigations of a heterogeneous aquifer system, and sheds light on characteristics of groundwater flow systems that can produce discrepancies in calculations of groundwater age.

  15. Potential for saturated ground-water system contamination at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    A program of hydrogeologic investigation has been carried out to determine the likelihood of contaminant movement to the saturated zone from near the ground surface at Lawrence Livermore National Laboratory (LLNL). A companion survey of potential contaminant sources was also conducted at the LLNL. Water samples from selected LLNL wells were analyzed to test the water quality in the uppermost part of the saturated zone, which is from 14 to 48 m (45 to 158 ft) beneath the surface. Only nitrate and tritium were found in concentrations above natural background. In one well, the nitrate was slightly more concentrated than the drinking water limit. The nitrate source has not been found. The tritium in all ground-water samples from wells was found far less concentrated than the drinking water limit. The extent of infiltration of surface water was traced with environmental tritium. The thickness and stratigraphy of the unsaturated zone beneath the LLNL, and nearby area, was determined with specially constructed wells and boreholes. Well hydrograph analysis indicated where infiltration of surface water reached the saturated ground-water system. The investigation indicates that water infiltrating from the surface, through alluvial deposits, reaches the saturated zone along the course of Arroyo Seco, Arroyo Las Positas, and from the depression near the center of the site where seasonal water accumulates. Several potential contaminant sources were identified, and it is likely that contaminants could move from near the ground surface to the saturated zone beneath LLNL. Additional ground-water sampling and analysis will be performed and ongoing investigations will provide estimates of the speed with which potential contaminants can flow laterally in the saturated zone beneath LLNL. 34 references, 61 figures, 16 tables

  16. Groundwater Nitrate Contamination Risk Assessment: A Comparison of Parametric Systems and Simulation Modelling

    Directory of Open Access Journals (Sweden)

    Dario Sacco

    2007-01-01

    Full Text Available Groundwater nitrate contamination is a source of rising concern that has been faced through the introduction of several regulations in different countries. However the methodologies used in the definition of Nitrate Vulnerable Zones are not included in the regulations. The aim of this work was to compare different methodologies, used to asses groundwater nitrate contamination risks, based on parametric systems or simulation modelling. The work was carried out in Piedmont, Italy, in an area characterised by intensive animal husbandry, high N load, a shallow water table and a coarse type of sub-soil sediments. Only N loads from agricultural non-point sources were considered. Different methodologies with different level of information have been compared to determine the groundwater nitrate contamination risk assessment: N load, IPNOA index, the intrinsic contamination risk from nitrates, leached N and N concentration of the soil solution estimated by the simulation model. The good correlation between the IPNOA index and the intrinsic nitrate contamination risk revealed that the parameters that describe the soil in this area did not lead to a different classification of the parcels. The intrinsic nitrate contamination risk was greatly influenced by N fertilisation, however the effect of the soils increased the variability in comparison to the IPNOA index. The leached N and N concentration in the leaching were closely correlated. The dilution effect of percolated water was almost negligible. Both methodologies were slightly correlated to the N fertilisation and the two indexes. The correlations related to the intrinsic nitrate contamination risk was higher than those related to IPNOA, and this means that the effect of taking into account soil parameters increases the correlation to the prediction of the simulation model.

  17. A generalized solution for groundwater head fluctuation in a tidal leaky aquifer system

    Indian Academy of Sciences (India)

    Mo-Hsiung Chuang; Hund-Der Yeh

    2011-12-01

    A new analytical solution is developed for describing groundwater level fluctuations in a coupled leaky confined aquifer system which consists of an unconfined aquifer, confined aquifer, and an aquitard in between. The aquifer system has a tidal boundary at the seashore, a no flow boundary at remote inland side, and a confined aquifer extending under the sea and terminated with an outlet-capping. This new solution has shown to be a generalisation of most existing analytical solutions for a tidal aquifer system which includes single confined and leaky confined aquifers. In addition, the solution is used to explore the influences of the dimensionless leakance of the outlet-capping, the dimensionless hydraulic diffusivities, and the leakages of the inland and offshore aquitards on the head responses in the leaky confined aquifer.

  18. Quantification of groundwater-seawater interaction in a coastal sandy aquifer system: a study from Panama, Sri Lanka

    Science.gov (United States)

    Chandrajith, Rohana; Chaturangani, Dinusha; Abeykoon, Sumith; Barth, Johannes A. C.; van Geldern, Robert; Edirisinghe, Viraj; Dissanayake, Chandra B.

    2014-05-01

    The Panama coastal aquifer system is an important water resource in the southeast coast of Sri Lanka that provides adequate supplies of water for agriculture and domestic uses. One of the biggest threats to these fragile aquifers is seawater intrusion. In this study [1], recharging mechanism and geochemical evaluation of groundwater in the coastal sandy aquifer of Panama were evaluated using chemical and stable isotope techniques. Thirty groundwater samples were collected and analyzed for their major ion concentrations and stable isotope ratios of oxygen (δ18O) and hydrogen (δ2H). All samples showed a decreasing order of concentrations for major anions in the order Cl- > HCO3- > SO42- > N-NO3- while cation concentrations decreased with Na+ > Ca2+ > Mg2+ > K+. Dominant hydrogeochemical characterizations of the groundwater were Na-Cl and mixed Ca-Mg-Cl types of water. Results of saturation index calculations indicate that the investigated groundwater body was mostly saturated with respect to calcite, dolomite and gypsum. In addition, stable isotope and geochemical data suggest that fresh groundwater in the aquifer is recharged mainly by local precipitation with only slight modification from evaporation and saline water intrusions. The communities in the study area depend almost exclusively on groundwater a better understanding of the hydrogeochemical characteristics of the aquifer system becomes increasingly important in the future for better local water resource management. References [1] Chandrajith, R., Chaturangani, D., Abeykoon, S., Barth, J.C., van Geldern, R., Edirisinghe, E.A.N.V. and Dissanayake, C.B. (in press): Quantification of groundwater-seawater interaction in a coastal sandy aquifer system: a study from Panama, Sri Lanka. - Environmental Earth Sciences, [doi:10.1007/s12665-013-3010-y].

  19. Chemical evolution of deep groundwaters in granites, information acquired from natural systems

    International Nuclear Information System (INIS)

    A research program has been carried out for five years, concerning a major aspect of deep radioactive waste disposals: groundwaters in the host-rock. The following items have been examined: the exact composition of confined waters, excluding those which are found in highly conductive (even deep) fractures; evolution path from surface waters to confined waters; possible influence of the repository on the composition of groundwaters; possible influence of groundwaters on the elements which could escape the repository (major elements, trace elements, radioactive elements). The following methodology is used: groundwater sampling and analysis, identification of the major phenomena controlling element concentration in groundwaters, modelling, modelling validation. (author). 11 refs., 4 figs., 3 tabs

  20. The foundation of computer based closed radionuclide sources turnover control system in Moscow city region

    International Nuclear Information System (INIS)

    This paper concerns the problem of Closed Radionuclide Sources (CRS) automated account and control in Moscow city and Moscow region. Information relations structure between authorities and enterprises is shown. Special computer oriented system of CRS turnover monitoring is used for this purposes. Its possibilities and numeric characteristics of database are mentioned. This system benefit and application aspects are discussed in detail. (author)

  1. Investments in Building Citywide Out-of-School-Time Systems: A Six-City Study. Synopsis

    Science.gov (United States)

    Hayes, Cheryl; Lind, Christianne; Grossman, Jean Baldwin; Stewart, Nichole; Deich, Sharon; Gersick, Andrew; McMaken, Jennifer; Campbell, Margo

    2009-01-01

    This synopsis highlights the main findings from "Investments in Building Citywide Out-of-School-Time Systems," which documents approaches six cities across the country have taken to build, finance and sustain effective citywide out-of-school-time (OST) systems. Developed by Public/Private Ventures (P/PV) and The Finance Project, the synopsis…

  2. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  3. Impact of Phytoremediation System on Groundwater Flow in a Shallow Aquifer System

    OpenAIRE

    Corack, Edward J

    2003-01-01

    There are many methods for cleaning up contaminated soil and groundwater. Phytoremediation is an engineered method that utilizes plants and trees to remove or immobilize inorganic and organic contaminants. The plants and trees can contain contaminant plumes, uptake the contaminants, or aid in the degradation of the contaminants through several poorly understood mechanisms. Hybrid poplar trees were planted to contain a creosote contaminant plume at the study-site in Oneida, Tennessee. ...

  4. WMN-based city traffic information acquisition system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Traffic information acquisition system is an essential part of the intelligent transportation system (ITS). This paper presents a novel traffic information acquisition system, i.e., a dynamic traffic information acquisition system based on wireless mesh networks (WMN). The system comprises of probe vehicles and wireless mesh networks. Compared to the conventional systems, it is independent of other network infrastructures and easy to implement. It can acquire the real-time traffic information correctly with lower cost.

  5. Impacts from surface mining on ground-water system: A twenty-year record

    International Nuclear Information System (INIS)

    Groundwater impacts from a surface lignite mine in east-central Texas have been predicted and monitored since 1974. Minimal impacts on groundwater quantity and quality were predicted. Because aquifers in the mine area have very low permeabilities, volumes of groundwater to dewatering pits and reclaimed spoils were expected to be small. Potential groundwater contamination was predicted to be insignificant because of the geology of the area. Seeping to and dewatering from the mine pits were predicted to prevent any potential contamination because the flow would be toward the mine pits. The predictions made are proved correct. Groundwater depletion and recovery have been observed in six mine blocks. Compaction of the spoil is heterogeneous. The bottom of the spoil deposit has higher porosity and permeability causing rapid resaturation and preferential flow. Groundwater recovery rate is predictable, reaching a steady-state condition within 7 to 8 years after reclamation begins. Examination of the geochemical evolution of groundwater in spoil aquifers reveals many trends. Most ion concentrations exhibit an increasing trend until groundwater recovery is complete. After that the ion concentrations decline as groundwater is flushed and reacting minerals precipitate. The groundwater quality monitored is not abnormally higher than state groundwater standards

  6. Redox potential of shallow groundwater by 1-month continuous in situ potentiometric measurements

    Science.gov (United States)

    Ioka, Seiichiro; Muraoka, Hirofumi; Suzuki, Yota

    2016-06-01

    One-month continuous in situ potentiometric measurements of redox potential (Eh) were used to investigate the dominant redox processes in the shallow groundwater (i.e., fit was found between measured Eh values and Eh values calculated using thermodynamic data of fine-grained goethite. This suggests that Fe redox system is related to the Eh values of shallow groundwater in the Aomori City aquifer.

  7. Simulated potentiometric surface contours at end of simulation (1998) in model layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 1 of the Death Valley regional ground-water flow system...

  8. Soil, groundwater cleanup takes the gamble out of casino operation

    International Nuclear Information System (INIS)

    Colorado's rich stores of gold and silver sparked development of towns like Black Hawk and Central City in the 1890s. Today, these communities are the homes of limited-stakes gaming operations. However casino operators are discovering that having gold and silver underground in the form of tailings is not as desirable as collecting it aboveground in slot machines. A unique environmental engineering approach allowed construction of two new casinos and reclamation of the tailings, as well as cleanup of petroleum-saturated soils and groundwater. A treatment system was designed and constructed to treat groundwater at the Black Hawk site. The most economical alternative for disposing treated groundwater was to discharge it into nearby North Clear Creek. An NPDES permit was obtained requiring treatment of the groundwater for petroleum, heavy metals and pH before discharging it

  9. Boundary of the ground-water flow model by IT Corporation (1996), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the steady-state ground-water flow model built by IT Corporation (1996). The regional, 20-layer ground-water flow...

  10. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  11. Design and testing of a process-based groundwater vulnerability assessment (P-GWAVA) system for predicting concentrations of agrichemicals in groundwater across the United States

    Science.gov (United States)

    Barbash, Jack E; Voss, Frank D.

    2016-01-01

    Efforts to assess the likelihood of groundwater contamination from surface-derived compounds have spanned more than three decades. Relatively few of these assessments, however, have involved the use of process-based simulations of contaminant transport and fate in the subsurface, or compared the predictions from such models with measured data—especially over regional to national scales. To address this need, a process-based groundwater vulnerability assessment (P-GWAVA) system was constructed to use transport-and-fate simulations to predict the concentration of any surface-derived compound at a specified depth in the vadose zone anywhere in the conterminous United States. The system was then used to simulate the concentrations of selected agrichemicals in the vadose zone beneath agricultural areas in multiple locations across the conterminous United States. The simulated concentrations were compared with measured concentrations of the compounds detected in shallow groundwater (that is, groundwater drawn from within a depth of 6.3 ± 0.5 meters [mean ± 95 percent confidence interval] below the water table) in more than 1,400 locations across the United States. The results from these comparisons were used to select the simulation approaches that led to the closest agreement between the simulated and the measured concentrations.The P-GWAVA system uses computer simulations that account for a broader range of the hydrologic, physical, biological and chemical phenomena known to control the transport and fate of solutes in the subsurface than has been accounted for by any other vulnerability assessment over regional to national scales. Such phenomena include preferential transport and the influences of temperature, soil properties, and depth on the partitioning, transport, and transformation of pesticides in the subsurface. Published methods and detailed soil property data are used to estimate a wide range of model input parameters for each site, including surface

  12. Mineralogical Evidence for the Palaeohydrogeological Stability of a Deep Groundwater System in Fractured Rock, in West Cumbria, Northwest England

    Science.gov (United States)

    Milodowski, A. E.; Gillespie, M. R.; Chenery, S. R. N.; Naden, J.; Shaw, R. P.

    2014-12-01

    An important requirement of the safety assessment for a geological disposal facility (GDF) for radioactive waste is to be able to demonstrate the long-term chemical stability of the groundwater system at repository depth over the long period of time during which the waste will be a hazard, typically up to one million years. Of particular concern in the UK is the potential for oxidising groundwater to penetrate to repository depth during periods of glaciation, thereby increasing the mobility of some transuranic radionuclides.Between 1990 and 1998, United Kingdom Nirex Limited carried out geological investigations into the suitability of a potential site in the Sellafield area of NW England, for a GDF for L/ILW. As part of these investigations, detailed petrological analysis of fracture mineralisation in 23 deep boreholes identified a complex sequence of mineralisation events referred to as ME1-ME9. The distribution of the ME9 calcite mineralisation correlates closely with present-day groundwater flows. The ME9 calcite has been studied in more detail to understand the evolution of the deep groundwater system. The morphology and growth zoning characteristics of the calcites reflects the groundwater chemistry. Freshwater calcites display c-axis flattened to equant crystals, and are non-ferroan and strongly zoned with Mn-rich and Mn-free bands. Deeper saline-zone calcites display c-axis elongated crystals, with high Mn:Fe and low Mn:Fe growth zones. Calcite in the transition zone between the saline and fresh groundwater display saline-type cores overgrown by freshwater-type calcite, indicating a small depression of the position of the transition zone during the growth of the calcites. Sr isotope ratios and fluid inclusion chemistry confirm a link between ME9 calcite and the present regional groundwater system. Modelling of the oxygen isotope data indicates that some growth zones in the ME9 calcite precipitated from groundwater potentially containing a significant

  13. Prediction and assessment of the disturbances of the coal mining in Kailuan to karst groundwater system

    Science.gov (United States)

    Sun, Wenjie; Wu, Qiang; Liu, Honglei; Jiao, Jian

    Coal resources and water resources play an essential and strategic role in the development of China's social and economic development, being the priority for China's medium and long technological development. As the mining of the coal extraction is increasingly deep, the mine water inrush of high-pressure confined karst water becomes much more a problem. This paper carried out research on the hundred-year old Kailuan coal mine's karst groundwater system. With the help of advanced Visual Modflow software and numerical simulation method, the paper assessed the flow field of karst water area under large-scale exploitation. It also predicted the evolution ofgroundwaterflow field under different mining schemes of Kailuan Corp. The result shows that two cones of depression are formed in the karst flow field of Zhaogezhuang mining area and Tangshan mining area, and the water levels in two cone centers are -270 m and -31 m respectively, and the groundwater generally flows from the northeast to the southwest. Given some potential closed mines in the future, the mine discharge will decrease and the water level of Ordovician limestone will increase slightly. Conversely, given increase of coal yield, the mine drainage will increase, falling depression cone of Ordovician limestone flow field will enlarge. And in Tangshan's urban district, central water level of the depression cone will move slightly towards north due to pumping of a few mines in the north.

  14. Land Use Information System for Local Government: The Case of Naga City, Philippines

    OpenAIRE

    Rizalino Cruz

    2006-01-01

    This paper examines the context of land use planning and monitoring in local government. It reviews emerging trends in land use management and information system, and identifies issues and challenges facing Naga City local government in the Philippines. The paper then proposes a design solution for an information system to support and manage land use processes. It defines the user requirements for the information system, and formulates the System Architecture, which identifies the essential c...

  15. DOE groundwater protection strategy

    International Nuclear Information System (INIS)

    EH is developing a DOE-wide Groundwater Quality Protection Strategy to express DOE's commitment to the protection of groundwater quality at or near its facilities. This strategy responds to a September 1986 recommendation of the General Accounting Office. It builds on EPA's August 1984 Ground-Water Protection Strategy, which establishes a classification system designed to protect groundwater according to its value and vulnerability. The purposes of DOE's strategy are to highlight groundwater protection as part of current DOE programs and future Departmental planning, to guide DOE managers in developing site-specific groundwater protection practices where DOE has discretion, and to guide DOE's approach to negotiations with EPA/states where regulatory processes apply to groundwater protection at Departmental facilities. The strategy calls for the prevention of groundwater contamination and the cleanup of groundwater commensurate with its usefulness. It would require long-term groundwater protection with reliance on physical rather than institutional control methods. The strategy provides guidance on providing long-term protection of groundwater resources; standards for new remedial actions;guidance on establishing points of compliance; requirements for establishing classification review area; and general guidance on obtaining variances, where applicable, from regulatory requirements. It also outlines management tools to implement this strategy

  16. Assessment of Effectiveness of Geologic Isolation Systems. Variable thickness transient ground-water flow model. Volume 2. Users' manual

    International Nuclear Information System (INIS)

    A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data files from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs

  17. Hydrogeological investigation of an oasis-system aquifer in arid southeastern Morocco by development of a groundwater flow model

    Science.gov (United States)

    Bouaamlat, Ilias; Larabi, Abdelkader; Faouzi, Mohamed

    2016-04-01

    Groundwater of the Tafilalet oasis system (TOS) is an important water resource in the lower Ziz and Rheris valleys of arid southeastern Morocco. The unconfined aquifer is exploited for domestic consumption and irrigation. A groundwater flow model was developed to assess the impact of climatic variations and development, including the construction of hydraulic structures, on the hydrodynamic behavior of the aquifer. Numerical simulations were performed by implementing a spatial database within a geographic information system and using the Arc Hydro Groundwater tool with the code MODFLOW-2000. The results of steady-state and transient simulations between 1960 and 2011 show that the water table is at equilibrium between recharge, which is mainly by surface-water infiltration, and discharge by evapotranspiration. After the commissioning of the Hassan Addakhil dam in 1971, hydraulic heads became more sensitive to annual variations than to seasonal variations. Heads are also influenced by recurrent droughts and the highest water-level changes are recorded in irrigated areas. The model provides a way of managing groundwater resources in the TOS. It can be used as a tool to predict the impact of different management plans for the protection of groundwater against overexploitation and deterioration of water quality.

  18. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico

    Directory of Open Access Journals (Sweden)

    A. Hernández-Antonio

    2015-02-01

    Full Text Available Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3 type. It originates as recharge at Primavera caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal water is characterized by high salinity, temperature, Cl, Na, HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural practices. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Tritium method elucidated that practically all of the sampled groundwater contains at least a small fraction of modern water. The multivariate mixing model M3 indicates that the proportion of hydrothermal fluids in sampled well water is between 13 (local groundwater and 87% (hydrothermal water, and the proportion of polluted water in wells ranges from 0 to 63%. This study may help local water authorities to identify and quantify groundwater contamination and act accordingly.

  19. Key Challenges and Opportunities for Conjunctive Management of Surface and Groundwater in Mega-Irrigation Systems: Lower Indus, Pakistan

    Directory of Open Access Journals (Sweden)

    Frank van Steenbergen

    2015-11-01

    Full Text Available This paper focuses on the scope of conjunctive management in the Lower Indus part of the Indus Basin Irrigation System (IBIS, and the contribution this could make towards food security and socio-economic development. The total Gross Command Area (GCA of the Lower Indus is 5.92 Mha, with a cultivable command area (CCA of 5.43 Mha, most of which is in Sindh Province. There is a limited use of groundwater in Sindh (about 4.3 Billion Cubic Meter (BCM for two reasons: first, there is a large area where groundwater is saline; and second, there is a high surface irrigation supply to most of the canal commands, e.g., average annual supply to rice command is 1723 mm, close to the annual reference crop evapotranspiration for the area, while there is an additional annual rainfall of about 200 mm. These high irrigation allocations, even in areas where groundwater is fresh, create strong disincentives for farmers to use groundwater. Consequently, areas are waterlogged to the extent of 50% and 70% before and after the monsoon, respectively, which contributes to surface salinity through capillary rise. In Sindh, about 74%–80% of the available groundwater recharge is lost in the form of non-beneficial evaporation. This gives rise to low cropping intensities and yields compared to fresh groundwater areas elsewhere in the IBIS. The drought of 1999–2002 has demonstrated a reduction in waterlogging without any corresponding reduction in crop yields. Therefore, in order to efficiently meet current water requirements of all the sectors, i.e., agriculture, domestic and industrial, an ab initio level of water reallocation and efficient water management, with consideration to groundwater quality and its safe yield, in various areas are recommended. This might systematically reduce the waterlogged areas, support greater cropping intensity than is currently being practiced, and free up water for horizontal expansion, such as in the Thar Desert.

  20. Spatial variability of the response to climate change in regional groundwater systems -- examples from simulations in the Deschutes Basin, Oregon

    Science.gov (United States)

    Waibel, Michael S.; Gannett, Marshall W.; Chang, Heejun; Hulbe, Christina L.

    2013-01-01

    We examine the spatial variability of the response of aquifer systems to climate change in and adjacent to the Cascade Range volcanic arc in the Deschutes Basin, Oregon using downscaled global climate model projections to drive surface hydrologic process and groundwater flow models. Projected warming over the 21st century is anticipated to shift the phase of precipitation toward more rain and less snow in mountainous areas in the Pacific Northwest, resulting in smaller winter snowpack and in a shift in the timing of runoff to earlier in the year. This will be accompanied by spatially variable changes in the timing of groundwater recharge. Analysis of historic climate and hydrologic data and modeling studies show that groundwater plays a key role in determining the response of stream systems to climate change. The spatial variability in the response of groundwater systems to climate change, particularly with regard to flow-system scale, however, has generally not been addressed in the literature. Here we simulate the hydrologic response to projected future climate to show that the response of groundwater systems can vary depending on the location and spatial scale of the flow systems and their aquifer characteristics. Mean annual recharge averaged over the basin does not change significantly between the 1980s and 2080s climate periods given the ensemble of global climate models and emission scenarios evaluated. There are, however, changes in the seasonality of groundwater recharge within the basin. Simulation results show that short-flow-path groundwater systems, such as those providing baseflow to many headwater streams, will likely have substantial changes in the timing of discharge in response changes in seasonality of recharge. Regional-scale aquifer systems with flow paths on the order of many tens of kilometers, in contrast, are much less affected by changes in seasonality of recharge. Flow systems at all spatial scales, however, are likely to reflect

  1. Seismic characterization of the Wasatch fault system beneath Salt Lake City using a land streamer system

    Science.gov (United States)

    Brophy, B.; Liberty, L. M.; Gribler, G.

    2015-12-01

    We characterize the active Wasatch fault system beneath downtown Salt Lake City by measuring p- and s-wave velocities and seismic reflection profiling. Our focus was on the segment boundary between the Warm Springs and East Bench faults. We collected 14.5 km along 9 west-east profiles in 3 field days using a 60 m aperture seismic land streamer and 200 kg weight drop system. From a p-wave refraction analysis, we measure velocities from 230-3900 m/s for the upper 20-25 meters. Shear wave velocities for the upper 30 m, derived from a multi-channel analysis of surface waves (MASW) approach, show velocities that range from 100-1800 m/s. P-wave reflection images from the upper 100 m depth indicate offset and truncated (mostly) west-dipping strata (Bonneville Lake deposits?) that suggest active faults extend beneath the downtown urban corridor. We identify saturated sediments on the lower elevation (western) portions of the profiles and shallow high velocity (dry) strata to the east of the mapped faults. We observe slow p-wave velocities near identified faults that may represent the fault's colluvial wedge. These velocity results are best highlighted with Vp/Vs ratios. Analyzing shear wave velocities by NEHRP class, we estimate soft soil (NEHRP D) limited less than 1 m depth along most profiles, and stiff soil (NEHRP C) to up to 25 m depth in some locations. However near steep topographic slopes (footwall deposits), we identify NEHRP Class D stiff soil velocities to less than 2 m depth before transition to NEHRP Class C soft rock. Depth to hard rock (velocities >760 m/s) are as shallow as 20 m below the land surface on some steep slopes beneath north Salt Lake City and greater than our imaging depths along the western portions of our profiles. Our findings suggest large variations in seismic velocities beneath the Salt Lake City corridor and that multiple fault strands related to the Warm Springs fault segment extend beneath downtown.

  2. The construction of earthquake damage estimation system for city gas supply system

    Energy Technology Data Exchange (ETDEWEB)

    Ota, M.; Furuta, H. [Toho Gas Co. Ltd., Atsuta-ku, Nagoya, Aichi (Japan)

    2010-07-01

    The regular occurrence of large-scale earthquakes in Japan necessitates the use of earthquake disaster prevention systems that focus on gathering damage information on gas supply facilities immediately after an earthquake strikes and minimizing the damage. This paper discussed the development of an earthquake damage estimation system for city gas pipelines that can show damage information in real-time by using earthquake records obtained from densely deployed earthquake observation networks and the most advanced telecommunication and information technologies. The paper summarized the earthquake damage estimation system (EDES) and Toho Gas disaster prevention measures. Specific topics that were discussed included the Toho Gas supply method; earthquake countermeasures; construction of computer systems; normal and emergency operation of EDES; and verification of functions in actual earthquakes. It was concluded that when there is an emergency, the EDES functions as an online system using seismograph observation data and hypocenter information to estimate the earthquake motion distribution, liquefaction distribution, and the damage to low-pressure gas pipes, service pipes, and wooden buildings. During normal operation, earthquake motion is estimated taking into account historical earthquakes and active faults. Since any desired earthquake data could be inputted, a wide variety of damage estimation simulations can be run. 3 refs., 4 tabs., 8 figs.

  3. The impact of city-level permitting processes on residential photovoltaic installation prices and development times: An empirical analysis of solar systems in California cities

    International Nuclear Information System (INIS)

    With “soft” costs accounting for well over 50% of the installed price of residential photovoltaic (PV) systems in the United States, this study evaluates the effect of city-level permitting processes on the installed price of residential PV systems and on the time required to develop those systems. The study uses a unique dataset from the U.S. Department of Energy's Rooftop Solar Challenge Program, which includes city-level permitting process “scores,” plus data from the California Solar Initiative and the U.S. Census. Econometric methods are used to quantify the price and development-time effects of city-level permitting processes on more than 3000 PV installations across 44 California cities in 2011. Results suggest that cities with the most favorable permitting practices can reduce average residential PV prices by $0.27–$0.77/W (4–12% of median PV prices in California) compared with cities with the most onerous permitting practices, depending on the regression model used. Though the empirical models for development times are less robust, results suggest that the most streamlined permitting practices may shorten development times by around 24 days on average (25% of the median development time). These findings illustrate the potential price and development-time benefits of streamlining local permitting procedures for PV systems. - Highlights: • The study uses a unique dataset from the U.S. DOE's Rooftop Solar Challenge Program. • We quantify the price and development-time effects of city-level permitting processes. • Most favorable permitting practices can reduce average residential PV prices by $0.27–$0.77/W

  4. Sustainability of groundwater supplies in the Northern Atlantic Coastal Plain aquifer system

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.

    2016-01-01

    Groundwater is the Nation’s principal reserve of freshwater. It provides about half our drinking water, is essential to food production, and facilitates business and industry in developing economic well-being. Groundwater is also an important source of water for sustaining the ecosystem health of rivers, wetlands, and estuaries throughout the country. The decreases in groundwater levels and other effects of pumping that result from large-scale development of groundwater resources have led to concerns about the future availability of groundwater to meet all our Nation’s needs. Assessments of groundwater availability provide the science and information needed by the public and decision makers to manage water resources and use them responsibly.

  5. Integrated assessment of sources, chemical stressors and stream quality along a groundwater fed stream system

    Science.gov (United States)

    Løgstrup Bjerg, Poul; Sonne, Anne T.; Rønde, Vinni; McKnight, Ursula S.

    2016-04-01

    Streams are impacted by significant contamination at the catchment scale, as they are often locations of multiple chemical stressor inputs. The European Water Framework Directive requires EU member states to ensure good chemical and ecological status of surface water bodies by 2027. This requires monitoring of stream water quality, comparison with environmental quality standards (EQS) and assessment of ecological status. However, the achievement of good status of stream water also requires a strong focus on contaminant sources, pathways and links to stream water impacts, so source management and remedial measures can be implemented. Fate and impacts of different contaminant groups are governed by different processes and are dependent on the origin (geogenic, anthropogenic), source type (point or diffuse) and pathway of the contaminant. To address this issue, we identified contaminant sources and chemical stressors on a groundwater-fed stream to quantify the contaminant discharges, link the chemical impact and stream water quality and assess the main chemical risk drivers in the stream system potentially driving ecological impact. The study was conducted in the 8 m wide Grindsted stream (Denmark) along a 16 km stream stretch that is potentially impacted by two contaminated sites (Grindsted Factory site, Grindsted Landfill), fish farms, waste water discharges, and diffuse sources from agriculture and urban areas. Water samples from the stream and the hyporheic zone as well as bed sediment samples were collected during three campaigns in 2012 and 2014. Data for xenobiotic organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow were collected. The measured chemical concentrations were converted to toxic units (TU) based on the 48h acute toxicity tests with D. magna. The results show a substantial impact of the Grindsted Factory site at a specific stretch of the stream. The groundwater plume caused

  6. Effects of 1992 farming systems on ground-water quality at the management systems evaluation area near Princeton, Minnesota

    Science.gov (United States)

    Delin, G.N.; Landon, M.K.; Lamb, J.A.; Dowdy, R.H.

    1995-01-01

    The Management Systems Evaluation Area (MSEA) program was a multiscale, interagency initiative to evaluate the effects of agricultural systems on water quality in the midwest corn belt. The primary objective of the Minnesota MSEA was to evaluate the effects of ridge-tillage practices in a corn and soybean farming system on ground-water quality. The 65-hectare Minnesota MSEA was located in the Anoka Sand Plain near the town of Princeton, Minnesota. Three fanning systems were evaluated: corn-soybean rotation with ridge-tillage (areas B and D), sweet corn-potato rotation (areas A and C), and field corn in consecutive years (continuous corn; area E). Water samples were collected four different times per year from a network of 22 multiport wells and 29 observation wells installed in the saturated zone beneath and adjacent to the cropped areas.

  7. It Takes a City to Raise a Systemic Reform: Early Outcomes from the Say Yes City-wide Turnaround Strategy in Syracuse

    Directory of Open Access Journals (Sweden)

    Steven M. Ross

    2013-03-01

    Full Text Available The focus of this paper is a systemic educational reform, “The Say Yes City-wide Turnaround Strategy,” designed to involve diverse city-wide partners in improving education and revitalizing the community and city. As an incentive and catalyst for change, college scholarships are offered to every high school graduate in the city. However, the major goal of the partnership is prepare all students for postsecondary education through improved classroom teaching, extended-learning opportunities, and adaptive supports in the academic, social-emotional, and health domains. Specific implementation components, such as the Student Monitoring and Intervention System, after-school and summer programs, communications with stakeholders and public, and pathways to postsecondary and careers, are described in reference to the recent initiation of the City-wide Turnaround Strategy in Syracuse, NY. Expected and early educational outcomes are also examined based on the Say Yes Theory of Change. Keywords: Systemic reform, systemic educational reform, tournaround strategy, social emotional.

  8. Modelling and simulation of groundwater flow and radionuclide transport in aquifers of Dahomeyan System of the Accra Plains in Ghana

    International Nuclear Information System (INIS)

    Locating a suitable radioactive waste disposal site in the Dahomeyan System of the Accra Plains has become necessary in isolating radionuclide waste from the biosphere to reduce risk to human and environment. Radionuclide as leaked from canister into the groundwater is carried by groundwater through fractured domain in space and time lead to groundwater contamination that poses threat to humans and the environment. Previous researches carried out in the study area modelled radionuclide flow in unsaturated and saturated zones used published hydraulic properties. Modelling and simulation of groundwater flow and radionuclide transport in the Dahomeyan System was used to better understand the aquifer system. Detailed site characterisation was done as prerequisite for accurate modelling results using pumping test and borehole logs data. Effective porosity and hydraulic properties (e.g. T, K, S) were estimated using field methods. The flow path and flow rate were also determined for the domain. The groundwater flow was simulated using ANSYS FLUENT 13.0 software to validate the field flow rate estimated and the range of storativity values estimated for the domain. Analytical and numerical solutions developed for 1D ADDE were simulated using MATLAB R2013a codes. 2D ADDE solution was also simulated to show the behaviour of groundwater flow and radionuclide spread in aquifers of the domain. C-14 and Sr-90 contaminants simulations showed that for a simulation time far less than half-life of the radionuclide the error between analytical and numerical solutions are negligible. The flow path determined was in SSE direction and dispersion was faster initially transversally than longitudinally due to preferential flow paths. The low values of the hydraulic parameters determined qualify Accra Plains as a host rock for radionuclide waste repository especially where transmissivity and storativity values were smallest. (au)

  9. Improvement of the organizational-economic mechanism of developing heat supply city system

    OpenAIRE

    Doroshenko, Valentina

    2012-01-01

    The article examines a complex of social and economic problems that accompany the development of heat supply systems in Ukraine. It is determined that the negative effects of district heating in the cities and towns are caused by the failure of current management mechanism to ensure the solution of basic problems and implement the heat supply system as life support system. The main goal of study was the development of theoretical, methodological and methodical principles of organizational-eco...

  10. Optimal design of Remote Terminal Unit (RTU) for power system operation in smart cities

    OpenAIRE

    Aamir, Muhammad

    2013-01-01

    The concept of smart cities involves specifically modified infrastructure for its physical, economic and social systems which is mandatory to provide improved facilities to citizens at various levels. The major infrastructure is energy which is mainly distributed in the form of Electricity. Therefore power system operation must be optimized by making it intelligent and environmental friendly by including renewable resources and green ICT systems to achieve greater energy efficiency. In th...

  11. Phreatic-confined discontinuities and restricted flow in confined groundwater systems

    International Nuclear Information System (INIS)

    Six study cases are described in which a significant discontinuity is observed at the transition zone between phreatic and confined sections of an aquifer. The discontinuities are seen in the chemical composition, isotopic composition of D, 18O and 13C, in the concentrations of age indicators, such as tritium, 14C and 4He, as well as in the values of paleoclimate indicators, e.g. Ne, Ar, Kr and Xe or 18O. The age indicators are most useful in checking the degree of hydraulic communication occurring between phreatic and confined sections of an aquifer. The observations shed light on the importance of drainage as a factor regulating flow in confined systems. This explains reported discrepancies between hydrologically calculated groundwater ages, based on gradients and transmissivities, and much higher ages deduced from isotopic age indicators, e.g. 14C, 4He or 36Cl. (author). 9 refs, 14 figs, 1 tab

  12. Digital models of ground-water flow in the Cape Cod aquifer system, Massachusetts

    Science.gov (United States)

    Guswa, John H.; LeBlanc, Denis R.

    1981-01-01

    The Cape Cod aquifer system was simulated with three-dimensional finite-difference ground-water-flow models. Five areas were modeled to provide tools which can be used to help predict the hydrologic impacts of regional water development and disposal schemes. Model boundaries were selected to represent the natural hydrologic boundaries of the aquifer. The boundary between fresh and saline ground water is treated as an interface of no dispersion, and the saline-water zone is treated as being non-flowing. Comparisons of calculated and observed head values, position of the freshwater and saline-water boundary, and ground-water-discharge rates at locations where data are available indicate that the simulated ground-water reservoirs generally agree with the field conditions and the models can be used for predictive studies. (USGS)

  13. Modeling Fractal Structure of Systems of Cities Using Spatial Correlation Function

    CERN Document Server

    Chen, Yanguang

    2016-01-01

    This paper proposes a new method to analyze the spatial structure of urban systems using ideas from fractals. Regarding a system of cities as a set of "particles" distributed randomly on a triangular lattice, we construct a spatial correlation function of cities. Suppose that the spatial correlation follows the power law. It can be proved that the correlation exponent is the second order generalized dimension. The spatial correlation model is applied to the system of cities in China. The results show that the Chinese urban system can be described by the correlation dimension ranging from 1.3 to 1.6. The fractality of self-organized network of cities in both the conventional geographic space and the "time" space is revealed with the empirical evidence. The spatial correlation analysis is significant in that it is applicable to both large and small sizes of samples and can be used to link different fractal dimensions in urban study, including box dimension and radial dimension.

  14. The City Resources Management System%论城市资源系统管理

    Institute of Scientific and Technical Information of China (English)

    潘安敏

    2012-01-01

    城市资源系统是一个由城市的物质资源、文化资源、人力资源等要素构成的整体.针对我国城市资源管理的现状,总结了我国城市资源在产权制度、管理体制、资源观念、资源规划等四个方面约突出问题;提出了城市资源系统管理的概念及其管理体系,即政策与法律体系、产权评估体系、战略规划体系、科学配置体系、利用与保护体系.%A city resources system is the whole that is constitute of its material, cultural and human resources etc. In the light of China's city resources management situation, The author summarized the outstanding problem from four aspects, such as the property rights, management, concept and planning on city resources of our country; and put forward the concept of city resources system management and its management system: policy and legal, property assessment, strategic planning, scientific configuration and utilization and protection system.

  15. 城市公共空间与城市规划体系的构建%Constructing the City Public Space and City Planning System

    Institute of Scientific and Technical Information of China (English)

    纪晨; 李珍琪

    2013-01-01

    近年来,由于城市公共空间问题而引发各类冲突事件频频发生,需要我们重新认识和实践城市公共空间规划的作用和意义。本文通过对城市公共空间与城市规划体系的分析,明确如何科学地建立以人民为中心的城市公共空间规划,为创建和谐社会及城市发展更新创造条件。%In recent years, the various conflicts triggered by city public space problems frequently, we need to know and practice the role and significance of city public space planning. This paper through the analysis of city public space and city p-lanning system, pinpoints how to scientifical y establish the ci-ty public space planning taking the people as the center, to cre-ate development and update conditions for the creation of a ha-rmonious society and city.

  16. Evaluation of physico-chemical characteristics of groundwater of Company Bagh pumping station and its six distribution points in old Jammu City, India.

    Science.gov (United States)

    Khajuria, Meenakshi; Dutta, S P S

    2011-10-01

    To assess water quality of Company Bagh pumping station and its six distribution points, viz. Parade Ground, Mohalla Paharian, Purani Mandi, Malhotrian Street, Raghunathpura and Hari Market in old Jammu city of India, water parameters viz. temperature, turbidity, pH, electrical conductivity, free carbon dioxide, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, bicarbonate, chloride, calcium, magnesium, total hardness, sodium, potassium, sulphate, silicate, nitrate, phosphate, iron, copper, zinc, lead and chromium were analyzed during the years 2000-2001/2001-2002. There was alteration in water quality parameters in the distribution system caused by entry of sewage, soil, etc. through dislocation, cracks, valve regulators/turncock, defective joints, breakage, etc. in the pipes through crossing and deposits of biofilms inside the pipes, dead ends and their degradation through microbes. Comparison of water quality with National and International Standards revealed that all the parameters were within permissible limits of drinking water standards. Water Quality Index (WQI) of various physico-chemical parameters revealed that the water of Company Bagh pumping station and its six distribution points was fit for human consumption as it was found under the category of good (WQI < 50). PMID:23505827

  17. Interests of hydrogeological observatories for characterizing heterogeneous groundwater systems: the example of the Ploemeur hard-rock aquifer (French Brittany)

    Science.gov (United States)

    Bour, O.; Le Borgne, T.; Aquilina, L.; Labasque, T.; Lavenant, N.; Boudin, F.; Leray, S.; De Dreuzy, J.; Longuevergne, L.; Hochreutener, R.; Davy, P.

    2012-12-01

    Heterogeneous aquifers are often poorly constrained by the available data. There is a strong need of characterizing at multiple space and time scales heterogeneous groundwater systems to improve model predictions. Here, we present results from the site of Ploemeur (French Brittany) that belongs to the network of hydrogeological sites H+, and where complementarity approaches have been developed for almost fifteen years. This outstandingly heterogeneous crystalline rock aquifer is used for water supply at a rate of about 10^6 m3 per year since 1991. The geology of the area is relatively complex and involves two main structures: a highly fractured contact zone between the Ploemeur's granite and the overlying micaschists, and a steeply dipping fault striking North 20°. The contact zone in itself consists of alternating deformed granitic sheets and enclaves of micaschists, pegmatite and aplite dykes, and locally mylonites and pegmatite-bearing breccias that are often associated with major borehole inflows. At the site scale - typically a square kilometer - and at relatively shallow depth (100 to 150 m), the connectivity of the main flow paths and the hydraulic properties are relatively well constrained and quantified thanks to cross-borehole flowmeter tests and traditional pumping tests. However, such data are relatively limited in explaining the functioning of this confined groundwater system at the regional scale. Groundwater chemistry and groundwater dating permit to go further to identify distinct reservoirs and in particular a relatively deep groundwater component whose age is older than 50 years. Groundwater temperature measurements demonstrate the role of the pumping that influences greatly the spatial distribution of groundwater temperature and quality. Moreover, it suggests that the main water supply comes from a depth of at least 300 meters. This implies relatively deep groundwater circulation that can be achieved only thanks to major permeable fault zone. At

  18. Modeling of urban solid waste management system: The case of Dhaka city

    International Nuclear Information System (INIS)

    This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collection and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis

  19. Modeling of urban solid waste management system: the case of Dhaka city

    International Nuclear Information System (INIS)

    This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city Dhaka Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are increasing with time for Dhaka city. Simulated results also show that increasing the budge for collection capacity alone does not improve the environmental quality rather increased budget is required for both collection and treatment of solid wastes of Dhaka city. Finally, this model can be used as a compute laboratory for urban solid waste management (USWM) policy analysis. (author)

  20. On the Design of Simulation System of Intelligent City Taxi Call

    Directory of Open Access Journals (Sweden)

    Xudong Zhu

    2013-06-01

    Full Text Available The city taxi system is characterized as inconvenience information interaction with passengers and regional imbalance. With the development of wireless network technology, VANET can realize the real-time information interaction between taxi and passengers. Thus to conduct reasonable taxi scheduling and improve the efficiency of the taxi system. In order to validate the effectiveness of intelligent call system of city taxi which adopts the wireless network technology, this study provides a taxi control simulation system based on the wireless network, thus to analyze the behavior of vehicles and passengers. The results show that the real-time taxi call system and intelligent scheduling by using the wireless network technology can effectively reduce the not-taken rate and the average waiting time of passengers.

  1. Nonlinearity in groundwater flow

    OpenAIRE

    Barends, F.B.J.

    1980-01-01

    Since 1856 when Darcy laid the basis for the calculation of the flow of water through sands, researchers have been interested in groundwater flow. Groundwater is essential for agriculture and water supply, but it also plays an important role when soil is used as a construction element, such as for dykes, roads and foundations. The mechanical behaviour of saturated or dry, fine graded or coarse soils are quite different. The theory of groundwater mechanics must be based on the system: water-so...

  2. Is artificial recharge promoting microbial activity and biodegradation processes in groundwater systems?

    Science.gov (United States)

    Barba Ferrer, Carme; Folch, Albert; Gaju, Núria; Martínez-Alonso, Maira; Carrasquilla, Marc; Grau-Martínez, Alba; Sanchez-Vila, Xavier

    2016-04-01

    Managed Artificial Recharge (MAR) represents a strategic tool for managing water resources, especially during scarce periods. On one hand, it can increase water stored in aquifers and extract it when weather conditions do not permit exclusive exploitation of surface resources. On the other, it allows improve water quality due the processes occurring into the soil whereas water crosses vadose zone. Barcelona (Catalonia, Spain) conurbation is suffering significant quantitative and qualitative groundwater disturbances. For this reason, Sant Vicenç MAR system, constituted by a sedimentation and an infiltration pond, was constructed in 2009 as the strategic water management infrastructure. Compared with other MAR facilities, this infiltration pond has a reactive bed formed by organic compost and local material. The objective is to promote different redox states allowing more and different degradation of chemical compounds than regular MAR systems. In previous studies in the site, physical and hydrochemical parameters demonstrated that there was indeed a degradation of different pollutants. However, to go a step further understanding the different biogeochemical processes and the related degradation processes occurring in the system, we studied the existing microbial communities. So, molecular techniques were applied in water and soil samples in two different scenarios; the first one, when the system was fully operating and the second when the system was not operating during some months. We have specifically compared microbial diversity and richness indexes and both cluster dendrograms obtained from DGGEs analysis made in each sampling campaign.

  3. Environmental isotope study of groundwater systems in the Republic of Djibouti

    International Nuclear Information System (INIS)

    Environmental isotopes and hydrogeochemistry are being used to shed new light on the occurrence of present-day recharge and on the origin of groundwater systems in the Republic of Djibouti. Furthermore, an attempt is also being made to evaluate palaeohydrological conditions during the past 6000 years. From stable isotope data which lie along a correlation line at a slope of 8 in the diagram delta2H-delta18O, it can be concluded that recharge occurs by rapid seepage in fractured rocks without evaporation. Some waters from hot springs show an oxygen shift, indicating the occurrence of an exchange process with rocks at high temperatures. The following conclusions can be reached from tritium and 14C content of waters. Groundwaters can be divided into two groups: one deriving from recent recharge (last five or six years) corresponding to water with rather fast circulations in fractured media; and a second group, pre-bomb recharged corresponding to water with low flow rates in porous media. Only one sample (Yoboki) seems to derive from about 10-year-old recharge. In the case of Abhe hot spring, a 14C age of about 1200 years may be evaluated. The calcite concretions of the Abhe Lake Basin are believed to have formed as a result of the mixing of lake water (sodium-carbonate type) with groundwater (sodium-chloride, calcium-sulphate type). From the 13C and 14C content it appears that the dissolved carbon of present-day lake water is in, or close to, equilibrium with the atmosphere. Consequently, it is assumed that such was also the case during the whole Holocene. The 18O content of palaeolake water, evaluated from the calcite isotopic composition with the palaeo-temperature equation, was originally more negative than the present one. This is interpreted as due to the fact that the Holocene lake was fed by large floods and that significant seepage occurred through the lake bottom with a consequent reduction of the evaporation effects. (author)

  4. Investigation of geochemical indicators to evaluate the connection between inland and coastal groundwater systems near Kaloko-Honokōhau National Historical Park, Hawai‘i

    International Nuclear Information System (INIS)

    Highlights: • The connection between inland and coastal aquifers near Kona, Hawai‘i is uncertain. • If connected, increased inland groundwater pumping may threaten coastal ecosystems. • Connection of inland and coastal aquifers was investigated using geochemical data. • Stable isotope results provide strong evidence of a connection between the systems. • Other geochemical data suggest a connection but are not conclusive. - Abstract: Kaloko-Honokōhau National Historical Park (KAHO) is a coastal sanctuary on the western side of the Island of Hawai‘i that was established in 1978 to preserve, interpret, and perpetuate traditional Native Hawaiian culture and activities. KAHO contains a variety of culturally and ecologically significant water resources and water-related habitat for species that have been declared as threatened or endangered by the U.S. Fish and Wildlife Service, or are candidate threatened or endangered species. These habitats are dependent on coastal unconfined groundwater in a freshwater-lens system. The coastal unconfined-groundwater system is recharged by local infiltration of rainfall but also may receive recharge from an inland groundwater system containing groundwater impounded to high altitudes. The area inland of and near KAHO is being rapidly urbanized and increased groundwater withdrawals from the inland impounded-groundwater system may affect habitat and water quality in KAHO, depending on the extent of connection between the coastal unconfined groundwater and inland impounded-groundwater. An investigation of the geochemistry of surface-water and groundwater samples in and near KAHO was performed to evaluate the presence or absence of a connection between the inland impounded- and coastal unconfined-groundwater systems in the area. Analyses of major ions, selected trace elements, rare-earth elements, and strontium-isotope ratio results from ocean, fishpond, anchialine pool, and groundwater samples were consistent with a linear

  5. Tracing sources of nitrate in groundwater by using hydro-chemical and isotopic methods: Beirut region and its suburbs

    International Nuclear Information System (INIS)

    Analyses of hydrochemical and stable isotopes of 2H and 18O were conducted on groundwater samples collected in Beirut city and its suburbs and tapped in a limestone aquifer. The analyses were done to document the chemical and isotopic characters of the natural groundwater and to determine its origin. Hydrochemical data are classified on the basis of dominant anions. Mineral groundwater quality was found affected by different pollution sources in the southern suburb of Beirut. Isotopic analyses delineate two major groups of groundwater. The first group is directly influenced by direct recharge into the aquifer from precipitation. The second group, showing elevated mineral characteristics, is influenced by a secondary evaporation process reflecting an isotopic enrichment in groundwater. δ15N investigation of the isotopically enriched samples determines the origin of nitrate pollution from either infiltration of animal waste or septic systems to groundwater. (author)

  6. A semantic autonomous video surveillance system for dense camera networks in Smart Cities.

    Science.gov (United States)

    Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M; Carro, Belén; Sánchez-Esguevillas, Antonio

    2012-01-01

    This paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network. PMID:23112607

  7. A Semantic Autonomous Video Surveillance System for Dense Camera Networks in Smart Cities

    Directory of Open Access Journals (Sweden)

    Antonio Sánchez-Esguevillas

    2012-08-01

    Full Text Available This paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network.

  8. Application of GRACE Data for Quantifying Mesoscale Groundwater Stress - Urucuia Aquifer System, Northeastern Brazil

    Science.gov (United States)

    Stollberg, R.; Gonçalves, R. D.; Weiss, H.; Chang, H. K.

    2015-12-01

    The Gravity Recovery and Climate Experiment (GRACE) mission provides a couple of applications in hydrology research such as total water storage (TWS) changes monitoring, quantitative water cycle components estimation, drought monitoring and hydrological modelling. Limited spatial resolutions of gravity measurements and noise contamination can cause errors and uncertainty of the study objective. Therefore, several GRACE studies recommend application of GRACE data retrievals to areas of interests only larger 200,000 km². The Urucuia Aquifer System (UAS) represents a major strategic water resource for Brazil. UAS is located in the drought-stricken northeast of Brazil and its discharge covers about 30% of the São Francisco River water (4th largest river in South America). Hydrological monitoring of the UAS is of increased importance to guarantee future river water supply and related ecosystem services for the territories crossed. A pre-processed GRACE three-model-ensemble was used to account for TWS changes and a negative balance was revealed for the UAS territory indicating potential water stress. Individual water cycle components needed to be excluded from the total GRACE signal using supplemental data sets to characterize the remaining storage term equivalent to 'water stress'. Comprehensive hydrological ground measurements of precipitation, river discharge, hydraulic heads plus further climate remote-sensing data sources were taken into account trying to distinguish natural from anthropogenic groundwater stress. Consideration of climate data from global hydrological models showed an insufficient accuracy which is related to spatial scaling issues whereas the inclusion of available ground data could increase the overall significance of the GRACE signal for this study. GRACE-based TWS retrievals were applied successfully in combination with comprehensive hydrological monitoring data to quantify potential groundwater storage changes of the 120,000 km² large UAS.

  9. Information in the city traffic management system. The analysis of the use of information sources and the assessment in terms of their usefulness for city routes users

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available Solving problems connected with the flow of cargo and people in cities demands taking a system approach and integrating a number of activities. One of effective methods of improving traffic, and what is even more important, the one possible to be promptly introduced, is to implement Intelligent Transport Systems. It makes it possible to significantly enrich information resources for managing the city traffic. Nonetheless, to achieve satisfactory results, one has to consider information needs of public transport users and provide them with convenient access to information to enable them to plan their journeys more effectively. This article presents the results of research conducted on two urbanized areas, namely the Poznan conurbation and the Upper Silesian Industrial Region. The research aim was to determine which information sources city routes users use and how they assess their usefulness.

  10. Oxygen, hydrogen, and helium isotopes for investigating groundwater systems of the Cape Verde Islands, West Africa

    Science.gov (United States)

    Heilweil, V.M.; Solomon, K.D.; Gingerich, S.B.; Verstraeten, Ingrid M.

    2009-01-01

    Stable isotopes (??18O, ??2H), tritium (3H), and helium isotopes (3He, 4He) were used for evaluating groundwater recharge sources, flow paths, and residence times of three watersheds in the Cape Verde Islands (West Africa). Stable isotopes indicate the predominance of high-elevation precipitation that undergoes little evaporation prior to groundwater recharge. In contrast to other active oceanic hotspots, environmental tracers show that deep geothermal circulation does not strongly affect groundwater. Low tritium concentrations at seven groundwater sites indicate groundwater residence times of more than 50 years. Higher tritium values at other sites suggest some recent recharge. High 4He and 3He/4He ratios precluded 3H/3He dating at six sites. These high 3He/4He ratios (R/Ra values of up to 8.3) are consistent with reported mantle derived helium of oceanic island basalts in Cape Verde and provided end-member constraints for improved dating at seven other locations. Tritium and 3H/3He dating shows that S??o Nicolau Island's Ribeira Faj?? Basin has groundwater residence times of more than 50 years, whereas Fogo Island's Mosteiros Basin and Santo Ant??o Island's Ribeira Paul Basin contain a mixture of young and old groundwater. Young ages at selected sites within these two basins indicate local recharge and potential groundwater susceptibility to surface contamination and/or salt-water intrusion. ?? Springer-Verlag 2009.

  11. Evaluation of the origin and residence time of the groundwater in a regional aquifer system, Rio de Bogota basin, Colombia

    International Nuclear Information System (INIS)

    The Rio Bogota basin with a surface area of 4,300 km2, is located in the central part of the Oriental Cordillera in Colombia. This basin is composed of mountains and flat terrains. The mountains areas are elongated chains with an SO-NE orientation and altitude between 2,700 and 4,000 masl. The flat terrains with a surface area of 1,400 km2 correspond to the Sabana de Bogota located at an altitude between 2,450 and 2,600 masl. The main aquifers are the Guadalupe group composed of fractured sandstones and siltstones from the Cretacic age that outcrop in the mountains areas, overlayered by the Neogeno-Quaternary complex composed of gravels, sands and lacustrine clays located in the flats areas. During the last decade, the demand of groundwater resources in the Sabana de Bogota has increased significantly due to the development and expansion of the horticulture industry and urban areas. This paper will discuss hydrogeological, geochemical and isotope data that was obtained in a study aiming to evaluate the groundwater flow system, the origin and residence time of the groundwater in the regional aquifers. This study was done as part of long-term collaboration between the Instituto de Investigaciones e Informacion Geocientifica Minero-Ambiental y Nuclear, Bogota, Colombia (INGEOMINAS), the Corporacion Autonoma Regional de Cundinamarca-CAR, and the International Atomic Energy Agency (IAEA). Isotope data collected from rains and springs sampled between 2,800 and 3,700 masl showed a clear isotope gradient with altitude that varies between -8 and -12.6 per mille for δ18O and -50 and -85 per mille for δ2H. No significant isotope differences were observed in the groundwater representing the Neogene-Quaternary and Guadalupe aquifers. Most of the groundwater ranges between -9 and -11 per mille for δ18O and -60 and -79 per mille for δ2H. The exceptions are isotopically more enriched groundwater collected in shallow dugwells recharged by local precipitation in the valley. The

  12. Heterogeneous redox reactions in groundwater flow systems - Investigation and application of two different coupled codes

    International Nuclear Information System (INIS)

    Two simulators of reactive chemical transport are applied to a set of problems involving heterogeneous reactions of uranium species. The simulators use similar algorithms to compute the heterogeneous chemical equilibria, but they use different approaches to the computation of solute transport and to the coupling of transport with chemical reactions. One simulator (MCOTAC) sequentially couples calculations of static chemical equilibria to a random-walk simulation of solute advection and dispersion. The other simulator (THCC) directly couples mass action relations for chemical equilibria to finite-difference representations of the solute transport equations. The aim of the comparison was to demonstrate the applicability of the newly developed code MCOTAC to redox problems, and to identify and investigate general differences between the two types of codes within these applications. The chosen heterogeneous redox systems are hypothetically generate systems which provide numerical difficulties within the coupled code calculation. Uranium, an important component of heterogeneous redox systems consisting of uraniferous solids and natural groundwaters, was chosen as a main component in the example redox systems because of practical interest for performance assessment of geological repositories for nuclear wastes. The calculations show reasonable agreement, in general, between the two computational approaches. Specific areas of disagreement arise from numerical difficulties to each approach. Such 'benchmarking' can enhance confidence in the overall performance of individual simulators while identifying aspects that may require further investigations and possible modifications. (author) figs., tabs., 7 refs

  13. Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York

    Science.gov (United States)

    Phillips, Patrick J.; Schubert, Christopher E.; Argue, Denise M.; Fisher, Irene J.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; Chalmers, Ann T.

    2015-01-01

    Septic-system discharges can be an important source of micropollutants (including pharmaceuticals and endocrine active compounds) to adjacent groundwater and surface water systems. Groundwater samples were collected from well networks tapping glacial till in New England (NE) and sandy surficial aquifer New York (NY) during one sampling round in 2011. The NE network assesses the effect of a single large septic system that receives discharge from an extended health care facility for the elderly. The NY network assesses the effect of many small septic systems used seasonally on a densely populated portion of Fire Island. The data collected from these two networks indicate that hydrogeologic and demographic factors affect micropollutant concentrations in these systems.

  14. Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system

    Science.gov (United States)

    Morway, Eric D.; Gates, Timothy K.; Niswonger, Richard G.

    2013-01-01

    Some of the world’s key agricultural production systems face big challenges to both water quantity and quality due to shallow groundwater that results from long-term intensive irrigation, namely waterlogging and salinity, water losses, and environmental problems. This paper focuses on water quantity issues, presenting finite-difference groundwater models developed to describe shallow water table levels, non-beneficial groundwater consumptive use, and return flows to streams across two regions within an irrigated alluvial river valley in southeastern Colorado, USA. The models are calibrated and applied to simulate current baseline conditions in the alluvial aquifer system and to examine actions for potentially improving these conditions. The models provide a detailed description of regional-scale subsurface unsaturated and saturated flow processes, thereby enabling detailed spatiotemporal description of groundwater levels, recharge to infiltration ratios, partitioning of ET originating from the unsaturated and saturated zones, and groundwater flows, among other variables. Hybrid automated and manual calibration of the models is achieved using extensive observations of groundwater hydraulic head, groundwater return flow to streams, aquifer stratigraphy, canal seepage, total evapotranspiration, the portion of evapotranspiration supplied by upflux from the shallow water table, and irrigation flows. Baseline results from the two regional-scale models are compared to model predictions under variations of four alternative management schemes: (1) reduced seepage from earthen canals, (2) reduced irrigation applications, (3) rotational lease fallowing (irrigation water leased to municipalities, resulting in temporary dry-up of fields), and (4) combinations of these. The potential for increasing the average water table depth by up to 1.1 and 0.7 m in the two respective modeled regions, thereby reducing the threat of waterlogging and lowering non-beneficial consumptive use

  15. Internet Portal For A Distributed Management of Groundwater

    Science.gov (United States)

    Meissner, U. F.; Rueppel, U.; Gutzke, T.; Seewald, G.; Petersen, M.

    The management of groundwater resources for the supply of German cities and sub- urban areas has become a matter of public interest during the last years. Negative headlines in the Rhein-Main-Area dealt with cracks in buildings as well as damaged woodlands and inundated agriculture areas as an effect of varying groundwater levels. Usually a holistic management of groundwater resources is not existent because of the complexity of the geological system, the large number of involved groups and their divergent interests and a lack of essential information. The development of a network- based information system for an efficient groundwater management was the target of the project: ?Grundwasser-Online?[1]. The management of groundwater resources has to take into account various hydro- geological, climatic, water-economical, chemical and biological interrelations [2]. Thus, the traditional approaches in information retrieval, which are characterised by a high personnel and time expenditure, are not sufficient. Furthermore, the efficient control of the groundwater cultivation requires a direct communication between the different water supply companies, the consultant engineers, the scientists, the govern- mental agencies and the public, by using computer networks. The presented groundwater information system consists of different components, especially for the collection, storage, evaluation and visualisation of groundwater- relevant information. Network-based technologies are used [3]. For the collection of time-dependant groundwater-relevant information, modern technologies of Mobile Computing have been analysed in order to provide an integrated approach in the man- agement of large groundwater systems. The aggregated information is stored within a distributed geo-scientific database system which enables a direct integration of simu- lation programs for the evaluation of interactions in groundwater systems. Thus, even a prognosis for the evolution of groundwater states

  16. Groundwater Waters

    Directory of Open Access Journals (Sweden)

    Ramón Llamas

    1999-10-01

    Full Text Available The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction and operation of these structures was a powerful factor in the birth of an urban or civil society – the designated water civilizations. The difference between people taking advantage of groundwater, quasi-individually, and those of surface water, where people work in a group, has continued to the present day. Whereas earlier, this difference did not bring about any special problems, the technological advances of this century, especially theturbine pump, have led to a spectacular increase in the use of roundwater. This advance has significantly contributed to reducing hunger in the world and has provided potable water in developing countries. However, the almost generalized lack of planning and control in the exploitation of these groundwaters reflects that they are little or badly understood by the managers of water policy in almost every country. As such, problems have occurred which have often become exaggerated, giving rise to water-myths. These problems, though, should be addressed if the aim is the sustainable usage of surface water as well as groundwater. To counter any misconceptions and to seek solutions to the problems, distinct plans of action can be highlighted: educating the public; fomenting a system of participative management and decisive support for the communities of users of subterranean waters; integrating a sufficient number of experts in hydrology in the various water management organizations;and assuring transparency of the data on

  17. A Cooperative Personal Automated Transport System - A CityMobil Demonstration in Rocquencourt

    OpenAIRE

    Resende, Paulo; Nashashibi, Fawzi; Charlot, François; Holguin, Carlos; Bouraoui, Laurent; Parent, Michel

    2012-01-01

    International audience This article tackles the problem of the autonomous navigation and coordination of multiple driverless vehicles for the transport of persons or goods in outdoor environments. The system composed of fully automated road vehicles, capable of providing an effective transportation service, was recently tested at the city of La Rochelle. This same system was further improved, and a new demonstration was performed at Inria Rocquencourt, in order to demonstrate the validity ...

  18. Effects of high ionic strength groundwaters on calculated equilibrium concentrations in the uranium-water-system

    International Nuclear Information System (INIS)

    The solubility of uranium in three model groundwaters has been calculated for a wide range of pH and oxidation conditions at 25 degrees Celcius. The Bronsted-Guggenheim approach has been used to obtain the Gibbs energies of transfer from water to saline groundwaters (I ≤ 3.6 mol·kg-1) for key ions including U022+. The Gibbs energies of other species were estimated from equilibrium constant data found in the literature. For reducing conditions, the solubility in highly saline waters differs little from the solubility in low ionic strength granitic groundwater. Good chemical thermodynamic data for uranium(VI) hydrolysis species in neutral and basic solution are not available. Thus, the uranium database, not medium effects, is the major source of uncertainties in the solubilities calculated for uranium in oxidizing and mildly reducing groundwaters. Extension of the calculations to groundwaters at higher temperatures is discussed

  19. Effects of past and future groundwater development on the hydrologic system of Verde Valley, Arizona

    Science.gov (United States)

    Garner, Bradley D.; Pool, D.R.

    2013-01-01

    Communities in central Arizona’s Verde Valley must manage limited water supplies in the face of rapidly growing populations. Developing groundwater resources to meet human needs has raised questions about the effects of groundwater withdrawals by pumping on the area’s rivers and streams, particularly the Verde River. U.S. Geological Survey hydrologists used a regional groundwater flow model to simulate the effects of groundwater pumping on streamflow in the Verde River. The study found that streamflow in the Verde River between 1910 and 2005 had been reduced as the result of streamflow depletion by groundwater pumping, also known as capture. Additionally, using three hypothetical scenarios for a period from 2005 to 2110, the study’s findings suggest that streamflow reductions will continue and may increase in the future.

  20. Tools for an integrated systems approach to sustainable port city planning

    Directory of Open Access Journals (Sweden)

    Gilles Morel

    2013-12-01

    Full Text Available Large port cities like Shanghai, Amsterdam and Rio de Janeiro are key cogwheels in international logistics and transport networks but also serve as showcases for the rest of the world; as such, they constitute strategic assets for the host country´s economy and international influence. Historically, a city and its port often developed independently, through sometimes contradictory or even confrontational policies. Today, the growing number of usage disputes over increasingly coveted coastal areas is prompting local managers to incorporate urban and port-related issues in overarching planning programs. In particular, planning of the sea front and the buffer zone between the port and the city must contribute decisively to the deployment of more effective, cleaner transport services for the port city as a whole. In general, one of the key global challenges for planners and decision-makers consists in integrating sustainable development goals (environmental and social components, as well as the stimulation of industrial competitiveness into urban planning. In this context the PHEBUS research group has initiated an international program of research to develop innovative methods and tools that can help territorial stakeholders to design, evaluate, compare and ultimately choose development scenarios for the future of their port cities. The main themes are addressed via a multidisciplinary systems approach on the scale of a coastal urban area with an industrial and port complex. In particular, the themes include sea front planning, the city-port interface, energy optimization (e.g. the introduction and sharing of renewable energies, risk resilience, climate change and multimodal, clean transport.

  1. A preliminary analysis of the hydrogeological conditions and groundwater flow in some parts of a crystalline aquifer system: Afigya Sekyere South District, Ghana

    Science.gov (United States)

    Yidana, Sandow Mark; Essel, Stephen Kwaku; Addai, Millicent Obeng; Fynn, Obed Fiifi

    2015-04-01

    A steady state groundwater flow model was calibrated to simulate the complex groundwater flow pattern in some crystalline aquifer systems in north-central Ghana. The objective was to develop the general geometry of the groundwater system and also estimate spatial variations in the hydraulic conductivity field as part of efforts to thoroughly investigate the general hydrogeology and groundwater conditions of aquifers in the area. The calibrated model was used in a limited fashion to simulate some scenarios of groundwater development in the terrain. The results suggest the dominance of local groundwater flow systems resulting from local variabilities in the hydraulic conductivity field and the topography. Estimated horizontal hydraulic conductivities range between 1.04 m/d and 15.25 m/d, although most of the areas consist of hydraulic conductivities in the range of 1.04 m/d and 5.5 m/d. Groundwater flow is apparently controlled by discrete entities with limited spatial interconnectivities. Recharge rates estimated at calibration range between 4.3% and 13% of the annual rainfall in the terrain. The analysis suggests that under the current recharge rates, the system can sustain increasing groundwater abstraction rates by up to 50% with minimal drawdown in the hydraulic head for the entire terrain. However, with decreasing groundwater recharge as would be expected in the wake of climate change/variability in the area, increased groundwater abstraction by up to 50% can lead to drastic drawdowns by more than 25% if recharge reduces by up to 50% of the current levels. This study strongly recommend the protection of some of the local groundwater recharge areas identified in this study and the promotion of local recharge through the development of dugouts and other conduits to encourage recharge.

  2. Superfund Record of Decision (EPA Region 9): Modesto Groundwater Contamination, Modesto, CA, September 26, 1997

    International Nuclear Information System (INIS)

    This decision document presents the selected interim remedial action (IRA) for the Modesto Ground Water Contamination Site in Modesto, Stanislaus County, California. The primary components of the selected remedy include groundwater extraction, groundwater treatment by air stripping with carbon adsorption, discharge of treated groundwater to the City of Modesto's water system, and soil vapor extraction (SVE) followed by carbon adsorption. The selected alternative is expected to remove a substantial portion of dissolved PCE from the groundwater. EPA will be monitoring the downgradient edge of the plume to determine if the remaining PCE would be removed through natural attenuation. If necessary to comply with discharge requirements, extracted groundwater will also be treated using an ion exchange unit to remove naturally occurring uranium

  3. The Status of the Far Eastern Civilization/World System: Evidence from City Data

    OpenAIRE

    David Wilkinson

    2015-01-01

    T. Chandlers city data are used to inquire whether, and when, East Asia was a world system in itself, or part of a larger Old World world-system; and whether, and when, the east end of the Old World oikumene was more advanced than the west end. On the available data, (1) A.G. Franks thesis of a single Old World world-system is less well supported than the thesis of a long coexistence of a plurality of world systems, including a separate Far Eastern system; (2) Franks thesis of the general eco...

  4. Environmental isotope study related to groundwater age, flow system and saline water origin in Quaternary aquifers of North China Plain

    International Nuclear Information System (INIS)

    An isotopic hydrology section across the North China Plain has been studied to investigate problems of groundwater age, flow system and saline water origin in a semi-arid pre-mountain artesian basin. Two local and one regional flow system along the section have been recognized. Turnover time of water for alluvial fan, shallow and regional systems are estimated to be the order of 102, 103, and 104 years respectively. Specific flow rates for the three systems have been calculated. Only less than 5 percent of flow from alluvial fan is drained by the regional flow system and the rest, in natural conditions, discharges at surface in the front edge of an alluvial fan and forms a groundwater discharge belt at a good distance away from the mountain foot. Developed in the alluvial plain and coastal plain areas the shallow flow system embraces a series of small local systems. Groundwater in these systems appears to be the salt carrier during continental salinization. It washes salt out of the recharge area and deep-occurred strata by circulating and carries it up to the surface in lowland areas. Consequently, in parallel with salinization at surface a desalinization process occurs at depth, which provides an additional explanation for the existing thick deep fresh water zone in most arid and semi-arid regions, where continental salting process is in progress. (author). 6 refs, 8 figs, 4 tabs

  5. Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California

    Science.gov (United States)

    Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.

    2001-01-01

    The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for

  6. Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California

    International Nuclear Information System (INIS)

    The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional groundwater discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for

  7. Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil

    Science.gov (United States)

    Oliveira, Helena M.B.; Santos, Cledir; Paterson, R. Russell M.; Gusmão, Norma B.; Lima, Nelson

    2016-01-01

    Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife—Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens. PMID:27005653

  8. Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil.

    Science.gov (United States)

    Oliveira, Helena M B; Santos, Cledir; Paterson, R Russell M; Gusmão, Norma B; Lima, Nelson

    2016-01-01

    Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife-Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens. PMID:27005653

  9. Dynamics of the regional groundwater flow in the Jaruco - Aguacate Karst system, Cuba

    International Nuclear Information System (INIS)

    The hydrochemical and isotopic investigations of the Jaruco-Aguacate system have provided information on the location of the water divide between the two subsystems and on the causes for its spatial variability, as well as the consequences of such changes in the volume and quality of groundwater in every subsystem. Moreover, unexpected results were obtained with regard to the vertical stratification of every subsystem. After deducting the existence of two aquifer horizons, it was possible to formulate a more precise mathematical model for simulating the processes of mass transport and increase our knowledge of the water balance of the whole system. The water balance showed that the aquifer is overexploited, with a deficit of 1.5 m3/s, or referring to the infiltration rate, a deficit of 70 mm/a. The assumed fissure porosity (5%) represents a lowering of the water table of 1.4 m/a, assuming a constant infiltration rate. However, in 1992, the precipitation was 33% lower than the long term mean, and it is estimated that the infiltration rate was only 170 mm, compared to a mean value of 200 mm/a. The natural flow system was totally altered by the pumping of the El Gatto well field. Since the beginning of the pumping, the water table dropped by around 10 m, which is in accordance with the results. (author). 30 refs, 20 figs, 9 tabs

  10. Fostering assumption-based stress-test thinking in managing groundwater systems: learning to avoid failures due to basic dynamics

    Science.gov (United States)

    Guillaume, Joseph H. A.; El Sawah, Sondoss

    2014-06-01

    Sustainable groundwater resource management can only be achieved if planning processes address the basic dynamics of the groundwater system. Conceptual and distributed groundwater models do not necessarily translate into an understanding of how a plan might operate in reality. Prompted by Australian experiences, `iterative closed-question modelling' has been used to develop a process of iterative dialogue about management options, objectives and knowledge. Simple hypothetical models of basic system dynamics that satisfy agreed assumptions are used to stress-test the ability of a proposed management plan to achieve desired future conditions. Participants learn from models in which a plan succeeds and fails, updating their assumptions, expectations or plan. Their new understanding is tested against further hypothetical models. The models act as intellectual devices that confront users with new scenarios to discuss. This theoretical approach is illustrated using simple one and two-cell groundwater models that convey basic notions of capture and spatial impacts of pumping. Simple extensions can address uncertain climate, managed-aquifer recharge and alternate water sources. Having learnt to address the dynamics captured by these models, participants may be better placed to address local conditions and develop more effective arrangements to achieve management outcomes.

  11. 兰州市城市化对地下水系统的影响研究%Effect of urbanization on groundwater system in Lanzhou

    Institute of Scientific and Technical Information of China (English)

    朱亮; 孙继朝; 刘景涛; 刘俊建; 吕晓丽

    2014-01-01

    Based on data of groundwater pollution survey and historical observation , this paper revealed the variation characteristics and its influencing factors of groundwater levels and quality in Lanzhou .Ur-ban sewage discharge , water storage construction , agricultural irrigation and other factors increase the vertical infiltration recharge of groundwater which caused groundwater level to rise especially in Xigu dis -trict.Affected by groundwater exploitation , the water source regions formed a large area of groundwater drawdown funnel , the water level dropped significantly .There are many factors affecting groundwater quality in Lanzhou city .The change of land use type caused the increase of pollution sources , the disposal method of urban waste and the groundwater drawdown are important factors which caused deterioration of groundwater quality directly or indirectly .The indexes of groundwater such as TH , NO3-, F-and organic compounds show an increasing trend in old city and industrial zone .The situation of pollution is grim .%以地下水污染调查数据为基础,结合历史观测资料,揭示兰州市城市化过程中地下水水位、水质的变化特征及其影响因素。城市污水排放、蓄水设备修建及农业灌溉等因素使垂直渗入补给量增加,引起地下水上升,其中西固区地下水位上升剧烈,受地下水开采的影响,水源地地区形成大面积的地下水降落漏斗,水位下降显著;兰州市区地下水水质影响因素较多,土地利用类型的改变带来污染源强的增加、城市垃圾处理方式以及水位下降等是直接或间接地造成地下水质恶化的重要因素,老城区和工业区地下水总硬度、NO3-、氟离子、有机组分等指标呈逐年上升趋势,污染形势严峻。

  12. Data Mining and Visualization of Grid-Based City Emergency System

    Institute of Scientific and Technical Information of China (English)

    XUE Jingsheng; SUN Jizhou; LIU Muxing; ZHANG Xu; HE Hong

    2005-01-01

    A cluster analyzing algorithm based on grids is introduced in this paper,which is applied to data mining in the city emergency system. In the previous applications, data mining was based on the method of analyzing points and lines, which was not efficient enough in dealing with the geographic information in units of police areas. The proposed algorithm maps an event set stored as a point set to a grid unit set, utilizes the cluster algorithm based on grids to find out all the clusters, and shows the results in the method of visualization. The algorithm performs well when dealing with high dimensional data sets and immense data. It is suitable for the data mining based on geogra-phic information system and is supportive to decision-makings in the city emergency system.

  13. A simplified approach to evaluation of column experiments as a tool for determination of radionuclide transport parameters in rock-groundwater or soil-groundwater systems

    International Nuclear Information System (INIS)

    The assessment of the ability of natural barriers to retain radionuclides and retard their transfer in groundwater requires knowledge of important transport parameters, the retardation and dispersion coefficients. The use of dynamic techniques is in this task more effective than that of batch technique, as the conditions of dynamic experiments better simulate the real systems, in which the contaminated groundwater is flowing through the bed of a porous (grained) solid material (crushed rock, soil, or sediment). Two techniques of the contaminant inlet, the pulse injection and step (continuous) inlet are obviously applied. Dynamic column experiments make possible to study the influence of sorption or desorption of studied contaminants on the velocity of their transport through the saturated or unsaturated bed. The transport parameters are determined in the course of evaluation of experimental data, which generally consists of the regression of breakthrough curve by selected analytical solution of the 1-D advection-dispersion equation. With the respect to the kinetics of the contaminant interaction with the surface of the solid phase, there are two basic groups of these solutions: the first responds to the equilibrium dynamics, and the second one to so-called non-equilibrium dynamics. In description of interaction, that implies the mathematical form of the solution of transport equation, it is further possible to specify both the equilibrium isotherm (linear or non-linear) and the type of kinetic equation (e.g., linear driving force model). In this paper, a set of simplified equilibrium dynamic models is presented, that could be recommended for the evaluation of an important range of column experiment in heterogeneous systems accomplished under the equilibrium dynamics conditions. (author)

  14. The city as a participant in the protection of groundwater in Brazil; O municipio como participe na protecao das aguas subterraneas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro de Souza, L.

    2012-11-01

    Brazilian environmental legislation aims to ensure the protection and preservation of the environment, and particularly its natural resources, in search of a better quality of life for all. The lack of force in existing statutes, however, sometimes renders the purpose of the law ineffective. Our water sources, providing this vital and essential element for life, are suffering pollution and contamination. Our focus here is on the subject of groundwater, which is widely relied upon in Brazil as a water source, but treated in some places in an uncontrolled way, and due to different forms of pollution and contamination arriving at the vulnerable areas of the aquifers, may easily be compromised both in quality and quantity. Constitutional authority to legislate on groundwater has been given to the Member States, since it falls outside the legal remit of individual municipalities. Studies show, however, that pollutants are reaching the aquifers from the overlying soil, which leads to a demand that the municipalities should use their constitutional authority to legislate on land use and its management to protect and preserve these important water sources, especially in the area of the Guarani aquifer. To this effect, we propose the creation of a Special Environment Zoning tool (ZEA) to limit land use in areas of aquifer vulnerability, by which municipalities become active participants in the protection process aimed at preventing harm to the groundwater of the Guarani aquifer. (Author)

  15. Cities and Systemic Change for Sustainability: Prevailing Epistemologies and an Emerging Research Agenda

    Directory of Open Access Journals (Sweden)

    Marc Wolfram

    2016-02-01

    Full Text Available Cities are key for sustainability and the radical systemic changes required to enable equitable human development within planetary boundaries. Their particular role in this regard has become the subject of an emerging and highly interdisciplinary scientific debate. Drawing on a qualitative literature review, this paper identifies and scrutinizes the principal fields involved, asking for their respective normative orientation, interdisciplinary constitution, theories and methods used, and empirical basis to provide orientations for future research. It recognizes four salient research epistemologies, each focusing on a distinct combination of drivers of change: (A transforming urban metabolisms and political ecologies; (B configuring urban innovation systems for green economies; (C building adaptive urban communities and ecosystems; and (D empowering urban grassroots niches and social innovation. The findings suggest that future research directed at cities and systemic change towards sustainability should (1 explore interrelations between the above epistemologies, using relational geography and governance theory as boundary areas; (2 conceive of cities as places shaped by and shaping interactions between multiple socio-technical and social-ecological systems; (3 focus on agency across systems and drivers of change, and develop corresponding approaches for intervention and experimentation; and (4 rebalance the empirical basis and methods employed, strengthening transdisciplinarity in particular.

  16. Groundwater Vulnerability to Seawater Intrusion along Coastal Urban Areas: A Quantitative Comparative Assessment of EPIK and DRASTIC

    Science.gov (United States)

    Momjian, Nanor; Abou Najm, Majdi; Alameddine, Ibrahim; El-Fadel, Mutasem

    2015-04-01

    Groundwater vulnerability assessment models are invariably coupled with Geographic Information Systems to provide decision makers with easier visualization of complex systems. In this study, we examine the uncertainty associated with such models (DRASTIC, EPIK) in assessing seawater intrusion, a growing threat along coastal urban cities due to overexploitation of groundwater resources associated with population growth and more recently, exacerbated by climate change impacts. For this purpose, a mapping of groundwater vulnerability was first conducted at a country level (Lebanon) and coupled with a groundwater quality monitoring program in three coastal cities for cross-validation. Then, six water quality categories were defined and mapped based on water quality standards ranging from drinking to seawater with weighted scores assigned for each category in both DRASTIC and EPIK for cross-validation. Finally, the results of groundwater quality tests were compared with vulnerability predictions at sampling points using two indicators (Chloride and TDS). While field measurements demonstrated the high vulnerability to seawater intrusion in coastal urbanized areas, the modelling results exhibited variations from field measurements reaching up to two water quality categories. Vertical-based vulnerability models demonstrated poor correlation when the anthropogenic impact was introduced through a process that depends on lateral groundwater flow thus highlighting (1) the limited ability of such models to capture vulnerability to lateral seawater intrusion induced primarily by vertical groundwater withdrawal, and (2) the need to incorporate depth and underlying lithology into the layers of groundwater vulnerability models when examining horizontally induced contamination such as seawater intrusion.

  17. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France

    Science.gov (United States)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Cuvillier, Loann; Eisenlohr, Laurent

    2016-08-01

    Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.

  18. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France

    Science.gov (United States)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Cuvillier, Loann; Eisenlohr, Laurent

    2016-02-01

    Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.

  19. Automated Ground-Water Sampling and Analysis of Hexavalent Chromium using a “Universal” Sampling/Analytical System

    OpenAIRE

    Venedam, Richard J.; Hartman, Mary J.; Hoffman, Dave A.; Burge, Scott R.

    2005-01-01

    The capabilities of a “universal platform” for the deployment of analytical sensors in the field for long-term monitoring of environmental contaminants were expanded in this investigation. The platform was previously used to monitor trichloroethene in monitoring wells and at groundwater treatment systems (1,2). The platform was interfaced with chromium (VI) and conductivity analytical systems to monitor shallow wells installed adjacent to the Columbia River at the 100-D Area of the Hanford Si...

  20. City Heating Network Dispatching and Management Information System

    Directory of Open Access Journals (Sweden)

    XU HuiPu

    2012-08-01

    Full Text Available In this paper, the underlying control network was built up in view of the actual operation of heating network through applying the intelligent nodes based on CAN bus, and the data acquisition and control functions were completed to realize the local intelligent control, then adapt the change of outdoor temperature and the operating condition of heating network, and achieve the unattended purpose ultimately. The seamless connection between the underlying control network (CAN network and the upper management network (Internet was implemented by using embedded network gateway and reliable VPN technology,  the operating parameters of the heat exchange stations can be remote monitored in real-time. the function configuration of the underlying intelligent nodes   were achieved combines with the needs of the industrial field to realize the automatic control of the thermal parameters, software framework was put up based on FIX monitoring software to complete the module design such as graphical interface, real-time database, history data trends and reports design etc. The system has the characters such as great flexibility, simple human-machine interface, stable and reliable in practical application, which has broad applicability and be worth popularizing.

  1. Characteristics of chemistry and stable isotopes in groundwater of the Chaobai River catchment, Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, J.; Wang, X. [Hydrogeology and Engineering Geology Team of Beijing, Beijing 100037 (China); Pang, Z. [Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2013-07-01

    Environmental isotopes and chemical compositions are useful tools for the study of groundwater flow systems. Groundwater of the Chaobai River catchment, Beijing was sampled for chemical and stable isotopes analyses in 2005. Geochemical signatures evolve progressively from CaMg-HCO{sub 3} to NaK-HCO{sub 3}, and then to Na-HCO{sub 3} compositions as groundwater flows from the mountain to discharge areas. Groundwater can be divided into two groups on the basis of stable isotope compositions: ancient groundwater and modern groundwater. Modern groundwater (-9.90/00 to -6.60/00 for δ{sup 18}O) plots along a line with a slope of 4.0 on a δ{sup 2}H versus δ{sup 18}O diagram, reflecting evaporation during the process of recharge, whereas ancient groundwater samples (30 to 12 Ka.) are different in isotopic composition (-11.00/00 and -68.20/00 for δ{sup 18}O and δ{sup 2}H, respectively), reflecting the cold and arid climate in the last glacial period. The results have important implications for groundwater management in Beijing City. (authors)

  2. Characteristics of chemistry and stable isotopes in groundwater of the Chaobai River catchment, Beijing

    International Nuclear Information System (INIS)

    Environmental isotopes and chemical compositions are useful tools for the study of groundwater flow systems. Groundwater of the Chaobai River catchment, Beijing was sampled for chemical and stable isotopes analyses in 2005. Geochemical signatures evolve progressively from CaMg-HCO3 to NaK-HCO3, and then to Na-HCO3 compositions as groundwater flows from the mountain to discharge areas. Groundwater can be divided into two groups on the basis of stable isotope compositions: ancient groundwater and modern groundwater. Modern groundwater (-9.90/00 to -6.60/00 for δ18O) plots along a line with a slope of 4.0 on a δ2H versus δ18O diagram, reflecting evaporation during the process of recharge, whereas ancient groundwater samples (30 to 12 Ka.) are different in isotopic composition (-11.00/00 and -68.20/00 for δ18O and δ2H, respectively), reflecting the cold and arid climate in the last glacial period. The results have important implications for groundwater management in Beijing City. (authors)

  3. Analysis on over-exploited area evolution of groundwater in Tianjin city based on numerical simulation%基于数值模拟的天津市地下水严重超采区演变分析

    Institute of Scientific and Technical Information of China (English)

    徐海珍; 李国敏; 黎明; 杨建青; 柴成繁

    2011-01-01

    Tianjin is a typical water-shortage city in the north plain of China.The environmental issues including land subsidence have been caused due to the long-term overexploitation of groundwater.In order to analyze the status of the groundwater exploitation and to predict the evolution of the over-exploited areas,the three-dimensional transient flow model is developed by using the software MODFLOW based on the principle of finite difference method,which could reflect the fluctuations in groundwater levels accurately after the identification and calibration.The evolution of the drawdown during the simulated period(2003~2008) is calculated based on the model.The scheme for decreasing groundwater exploitation is also predicted,and the development of the over-exploited areas is analyzed.The prediction provides an access to the remediation of the groundwater in Tianjin after the execution of the South-to-North Water Diversion Project.The predicted results show that the groundwater levels would rebound obviously after decreasing groundwater extraction,the funnel zones in the second and the third layers which are the main mining aquifers basically disappear,and the evapotranspiration is the main discharging pattern.%天津市是华北地区典型的水资源短缺城市,地下水的长期超采已引发地面沉降等环境问题。为科学分析地下水开采现状,并预测压采条件下的地下水严重超采区演化趋势,本文采用基于有限差分原理的MODFLOW软件,建立了天津市平原区地下水流动的三维非稳定流数值模型,经识别和校正过的模型能准确反映人工开采引起的各承压层地下水位波动。基于该模型,分析了模拟期内(2003~2008年)地下水超采区的分布及演变过程;同时,预测分析了水资源配置制定的地下水限采方案,进一步剖析严重超采区的演变趋势,为南水北调实施后对天津市地下水的修复作用提供了可靠的分析手段和科学依据

  4. Eco-Polycentric Urban Systems: An Ecological Region Perspective for Network Cities

    Directory of Open Access Journals (Sweden)

    André Botequilha-Leitão

    2012-04-01

    Full Text Available The research presented in this paper is a work in progress. It provides linkages between the author’s earlier research under the sustainable land planning framework (SLP and emergent ideas and planning and design strategies, centered on the (landscape ecological dimension of cities’ sustainability. It reviews several concepts, paradigms, and metaphors that have been emerging during the last decade, which can contribute to expand our vision on city planning and design. Among other issues, city form—monocentric, polycentric, and diffused—is discussed. The hypothesis set forth is that cities can improve the pathway to sustainability by adopting intermediate, network urban forms such as polycentric urban systems (PUS under a broader vision (as compared to the current paradigm, to make way to urban ecological regions. It discusses how both the principles of SLP and those emergent ideas can contribute to integrate PUS with their functional hinterland, adopting an ecosystemic viewpoint of cities. It proposes to redirect the current dominant economic focus of PUS to include all of the other functions that are essential to urbanites, such as production (including the 3Rs, recreation, and ecology in a balanced way. Landscape ecology principles are combined with complexity science in order to deal with uncertainty to improve regional systems’ resilience. Cooperation in its multiple forms is seen as a fundamental social, but also economic process contributing to the urban network functioning, including its evolving capabilities for self-organization and adaptation.

  5. System Analysis of Disaster Prevention Design Criteria for Coastal and Estuarine Cities

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    -In China, estuarine and coastal cities are mostly regional economic development centers. The disasters by combined effect of upper reach flood, storm surge and typhoon waves are primary obstacles to the economic development of such cities. Thus the risk analysis and system analysis of flood-storm surge-wave disaster, economic loss and flood-storm surge control measures play a very important role in the sustainable development of coastal cities. There are three types of coastal cities for consideration. The first type of city is like Tianjin. The most significant damage is from the upper reach flood. The effect of storm surge is negligible, because in the estuary of the Haihe River, tidal locks are built. The Grey Markov Model (GMM) is used to forecast the flood peak level GMM combines the Grey system and the Markov theory into a high-precision model The predicted flood peak levels are close to the measured data. A synthetic model is established for economic assessment, risk analysis and flood-control benefit estimation. As a new contribution, a stochastic simulation technique is used to compute risk probability. At the same time, consideration is given to the effect of correlation between variables on risk probability. The second type of city is like Shanghai, where sometimes the combined effect of river flood peak and set storm surge is the most severe disaster. The water level of a 1000 yr. return period of the Huangpu river is used as the design criterion. The simulated combined water level of flood peak, storm surge and maximum astronomical tidal level of a 400 yr. return period is close to the conventional design water level of a return period of 1000 years. The third type of city is like Qingdao, where the combined effect of the maximum astronomical tide, storm surge and waves bring about the most significant damage. With the stochastic simulation technique, different combinations of storm surge and waves at the 1% and 2% joint probability level are

  6. Groundwater protection of minimal water supply systems integrating simple hydrogeological information

    Science.gov (United States)

    Rodrigo-Ilarri, Javier; Rodrigo-Clavero, María Elena

    2016-04-01

    According to the current EU environmental legislation, groundwater protection is one of the key issues to be addressed when new industrial activities have to be authorised. This work shows a simple methodology that could be used by local and environmental authorities in order to analyse the potential risk caused by an industrial spill on a natural environment. The methodology leads to the determination of the protection area around an extraction well system using the information given by: i) a set of local piezometers, ii) the chemical nature of the industrial spill and iii) the hydrogeological parameters of the local aquifer. The exact location of the contaminant source is not needed for the analysis. The flow equation is afterwards solved using a finite-difference approximation scheme under stationary conditions. Finally, the capture zones for different times are computed by a simple upstream advective transport model. Results on the determination of the perimeter protection area definition of a water supply system in the municipality of L'Alcora (Castellón) in Spain are shown.

  7. Groundwater Exploration Using Remote Sensing And A Low-Cost Geographical Information System

    Science.gov (United States)

    Teeuw, R. M.

    1995-03-01

    Now that personal computers (pc's) have become more powerful, potable, and affordable, geoscientists can make full use of developments in computer-aided mapping, particularly Geographical Information Systems (GIS). The IDRISI GIS was used to 1) carry out image processing on satellite images; 2) assess the reliability of the interpreted lineaments; 3) create maps showing individual lineament lengths, areal extent of interconnected lineaments, and targets for groundwater boreholes; and 4) incorporate socio-economic factors, by creating maps that show the proximity of villages to sites considered favourable for boreholes. The exact location of each site for drilling was decided on the basis of geophysical surveys over the areas that had been targeted by the remote sensing and GIS analysis. Most of the remote sensing and GIS work was carried out in Ghana in two weeks, during which the `ground truth' of lineament maps was checked. The total cost of the hardware and software used in this project (16-colour laptop pc, portable colour printer, and IDRISI) was slightly less than US 2,600. The relatively low cost and ease of use of this system make it a technology that is readily transferable to developing countries.

  8. Biological activated carbon fluidized-bed system to treat gasoline-contaminated groundwater

    International Nuclear Information System (INIS)

    An integrated biological granular activated carbon fluidized-bed reactor (GAC-FBR) and a biological fluidized-bed reactor (FBR) charged with nonactivated carbon were evaluated for treating groundwater contaminated with the gasoline constituents benzene, toluene, and xylenes (BTX). The systems were studied under several conditions including startup, steady-state, and step-load increase conditions. Development of bioactivity in the GAC-FBR was faster than in the FBR using a nonactivated carbon biomass carrier. Under two steady-state conditions, organic loading rates of 3 and 6 kg-chemical oxygen demand (COD)/m3-day, BTX removal was similar in the two systems with more than 90% of applied BTX removed. The GAC-FBR produced superior effluent quality during step organic load rate (OLR) increases compared to the FBR. The results from an extremely high step OLR increase show the formation of partial oxidization products from the degradation of BTX. Significant adsorption capacity was still observed after the biofilm developed, although capacity gradually decreased over a 6-month period of operation to approximately 50% of its original value

  9. Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system: Northern Gafsa basin - Central Tunisia

    Science.gov (United States)

    Mokadem, Naziha; Demdoum, Abedslem; Hamed, Younes; Bouri, Salem; Hadji, Rihab; Boyce, Adrian; Laouar, Rabah; Sâad, Abedaziz

    2016-02-01

    The hydrodynamic of the multi-aquifer system (the Continental Intercalaire " C.I " and the Complex Terminal " C.T ") of the North Gafsa basin is largely determined by tectonics (Tebessa - Gafsa fault). The composition of groundwater is controlled by complex reactions at gas-liquid-solid "mineralogical composition of associated rocks" interfaces, which depend on the natural surrounding and potential anthropogenic impact. The hydrochemical data (major ion geochemistry) indicate that these groundwaters are characterized by the dominance a Ca-Mg-HCO3/SO4 and Na-Cl-NO3 water types. Geochemical pattern is mainly controlled by the dissolution of halite, gypsum and/or anhydrite as well as by the incongruent dissolution of carbonate minerals. The pH of these samples range from 6.54 to 8.89, supporting the conclusion that the H2CO3/HCO3 couple control pH buffering. Oxygen-18 (δ18O‰SMOW) and deuterium (dD‰SMOW) isotopic data show the exchange between the groundwater and the rock (water-rock interaction) and the evaporation effect. The isotopic content of the boreholes waters is of mixed Mediterranean - Atlantic origin and is opposite to the quantity of rainwater distribution, both in space and time in the study area. This is due to its geographical situation in the southern and south-western of the Mediterranean Sea and between the Atlas area and the Sahara Platform. The concentrations of the isotopic composition of the groundwater are significantly higher than the rainwater. This is indicative of the dissolution of salts and other processes modifying the rainwater geochemical composition during infiltration into the vadose zone. The hydraulic interconnection of these components of the system has led to the evolution of these interesting groundwater types.

  10. Pressurized groundwater systems in Lunae and Ophir Plana (Mars): insights from small-scale morphology and experiments

    Science.gov (United States)

    Marra, Wouter A.; Kleinhans, Maarten G.; de Jong, Steven M.; Hauber, Ernst

    2015-04-01

    Large outflow channels on Mars reveal the past presence of water on the surface, possibly released from pressurized groundwater reservoirs. Due to a lack of understanding of the underlying processes, the hydrological and corresponding climate conditions remain a subject of debate. We investigate the detailed morphology of possible pressurized groundwater outflow systems in comparison to landscape evolution experiments. These experiments show that incised valleys like the classic outflow channels are a last erosional stage in morphological development. This is preceded by the formation of sedimentary lobes due to rapid water loss by infiltration. On Mars, we observed similar features related to different stages of groundwater outflow in Lunae and Ophir Plana, which form parts of the high standing plateaus adjacent to the huge depressions of the Valles Marineris. In both the experiment and the Martian cases, we observed lobate depositions that emerge from collapsed pits and pit chains. These lobes have channelized surfaces related to fluvial flow. In the experiments, pits formed adjacent to the valley heads due to the outflow. The pits in the source regions of Mars strongly relate to the regional tectonic structure and likely result from subsidence by extension and not by groundwater alone. Faulting, subsidence and collapse likely triggered outflow from a pressurized aquifer and could have aided in aquifer pressurization. This scenario is consistent with the presence of one or several cryosphere-confined aquifers from the Early Hesperian to at least the middle Amazonian. A pronounced spatial trend of larger and further developed outflow systems at lower elevations suggests that features ranging from small lobes to large outflow channels were sourced from a common aquifer or from aquifers with similar pressures. The required cryosphere indicates a cold climate and enables groundwater outflow even under atmospheric conditions unfavorable for sustained presence of

  11. Urban governance and the systems approaches to health-environment co-benefits in cities.

    Science.gov (United States)

    Oliveira, Jose A Puppim de; Doll, Christopher N H; Siri, José; Dreyfus, Magali; Farzaneh, Hooman; Capon, Anthony

    2015-11-01

    The term "co-benefits" refers to positive outcomes accruing from a policy beyond the intended outcome, often or usually in other sectors. In the urban context, policies implemented in particular sectors (such as transport, energy or waste) often generate multiple co-benefits in other areas. Such benefits may be related to the reduction of local or global environmental impacts and also extend into the area of public health. A key to identifying and realising co-benefits is the adoption of systems approaches to understand inter-sectoral linkages and, in particular, the translation of this understanding to improved sector-specific and city governance. This paper reviews a range of policies which can yield health and climate co-benefits across different urban sectors and illustrates, through a series of cases, how taki