WorldWideScience

Sample records for citizen problem solving

  1. The Citizen Cyberscience Lectures - 1) Mobile phones and Africa: a success story 2) Citizen Problem Solving

    CERN Document Server

    CERN. Geneva; Bingham, Alpheus

    2009-01-01

    Dr. Alpheus Bingham, InnoCentive The Citizen Cyberscience Lectures are hosted by the partners of the Citizen Cyberscience Centre, CERN, The UN Institute of Training and Research and the University of Geneva. The goal of the Lectures is to provide an inspirational forum for participants from the various international organizations and academic institutions in Geneva to explore how information technology is enabling greater citizen participation in tackling global development challenges as well as global scientific research. The first Citizen Cyberscience Lectures will welcome two speakers who have both made major innovative contributions in this area. Dr. Mo Ibrahim, founder of Celtel International, one of Africa’s most successful mobile network operators, will talk about “Mobile phones and Africa: a success story”. Dr. Alpheus Bingham, founder of InnoCentive, a Web-based community that solves indus...

  2. Problem Solving Policing: Views of Citizens and Citizens Expectations in Germany

    Directory of Open Access Journals (Sweden)

    2003-11-01

    Full Text Available For the last two decades American police experts developed new police philosophies in order to tackle more successful the increasing crime problems. Community Policing tries to improve the cooperation between the population and the police and to increase the trust in the police. A crucial factor is a meaningful cooperation between the police and the citizens. Problem Oriented Policing aims at structural changes in the organisation and the procedures of the police in public. The police have to investigate the hidden problems and conflicts of an individual offence and to create proactive and long term concepts for the social area of conflicts beyond the specific case. It is doubtful whether these philosophies can be implemented in Germany since the legality principle prohibits meaningful, trustworthy relationships between citizens and police officers. However, if one examines the results of surveys on citizens views and expectations towards the police one finds that the majority of the German citizens favour the postulates of community and problem oriented policing. They expect through these measures an improvement of their life situation in the community and the feelings of safety. If one takes these results seriously one has to question if the legality principle is still appropriate. It seems to hamper new, more promising policing styles which seem to improve life of it's citizens and reflect what the citizens want and expect from their police force.

  3. In Search of Facilitating Citizens' Problem Solving: Public Libraries' Collaborative Development of Services with Related Organizations

    Science.gov (United States)

    Ikeya, Nozomi; Tamura, Shunsaku; Miwa, Makiko; Koshizuka, Mika; Saito, Seiichi; Kasai, Yumiko

    2011-01-01

    Introduction: The paper attempts to understand value constellations in organising and using the business information service that was recently developed by various stakeholders with libraries who were in pursuit of supporting people's problem solving in Japanese public libraries. Method: In-depth interviews were conducted not only with users and…

  4. Building Virtual Cities, Inspiring Intelligent Citizens: Digital Games for Developing Students' Problem Solving and Learning Motivation

    Science.gov (United States)

    Yang, Ya-Ting Carolyn

    2012-01-01

    This study investigates the effectiveness digital game-based learning (DGBL) on students' problem solving, learning motivation, and academic achievement. In order to provide substantive empirical evidence, a quasi-experimental design was implemented over the course of a full semester (23 weeks). Two ninth-grade Civics and Society classes, with a…

  5. Thinking and problem solving

    OpenAIRE

    Frensch, Peter; Funke, Joachim

    2005-01-01

    Human thinking, and in particular, the human ability to solve complex, real-life problems contributes more than any other human ability to the development of human culture and the growth and development of human life on earth. However, the human ability to solve complex problems is still not well understood, partly because it has for a long time been largely ignored by traditional problem-solving research in the field of psychology. In this article, we present a definition of complex problem ...

  6. Group Problem Solving

    CERN Document Server

    Laughlin, Patrick R

    2011-01-01

    Experimental research by social and cognitive psychologists has established that cooperative groups solve a wide range of problems better than individuals. Cooperative problem solving groups of scientific researchers, auditors, financial analysts, air crash investigators, and forensic art experts are increasingly important in our complex and interdependent society. This comprehensive textbook--the first of its kind in decades--presents important theories and experimental research about group problem solving. The book focuses on tasks that have demonstrably correct solutions within mathematical

  7. Solving Word Problems.

    Science.gov (United States)

    Karrison, Joan; Carroll, Margaret Kelly

    1991-01-01

    Students with language and learning disabilities may have difficulty solving mathematics word problems. Use of a sequential checklist, identifying clues and keywords, and illustrating a problem can all help the student identify and implement the correct computational process. (DB)

  8. Teaching through Problem Solving

    Science.gov (United States)

    Fi, Cos D.; Degner, Katherine M.

    2012-01-01

    Teaching through Problem Solving (TtPS) is an effective way to teach mathematics "for" understanding. It also provides students with a way to learn mathematics "with" understanding. In this article, the authors present a definition of what it means to teach through problem solving. They also describe a professional development vignette that…

  9. Mathematical Problem Solving.

    Science.gov (United States)

    Mayer, Richard E.

    This chapter examines research on the cognitive processes involved in mathematical problem solving. The introduction includes definitions of key terms and a summary of four cognitive processes used in mathematical problem solving: (1) translating; (2) integrating; (3) planning; and (4) executing. Examples are then provided and exemplary research…

  10. Problem Solving and Learning

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for metacognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  11. Mathematics as Problem Solving.

    Science.gov (United States)

    Soifer, Alexander

    This book contains about 200 problems. It is suggested that it be used by students, teachers or anyone interested in exploring mathematics. In addition to a general discussion on problem solving, there are problems concerned with number theory, algebra, geometry, and combinatorics. (PK)

  12. Creativity and Problem Solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2004-01-01

    This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving...

  13. Solving Tommy's Writing Problems.

    Science.gov (United States)

    Burdman, Debra

    1986-01-01

    The article describes an approach by which word processing helps to solve some of the writing problems of learning disabled students. Aspects considered include prewriting, drafting, revising, and completing the story. (CL)

  14. Simon on problem solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    2006-01-01

    general approach to problem solving. We apply these Simonian ideas to organisational issues, specifically new organisational forms. Specifically, Simonian ideas allow us to develop a morphology of new organisational forms and to point to some design problems that characterise these forms....

  15. Problem Solving with Patents

    Science.gov (United States)

    Moore, Jerilou; Sumrall, William J.

    2008-01-01

    Exploring our patent system is a great way to engage students in creative problem solving. As a result, the authors designed a teaching unit that uses the study of patents to explore one avenue in which scientists and engineers do science. Specifically, through the development of an idea, students learn how science and technology are connected.…

  16. Universal Design Problem Solving

    Science.gov (United States)

    Sterling, Mary C.

    2004-01-01

    Universal design is made up of four elements: accessibility, adaptability, aesthetics, and affordability. This article addresses the concept of universal design problem solving through experiential learning for an interior design studio course in postsecondary education. Students' experiences with clients over age 55 promoted an understanding of…

  17. Creativity and Problem Solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2004-01-01

    This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving...... approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools....

  18. Creativity and problem Solving

    Directory of Open Access Journals (Sweden)

    René Victor Valqui Vidal

    2004-12-01

    Full Text Available This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools.

  19. How to solve mathematical problems

    CERN Document Server

    Wickelgren, Wayne A

    2012-01-01

    Seven problem-solving techniques include inference, classification of action sequences, subgoals, contradiction, working backward, relations between problems, and mathematical representation. Also, problems from mathematics, science, and engineering with complete solutions.

  20. Solving complex fisheries management problems

    DEFF Research Database (Denmark)

    Petter Johnsen, Jahn; Eliasen, Søren Qvist

    2011-01-01

    A crucial issue for the new EU common fisheries policy is how to solve the discard problem. Through a study of the institutional set up and the arrangements for solving the discard problem in Denmark, the Faroe Islands, Iceland and Norway, the article identifies the discard problem as related to...

  1. Learning Impasses in Problem Solving

    Science.gov (United States)

    Hodgson, J. P. E.

    1992-01-01

    Problem Solving systems customarily use backtracking to deal with obstacles that they encounter in the course of trying to solve a problem. This paper outlines an approach in which the possible obstacles are investigated prior to the search for a solution. This provides a solution strategy that avoids backtracking.

  2. Problem, Problem Solving And Critical Thinking

    OpenAIRE

    TÜRNÜKLÜ, Elif B.; YEŞİLDERE, Sibel

    2005-01-01

    Critical thinking is an essential skill that all people from various sectors should have and need. Problem solving skill which is one of the main purpose of mathematics teaching can be effective in developing critical thinking. The purpose of this study is to emphasize the importance of problem solving in developing critical thinking skills and to expose critical thinking to the pre-service primary mathematics teachers. Aiming these, some mathematical critical thinking problems are prepa...

  3. Problem Solving and Complex Systems

    CERN Document Server

    Guinand, Frédéric

    2008-01-01

    The observation and modeling of natural Complex Systems (CSs) like the human nervous system, the evolution or the weather, allows the definition of special abilities and models reusable to solve other problems. For instance, Genetic Algorithms or Ant Colony Optimizations are inspired from natural CSs to solve optimization problems. This paper proposes the use of ant-based systems to solve various problems with a non assessing approach. This means that solutions to some problem are not evaluated. They appear as resultant structures from the activity of the system. Problems are modeled with graphs and such structures are observed directly on these graphs. Problems of Multiple Sequences Alignment and Natural Language Processing are addressed with this approach.

  4. On solving stochastic MADM problems

    OpenAIRE

    Văduva Ion; Resteanu Cornel

    2009-01-01

    The paper examines a MADM problem with stochastic attributes. The transformation of a stochastic MADM problem into a cardinal problem is done by the standardization of the probability distribution of each attribute X and calculating the information of each attribute as Shannon's entropy or Onicescu's informational energy. Some well known (performant) methods to solve a cardinal MADM problem are presented and a method for combining results of several methods to give a final MADM solution is di...

  5. Students' Problem Solving and Justification

    Science.gov (United States)

    Glass, Barbara; Maher, Carolyn A.

    2004-01-01

    This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…

  6. Problem Solving through Paper Folding

    Science.gov (United States)

    Wares, Arsalan

    2014-01-01

    The purpose of this article is to describe a couple of challenging mathematical problems that involve paper folding. These problem-solving tasks can be used to foster geometric and algebraic thinking among students. The context of paper folding makes some of the abstract mathematical ideas involved relatively concrete. When implemented…

  7. Simon on Problem-Solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai

    general approach to problem solving. We apply these Simonian ideas to organizational issues, specifically new organizational forms. Specifically, Simonian ideas allow us to develop a morphology of new organizational forms and to point to some design problems that characterize these forms.Keywords: Herbert...

  8. Solving Public Transit Scheduling Problems

    OpenAIRE

    Mesquita, Marta; Moz, Margarida; Paias, Ana; Paixão, José; Pato, Margarida Vaz; Respício, Ana

    2008-01-01

    Operational planning within public transit companies has been extensively tackled but still remains a challenging area for operations research models and techniques. This phase of the planning process comprises vehicle scheduling, crew scheduling and rostering problems. In this paper, a new integer mathematical formulation to describe the integrated vehicle-crew-rostering problem is presented. The method proposed to solve this multi-objective problem is a sequential algorithm considered withi...

  9. Methods of solving nonstandard problems

    CERN Document Server

    Grigorieva, Ellina

    2015-01-01

    This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas.   It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions.  The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem.  Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems.   Over 360 problems are included with hints, ...

  10. Solving the drift control problem

    Directory of Open Access Journals (Sweden)

    Melda Ormeci Matoglu

    2015-12-01

    Full Text Available We model the problem of managing capacity in a build-to-order environment as a Brownian drift control problem. We formulate a structured linear program that models a practical discretization of the problem and exploit a strong relationship between relative value functions and dual solutions to develop a functional lower bound for the continuous problem from a dual solution to the discrete problem. Refining the discretization proves a functional strong duality for the continuous problem. The linear programming formulation is so badly scaled, however, that solving it is beyond the capabilities of standard solvers. By demonstrating the equivalence between strongly feasible bases and deterministic unichain policies, we combinatorialize the pivoting process and by exploiting the relationship between dual solutions and relative value functions, develop a mechanism for solving the LP without ever computing its coefficients. Finally, we exploit the relationship between relative value functions and dual solutions to develop a scheme analogous to column generation for refining the discretization so as to drive the gap between the discrete approximation and the continuous problem to zero quickly while keeping the LP small. Computational studies show our scheme is much faster than simply solving a regular discretization of the problem both in terms of finding a policy with a low average cost and in terms of providing a lower bound on the optimal average cost.

  11. Interactive problem solving using LOGO

    CERN Document Server

    Boecker, Heinz-Dieter; Fischer, Gerhard

    2014-01-01

    This book is unique in that its stress is not on the mastery of a programming language, but on the importance and value of interactive problem solving. The authors focus on several specific interest worlds: mathematics, computer science, artificial intelligence, linguistics, and games; however, their approach can serve as a model that may be applied easily to other fields as well. Those who are interested in symbolic computing will find that Interactive Problem Solving Using LOGO provides a gentle introduction from which one may move on to other, more advanced computational frameworks or more

  12. Problem solving through recreational mathematics

    CERN Document Server

    Averbach, Bonnie

    1999-01-01

    Historically, many of the most important mathematical concepts arose from problems that were recreational in origin. This book takes advantage of that fact, using recreational mathematics - problems, puzzles and games - to teach students how to think critically. Encouraging active participation rather than just observation, the book focuses less on mathematical results than on how these results can be applied to thinking about problems and solving them. Each chapter contains a diverse array of problems in such areas as logic, number and graph theory, two-player games of strategy, solitaire ga

  13. Resources in Technology: Problem-Solving.

    Science.gov (United States)

    Technology Teacher, 1986

    1986-01-01

    This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)

  14. Human Problem Solving in 2008

    OpenAIRE

    Pizlo, Zygmunt

    2009-01-01

    This paper presents a bibliography of more than 200 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo database. Journal papers, book chapters, books and dissertations are included. The topics include human development, education, neuroscience, research in applied settings, as well as animal studies.

  15. Human Problem Solving in 2010

    OpenAIRE

    Pizlo, Zygmunt

    2012-01-01

    This paper presents a bibliography of 100 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo database. Journal papers, book chapters, and dissertations are included. The topics include human development, education, neuroscience, and research in applied settings, as well as animal studies.

  16. Genetics problem solving and worldview

    Science.gov (United States)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  17. Problem Solving in Latino Families

    OpenAIRE

    Torres, Eliza

    2012-01-01

    This study examined parent engagement, child engagement, and quality of problem solving in a sample of families engaged in a trial of parent management training intervention. Data were collected for treatment and control groups at preintervention and 2, 4, and 6 months after the initial assessment. Variables in this study were measured utilizing a global coding scheme used to categorize parent-child behavioral observations. The coding scheme was developed by Forgatch, Knutson, and Mayne. Prel...

  18. Human Problem Solving in 2006

    OpenAIRE

    Pizlo, Zygmunt

    2007-01-01

    This paper presents a bibliography of a little more than 100 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Compendex databases. Only journal papers, books and dissertations are included. The topics include human development, education, neuroscience, research in applied settings, as well as animal studies. A few references from artificial intelligence are also given.

  19. Journey toward Teaching Mathematics through Problem Solving

    Science.gov (United States)

    Sakshaug, Lynae E.; Wohlhuter, Kay A.

    2010-01-01

    Teaching mathematics through problem solving is a challenge for teachers who learned mathematics by doing exercises. How do teachers develop their own problem solving abilities as well as their abilities to teach mathematics through problem solving? A group of teachers began the journey of learning to teach through problem solving while taking a…

  20. Emotional Intelligence and Problem Solving

    OpenAIRE

    İşmen, A. Esra

    2013-01-01

    One of the two goals of this study is to investigate relationship between emotional intelligence and perception of problem solving skill and the other is to gather some data for the theories which are using information processing approach to explain the emotional Intelligence.The sample consisted of 225 students (undergraduated and master-without thesis) from the Istanbul University. EQ-NED (Ergin, İşmen, Özabacı, 1999) was applied to sample group to determine their emotional intelligence and...

  1. Solving the Dark Matter Problem

    International Nuclear Information System (INIS)

    Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.

  2. A Citizen's Guide to Plastics in the Ocean: More than a Litter Problem. Second Edition.

    Science.gov (United States)

    O'Hara, Kathryn J.; And Others

    This publication gives an overview of the problems caused by plastic debris in the marine environment and describes how citizens and public officials are working together to solve these problems. Chapter I introduces the reader to the problems caused by plastic debris in the marine environment. Chapter II examines the types of debris that are…

  3. King Oedipus and the Problem Solving Process.

    Science.gov (United States)

    Borchardt, Donald A.

    An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and applying…

  4. Community-powered problem solving.

    Science.gov (United States)

    Gouillart, Francis; Billings, Douglas

    2013-04-01

    Traditionally, companies have managed their constituencies with specific processes: marketing to customers, procuring from vendors, developing HR policies for employees, and so on. The problem is, such processes focus on repeatability and compliance, so they can lead to stagnation. Inviting your constituencies to collectively help you solve problems and exploit opportunities--"co-creation"--is a better approach. It allows you to continually tap the skills and insights of huge numbers of stakeholders and develop new ways to produce value for all. The idea is to provide stakeholders with platforms (physical and digital forums) on which they can interact, get them to start exploring new experiences and connections, and let the system grow organically. A co-creation initiative by a unit of Becton, Dickinson and Company demonstrates how this works. A global leader in syringes, BD set out to deepen its ties with hospital customers and help them reduce the incidence of infections from unsafe injection and syringe disposal practices. The effort began with a cross-functional internal team, brought in the hospital procurement and supply managers BD had relationships with, and then reached out to hospitals' infection-prevention and occupational health leaders. Eventually product designers, nurses, sustainability staffers, and even hospital CFOs were using the platform, contributing data that generated new best practices and reduced infections. PMID:23593769

  5. Problem Solving Applications in Chemistry Laboratory

    OpenAIRE

    Temel, Senar

    2013-01-01

    In the study, it was aimed to examine perception level of problem solving skills of teacher candidates participating in problem solving applications in chemistry laboratory and the effect of these applications on their perception of problem solving skills. Also it has been examined whether there is a significant relationship between perception of problem solving skills of teacher candidates and science process skills and logical thinking abilities. 72 teacher candidates participated in the st...

  6. Perspectives on Problem Solving and Instruction

    Science.gov (United States)

    van Merrienboer, Jeroen J. G.

    2013-01-01

    Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…

  7. LEGO Robotics: An Authentic Problem Solving Tool?

    Science.gov (United States)

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  8. Fibonacci's Triangle: A Vehicle for Problem Solving.

    Science.gov (United States)

    Ouellette, Hugh

    1979-01-01

    A method for solving certain types of problems is illustrated by problems related to Fibonacci's triangle. The method involves pattern recognition, generalizing, algebraic manipulation, and mathematical induction. (MP)

  9. Bit Preservation: A Solved Problem?

    Directory of Open Access Journals (Sweden)

    David S. H. Rosenthal

    2010-07-01

    Full Text Available For years, discussions of digital preservation have routinely featured comments such as “bit preservation is a solved problem; the real issues are ...”. Indeed, current digital storage technologies are not just astoundingly cheap and capacious, they are astonishingly reliable. Unfortunately, these attributes drive a kind of “Parkinson’s Law” of storage, in which demands continually push beyond the capabilities of systems implementable at an affordable price. This paper is in four parts:Claims, reviewing a typical claim of storage system reliability, showing that it provides no useful information for bit preservation purposes.Theory, proposing “bit half-life” as an initial, if inadequate, measure of bit preservation performance, expressing bit preservation requirements in terms of it, and showing that the requirements being placed on bit preservation systems are so onerous that the experiments required to prove that a solution exists are not feasible.Practice, reviewing recent research into how well actual storage systems preserve bits, showing that they fail to meet the requirements by many orders of magnitude.Policy, suggesting ways of dealing with this unfortunate situation.

  10. Citizen Sky, Solving the Mystery of epsilon Aurigae

    Science.gov (United States)

    Turner, Rebecca; Price, A.; Kloppenborg, B.; Henden, A.

    2010-01-01

    Citizen Sky is a multi-year, NSF funded citizen science project involving the bright star eps Aur. The project was conceived by the IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists. Citizen Sky goes beyond simple observing to include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. It begins with a 10 Star Training Program of several types of binary and transient variable stars that are easy to observe from suburban locations with the naked eye. Participants then move on to monitoring the rare and mysterious 2009-2011 eclipse (already underway) of epsilon Aurigae. This object undergoes eclipses only every 27.1 years and each eclipse lasts nearly two years. The star is bright enough to be seen with the naked eye from most urban areas. Training will be provided in observing techniques as well as basic data analysis of photometric and visual datasets (light curve and period analysis). The project also involves two public workshops, one on observing (already held in August of 2009) and one on data analysis and scientific paper writing (to be held in 2010.) This project has been made possible by the National Science Foundation.

  11. IDEAL Problem Solving dalam Pembelajaran Matematika

    Directory of Open Access Journals (Sweden)

    Eny Susiana

    2012-01-01

    Full Text Available Most educators agree that problem solving is among the most meaningful and importantkinds of learning and thingking. That is, the central focus of learning and instructionshould be learning to solve problems. There are several warrants supporting that claims.They are authenticity, relevance, problem solving engages deeper learning angtherefore enhances meaning making, and constructed to represent problems (problemsolving is more meaningful. It is the reason why we must provide teaching and learningto make student’s problem solving skill in progress. There are many informationprocessingmodels of problem solving, such as simplified model of the problem-solvingprocess by Gicks, Polya’s problem solving process etc. One of them is IDEAL problemsolving. Each letter of IDEAL is stand for an aspect of thinking that is important forproblem solving. IDEAL is identify problem, Define Goal, Explore possible strategies,Anticipate outcme and Act, and Look back and learn. Using peer interaction andquestion prompt in small group in IDEAL problem solving teaching and Learning canimprove problem solving skill.Kata kunci: IDEAL Problem Solving, Interaksi Sebaya, Pertanyaan Penuntun, KelompokKecil.

  12. Teaching Effective Problem Solving Strategies for Interns

    Science.gov (United States)

    Warren, Louis L.

    2005-01-01

    This qualitative study investigates what problem solving strategies interns learn from their clinical teachers during their internships. Twenty-four interns who completed their internship in the elementary grades shared what problem solving strategies had the greatest impact upon them in learning how to deal with problems during their internship.…

  13. Error Detection Processes in Problem Solving.

    Science.gov (United States)

    Allwood, Carl Martin

    1984-01-01

    Describes a study which analyzed problem solvers' error detection processes by instructing subjects to think aloud when solving statistical problems. Effects of evaluative episodes on error detection, detection of different error types, error detection processes per se, and relationship of error detection behavior to problem-solving proficiency…

  14. General problem solving: Navy requirements and solutions

    OpenAIRE

    Lyons, Norman; Knott, Kathleen

    1985-01-01

    This research is a preliminary study with two major objectives. The first is to perform a literature survey of the problem solving and artificial intelligence literature relevant to Navy needs. The second objective is to investigate approaches to problem solving that could be taught to Naval officers for use in their jobs. This survey has found a growing interest in the area of problem solving. This interest began with work in cognitive psychology and artificial intelligence in the 1950's and...

  15. Mobile serious games for collaborative problem solving.

    Science.gov (United States)

    Sanchez, Jaime; Mendoza, Claudia; Salinas, Alvaro

    2009-01-01

    This paper presents the results obtained from the implementation of a series of learning activities based on mobile serious games (MSG) for the development of problem-solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students, who had to solve the problems posed by the game collaboratively. The data shows that the experimental group had a higher perception of their own skills of collaboration and of the plan execution dimension of problem solving than the control group, providing empirical evidence regarding the contribution of MSGs to the development of collaborative problem-solving skills. PMID:19592762

  16. Disciplinary Foundations for Solving Interdisciplinary Scientific Problems

    Science.gov (United States)

    Zhang, Dongmei; Shen, Ji

    2015-10-01

    Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we conducted an interview study with 16 graduate students coming from a variety of disciplinary backgrounds. During the interviews, we asked participants to solve two interdisciplinary science problems on the topic of osmosis. We investigated participants' problem reasoning processes and probed in their attitudes toward general interdisciplinary approach and specific interdisciplinary problems. Through a careful inductive content analysis of their responses, we studied how disciplinary, cognitive, and affective factors influenced their interdisciplinary problems-solving. We found that participants' prior discipline-based science learning experiences had both positive and negative influences on their interdisciplinary problem-solving. These influences were embodied in their conceptualization of the interdisciplinary problems, the strategies they used to integrate different disciplinary knowledge, and the attitudes they had toward interdisciplinary approach in general and specific interdisciplinary problems. This study sheds light on interdisciplinary science education by revealing the complex relationship between disciplinary learning and interdisciplinary problem-solving.

  17. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  18. Problem Solving, Patterns, Probability, Pascal, and Palindromes.

    Science.gov (United States)

    Hylton-Lindsay, Althea Antoinette

    2003-01-01

    Presents a problem-solving activity, the birth order problem, and several solution-seeking strategies. Includes responses of current and prospective teachers and a comparison of various strategies. (YDS)

  19. Problem Solving Software: What Does It Teach?

    Science.gov (United States)

    Duffield, Judith A.

    The purpose of this study was to examine the potential of computer-assisted instruction (CAI) for teaching problem solving skills. It was conducted in three phases. During the first phase, two pieces of problem solving software, "The King's Rule" and "Safari Search," were identified and analyzed. During the second phase, two groups of six…

  20. Mathematical Problem Solving through Sequential Process Analysis

    Science.gov (United States)

    Codina, A.; Cañadas, M. C.; Castro, E.

    2015-01-01

    Introduction: The macroscopic perspective is one of the frameworks for research on problem solving in mathematics education. Coming from this perspective, our study addresses the stages of thought in mathematical problem solving, offering an innovative approach because we apply sequential relations and global interrelations between the different…

  1. Student Modeling Based on Problem Solving Times

    Science.gov (United States)

    Pelánek, Radek; Jarušek, Petr

    2015-01-01

    Student modeling in intelligent tutoring systems is mostly concerned with modeling correctness of students' answers. As interactive problem solving activities become increasingly common in educational systems, it is useful to focus also on timing information associated with problem solving. We argue that the focus on timing is natural for certain…

  2. Conceptual Problem Solving in High School Physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an…

  3. Metacognition: Student Reflections on Problem Solving

    Science.gov (United States)

    Wismath, Shelly; Orr, Doug; Good, Brandon

    2014-01-01

    Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…

  4. Lesion mapping of social problem solving

    OpenAIRE

    Aron K Barbey; Colom, Roberto; Paul, Erick J.; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H.

    2014-01-01

    Barbey et al. investigate the neurobiology of social problem solving and its relation to psychometric intelligence, emotional intelligence, and personality in 144 patients with focal lesions. Results reveal the neural architecture of social problem solving and provide an integrative framework for understanding the social, psychometric, and emotional foundations of human intelligence.

  5. Measuring Problem Solving Skills in "Portal 2"

    Science.gov (United States)

    Shute, Valerie J.; Wang, Lubin

    2013-01-01

    This paper examines possible improvement to problem solving skills as a function of playing the video game "Portal 2." Stealth assessment is used in the game to evaluate students' problem solving abilities--specifically basic and flexible rule application. The stealth assessment measures will be validated against commonly accepted…

  6. Artificial Ant Species on Solving Optimization Problems

    OpenAIRE

    Pintea, Camelia-M.

    2013-01-01

    During the last years several ant-based techniques were involved to solve hard and complex optimization problems. The current paper is a short study about the influence of artificial ant species in solving optimization problems. There are studied the artificial Pharaoh Ants, Lasius Niger and also artificial ants with no special specificity used commonly in Ant Colony Optimization.

  7. Taking "From Scratch" out of Problem Solving

    Science.gov (United States)

    Brown, Wayne

    2007-01-01

    Solving problems and creating processes and procedures from the ground up has long been part of the IT department's way of operating. IT staffs will continue to encounter new problems to solve and new technologies to be implemented. They also must involve their constituents in the creation of solutions. Nonetheless, for many issues they no longer…

  8. A Multivariate Model of Physics Problem Solving

    Science.gov (United States)

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  9. Solving the Wrong Hierarchy Problem

    CERN Document Server

    Blinov, Nikita

    2016-01-01

    Many theories require augmenting the Standard Model with additional scalar fields with large order one couplings. We present a new solution to the hierarchy problem for these scalar fields. We explore parity- and $\\mathbb{Z}_2$-symmetric theories where the Standard Model Higgs potential has two vacua. The parity or $\\mathbb{Z}_2$ copy of the Higgs lives in the minimum far from the origin while our Higgs occupies the minimum near the origin of the potential. This approach results in a theory with multiple light scalar fields but with only a single hierarchy problem, since the bare mass is tied to the Higgs mass by a discrete symmetry. The new scalar does not have a new hierarchy problem associated with it because its expectation value and mass are generated by dimensional transmutation of the scalar quartic coupling. The location of the second Higgs minimum is not a free parameter, but is rather a function of the matter content of the theory. As a result, these theories are extremely predictive. We develop thi...

  10. Solving complex problems a handbook

    CERN Document Server

    Schönwandt, Walter; Grunau, Jens; Utz, Jürgen; Voermanek, Katrin

    2014-01-01

    When you're planning something big, problems appear rather quickly. We hear of them on a daily basis. The bigger or more complex a task, the more we have to deal with complicated, multidisciplinary task formulations. In many cases it is architecture, including urban and spatial planning, but also politics and all types of organizational forms, irrespective of whether they are public authorities or private enterprises, which are expected to deliver functional solutions for such challenges. This is precisely where this book is helpful. It introduces a methodology for developing target-specific,

  11. Applying Cooperative Techniques in Teaching Problem Solving

    Directory of Open Access Journals (Sweden)

    Krisztina Barczi

    2013-12-01

    Full Text Available Teaching how to solve problems – from solving simple equations to solving difficult competition tasks – has been one of the greatest challenges for mathematics education for many years. Trying to find an effective method is an important educational task. Among others, the question arises as to whether a method in which students help each other might be useful. The present article describes part of an experiment that was designed to determine the effects of cooperative teaching techniques on the development of problem-solving skills.

  12. Assertiveness and problem solving in midwives

    OpenAIRE

    Yurtsal, Zeliha Burcu; Özdemir, Levent

    2015-01-01

    Background: Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. Materials and Methods: This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) we...

  13. Insightful Problem Solving in an Asian Elephant

    OpenAIRE

    Preston Foerder; Marie Galloway; Tony Barthel; Moore, Donald E.; Diana Reiss

    2011-01-01

    The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-re...

  14. Solving computationally expensive engineering problems

    CERN Document Server

    Leifsson, Leifur; Yang, Xin-She

    2014-01-01

    Computational complexity is a serious bottleneck for the design process in virtually any engineering area. While migration from prototyping and experimental-based design validation to verification using computer simulation models is inevitable and has a number of advantages, high computational costs of accurate, high-fidelity simulations can be a major issue that slows down the development of computer-aided design methodologies, particularly those exploiting automated design improvement procedures, e.g., numerical optimization. The continuous increase of available computational resources does not always translate into shortening of the design cycle because of the growing demand for higher accuracy and necessity to simulate larger and more complex systems. Accurate simulation of a single design of a given system may be as long as several hours, days or even weeks, which often makes design automation using conventional methods impractical or even prohibitive. Additional problems include numerical noise often pr...

  15. Lesion mapping of social problem solving.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511

  16. Molecular science solving global problems

    International Nuclear Information System (INIS)

    From the late 1940s to the late 1980s, the Department of Energy (DOE) had a critical role in the Cold War. Many sites were built to contribute to the nation's nuclear weapons effort. However, not enough attention was paid to how the waste generated at these facilities should be handled. As a result, a number of sites fouled the soil around them or dumped low-level radioactive waste into nearby rivers. A DOE laboratory is under construction with a charter to help. Called the Environmental Molecular Sciences Laboratory (EMSL), this national user facility will be located at DOE's Pacific Northwest Laboratory (PNL) in Richland, WA. This laboratory has been funded by DOE and Congress to play a major role as the nation confronts the enormous challenge of reducing environmental and human risks from hundreds of government and industrial waste sites in an economically viable manner. The original proposal for the EMSL took a number of twists and turns on its way to its present form, but one thing remained constant: the belief that safe, permanent, cost-effective solutions to many of the country's environmental problems could be achieved only by multidisciplinary teams working to understand and control molecular processes. The processes of most concern are those that govern the transport and transformation of contaminants, the treatment and storage of high-level mixed wastes, and the risks those contaminants ultimately pose to workers and the public

  17. Problem solving in a dynamic environment

    CERN Document Server

    Yan, Hong Ng

    1995-01-01

    This book looks at the process of human cognition and the way complex problems are solved by decomposing them into a list of strategic objectives, before focusing individually on each objective to plan for a tactical solution. This process has been formulated by military planners in the form of the Standard Operating Procedure, by which problem solving is organised into four different stages: deliberation, planning, war meeting and plan execution. This has enabled the development of a methodology for problem solving in a dynamic environment. This is illustrated with the help of a six-case stud

  18. Could HPS Improve Problem-Solving?

    Science.gov (United States)

    Coelho, Ricardo Lopes

    2013-05-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

  19. Solving the factorization problem with P systems

    Institute of Scientific and Technical Information of China (English)

    Alberto Leporati; Claudio Zandron; Giancarlo Mauri

    2007-01-01

    P systems have been used many times to face with computationally difficult problems, such as NP-complete decision problems and NP-hard optimization problems. In this paper we focus our attention on another computationally intractable problem: factorization. In particular, we first propose a simple method to encode binary numbers using multisets. Then, we describe three families of P systems: the first two allow to add and to multiply two binary encoded numbers, respectively, and the third solves the factorization problem.

  20. Problem Solving: Can Anybody Do It?

    Science.gov (United States)

    Bennett, Stuart W.

    2008-01-01

    This paper examines the definition of a problem and at the process of problem solving. An analysis of a number of first and third year chemistry examination papers from English universities revealed that over ninety per cent of the "problems" fell into the "algorithm" category. Using Bloom's taxonomy and the same examination papers, we found that…

  1. Quantum Algorithm to Solve Satisfiability Problems

    OpenAIRE

    Mao, Wenjin

    2004-01-01

    A new quantum algorithm is proposed to solve Satisfiability(SAT) problems by taking advantage of non-unitary transformation in ground state quantum computer. The energy gap scale of the ground state quantum computer is analyzed for 3-bit Exact Cover problems. The time cost of this algorithm on general SAT problems is discussed.

  2. Conceptual problem solving in high school physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  3. Citizen participation and health care: problems of government induced participation.

    Science.gov (United States)

    Lipsky, M; Lounds, M

    1976-01-01

    In this paper we trace the implications of some common contradictions in government-inspired efforts to increase citizen participation in health care delivery. We cover general problems of generating citizen participation, specific difficulties in community organization resulting when issues of health are the organizing focus, and the benefits that were thought to result from efforts to increase citizen participation in social programs in the 1960's. When programs focused on increased citizen participation were initiated program administrators attempted to maximize citizen involvement quickly by: projecting an image of maximal social impact; minimizing or ignoring questions of long-term fiscal uncertainty; projecting an image of maximal control by citizens; and projecting images of institutional solidarity and of experimentation and innovation. They tended to recruit to the staff social activists taken to be representative of the community (although they might not be), promising opportunities for upward mobility. They also tended to adopt conciliatory administrative styles in keeping with their experimental non-elitist orientations. These tendencies characteristic of the initiation phase of projects conflicted with the demands placed upon programs in later phases of program implementation. These demands resulted from later perceived needs to: evaluate programs; limit spending; counter internal organizational opposition; and respond to sponsors' shifting interests. Paraprofessionals recruited to the staff tended to lose their "community" orientation, and administrative style tended to focus considerably more on program accountability. These shifting program demands substantially account for what otherwise appears to be the failure of efforts to increase citizens' participation in health delivery programs, and, by extension, in other areas where the impetus for increased citizen participation comes from government initiatives. PMID:1022799

  4. Productive Dialog During Collaborative Problem Solving

    CERN Document Server

    Hausmann, Robert G M; van de Sande, Carla; VanLehn, Kurt

    2008-01-01

    Collaboration is an important problem-solving skill; however, novice collaboration generally benefits from some kind of support. One possibility for supporting productive conversations between collaborators is to encourage pairs of students to provide explanations for their problem-solving steps. To test this possibility, we contrasted individuals who were instructed to self-explain problem-solving steps with dyads who were instructed to jointly explain problem-solving steps in the context of an intelligent tutoring system (ITS). The results suggest that collaboratively developed explanations prompted students to remediate their errors in dialog, as opposed to relying on the ITS for assistance, which is provided in the form of on-demand hints. The paper concludes with a discussion about implications for combining proven learning interventions.

  5. Information problem solving and mental effort

    NARCIS (Netherlands)

    Brand-Gruwel, Saskia; Frerejean, Jimmy

    2012-01-01

    Brand-Gruwel, S., & Frerejean, J. (2012, 5 September). Information problem solving and mental effort. Presentation at the EARLI ASC 2012 "Using eye tracking to design and evaluate education & training methods", Heerlen, The Netherlands.

  6. Physics: Quantum problems solved through games

    Science.gov (United States)

    Maniscalco, Sabrina

    2016-04-01

    Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210

  7. Methods for solving mathematical physics problems

    CERN Document Server

    Agoshkov, VI; Shutyaev, VP

    2006-01-01

    The book examines the classic and generally accepted methods for solving mathematical physics problems (method of the potential theory, the eigenfunction method, integral transformation methods, discretisation characterisation methods, splitting methods). A separate chapter is devoted to methods for solving nonlinear equations. The book offers a large number of examples of how these methods are applied to the solution of specific mathematical physics problems, applied in the areas of science and social activities, such as energy, environmental protection, hydrodynamics, theory of elasticity, etc.

  8. Cooperative problem solving in rooks (Corvus frugilegus)

    OpenAIRE

    Seed, Amanda M; Clayton, Nicola S.; Emery, Nathan J

    2008-01-01

    Recent work has shown that captive rooks, like chimpanzees and other primates, develop cooperative alliances with their conspecifics. Furthermore, the pressures hypothesized to have favoured social intelligence in primates also apply to corvids. We tested cooperative problem-solving in rooks to compare their performance and cognition with primates. Without training, eight rooks quickly solved a problem in which two individuals had to pull both ends of a string simultaneously in order to pull ...

  9. Solving traveling salesman problems by genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The gene section ordering on solving traveling salesman problems is analyzed by numerical experiments. Some improved crossover operations are presented. Several combinations of genetic operations are examined and the functions of these operations are analyzed. The essentiality of the ordering of the gene section and the significance of the evolutionary inversion operation are discussed. Some results and conclusions are obtained and given, which provide useful information for the implementation of the genetic operations for solving the traveling salesman problem.

  10. Problem Solving Methods in Engineering Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1999-01-01

    This short paper discusses typical engineering tasks and problem solving methods, based on a field study of engineering tasks at a Danish engineering firm. The field study has identified ten classes of design tasks and in this paper these classes are related to problem solving methods. The...... described work is part of a project that aims at establishing a coherent framework for future development of integrated design tools....

  11. Solving hard industrial combinatorial problems with SAT

    OpenAIRE

    Abío Roig, Ignasi

    2013-01-01

    The topic of this thesis is the development of SAT-based techniques and tools for solving industrial combinatorial problems. First, it describes the architecture of state-of-the-art SAT and SMT Solvers based on the classical DPLL procedure. These systems can be used as black boxes for solving combinatorial problems. However, sometimes we can increase their efficiency with slight modifications of the basic algorithm. Therefore, the study and development of techniques for adjusting SAT Solvers ...

  12. Introductory Problem Solving in Computer Science

    OpenAIRE

    Barnes, David J; Fincher, Sally; Thompson, Simon

    1997-01-01

    This paper describes our experiences in devising a lightweight, informal methodology for problem solving in introductory, university level, computer science. We first describe the original context of the experiment and the background to the methodology. We then give the details of the steps of the Problem Solving Cycle - Understanding, Designing, Writing and Reviewing - and the lessons we learned about our teaching from devising the material. We also present practical examples of how it has b...

  13. The Effect of Learning Environments Based on Problem Solving on Students’ Achievements of Problem Solving

    Directory of Open Access Journals (Sweden)

    Ilhan KARATAS

    2013-07-01

    Full Text Available Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educatingstudents as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum. Students’ gaining of that skill in school mathematics is closely related with the learning environment to beformed and the roles given to the students. The aim of this study is to create a problem solving based learning environment to enhance the students’ problem solving skill. Within this scope, students’practiced activities and problems that provide them to proceed in Polya (1945’s problem solving phases and throughout the study, students’ success in problem solving have been evaluated. While experimental group students received problem solving based learning environment performed, control group students have continued their present program in this quise1experimental study. Eleven problem solving activities were given to the students at the beginning, middle and end of the study and the students’ performances wereanalyzed based on problem solving phases. The findings illustrated that the experimental group students’ success in problem solving activities has increased while the control group students’ success has not changed significantly.

  14. Solving the Satisfiability Problem Through Boolean Networks

    OpenAIRE

    Roli, Andrea; Milano, Michela

    2011-01-01

    In this paper we present a new approach to solve the satisfiability problem (SAT), based on boolean networks (BN). We define a mapping between a SAT instance and a BN, and we solve SAT problem by simulating the BN dynamics. We prove that BN fixed points correspond to the SAT solutions. The mapping presented allows to develop a new class of algorithms to solve SAT. Moreover, this new approach suggests new ways to combine symbolic and connectionist computation and provides a general framework f...

  15. Solving the Satisfiability Problem Through Boolean Networks

    CERN Document Server

    Roli, Andrea

    2011-01-01

    In this paper we present a new approach to solve the satisfiability problem (SAT), based on boolean networks (BN). We define a mapping between a SAT instance and a BN, and we solve SAT problem by simulating the BN dynamics. We prove that BN fixed points correspond to the SAT solutions. The mapping presented allows to develop a new class of algorithms to solve SAT. Moreover, this new approach suggests new ways to combine symbolic and connectionist computation and provides a general framework for local search algorithms.

  16. On Teaching Problem Solving in School Mathematics

    Directory of Open Access Journals (Sweden)

    Erkki Pehkonen

    2013-12-01

    Full Text Available The article begins with a brief overview of the situation throughout the world regarding problem solving. The activities of the ProMath group are then described, as the purpose of this international research group is to improve mathematics teaching in school. One mathematics teaching method that seems to be functioning in school is the use of open problems (i.e., problem fields. Next we discuss the objectives of the Finnish curriculum that are connected with problem solving. Some examples and research results are taken from a Finnish–Chilean research project that monitors the development of problem-solving skills in third grade pupils. Finally, some ideas on “teacher change” are put forward. It is not possible to change teachers, but only to provide hints for possible change routes: the teachers themselves should work out the ideas and their implementation.

  17. Fostering Information Problem Solving Skills Through Completion Problems and Prompts

    OpenAIRE

    Frerejean, Jimmy; Brand-Gruwel, Saskia; Kirschner, Paul A.

    2012-01-01

    Frerejean, J., Brand-Gruwel, S., & Kirschner, P. A. (2012, September). Fostering Information Problem Solving Skills Through Completion Problems and Prompts. Poster presented at the EARLI SIG 6 & 7 "Instructional Design" and "Learning and Instruction with Computers", Bari, Italy.

  18. Fostering information problem solving skills through completion problems and prompts

    OpenAIRE

    Frerejean, Jimmy; Brand-Gruwel, Saskia; Kirschner, Paul A.

    2012-01-01

    Frerejean, J., Brand-Gruwel, S., & Kirschner, P. A. (2012, November). Fostering information problem solving skills through completion problems and prompts. Poster presented at the ICO Fall School 2012, Girona, Spain.

  19. Teaching Teamwork and Problem Solving Concurrently

    Science.gov (United States)

    Goltz, Sonia M.; Hietapelto, Amy B.; Reinsch, Roger W.; Tyrell, Sharon K.

    2008-01-01

    Teamwork and problem-solving skills have frequently been identified by business leaders as being key competencies; thus, teaching methods such as problem-based learning and team-based learning have been developed. However, the focus of these methods has been on teaching one skill or the other. A key argument for teaching the skills concurrently is…

  20. A reflexive perspective in problem solving

    Directory of Open Access Journals (Sweden)

    Chio, José Angel

    2013-01-01

    Full Text Available The objective of this paper is to favour the methodological process of reflexive analysis in problem solving in the general teaching methods that concentrates in strengthening the dimensional analysis, to gain a greater preparation of the students for the solution of mathematical problems.

  1. The art and science of problem solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2005-01-01

    In this paper we will document that real-life problem solving in complex situations demands both rational (scientific) and intuitive (artistic) thinking. First, the concepts of art and science will be discussed; differences and similarities will be enhanced. Thereafter the concept of group problem...

  2. Mobile serious games for collaborative problem solving

    OpenAIRE

    Jaime Sanchez

    2009-01-01

    This paper presents the results obtained from the realization of a series of learning activities based on mobile serious games (MSG) for the development of problem-solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students, who had to solve the problems presented in the game collaboratively. The data shows that the participating students had a better perception of their own skills of collaboration and of one of the problem-so...

  3. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    Science.gov (United States)

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  4. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    Science.gov (United States)

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  5. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    Science.gov (United States)

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  6. Learning via problem solving in mathematics education

    Directory of Open Access Journals (Sweden)

    Piet Human

    2009-09-01

    Full Text Available Three forms of mathematics education at school level are distinguished: direct expository teaching with an emphasis on procedures, with the expectation that learners will at some later stage make logical and functional sense of what they have learnt and practised (the prevalent form, mathematically rigorous teaching in terms of fundamental mathematical concepts, as in the so-called “modern mathematics” programmes of the sixties, teaching and learning in the context of engaging with meaningful problems and focused both on learning to become good problem solvers (teaching for problem solving andutilising problems as vehicles for the development of mathematical knowledge andproficiency by learners (problem-centred learning, in conjunction with substantialteacher-led social interaction and mathematical discourse in classrooms.Direct expository teaching of mathematical procedures dominated in school systems after World War II, and was augmented by the “modern mathematics” movement in the period 1960-1970. The latter was experienced as a major failure, and was soon abandoned. Persistent poor outcomes of direct expository procedural teaching of mathematics for the majority of learners, as are still being experienced in South Africa, triggered a world-wide movement promoting teaching mathematics for and via problem solving in the seventies and eighties of the previous century. This movement took the form of a variety of curriculum experiments in which problem solving was the dominant classroom activity, mainly in the USA, Netherlands, France and South Africa. While initially focusing on basic arithmetic (computation with whole numbers and elementary calculus, the problem-solving movement started to address other mathematical topics (for example, elementary statistics, algebra, differential equations around the turn of the century. The movement also spread rapidly to other countries, including Japan, Singapore and Australia. Parallel with the

  7. When Creative Problem Solving Strategy Meets Web-Based Cooperative Learning Environment in Accounting Education

    Science.gov (United States)

    Cheng, Kai Wen

    2011-01-01

    Background: Facing highly competitive and changing environment, cultivating citizens with problem-solving attitudes is one critical vision of education. In brief, the importance of education is to cultivate students with practical abilities. Realizing the advantages of web-based cooperative learning (web-based CL) and creative problem solving…

  8. The Effect of Problem Solving Teaching with Texts of Turkish Lesson on Students’ Problem Solving Skills

    Directory of Open Access Journals (Sweden)

    Havva ILGIN

    2012-08-01

    Full Text Available In this research, by carrying out activities based on texts, effect of providing problem solving skill on students’ levels of problem solving attainment was tried to be identified. Research was performed according to pretest-posttest Experimental Model with Control Group, in 2008-2009 educational year at second grade of an elementary school in Denizli province. For nine weeks, four hours in a week, while teacher guide book was being followed in control group in Turkish language lesson, texts were carried out with problem solving activities in experimental group. In the research, “Problem Solving Test” which were used as data collection tools, were developed by benefiting from matching of attainment-problem solving steps-cognitive domain steps. Problem Solving Test is made up of 16 multiple choice and 9 open ended questions. In the analysis of data, t test was used. It was found that problem solving teaching succeeded at “identifying different possible solutions in the light of collected data, applying the decided way of solution, evaluating types of solutions, evaluating used problem solving method” stages of problem solving.

  9. Why students still can't solve physics problems after solving over 2000 problems

    Science.gov (United States)

    Byun, Taejin; Lee, Gyoungho

    2014-09-01

    This study investigates the belief that solving a large number of physics problems helps students better learn physics. We investigated the number of problems solved, student confidence in solving these problems, academic achievement, and the level of conceptual understanding of 49 science high school students enrolled in upper-level physics classes from Spring 2010 to Summer 2011. The participants solved an average of 2200 physics problems before entering high school. Despite having solved so many problems, no statistically significant correlation was found between the number of problems solved and academic achievement on either a mid-term or physics competition examination. In addition, no significant correlation was found between the number of physics problems solved and performance on the Force Concept Inventory (FCI). Lastly, four students were selected from the 49 participants with varying levels of experience and FCI scores for a case study. We determined that their problem solving and learning strategies was more influential in their success than the number of problems they had solved.

  10. A Problem with Current Conceptions of Expert Problem Solving

    CERN Document Server

    Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2011-01-01

    Current conceptions of expert problem solving depict physical/conceptual reasoning and formal mathematical reasoning as separate steps: a good problem solver first translates a physical understanding into mathematics, then performs mathematical/symbolic manipulations, then interprets the mathematical solution physically. However, other research suggests that blending conceptual and symbolic reasoning during symbolic manipulations can reflect expertise. We explore the hypothesis that blending conceptual and symbolic reasoning (i) indicates problem-solving expertise more than adherence to "expert" problem-solving steps and (ii) is something some undergraduates do spontaneously, suggesting it's a feasible instructional target. Interviewed students were asked to (1) explain a particular equation and (2) solve a problem using that equation. In-depth analysis of two students, Alex and Pat, revealed a pattern of behavior. All 11 interviews were coded to investigate the generalizability of this pattern. Alex describe...

  11. Insightful problem solving in an Asian elephant.

    Science.gov (United States)

    Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E; Reiss, Diana

    2011-01-01

    The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food. PMID:21876741

  12. Insightful problem solving in an Asian elephant.

    Directory of Open Access Journals (Sweden)

    Preston Foerder

    Full Text Available The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  13. Solving multiconstraint assignment problems using learning automata.

    Science.gov (United States)

    Horn, Geir; Oommen, B John

    2010-02-01

    This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the

  14. Solving the hard problem of Bertrand's paradox

    Science.gov (United States)

    Aerts, Diederik; de Bianchi, Massimiliano Sassoli

    2014-08-01

    Bertrand's paradox is a famous problem of probability theory, pointing to a possible inconsistency in Laplace's principle of insufficient reason. In this article, we show that Bertrand's paradox contains two different problems: an "easy" problem and a "hard" problem. The easy problem can be solved by formulating Bertrand's question in sufficiently precise terms, so allowing for a non-ambiguous modelization of the entity subjected to the randomization. We then show that once the easy problem is settled, also the hard problem becomes solvable, provided Laplace's principle of insufficient reason is applied not to the outcomes of the experiment, but to the different possible "ways of selecting" an interaction between the entity under investigation and that producing the randomization. This consists in evaluating a huge average over all possible "ways of selecting" an interaction, which we call a universal average. Following a strategy similar to that used in the definition of the Wiener measure, we calculate such universal average and therefore solve the hard problem of Bertrand's paradox. The link between Bertrand's problem of probability theory and the measurement problem of quantum mechanics is also briefly discussed.

  15. Solving the hard problem of Bertrand's paradox

    International Nuclear Information System (INIS)

    Bertrand's paradox is a famous problem of probability theory, pointing to a possible inconsistency in Laplace's principle of insufficient reason. In this article, we show that Bertrand's paradox contains two different problems: an “easy” problem and a “hard” problem. The easy problem can be solved by formulating Bertrand's question in sufficiently precise terms, so allowing for a non-ambiguous modelization of the entity subjected to the randomization. We then show that once the easy problem is settled, also the hard problem becomes solvable, provided Laplace's principle of insufficient reason is applied not to the outcomes of the experiment, but to the different possible “ways of selecting” an interaction between the entity under investigation and that producing the randomization. This consists in evaluating a huge average over all possible “ways of selecting” an interaction, which we call a universal average. Following a strategy similar to that used in the definition of the Wiener measure, we calculate such universal average and therefore solve the hard problem of Bertrand's paradox. The link between Bertrand's problem of probability theory and the measurement problem of quantum mechanics is also briefly discussed

  16. Hybrid evolutionary algorithms to solve scheduling problems

    OpenAIRE

    Minetti, Gabriela F.; Salto, Carolina; Bermúdez, Carlos; Fernandez, Natalia; Alfonso, Hugo; Gallard, Raúl Hector

    2002-01-01

    The choice of a search algorithm can play a vital role in the success of a scheduling application. Evolutionary algorithms (EAs) can be used to solve this kind of combinatorial optimization problems. Compared to conventional heuristics (CH) and local search techniques (LS), EAs are not well suited for fine-tuninf those structures, which are very close to optimal solutions. Therefore, in complex problems, it is essential to build hybrid evolutionary algorithms (HEA) by incorporating CH and/or ...

  17. Ukraine's Participation In Solving Climate Change Problems

    OpenAIRE

    Irina Dubovich; Mariana Bulgakova

    2011-01-01

    Attention is paid to some problems of climate change. The main international agreements on climate change are overviewed. Ukraine's participation in solving global problems of climate change is described. Ukraine's statement about plans to reduce greenhouse gas emissions is analyzed. Characteristic of environmental political and legal prerequisites for the need to create a general agreement on environmental security of the planet – World Environmental Constitution is provided.

  18. Solving maximum cut problems by simulated annealing

    OpenAIRE

    Myklebust, Tor G. J.

    2015-01-01

    This paper gives a straightforward implementation of simulated annealing for solving maximum cut problems and compares its performance to that of some existing heuristic solvers. The formulation used is classical, dating to a 1989 paper of Johnson, Aragon, McGeoch, and Schevon. This implementation uses no structure peculiar to the maximum cut problem, but its low per-iteration cost allows it to find better solutions than were previously known for 40 of the 89 standard maximum cut instances te...

  19. Models of Strategy for Solving Physics Problems.

    Science.gov (United States)

    Larkin, Jill H.

    A set of computer implemented models are presented which can assist in developing problem solving strategies. The three levels of expertise which are covered are beginners (those who have completed at least one university physics course), intermediates (university level physics majors in their third year of study), and professionals (university…

  20. Solving Mathematical Problems A Personal Perspective

    CERN Document Server

    Tao, Terence

    2006-01-01

    Authored by a leading name in mathematics, this engaging and clearly presented text leads the reader through the tactics involved in solving mathematical problems at the Mathematical Olympiad level. With numerous exercises and assuming only basic mathematics, this text is ideal for students of 14 years and above in pure mathematics.

  1. Mental Imagery in Creative Problem Solving.

    Science.gov (United States)

    Polland, Mark J.

    In order to investigate the relationship between mental imagery and creative problem solving, a study of 44 separate accounts reporting mental imagery experiences associated with creative discoveries were examined. The data included 29 different scientists, among them Albert Einstein and Stephen Hawking, and 9 artists, musicians, and writers,…

  2. Informal Evaluation Strategies for Real Problem Solving

    Science.gov (United States)

    Ellis, Arthur K.; Alleman-Brooks, Janet

    1978-01-01

    Examples of possible methods for unobtrusively evaluating student progress through real problem solving outcomes without formal testing are illustrated. These methods include the use of interviews, artifacts, observations, I learned statements, checklists, flow of discussion charts, and self-awareness exercises. (MN)

  3. Assessing Mathematical Problem Solving Using Comparative Judgement

    Science.gov (United States)

    Jones, Ian; Swan, Malcolm; Pollitt, Alastair

    2015-01-01

    There is an increasing demand from employers and universities for school leavers to be able to apply their mathematical knowledge to problem solving in varied and unfamiliar contexts. These aspects are however neglected in most examinations of mathematics and, consequentially, in classroom teaching. One barrier to the inclusion of mathematical…

  4. Making Problem-Solving Simulations More Realistic.

    Science.gov (United States)

    Cotton, Samuel E.

    2002-01-01

    Many problem-solving activities include mathematical principles but students do not use them during the design and experimentation phases before creating a prototype or product. Restricting the amount and/or type of materials available to students will require them to calculate and requisition the materials needed. (JOW)

  5. Problem-Solving Test: Tryptophan Operon Mutants

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  6. Facilitating problem solving in high school chemistry

    Science.gov (United States)

    Gabel, Dorothy L.; Sherwood, Robert D.

    The major purpose for conducting this study was to determine whether certain instructional strategies were superior to others in teaching high school chemistry students problem solving. The effectiveness of four instructional strategies for teaching problem solving to students of various proportional reasoning ability, verbal and visual preference, and mathematics anxiety were compared in this aptitude by treatment interaction study. The strategies used were the factor-label method, analogies, diagrams, and proportionality. Six hundred and nine high school students in eight schools were randomly assigned to one of four teaching strategies within each classroom. Students used programmed booklets to study the mole concept, the gas laws, stoichiometry, and molarity. Problem-solving ability was measured by a series of immediate posttests, delayed posttests and the ACS-NSTA Examination in High School Chemistry. Results showed that mathematics anxiety is negatively correlated with science achievement and that problem solving is dependent on students' proportional reasoning ability. The factor-label method was found to be the most desirable method and proportionality the least desirable method for teaching the mole concept. However, the proportionality method was best for teaching the gas laws. Several second-order interactions were found to be significant when mathematics anxiety was one of the aptitudes involved.

  7. Instruction Emphasizing Effort Improves Physics Problem Solving

    Science.gov (United States)

    Li, Daoquan

    2012-01-01

    Effectively using strategies to solve complex problems is an important educational goal and is implicated in successful academic performance. However, people often do not spontaneously use the effective strategies unless they are motivated to do so. The present study was designed to test whether educating students about the importance of effort in…

  8. Should Children Learn to Solve Problems?

    Science.gov (United States)

    Watras, Joseph

    2011-01-01

    In this comparative essay, the author discusses the opposing educational theories of John Dewey and Gregory Bateson. While Dewey believed that the scientific method was the dominant method of solving problems and thereby acquiring knowledge that mattered, Bateson warned that this one-sided approach would lead to actions that could destroy the…

  9. Preschoolers' Cooperative Problem Solving: Integrating Play and Problem Solving

    Science.gov (United States)

    Ramani, Geetha B.; Brownell, Celia A.

    2014-01-01

    Cooperative problem solving with peers plays a central role in promoting children's cognitive and social development. This article reviews research on cooperative problem solving among preschool-age children in experimental settings and social play contexts. Studies suggest that cooperative interactions with peers in experimental settings are…

  10. Optimal Planning and Problem-Solving

    Science.gov (United States)

    Clemet, Bradley; Schaffer, Steven; Rabideau, Gregg

    2008-01-01

    CTAEMS MDP Optimal Planner is a problem-solving software designed to command a single spacecraft/rover, or a team of spacecraft/rovers, to perform the best action possible at all times according to an abstract model of the spacecraft/rover and its environment. It also may be useful in solving logistical problems encountered in commercial applications such as shipping and manufacturing. The planner reasons around uncertainty according to specified probabilities of outcomes using a plan hierarchy to avoid exploring certain kinds of suboptimal actions. Also, planned actions are calculated as the state-action space is expanded, rather than afterward, to reduce by an order of magnitude the processing time and memory used. The software solves planning problems with actions that can execute concurrently, that have uncertain duration and quality, and that have functional dependencies on others that affect quality. These problems are modeled in a hierarchical planning language called C_TAEMS, a derivative of the TAEMS language for specifying domains for the DARPA Coordinators program. In realistic environments, actions often have uncertain outcomes and can have complex relationships with other tasks. The planner approaches problems by considering all possible actions that may be taken from any state reachable from a given, initial state, and from within the constraints of a given task hierarchy that specifies what tasks may be performed by which team member.

  11. Colorado Assessment of Problem Solving (CAPS) -- Identifying student's problem solving skills

    Science.gov (United States)

    Adams, Wendy; Wieman, Carl

    2009-05-01

    Problem solving is central to any physics curriculum and physics educators have put extensive effort into understanding successful problem solving; however, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because CAPS removes the requirement that the student already have a grasp of physics concepts. CAPS has been developed and validated at Colorado and measures a person's competence in 44 separate skills that are used when solving a wide range of in-depth problems including classical mechanics and quantum mechanics problems. Understanding the specific processes that impact how a person solves a problem identifies which components are specific to physics and those that transfer across discipline, and provides insight for improved methods for teaching. 1. Supported in part by funding from National Science Foundation

  12. Geogebra for Solving Problems of Physics

    Science.gov (United States)

    Kllogjeri, Pellumb; Kllogjeri, Adrian

    Today is highly speed progressing the computer-based education, which allowes educators and students to use educational programming language and e-tutors to teach and learn, to interact with one another and share together the results of their work. In this paper we will be concentrated on the use of GeoGebra programme for solving problems of physics. We have brought an example from physics of how can be used GeoGebra for finding the center of mass(centroid) of a picture(or system of polygons). After the problem is solved graphically, there is an application of finding the center of a real object(a plate)by firstly, scanning the object and secondly, by inserting its scanned picture into the drawing pad of GeoGebra window and lastly, by finding its centroid. GeoGebra serve as effective tool in problem-solving. There are many other applications of GeoGebra in the problems of physics, and many more in different fields of mathematics.

  13. Interactive Problem Solving Tutorials Through Visual Programming

    Science.gov (United States)

    Undreiu, Lucian; Schuster, David; Undreiu, Adriana

    2008-10-01

    We have used LabVIEW visual programming to build an interactive tutorial to promote conceptual understanding in physics problem solving. This programming environment is able to offer a web-accessible problem solving experience that enables students to work at their own pace and receive feedback. Intuitive graphical symbols, modular structures and the ability to create templates are just a few of the advantages this software has to offer. The architecture of an application can be designed in a way that allows instructors with little knowledge of LabVIEW to easily personalize it. Both the physics solution and the interactive pedagogy can be visually programmed in LabVIEW. Our physics pedagogy approach is that of cognitive apprenticeship, in that the tutorial guides students to develop conceptual understanding and physical insight into phenomena, rather than purely formula-based solutions. We demonstrate how this model is reflected in the design and programming of the interactive tutorials.

  14. Prospects of solving grand challenge problems

    CERN Document Server

    Gupta, R

    1995-01-01

    The recent woes of the supercomputer industry and changes in federal funding have caused some scientists to re-evaluate the means by which they hope to solve Grand Challenge problems. I evaluate the potential of Massively Parallel Processors (MPP) within this context and the state of today's MPP. I stress that for solving large-scale problems MPP are crucial and that it is essential to seek a balance between CPU performance, memory access time, inter-node communications, and I/O. To achieve this it is important to preserve certain characteristics of the hardware while selecting the hottest processor to design the machine around. I emphasize that for long term stability and growth of parallel computing priority should be given to standardizing software so that the same code can run on different platforms and on machines ranging from clusters of workstations to MPP.

  15. Learning Matlab a problem solving approach

    CERN Document Server

    Gander, Walter

    2015-01-01

    This comprehensive and stimulating introduction to Matlab, a computer language now widely used for technical computing, is based on an introductory course held at Qian Weichang College, Shanghai University, in the fall of 2014.  Teaching and learning a substantial programming language aren’t always straightforward tasks. Accordingly, this textbook is not meant to cover the whole range of this high-performance technical programming environment, but to motivate first- and second-year undergraduate students in mathematics and computer science to learn Matlab by studying representative problems, developing algorithms and programming them in Matlab. While several topics are taken from the field of scientific computing, the main emphasis is on programming. A wealth of examples are completely discussed and solved, allowing students to learn Matlab by doing: by solving problems, comparing approaches and assessing the proposed solutions.

  16. Spreadsheet modelling for solving combinatorial problems: The vendor selection problem

    CERN Document Server

    Ipsilandis, Pandelis G

    2008-01-01

    Spreadsheets have grown up and became very powerful and easy to use tools in applying analytical techniques for solving business problems. Operations managers, production managers, planners and schedulers can work with them in developing solid and practical Do-It-Yourself Decision Support Systems. Small and Medium size organizations, can apply OR methodologies without the presence of specialized software and trained personnel, which in many cases cannot afford anyway. This paper examines an efficient approach in solving combinatorial programming problems with the use of spreadsheets. A practical application, which demonstrates the approach, concerns the development of a spreadsheet-based DSS for the Multi Item Procurement Problem with Fixed Vendor Cost. The DSS has been build using exclusively standard spreadsheet feature and can solve real problems of substantial size. The benefits and limitations of the approach are also discussed.

  17. New numerical methods for solving convection problems

    International Nuclear Information System (INIS)

    New methods for solving one-dimensional convection problems, have appeared recently: VAN LEER's generalization of GODUNOV'S method, BORIS and BOOK's SHASTA-FCT method, CHORIN and SOD's scheme, using a random method due to GLIMM. Its appears in a global analysis certain analogies between these methods. All of them can be interpreted as two-step schemes: a transport step and a projection step

  18. Nature and Validity of Complex Problem Solving

    OpenAIRE

    Wüstenberg, Sascha

    2013-01-01

    This thesis investigates the nature and validity of complex problem solving (CPS). The main focus lies on analyses of three research questions dealing with CPS’ (1) internal structure, its (2) structural stability combined with comparisons of performance differences across groups, and its (3) construct validity. In previous research, results on CPS’ (1) internal factor structure have been solely based on samples with high cognitive performance, (2) structural stability of CPS across groups ha...

  19. Solving-Problems and Hypermedia Systems

    Directory of Open Access Journals (Sweden)

    Ricardo LÓPEZ FERNÁNDEZ

    2009-06-01

    Full Text Available The solving problems like the transfer constitute two nuclei, related, essential in the cognitive investigation and in the mathematical education. No is in and of itself casual that, from the first moment, in the investigations on the application gives the computer science to the teaching the mathematics, cybernetic models were developed that simulated processes problem solving and transfer cotexts (GPS, 1969 and IDEA (Interactive Decision Envisioning Aid, Pea, BrunerCohen, Webster & Mellen, 1987. The present articulates it analyzes, that can contribute to the development in this respect the new technologies hypermedias, give applications that are good to implement processes of learning the heuristic thought and give the capacity of «transfer». From our perspective and from the experience that we have developed in this field, to carry out a function gives analysis and the theories on the problem solving, it requires that we exercise a previous of interpretation the central aspsects over the theories gives the solving problem and transfer starting from the classic theories on the prosecution of the information. In this sense, so much the theory gives the dual memory as the most recent, J. Anderson (1993 based on the mechanisms activation nodes information they allow to establish an interpretation suggester over the mental mechanism that you/they operate in the heuristic processes. On this analysis, the present articulates it develops a theoritical interpretation over the function gives the supports based on technology hypermedia advancing in the definition of a necessary theoretical body, having in it counts that on the other hand the practical experimentation is permanent concluding in the efficiency and effectiveness gives the support hypermedia like mechanism of comunication in the processes heuristic learning.

  20. Solving tribology problems in rotating machines

    CERN Document Server

    Prashad, H

    2006-01-01

    Bearings are widely used in rotating machines. Understanding the factors affecting their reliability and service life is essential in ensuring good machine design and performance. Solving tribology problems in rotating machines reviews these factors and their implications for improved machine performance. The first two chapters review ways of assessing the performance and reliability of rolling-element bearings. The author then goes on to discuss key performance problems and the factors affecting bearing reliability. There are chapters on cage and roller slip, and particular types of failure i

  1. Methods of Solving Ill-Posed Problems

    CERN Document Server

    Srinivasamurthy, Suresh B

    2012-01-01

    Many physical problems can be formulated as operator equations of the form Au = f. If these operator equations are ill-posed, we then resort to finding the approximate solutions numerically. Ill-posed problems can be found in the ?elds of mathematical analysis, mathematical physics, geophysics, medicine, tomography, technology and ecology. The theory of ill-posed problems was developed in the 1960's by several mathematicians, mostly Soviet and American. In this report we review the methods of solving ill-posed problems and recent developments in this ?eld. We review the variational regularization method, the method of quasi-solution, iterative regularization method and the dynamical systems method. We focus mainly on the dynamical systems method as it is found that the dynamical systems method is more effi?cient than the regularization procedure.

  2. Problem based teaching with other focuses than problem solving

    OpenAIRE

    Hansson, Per-Olof; Jansson, Per; Wihlborg, Elin

    2015-01-01

    Problem based teaching has been on the agenda in higher education for at least the last twenty years and is embedded in professional educations often to prepare students for real life problem solving. However, in when higher education rather aim to provide deeper theoretical and reflective competences promoting the students capacities to address unpredictable challenges in different contexts, there might be other ways of applying and using problem based educational tools. In this paper we des...

  3. The Effect of Problem Solving Teaching with Texts of Turkish Lesson on Students’ Problem Solving Skills

    OpenAIRE

    ILGIN, Havva; Derya ARSLAN

    2012-01-01

    In this research, by carrying out activities based on texts, effect of providing problem solving skill on students’ levels of problem solving attainment was tried to be identified. Research was performed according to pretest-posttest Experimental Model with Control Group, in 2008-2009 educational year at second grade of an elementary school in Denizli province. For nine weeks, four hours in a week, while teacher guide book was being followed in control group in Turkish language lesson, texts ...

  4. A Flipped Pedagogy for Expert Problem Solving

    Science.gov (United States)

    Pritchard, David

    The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on edX.org (see http://relate.mit.edu/physicscourse); it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).

  5. The General Assessment of Problem Solving Processes in Physics Education

    OpenAIRE

    Tolga Gok

    2010-01-01

    Problem solving is one of the primary tools for college and university science instruction. In this study, the review of problem solving and metacognition skills of students was presented. Basically, at the first step, problem solving was defined and then the differences of the experienced and inexperienced problem solvers were considered. Various strategy steps of problem solving reported in the open literature were discussed. Metacognition was introduced as an important part of problem solv...

  6. Teaching Problem Solving Skills to Elementary Age Students with Autism

    Science.gov (United States)

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  7. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

    Science.gov (United States)

    Chen, Zhe; Siegler, Robert S.

    2013-01-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  8. Can compactifications solve the cosmological constant problem?

    Science.gov (United States)

    Hertzberg, Mark P.; Masoumi, Ali

    2016-06-01

    Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ = 0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain why Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.

  9. Method of solving the inverse spectral problem

    International Nuclear Information System (INIS)

    The authors describe a method of solving the inverse spectral problem which is applicable to free molecules as well as to molecules in a medium. We give a criterion for the uniqueness of the definition of the force matrix. This criterion links the necessary number of normal proper vibrations of a molecule with a number of necessary form parameters. We calculate the force matrix of tetrahedral molecules CH4, CD4, CT4. When we use zero-point values for frequencies of normal vibrations the relative discrepancy in the corresponding force-matrix elements does not exceed 0.3%

  10. XML Solving Problem of Expert System

    OpenAIRE

    Yasser A. Nada

    2011-01-01

    The Extensible Markup Language (XML) is a subset of SGML that is completely described in this paper. Its goal is to enable generic SGML to be served, received, and processed on the Web in the way that is now possible with HTML. XML has been designed for ease of implementation and for interoperability with both SGML and HTML. An expert system is a computer program designed to simulate the problem-solving behavior of a human who is an expert in a narrow domain or discipline. Expert Systems (E...

  11. Programming languages for business problem solving

    CERN Document Server

    Wang, Shouhong

    2007-01-01

    It has become crucial for managers to be computer literate in today's business environment. It is also important that those entering the field acquire the fundamental theories of information systems, the essential practical skills in computer applications, and the desire for life-long learning in information technology. Programming Languages for Business Problem Solving presents a working knowledge of the major programming languages, including COBOL, C++, Java, HTML, JavaScript, VB.NET, VBA, ASP.NET, Perl, PHP, XML, and SQL, used in the current business computing environment. The book examin

  12. Surveying Graduate Students' Attitudes and Approaches to Problem Solving

    OpenAIRE

    Chandralekha Singh; Andrew Mason

    2016-01-01

    Students' attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes towards Problem Solving survey of Marx and Cummings and administered it to physics graduate students. Comparison of their responses to the survey questions about problem solving in their own graduate level courses vs. problem solving in the in...

  13. The Problem of Assessing Problem Solving: Can Comparative Judgement Help?

    Science.gov (United States)

    Jones, Ian; Inglis, Matthew

    2015-01-01

    School mathematics examination papers are typically dominated by short, structured items that fail to assess sustained reasoning or problem solving. A contributory factor to this situation is the need for student work to be marked reliably by a large number of markers of varied experience and competence. We report a study that tested an…

  14. "I'm Not Very Good at Solving Problems": An Exploration of Students' Problem Solving Behaviours

    Science.gov (United States)

    Muir, Tracey; Beswick, Kim; Williamson, John

    2008-01-01

    This paper reports one aspect of a larger study which looked at the strategies used by a selection of grade 6 students to solve six non-routine mathematical problems. The data revealed that the students exhibited many of the behaviours identified in the literature as being associated with novice and expert problem solvers. However, the categories…

  15. A Process Analysis of Engineering Problem Solving and Assessment of Problem Solving Skills

    Science.gov (United States)

    Grigg, Sarah J.

    2012-01-01

    In the engineering profession, one of the most critical skills to possess is accurate and efficient problem solving. Thus, engineering educators should strive to help students develop skills needed to become competent problem solvers. In order to measure the development of skills, it is necessary to assess student performance, identify any…

  16. Solving the Examination Timetabling Problem in GPUs

    Directory of Open Access Journals (Sweden)

    Vasileios Kolonias

    2014-07-01

    Full Text Available The examination timetabling problem belongs to the class of combinatorial optimization problems and is of great importance for every University. In this paper, a hybrid evolutionary algorithm running on a GPU is employed to solve the examination timetabling problem. The hybrid evolutionary algorithm proposed has a genetic algorithm component and a greedy steepest descent component. The GPU computational capabilities allow the use of very large population sizes, leading to a more thorough exploration of the problem solution space. The GPU implementation, depending on the size of the problem, is up to twenty six times faster than the identical single-threaded CPU implementation of the algorithm. The algorithm is evaluated with the well known Toronto datasets and compares well with the best results found in the bibliography. Moreover, the selection of the encoding of the chromosomes and the tournament selection size as the population grows are examined and optimized. The compressed sparse row format is used for the conflict matrix and was proven essential to the process, since most of the datasets have a small conflict density, which translates into an extremely sparse matrix.

  17. Solving a Deconvolution Problem in Photon Spectrometry

    CERN Document Server

    Aleksandrov, D; Hille, P T; Polichtchouk, B; Kharlov, Y; Sukhorukov, M; Wang, D; Shabratova, G; Demanov, V; Wang, Y; Tveter, T; Faltys, M; Mao, Y; Larsen, D T; Zaporozhets, S; Sibiryak, I; Lovhoiden, G; Potcheptsov, T; Kucheryaev, Y; Basmanov, V; Mares, J; Yanovsky, V; Qvigstad, H; Zenin, A; Nikolaev, S; Siemiarczuk, T; Yuan, X; Cai, X; Redlich, K; Pavlinov, A; Roehrich, D; Manko, V; Deloff, A; Ma, K; Maruyama, Y; Dobrowolski, T; Shigaki, K; Nikulin, S; Wan, R; Mizoguchi, K; Petrov, V; Mueller, H; Ippolitov, M; Liu, L; Sadovsky, S; Stolpovsky, P; Kurashvili, P; Nomokonov, P; Xu, C; Torii, H; Il'kaev, R; Zhang, X; Peresunko, D; Soloviev, A; Vodopyanov, A; Sugitate, T; Ullaland, K; Huang, M; Zhou, D; Nystrand, J; Punin, V; Yin, Z; Batyunya, B; Karadzhev, K; Nazarov, G; Fil'chagin, S; Nazarenko, S; Buskenes, J I; Horaguchi, T; Djuvsland, O; Chuman, F; Senko, V; Alme, J; Wilk, G; Fehlker, D; Vinogradov, Y; Budilov, V; Iwasaki, T; Ilkiv, I; Budnikov, D; Vinogradov, A; Kazantsev, A; Bogolyubsky, M; Lindal, S; Polak, K; Skaali, B; Mamonov, A; Kuryakin, A; Wikne, J; Skjerdal, K

    2010-01-01

    We solve numerically a deconvolution problem to extract the undisturbed spectrum from the measured distribution contaminated by the finite resolution of the measuring device. A problem of this kind emerges when one wants to infer the momentum distribution of the neutral pions by detecting the it decay photons using the photon spectrometer of the ALICE LHC experiment at CERN {[}1]. The underlying integral equation connecting the sought for pion spectrum and the measured gamma spectrum has been discretized and subsequently reduced to a system of linear algebraic equations. The latter system, however, is known to be ill-posed and must be regularized to obtain a stable solution. This task has been accomplished here by means of the Tikhonov regularization scheme combined with the L-curve method. The resulting pion spectrum is in an excellent quantitative agreement with the pion spectrum obtained from a Monte Carlo simulation. (C) 2010 Elsevier B.V. All rights reserved.

  18. Solving a Deconvolution Problem in Photon Spectrometry

    International Nuclear Information System (INIS)

    We solve numerically a deconvolution problem to extract the undisturbed spectrum from the measured distribution contaminated by the finite resolution of the measuring device. A problem of this kind emerges when one wants to infer the momentum distribution of the neutral pions by detecting the π0 decay photons using the photon spectrometer of the ALICE LHC experiment at CERN . The underlying integral equation connecting the sought for pion spectrum and the measured gamma spectrum has been discretized and subsequently reduced to a system of linear algebraic equations. The latter system, however, is known to be ill-posed and must be regularized to obtain a stable solution. This task has been accomplished here by means of the Tikhonov regularization scheme combined with the L-curve method. The resulting pion spectrum is in an excellent quantitative agreement with the pion spectrum obtained from a Monte Carlo simulation.

  19. Solving a Deconvolution Problem in Photon Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, D. [Russian Research Centre Kurchatov Institute, Moscow (Russian Federation); Alme, J. [Department of Physics and Technology, University of Bergen, Bergen (Norway); Basmanov, V. [Russian Federal Nuclear Center (VNIIEF), Sarov (Russian Federation); Batyunya, B. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Blau, D. [Russian Research Centre Kurchatov Institute, Moscow (Russian Federation); Bogolyubsky, M. [Institute for High Energy Physics, Russian Federation State Research Centre (IHEP), Protvino (Russian Federation); Budilov, V. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Budnikov, D. [Russian Federal Nuclear Center (VNIIEF), Sarov (Russian Federation); Buskenes, J.I. [European Ogranization for Nuclear Research (CERN), Geneva (Switzerland); Cai, X. [Hua-Zhong Normal University, Wuhan (China); Chuman, F. [Hiroshima University, Higashi-Hiroshima (Japan); Deloff, A. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Demanov, V. [Russian Federal Nuclear Center (VNIIEF), Sarov (Russian Federation); Djuvsland, O. [Department of Physics and Technology, University of Bergen, Bergen (Norway); Dobrowolski, T. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Faltys, M. [The Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic); Fehlker, D. [Department of Physics and Technology, University of Bergen, Bergen (Norway); Fil' chagin, S. [Russian Federal Nuclear Center (VNIIEF), Sarov (Russian Federation); Hiei, A. [Hiroshima University, Higashi-Hiroshima (Japan); Hille, P.T. [Department of Physics, University of Oslo, Oslo (Norway)

    2010-08-21

    We solve numerically a deconvolution problem to extract the undisturbed spectrum from the measured distribution contaminated by the finite resolution of the measuring device. A problem of this kind emerges when one wants to infer the momentum distribution of the neutral pions by detecting the {pi}{sup 0} decay photons using the photon spectrometer of the ALICE LHC experiment at CERN . The underlying integral equation connecting the sought for pion spectrum and the measured gamma spectrum has been discretized and subsequently reduced to a system of linear algebraic equations. The latter system, however, is known to be ill-posed and must be regularized to obtain a stable solution. This task has been accomplished here by means of the Tikhonov regularization scheme combined with the L-curve method. The resulting pion spectrum is in an excellent quantitative agreement with the pion spectrum obtained from a Monte Carlo simulation.

  20. Solving Math Problems Approximately: A Developmental Perspective

    Science.gov (United States)

    Ganor-Stern, Dana

    2016-01-01

    Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults’ ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger) than the exact answer and when it was far (vs. close) from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner. PMID:27171224

  1. Solving Math Problems Approximately: A Developmental Perspective.

    Directory of Open Access Journals (Sweden)

    Dana Ganor-Stern

    Full Text Available Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults' ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger than the exact answer and when it was far (vs. close from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner.

  2. Assessing Cognitive Learning of Analytical Problem Solving

    Science.gov (United States)

    Billionniere, Elodie V.

    Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts---abstraction, arrays of objects, and inheritance---in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.

  3. Cooperative problem solving in rooks (Corvus frugilegus).

    Science.gov (United States)

    Seed, Amanda M; Clayton, Nicola S; Emery, Nathan J

    2008-06-22

    Recent work has shown that captive rooks, like chimpanzees and other primates, develop cooperative alliances with their conspecifics. Furthermore, the pressures hypothesized to have favoured social intelligence in primates also apply to corvids. We tested cooperative problem-solving in rooks to compare their performance and cognition with primates. Without training, eight rooks quickly solved a problem in which two individuals had to pull both ends of a string simultaneously in order to pull in a food platform. Similar to chimpanzees and capuchin monkeys, performance was better when within-dyad tolerance levels were higher. In contrast to chimpanzees, rooks did not delay acting on the apparatus while their partner gained access to the test room. Furthermore, given a choice between an apparatus that could be operated individually over one that required the action of two individuals, four out of six individuals showed no preference. These results may indicate that cooperation in chimpanzees is underpinned by more complex cognitive processes than that in rooks. Such a difference may arise from the fact that while both chimpanzees and rooks form cooperative alliances, chimpanzees, but not rooks, live in a variable social network made up of competitive and cooperative relationships. PMID:18364318

  4. Problem Solving Interventions: Impact on Young Children with Developmental Disabilities

    Science.gov (United States)

    Diamond, Lindsay Lile

    2012-01-01

    Problem-solving skills are imperative to a child's growth and success across multiple environments, including general and special education. Problem solving is comprised of: (a) attention to the critical aspects of a problem, (b) generation of solution(s) to solve the problem, (c) application of a solution(s) to the identified problem, and…

  5. Context, Connection and Opportunity in Environmental Problem Solving.

    Science.gov (United States)

    Oppenheimer, Michael

    1995-01-01

    Discusses increasing emphasis on connectivity in the field of environmental problem solving. Touches on several major environmental problems as it discusses multidisciplinarity, marketization, and democratization as aspects of a new paradigm for environmental problem solving. (LZ)

  6. How Can We Improve Problem Solving in Undergraduate Biology? Applying Lessons from 30 Years of Physics Education Research

    OpenAIRE

    Hoskinson, A.-M.; Caballero, M.D. (M.D.); Knight, J.K.

    2013-01-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the last three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and ...

  7. How can we improve problem-solving in undergraduate biology? Applying lessons from 30 years of physics education research

    CERN Document Server

    Hoskinson, Anne-Marie; Knight, Jennifer K

    2012-01-01

    Modern biological problems are complex. If students are to successfully grapple with such problems as scientists and citizens, they need to have practiced solving authentic, complex problems during their undergraduate years. Physics education researchers have investigated student problem-solving for the last three decades. Although the surface features and content of biology problems differ from physics problems, teachers of both sciences want students to learn to explain patterns and processes in the natural world and to make predictions about system behaviors. After surveying literature on problem-solving in physics and biology, we propose how biology education researchers could apply research-supported pedagogical techniques from physics to enhance biology students' problem-solving. First, we characterize the problems that biology students are typically asked to solve. We then describe the development of research-validated physics problem-solving curricula. Finally, we propose how biology scholars can appl...

  8. Solving mathematical problems with quantum search algorithm

    CERN Document Server

    Ramos, R V; Oliveira, D S; Ramos, Rubens Viana; Sousa, Paulo Benicio de; Oliveira, David Sena

    2006-01-01

    Quantum computation has attracted much attention since it was shown by Shor and Grover the possibility to implement quantum algorithms able to realize, respectively, factoring and searching in a faster way than any other known classical algorithm. It is possible to use Grover algorithm, taking profit of its ability to find a specific value in a unordered database, to find, for example, the zero of a logical function; the minimal or maximal value in a database or to recognize if an odd number is prime or not. Here we show quantum algorithms to solve those cited mathematical problems. The solution requires the use of a quantum bit string comparator being used as oracle. This quantum circuit compares two quantum states and identifies if they are equal or, otherwise, which of them is the largest. Moreover, we also show the quantum bit string comparator allow us to implement conditional statements in quantum computation, a fundamental structure for designing of algorithms.

  9. Problem-solving in a Constructivist Environment

    Directory of Open Access Journals (Sweden)

    Lee Chien Sing

    1999-01-01

    Full Text Available The dynamic challenges of an increasingly borderless world buoyed by advances in telecommunications and information technology has resulted in educational reform and subsequently, a reconceptualisation of what constitutes a learner, learning and the influence of the learning environment on the process of learning. In keeping up with the changing trends and challenges of an increasingly networked, dynamic and challenging international community, means to provide an alternative environment that stimulates inquiry and equips learners with the skills needed to manage technological change and innovations must be considered. This paper discusses the importance of interaction, cognition and context, collaboration in a networked computer-mediated environment, the problem-solving approach as a catalyst in stimulating creative and critical thinking and in providing context for meaningful interaction and whether the interactive environment created through computer-mediated collaboration will motivate learners to be responsible for their own learning and be independent thinkers. The sample involved learners from three schools in three different countries. Findings conclude that a rich interactive environment must be personally relevant to the learner by simulating authentic problems without lowering the degree of cognitive complexity. Review in curriculum, assessment and teacher training around constructivist principles are also imperative as these interrelated factors form part of the learning process system.

  10. Canonical Duality Theory for Solving Minimization Problem of Rosenbrock Function

    OpenAIRE

    Gao, David Y.; Zhang, Jiapu

    2011-01-01

    This paper presents a canonical duality theory for solving nonconvex minimization problem of Rosenbrock function. Extensive numerical results show that this benchmark test problem can be solved precisely and efficiently to obtain global optimal solutions.

  11. Promoting Problem Solving across Geometry and Algebra by Using Technology

    Science.gov (United States)

    Erbas, A. Kursat; Ledford, Sara D.; Orrill, Chandra Hawley; Polly, Drew

    2005-01-01

    Technology is a powerful tool in assisting students in problem solving by allowing for multiple representations. The vignette offered in this article provides insight into ways to solve open-ended problems using multiple technologies.

  12. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: PROBLEM-SOLVING

    OpenAIRE

    Adela NEMEŞ; Nicoleta IANOVICI

    2010-01-01

    We face with considerable challenge of developing students’ problem solving skills in our difficult environment. Good problem solving skills empower managers in their professional and personal lives. Problem solving skills are valued by academics and employers. The informations in Biology are often presented in abstract forms without contextualisation. Creative problem-solving process involves a few steps, which together provide a structured procedure for identifying challenges, generating id...

  13. Dynamics of students' epistemological framing in group problem solving

    CERN Document Server

    Nguyen, Hai D; Sayre, Eleanor C

    2016-01-01

    Many studies have investigated students' epistemological framing when solving physics problems. Framing supports students' problem solving as they decide what knowledge to employ and the necessary steps to solve the problem. Students may frame the same problem differently and take alternate paths to a correct solution. When students work in group settings, they share and discuss their framing to decide how to proceed in problem solving as a whole group. In this study, we investigate how groups of students negotiate their framing and frame shifts in group problem solving.

  14. The Influence of Cognitive Abilities on Mathematical Problem Solving Performance

    Science.gov (United States)

    Bahar, Abdulkadir

    2013-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…

  15. Teaching Problem Solving in Secondary School Mathematics Classrooms

    Science.gov (United States)

    Lam, Toh Tin; Guan, Tay Eng; Seng, Quek Khiok; Hoong, Leong Yew; Choon, Toh Pee; Him, Ho Foo; Jaguthsing, Dindyal

    2014-01-01

    This paper reports an innovative approach to teaching problem solving in secondary school mathematics classrooms based on a specifically designed problem-solving module.This approach adopts the science practical paradigm and rides on the works of Polya and Schoenfeld in order to give greater emphasis to the problem solving processes. We report the…

  16. The Influence of Cognitive Diversity on Group Problem Solving Strategy

    Science.gov (United States)

    Lamm, Alexa J.; Shoulders, Catherine; Roberts, T. Grady; Irani, Tracy A.; Snyder, Lori J. Unruh; Brendemuhl, Joel

    2012-01-01

    Collaborative group problem solving allows students to wrestle with different interpretations and solutions brought forth by group members, enhancing both critical thinking and problem solving skills. Since problem solving in groups is a common practice in agricultural education, instructors are often put in the position of organizing student…

  17. Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement

    Science.gov (United States)

    Zheng, Robert; Cook, Anne

    2012-01-01

    The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…

  18. Teacher Practices with Toddlers during Social Problem Solving Opportunities

    Science.gov (United States)

    Gloeckler, Lissy; Cassell, Jennifer

    2012-01-01

    This article explores how teachers can foster an environment that facilitates social problem solving when toddlers experience conflict, emotional dysregulation, and aggression. This article examines differences in child development and self-regulation outcomes when teachers engage in problem solving "for" toddlers and problem solving "with"…

  19. Capturing Problem-Solving Processes Using Critical Rationalism

    Science.gov (United States)

    Chitpin, Stephanie; Simon, Marielle

    2012-01-01

    The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

  20. Team-Based Complex Problem Solving: A Collective Cognition Perspective

    Science.gov (United States)

    Hung, Woei

    2013-01-01

    Today, much problem solving is performed by teams, rather than individuals. The complexity of these problems has exceeded the cognitive capacity of any individual and requires a team of members to solve them. The success of solving these complex problems not only relies on individual team members who possess different but complementary expertise,…

  1. Teaching Young Children Interpersonal Problem-Solving Skills

    Science.gov (United States)

    Joseph, Gail E.; Strain, Phillip S.

    2010-01-01

    Learning how to problem solve is one of the key developmental milestones in early childhood. Children's problem-solving skills represent a key feature in the development of social competence. Problem solving allows children to stay calm during difficult situations, repair social relations quickly, and get their needs met in ways that are safe and…

  2. Using Analogy to Solve a Three-Step Physics Problem

    CERN Document Server

    Lin, Shih-Yin

    2016-01-01

    In a companion paper, we discuss students' ability to take advantage of what they learn from a solved problem and transfer their learning to solve a quiz problem that has different surface features but the same underlying physics principles. Here, we discuss students' ability to perform analogical reasoning between another pair of problems. Both the problems can be solved using the same physics principles. However, the solved problem provided was a two- step problem (which can be solved by decomposing it into two sub-problems) while the quiz problem was a three-step problem. We find that it is challenging for students to extend what they learned from a two-step problem to solve a three-step problem.

  3. A Framework for Distributed Problem Solving

    Science.gov (United States)

    Leone, Joseph; Shin, Don G.

    1989-03-01

    This work explores a distributed problem solving (DPS) approach, namely the AM/AG model, to cooperative memory recall. The AM/AG model is a hierarchic social system metaphor for DPS based on the Mintzberg's model of organizations. At the core of the model are information flow mechanisms, named amplification and aggregation. Amplification is a process of expounding a given task, called an agenda, into a set of subtasks with magnified degree of specificity and distributing them to multiple processing units downward in the hierarchy. Aggregation is a process of combining the results reported from multiple processing units into a unified view, called a resolution, and promoting the conclusion upward in the hierarchy. The combination of amplification and aggregation can account for a memory recall process which primarily relies on the ability of making associations between vast amounts of related concepts, sorting out the combined results, and promoting the most plausible ones. The amplification process is discussed in detail. An implementation of the amplification process is presented. The process is illustrated by an example.

  4. XML Solving Problem of Expert System

    Directory of Open Access Journals (Sweden)

    Yasser A. Nada

    2011-01-01

    Full Text Available The Extensible Markup Language (XML is a subset of SGML that is completely described in this paper. Its goal is to enable generic SGML to be served, received, and processed on the Web in the way that is now possible with HTML. XML has been designed for ease of implementation and for interoperability with both SGML and HTML. An expert system is a computer program designed to simulate the problem-solving behavior of a human who is an expert in a narrow domain or discipline. Expert Systems (ES, also called Knowledge Based System (KBS, are computer application programs that take the knowledge of one or more human experts in a field and computerize it so that it is readily available for use. The main objective of this paper was to investigate the usage of different refinement methodologies for different layers of knowledge base modeling and investigate the possibility of building an expert system development and refinement tool. In our work we used XML as a knowledge representation to represent the knowledge base. Therefore we used the mathematical model to refinement of a knowledge base.

  5. Search and Knowledge for Human and Machine Problem Solving

    OpenAIRE

    Guid, Matej

    2010-01-01

    In Artificial Intelligence (AI), there exist formalised approaches and algorithms for general problem solving. These approaches address problems that require combinatorial search among alternatives, such as planning, scheduling, or playing of games like chess. In these approaches, problems are typically represented by various kinds of graphs, and problem solving corresponds to searching such graphs. Due to their combinatorial complexity, these problems are solved by heuristic search methods w...

  6. Effect of Explicit Problem Solving Instructions on the Problem Solving Performance and Conceptual Understanding of Introductory College Physics

    Science.gov (United States)

    Numan, Muhammad; Sobolewski, Stanley

    1998-04-01

    Two sections of introductory non-calculus general physics lecture courses, with a total enrolment of 120 students, were used to investigate the impact of explicit problem solving instruction on students' problem solving ability and conceptual understanding. The comparison group was instructed in textbook style problem solving strategy. Students' conceptual understanding was assessed by adminstering the Force Concept Inventory (FCI) at the begening and end of the semester. Required written rationale for multiple choice questions and responses to multistep problems were analyzed to further assess conceptual understanding and problem solving skills of the students in the two groups. A significant difference was noted in both understanding and problem solving performance.

  7. Partial differential equations theory and completely solved problems

    CERN Document Server

    Hillen, Thomas; van Roessel, Henry

    2014-01-01

    Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin

  8. Analyzing the many skills involved in solving complex physics problems

    Science.gov (United States)

    Adams, Wendy K.; Wieman, Carl E.

    2015-05-01

    We have empirically identified over 40 distinct sub-skills that affect a person's ability to solve complex problems in many different contexts. The identification of so many sub-skills explains why it has been so difficult to teach or assess problem solving as a single skill. The existence of these sub-skills is supported by several studies comparing a wide range of individuals' strengths and weaknesses in these sub-skills, their "problem solving fingerprint," while solving different types of problems including a classical mechanics problem, quantum mechanics problems, and a complex trip-planning problem with no physics. We see clear differences in the problem solving fingerprint of physics and engineering majors compared to the elementary education majors that we tested. The implications of these findings for guiding the teaching and assessing of problem solving in physics instruction are discussed.

  9. Teaching Problem-Solving Skills to Nuclear Engineering Students

    Science.gov (United States)

    Waller, E.; Kaye, M. H.

    2012-01-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…

  10. Solving set partitioning problems using lagrangian relaxation

    NARCIS (Netherlands)

    van Krieken, M.G.C.

    2006-01-01

    This thesis focuses on the set partitioning problem. Given a collection of subsets of a certain root set and costs associated to these subsets, the set partitioning problem is the problem of finding a minimum cost partition of the root set. Many real-life problems, such as vehicle routing and crew s

  11. Affect and mathematical problem solving a new perspective

    CERN Document Server

    Adams, Verna

    1989-01-01

    Research on cognitive aspects of mathematical problem solving has made great progress in recent years, but the relationship of affective factors to problem-solving performance has been a neglected research area. The purpose of Affect and Mathematical Problem Solving: A New Perspective is to show how the theories and methods of cognitive science can be extended to include the role of affect in mathematical problem solving. The book presents Mandler's theory of emotion and explores its implications for the learning and teaching of mathematical problem solving. Also, leading researchers from mathematics, education, and psychology report how they have integrated affect into their own cognitive research. The studies focus on metacognitive processes, aesthetic influences on expert problem solvers, teacher decision-making, technology and teaching problem solving, and beliefs about mathematics. The results suggest how emotional factors like anxiety, frustration, joy, and satisfaction can help or hinder performance in...

  12. The General Assessment of Problem Solving Processes in Physics Education

    Directory of Open Access Journals (Sweden)

    Tolga Gok

    2010-10-01

    Full Text Available Problem solving is one of the primary tools for college and university science instruction. In this study, the review of problem solving and metacognition skills of students was presented. Basically, at the first step, problem solving was defined and then the differences of the experienced and inexperienced problem solvers were considered. Various strategy steps of problem solving reported in the open literature were discussed. Metacognition was introduced as an important part of problem solving process. The research available in the literature indicated that teaching problem solving strategies help students but not sufficient to promote true science expertise. Meta-cognitive skills should be clearly taught to build structured knowledge and develop desirable habits of mind, and to guide students through the stages of cognitive development.

  13. Solving Scheduling problems using Selective Breeding Algorithm and Hybrid Algorithm

    OpenAIRE

    P.Sriramya; B. Parvathavarthini; M. Chandrasekaran

    2013-01-01

    The n-job, m-machine scheduling problem is one of the general scheduling problems in a system. Scheduling problems vary widely according to specific production tasks but most are NP-hard problems.Scheduling problems are usually solved using heuristics to get optimal or near optimal solutions because problems found in practical applications cannot be solved to optimality using reasonable resources in many cases. In this paper, Selective Breeding Algorithm (SBA) and Hybrid Algorithm (HA) are us...

  14. t-multiple discrete logarithm problem and solving difficulty

    OpenAIRE

    Fu, Xiangqun; Bao, Wansu; Shi, Jianhong; Wang, Xiang

    2016-01-01

    Considering the difficult problem under classical computing model can be solved by the quantum algorithm in polynomial time, t-multiple discrete logarithm problems presented. The problem is non-degeneracy and unique solution. We talk about what the parameter effects the problem solving difficulty. Then we pointed out that the index-calculus algorithm is not suitable for the problem, and two sufficient conditions of resistance to the quantum algorithm for the hidden subgroup problem are given.

  15. Cognitive restructuring as an early stage in problem solving

    Science.gov (United States)

    Bodner, George M.; McMillen, Theresa L. B.

    This article examines the hypothesis that there are preliminary stages in problem solving which most chemists neglect when trying to teach their students how to solve problems in introductory chemistry courses. It is during these early stages that relevant information is disembedded from the question and the problem is restructured. Unless students can successfully complete these cognitive restructuring stages, they cannot proceed on to the more analytic stages in problem solving that have received more attention from chemists.Preliminary evidence for this hypothesis consists of linear correlations between student ability to handle disembedding and cognitive restructuring tasks in the spatial domain and their ability to solve chemistry problems.

  16. A descriptive study of cooperative problem solving introductory physics labs

    Science.gov (United States)

    Knutson, Paul Aanond

    The purpose of this study was to determine the ways in which cooperative problem solving in physics instructional laboratories influenced the students' ability to provide qualitative responses to problems. The literature shows that problem solving involves both qualitative and quantitative skills. Qualitative skills are important because those skills are the foundation for the quantitative aspects of problem solving. (Chi, et al., 1981). The literature also indicates that cooperative problem solving should enhance the students' performance. As a practical matter surveys of departments that require introductory physics classes expect their students to have general qualitative problem solving skills. The students in this study were asked to solve problem(s) before coming to a lab session and then cooperatively assess whether or not their answers were correct by conducting a laboratory activity for which they had to plan the procedure and obtain the necessary results. TA's were expected to provide instruction under a cognitive apprenticeship model. The results showed that the cooperative problem solving laboratories had almost no impact on the students' problem solving skills as measured from the start of a two hour lab session to the end of the lab session...The reason for this may have been that students did not have enough experience in the solving of different kinds of problems in the two domains of Newton's second Law and gravitation to overcome their misconceptions and become competent. Another possibility was that the TA's did not follow the cognitive apprenticeship model as consistently as might have been needed.

  17. The relationship between students' problem solving frames and epistemological beliefs

    Science.gov (United States)

    Wampler, Wendi N.

    Introductory undergraduate physics courses aim to help students develop the skills and strategies necessary to solve complex, real world problems, but many students not only leave these courses with serious gaps in their conceptual understanding, but also maintain a novice-like approach to solving problems. Matter and Interactions [M&I] is a curriculum that focuses on a restructuring of physics content knowledge and emphasizes a systematic approach to problem solving, called modeling, which involves the application physical principles to carefully defined systems of objects and interactions (Chabay and Sherwood, 2007a). Because the M&I approach to problem solving is different from many students' previous physics experience, efforts need to be made to attend to their epistemological beliefs and expectations about not only learning physics content knowledge, but problem solving as well. If a student frames solving physics problems as a `plug and chug' type activity, then they are going continue practicing this strategy. Thus, it is important to address students' epistemological beliefs and monitor how they frame the activity of problem solving within the M&I course. This study aims to investigate how students frame problem solving within the context of a large scale implementation of the M&I curriculum, and how, if at all, those frames shift through the semester. By investigating how students frame the act of problem solving in the M&I context, I was able to examine the connection between student beliefs and expectations about problem solving in physics and the skills and strategies used while solving problems in class. To accomplish these goals, I recruited student volunteers from Purdue's introductory, calculus-based physics course and assessed their problem solving approach and espoused epistemological beliefs over the course of a semester. I obtained data through video recordings of the students engaged in small group problem solving during recitation activities

  18. Formulating and Solving Problems in Computational Chemistry.

    Science.gov (United States)

    Norris, A. C.

    1980-01-01

    Considered are the main elements of computational chemistry problems and how these elements can be used to formulate the problems mathematically. Techniques that are useful in devising an appropriate solution are also considered. (Author/TG)

  19. Problem-Solving Test: Southwestern Blotting

    Science.gov (United States)

    Szeberényi, József

    2014-01-01

    Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA,…

  20. Surveying Graduate Students' Attitudes and Approaches to Problem Solving

    CERN Document Server

    Mason, Andrew

    2016-01-01

    Students' attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes towards Problem Solving survey of Marx and Cummings and administered it to physics graduate students. Comparison of their responses to the survey questions about problem solving in their own graduate level courses vs. problem solving in the introductory physics courses provides insight into their expertise in introductory and graduate level physics. The physics graduate students' responses to the survey questions were also compared with those of introductory physics and astronomy students and physics faculty. We find that, even for problem solving in introductory physics, graduate students' responses to some survey questions are less expert-like than those of the physics faculty. Comparison of survey responses of graduate students and introductory students for...

  1. PROBLEM SOLVING IN SCHOOL MATHEMATICS BASED ON HEURISTIC STRATEGIES

    Directory of Open Access Journals (Sweden)

    NOVOTNÁ, Jarmila

    2014-03-01

    Full Text Available The paper describes one of the ways of developing pupils’ creative approach to problem solving. The described experiment is a part of a longitudinal research focusing on improvement of culture of problem solving by pupils. It deals with solving of problems using the following heuristic strategies: Analogy, Guess – check – revise, Systematic experimentation, Problem reformulation, Solution drawing, Way back and Use of graphs of functions. Most attention is paid to the question whether short-term work, in this case only over the period of three months, can result in improvement of pupils’ abilities to solve problems whose solving algorithms are easily accessible. It also answers the question which strategies pupils will prefer and with what results. The experiment shows that even short-term work can bear positive results as far as pupils’ approach to problem solving is concerned.

  2. Solving Information-Based Problems: Evaluating Sources and Information

    Science.gov (United States)

    Brand-Gruwel, Saskia; Stadtler, Marc

    2011-01-01

    The focus of this special section is on the processes involved when solving information-based problems. Solving these problems requires from people that they are able to define the information problem, search and select usable and reliable sources and information and synthesise information into a coherent body of knowledge. An important aspect…

  3. Problem-Solving during Shared Reading at Kindergarten

    Science.gov (United States)

    Gosen, Myrte N.; Berenst, Jan; de Glopper, Kees

    2015-01-01

    This paper reports on a conversation analytic study of problem-solving interactions during shared reading at three kindergartens in the Netherlands. It illustrates how teachers and pupils discuss book characters' problems that arise in the events in the picture books. A close analysis of the data demonstrates that problem-solving interactions do…

  4. Solving the Sailors and the Coconuts Problem via Diagrammatic Approach

    Science.gov (United States)

    Man, Yiu-Kwong

    2010-01-01

    In this article, we discuss how to use a diagrammatic approach to solve the classic sailors and the coconuts problem. It provides us an insight on how to tackle this type of problem in a novel and intuitive way. This problem-solving approach will be found useful to mathematics teachers or lecturers involved in teaching elementary number theory,…

  5. Phenomenographic study of students’ problem solving approaches in physics

    OpenAIRE

    Laura N. Walsh; Howard, Robert G.; Brian Bowe

    2007-01-01

    This paper describes ongoing research investigating student approaches to quantitative and qualitative problem solving in physics. This empirical study was conducted using a phenomenographic approach to analyze data from individual semistructured problem solving interviews with 22 introductory college physics students. The main result of the study is a hierarchical set of categories that describe the students’ problem solving approaches in the context of introductory physics.

  6. The nature of gestures’ beneficial role in spatial problem solving

    OpenAIRE

    Chu, M; Kita, S.

    2011-01-01

    Co-thought gestures are hand movements produced in silent, noncommunicative, problem-solving situations. In the study, we investigated whether and how such gestures enhance performance in spatial visualization tasks such as a mental rotation task and a paper folding task. We found that participants gestured more often when they had difficulties solving mental rotation problems Experiment 1). The gesture-encouraged group solved more mental rotation problems correctly than did the gesture-allow...

  7. Visual Attention Modulates Insight Versus Analytic Solving of Verbal Problems

    OpenAIRE

    Wegbreit, Ezra; Suzuki, Satoru; Grabowecky, Marcia; Kounios, John; Beeman, Mark

    2012-01-01

    Behavioral and neuroimaging findings indicate that distinct cognitive and neural processes underlie solving problems with sudden insight. Moreover, people with less focused attention sometimes perform better on tests of insight and creative problem solving. However, it remains unclear whether different states of attention, within individuals, influence the likelihood of solving problems with insight or with analysis. In this experiment, participants (N = 40) performed a baseline block of verb...

  8. Relationship between Problem Solving and Assertiveness Skills among Nursing Students

    OpenAIRE

    Naiemeh Seyedfatemi; Zeinab Moshirabadi; Leili Borimnejad; Hamid Haghani

    2014-01-01

      Background & Aim: The nature of clinical practice has altered in recent years. It has been affected by different kinds of problem-solving models' so, the problem-solving skill is necessary in practice for nurse practitioners. Besides assertiveness is a critical element which persuades nurses and nursing students to establish good relationships and use their knowledge and professional skills effectively. The aim of this study was to assess the relationship between problem solving and asserti...

  9. Diversity Communication in Teams: Improving Problem Solving or Creating Confusion?

    OpenAIRE

    Laura Frigotto; Alessandro Rossi

    2007-01-01

    Despite the rich and interdisciplinary debate on the role of diversity and communication in group problem solving, as well as the recognition of the interactions between the two topics, they have been rarely treated as a joint research issue. In this paper we develop a computational approach aimed at modeling problem solving agents and we assess the impact of various levels of diversity and communication in teams on agents' performance at solving problems. By communication we intend a convers...

  10. An event-based architecture for solving constraint satisfaction problems

    OpenAIRE

    Mostafa, Hesham; Müller, Lorenz K.; Indiveri, Giacomo

    2015-01-01

    Constraint satisfaction problems (CSPs) are typically solved using conventional von Neumann computing architectures. However, these architectures do not reflect the distributed nature of many of these problems and are thus ill-suited to solving them. In this paper we present a hybrid analog/digital hardware architecture specifically designed to solve such problems. We cast CSPs as networks of stereotyped multi-stable oscillatory elements that communicate using digital pulses, or events. The o...

  11. Increasing Problem Solving Skills in Fifth Grande Advanced Mathematics Students

    OpenAIRE

    Jobrina Gale Ellison

    2009-01-01

    Because No Child Left Behind (NCLB) calls for every student to make gains during every school year, even advanced students who are already performing at the top must make these gains. Teachers need to find areas to target with advanced students. One area that could be targeted to strengthen is problem solving skills. Research shows that daily practice and strategy instruction in problem solving skills will increase students’ problem solving abilities. I dedicated 5-10 minutes per day to probl...

  12. Developing Technological Problem Solving Activities Based on a Functional Model

    OpenAIRE

    Yu-Shan Chang

    2008-01-01

    This paper aimed to develop technological problem solving activities from a functional model. After discussing technological problem solving activities in junior high school technology textbooks, the main findings were: (1)A linear model of technological problem solving often served as the basis for those activities; (2)Less use of scaffolding was made to support student learning; (3)Less creative thinking skills were taught; (4)The importance of redesign was not emphasized; (5)The class disc...

  13. Transformational and transactional leadership and problem solving in restaurant industry

    OpenAIRE

    Huhtala, Nina

    2013-01-01

    The study tries to give information on the leadership behavior of restaurant managers in their problem solving. The results of the study were collected by evaluating three restaurant managers by interviewing them. The restaurant managers’ answers were compared to transformational and transactional leadership model and the aspects of it. Their problem solving skills were evaluated by the help of a rational and creative problem solving model. The study showed that restaurant managers have both ...

  14. Surveying graduate students’ attitudes and approaches to problem solving

    Directory of Open Access Journals (Sweden)

    Chandralekha Singh

    2010-12-01

    Full Text Available Students’ attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes toward Problem Solving survey of Marx and Cummings and administered it to physics graduate students. Comparison of their responses to the survey questions about problem solving in their own graduate-level courses vs problem solving in the introductory physics courses provides insight into their expertise in introductory and graduate-level physics. The physics graduate students’ responses to the survey questions were also compared with those of introductory physics and astronomy students and physics faculty. We find that, even for problem solving in introductory physics, graduate students’ responses to some survey questions are less expertlike than those of the physics faculty. Comparison of survey responses of graduate students and introductory students for problem solving in introductory physics suggests that graduate students’ responses are in general more expertlike than those of introductory students. However, survey responses suggest that graduate-level problem solving by graduate students on several measures has remarkably similar trends to introductory-level problem solving by introductory students.

  15. Surveying graduate students' attitudes and approaches to problem solving

    Science.gov (United States)

    Mason, Andrew; Singh, Chandralekha

    2010-07-01

    Students’ attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes toward Problem Solving survey of Marx and Cummings and administered it to physics graduate students. Comparison of their responses to the survey questions about problem solving in their own graduate-level courses vs problem solving in the introductory physics courses provides insight into their expertise in introductory and graduate-level physics. The physics graduate students’ responses to the survey questions were also compared with those of introductory physics and astronomy students and physics faculty. We find that, even for problem solving in introductory physics, graduate students’ responses to some survey questions are less expertlike than those of the physics faculty. Comparison of survey responses of graduate students and introductory students for problem solving in introductory physics suggests that graduate students’ responses are in general more expertlike than those of introductory students. However, survey responses suggest that graduate-level problem solving by graduate students on several measures has remarkably similar trends to introductory-level problem solving by introductory students.

  16. Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.

    Science.gov (United States)

    Nunokawa, Kazuhiko

    1996-01-01

    The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)

  17. Problem solving performance and learning strategies of undergraduate students who solved microbiology problems using IMMEX educational software

    Science.gov (United States)

    Ebomoyi, Josephine Itota

    The objectives of this study were as follows: (1) Determine the relationship between learning strategies and performance in problem solving, (2) Explore the role of a student's declared major on performance in problem solving, (3) Understand the decision making process of high and low achievers during problem solving. Participants (N = 65) solved problems using the Interactive multimedia exercise (IMMEX) software. All participants not only solved "Microquest," which focuses on cellular processes and mode of action of antibiotics, but also "Creeping Crud," which focuses on the cause, origin and transmission of diseases. Participants also responded to the "Motivated Strategy Learning Questionnaire" (MSLQ). Hierarchical multiple regression was used for analysis with GPA (Gracie point average) as a control. There were 49 (78.6%) that successfully solved "Microquest" while 52 (82.5%) successfully solved "Creeping Crud". Metacognitive self regulation strategy was significantly (p self-esteem problems. The implications for educational and relevance to real life situations are discussed.

  18. Understanding the Problem. Problem Solving and Communication Activity Series. The Math Forum: Problems of the Week

    Science.gov (United States)

    Math Forum @ Drexel, 2009

    2009-01-01

    Different techniques for understanding a problem can lead to ideas for never-used-before solutions. Good problem-solvers use a problem-solving strategy and may come back to it frequently while they are working on the problem to refine their strategy, see if they can find better solutions, or find other questions. Writing is an integral part of…

  19. Solving the ridematching problem in dynamic ridesharing

    OpenAIRE

    Herbawi, Wesam M. A.

    2013-01-01

    Among the transportation demand management strategies that can be used to reduce the power consumption, air pollution and traffic congestion is the ridesharing. A flexible form of ridesharing in which a rideshare can be arranged on a very short notice is called dynamic ridesharing. Recently there are many active research areas in dynamic ridesharing including but not limited to security, privacy protection, payment and ridematching. This work is mainly focused on solving the ridematching prob...

  20. Solving infeasibility problems in computerized test assembly

    NARCIS (Netherlands)

    Timminga, E.

    1998-01-01

    Linear programming techniques have been used successfully in a variety of test assembly problems. It is, however, possible that no test can be found meeting all the constraints in the linear programming model. The problem of diagnosing and repairing infeasible linear programming models is discussed.

  1. Systematic comparison of solved problems as a cooperative learning task

    Science.gov (United States)

    Taconis, Ruurd; van Hout-Wolters, Bernadette

    1999-09-01

    Problem-solving skills and understanding of domain, knowledge (e.g., fighting misconceptions) are important goals in both secondary and tertiary science education. A prototype of an instructional task is presented which aims at improved problem-solving skills based on understanding of domain knowledge. In this task, comparing carefully selected solved problems by groups of students is utilised as a learning activity for the acquisition of adequate problem schemata. The task is designed as a part of the so-called UBP-program (UBP=Understanding Based Problem solving) currently being developed, for education in science. The result of an evaluative study for the field of mechanics is presented. The UBP-task appears apt to improve problem-solving skills at a less advanced level of physics education (e.g., 10th grade), especially for students normally performing poorly—who are often girls.

  2. Problem solving technique in ocular prosthetic reconstruction

    International Nuclear Information System (INIS)

    This study was conducted on twelve subjects; who had undergone surgical enucleation of the eye as a result of accidents. Their cosmetic problem was corrected by serial construction of cone formers with bigger sizes and lining modification of stock eye prostheses. The method resulted in sufficient room for the retention of the eye prosthesis and gradually improved the cosmetic problem developed from narrow palpebral fissures. (author)

  3. Solving Project Scheduling Problems by Minimum Cut

    OpenAIRE

    Moehring, Rolf; Uetz, Marc; Stork, Frederik; Schulz, Andreas S.

    2002-01-01

    In project scheduling, a set of precedence-constrained jobs has to be scheduled so as to minimize a given objective. In resource-constrained project scheduling, the jobs additionally compete for scarce resources. Due to its universality, the latter problem has a variety of applications in manufacturing, production planning, project management, and elsewhere. It is one of the most intractable problems in operations research, and has therefore become a popular playground for the latest optimiza...

  4. A Remark on Solving Minimax Problems with Coevolution

    DEFF Research Database (Denmark)

    Jensen, Mikkel Thomas

    2001-01-01

    Minimax optimization problems are relevant to research in scheduling, mechanical structure optimization, network design and constrained optimization. Recent papers have demonstrated that coevolutionary algorithms have a potential for solving this kind of problem. In the present paper it is argued...

  5. A PROJECTION-TYPE METHOD FOR SOLVING VARIOUS WEBER PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Jian-lin Jiang; Bo Chen

    2006-01-01

    This paper investigates various Weber problems including unconstrained Weber problems and constrained Weber problems under l1,l2 and l∞-norms. First with a transformation technique various Weber problems are turned into a class of monotone linear variational inequalities. By exploiting the favorable structure of these variational inequalities, we present a new projection-type method for them. Compared with some other projection-type methods which can solve monotone linear variational inequality, this new projection-type method is simple in numerical implementations and more efficient for solving this class of problems; Compared with some popular methods for solving unconstrained Weber problem and constrained Weber problem, a singularity would not happen in this new method and it is more reliable by using this new method to solve various Weber problems.

  6. Solving Complex Problems to Create Charter Extension Options

    DEFF Research Database (Denmark)

    Tippmann, Esther; Nell, Phillip Christopher

    solution search, or activities to reconcile the need for some solution features to be locally-tailored while others can be internationally standardized, mediates the relationships between problem complexity/headquarters involvement and the capacity to create advanced solutions. An analysis of 67 projects......This study examines subsidiary-driven problem solving processes and their potential to create advanced solutions for charter extension options. Problem solving theory suggests that biases in problem formulation and solution search can confine problem solving potential. We thus argue that balanced...

  7. SolveDB: Integrating Optimization Problem Solvers Into SQL Databases

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Pedersen, Torben Bach

    2016-01-01

    -based syntax for optimization problems, (2) an extensible infrastructure for integrating different solvers, and (3) query optimization techniques to achieve the best execution performance and/or result quality. Extensive experiments with the PostgreSQL-based implementation show that SolveDB is a versatile tool...... workflows that are cumbersome, complex, inefficient, and error-prone. In this paper, we present SolveDB - a DBMS for optimization applications. SolveDB supports solvers for different problem classes and offers seamless data management and optimization problem solving in a pure SQL-based setting. This allows...

  8. Using Boinc Desktop Grid To Solve Large Scale Sat Problems

    Directory of Open Access Journals (Sweden)

    Mikhail Posypkin

    2012-01-01

    Full Text Available Many practically important combinatorial problems can be efficiently reducedto a problem of Boolean satisfiability (SAT. Therefore, the implementation ofdistributed algorithms for solving SAT problems is of great importance. In thisarticle we describe a technology for organizing desktop grid, which is meantfor solving SAT problems. This technology was implemented in the form ofa volunteer computing project SAT@home based on a popular BOINC platform.

  9. Solving Hitchcock's transportation problem by a genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-feng; CHO Joong Rae; LEE Jeong.Tae

    2004-01-01

    Genetic algorithms (GAs) employ the evolutionary process of Darwin's nature selection theory to find the solutions of optimization problems. In this paper, an implementation of genetic algorithm is put forward to solve a classical transportation problem, namely the Hitchcock's Transportation Problem (HTP), and the GA is improved to search for all optimal solutions and identify them automatically. The algorithm is coded with C++ and validated by numerical examples. The computational results show that the algorithm is efficient for solving the Hitchcock's transportation problem.

  10. Using Neighborhood Diversity to Solve Hard Problems

    CERN Document Server

    Ganian, Robert

    2012-01-01

    Parameterized algorithms are a very useful tool for dealing with NP-hard problems on graphs. Yet, to properly utilize parameterized algorithms it is necessary to choose the right parameter based on the type of problem and properties of the target graph class. Tree-width is an example of a very successful graph parameter, however it cannot be used on dense graph classes and there also exist problems which are hard even on graphs of bounded tree-width. Such problems can be tackled by using vertex cover as a parameter, however this places severe restrictions on admissible graph classes. Michael Lampis has recently introduced neighborhood diversity, a new graph parameter which generalizes vertex cover to dense graphs. Among other results, he has shown that simple parameterized algorithms exist for a few problems on graphs of bounded neighborhood diversity. Our article further studies this area and provides new algorithms parameterized by neighborhood diversity for the p-Vertex-Disjoint Paths, Graph Motif and Prec...

  11. Toward a Comprehensive Model of Problem-Solving.

    Science.gov (United States)

    Pitt, Ruth B.

    Presented is a model of problem solving that incorporates elements of hypothetico-deductive reasoning in the Piagetian sense, and heuristic-algorithmic processing in the information-processing sense. It assumes that people invoke both formal reasoning strategies and learned algorithms whenever they solve problems. The proposed model integrates the…

  12. Phenomenographic Study of Students' Problem Solving Approaches in Physics

    Science.gov (United States)

    Walsh, Laura N.; Howard, Robert G.; Bowe, Brian

    2007-01-01

    This paper describes ongoing research investigating student approaches to quantitative and qualitative problem solving in physics. This empirical study was conducted using a phenomenographic approach to analyze data from individual semistructured problem solving interviews with 22 introductory college physics students. The main result of the study…

  13. High School Students' Use of Meiosis When Solving Genetics Problems.

    Science.gov (United States)

    Wynne, Cynthia F.; Stewart, Jim; Passmore, Cindy

    2001-01-01

    Paints a different picture of students' reasoning with meiosis as they solved complex, computer-generated genetics problems, some of which required them to revise their understanding of meiosis in response to anomalous data. Students were able to develop a rich understanding of meiosis and can utilize that knowledge to solve genetics problems.…

  14. Designing Computer Software for Problem-Solving Instruction.

    Science.gov (United States)

    Duffield, Judith A.

    1991-01-01

    Discusses factors that might influence the effectiveness of computer software designed to teach problem solving. Topics discussed include the structure of knowledge; transfer of training; computers and problem solving instruction; human-computer interactions; and types of software, including drill and practice programs, tutorials, instructional…

  15. Measuring Problem Solving Skills in Plants vs. Zombies 2

    Science.gov (United States)

    Shute, Valerie J.; Moore, Gregory R.; Wang, Lubin

    2015-01-01

    We are using stealth assessment, embedded in "Plants vs. Zombies 2," to measure middle-school students' problem solving skills. This project started by developing a problem solving competency model based on a thorough review of the literature. Next, we identified relevant in-game indicators that would provide evidence about students'…

  16. The Utilization of Problem Solving for the Disabled.

    Science.gov (United States)

    Cardon, Phillip L.; Scott, Michael L.

    The problem-solving process has contributed greatly to the field of technology education and can be used to assist persons with disabilities. One problem-solving design that can help in working with persons with disabilities is the "Engineering for Success" design. This model groups technology education students with teachers of special education…

  17. Extricating Justification Scheme Theory in Middle School Mathematical Problem Solving

    Science.gov (United States)

    Matteson, Shirley; Capraro, Mary Margaret; Capraro, Robert M.; Lincoln, Yvonna S.

    2012-01-01

    Twenty middle grades students were interviewed to gain insights into their reasoning about problem-solving strategies using a Problem Solving Justification Scheme as our theoretical lens and the basis for our analysis. The scheme was modified from the work of Harel and Sowder (1998) making it more broadly applicable and accounting for research…

  18. Problem Solving in Technology Education: A Taoist Perspective.

    Science.gov (United States)

    Flowers, Jim

    1998-01-01

    Offers a new approach to teaching problem solving in technology education that encourages students to apply problem-solving skills to improving the human condition. Suggests that technology teachers incorporate elements of a Taoist approach in teaching by viewing technology as a tool with a goal of living a harmonious life. (JOW)

  19. Best Known Problem Solving Strategies in "High-Stakes" Assessments

    Science.gov (United States)

    Hong, Dae S.

    2011-01-01

    In its mathematics standards, National Council of Teachers of Mathematics (NCTM) states that problem solving is an integral part of all mathematics learning and exposure to problem solving strategies should be embedded across the curriculum. Furthermore, by high school, students should be able to use, decide and invent a wide range of strategies.…

  20. The Effects of Service Learning on Student Problem Solving

    Science.gov (United States)

    Guo, Fangfang; Yao, Meilin; Wang, Cong; Yan, Wenfan; Zong, Xiaoli

    2016-01-01

    Previous research indicated that service learning (SL) is an effective pedagogy to improve students' problem-solving ability and increase their classroom engagement. However, studies on SL are rare in China. This study examined the effects of SL on the problem solving of Chinese undergraduate students as well as the mechanism through which it…

  1. Relationship between Problem-Solving Style and Mathematical Literacy

    Science.gov (United States)

    Tai, Wen-Chun; Lin, Su-Wei

    2015-01-01

    Currently, mathematics education is focused on ensuring that students can apply the knowledge and skills they learn to everyday life; students are expected to develop their problem-solving abilities to face challenges by adopting various perspectives. When faced with a problem, students may employ different methods or patterns to solve it. If this…

  2. Learning from Examples versus Verbal Directions in Mathematical Problem Solving

    Science.gov (United States)

    Lee, Hee Seung; Fincham, Jon M.; Anderson, John R.

    2015-01-01

    This event-related fMRI study investigated the differences between learning from examples and learning from verbal directions in mathematical problem solving and how these instruction types affect the activity of relevant brain regions during instruction and solution periods within problem-solving trials. We identified distinct neural signatures…

  3. Problem Solving and the Development of Expertise in Management.

    Science.gov (United States)

    Lash, Fredrick B.

    This study investigated novice and expert problem solving behavior in management to examine the role of domain specific knowledge on problem solving processes. Forty-one middle level marketing managers in a large petrochemical organization provided think aloud protocols in response to two hypothetical management scenarios. Protocol analysis…

  4. Robotics and Children: Science Achievement and Problem Solving.

    Science.gov (United States)

    Wagner, Susan Preston

    1999-01-01

    Compared the impact of robotics (computer-powered manipulative) to a battery-powered manipulative (novelty control) and traditionally taught science class on science achievement and problem solving of fourth through sixth graders. Found that the robotics group had higher scores on programming logic-problem solving than did the novelty control…

  5. Monitoring Affect States during Effortful Problem Solving Activities

    Science.gov (United States)

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  6. Social Problem Solving and Aggression: The Role of Depression

    Science.gov (United States)

    Ozdemir, Yalcin; Kuzucu, Yasar; Koruklu, Nermin

    2013-01-01

    The purpose of the present study was to examine direct and indirect relations among social problem-solving, depression, and aggression, as well as the mediating role of depression in the link between social problem-solving and aggression among Turkish youth. Data for the present study were collected from 413 adolescents. The participants' age…

  7. Problem Solving and Collaboration Using Mobile Serious Games

    Science.gov (United States)

    Sanchez, Jaime; Olivares, Ruby

    2011-01-01

    This paper presents the results obtained with the implementation of a series of learning activities based on Mobile Serious Games (MSGs) for the development of problem solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students in order to solve problems collaboratively. A…

  8. Fostering Problem-Solving in a Virtual Environment

    Science.gov (United States)

    Morin, Danielle; Thomas, Jennifer D. E.; Saadé, Raafat George

    2015-01-01

    This article investigates students' perceptions of the relationship between Problem-Solving and the activities and resources used in a Web-based course on the fundamentals of Information Technology at a university in Montreal, Canada. We assess for the different learning components of the course, the extent of perceived problem-solving skills…

  9. Guides to solving the glass transition problem

    Energy Technology Data Exchange (ETDEWEB)

    Ngai, K L; Roland, C M [Naval Research Laboratory, Washington, DC 20375-5320 (United States); Prevosto, D; Capaccioli, S [PolyLab CNR-INFM and Dipartimento di Fisica, Universita di Pisa, Largo B Pontecorvo 3, I-56127, Pisa (Italy)

    2008-06-18

    Relaxation in glass-forming substances is necessarily a many-body problem because of intermolecular interactions and constraints. Results from molecular dynamics simulations and experiments are used to reveal the critical elements and general effects originating from many-body relaxation, but not dealt with in conventional theories of the glass transition. Although many-body relaxation is still an unsolved problem in statistical mechanics, these critical elements and general effects will serve as guides to the construction of a satisfactory theory of the glass transition. This effort is aided by concepts drawn from the coupling model, whose predictions have been shown to be consistent with experimental facts.

  10. Behavioral flexibility and problem solving in an invasive bird

    Science.gov (United States)

    2016-01-01

    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop’s Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.

  11. Randomized controlled trial of a family problem-solving intervention.

    Science.gov (United States)

    Drummond, Jane; Fleming, Darcy; McDonald, Linda; Kysela, Gerard M

    2005-02-01

    Adaptive problem solving contributes to individual and family health and development. In this article, the effect of the cooperative family learning approach (CFLA) on group family problem solving and on cooperative parenting communication is described. A pretest or posttest experimental design was used. Participant families were recruited from Head Start programs and exhibited two or more risk factors. Participant preschool children were screened to have two or more developmental delays. Direct behavioral observation measures were used to determine group family problem solving and cooperative parenting communication outcomes. Few group family problem-solving behaviors were coded, and they displayed little variability. However, intervention parents increased the length of time they played and extended the cooperative parent-child interactions. The evidence shows that CFLA has the potential to enhance parental-modeling of cooperative behavior while engaged in play activities with preschoolers. Direct measurement of group family problem solving was difficult. Solutions are suggested. PMID:15604228

  12. Solving Connected Subgraph Problems in Wildlife Conservation

    Science.gov (United States)

    Dilkina, Bistra; Gomes, Carla P.

    We investigate mathematical formulations and solution techniques for a variant of the Connected Subgraph Problem. Given a connected graph with costs and profits associated with the nodes, the goal is to find a connected subgraph that contains a subset of distinguished vertices. In this work we focus on the budget-constrained version, where we maximize the total profit of the nodes in the subgraph subject to a budget constraint on the total cost. We propose several mixed-integer formulations for enforcing the subgraph connectivity requirement, which plays a key role in the combinatorial structure of the problem. We show that a new formulation based on subtour elimination constraints is more effective at capturing the combinatorial structure of the problem, providing significant advantages over the previously considered encoding which was based on a single commodity flow. We test our formulations on synthetic instances as well as on real-world instances of an important problem in environmental conservation concerning the design of wildlife corridors. Our encoding results in a much tighter LP relaxation, and more importantly, it results in finding better integer feasible solutions as well as much better upper bounds on the objective (often proving optimality or within less than 1% of optimality), both when considering the synthetic instances as well as the real-world wildlife corridor instances.

  13. Sociodrama: Group Creative Problem Solving in Action.

    Science.gov (United States)

    Riley, John F.

    1990-01-01

    Sociodrama is presented as a structured, yet flexible, method of encouraging the use of creative thinking to examine a difficult problem. An example illustrates the steps involved in putting sociodrama into action. Production techniques useful in sociodrama include the soliloquy, double, role reversal, magic shop, unity of opposites, and audience…

  14. Evolutionary strategies for solving optimization problems

    Science.gov (United States)

    Ebeling, Werner; Reimann, Axel; Molgedey, Lutz

    We will give a survey of applications of thermodynamically and biologically oriented evolutionary strategies for optimization problems. Primarily, we investigate the solution of discrete optimization problems, most of combinatorial type, using a certain class of coupled differential equations. The problem is to find the minimum on a large set of real numbers (the potential) Ui, defined on the integer set i = 1 ...s, where s is an extremely large nu mber. The stationary states of the system correspond to relative optima on the discrete set. First, several elementary evolutionary strategies are described by simple deterministic equations, leading to a high-dimensional system of coupled differential equations. The known equations for thermodynamic search processes and for simple models of biological evolution are unified by defining a two-parameter family of equations which embed both cases. The unified equations model mixed Boltzmann/Darwin- strategies including basic elements of thermodynamical and biological evolution as well. In a next step a master equation model in the occupation number space is defined. We investigate the transition probabilities and the convergence properties using tools from the theory of stochastic processes. Several examples are analyzed. In particular we study the optimization of theoretical model sequences with simple valuation rules. In order to demonstrate that the strategies developed here may also be used to investigate realistic problems we present an example application to RNA folding (search for a minimum free energy configuration).

  15. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: PROBLEM-SOLVING

    Directory of Open Access Journals (Sweden)

    Adela NEMEŞ

    2010-01-01

    Full Text Available We face with considerable challenge of developing students’ problem solving skills in our difficult environment. Good problem solving skills empower managers in their professional and personal lives. Problem solving skills are valued by academics and employers. The informations in Biology are often presented in abstract forms without contextualisation. Creative problem-solving process involves a few steps, which together provide a structured procedure for identifying challenges, generating ideas and implementing innovative solutions: identifying the problem, searching for possible solutions, selecting the most optimal solution and implementing a possible solution. Each aspect of personality has a different orientation to problem solving, different criteria for judging the effectiveness of the process and different associated strengths. Using real-world data in sample problems will also help facilitate the transfer process, since students can more easily identify with the context of a given situation. The paper describes the use of the Problem-Solving in Biology and the method of its administration. It also presents the results of a study undertaken to evaluate the value in teaching Biology. Problem-solving is seen as an essential skill that is developed in biology education.

  16. Thinking, Learning, and Autonomous Problem Solving

    OpenAIRE

    Becker, Joerg D.

    2002-01-01

    Ever increasing computational power will require methods for automatic programming. We present an alternative to genetic programming, based on a general model of thinking and learning. The advantage is that evolution takes place in the space of constructs and can thus exploit the mathematical structures of this space. The model is formalized, and a macro language is presented which allows for a formal yet intuitive description of the problem under consideration. A prototype has been developed...

  17. Fuzzy linear programming problems solved with Fuzzy decisive set method

    OpenAIRE

    Mehmood, Rashid

    2009-01-01

    In the thesis, there are two kinds of fuzzy linear programming problems, one of them is a linear programming problem with fuzzy technological coefficients and the second is linear programming problem in which both the right-hand side and the technological coefficients are fuzzy numbers. I solve the fuzzy linear programming problems with fuzzy decisive set method.

  18. Cognitive functioning in mathematical problem solving during early adolescence

    Science.gov (United States)

    Collis, Kevin F.; Watson, Jane M.; Campbell, K. Jennifer

    1993-12-01

    Problem-solving in school mathematics has traditionally been considered as belonging only to the concrete symbolic mode of thinking, the mode which is concerned with making logical, analytical deductions. Little attention has been given to the place of the intuitive processes of the ikonic mode. The present study was designed to explore the interface between logical and intuitive processes in the context of mathematical problem solving. Sixteen Year 9 and 10 students from advanced mathematics classes were individually assessed while they solved five mathematics problems. Each student's problem-solving path, for each problem, was mapped according to the type of strategies used. Strategies were broadly classified into Ikonic (IK) or Concrete Symbolic (CS) categories. Students were given two types of problems to solve: (i) those most likely to attract a concrete symbolic approach; and (ii) problems with a significant imaging or intuitive component. Students were also assessed as to the vividness and controllability of their imaging ability, and their creativity. Results indicated that the nature of the problem is a basic factor in determining the type of strategy used for its solution. Students consistently applied CS strategies to CS problems, and IK strategies to IK problems. In addition, students tended to change modes significantly more often when solving CS-type problems than when solving IK-type problems. A switch to IK functioning appeared to be particularly helpful in breaking an unproductive set when solving a CS-type problem. Individual differences in strategy use were also found, with students high on vividness of imagery using IK strategies more frequently than students who were low on vividness. No relationship was found between IK strategy use and either students' degree of controllability of imagery or their level of creativity. The instructional implications of the results are discussed.

  19. The Effects of a Problem Solving Intervention on Problem Solving Skills of Students with Autism during Vocational Tasks

    Science.gov (United States)

    Yakubova, Gulnoza

    2013-01-01

    Problem solving is an important employability skill and considered valuable both in educational settings (Agran & Alper, 2000) and the workplace (Ju, Zhang, & Pacha, 2012). However, limited research exists instructing students with autism to engage in problem solving skills (e.g., Bernard-Opitz, Sriram, & Nakhoda-Sapuan, 2001). The…

  20. Impacts of Learning Inventive Problem-Solving Principles: Students' Transition from Systematic Searching to Heuristic Problem Solving

    Science.gov (United States)

    Barak, Moshe

    2013-01-01

    This paper presents the outcomes of teaching an inventive problem-solving course in junior high schools in an attempt to deal with the current relative neglect of fostering students' creativity and problem-solving capabilities in traditional schooling. The method involves carrying out systematic manipulation with attributes, functions and…

  1. Solving Hub Network Problem Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mursyid Hasan Basri

    2012-01-01

    Full Text Available This paper addresses a network problem that described as follows. There are n ports that interact, and p of those will be designated as hubs. All hubs are fully interconnected. Each spoke will be allocated to only one of available hubs. Direct connection between two spokes is allowed only if they are allocated to the same hub. The latter is a distinct characteristic that differs it from pure hub-and-spoke system. In case of pure hub-and-spoke system, direct connection between two spokes is not allowed. The problem is where to locate hub ports and to which hub a spoke should be allocated so that total transportation cost is minimum. In the first model, there are some additional aspects are taken into consideration in order to achieve a better representation of the problem. The first, weekly service should be accomplished. Secondly, various vessel types should be considered. The last, a concept of inter-hub discount factor is introduced. Regarding the last aspect, it represents cost reduction factor at hub ports due to economies of scale. In practice, it is common that the cost rate for inter-hub movement is less than the cost rate for movement between hub and origin/destination. In this first model, inter-hub discount factor is assumed independent with amount of flows on inter-hub links (denoted as flow-independent discount policy. The results indicated that the patterns of enlargement of container ship size, to some degree, are similar with those in Kurokawa study. However, with regard to hub locations, the results have not represented the real practice. In the proposed model, unsatisfactory result on hub locations is addressed. One aspect that could possibly be improved to find better hub locations is inter-hub discount factor. Then inter-hub discount factor is assumed to depend on amount of inter-hub flows (denoted as flow-dependent discount policy. There are two discount functions examined in this paper. Both functions are characterized by

  2. Webotherapy: Reading Web Resources for Problem Solving

    OpenAIRE

    Noruzi, Alireza

    2007-01-01

    Purpose – The purpose of this paper is to indicate that when webotherapy is applied, it can be of benefit to clients in giving them insight into their problems, resulting in a change of behavior. Design/methodology/approach – Webotherapy, which can be conducted with individuals or groups, refers to the use of web resources or other online reading material (e.g. e-books, e-journals) to assist clients (especially children and young adults) in their healing process. It may be defined as the u...

  3. Solving SAT Problem Based on Hybrid Differential Evolution Algorithm

    Science.gov (United States)

    Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan

    Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.

  4. From dissecting ignorance to solving algebraic problems

    Energy Technology Data Exchange (ETDEWEB)

    Ayyub, Bilal M

    2004-09-01

    Engineers and scientists are increasingly required to design, test, and validate new complex systems in simulation environments and/or with limited experimental results due to international and/or budgetary restrictions. Dealing with complex systems requires assessing knowledge and information by critically evaluating them in terms relevance, completeness, non-distortion, coherence, and other key measures. Using the concepts and definitions from evolutionary knowledge and epistemology, ignorance is examined and classified in the paper. Two ignorance states for a knowledge agent are identified: (1) non-reflective (or blind) state, i.e. the person does not know of self-ignorance, a case of ignorance of ignorance; and (2) reflective state, i.e. the person knows and recognizes self-ignorance. Ignorance can be viewed to have a hierarchal classification based on its sources and nature as provided in the paper. The paper also explores limits on knowledge construction, closed and open world assumptions, and fundamentals of evidential reasoning using belief revision and diagnostics within the framework of ignorance analysis for knowledge construction. The paper also examines an algebraic problem set as identified by Sandia National Laboratories to be a basic building block for uncertainty propagation in computational mechanics. Solution algorithms are provided for the problem set for various assumptions about the state of knowledge about its parameters.

  5. From dissecting ignorance to solving algebraic problems

    International Nuclear Information System (INIS)

    Engineers and scientists are increasingly required to design, test, and validate new complex systems in simulation environments and/or with limited experimental results due to international and/or budgetary restrictions. Dealing with complex systems requires assessing knowledge and information by critically evaluating them in terms relevance, completeness, non-distortion, coherence, and other key measures. Using the concepts and definitions from evolutionary knowledge and epistemology, ignorance is examined and classified in the paper. Two ignorance states for a knowledge agent are identified: (1) non-reflective (or blind) state, i.e. the person does not know of self-ignorance, a case of ignorance of ignorance; and (2) reflective state, i.e. the person knows and recognizes self-ignorance. Ignorance can be viewed to have a hierarchal classification based on its sources and nature as provided in the paper. The paper also explores limits on knowledge construction, closed and open world assumptions, and fundamentals of evidential reasoning using belief revision and diagnostics within the framework of ignorance analysis for knowledge construction. The paper also examines an algebraic problem set as identified by Sandia National Laboratories to be a basic building block for uncertainty propagation in computational mechanics. Solution algorithms are provided for the problem set for various assumptions about the state of knowledge about its parameters

  6. Problem Solving and Computational Thinking in a Learning Environment

    OpenAIRE

    Voskoglou, Michael Gr.; Buckley, Sheryl

    2012-01-01

    Computational thinking is a new problem soling method named for its extensive use of computer science techniques. It synthesizes critical thinking and existing knowledge and applies them in solving complex technological problems. The term was coined by J. Wing, but the relationship between computational and critical thinking, the two modes of thiking in solving problems, has not been yet learly established. This paper aims at shedding some light into this relationship. We also present two cla...

  7. Earth rotation: Solved and unsolved problems

    Science.gov (United States)

    Cazenave, A.; Paquet, P.

    A workshop dedicated to earth rotation problems was held in Bonas, France, June 11-13, 1985. It was organized by the North Atlantic Treaty Organization (NATO) Scientific Affairs Division and the Council of Europe and was attended by 39 participants from eight different countries.In the last 10 years, extremely precise measurements of the earth's rotation parameters and new global geophysical data have become available, allowing major advances to be made in the understanding of the various irregularities affecting the earth's rotation. The aim of this workshop was to bring together scientists who have made important contributions in this field during the last decade, both at the observational and geophysical interpretation levels. The first session was dedicated to the definition, implementation, and maintenance of the terrestrial and celestial reference systems.

  8. Creative Problem Solving as a Learning Process

    Directory of Open Access Journals (Sweden)

    Andreas Ninck

    2013-12-01

    Full Text Available The Business School at the Bern University of Applied Sciences is offering a new MScBA degree program in business development. The paper presents a practical report about the action learning approach in the course 'Business Analysis and Design'. Our problem-based approach is more than simply 'learning by doing'. In a world of increasing complexity, taking action alone will not result in a learning effect per se. What is imperative is to structure and facilitate the learning process on different levels: individual construction of mental models; understanding needs and developing adequate solutions; critical reflection of methods and processes. Reflective practice, where individuals are learning from their own professional experiences rather than from formal teaching or knowledge transfer, may be the most important source for lifelong learning.

  9. Solved Problems in Lagrangian and Hamiltonian Mechanics

    CERN Document Server

    Gignoux, Claude

    2009-01-01

    The aim of this work is to bridge the gap between the well-known Newtonian mechanics and the studies on chaos, ordinarily reserved to experts. Several topics are treated: Lagrangian, Hamiltonian and Jacobi formalisms, studies of integrable and quasi-integrable systems. The chapter devoted to chaos also enables a simple presentation of the KAM theorem. All the important notions are recalled in summaries of the lectures. They are illustrated by many original problems, stemming from real-life situations, the solutions of which are worked out in great detail for the benefit of the reader. This book will be of interest to undergraduate students as well as others whose work involves mechanics, physics and engineering in general.

  10. Fedorov's attempt to solve the nutation problem

    Science.gov (United States)

    Yatskiv, Ya. S.

    First of all a brief history of the investigation of nutation carried out before Fedorov's first studies of this problem is presented. Afterwards the main attention is paid to the Fedorov's determination of corrections to nutation coefficients from latitude observations and to the Fedorov's theory of nutation of a perfectly elastic Earth. Fedorov showed that elastic deformations do not virtually affect the motion of the axis of angular momentum in space, i.e. the nutation of this axis. At the same time they diminish the coefficients of the expression of forced nearly diurnal motion of the pole, the so-called Oppolzer terms. Therefore Fedorov compared the expression of these terms for a perfectly elastic Earth with observations and stated: - the Earth as a whole is not a perfectly elastic body: - the theory of nutation of the Earth consisting of an elastic mantle and a fluid core has not been developed to a degree such that it is possible to test this theory by observations.

  11. Solving Tensor Structured Problems with Computational Tensor Algebra

    CERN Document Server

    Morozov, Oleksii

    2010-01-01

    Since its introduction by Gauss, Matrix Algebra has facilitated understanding of scientific problems, hiding distracting details and finding more elegant and efficient ways of computational solving. Today's largest problems, which often originate from multidimensional data, might profit from even higher levels of abstraction. We developed a framework for solving tensor structured problems with tensor algebra that unifies concepts from tensor analysis, multilinear algebra and multidimensional signal processing. In contrast to the conventional matrix approach, it allows the formulation of multidimensional problems, in a multidimensional way, preserving structure and data coherence; and the implementation of automated optimizations of solving algorithms, based on the commutativity of all tensor operations. Its ability to handle large scientific tasks is showcased by a real-world, 4D medical imaging problem, with more than 30 million unknown parameters solved on a current, inexpensive hardware. This significantly...

  12. Methodologies for examining problem solving success and failure.

    Science.gov (United States)

    DeCaro, Marci S; Wieth, Mareike; Beilock, Sian L

    2007-05-01

    When designing research to examine the variables underlying creative thinking and problem solving success, one must not only consider (a) the demands of the task being performed, but (b) the characteristics of the individual performing the task and (c) the constraints of the skill execution environment. In the current paper we describe methodologies that allow one to effectively study creative thinking by capturing interactions among the individual, task, and problem solving situation. In doing so, we demonstrate that the relation between executive functioning and problem solving success is not always as straightforward as one might initially believe. PMID:17434416

  13. Photography helps solve distribution lightning problems

    Energy Technology Data Exchange (ETDEWEB)

    Barker, P.; Burns, C.W.

    1993-06-01

    This article describes the research project, which is being performed for NMPC by Power Technologies, Inc., involving the use of lightning-activated camera systems to photograph lightning strikes to a rural distribution line. Since photograph lightning strikes to a rural distribution line. Since photographs can allow the precise location of the lightning flash and power system flashovers to be observed, they are extremely valuable to engineers who are trying to make better sense of the lightning damage problem. When electrical measurements, such as fault and surge recordings, are combined with photographic data, an overall understanding of each lightning flash and its impact on the system is attained. This can hopefully lead to improved lightning protection practices and systems. The study is being performed on a 13.2 kV distribution system that is located on an exposed plateau near Little Falls, NY (about 80 miles northwest of Albany, NY). Four automated camera systems and a substation fault recorder are utilized. All camera locations afford excellent views of lines and equipment likely to be struck by lightning. The fault recorder is used to measure the fault currents and voltage sags which occur during line flashovers. Also, the National Lightning Detection Network (NLDN) is used to confirm storm activity and camera triggering efficiency. After each storm, all data is analyzed to determine how lightning affected the power system. Areas being investigated include: What are the relative portions of lightning flashovers caused by induced surges (nearby strikes) and direct lightning hits to the line How often do shielding failures occur What system relaying, construction and overvoltage protection practices afford the best lightning protection What system relaying, construction and overvoltage protection practices afford the best lightning protection What system relaying, construction and overvoltage protection practices are problematic

  14. Cognitive Backgrounds of Problem Solving: A Comparison of Open-Ended vs. Closed Mathematics Problems

    Science.gov (United States)

    Bahar, Abdulkadir; Maker, C. June

    2015-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of elementary…

  15. Solving a Class of Non-Smooth Optimal Control Problems

    Directory of Open Access Journals (Sweden)

    M. H. Noori Skandari

    2013-06-01

    Full Text Available In this paper, we first propose a new generalized derivative for non-smooth functions and then we utilize this generalized derivative to convert a class of non-smooth optimal control problem to the corresponding smooth form. In the next step, we apply the discretization method to approximate the obtained smooth problem to the nonlinear programming problem. Finally, by solving the last problem, we obtain an approximate optimal solution for main problem.

  16. Solving regularized total least squares problems based on eigenproblems

    OpenAIRE

    Lampe, Jörg

    2010-01-01

    In the first part of the thesis we review basic knowledge of regularized least squares problems and present a significant acceleration of an existing method for the solution of trust-region problems. In the second part we present the basic theory of total least squares (TLS) problems and give an overview of possible extensions. Regularization of TLS problems by truncation and bidiagonalization approaches are briefly covered. Several approaches for solving the Tikhonov TLS problem based on ...

  17. Comparison of Problem Solving from Engineering Design to Software Design

    DEFF Research Database (Denmark)

    Ahmed-Kristensen, Saeema; Babar, Muhammad Ali

    2012-01-01

    Observational studies of engineering design activities can inform the research community on the problem solving models that are employed by professional engineers. Design is defined as an ill-defined problem which includes both engineering design and software design, hence understanding problem s...

  18. Solving the Airline Crew Pairing Problem using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Ryan, David; Lusby, Richard Martin; Larsen, Jesper

    Good and fast solutions to the airline crew pairing problem are highly interesting for the airline industry, as crew costs are the biggest expenditure after fuel for an airline. The crew pairing problem is typically modelled as a set partitioning problem and solved by column generation. However...

  19. Productive and Re-Productive Thinking in Solving Insight Problems

    Science.gov (United States)

    Cunningham, J. Barton; MacGregor, James N.

    2014-01-01

    Many innovations in organizations result when people discover insightful solutions to problems. Insightful problem-solving was considered by Gestalt psychologists to be associated with productive, as opposed to re-productive, thinking. Productive thinking is characterized by shifts in perspective which allow the problem solver to consider new,…

  20. A descriptive model of information problem solving while using internet

    NARCIS (Netherlands)

    Brand-Gruwel, Saskia; Wopereis, Iwan; Walraven, Amber

    2009-01-01

    This paper presents the IPS-I-model: a model that describes the process of information problem solving (IPS) in which the Internet (I) is used to search information. The IPS-I-model is based on three studies, in which students in secondary and (post) higher education were asked to solve information

  1. Social problem solving ability predicts mental health among undergraduate students

    Directory of Open Access Journals (Sweden)

    Mansour Ranjbar

    2013-01-01

    Methods : In this correlational- descriptive study, 369 (208 female and 161 male from, Mazandaran University of Medical Science were selected through stratified random sampling method. In order to collect the data, the social problem solving inventory-revised and general health questionnaire were used. Data were analyzed through SPSS-19, Pearson′s correlation, t test, and stepwise regression analysis. Results : Data analysis showed significant relationship between social problem solving ability and mental health (P < 0.01. Social problem solving ability was significantly associated with the somatic symptoms, anxiety and insomnia, social dysfunction and severe depression (P < 0.01. Conclusions: The results of our study demonstrated that there is a significant correlation between social problem solving ability and mental health.

  2. Stepping out of history : Mindfulness improves insight problem solving

    NARCIS (Netherlands)

    Ostafin, B.D.; Kassman, K.T.

    2012-01-01

    Insight problem solving is hindered by automated verbal-conceptual processes. Because mindfulness meditation training aims at "nonconceptual awareness" which involves a reduced influence of habitual verbal-conceptual processes on the interpretation of ongoing experience, mindfulness may facilitate i

  3. Synectics: Teaching Creative Problem Solving by Making the Familiar Strange.

    Science.gov (United States)

    Springfield, Lynn Hardie

    1986-01-01

    The article describes the theory of synectics, an idea producing process, and shows how upper elementary gifted students can be taught to use synectics in more effective problem solving. Steps in the synectics process are reviewed. (CL)

  4. MULTILEVEL ITERATION METHODS FOR SOLVING LINEAR ILL-POSED PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this paper we develop multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for ill-posed problems. The algorithm and its convergence analysis are presented in an abstract framework.

  5. Exact Methods for Solving the Train Departure Matching Problem

    DEFF Research Database (Denmark)

    Haahr, Jørgen Thorlund; Bull, Simon Henry

    In this paper we consider the train departure matching problem which is an important subproblem of the Rolling Stock Unit Management on Railway Sites problem introduced in the ROADEF/EURO Challenge 2014. The subproblem entails matching arriving train units to scheduled departing trains at a railway...... site while respecting multiple physical and operational constraints. In this paper we formally define that subproblem, prove its NP- hardness, and present two exact method approaches for solving the problem. First, we present a compact Mixed Integer Program formulation which we solve using a MIP solver....... Second, we present a formulation with an exponential number of variables which we solve using column generation. Our results show that both approaches have difficulties solving the ROADEF problem instances to optimality. The column generation approach is however able to generate good quality solutions...

  6. Assessing Mathematics 4. Problem Solving: The APU Approach.

    Science.gov (United States)

    Foxman, Derek; And Others

    1984-01-01

    Presented are examples of problem-solving items from practical and written mathematics tests. These tests are part of an English survey designed to assess the mathematics achievement of students aged 11 and 15. (JN)

  7. Problem solving in foundation engineering using foundationPro

    CERN Document Server

    Yamin, Mohammad

    2016-01-01

    This book is at once a supplement to traditional foundation engineering textbooks and an independent problem-solving learning tool. The book is written primarily for university students majoring in civil or construction engineering taking foundation analysis and design courses to encourage them to solve design problems. Its main aim is to stimulate problem solving capability and foster self-directed learning. It also explains the use of the foundationPro software, available at no cost, and includes a set of foundation engineering applications. Taking a unique approach, Dr. Yamin summarizes the general step-by-step procedure to solve various foundation engineering problems, illustrates traditional applications of these steps with longhand solutions, and presents the foundationPro solutions. The special structure of the book allows it to be used in undergraduate and graduate foundation design and analysis courses in civil and construction engineering. The book stands as valuable resource for students, faculty, ...

  8. Assessing Student's Ability to Solve Textbook Style Problems

    Science.gov (United States)

    Cummings, Karen

    2015-04-01

    Can We Really Measure Problem Solving Ability? The answer to this question may depend on how we define problem solving ability. But, if we care about students' ability to solve novel textbook style problems, the answer to this question seems to be ``yes.'' In this talk I will discuss a pre-/post- instruction assessment that was recently developed to assess students' ability to solve fairly standard textbook style problems within the domains of Newton's second law, conservation of energy and conservation of momentum. The instrument is designed for large-scale use in typical university classrooms, has already been used in a variety of institutions and appears to be both valid and robust. Data collected with this instrument can help guide curricular improvements and provide important insights relevant to most departments for program review.

  9. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Directory of Open Access Journals (Sweden)

    María F. Ayllón

    2016-04-01

    Full Text Available This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas, flexibility (range of ideas, novelty (unique idea and elaboration (idea development. These factors contribute, among others, to the fact that schoolchildren are competent in mathematics. The problem solving and posing are a very powerful evaluation tool that shows the mathematical reasoning and creative level of a person. Creativity is part of the mathematics education and is a necessary ingredient to perform mathematical assignments. This contribution presents some important research works about problem posing and solving related to the development of mathematical knowledge and creativity. To that end, it is based on various beliefs reflected in the literature with respect to notions of creativity, problem solving and posing.

  10. Problem-Solving Methods in Agent-Oriented Software Engineering

    Science.gov (United States)

    Bogg, Paul; Beydoun, Ghassan; Low, Graham

    Problem-solving methods (PSM) are abstract structures that describe specific reasoning processes employed to solve a set of similar problems. We envisage that off-the-shelf PSMs can assist in the development of agent-oriented solutions, not only as reusable and extensible components that software engineers employ for designing agent architecture solutions, but just as importantly as a set of runtime capabilities that agents themselves dynamically employ in order to solve problems. This chapter describes PSMs for agent-oriented software engineering (AOSE) that address interaction-dependent problem-solving such as negotiation or cooperation. An extension to an AOSE methodology MOBMAS is proposed whereby PSMs are integrated in the software development phases of MAS Organization Design, Internal Design, and Interaction Design. In this way, knowledge engineering drives the development of agent-oriented systems.

  11. Genetic Algorithm for Solving Simple Mathematical Equality Problem

    OpenAIRE

    Hermawanto, Denny

    2013-01-01

    This paper explains genetic algorithm for novice in this field. Basic philosophy of genetic algorithm and its flowchart are described. Step by step numerical computation of genetic algorithm for solving simple mathematical equality problem will be briefly explained

  12. Finite Volume Methods for Solving Electromagnetic Problems in Nonhomogeneous Media

    Institute of Scientific and Technical Information of China (English)

    Zou Jun

    2003-01-01

    This article shall review some of the recent advances on finite volume methods for solving electromagnetic problems in nonhomogeneous media. The stability, conver gence and applications of the finite volume methods will be discussed.

  13. Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer

    Science.gov (United States)

    Rosenberg, Gili; Haghnegahdar, Poya; Goddard, Phil; Carr, Peter; Wu, Kesheng; de Prado, Marcos Lopez

    2016-09-01

    We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multi-period portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements, and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques.

  14. Reflection on problem solving in introductory and advanced physics

    Science.gov (United States)

    Mason, Andrew J.

    Reflection is essential in order to learn from problem solving. This thesis explores issues related to how reflective students are and how we can improve their capacity for reflection on problem solving. We investigate how students naturally reflect in their physics courses about problem solving and evaluate strategies that may teach them reflection as an integral component of problem-solving. Problem categorization based upon similarity of solution is a strategy to help them reflect about the deep features of the problems related to the physics principles involved. We find that there is a large overlap between the introductory and graduate students in their ability to categorize. Moreover, introductory students in the calculus-based courses performed better categorization than those in the algebra-based courses even though the categorization task is conceptual. Other investigations involved exploring if reflection could be taught as a skill on individual and group levels. Explicit self-diagnosis in recitation investigated how effectively students could diagnose their own errors on difficult problems, how much scaffolding was necessary for this purpose, and how effective transfer was to other problems employing similar principles. Difficulty in applying physical principles and difference between the self-diagnosed and transfer problems affected performance. We concluded that a sustained intervention is required to learn effective problem-solving strategies. Another study involving reflection on problem solving with peers suggests that those who reflected with peers drew more diagrams and had a larger gain from the midterm to final exam. Another study in quantum mechanics involved giving common problems in midterm and final exams and suggested that advanced students do not automatically reflect on their mistakes. Interviews revealed that even advanced students often focus mostly on exams rather than learning and building a robust knowledge structure. A survey was

  15. Citizen participation and citizen initiatives

    International Nuclear Information System (INIS)

    Contents: Social conditions for citizen initiatives - technical change and employment - crisis behaviour - socio-psychological analysis of political planning; legitimation - presentation and criticism - conditions for citizen initiatives coming into being within the field of tension citizen : administration - legal problems of citizen initiatives - environmental protection in the energy discussion; participation; models. (HP)

  16. Learning Style and Problem Solving in Technology Education(I)

    OpenAIRE

    Miyakawa, Hidetoshi; Asakawa, Masaki; Tsuzuki, Chie

    2002-01-01

    The present study examines the situation on fostering problem solving ability to clarify how students' learning styles affect it in Technology Education. Leaning styles are classified into three categories: "Versatile and Deep Holist Type", "Deep Serialist Type", and "Surface Type". Problem solving abilities are also classified into three structures: "Thinking Ability", "Affective Domain", and "Skills". As a result, characteristic tendency is found regarding the relation between students' lea...

  17. A Problem Solving Intervention for Hospice Caregivers: A Pilot Study

    OpenAIRE

    Demiris, George; Parker Oliver, Debra; Washington, Karla; Fruehling, Lynne Thomas; Haggarty-Robbins, Donna; Doorenbos, Ardith; Wechkin, Hope; Berry, Donna

    2010-01-01

    The Problem Solving Intervention (PSI) is a structured, cognitive–behavioral intervention that provides people with problem-solving coping skills to help them face major negative life events and daily challenges. PSI has been applied to numerous settings but remains largely unexplored in the hospice setting. The aim of this pilot study was to demonstrate the feasibility of PSI targeting informal caregivers of hospice patients. We enrolled hospice caregivers who were receiving outpatient servi...

  18. Problem Solving and Critical Thinking Skills of Undergraduate Nursing Students

    OpenAIRE

    KANBAY, Yalçın; Aslan, Özgür; Elif IŞIK; Nurhayat KILIÇ

    2013-01-01

    Due to the fact that critical thinking and problem solving skills are essential components of educational and social lives of individuals, this present study which investigate critical thinking and problem solving skills of undergraduate students of nursing was planned. This is a descriptive study. The study population consisted of undergraduate nursing students of a university during the 2011-2012 academic year. Any specific sampling method was not determined and only the voluntary students ...

  19. Social Problem Solving Ability Predicts Mental Health Among Undergraduate Students

    OpenAIRE

    Mansour Ranjbar; Ali Asghar Bayani; Ali Bayani

    2013-01-01

    Background : The main objective of this study was predicting student′s mental health using social problem solving- ability . Methods : In this correlational- descriptive study, 369 (208 female and 161 male) from, Mazandaran University of Medical Science were selected through stratified random sampling method. In order to collect the data, the social problem solving inventory-revised and general health questionnaire were used. Data were analyzed through SPSS-19, Pearson′s correlation, t tes...

  20. Solving complex problems: Human identification and control of complex systems

    OpenAIRE

    Funke, Joachim

    1991-01-01

    Studying complex problem solving by means of computer-simulated scenarios has become one of the favorite themes of modern theorists in German-speaking countries who are concerned with the psychology of thinking. Following the pioneering work of Dietrich Doerner (University of Bamberg, FRG) in the mid-70s, many new scenarios have been developed and applied in correlational as well as in experimental studies (for a review see Funke, 1988). Instead of studying problem-solving behavior in restric...

  1. Algorithms for solving inverse geophysical problems on parallel computing systems

    OpenAIRE

    Akimova, E. N.; Belousov, D. V.; Misilov, V. E.

    2013-01-01

    For solving inverse gravimetry problems, efficient stable parallel algorithms based on iterative gradient methods are proposed. For solving systems of linear algebraic equations with block-tridiagonal matrices arising in geoelectrics problems, a parallel matrix sweep algorithm, a square root method, and a conjugate gradient method with preconditioner are proposed. The algorithms are implemented numerically on a parallel computing system of the Institute of Mathematics and Mechanics (PCS-IMM),...

  2. L'INSIGHT PROBLEM SOLVING IN ETA' EVOLUTIVA

    OpenAIRE

    Macchi, L.; Bagassi, M

    2014-01-01

    Malgrado l’ampio dibattito che si è recentemente sviluppato intorno allo studio dell’insight problem solving (Ut Na Sio, Ormerod, 2009, 2013; Gilhooly, 2010, 2009; Macchi, Ball, in press), risultano ancora scarsi i contributi relativi all’età evolutiva (Davidson, Sternberg, 1984, 1998; Bermejo, Sternberg, 1996), presumibilmente anche a causa delle modeste prestazioni già riscontrate nella popolazione adulta. Le ricerche sul problem solving nel periodo evolutivo si sono focalizzate, da una par...

  3. Complex problem solving: a case for complex cognition?

    OpenAIRE

    Funke, Joachim

    2010-01-01

    Complex problem solving (CPS) emerged in the last 30 years in Europe as a new part of the psychology of thinking and problem solving. This paper introduces into the field and provides a personal view. Also, related concepts like macrocognition or operative intelligence will be explained in this context. Two examples for the assessment of CPS, Tailorshop and MicroDYN, are presented to illustrate the concept by means of their measurement devices. Also, the relation of complex cognition and emot...

  4. Situated, embodied and social problem-solving in virtual worlds

    OpenAIRE

    Cram, Andrew; Hedberg, John G.; Gosper, Maree; Dick, Geoff

    2011-01-01

    Contemporary theories of problem-solving highlight that expertise is domainspecific, contingent on the social context and available resources, and involvesknowledge, skills, attitudes, emotions and values. Developing educational activitiesthat incorporate all of these elements is a challenge. Through case studies,this paper outlines how situated, embodied and social problem-solving activitieswithin virtual worlds can elicit responses that engage all facets of expertise.10.1080/21567069.2011.6...

  5. Using a genetic algorithm to solve fluid-flow problems

    International Nuclear Information System (INIS)

    Genetic algorithms are based on the mechanics of the natural selection and natural genetics processes. These algorithms are finding increasing application to a wide variety of engineering optimization and machine learning problems. In this paper, the authors demonstrate the use of a genetic algorithm to solve fluid flow problems. Specifically, the authors use the algorithm to solve the one-dimensional flow equations for a pipe

  6. Teaching effective problem solving skills to radiation protection students

    International Nuclear Information System (INIS)

    Full text: Problem solving skills are essential for all radiation protection personnel. Although some students have more natural problem solving skills than others, all students require practice to become comfortable using these skills. At the University of Ontario Institute of Technology (UOIT), a unique one-semester course was developed as part of the core curriculum to teach students problem solving skills and elements of modelling and simulation. The underlying emphasis of the course was to allow students to develop their own problem solving strategies, both individually and in groups. Direction was provided on how to examine problems from different perspectives, and how to determine the proper root problem statement. A five-point problem solving strategy was presented as: 1) Problem definition; 2) Solution generation; 3) Decision; 4) Implementation; 5) Evaluation. Within the strategy, problem solving techniques were integrated from diverse areas such as: De Bono 's six thinking hats, Kepner-Tregoe decision analysis, Covey's seven habits of highly effective people, Reason's swiss cheese theory of complex failure, and Howlett's common failure modes. As part of the evaluation step, students critically explore areas such as ethics and environmental responsibility. In addition to exploring problem solving methods, students learn the usefulness of simulation methods, and how to model and simulate complex phenomena of relevance to radiation protection. Computational aspects of problem solving are explored using the commercially available MATLAB computer code. A number of case studies are presented as both examples and problems to the students. Emphasis was placed on solutions to problems of interest to radiation protection, health physics and nuclear engineering. A group project, pertaining to an accident or event related to the nuclear industry is a course requirement. Students learn to utilize common time and project management tools such as flowcharting, Pareto

  7. Self-affirmation improves problem-solving under stress.

    Directory of Open Access Journals (Sweden)

    J David Creswell

    Full Text Available High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  8. Representation use and strategy choice in physics problem solving

    Science.gov (United States)

    De Cock, Mieke

    2012-12-01

    In this paper, we examine student success on three variants of a test item given in different representational formats (verbal, pictorial, and graphical), with an isomorphic problem statement. We confirm results from recent papers where it is mentioned that physics students’ problem-solving competence can vary with representational format and that solutions can be triggered by particular details of the representation. Previous studies are complemented with a fine grained analysis of solution strategies. We find that students use different problem-solving strategies, depending on the representational format in which the problem is stated.

  9. Solving Large Clustering Problems with Meta-Heuristic Search

    DEFF Research Database (Denmark)

    Turkensteen, Marcel; Andersen, Kim Allan; Bang-Jensen, Jørgen

    In Clustering Problems, groups of similar subjects are to be retrieved from data sets. In this paper, Clustering Problems with the frequently used Minimum Sum-of-Squares Criterion are solved using meta-heuristic search. Tabu search has proved to be a successful methodology for solving optimization...... problems, but applications to large clustering problems are rare. The simulated annealing heuristic has mainly been applied to relatively small instances. In this paper, we implement tabu search and simulated annealing approaches and compare them to the commonly used k-means approach. We find that the meta-heuristic...

  10. Creative Problem Solving A Guide for Trainers and Management

    CERN Document Server

    Van Gundy, Arthur B

    1987-01-01

    Creative problem solving (CPS) is a six-step process designed to help people systematically resolve nonroutine, ambiguous types of problems. Because most organizational problems tend to be nonroutine, skill in using CPS process can confer a significant competitive advantage. Creative Problem Solving gives training managers the information they need to develop and teach a course on CPS. VanGundy provides an overview of the process, elements of the creative climate needed to foster CPS and innovative thinking, creative thinking exercises designed to illustrate specific CPS principles, and easy-t

  11. Taylor Series Approximation to Solve Neutrosophic Multiobjective Programming Problem

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Hezam

    2015-12-01

    Full Text Available In this paper, Taylor series is used to solve neutrosophic multi-objective programming problem (NMOPP. In the proposed approach, the truth membership, Indeterminacy membership, falsity membership functions associated with each objective of multi-objective programming problems are transformed into a single objective linear programming problem by using a first order Taylor polynomial series. Finally, to illustrate the efficiency of the proposed method, a numerical experiment for supplier selection is given as an application of Taylor series method for solving neutrosophic multi-objective programming problem at end of this paper.

  12. An ant colony algorithm for solving Max-cut problem

    Institute of Scientific and Technical Information of China (English)

    Lin Gao; Yan Zeng; Anguo Dong

    2008-01-01

    Max-cut problem is an NP-complete and classical combinatorial optimization problem that has a wide range of appfications in dif-ferent domains,such as bioinformatics,network optimization,statistical physics,and very large scale integration design.In this paper we investigate the capabilities of the ant colony optimization(ACO)heuristic for solving the Max-cut problem and present an AntCut algo-rithm.A large number of simulation experiments show that the algorithm can solve the Max-cut problem more efficiently and effectively.

  13. Problem-solving Model for Managing Stress and Anxiety

    Directory of Open Access Journals (Sweden)

    Taghi Abutalebi Ahmadi

    2013-07-01

    Full Text Available The purpose of this study is to take a look at problem-solving model for managing stress and anxiety. If each of us as a human being has an organized method for solving the different problems of our life, at that time we can get along with stress and anxiety easily. The capability of problem solving makes it possible for that person a to distinguish emotions in himself and others b to understand how excitement affects behavior c to be able to show different reactions to different emotions. If we don’t deal with emotional states such as grief, anger or anxiety properly, theses emotions will have negative effects on the physical and mental health of the person. Problem solving teaching is a treatment method by which the person learns to utilize effective cognitive skills to get along with inter-personal and problematic situations. In this study, we would like to emphasize the importance of the problem-solving teaching, and learn about its varieties and principal and implementation techniques, so that we can use it to manage our internal and environmental stressors. Among the various models, I will mention the easy and helpful five-step problem solving approach of Dixon and Glover (1984, as cited Yari (2009 as an example including describing the problem, stating the problem in precise and clear terms, selecting guidelines for solving the problems and prioritizing them, implementing the guidelines characterized at the previous stage, finally evaluating. At this stage, we will consider what we have gained vis a vis what we had hoped to gain.

  14. Problem Solving and Critical Thinking Skills of Undergraduate Nursing Students

    Directory of Open Access Journals (Sweden)

    Yalçın KANBAY

    2013-12-01

    Full Text Available Due to the fact that critical thinking and problem solving skills are essential components of educational and social lives of individuals, this present study which investigate critical thinking and problem solving skills of undergraduate students of nursing was planned. This is a descriptive study. The study population consisted of undergraduate nursing students of a university during the 2011-2012 academic year. Any specific sampling method was not determined and only the voluntary students was enrolled in the study . Several participants were excluded due to incomplete questionnaires, and eventually a total of 231 nursing students were included in the final sampling. Socio Demographic Features Data Form and the California Critical Thinking Disposition Scale and Problem Solving Inventory were used for data collection. The mean age of 231 subjects (148 girls, 83 boys was 21.34. The mean score of critical thinking was 255.71 for the first-grade, 255.57 for the second-grade, 264.73 for the third-grade, and 256.468 for the forth-grade students. The mean score of critical thinking was determined as 257.41 for the sample, which can be considered as an average value. Although there are mean score differences of critical thinking between the classes , they were not statistically significant (p> 0.05. With regard to the mean score of problem solving, the first-grade students had 92.86, the second-grade students had 94. 29, the third-grade students had 87.00, and the forth-grade students had 92.87. The mean score of problem solving was determined as 92.450 for the sample. Although there are differences between the classes in terms of mean scores of problem solving, it was not found statistically significant (p> 0.05. In this study, statistically significant correlation could not be identified between age and critical thinking skills of the subjects (p>0.05. However, a negative correlation was identified at low levels between critical thinking skills and

  15. An event-based architecture for solving constraint satisfaction problems

    Science.gov (United States)

    Mostafa, Hesham; Müller, Lorenz K.; Indiveri, Giacomo

    2015-12-01

    Constraint satisfaction problems are ubiquitous in many domains. They are typically solved using conventional digital computing architectures that do not reflect the distributed nature of many of these problems, and are thus ill-suited for solving them. Here we present a parallel analogue/digital hardware architecture specifically designed to solve such problems. We cast constraint satisfaction problems as networks of stereotyped nodes that communicate using digital pulses, or events. Each node contains an oscillator implemented using analogue circuits. The non-repeating phase relations among the oscillators drive the exploration of the solution space. We show that this hardware architecture can yield state-of-the-art performance on random SAT problems under reasonable assumptions on the implementation. We present measurements from a prototype electronic chip to demonstrate that a physical implementation of the proposed architecture is robust to practical non-idealities and to validate the theory proposed.

  16. Effect of Misconception on Transfer in Problem Solving

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    We examine the effect of misconceptions about friction on students' ability to solve problems and transfer from one context to another. We analyze written responses to paired isomorphic problems given to introductory physics students and discussions with a subset of students. Misconceptions associated with friction in problems were sometimes so robust that pairing them with isomorphic problems not involving friction did not help students fully discern their underlying similarities.

  17. Effects of problem-solving strategies teaching on the problem solving attitudes of cooperative learning groups in physics education

    OpenAIRE

    Tolga GÖK; SILAY, İlhan

    2008-01-01

    In this research, the effects of teaching cooperative problem solving strategies on physics students’ achievement, strategy levels, and problem solving attitudes were investigated. In this research, experimental procedures were carried out on second year upper secondary school students who attended a lower socio-economic status secondary school in the fall semester of 2005-2006 academic year in %zmir, Turkey. In this study, the pretest-posttest research model with control group was used. The ...

  18. Representational Format, Student Choice, and Problem Solving in Physics

    Science.gov (United States)

    Kohl, P. B.; Finkelstein, N. D.

    2005-09-01

    Student problem-solving ability appears to be tied to the representational format of the problem (math, pictorial, graphical, verbal). In a study of a 367-student algebra-based physics class, we examine student problem solving ability on homework problems given in four different representational formats, with problems as close to isomorphic as possible. In addition, we examine students' capacity for assessing their own representational competence by giving follow-up quizzes in which the students can choose between various problem formats. We report student performance and consider factors that may influence their ability or choices. As a control, part of the class was assigned a random-format follow-up quiz where students received quiz formats at random. We find that there are statistically significant performance differences between isomorphic problems. We also find that allowing students to choose which representational format they use improves student performance under some circumstances and degrades it in others.

  19. The Development of Potential Problem Solving of Students, Mahasarakham University

    Directory of Open Access Journals (Sweden)

    Amorn Suwannimitr

    2010-01-01

    Full Text Available Problem statement: The problem is a state of difficulty that needs to be resolved. It is involve in daily life of everyone including the students who study in University. Basically, they have to face with the physiological and psychological change; the significant problems also exactly affected to them. These situations led them to be the risk group in which they would have inappropriate behaviors. Consequently, the quality of life of the students, their families and society would impact eventually. Approach: To (1 describe the potential of problem solving of the students of Mahasarakham University, (2 compare the potential of problem solving between the group of students, (3 purpose the strategies to improve problem solving potential. This descriptive research using cluster random sampling, to define the sample, which consisted of 355 students, separated by 3 group. They were: (1 Human-Social Science, (2 Science and Technology and (3 Health Science. The research instrument was the problem solving inventory which comprised of three components; (1 problem solving confidence (2 approach-avoidance style and (3 personal control. Descriptive statistic and inferential statistic (t-test, F-test was applied. Results: The majority of the subjects were female (77.2% the mean age of 18.66 and more than 55.8% were over 19 years old. Most of them were studied in the area of Human and Social Science (69.3 %. The problem solving potential level of these students in overall were in moderate level with the mean scores of 102.95. To divided by group, their mean score were: (1 the Human-Social Science group = 104.85 (2; the Health Science group = 94.86 and (3 the Science and Technology = 105.32. Most of students who able to solve the problem quite well were coping with the positive approach by did not avoiding the problem. In addition, they played attention with problem analysis, using emotional control and using the process of decision making. In contrast, the

  20. THE OPEN SOLUTION METHODOLOGY APPROACH TO PROBLEM SOLVING

    Directory of Open Access Journals (Sweden)

    A.C.J. Van Rensburg

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The Open Solution Methodology is a generic problem solving methodology which is used to solve system related problems through the application of problem solving techniques. The focus of the application of this methodology is aimed at modelling organisations, or areas within organisations. The application ofthe Open Solution Methodology provides the benefit of having the ability to comprehend and integrate all aspects of the system, while having a formal and structured approach for problem solving. Together with the reduction in system analysis time, problem solving techniques such as simulation modelling are focused through the Open Solution Methodology models to enhance the quality Ofsolutions.

    AFRIKAANSE OPSOMMING: Die "Open Solution Methodology" is 'n generiese probleemoplossingsmetodologie wat gebruik word om stelselverwante probleme op te los deur die toepassing van problemoplossingstegnieke. Die fokus van hierdie metodologie toepassing is gernik op die modellering van organisasies, of gedeeltes van organisasies. Die "Open Solution Methodology" toepassing verskaf die voordeel om aile aspekte van die stelsel te verstaan en te integreer, terwyl daarvan 'n formele en gestruktureerde benadering tot probleemoplossing gebruik gemaak word. Tesame met die gepaardgaande verkorting van stelselanalisetyd, word die "Open Solution Methodology" modelle gebruik om die toepassing van probleemoplossingstegnieke te fokus omsodoende kwaliteit van die oplossings te verhoog.

  1. Evaluating Students' Beliefs in Problem Solving Process: A Case Study

    Science.gov (United States)

    Ozturk, Tugba; Guven, Bulent

    2016-01-01

    Problem solving is not simply a process that ends when an answer is found; it is a scientific process that evolves from understanding the problem to evaluating the solution. This process is affected by several factors. Among these, one of the most substantial is belief. The purpose of this study was to evaluate the beliefs of high school students…

  2. Using Clickers to Facilitate Development of Problem-Solving Skills

    Science.gov (United States)

    Levesque, Aime A.

    2011-01-01

    Classroom response systems, or clickers, have become pedagogical staples of the undergraduate science curriculum at many universities. In this study, the effectiveness of clickers in promoting problem-solving skills in a genetics class was investigated. Students were presented with problems requiring application of concepts covered in lecture and…

  3. Exploring the Role of Conceptual Scaffolding in Solving Synthesis Problems

    Science.gov (United States)

    Ding, Lin; Reay, Neville; Lee, Albert; Bao, Lei

    2011-01-01

    It is well documented that when solving problems experts first search for underlying concepts while students tend to look for equations and previously worked examples. The overwhelming majority of end-of-chapter (EOC) problems in most introductory physics textbooks contain only material and examples discussed in a single chapter, rarely requiring…

  4. Problem Solving in Genetics: Conceptual and Procedural Difficulties

    Science.gov (United States)

    Karagoz, Meryem; Cakir, Mustafa

    2011-01-01

    The purpose of this study was to explore prospective biology teachers' understandings of fundamental genetics concepts and the association between misconceptions and genetics problem solving abilities. Specifically, the study describes conceptual and procedural difficulties which influence prospective biology teachers' genetics problem solving…

  5. Paradigms and Problem-Solving: A Literature Review.

    Science.gov (United States)

    Berner, Eta S.

    1984-01-01

    Thomas Kuhn's conceptions of the influence of paradigms on the progress of science form the framework for analyzing how medical educators have approached research on medical problem solving. A new paradigm emphasizing multiple types of problems with varied solution strategies is proposed. (Author/MLW)

  6. Solving the Liner Shipping Fleet Repositioning Problem with Cargo Flows

    DEFF Research Database (Denmark)

    Tierney, Kevin; Askelsdottir, Björg; Jensen, Rune Møller;

    2015-01-01

    We solve a central problem in the liner shipping industry called the liner shipping fleet repositioning problem (LSFRP). The LSFRP poses a large financial burden on liner shipping firms. During repositioning, vessels are moved between routes in a liner shipping network. Liner carriers wish...

  7. A Lagrangean Relaxtion Based Algorithm for Solving Set Partitioning Problems

    NARCIS (Netherlands)

    van Krieken, M.G.C.; Fleuren, H.A.; Peeters, M.J.P.

    2004-01-01

    In this paper we discuss a solver that is developed to solve set partitioning problems.The methods used include problem reduction techniques, lagrangean relaxation and primal and dual heuristics.The optimal solution is found using a branch and bound approach.In this paper we discuss these techniques

  8. The art and science of participative problem solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    In this paper we will document that real-life problem solving in complex situations demands both rational (scientific) and intuitive (artistic) thinking. First, the concepts of art and science will be discussed; differences and similarities will be enhanced. Thereafter the concept of group problem...

  9. A Problem-Solving Oral Examination for Family Medicine

    Science.gov (United States)

    Van Wart, Arthur D.

    1974-01-01

    The College of Family Physicians of Canada has used in its certification examination a new type of structured problem-solving examination called the Formal Oral. A series of preselected problem areas such as the complaint, relevant data base, investigation, and treatment are scored by two examiners. (Editor/PG)

  10. Kangaroo Methods for Solving the Interval Discrete Logarithm Problem

    OpenAIRE

    Fowler, Alex; Galbraith, Steven

    2015-01-01

    The interval discrete logarithm problem is defined as follows: Given some $g,h$ in a group $G$, and some $N \\in \\mathbb{N}$ such that $g^z=h$ for some $z$ where $0 \\leq z < N$, find $z$. At the moment, kangaroo methods are the best low memory algorithm to solve the interval discrete logarithm problem. The fastest non parallelised kangaroo methods to solve this problem are the three kangaroo method, and the four kangaroo method. These respectively have expected average running times of $\\big(1...

  11. Students' strategies for solving partially specified physics problems

    OpenAIRE

    N. Erceg; M. Marusic; Slisko, J.

    2011-01-01

    In this study we present a pilot-investigation of high-school and university students' abilities to solve partially specified physics problem and ways which they handle the task. Students are asked to answer the question whether the given problem situation is physically possible or not in real-life without an explicit advice on what to calculate and how to judge. We used a combination of individual interview and written test methods. According to the type of the problem-solving approach the r...

  12. Successive projection method for solving the unbalanced Procrustes problem

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhenyue; DU Keqin

    2006-01-01

    We present a successive projection method for solving the unbalanced Procrustes problem: given matrix A ∈ Rn×n and B ∈ Rn×κ, n >κ, minimize the residual ‖AQ - B‖F with the orthonormal constraint QTQ = Iκ on the variant Q ∈ Rn×κ. The presented algorithm consists of solving k least squares problems with quadratic constraints and an expanded balance problem at each sweep. We give a detailed convergence analysis. Numerical experiments reported in this paper show that our new algorithm is superior to other existing methods.

  13. Numerical methods for solving terminal optimal control problems

    Science.gov (United States)

    Gornov, A. Yu.; Tyatyushkin, A. I.; Finkelstein, E. A.

    2016-02-01

    Numerical methods for solving optimal control problems with equality constraints at the right end of the trajectory are discussed. Algorithms for optimal control search are proposed that are based on the multimethod technique for finding an approximate solution of prescribed accuracy that satisfies terminal conditions. High accuracy is achieved by applying a second-order method analogous to Newton's method or Bellman's quasilinearization method. In the solution of problems with direct control constraints, the variation of the control is computed using a finite-dimensional approximation of an auxiliary problem, which is solved by applying linear programming methods.

  14. An adaptive genetic algorithm for solving bilevel linear programming problem

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems.Various methods are proposed for solving this problem. Of all the algorithms, the genetic algorithm is an alternative to conventional approaches to find the solution of the bilevel linear programming. In this paper, we describe an adaptive genetic algorithm for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes may be infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references.

  15. Domain decomposition methods for solving an image problem

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, W.K.; Tong, C.S. [Hong Kong Baptist College (Hong Kong)

    1994-12-31

    The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.

  16. Support method for solving an optimal xenon shutdown problem

    International Nuclear Information System (INIS)

    Since the discovering of the maximum principle by Pontriagin in 1956, methods for solving optimal control problems have been developed fast. There are the efforts to solve an optimal problem of transient process in a nuclear reactor using its ideas. However, the classical maximum principle does not show how to construct an optimal control or suboptimal control with a given exactness. We exploit mainly in the present work the ideas of the support method proposed by Gabasov and Kirillova for linear systems, in order to solve an optimal control problem for non-linear systems. The constructive maximum principle for non-linear dynamic systems with controllable structure received by us in this paper is new result. The ε - maximum principle is used for receiving an 7-phase ε - optimal control of optimal xenon shutdown problem. (author)

  17. Review on solving the forward problem in EEG source analysis

    Directory of Open Access Journals (Sweden)

    Vergult Anneleen

    2007-11-01

    Full Text Available Abstract Background The aim of electroencephalogram (EEG source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter. In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM, the finite element method (FEM and the finite difference method (FDM. In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative

  18. Cognitive Problems (Disorientation, Perception, Attention, Learning and Problem-Solving)

    Science.gov (United States)

    ... left side of the brain controls language. The left side of the brain controls the right side of the body. So, language problems are ... such as judging depth, size and distance. The right side of the brain controls the left side of the body. Persons with left-sided ...

  19. EISPACK-J: subprogram package for solving eigenvalue problems

    International Nuclear Information System (INIS)

    EISPACK-J, a subprogram package for solving eigenvalue problems, has been developed and subprograms with a variety of functions have been prepared. These subprograms can solve standard problems of complex matrices, general problems of real matrices and special problems in which only the required eigenvalues and eigenvectors are calculated. They are compared to existing subprograms, showing their features through benchmark tests. Many test problems, including realistic scale problems, are provided for the benchmark tests. Discussions are made on computer core storage and computing time required for each subprogram, and accuracy of the solution. The results show that the subprograms of EISPACK-J, based on Householder, QR and inverse iteration methods, are the best in computing time and accuracy. (author)

  20. Science Teachers and Problem Solving in Elementary Schools in Singapore

    Science.gov (United States)

    Lee, Kam-Wah L.; Tan, Li-Li; Goh, Ngoh-Khang; Lee, Kam-Wah L.; Chia, Lian-Sai; Chin, Christine

    2000-01-01

    The purpose of this study was to investigate the extent to which science teachers taught problem solving in elementary science. The survey involved 348 teachers in 36 Singapore elementary schools. The study investigated the science teachers' views about their use of science instructional techniques in general and the problem-solving teaching approach in particular. It also focused on the difficulties faced by science teachers in implementing the problem-solving teaching approach in the science classroom. It was found that the most emphasised activities were completion of science workbooks, teachers' explanation of concepts, and hands-on activities. The least emphasised activities were computer-based learning, activities beyond the textbook and workbook, and visits to the ecology garden and other parts of the school. Only about one-third of the teachers often conducted activities pertaining to problem solving. Most of them were more concerned about covering the science syllabus for examinations, the physical constraints of the learning environment, and pupils' abilities and motivation. On the other hand, teacher-related factors ranked low: these included teachers' preference for teaching and learning outcomes, their ability to maintain control over pupils' learning, feelings of inadequacy of science knowledge, and insufficient understanding of the pedagogical method of teaching problem solving.

  1. Language structures of pupils within problem posing and problem solving

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Filip

    Rzeszów: WUR, 2008 - (Maj, B.; Pytlak, M.; Swoboda, E.), s. 243 ISBN 978-83-7338-420-0. [Childrens´Mathematical Education (CME). Iwonicz Zdrój (PL), 17.08.2008-22.08.2008] R&D Projects: GA AV ČR KJB700190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : mathematics education * language * problem posing Subject RIV: AM - Education

  2. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    OpenAIRE

    Zhaokai Li; Man-Hong Yung; Hongwei Chen; Dawei Lu; Whitfield, James D.; Xinhua Peng; Alán Aspuru-Guzik; Jiangfeng Du

    2011-01-01

    Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental rea...

  3. The construction of the representation in solving a physics problem

    Directory of Open Access Journals (Sweden)

    Enrique A. Coleoni

    2001-09-01

    Full Text Available Written solutions of a physics problem provided by high school students in a physics olympiad are analysed. The study was done on the basis of theoretical developments which take into account peculiarities of the understanding of scientific problems. Some errors are typefied according to failures at different levels of the representation process. A categorization is proposed suggesting the possibility of reinterpreting some mistakes made by physics students in problem solving.

  4. THE IMPORTANCE OF MONITORING SKILLS IN PHYSICS PROBLEM SOLVING

    OpenAIRE

    Marlina; Corrienna; Nor; Johari; Abdul

    2016-01-01

    The purpose of this paper is to show how important “monitoring” is as metacognitive skills in solving physics problems in the field mechanics. Based on test scores, twenty one students were divided into two groups: more successful (MS) and less successful (LS) problem solvers. Students were allowed to think-aloud while they worked on their problems. Each of the students was videotaped, and interviewed right after the task. A schema was used to grade the written answers. As a concl...

  5. Project Management and Problem Solving Methods in Management Consulting

    OpenAIRE

    Gábor, Richard

    2011-01-01

    Conducting management consulting project for Transparency International Czech Republic, the leading non-profit non-governmental organization active in anti-corruption practices, by applying selected project management and problem solving methods, the objective of the thesis is to support the assumption that proper selection and application of suitable methods to problem identification, definition and decomposition enables to come up with the solution of the problem by analyzing it with no nee...

  6. Solving a manpower scheduling problem for airline catering using metaheuristics

    DEFF Research Database (Denmark)

    Ho, Sin C.; Leung, Janny M. Y.

    2010-01-01

    We study a manpower scheduling problem with job time-windows and job-skills compatibility constraints. This problem is motivated by airline catering operations, whereby airline meals and other supplies are delivered to aircrafts on the tarmac just before the flights take-off.  Jobs (flights) must...... simulated annealing heuristic approach to solve the problem. Computational experiments show that the tabu search approach outperforms the simulated annealing approach, and is capable of finding good solutions....

  7. Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm

    OpenAIRE

    Beiwei Zhang; Hanning Chen; Yunlong Zhu; Wenping Zou

    2011-01-01

    Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC) to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Ou...

  8. How to Formulate and Solve Statistical Recognition and Learning Problems

    OpenAIRE

    Schlesinger, Michail; Vodolazskiy, Evgeniy

    2015-01-01

    We formulate problems of statistical recognition and learning in a common framework of complex hypothesis testing. Based on arguments from multi-criteria optimization, we identify strategies that are improper for solving these problems and derive a common form of the remaining strategies. We show that some widely used approaches to recognition and learning are improper in this sense. We then propose a generalized formulation of the recognition and learning problem which embraces the whole ran...

  9. SOLVING MINIMUM SPANNING TREE PROBLEM WITH DNA COMPUTING

    Institute of Scientific and Technical Information of China (English)

    Liu Xikui; Li Yan; Xu Jin

    2005-01-01

    Molecular programming is applied to minimum spanning problem whose solution requires encoding of real values in DNA strands. A new encoding scheme is proposed for real values that is biologically plausible and has a fixed code length. According to the characteristics of the problem, a DNA algorithm solving the minimum spanning tree problem is given. The effectiveness of the proposed method is verified by simulation. The advantages and disadvantages of this algorithm are discussed.

  10. Deconstructing Insight: EEG Correlates of Insightful Problem Solving

    OpenAIRE

    Simone Sandkühler; Joydeep Bhattacharya

    2008-01-01

    BACKGROUND: Cognitive insight phenomenon lies at the core of numerous discoveries. Behavioral research indicates four salient features of insightful problem solving: (i) mental impasse, followed by (ii) restructuring of the problem representation, which leads to (iii) a deeper understanding of the problem, and finally culminates in (iv) an "Aha!" feeling of suddenness and obviousness of the solution. However, until now no efforts have been made to investigate the neural mechanisms of these co...

  11. Optimal calculational schemes for solving multigroup photon transport problem

    International Nuclear Information System (INIS)

    A scheme of complex algorithm for solving multigroup equation of radiation transport is suggested. The algorithm is based on using the method of successive collisions, the method of forward scattering and the spherical harmonics method, and is realized in the FORAP program (FORTRAN, BESM-6 computer). As an example the results of calculating reactor photon transport in water are presented. The considered algorithm being modified may be used for solving neutron transport problems

  12. Creative and Participative Problem Solving - The Art and the Science

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    This book collects my experiences as a facilitator for many different communities and organizations and as a teacher at the Technical University of Denmark for the courses Creativity and Problem Solving and Systemic Operational Research. Several of the chapters has been used in my lecturing...... activities in Denmark and abroad. The target groups for this book are people and professionals from communities, organizations, and ad-hoc groups facing problematic situations that have to be solved in an innovative way....

  13. Improve Problem Solving Skills through Adapting Programming Tools

    Science.gov (United States)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.

  14. Solving the MDBCS Problem Using the Metaheuric–Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Milena Bogdanovic

    2011-12-01

    Full Text Available The problems degree-limited graph of nodes considering the weight of the vertex or weight of the edges, with the aim to find the optimal weighted graph in terms of certain restrictions on the degree of the vertices in the subgraph. This class of combinatorial problems was extensively studied because of the implementation and application in network design, connection of networks and routing algorithms. It is likely that solution of MDBCS problem will find its place and application in these areas. The paper is given an ILP model to solve the problem MDBCS, as well as the genetic algorithm, which calculates a good enough solution for the input graph with a greater number of nodes. An important feature of the heuristic algorithms is that can approximate, but still good enough to solve the problems of exponential complexity. However, it should solve the problem heuristic algorithms may not lead to a satisfactory solution, and that for some of the problems, heuristic algorithms give relatively poor results. This is particularly true of problems for which no exact polynomial algorithm complexity. Also, heuristic algorithms are not the same, because some parts of heuristic algorithms differ depending on the situation and problems in which they are used. These parts are usually the objective function (transformation, and their definition significantly affects the efficiency of the algorithm. By mode of action, genetic algorithms are among the methods directed random search space solutions are looking for a global optimum.

  15. How to encourage university students to solve physics problems requiring mathematical skills: the 'adventurous problem solving' approach

    Science.gov (United States)

    DeMul, Frits F. M.; Batlle, Cristina Martin i.; DeBruijn, Imme; Rinzema, Kees

    2004-01-01

    Teaching physics to first-year university students (in the USA: junior/senior level) is often hampered by their lack of skills in the underlying mathematics, and that in turn may block their understanding of the physics and their ability to solve problems. Examples are vector algebra, differential expressions and multi-dimensional integrations, and the Gauss and Ampère laws learnt in electromagnetism courses. To enhance those skills in a quick and efficient way we have developed 'Integrating Mathematics in University Physics', in which students are provided with a selection of problems (exercises) that explicitly deal with the relation between physics and mathematics. The project is based on computer-assisted instruction (CAI), and available via the Internet (http://tnweb.tn.utwente.nl/onderwijs/; or http://www.utwente.nl/; search or click to: CONECT). Normally, in CAI a predefined student-guiding sequence for problem solving is used (systematic problem solving). For self-learning this approach was found to be far too rigid. Therefore, we developed the 'adventurous problem solving' (APS) method. In this new approach, the student has to find the solution by developing his own problem-solving strategy in an interactive way. The assessment of mathematical answers to physical questions is performed using a background link with an algebraic symbolic language interpreter. This manuscript concentrates on the subject of APS.

  16. Teaching Problem Solving; the Effect of Algorithmic and Heuristic Problem Solving Training in Relation to Task Complexity and Relevant Aptitudes.

    Science.gov (United States)

    de Leeuw, L.

    Sixty-four fifth and sixth-grade pupils were taught number series extrapolation by either an algorithm, fully prescribed problem-solving method or a heuristic, less prescribed method. The trained problems were within categories of two degrees of complexity. There were 16 subjects in each cell of the 2 by 2 design used. Aptitude Treatment…

  17. An Algorithm to Solve Separable Nonlinear Least Square Problem

    Directory of Open Access Journals (Sweden)

    Wajeb Gharibi

    2013-07-01

    Full Text Available Separable Nonlinear Least Squares (SNLS problem is a special class of Nonlinear Least Squares (NLS problems, whose objective function is a mixture of linear and nonlinear functions. SNLS has many applications in several areas, especially in the field of Operations Research and Computer Science. Problems related to the class of NLS are hard to resolve having infinite-norm metric. This paper gives a brief explanation about SNLS problem and offers a Lagrangian based algorithm for solving mixed linear-nonlinear minimization problem

  18. Second International Conference on Soft Computing for Problem Solving

    CERN Document Server

    Nagar, Atulya; Deep, Kusum; Pant, Millie; Bansal, Jagdish; Ray, Kanad; Gupta, Umesh

    2014-01-01

    The present book is based on the research papers presented in the International Conference on Soft Computing for Problem Solving (SocProS 2012), held at JK Lakshmipat University, Jaipur, India. This book provides the latest developments in the area of soft computing and covers a variety of topics, including mathematical modeling, image processing, optimization, swarm intelligence, evolutionary algorithms, fuzzy logic, neural networks, forecasting, data mining, etc. The objective of the book is to familiarize the reader with the latest scientific developments that are taking place in various fields and the latest sophisticated problem solving tools that are being developed to deal with the complex and intricate problems that are otherwise difficult to solve by the usual and traditional methods. The book is directed to the researchers and scientists engaged in various fields of Science and Technology.

  19. A "feasible direction" search for Lineal Programming problem solving

    Directory of Open Access Journals (Sweden)

    Jaime U Malpica Angarita

    2010-04-01

    Full Text Available The study presents an approach to solve linear programming problems with no artificial variables. A primal linear minimization problem is standard form and its associated dual linear maximization problem are used. Initially, the dual (or a partial dual program is solved by a "feasible direction" search, where the Karush-Kuhn-Tucker conditions help to verify its optimality and then its feasibility. The "feasible direction" search exploits the characteristics of the convex polyhedron (or prototype formed by the dual program constraints to find a starting point and then follows line segments, whose directions are found in afine subspaces defined by boundary hyperplanes of polyhedral faces, to find next points up to the (an optimal one. Them, the remaining dual constraints not satisfaced at that optimal dual point, if there are any, are handled as nonbasic variables of the primal program, which is to be solved by such "feasible direction" search.

  20. Third International Conference on Soft Computing for Problem Solving

    CERN Document Server

    Deep, Kusum; Nagar, Atulya; Bansal, Jagdish

    2014-01-01

    The present book is based on the research papers presented in the 3rd International Conference on Soft Computing for Problem Solving (SocProS 2013), held as a part of the golden jubilee celebrations of the Saharanpur Campus of IIT Roorkee, at the Noida Campus of Indian Institute of Technology Roorkee, India. This book is divided into two volumes and covers a variety of topics including mathematical modelling, image processing, optimization, swarm intelligence, evolutionary algorithms, fuzzy logic, neural networks, forecasting, medical and health care, data mining etc. Particular emphasis is laid on soft computing and its application to diverse fields. The prime objective of the book is to familiarize the reader with the latest scientific developments that are taking place in various fields and the latest sophisticated problem solving tools that are being developed to deal with the complex and intricate problems, which are otherwise difficult to solve by the usual and traditional methods. The book is directed ...

  1. Solving the constrained shortest path problem using random search strategy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, we propose an improved walk search strategy to solve the constrained shortest path problem. The proposed search strategy is a local search algorithm which explores a network by walker navigating through the network. In order to analyze and evaluate the proposed search strategy, we present the results of three computational studies in which the proposed search algorithm is tested. Moreover, we compare the proposed algorithm with the ant colony algorithm and k shortest paths algorithm. The analysis and comparison results demonstrate that the proposed algorithm is an effective tool for solving the constrained shortest path problem. It can not only be used to solve the optimization problem on a larger network, but also is superior to the ant colony algorithm in terms of the solution time and optimal paths.

  2. Engineering neural systems for high-level problem solving.

    Science.gov (United States)

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem-solving

  3. A Review of Problem Solving Capabilities in Lean Process Management

    Directory of Open Access Journals (Sweden)

    A. P. Puvanasvaran

    2008-01-01

    Full Text Available Human factor plays an important role in ensuring lean process management to be successful and provides good proposition for the success of the organization in the long run. One of the main elements of people is their problem solving capability in identifying and eliminating wastages. The purpose of this paper was to review problem solving capabilities in lean process management; and identifying the important factors and needs for lean process management. Beside that the paper also proposed the conceptual framework of people development system which can help organizations to enhance employees' capability in identifying and eliminating wastages continuously and effectively.

  4. A Novel Approach to Solve the FMS Formation Problem

    Institute of Scientific and Technical Information of China (English)

    Liu Zhong; Zhou Yunfei; Li Peigen; Duan Zhengeheng

    2001-01-01

    We propose in this paper a genetic algorithm (GA) based approach to solve the Flexible Manufacturing System (FMS) formation problem. First, we divide the unity of machines into small groups or cells using Group Technology (GT). And an option for considering the minimization of workload variation between cells is include&. Then the implementation is done using GA. When using GA, the designer is allowed to specify the number of cells and impose lower and upper bounds on cell size. This makes the GA scheme flexible for solving the FMS formation problems.

  5. A Parallel Processing Algorithms for Solving Factorization and Knapsack Problems

    Directory of Open Access Journals (Sweden)

    G.Aloy Anuja Mary

    2012-03-01

    Full Text Available Quantum and Evolutionary computation are new forms of computing by their unique paradigm for designing algorithms.The Shors algorithm is based on quantum concepts such as Qubits, superposition and interference which is used to solve factoring problem that has a great impact on cryptography once the quantum computers becomes a reality. The Genetic algorithm is a computational paradigm based on natural evolution including survival of the fittest, reproduction, and mutation is used to solve NP_hard knapsack problem. These two algorithms are unique in achieving speedup in computation by their adaptation of parallelism in processing.

  6. Doing physics with scientific notebook a problem solving approach

    CERN Document Server

    Gallant, Joseph

    2012-01-01

    The goal of this book is to teach undergraduate students how to use Scientific Notebook (SNB) to solve physics problems. SNB software combines word processing and mathematics in standard notation with the power of symbolic computation. As its name implies, SNB can be used as a notebook in which students set up a math or science problem, write and solve equations, and analyze and discuss their results. Written by a physics teacher with over 20 years experience, this text includes topics that have educational value, fit within the typical physics curriculum, and show the benefits of using SNB.

  7. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    Science.gov (United States)

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  8. A framework for solving ill-structured community problems

    Science.gov (United States)

    Keller, William Cotesworth

    A multifaceted protocol for solving ill-structured community problems has been developed. It embodies the lessons learned from the past by refining and extending features of previous models from the systems thinkers, and the fields of behavioral decision making and creative problem solving. The protocol also embraces additional features needed to address the unique aspects of community decision situations. The essential elements of the protocol are participants from the community, a problem-solving process, a systems picture, a facilitator, a modified Delphi method of communications, and technical expertise. This interdisciplinary framework has been tested by a quasi experiment with a real world community problem (the high cost of electrical power on Long Island, NY). Results indicate the protocol can enable members of the community to understand a complicated, ill-structured problem and guide them to action to solve the issue. However, the framework takes time (over one year in the test case) and will be inappropriate for crises where quick action is needed.

  9. Building problem solving environments with the arches framework

    Energy Technology Data Exchange (ETDEWEB)

    Debardeleben, Nathan [Los Alamos National Laboratory; Sass, Ron [U NORTH CAROLINA; Stanzione, Jr., Daniel [ASU; Ligon, Ill, Walter [CLEMSON UNIV

    2009-01-01

    The computational problems that scientists face are rapidly escalating in size and scope. Moreover, the computer systems used to solve these problems are becoming significantly more complex than the familiar, well-understood sequential model on their desktops. While it is possible to re-train scientists to use emerging high-performance computing (HPC) models, it is much more effective to provide them with a higher-level programming environment that has been specialized to their particular domain. By fostering interaction between HPC specialists and the domain scientists, problem-solving environments (PSEs) provide a collaborative environment. A PSE environment allows scientists to focus on expressing their computational problem while the PSE and associated tools support mapping that domain-specific problem to a high-performance computing system. This article describes Arches, an object-oriented framework for building domain-specific PSEs. The framework was designed to support a wide range of problem domains and to be extensible to support very different high-performance computing targets. To demonstrate this flexibility, two PSEs have been developed from the Arches framework to solve problem in two different domains and target very different computing platforms. The Coven PSE supports parallel applications that require large-scale parallelism found in cost-effective Beowulf clusters. In contrast, RCADE targets FPGA-based reconfigurable computing and was originally designed to aid NASA Earth scientists studying satellite instrument data.

  10. Neural Activity When People Solve Verbal Problems with Insight

    Directory of Open Access Journals (Sweden)

    Jung-Beeman Mark

    2004-01-01

    Full Text Available People sometimes solve problems with a unique process called insight, accompanied by an "Aha!" experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1 revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2 revealed a sudden burst of high-frequency (gamma-band neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them.

  11. Introducing the Harmonic Mean Solving a Tourist’s Problem

    Directory of Open Access Journals (Sweden)

    Anna Bossi

    2015-06-01

    Full Text Available This exercise can be given to a group of students with basic knowledge of mathematics and physics at the beginning of a lesson. We can imagine that there will be some students that will solve the exercise using the “common sense” solution recalling basic notions of physics and some students that will solve the exercise recalling basic notion of physics and computing a mean velocity using the arithmetic mean, the most common mean. At the end of the exercise, the teacher will compare the two solutions and will present the harmonic mean as the fastest solution for the students that solved the problem using the “common sense” solution and as the correct mean to be used for the students that solved the exercise computing a mean velocity

  12. Linking Curriculum, Instruction, and Assessment: The Problem Solving Strand, Grades 3-8 Mathematics. Teacher Guide.

    Science.gov (United States)

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Accountability Services/Research.

    Problem solving is one of the main components of mathematics education. This document treats problem solving as a process to be used for learning skills across the mathematics curriculum. Definition of problem solving, the environments promoting problem solving, teaching behaviors and attitudes that enhance problem solving, the criteria for good…

  13. Comparison of Problem Solving from Engineering Design to Software Design

    DEFF Research Database (Denmark)

    Ahmed-Kristensen, Saeema; Babar, Muhammad Ali

    2012-01-01

    Observational studies of engineering design activities can inform the research community on the problem solving models that are employed by professional engineers. Design is defined as an ill-defined problem which includes both engineering design and software design, hence understanding problem...... solving models from other design domains is of interest to the engineering design community. For this paper an observational study of two software design sessions performed for the workshop on “Studying professional Software Design” is compared to analysis from engineering design. These findings provide...... useful insights of how software designers move from a problem domain to a solution domain and the commonalities between software designers’ and engineering designers’ design activities. The software designers were found to move quickly to a detailed design phase, employ co-.evolution and adopt a...

  14. Ant Colony Search Algorithm for Solving Unit Commitment Problem

    Directory of Open Access Journals (Sweden)

    M.Surya Kalavathi

    2013-07-01

    Full Text Available In this paper Ant Colony Search Algorithm is proposed to solve thermal unit commitment problem. Ant colony search (ACS studies are inspired from the behavior of real ant colonies that are used to solve function or combinatorial optimization problems. In the ACSA a set of cooperating agents called ants cooperates to find good solution of unit commitment problem of thermal units. The UC problem is to determine a minimal cost turn-on and turn-off schedule of a set of electrical power generating units to meet a load demand while satisfying a set of operational constraints. This proposed approach is a tested on 10 unit power system and compared to conventional methods.

  15. Acquisition and performance of a problem-solving skill.

    Science.gov (United States)

    Morgan, B. B., Jr.; Alluisi, E. A.

    1971-01-01

    The acquisition of skill in the performance of a three-phase code transformation task (3P-COTRAN) was studied with 20 subjects who solved 27 3P-COTRAN problems during each of 8 successive sessions. The purpose of the study was to determine the changes in the 3P-COTRAN factor structure resulting from practice, the distribution of practice-related gains in performance over the nine measures of the five 3P-COTRAN factors, and the effects of transformation complexities on the 3P-COTRAN performance of subjects. A significant performance gain due to practice was observed, with improvements in speed continuing even when accuracy reached asymptotic levels. Transformation complexity showed no effect on early performances but the 3- and 4-element transformations were solved quicker than the 5-element transformation in the problem-solving Phase III of later skilled performances.

  16. Towards a Cooperation Knowledge Level for Collaborative Problem Solving

    OpenAIRE

    Jennings, N. R.

    1992-01-01

    The cooperation knowledge level is a new computer level specifically for multi-agent problem solvers which describes rich and explicit models of common social phenomena. A cooperation level description (called joint responsibility) is developed to describe how participants should behave during interactions in which groups of agents collaborate to solve a common problem. The utility of this model is highlighted in the real-world environment of electricity transport management in which agents h...

  17. The Strength of the Strongest Ties in Collaborative Problem Solving

    DEFF Research Database (Denmark)

    de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez;

    2014-01-01

    Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks......-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems....

  18. Monte Carlo method for solving a parabolic problem

    Directory of Open Access Journals (Sweden)

    Tian Yi

    2016-01-01

    Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.

  19. Solve the partitioning problem by sticker model in DNA computing

    Institute of Scientific and Technical Information of China (English)

    QU Huiqin; LU Mingming; ZHU Hong

    2004-01-01

    The aim of this work is to solve the partitioning problem, the most canonical NP-complete problem containing numerical parameters, within the sticker model of DNA computing. We firstly design a parallel program for addition, and then give a program to calculate the subset sums of a set. At last, a program for partitioning is given, which contains the former programs. Furthermore, the correctness of each program is proved in this paper.

  20. Solving the Quadratic Assignment Problem by a Hybrid Algorithm

    Directory of Open Access Journals (Sweden)

    Aldy Gunawan

    2011-01-01

    Full Text Available This paper presents a hybrid algorithm to solve the Quadratic Assignment Problem (QAP. The proposed algorithm involves using the Greedy Randomized Adaptive Search Procedure (GRASP to obtain an initial solution, and then using a combined Simulated Annealing (SA and Tabu Search (TS algorithm to improve the solution. Experimental results  indicate that the hybrid algorithm is able to obtain good quality solutions for QAPLIB test problems within reasonable computation time.

  1. Domain decomposition method for solving elliptic problems in unbounded domains

    International Nuclear Information System (INIS)

    Computational aspects of the box domain decomposition (DD) method for solving boundary value problems in an unbounded domain are discussed. A new variant of the DD-method for elliptic problems in unbounded domains is suggested. It is based on the partitioning of an unbounded domain adapted to the given asymptotic decay of an unknown function at infinity. The comparison of computational expenditures is given for boundary integral method and the suggested DD-algorithm. 29 refs.; 2 figs.; 2 tabs

  2. The bees algorithm: Modelling nature to solve complex optimisation problems

    OpenAIRE

    Pham, Duc; Le-Thi, Hoai; Castellani, Marco

    2013-01-01

    The Bees Algorithm models the foraging behaviour of honey bees in order to solve optimisation problems. The algorithm performs a kind of exploitative neighbourhood search combined with random explorative search. This paper describes the Bees Algorithm and presents two application examples: the training of neural networks to predict the energy efficiency of buildings, and the solution of the protein folding problem. The Bees Algorithm proved its effectiveness and speed, and obtained very compe...

  3. A Lagrangean Relaxtion Based Algorithm for Solving Set Partitioning Problems

    OpenAIRE

    Krieken, M.G.C. van; Fleuren, H.A.; Peeters, M.J.P.

    2004-01-01

    In this paper we discuss a solver that is developed to solve set partitioning problems.The methods used include problem reduction techniques, lagrangean relaxation and primal and dual heuristics.The optimal solution is found using a branch and bound approach.In this paper we discuss these techniques.Furthermore, we present the results of several computational experiments and compare the performance of our solver with the well-known mathematical optimization solver Cplex.

  4. Robotic Toys as a Catalyst for Mathematical Problem Solving

    Science.gov (United States)

    Highfield, Kate

    2010-01-01

    Robotic toys present unique opportunities for teachers of young children to integrate mathematics learning with engaging problem-solving tasks. This article describes a series of tasks using Bee-bots and Pro-bots, developed as part a larger project examining young children's use of robotic toys as tools in developing mathematical and metacognitive…

  5. The Nature of Gestures' Beneficial Role in Spatial Problem Solving

    Science.gov (United States)

    Chu, Mingyuan; Kita, Sotaro

    2011-01-01

    Co-thought gestures are hand movements produced in silent, noncommunicative, problem-solving situations. In the study, we investigated whether and how such gestures enhance performance in spatial visualization tasks such as a mental rotation task and a paper folding task. We found that participants gestured more often when they had difficulties…

  6. Learning Styles and Problem Solving Skills of Turkish Prospective Teachers

    Science.gov (United States)

    Gencel, Ilke Evin

    2015-01-01

    Global changes in educational discourse have an impact on educational systems, so teacher education programs need to be transformed to better train teachers and to contribute to their professional development. In this process learning styles and problem solving skills should be considered as individual differences which have an impact in…

  7. Representational scripting to support students’ online problem-solving performance

    NARCIS (Netherlands)

    Slof, Bert; Erkens, Gijsbert; Kirschner, Paul A.

    2011-01-01

    Slof, B., Erkens, G., & Kirschner, P. A. (2010, July). Representational scripting to support students’ online problem-solving performance. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Learning in the Disciplines: Proceedings of the 9th International Conference of the Learning Sciences (ICLS 2010) Vo

  8. Divulging Intertextual Processes in the Problem-Solving of Hypermedia.

    Science.gov (United States)

    Yang, Shu Ching

    1999-01-01

    Investigates the patterns of intertextual linking as learners engaged in problem solving when using hypermedia. Learners were observed in their synthesized discourse in six cases using Perseus, a Greek culture database. Discusses themes that emerged from learners' on-line protocols and interactions and implications for instructional designers.…

  9. What Do Employers Pay for Employees' Complex Problem Solving Skills?

    Science.gov (United States)

    Ederer, Peer; Nedelkoska, Ljubica; Patt, Alexander; Castellazzi, Silvia

    2015-01-01

    We estimate the market value that employers assign to the complex problem solving (CPS) skills of their employees, using individual-level Mincer-style wage regressions. For the purpose of the study, we collected new and unique data using psychometric measures of CPS and an extensive background questionnaire on employees' personal and work history.…

  10. Grading Homework to Emphasize Problem-Solving Process Skills

    Science.gov (United States)

    Harper, Kathleen A.

    2012-01-01

    This article describes a grading approach that encourages students to employ particular problem-solving skills. Some strengths of this method, called "process-based grading," are that it is easy to implement, requires minimal time to grade, and can be used in conjunction with either an online homework delivery system or paper-based homework.

  11. Reversible Reasoning and the Working Backwards Problem Solving Strategy

    Science.gov (United States)

    Ramful, Ajay

    2015-01-01

    Making sense of mathematical concepts and solving mathematical problems may demand different forms of reasoning. These could be either domain-based, such as algebraic, geometric or statistical reasoning, while others are more general such as inductive/deductive reasoning. This article aims at giving visibility to a particular form of reasoning…

  12. Using Depth Intuition in Creative Problem Solving and Strategic Innovation.

    Science.gov (United States)

    Markley, O. W.

    1988-01-01

    The article describes four step-by-step methods to sharpen intuitive capacities for problem-solving and innovation. Visionary and transpersonal knowledge processes are tapped to gain access to relatively deep levels of intuition. The methods are considered useful for overcoming internal blockages or resistance, developing organizational mission…

  13. Open Systems Science From Understanding Principles to Solving Problems

    CERN Document Server

    Tokoro, M

    2010-01-01

    Open systems science is the methodology employed to manage and solve the problems in systems whose operation involves interaction with the outside world, as opposed to being 'closed' and complete within themselves. This book explains the basic concept of open systems science and how open systems science can be applied to different disciplines

  14. Team Self-Assessment: Problem Solving for Small Workgroups.

    Science.gov (United States)

    LoBue, Robert

    2002-01-01

    Describes team self-assessment, a task force approach involving frontline workers/supervisors in solving problems or improving performance. Provides examples and discusses its theoretical bases: control self-assessment, Belbin's team roles research, and the team climate inventory. (Contains 23 references.) (SK)

  15. Conceptions of Efficiency: Applications in Learning and Problem Solving

    Science.gov (United States)

    Hoffman, Bobby; Schraw, Gregory

    2010-01-01

    The purpose of this article is to clarify conceptions, definitions, and applications of learning and problem-solving efficiency. Conceptions of efficiency vary within the field of educational psychology, and there is little consensus as to how to define, measure, and interpret the efficiency construct. We compare three diverse models that differ…

  16. The Pyramid Question: A Problem-Solving Adventure.

    Science.gov (United States)

    McClintock, Ruth M.

    1997-01-01

    Presents a question designed to launch a discovery journey through conjecture, research, serendipitous encounters, proof, answers, and new questions. Reports some discoveries and suggests ways in which to incorporate this strategy into classrooms. Presents a geometry project that incorporates this problem-solving approach to mathematics. (JRH)

  17. Client-Centered Problem-Solving Networks in Complex Organizations.

    Science.gov (United States)

    Tucker, Charles; Hanna, Michael

    Employees in different kinds of organizations were surveyed for their perceptions of their companies' client and operational problem-solving networks. The individuals came from a manufacturing firm, a community college, a telephone company, a farmers' cooperative, and a hospital. Interviews were conducted with those people reporting numerous…

  18. Training Insight Problem Solving through Focus on Barriers and Assumptions

    Science.gov (United States)

    Walinga, Jennifer; Cunningham, J. Barton; MacGregor, James N.

    2011-01-01

    Recent research has reported successful training interventions that improve insight problem solving. In some ways this is surprising, because the processes involved in insight solutions are often assumed to be unconscious, whereas the training interventions focus on conscious cognitive strategies. We propose one mechanism that may help to explain…

  19. A Study of Subordinate Skills in Science Problem Solving.

    Science.gov (United States)

    Wiegand, Virginia Keister

    A Piagetan task (transfer task) and a complex science task (final task) were used to compare the maturational view of Piaget with that of cumulative learning with respect to solving a science problem. A learning hierarchy of subordinate capabilities was constructed for the complex science task. Three phases of the experiment were: (1) pretest on…

  20. Why Teach Cooperative Problem-Solving in Adult Education?

    Science.gov (United States)

    Walker, Ann

    2013-01-01

    This article explores aspects of the theory and practice of cooperative problem solving in education from the perspective of community-based adult learning. It describes how society can benefit from using collaborative and questioning approaches as a positive alternative to more confrontational methods of resolving differences and how collective…

  1. Problem Solving Abilities and Perceptions in Alternative Certification Mathematics Teachers

    Science.gov (United States)

    Evans, Brian R.

    2012-01-01

    It is important for teacher educators to understand new alternative certification middle and high school teachers' mathematical problem solving abilities and perceptions. Teachers in an alternative certification program in New York were enrolled in a proof-based algebra course. At the beginning and end of a semester participants were given a…

  2. The Effect of Alternative Solutions on Problem Solving Performance

    Science.gov (United States)

    Lee, Shin-Yi

    2011-01-01

    The purpose of this study was to investigate the effect of instruction in alternative solutions on Taiwanese eighth-grade students' mathematical problem solving performance. This study was exploratory rather than experimental. Alternative-Solution Worksheet (ASW) was developed to encourage students' engagement with alternative solutions to…

  3. The Emotional Dimensions of the Problem-Solving Process.

    Science.gov (United States)

    Hill, Barbara; And Others

    1979-01-01

    Predictable affective responses are evoked during each phase of a group or organizational problem-solving process. With the needs assessment phase come hope and energy; with goal-setting, confusion and dissatisfaction; with action planning, involvement and accomplishment; with implementation, "stage fright" and joy; with evaluation, pride or…

  4. Observations of Young Children Solving Problems with Computers and Robots.

    Science.gov (United States)

    Forman, George

    1986-01-01

    Children, aged three to seven years, were observed in spontaneous and structured situations using computer graphics and robots. It was found that computer graphics can enhance reflectivity and that robots present a rich problem-solving environment for pairs of children as they try to coordinate commands to one robot. (Author/BB)

  5. A new method of solving the coefficient inverse problem

    Institute of Scientific and Technical Information of China (English)

    Ming-gen CUI; Ying-zhen LIN; Li-hong YANG

    2007-01-01

    This paper is concerned with the new method for solving the coefficient inverse problem in the reproducing kernel space. It is different from the previous studies. This method gives accurate results and shows that it is valid by the numerical example.

  6. Towards Efficient Measurement of Metacognition in Mathematical Problem Solving

    Science.gov (United States)

    Jacobse, Annemieke E.; Harskamp, Egbert G.

    2012-01-01

    Metacognitive monitoring and regulation play an essential role in mathematical problem solving. Therefore, it is important for researchers and practitioners to assess students' metacognition. One proven valid, but time consuming, method to assess metacognition is by using think-aloud protocols. Although valuable, practical drawbacks of this method…

  7. Extending Fibonacci Numbers to Negative Subscripts through Problem Solving

    Science.gov (United States)

    Abramovich, Sergei

    2010-01-01

    This classroom note shows how Fibonacci numbers with negative subscripts emerge from a problem-solving context enhanced by the use of an electronic spreadsheet. It reflects the author's work with prospective K-12 teachers in a number of mathematics content courses. (Contains 4 figures.)

  8. A Unified Approach for Solving Nonlinear Regular Perturbation Problems

    Science.gov (United States)

    Khuri, S. A.

    2008-01-01

    This article describes a simple alternative unified method of solving nonlinear regular perturbation problems. The procedure is based upon the manipulation of Taylor's approximation for the expansion of the nonlinear term in the perturbed equation. An essential feature of this technique is the relative simplicity used and the associated unified…

  9. MAUVE: A New Strategy for Solving and Grading Physics Problems

    Science.gov (United States)

    Hill, Nicole Breanne

    2016-01-01

    MAUVE (magnitude, answer, units, variables, and equations) is a framework and rubric to help students and teachers through the process of clearly solving and assessing solutions to introductory physics problems. Success in introductory physics often derives from an understanding of units, a command over dimensional analysis, and good bookkeeping.…

  10. A Set-Oriented Perspective on Solving Counting Problems

    Science.gov (United States)

    Lockwood, Elise

    2014-01-01

    In this article, I present the notion of a set-oriented perspective for solving counting problems that emerged during task-based interviews with postsecondary students. Framing the findings within Harel's "ways of thinking", I argue that students may benefit from this perspective, in which they view attending to sets of outcomes as…

  11. Problem Solving Teams in a Total Quality Management Environment.

    Science.gov (United States)

    Towler, Constance F.

    1993-01-01

    Outlines the problem-solving team training process used at Harvard University (Massachusetts), including the size and formation of teams, roles, and time commitment. Components of the process are explained, including introduction to Total Quality Management (TQM), customer satisfaction, meeting management, Parker Team Player Survey, interactive…

  12. Teaching Community Psychology: A Problem-Solving Approach.

    Science.gov (United States)

    Visser, Maretha; Cleaver, Glenda

    1999-01-01

    Describes a psychology course that implemented a problem-solving approach to provide students with a hands-on experience of community psychology in a multicultural South Africa. Traces the students' reactions to the course from their initial enthusiasm and emergence of frustration to their eventual understanding of other cultures. (CMK)

  13. Studies of visual attention in physics problem solving

    Science.gov (United States)

    Madsen, Adrian M.

    The work described here represents an effort to understand and influence visual attention while solving physics problems containing a diagram. Our visual system is guided by two types of processes -- top-down and bottom-up. The top-down processes are internal and determined by ones prior knowledge and goals. The bottom-up processes are external and determined by features of the visual stimuli such as color, and luminance contrast. When solving physics problems both top-down and bottom-up processes are active, but to varying degrees. The existence of two types of processes opens several interesting questions for physics education. For example, how do bottom-up processes influence problem solvers in physics? Can we leverage these processes to draw attention to relevant diagram areas and improve problem-solving? In this dissertation we discuss three studies that investigate these open questions and rely on eye movements as a primary data source. We assume that eye movements reflect a person's moment-to-moment cognitive processes, providing a window into one's thinking. In our first study, we compared the way correct and incorrect solvers viewed relevant and novice-like elements in a physics problem diagram. We found correct solvers spent more time attending to relevant areas while incorrect solvers spent more time looking at novice-like areas. In our second study, we overlaid these problems with dynamic visual cues to help students' redirect their attention. We found that in some cases these visual cues improved problem-solving performance and influenced visual attention. To determine more precisely how the perceptual salience of diagram elements influenced solvers' attention, we conducted a third study where we manipulated the perceptual salience of the diagram elements via changes in luminance contrast. These changes did not influence participants' answers or visual attention. Instead, similar to our first study, the time spent looking in various areas of the

  14. Problems raised by participation of foreign citizens in national licensing procedures - aspects of public international law

    International Nuclear Information System (INIS)

    In western Europe persons living in border areas increasingly ask for participation in national licensing procedures for nuclear installations to be erected close to the border in neighbouring countries. National practices vary in this matter. Whilst many countries concede rights of participation to foreign citizens in the border areas, the Federal Republic of Germany, e.g., denies foreign citizens direct participation. The paper enquires into the connected problems of public international law and pertinent international treaties and international customary low are examined. (NEA)

  15. Insight and analysis problem solving in microbes to machines.

    Science.gov (United States)

    Clark, Kevin B

    2015-11-01

    A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices. PMID

  16. Novel Problem Solving - The NASA Solution Mechanism Guide

    Science.gov (United States)

    Keeton, Kathryn E.; Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-01-01

    Over the past five years, the Human Health and Performance (HH&P) Directorate at the NASA Johnson Space Center (JSC) has conducted a number of pilot and ongoing projects in collaboration and open innovation. These projects involved the use of novel open innovation competitions that sought solutions from "the crowd", non-traditional problem solvers. The projects expanded to include virtual collaboration centers such as the NASA Human Health and Performance Center (NHHPC) and more recently a collaborative research project between NASA and the National Science Foundation (NSF). These novel problem-solving tools produced effective results and the HH&P wanted to capture the knowledge from these new tools, to teach the results to the directorate, and to implement new project management tools and coursework. The need to capture and teach the results of these novel problem solving tools, the HH&P decided to create a web-based tool to capture best practices and case studies, to teach novice users how to use new problem solving tools and to change project management training/. This web-based tool was developed with a small, multi-disciplinary group and named the Solution Mechanism Guide (SMG). An alpha version was developed that was tested against several sessions of user groups to get feedback on the SMG and determine a future course for development. The feedback was very positive and the HH&P decided to move to the beta-phase of development. To develop the web-based tool, the HH&P utilized the NASA Tournament Lab (NTL) to develop the software with TopCoder under an existing contract. In this way, the HH&P is using one new tool (the NTL and TopCoder) to develop the next generation tool, the SMG. The beta-phase of the SMG is planed for release in the spring of 2014 and results of the beta-phase testing will be available for the IAC meeting in September. The SMG is intended to disrupt the way problem solvers and project managers approach problem solving and to increase the

  17. Exploring the role of conceptual scaffolding in solving synthesis problems

    Directory of Open Access Journals (Sweden)

    Lin Ding1,*

    2011-10-01

    Full Text Available It is well documented that when solving problems experts first search for underlying concepts while students tend to look for equations and previously worked examples. The overwhelming majority of end-of-chapter (EOC problems in most introductory physics textbooks contain only material and examples discussed in a single chapter, rarely requiring a solver to conduct a general search for underlying concepts. Hypothesizing that complete reliance on EOC problems trains students to rely on a nonexpert approach, we designed and implemented “synthesis” problems, each combining two major concepts that are broadly separated in the teaching timeline. To provide students with guided conceptual scaffolding, we encapsulated each synthesis problem into a sequence with two preceding conceptually based multiple-choice questions. Each question contained one of the major concepts covered in the subsequent synthesis problem. Results from a small-scale interview study and two large-scale written tests showed that the scaffolding encouraged students to search for and apply appropriate fundamental principles in solving synthesis problems, and that repeated training using scaffolded synthesis problems also helped students to make cross-topic transfers.

  18. Individual and Social Problem Solving Problems of the Prophets in Methods

    OpenAIRE

    Öztoprak, Mustafa

    2015-01-01

    Different aspect of the human body and soul have been created problemswhere there is also quite normal. Importantly, with the necessity of humanbeings to live together, to solve the issues that they can show righteousness.Prophet, individual and social life has solved the problems faced by differentmethods. One of the problem‐solving aspect of our article, were examinedboth individually and socially. Individual problems mercifully treated theprophets, persuasion, anger management, empathy tak...

  19. High school students' problem-solving performance on realistic genetics problems

    Science.gov (United States)

    Slack, Susie Johnston; Stewart, Jim

    Problem solving is recognized as a valuable educational experience in science. Thus genetics, essentially a problem-solving science included in almost all high school biology courses, offers a fruitful area for studying student problem-solving performance. The research reported in this article describes the performance of 30 high school students solving 119 problems generated by the computer program GENETICS CONSTRUCTION KIT (Jungck & Calley, 1985). Solving GCK problems requires students to plan experiments, generate and interpret data, and reason from effects (phenotypic data) to causes (genotypic data). Research data consisted of transcribed audiotapes of students thinking aloud as they solved problems and computer printouts of initial data and sequence of crosses. Transcripts were analyzed for common actions and comments made during the problem-solving process in terms of initial data redescription and interpretation, hypothesis generation, cross data redescription and interpretation, solution synthesis, and solution confirmation. This study was done in an effort to add to the understanding of student problem-solving strategies and to develop a model of student performance - a model that when combined with a model of expert performance may serve as a basis for improving genetics instruction.

  20. Noticing relevant problem features: Activating prior knowledge affects problem solving by guiding encoding

    Directory of Open Access Journals (Sweden)

    NoelleMCrooks

    2013-11-01

    Full Text Available This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + _. Past work has shown that such problems are difficult for elementary school students (McNeil & Alibali, 2000. One possible reason is that children’s experiences in math classes may encourage them to think about equations in ways that are ultimately detrimental. Specifically, children learn a set of patterns that are potentially problematic (McNeil & Alibali, 2005: the perceptual pattern that all equations follow an “operations = answer” format, the conceptual pattern that the equal sign means “calculate the total,” and the procedural pattern that the correct way to solve an equation is to perform all of the given operations on all of the given numbers. Upon viewing an equivalence problem, knowledge of these patterns may be reactivated, leading to incorrect problem solving. We hypothesized that these patterns may negatively affect problem solving by influencing what people encode about a problems. To test this hypothesis in children would require strengthening their misconceptions, and this could be detrimental to their mathematical development. Therefore, we tested this hypothesis in undergraduate participants. Participants completed either control tasks or tasks that activated their knowledge of the three patterns, and were then asked to reconstruct and solve a set of equivalence problems. Participants in the knowledge activation condition encoded the problems less well than control participants. They also made more errors in solving the problems, and their errors resembled the errors children make when solving equivalence problems. Moreover, encoding performance mediated the effect of knowledge activation on equivalence problem solving. Thus, one way in which experience may affect equivalence problem solving is by influencing what students encode

  1. PARALLEL HYBRID METHODS USED IN OPTIMIZATION PROBLEMS SOLVING

    Directory of Open Access Journals (Sweden)

    Ionut BALAN

    2014-12-01

    Full Text Available This paper presents different models of hybrid algorithms that can be run on parallel architectures being used in optimization problems solving. In these models we used several techniques: genetic algorithms, ant colony and tabu search. Optimization problems can achieve a high degree of complexity, which is the main reason for the necessity of using of these methods in such incursions. With their cooperation, we tried to obtain satisfactory results in much better running time than the sequential versions. These models have been run using various parallel configurations on a cluster cores, which belong to „Stefan cel Mare” University. The results obtained for these models were compared with each other and with the results obtained for models described in other personal papers. The paper highlights the advantages of the parallel hybrid cooperation in solving of complex optimization problems. This paper is structured in four chapters: Introduction, Cooperative heterogeneous model, Cooperative hybrid models and Conclusions.

  2. Successful and unsuccessful problem solving in classical genetic pedigrees

    Science.gov (United States)

    Smith, Mike U.

    Using the think-aloud interview technique, 16 undergraduates and 11 genetics graduate students and biology faculty members were asked to solve from 1 to 3 classical genetics problems which require pedigree analysis. Subjects were classified as either successful or unsuccessful and the performances of these groups were analyzed from videotaped recordings of the interviews. A number of previously reported findings were corroborated. Additional observations are discussed in terms of genetic knowledge, use of production rules, strategy selection, use of critical cues, hypothesis testing, use of logic, understanding of issues of probability, and the thinking process itself. Taken collectively, these findings evidence a remarkable similarity between the successful solution of pedigree problems and the processes of medical diagnosis and scientific investigation. This convergence of research findings suggests a qualitative advance in the understanding of problem solving. Based on this understanding, recommendations for classroom instruction are presented.

  3. Solving SAT and Hamiltonian Cycle Problem Using Asynchronous P Systems

    Science.gov (United States)

    Tagawa, Hirofumi; Fujiwara, Akihiro

    In the present paper, we consider fully asynchronous parallelism in membrane computing, and propose two asynchronous P systems for the satisfiability (SAT) and Hamiltonian cycle problem. We first propose an asynchronous P system that solves SAT with n variables and m clauses, and show that the proposed P system computes SAT in O(mn2n) sequential steps or O(mn) parallel steps using O(mn) kinds of objects. We next propose an asynchronous P system that solves the Hamiltonian cycle problem with n nodes, and show that the proposed P system computes the problem in O(n!) sequential steps or O(n2) parallel steps using O(n2) kinds of objects.

  4. Solving Vertex Cover Problem Using DNA Tile Assembly Model

    Directory of Open Access Journals (Sweden)

    Zhihua Chen

    2013-01-01

    Full Text Available DNA tile assembly models are a class of mathematically distributed and parallel biocomputing models in DNA tiles. In previous works, tile assembly models have been proved be Turing-universal; that is, the system can do what Turing machine can do. In this paper, we use tile systems to solve computational hard problem. Mathematically, we construct three tile subsystems, which can be combined together to solve vertex cover problem. As a result, each of the proposed tile subsystems consists of Θ(1 types of tiles, and the assembly process is executed in a parallel way (like DNA’s biological function in cells; thus the systems can generate the solution of the problem in linear time with respect to the size of the graph.

  5. Childhood physical punishment and problem solving in marriage.

    Science.gov (United States)

    Cast, Alicia D; Schweingruber, David; Berns, Nancy

    2006-02-01

    Drawing from social learning theories and symbolic interactionist understandings of social life, the authors suggest that physical punishment teaches aggressive and controlling strategies for solving the problems of living together and hinders the development of important problem-solving skills, specifically the ability to role take with others. These strategies and skills become part of an individual's toolkit for problem resolution within his or her marriage. The analysis is based on 188 married couples in Washington State who participated in a longitudinal study of the first 2 years of marriage. The analysis reveals the following: Individuals who were physically punished during childhood are more likely to engage in physical and verbal aggression with their spouses, individuals who were physically punished during childhood are more controlling with their spouses, and individuals who were physically punished during childhood are less able to take their spouse's perspective. PMID:16368764

  6. Solving Open Job-Shop Scheduling Problems by SAT Encoding

    Science.gov (United States)

    Koshimura, Miyuki; Nabeshima, Hidetomo; Fujita, Hiroshi; Hasegawa, Ryuzo

    This paper tries to solve open Job-Shop Scheduling Problems (JSSP) by translating them into Boolean Satisfiability Testing Problems (SAT). The encoding method is essentially the same as the one proposed by Crawford and Baker. The open problems are ABZ8, ABZ9, YN1, YN2, YN3, and YN4. We proved that the best known upper bounds 678 of ABZ9 and 884 of YN1 are indeed optimal. We also improved the upper bound of YN2 and lower bounds of ABZ8, YN2, YN3 and YN4.

  7. Solving dynamical inverse problems by means of Metabolic P systems.

    Science.gov (United States)

    Manca, V; Marchetti, L

    2012-07-01

    MP (Metabolic P) systems are a class of P systems introduced for modelling metabolic processes. We refer to the dynamical inverse problem as the problem of identifying (discrete) mathematical models exhibiting an observed dynamics. In this paper, we complete the definition of the algorithm LGSS (Log-gain Stoichiometric Stepwise regression) introduced in Manca and Marchetti (2011) for solving a general class of dynamical inverse problems. To this aim, we develop a reformulation of the classical stepwise regression in the context of MP systems. We conclude with a short review of two applications of LGSS for discovering the internal regulation logic of two phenomena relevant in systems biology. PMID:22261639

  8. A novel approach of solving the CNF-SAT problem

    OpenAIRE

    Wang, Xili

    2013-01-01

    In this paper, we discussed CNF-SAT problem (NP-Complete problem) and analysis two solutions that can solve the problem, the PL-Resolution algorithm and the WalkSAT algorithm. PL-Resolution is a sound and complete algorithm that can be used to determine satisfiability and unsatisfiability with certainty. WalkSAT can determine satisfiability if it finds a model, but it cannot guarantee to find a model even there exists one. However, WalkSAT is much faster than PL-Resolution, which makes WalkSA...

  9. Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem

    OpenAIRE

    Kanagasabai Lenin; B.Ravindhranath Reddy; M.Surya Kalavathi

    2015-01-01

    This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA) for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality  of wolf is  possessing  both individual...

  10. Citizen Participation, the 'Knowledge Problem' and Urban Land Use Planning: An Austrian Perspective on Institutional Choice

    OpenAIRE

    Mark Pennington

    2004-01-01

    At the forefront of the argument for government-directed land use planning is the notion that 'citizen participation' in urban land use decisions can avoid the problems associated with bureaucratic governance and tackle widespread instances of 'market failure'. Using illustrations from the British land use planning system this paper argues that participatory planning models are insufficiently attuned to the problems of social co-ordination generated by the absence of market prices and of the ...

  11. Self-Monitoring Checklists for Inquiry Problem-Solving: Functional Problem-Solving Methods for Students with Intellectual Disability

    Science.gov (United States)

    Miller, Bridget; Taber-Doughty, Teresa

    2014-01-01

    Three students with mild to moderate intellectual and multiple disability, enrolled in a self-contained functional curriculum class were taught to use a self-monitoring checklist and science notebook to increase independence in inquiry problem-solving skills. Using a single-subject multiple-probe design, all students acquired inquiry…

  12. Modified Block Iterative Method for Solving Convex Feasibility Problem, Equilibrium Problems and Variational Inequality Problems

    Institute of Scientific and Technical Information of China (English)

    Shi Sheng ZHANG; Chi Kin CHAN; H.W. JOSEPH LEE

    2012-01-01

    The purpose of this paper is by using the modified block iterative method to propose an algorithm for finding a common element in the intersection of the set of common fixed points of an infinite family of quasi-φ-asymptotically nonexpansive and the set of solutions to an equilibrium problem and the set of solutions to a variational inequality.Under suitable conditions some strong convergence theorems are established in 2-uniformly convex and uniformly smooth Banach spaces.As applications we utilize the results presented in the paper to solving the convex feasibility problem (CFP) and zero point problem of maximal monotone mappings in Banach spaces.The results presented in the paper improve and extend the corresponding results announced by many authors.

  13. Recent Advances in Solving the Protein Threading Problem

    CERN Document Server

    Andonov, Rumen; Gibrat, Jean-François; Marin, Antoine; Poirriez, Vincent; Yanev, Nikola

    2007-01-01

    The fold recognition methods are promissing tools for capturing the structure of a protein by its amino acid residues sequence but their use is still restricted by the needs of huge computational resources and suitable efficient algorithms as well. In the recent version of FROST (Fold Recognition Oriented Search Tool) package the most efficient algorithm for solving the Protein Threading Problem (PTP) is implemented due to the strong collaboration between the SYMBIOSE group in IRISA and MIG in Jouy-en-Josas. In this paper, we present the diverse components of FROST, emphasizing on the recent advances in formulating and solving new versions of the PTP and on the way of solving on a computer cluster a million of instances in a easonable time.

  14. IMPACT OF HEURISTIC STRATEGIES ON PUPILS’ ATTITUDES TO PROBLEM SOLVING

    Directory of Open Access Journals (Sweden)

    NOVOTNÁ, Jarmila

    2015-03-01

    Full Text Available The paper is a sequel to the article (Novotná et al., 2014, where the authors present the results of a 4-month experiment whose main aim was to change pupils’ culture of problem solving by using heuristic strategies suitable for problem solving in mathematics education. (Novotná et al., 2014 focused on strategies Analogy, Guess – check – revise, Systematic experimentation, Problem reformulation, Solution drawing, Working backwards and Use of graphs of functions. This paper focuses on two other heuristic strategies convenient for improvement of pupils’ culture of problem solving: Introduction of an auxiliary element and Omitting a condition. In the first part, the strategies Guess – Check – Revise, Working backwards, Introduction of an auxiliary element and Omitting a condition are characterized in detail and illustrated by examples of their use in order to capture their characteristics. In the second part we focus on the newly introduced strategies and analyse work with them in lessons using the tools from (Novotná et al., 2014. The analysis of results of the experiment indicates that, unlike in case of the strategy Introduction of an auxiliary element, successful use of the strategy Omitting a condition requires longer teacher’s work with the pupils. The following analysis works with the strategy Systematic experimentation, which seemed to be the easiest to master in (Novotná et al., 2014; we focus on the dangers it bears when it is used by pupils. The conclusion from (Novotná et al., 2014, which showed that if pupils are introduced to an environment that supports their creativity, their attitude towards problem solving changes in a positive way already after the period of four months, is confirmed.

  15. Tabu Search Algorithm to Solve the Intermodal Terminal Location Problem

    Directory of Open Access Journals (Sweden)

    E. Karimi∗

    2015-03-01

    Full Text Available Establishment of appropriate terminals is effective as the main gate entrance to international, national and local transportation network for economic performance, traffic safety and reduction of environmental pollution. This paper focuses on intermodal terminal location problem. The main objective of this problem is to determine which of the terminals of a set of candidate terminals should be opened such that the total cost be minimized. In this problem, demands of customers will ship directly (without the use of terminals between the origin and destination of customers, or intermodaly (by using two terminals or even by combination of both methods. Since this problem is NP-hard, metaheuristics algorithms such as tabu search (TS is used to solve it. The algorithm is compared with greedy randomized adaptive search procedure (GRASP on instance of this problem. Results show the efficiency of TS in comparision with GRASP.

  16. Solving network design problems via decomposition, aggregation and approximation

    CERN Document Server

    Bärmann, Andreas

    2016-01-01

    Andreas Bärmann develops novel approaches for the solution of network design problems as they arise in various contexts of applied optimization. At the example of an optimal expansion of the German railway network until 2030, the author derives a tailor-made decomposition technique for multi-period network design problems. Next, he develops a general framework for the solution of network design problems via aggregation of the underlying graph structure. This approach is shown to save much computation time as compared to standard techniques. Finally, the author devises a modelling framework for the approximation of the robust counterpart under ellipsoidal uncertainty, an often-studied case in the literature. Each of these three approaches opens up a fascinating branch of research which promises a better theoretical understanding of the problem and an increasing range of solvable application settings at the same time. Contents Decomposition for Multi-Period Network Design Solving Network Design Problems via Ag...

  17. Russian Doll Search for solving Constraint Optimization problems

    Energy Technology Data Exchange (ETDEWEB)

    Verfaillie, G.; Lemaitre, M. [CERT/ONERA, Toulouse (France); Schiex, T. [INRA, Castanet Tolosan (France)

    1996-12-31

    If the Constraint Satisfaction framework has been extended to deal with Constraint Optimization problems, it appears that optimization is far more complex than satisfaction. One of the causes of the inefficiency of complete tree search methods, like Depth First Branch and Bound, lies in the poor quality of the lower bound on the global valuation of a partial assignment, even when using Forward Checking techniques. In this paper, we introduce the Russian Doll Search algorithm which replaces one search by n successive searches on nested subproblems (n being the number of problem variables), records the results of each search and uses them later, when solving larger subproblems, in order to improve the lower bound on the global valuation of any partial assignment. On small random problems and on large real scheduling problems, this algorithm yields surprisingly good results, which greatly improve as the problems get more constrained and the bandwidth of the used variable ordering diminishes.

  18. Solving Multiple Timetabling Problems at Danish High Schools

    DEFF Research Database (Denmark)

    Kristiansen, Simon

    Planning problems at educational institutions are often time-consuming and complex tasks. Educational planning problems are studied using operational research techniques, which have been used with success and resulting in great improvements on the field. Educational planning problems are often...... School Timetabling, Student Sectioning and the Meeting Planning Problem. The underlying work of this thesis is carried out as an Industrial Ph.D. project in co-operation with the Danish software company MaCom A/S, which delivers administrative software solutions for high schools in Denmark. Research...... problems as mathematical models and solve them using operational research techniques. Two of the models and the suggested solution methods have resulted in implementations in an actual decision support software, and are hence available for the majority of the high schools in Denmark. These implementations...

  19. Games that Enlist Collective Intelligence to Solve Complex Scientific Problems

    Science.gov (United States)

    Burnett, Stephen; Furlong, Michelle; Melvin, Paul Guy; Singiser, Richard

    2016-01-01

    There is great value in employing the collective problem-solving power of large groups of people. Technological advances have allowed computer games to be utilized by a diverse population to solve problems. Science games are becoming more popular and cover various areas such as sequence alignments, DNA base-pairing, and protein and RNA folding. While these tools have been developed for the general population, they can also be used effectively in the classroom to teach students about various topics. Many games also employ a social component that entices students to continue playing and thereby to continue learning. The basic functions of game play and the potential of game play as a tool in the classroom are discussed in this article. PMID:27047610

  20. Solving the Dial-a-Ride Problem using Genetic algorithms

    DEFF Research Database (Denmark)

    Bergvinsdottir, Kristin Berg; Larsen, Jesper; Jørgensen, Rene Munk

    In the Dial-a-Ride problem (DARP) customers send transportation requests to an operator. A request consists of a specified pickup location and destination location along with a desired departure or arrival time and demand. The aim of DARP is to minimize transportation cost while satisfying custom...... routing problems for the vehicles using a routing heuristic. The algorithm is implemented in Java and tested on publicly available data sets....... service level constraints (Quality of Service). In this paper we present a genetic algorithm for solving the DARP. The algorithm is based on the classical cluster-first route-second approach, where it alternates between assigning customers to vehicles using a genetic algorithm and solving independent...

  1. Two personification strategies for solving circles packing problem

    Institute of Scientific and Technical Information of China (English)

    黄文奇[1; 许如初[2

    1999-01-01

    Two personification strategies are presented, which yield a highly efficient and practical algorithm for solving one of the NP hard problems——circles packing problem on the basis of the quasi-physical algorithm. A very clever polynomial time complexity degree approximate algorithm for solving this problem has been reported by Dorit S.Hochbaum and Wolfgang Maass in J. ACM. Their algorithm is extremely thorough-going and of great theoretical significance. But, just as they pointed out, their algorithm is feasible only in conception and even for examples frequently encountered in everyday life and of small scale, it is the case more often than not that up to a million years would be needed to perform calculations with this algorithm. It is suggested toward the end of their paper that a heuristic algorithm of higher practical effectiveness should be sought out. A direct response to their suggestion is intented to provide.

  2. Solving the Dial-a-Ride Problem using Genetic Algorithms

    DEFF Research Database (Denmark)

    Jørgensen, Rene Munk; Larsen, Jesper; Bergvinsdottir, Kristin Berg

    2007-01-01

    In the Dial-a-Ride problem (DARP), customers request transportation from an operator. A request consists of a specified pickup location and destination location along with a desired departure or arrival time and capacity demand. The aim of DARP is to minimize transportation cost while satisfying ...... routing problems for the vehicles using a routing heuristic. The algorithm is implemented in Java and tested on publicly available data sets. The new solution method has achieved solutions comparable with the current state-of-the-art methods....... customer service level constraints (Quality of Service). In this paper, we present a genetic algorithm (GA) for solving the DARP. The algorithm is based on the classical cluster-first, route-second approach, where it alternates between assigning customers to vehicles using a GA and solving independent...

  3. Solving All-SAT Problems by P Systems

    Institute of Scientific and Technical Information of China (English)

    GUO Ping; JI Jinfang; CHEN Haizhu; LIU Ran

    2015-01-01

    — The satisfiability problem (SAT) is a well known NP-complete problem. Obtaining All of the truth assignments of SAT is called All-SAT and it has numerous applications in artificial intelligence and computer theo-ries. Many algorithms about SAT have been built, but how to solve All-SAT is still diffi cult. P system is a new distributed and parallel computation model. We use mem-brane division, which is frequently investigated to obtain an exponential working space in a linear time, to design a family of P systems to solve All-SAT in polynomial time. Our work provides a new and eff ective solution to All-SAT in a distributed and parallel manner.

  4. Games that Enlist Collective Intelligence to Solve Complex Scientific Problems.

    Science.gov (United States)

    Burnett, Stephen; Furlong, Michelle; Melvin, Paul Guy; Singiser, Richard

    2016-03-01

    There is great value in employing the collective problem-solving power of large groups of people. Technological advances have allowed computer games to be utilized by a diverse population to solve problems. Science games are becoming more popular and cover various areas such as sequence alignments, DNA base-pairing, and protein and RNA folding. While these tools have been developed for the general population, they can also be used effectively in the classroom to teach students about various topics. Many games also employ a social component that entices students to continue playing and thereby to continue learning. The basic functions of game play and the potential of game play as a tool in the classroom are discussed in this article. PMID:27047610

  5. Games that Enlist Collective Intelligence to Solve Complex Scientific Problems

    Directory of Open Access Journals (Sweden)

    Stephen Burnett

    2015-09-01

    Full Text Available There is great value in employing the collective problem-solving power of large groups of people. Technological advances have allowed computer games to be utilized by a diverse population to solve problems. Science games are becoming more popular and cover various areas such as sequence alignments, DNA base-pairing, and protein and RNA folding. While these tools have been developed for the general population, they can also be used effectively in the classroom to teach students about various topics. Many games also employ a social component that entices students to continue playing and thereby to continue learning. The basic functions of game play and the potential of game play as a tool in the classroom are discussed in this article.

  6. High School Students’ Geometric Thinking, Problem Solving and Proof Skills

    Directory of Open Access Journals (Sweden)

    Hülya Kılıç

    2013-06-01

    Full Text Available The aim of this paper is to present the findings of a pilot study which was designed to investigate the effects of using dynamic geometry software on the tenth grade students’ geometric thinking, problem solving and proof skills. It was a quasi-experimental study consisted of 49 students from six different high schools around Istanbul. In the treatment groups, the students engaged with five dynamic geometry activities in the geometry lessons throughout the semester. Although no significant differences between the groups were observed, in the treatment groups, the students’ mean scores for each type of test increased significantly. The students’ answers for each item in the tests were also analyzed. It is found that students’ mean scores for each item were quite low such that they did not know the definitions of basic geometric concepts and the relationships between them and also they were not able to solve geometry problems and prove given arguments.

  7. Solving the Stokes problem on a massively parallel computer

    DEFF Research Database (Denmark)

    Axelsson, Owe; Barker, Vincent A.; Neytcheva, Maya;

    2001-01-01

    We describe a numerical procedure for solving the stationary two‐dimensional Stokes problem based on piecewise linear finite element approximations for both velocity and pressure, a regularization technique for stability, and a defect‐correction technique for improving accuracy. Eliminating the v...... is proportional to the number of unknowns. Further, it is designed to exploit a massively parallel computer with distributed memory architecture. Numerical experiments on a Cray T3E computer illustrate the parallel performance of the method....... boundary value problem for each velocity component, are solved by the conjugate gradient method with a preconditioning based on the algebraic multi‐level iteration (AMLI) technique. The velocity is found from the computed pressure. The method is optimal in the sense that the computational work...

  8. Reframing hydrology education to solve coupled human and environmental problems

    Directory of Open Access Journals (Sweden)

    E. G. King

    2012-11-01

    Full Text Available The impact of human activity on the biophysical world raises myriad challenges for sustaining Earth system processes, ecosystem services, and human societies. To engage in meaningful problem-solving in the hydrosphere, this necessitates an approach that recognizes the coupled nature of human and biophysical systems. We argue that, in order to produce the next generation of problem-solvers, hydrology education should ensure that students develop an appreciation and working familiarity in the context of coupled human-environmental systems. We illustrate how undergraduate-level hydrology assignments can extend beyond rote computations or basic throughput scenarios to include consideration of the dynamic interactions with social and other biophysical dimensions of complex adaptive systems. Such an educational approach not only builds appropriate breadth of dynamic understanding, but can also empower students toward assuming influential and effective roles in solving sustainability challenges.

  9. Does Competition Solve the Hold-up Problem?

    OpenAIRE

    Leonardo Felli; Kevin Roberts

    2001-01-01

    In an environment in which both buyers and sellers can undertake match specific investments, the presence of market competition for matches may solve hold-up and coordination problems generated by the absence of complete contingent contracts. In particular, this paper shows that when matching is assortative and sellers' investments precede market competition then investments are constrained efficient. One equilibrium is efficient with efficient matches but also there can be equilibria with co...

  10. Does competition solve the hold-up problem?

    OpenAIRE

    Leonardo Felli; Kevin Roberts

    2001-01-01

    In an environment in which both buyers and sellers can undertake match specific investments, the presence of market competition for matches may solve hold-up and coordination problems generated by the absence of complete contingent contracts. In particular, this paper shows that when matching is assortative and sellers’ investments precede market competition then investments are constrained efficient. One equilibrium is efficient with efficient matches but also there can be equilibria with co...

  11. Does Competition Solve the Hold-up Problem?

    OpenAIRE

    Leonardo Felli; Kevin Roberts

    2000-01-01

    In an environment in which both workers and firms undertake match specific investments, the presence of market competition for matches may solve the hold-up problems generated by the absence of complete contingent contracts. In particular, this paper shows that when matching is assortative and workers' investments precede market competition for matches investments are constrained efficient. Inefficiencies can arise in this framework as multiple equilibria of the competition game. Only one of ...

  12. Does Competition Solve the Hold-up Problem?

    OpenAIRE

    Kevin Roberts; Leonardo Felli

    2000-01-01

    In an environment in which both buyers and sellers can undertake match specific investments, the presence of market competition for matches may solve hold-up and coordination problems generated by the absence of complete contingent contracts. In particular, this paper shows that when matching is assortative and sellers investments precede market competition then investments are constrained efficient. One equilibrium is efficient with efficient matches but also there can be equilibria with coo...

  13. Mathematical modelling, problem solving, project and ethnomathematics: Confluent points

    OpenAIRE

    Salett Biembengut, Maria

    2015-01-01

    This paper presents a documental study about the con-fluent points among mathematical modelling, problem solving, project and ethnomathematics as methods of research and mathematics teaching. As a result, the study has shown that there are elements that bind these methods structurally together as research methods. Starting from the fact that education should promote knowledge this study provides evidence for these methods. Thus in each one of them, it is required knowledge from the student ab...

  14. English as a Mean to Solve All Our Communication Problems

    Directory of Open Access Journals (Sweden)

    Narcisa ŢIRBAN

    2011-01-01

    Full Text Available This paper will be discussing about English as international language and its important rolein everyone’s daily life in the world. Here is also underlined the most of the difficulties that learnersface in the study of English as a consequence of the degree to which their native language differsfrom English. On the other hand cultural differences in communication styles and preferences aresignificant and need to be taken in account when one tries to solve the communication problems.

  15. Formative assessment lessons for concept development and problem solving

    OpenAIRE

    Swan, Malcolm; Foster, Colin

    2016-01-01

    Formative assessment is the process by which teachers and students gather evidence of learning and then use this to adapt the way they teach and learn in the classroom. In this paper we describe a design research project in which we integrated formative assessment into mathematics classroom materials. We outline two examples of formative assessment lessons, one concept-based and the other problem-solving, highlighting the important roles within them of pre-assessment, formative feedback quest...

  16. Quasiphysical and quasisociological algorithm Solar for solving SAT problem

    Institute of Scientific and Technical Information of China (English)

    黄文奇; 金人超

    1999-01-01

    Using both quasiphysical and quasisociological methods, in conjunction with an inheriting strategy, a new way strategy and a pardon strategy was proposed for efficiently solving the SAT problem. An intuitive explanation is given for the Bart Selman random walk strategy. A new algorithm, Solar, was devised by combining these strategies. The new algorithm is shown to be both faster and stabler than the heretofore best algorithm.

  17. THE ROLE OF ACTIVATED CARBON IN SOLVING ECOLOGICAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    V. M. Mukhin

    2008-06-01

    Full Text Available The authors present a brief analysis of the current global situation concerning the utilization of activated carbon in various fields. The article presents data concerning the synthesis and adsorption and structure properties of new activated carbons, used for solving ecological problems. The authors investigated the newly obtained activated carbons in comparison with several AC marks known in the world. It has been shown that currently synthesized AC are competitive with foreign marks.

  18. Cooperative problem solving in a cooperatively breeding primate

    OpenAIRE

    Cronin, K.; Kurian, A; Snowdon, C

    2005-01-01

    We investigated cooperative problem solving in unrelated pairs of the cooperatively breeding cottontop tamarin, Saguinus oedipus, to assess the cognitive basis of cooperative behaviour in this species and to compare abilities with other apes and monkeys. A transparent apparatus was used that required extension of two handles at opposite ends of the apparatus for access to rewards. Resistance was applied to both handles so that two tamarins had to act simultaneously in order to receive rewards...

  19. Cooperative problem solving in a cooperatively breeding primate (Saguinus oedipus)

    OpenAIRE

    Cronin, Katherine A.; KURIAN, AIMEE V.; Snowdon, Charles T.

    2005-01-01

    We investigated cooperative problem solving in unrelated pairs of the cooperatively breeding cottontop tamarin, Saguinus oedipus, to assess the cognitive basis of cooperative behaviour in this species and to compare abilities with other apes and monkeys. A transparent apparatus was used that required extension of two handles at opposite ends of the apparatus for access to rewards. Resistance was applied to both handles so that two tamarins had to act simultaneously in order to receive rewards...

  20. Epistemic Impact on Group Problem Solving for Different Science Majors

    OpenAIRE

    Mason, Andrew J.; Bertram, Charles A.

    2016-01-01

    Implementation of cognitive apprenticeship in an introductory physics lab group problem solving exercise may be mitigated by epistemic views toward physics of non-physics science majors. Quantitative pre-post data of the Force Concept Inventory (FCI) and Colorado Learning Attitudes About Science Survey (CLASS) of 39 students of a first-semester algebra-based introductory physics course, while describing typical results for a traditional-format course overall (g = +0.14), suggest differences i...

  1. Solving the Stokes problem on a massively parallel computer

    DEFF Research Database (Denmark)

    Axelsson, Owe; Barker, Vincent A.; Neytcheva, Maya; Polman, B.

    2001-01-01

    boundary value problem for each velocity component, are solved by the conjugate gradient method with a preconditioning based on the algebraic multi‐level iteration (AMLI) technique. The velocity is found from the computed pressure. The method is optimal in the sense that the computational work is...... proportional to the number of unknowns. Further, it is designed to exploit a massively parallel computer with distributed memory architecture. Numerical experiments on a Cray T3E computer illustrate the parallel performance of the method....

  2. GRATE: A General Framework for Cooperative Problem Solving

    OpenAIRE

    Jennings, N. R.; Mamdani, E. H.; Laresgoiti, I.; Perez, J.; Corera, J.

    1992-01-01

    As the deployment of expert systems has spread into more complex and sophisticated environments, so inherent technological limitations have been observed. As a technique for overcoming this complexity barrier, researchers have started to build systems composed of multiple, cooperating components. These systems tend to fall into two distinct categories: systems which solve a particular problem, such as speech recognition or vehicle monitoring, and systems which are general to some extent. GRAT...

  3. Dynamic Workflows and Advanced Data Management for Problem Solving Environments

    OpenAIRE

    Moisa, Dan

    2004-01-01

    Workflow management in problem solving environments (PSEs) is an emerging topic that aims to combine both data-oriented and execution-oriented views of scientific experiments, and closely integrate the processes underlying the practice of computational science with the software artifacts constituted by the PSE. This thesis presents a workflow management solution called BREW (BetteR Experiments through Workflow management) that provides functionality along four dimensions: components and insta...

  4. Video games and problem solving effectiveness of primary school children

    OpenAIRE

    Jakoš, Andrej

    2012-01-01

    The purpose is to find out whether video games can have positive effects on children and whether we can use those effects for educational purposes at school. The thesis contains theories of the leading authors of developmental psychology in the field of cognitive development as well as an insight into the processes of learning and using problem solving skills. In the second half of the theoretical part, the essential information on video games, their effects researched until now and the means...

  5. Problem Solving and the Use of Math in Physics Courses

    OpenAIRE

    Redish, Edward F.

    2006-01-01

    Mathematics is an essential element of physics problem solving, but experts often fail to appreciate exactly how they use it. Math may be the language of science, but math-in-physics is a distinct dialect of that language. Physicists tend to blend conceptual physics with mathematical symbolism in a way that profoundly affects the way equations are used and interpreted. Research with university physics students in classes from algebra-based introductory physics indicates that the gap between w...

  6. Measuring complex problem solving: the MicroDYN approach

    OpenAIRE

    Greiff, Samuel; Funke, Joachim

    2009-01-01

    In educational large-scale assessments such as PISA only recently an increasing interest in measuring cross-curricular competencies can be observed. These are now discovered as valuable aspects of school achievement. Complex problem solving (CPS) describes an interesting construct for the diagnostics of domain-general competencies. Here, we present MicroDYN, a new approach for computer-based assessment of CPS. We introduce the new concept, describe proper software and present first results...

  7. A Genetic Algorithm to Solve the Multidimensional Knapsack Problem

    OpenAIRE

    Berberler, Murat; Guler, Asli; Nurıyev, Urfat

    2013-01-01

    In this paper, The Multidimensional Knapsack Problem (MKP) which occurs in many different applications is studied and a genetic algorithm to solve the MKP is proposed. Unlike the technique of the classical genetic algorithm, initial population is not randomly generated in the proposed algorithm, thus the solution space is scanned more efficiently. Moreover, the algorithm is written in C programming language and is tested on randomly generated instances. It is seen that the algorithm yields op...

  8. Solving the Generalized Vertex Cover Problem by Genetic Algorithm

    OpenAIRE

    Marija Milanović

    2012-01-01

    In this paper an evolutionary approach to solving the generalized vertex cover problem (GVCP) is presented. Binary representation and standard genetic operators are used along with the appropriate objective function. The experiments were carried out on randomly generated instances with up to 500 vertices and 100000 edges. Performance of the genetic algorithm (GA) is compared with CPLEX solver and 2-approximation algorithm based on LP relaxation. The genetic algorithm outperformed both CPLEX s...

  9. Graphical representation of the process of solving problems in statics

    Science.gov (United States)

    Lopez, Carlos

    2011-03-01

    It is presented a method of construction to a graphical representation technique of knowledge called Conceptual Chains. Especially, this tool has been focused to the representation of processes and applied to solving problems in physics, mathematics and engineering. The method is described in ten steps and is illustrated with its development in a particular topic of statics. Various possible didactic applications of this technique are showed.

  10. SOLVING THE PROBLEMS OF RECYCLED FIBER PROCESSING WITH ENZYMES

    OpenAIRE

    Pramod K. Bajpai

    2010-01-01

    The pulp and paper industry has started applying new, ecologically sound technology (biotechnology) in its manufacturing processes. Many interesting enzymatic applications have been proposed. Implemented technologies tend to change the existing industrial process as little as possible. Enzymes have great potentials in solving many problems associated with the use of recycled fiber, especially related to deinking, drainability, hornification, refining, and stickies. Based on the promising resu...

  11. Young Children Selectively Seek Help When Solving Problems

    OpenAIRE

    Cluver, Annette; Heyman, Gail; Carver, Leslie J.

    2013-01-01

    There is strong evidence that children show selectivity in their reliance on others as sources of information, but the findings to date have largely been limited to contexts that involve factual information. The present studies were designed to determine whether children might also show selectivity in their choice of sources within a problem-solving context. Children in two age groups (20 to 24 months and 30 to 36 months; total N = 60) were presented with a series of conceptually difficult pr...

  12. Solving Constraint Satisfaction Problems through Belief Propagation-guided decimation

    OpenAIRE

    Montanari, Andrea; Ricci-Tersenghi, Federico; Semerjian, Guilhem

    2007-01-01

    Message passing algorithms have proved surprisingly successful in solving hard constraint satisfaction problems on sparse random graphs. In such applications, variables are fixed sequentially to satisfy the constraints. Message passing is run after each step. Its outcome provides an heuristic to make choices at next step. This approach has been referred to as `decimation,' with reference to analogous procedures in statistical physics. The behavior of decimation procedures is poorly understood...

  13. Problem solving skills and influential factors in high school students

    Directory of Open Access Journals (Sweden)

    Arzu Yıldırım

    2011-02-01

    Full Text Available   Objective: The aim of this study was to determine, problem solving skills of 9,10,11. class of students from 12 high school of Erzincan province.Material and Methods: The universe of this descriptive and cross-sectional study comprised a total of 4962 students who attended the above mentioned schools and the sampling comprised 911 students (18% of the universe randomly chosen among them. The data were collected in April 2007 through a descriptive form designed and Problem Solving Inventory by the investigators and were evaluated using percentage calculations, variance analyze, t test and Kruskal Wallis test. Results: The average age of students participating in research was found to be 16.30±1.19. 53.1% of student girls, 38.5% were ninth class, mothers of 49.6% and fathers of 31.6% were graduated from primary school. While the mothers of  92.8% of students were housewife, fathers of 31.0% of them were officer. 45.1% of students’ family income was found to be in the good level. It was found that 55.4% of students’ school achievement was found to be well. Problem Solving Skills (PSS scores of students were found to be close to the level of good (89.91±19.77. The significant diffrence was found between PSS levels and some paremeters which were the gender, class of students and their fathers’ occupation status and education levels, to feel alone himself/herself, the situation of self confidence, the stuation of using alcoler or cigarette of students (p<0.05, p<0.01, p<0.001.Conclusion: In this study, it has been identified that students in general, closer to middle level problem solving skills. Problem solving skills are cognitive skills which can be learned and progressed. Be cause of this, it maybe suggested that this skill can be developed by focusing on problem-based learning with student-centered approach in every field of training.               

  14. Mindless Intelligence Method for Solving the Tower of Hanoi Problem

    Institute of Scientific and Technical Information of China (English)

    TSAU Minhe; KAO Weiwen; CHANG Albert

    2009-01-01

    Over the past years, more and more attention has been paid to artificial life research. The main object of artificial life research is to explore how to control the enviromnents in which the digital organisms imitating natural life, under complicated competition and evolutionary conditions, develop their own wisdom, which can then be used to solve the problems in the real world. While most of the current researches applied one or another artificial life method to solve real problems, the fundamental mechanism of the emerging process of artificial life is seldom addressed. The research works on genetic algorithms, although bearing fruitful results, could only be deemed as constituting a basic stage in the process of artificial life development. This study proposes a new method of employing artificial life, to complement the contents of the research of mindless intelligence, which is regarded as a bridge linking genetic algorithms to general artificial life. And two important concepts, key manipulating parameters and contribution function in its context, are proposed to expand the mindless intelligence applications, in order to pave the way for the optimal design of an artificial life method, in an attempt to fill the conceptual gap between genetic algorithms and artificial life, and consequently clarifying the artificial life mechanism. As a case study we applied these innovative methods to solve an open problem: the Tower of Hanoi, to attest to the feasibility of our approach, and we have achieved satisfactory results.

  15. Toward High-Performance Communications Interfaces for Science Problem Solving

    Science.gov (United States)

    Oviatt, Sharon L.; Cohen, Adrienne O.

    2010-12-01

    From a theoretical viewpoint, educational interfaces that facilitate communicative actions involving representations central to a domain can maximize students' effort associated with constructing new schemas. In addition, interfaces that minimize working memory demands due to the interface per se, for example by mimicking existing non-digital work practice, can preserve students' attentional focus on their learning task. In this research, we asked the question: What type of interface input capabilities provide best support for science problem solving in both low- and high- performing students? High school students' ability to solve a diverse range of biology problems was compared over longitudinal sessions while they used: (1) hardcopy paper and pencil (2) a digital paper and pen interface (3) pen tablet interface, and (4) graphical tablet interface. Post-test evaluations revealed that time to solve problems, meta-cognitive control, solution correctness, and memory all were significantly enhanced when using the digital pen and paper interface, compared with tablet interfaces. The tangible pen and paper interface also was the only alternative that significantly facilitated skill acquisition in low-performing students. Paradoxically, all students nonetheless believed that the tablet interfaces provided best support for their performance, revealing a lack of self-awareness about how to use computational tools to best advantage. Implications are discussed for how pen interfaces can be optimized for future educational purposes, and for establishing technology fluency curricula to improve students' awareness of the impact of digital tools on their performance.

  16. Solving the selective multi-category parallel-servicing problem

    DEFF Research Database (Denmark)

    Range, Troels Martin; Lusby, Richard Martin; Larsen, Jesper

    2015-01-01

    In this paper, we present a new scheduling problem and describe a shortest path-based heuristic as well as a dynamic programming-based exact optimization algorithm to solve it. The selective multi-category parallel-servicing problem arises when a set of jobs has to be scheduled on a server (machine...... time interval of a given planning horizon, while respecting the server capacity and scheduling requirements. We compare the proposed solution methods with a Mixed Integer Linear Programming (MILP) formulation and show that the dynamic programming approach is faster when the number of categories is...

  17. Solving the Selective Multi-Category Parallel-Servicing Problem

    DEFF Research Database (Denmark)

    Range, Troels Martin; Lusby, Richard Martin; Larsen, Jesper

    In this paper we present a new scheduling problem and describe a shortest path based heuristic as well as a dynamic programming based exact optimization algorithm to solve it. The Selective Multi-Category Parallel-Servicing Problem (SMCPSP) arises when a set of jobs has to be scheduled on a server...... each time interval of a given planning horizon while respecting the server capacity and scheduling requirements. We compare the proposed solution methods with a MILP formulation and show that the dynamic programming approach is faster when the number of categories is large, whereas the MILP can be...

  18. Adaptive Memory Procedure to solve the Profitable Arc Tour Problem

    Directory of Open Access Journals (Sweden)

    Jalel Euchi

    2010-05-01

    Full Text Available In this paper we propose an Adaptive memory procedure to solve the Profitable Arc Tour Problem (PATP. The PATP is a variant of the well-known Vehicle Routing Problems in which a set of vehicle tours are constructed. The objective is to find a set of cycles in the vehicle tours that maximize the collection of profits minus travel costs, subject to constraints limiting the length of cycles that profit is available on arcs. Computational experiments show that our algorithms provide good results in terms of quality of solution and running times.

  19. The Effect of Using Colored Texts in Solving Reading Problems

    Directory of Open Access Journals (Sweden)

    Serdarhan Musa TAŞKAYA

    2010-01-01

    Full Text Available Literacy is a skill gained during the first year of primary education. However,there are many students suffering from literacy problems, even though they are in highergrades. This study aims at emphasizing the effectiveness of colored texts in solving out theproblem of student with reading problems at different levels of primary education. This study,which was carried out in the Centrum of Ankara, has been arranged as a one-sampleresearch. As a result of the study, it has been observed that the points assigned to the studentabout phonetic and media scales rose up significantly when one student with reading problemwas treated using colored text.

  20. Solving a Class of Generalized Nash Equilibrium Problems

    Institute of Scientific and Technical Information of China (English)

    Peiyu LI; Guihua LIN

    2013-01-01

    Generalized Nash equilibrium problem (GNEP) is an important model that has many applications in practice.However,a GNEP usually has multiple or even infinitely many Nash equilibrium points and it is not easy to choose a favorable solution from those equilibria.This paper considers a class of GNEP with some kind of separability.We first extend the so-called normalized equilibrium concept to the stationarity sense and then,we propose an approach to solve the normalized stationary points by reformulating the GNEP as a single optimization problem.We further demonstrate the proposed approach on a GNEP model in similar product markets.

  1. Solving Large Quadratic|Assignment Problems in Parallel

    DEFF Research Database (Denmark)

    Clausen, Jens; Perregaard, Michael

    1997-01-01

    Quadratic Assignment problems are in practice among the most difficult to solve in the class of NP-complete problems. The only successful approach hitherto has been Branch-and-Bound-based algorithms, but such algorithms are crucially dependent on good bound functions to limit the size of the space...... and recalculation of bounds between branchings when used in a parallel Branch-and-Bound algorithm. The algorithm has been implemented on a 16-processor MEIKO Computing Surface with Intel i860 processors. Computational results from the solution of a number of large QAPs, including the classical Nugent...

  2. A matrix product state method for solving combinatorial optimization problems

    Science.gov (United States)

    Pelton, S. S.; Chamon, C.; Mucciolo, E. R.

    2015-03-01

    We present a method based on a matrix product state representation to solve combinatorial optimization problems. All constraints are met by mapping Boolean gates into projection operators and applying operators sequentially. The method provides exact solutions with high success probability, even in the case of frustrated systems. The computational cost of the method is controlled by the maximum relative entropy of the system. Results of numerical simulations for several types of problems will be shown and discussed. NSF Grants CCF-1116590 and CCF-1117241.

  3. Problem Solving and the Use of Math in Physics Courses

    CERN Document Server

    Redish, E F

    2006-01-01

    Mathematics is an essential element of physics problem solving, but experts often fail to appreciate exactly how they use it. Math may be the language of science, but math-in-physics is a distinct dialect of that language. Physicists tend to blend conceptual physics with mathematical symbolism in a way that profoundly affects the way equations are used and interpreted. Research with university physics students in classes from algebra-based introductory physics indicates that the gap between what students think they are supposed to be doing and what their instructors expect them to do can cause severe problems.

  4. Solving liveness problem for marked nets by exhaustive coverability trees

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is well known that a coverability tree of a Petri net cannot solve reaehability and liveness problems of the net because using symbol ω (infinity.) may lose some information. A solution to this problem is presented for a special kind of Petri net, marked net. With the combination of o and the increasing/decreasing information of token number, a new kind of coverability tree of marked nets, called exhaustive coverability tree (ECT), is proposed. It is shown with an example that an ECT can be used to detect deadlock.

  5. Developing a model for problem-solving in a Grade 4 mathematics classroom

    Directory of Open Access Journals (Sweden)

    Susan Nieuwoudt

    2015-11-01

    Full Text Available The teaching of problem-solving through the development of a problem-solving model was investigated in a Grade 4 mathematics classroom. Learners completed a questionnaire regarding their knowledge of mathematical problem-solving, their attitudes towards problem-solving, as well as their experiences in solving problems. Learners’ responses revealed overall negative beliefs towards problem-solving as well as a lack of knowledge about what problem-solving in mathematics entails. The teacher then involved the learners in a structured learning programme where they worked in cooperative groups of six on different kinds of mathematical problems to solve. The groups regularly engaged in discussions about the different strategies they were using to solve a specific problem and eventually succeeded in formulating a generic problem-solving model they could call their own. The model was effectively used by the learners to solve various mathematical problems, reflecting their levels of cognitive development to a certain extent.

  6. General Problem Solving Strategies Employed in the Mexican Mathematical Olympiad

    Directory of Open Access Journals (Sweden)

    María del Consuelo Valle Espinosa

    2007-11-01

    Full Text Available This article describes the general strategies applied to problem solving in the State Math Olympiad selection test, in Puebla, Mexico. It analyzes the answers of 91 participants, ages 14 to 17, from junior high school and high school. Whether participants reached a problem solution or not, they rendered their results in one answer sheet and the arguments for those results in other. These answer sheets were used to form a database with 546 results. The sheets selected for the database were those in which participants identified the unknown factor, data and condition of the problem, in addition to have offered one or several solution strategies. Then, strategies were verbally described, their usage frequency calculated, and their effect on the different branches of mathematics depending on the problem analyzed. The strategy or strategies provided by participants were examined to identify stages of problem solving. The results showed that only 5% of the answer sheets had complete solutions. That emphasizes the need to systematize the State training courses for the National Olympiad. The importance of the training course is directly related to its purpose: to prepare young people for the National Olympiad and to enrich the Higher Education System of Puebla with students interested in doing science careers, with the ability to develop their hypothetical–deductive reasoning successfully.

  7. Developing a Model for Solving the Flight Perturbation Problem

    Directory of Open Access Journals (Sweden)

    Amirreza Nickkar

    2015-02-01

    Full Text Available Purpose: In the aviation and airline industry, crew costs are the second largest direct operating cost next to the fuel costs. But unlike the fuel costs, a considerable portion of the crew costs can be saved through optimized utilization of the internal resources of an airline company. Therefore, solving the flight perturbation scheduling problem, in order to provide an optimized schedule in a comprehensive manner that covered all problem dimensions simultaneously, is very important. In this paper, we defined an integrated recovery model as that which is able to recover aircraft and crew dimensions simultaneously in order to produce more economical solutions and create fewer incompatibilities between the decisions. Design/methodology/approach: Current research is performed based on the development of one of the flight rescheduling models with disruption management approach wherein two solution strategies for flight perturbation problem are presented: Dantzig-Wolfe decomposition and Lagrangian heuristic. Findings: According to the results of this research, Lagrangian heuristic approach for the DW-MP solved the problem optimally in all known cases. Also, this strategy based on the Dantig-Wolfe decomposition manage to produce a solution within an acceptable time (Under 1 Sec. Originality/value: This model will support the decisions of the flight controllers in the operation centers for the airlines. When the flight network faces a problem the flight controllers achieve a set of ranked answers using this model thus, applying crew’s conditions in the proposed model caused this model to be closer to actual conditions.

  8. Pengaruh Model Problem Solving dan Problem Posing serta Kemampuan Awal terhadap Hasil Belajar Siswa

    Directory of Open Access Journals (Sweden)

    Ratna Kartika Irawati

    2015-04-01

    Full Text Available Abstract: Chemistry concepts understanding features abstract quality and requires higher order thinking skills. Yet, the learning on chemistry has not boost the higher order thinking skills of the students. The use of the learning model of Problem Solving and Problem Posing in observing the in-nate ability of the student is expected to resolve the issue. This study aims to determine the learning model which is effective to improve the study of the student with different level of innate ability. This study used the quasi-experimental design. The research data used in this research is the quiz/test of the class which consist of 14 multiple choice questions and 5 essay questions. The data analysis used is ANOVA Two Ways. The results showed that Problem Posing is more effective to improve the student compared to Problem Solving, students with high level of innate ability have better outcomes in learning rather than the students with low level of innate ability after being applied with the Problem solving and Problem posing model, further, Problem Solving and Problem Posing is more suitable to be applied to the students with high level of innate ability.Key Words: problem solving, problem posing, higher order thinking skills, innate ability, learning outcomes Abstrak: Pemahaman konsep-konsep kimia yang bersifat abstrak membutuhkan keterampilan berpikir tingkat tinggi. Pembelajaran kimia belum mendorong siswa melakukan keterampilan berpikir tingkat tinggi. Penggunaan model pembelajaran Problem Solving dan Problem Posing dengan memperhatikan kemampuan awal siswa diduga dapat mengatasi masalah tersebut. Penelitian ini bertujuan untuk mengetahui model pembelajaran yang efektif dalam meningkatkan hasil belajar dengan kemampuan awal siswa yang berbeda. Penelitian ini menggunakan rancangan eksperimen semu. Data penelitian menggunakan tes hasil belajar yang terdiri atas 14 soal pilihan ganda dan 5 soal esai. Analisis data menggunakan uji ANOVA Two Ways

  9. Seventh Grade Students’ Problem Solving Success Rates on Proportional Reasoning Problems

    OpenAIRE

    Pelen, Mustafa Serkan; Dinc Artut, Perihan

    2015-01-01

    his research was conducted to investigate 7th grade students’ problem solving success rates on proportional reasoning problems and whether these success rates change with different problem types. 331 randomly selected students of grade seven participated in this study. A problem test which contains three different types of missing value (direct proportional, inverse proportional and additive/non-proportional) word problems was designed as a data collecting tool for the research. Descriptive d...

  10. Problem-Based Learning: Student Engagement, Learning and Contextualized Problem-Solving. Occasional Paper

    Science.gov (United States)

    Mossuto, Mark

    2009-01-01

    The adoption of problem-based learning as a teaching method in the advertising and public relations programs offered by the Business TAFE (Technical and Further Education) School at RMIT University is explored in this paper. The effect of problem-based learning on student engagement, student learning and contextualised problem-solving was…

  11. Constructing a Coherent Problem Model to Facilitate Algebra Problem Solving in a Chemistry Context

    Science.gov (United States)

    Ngu, Bing Hiong; Yeung, Alexander Seeshing; Phan, Huy P.

    2015-01-01

    An experiment using a sample of 11th graders compared text editing and worked examples approaches in learning to solve dilution and molarity algebra word problems in a chemistry context. Text editing requires students to assess the structure of a word problem by specifying whether the problem text contains sufficient, missing, or irrelevant…

  12. Group Problem Solving as a Zone of Proximal Development activity

    Science.gov (United States)

    Brewe, Eric

    2006-12-01

    Vygotsky described learning as a process, intertwined with development, which is strongly influenced by social interactions with others that are at differing developmental stages.i These interactions create a Zone of Proximal Development for each member of the interaction. Vygotsky’s notion of social constructivism is not only a theory of learning, but also of development. While teaching introductory physics in an interactive format, I have found manifestations of Vygotsky’s theory in my classroom. The source of evidence is a paired problem solution. A standard mechanics problem was solved by students in two classes as a homework assignment. Students handed in the homework and then solved the same problem in small groups. The solutions to both the group and individual problem were assessed by multiple reviewers. In many cases the group score was the same as the highest individual score in the group, but in some cases, the group score was higher than any individual score. For this poster, I will analyze the individual and group scores and focus on three groups solutions and video that provide evidence of learning through membership in a Zone of Proximal Development. Endnotes i L. Vygotsky -Mind and society: The development of higher mental processes. Cambridge, MA: Harvard University Press. (1978).

  13. Leveling Students’ Creative Thinking in Solving and Posing Mathematical Problem

    Directory of Open Access Journals (Sweden)

    Tatag Yuli Eko Siswono

    2010-07-01

    Full Text Available Many researchers assume that people are creative, but their degree of creativity is different. The notion of creative thinking level has been discussed .by experts. The perspective of mathematics creative thinking refers to a combination of logical and divergent thinking which is based on intuition but has a conscious aim. The divergent thinking is focused on flexibility, fluency, and novelty in mathematical problem solving and problem posing. As students have various backgrounds and different abilities, they possess different potential in thinking patterns, imagination, fantasy and performance; therefore, students have different levels of creative thinking. A research study was conducted in order to develop a framework for students’ levels of creative thinking in mathematics. This research used a qualitative approach to describe the characteristics of the levels of creative thinking. Task-based interviews were conducted to collect data with ten 8th grade junior secondary school students. The results distinguished five levels of creative thinking, namely level 0 to level 4 with different characteristics in each level. These differences are based on fluency, flexibility, and novelty in mathematical problem solving and problem posing.

  14. The Role of Molam in Solving Social Problems

    Directory of Open Access Journals (Sweden)

    Sitthisak Champadaeng

    2010-01-01

    Full Text Available Problem statement: Mo-lam is the most popular Isan Local Song. Its rhythm and message influenced people’s feeling and thought. The objectives of this research were to study: (1 the moving force in using the media of Mo-lam for solving social problem, (2 the role of Mo-lam and social problem solving, and (3 the effect of campaign with the sharing in approach and behavior of receiver in Klon-lam media. Approach: The research area in Isan Region included Maha Sarakam Province, Roi-Ed Province, Ubon Rachatani Province, Khon Kaen Province, Chiaypume Province, Udon Tani Province, Nakon Phanom Province, an Mookdahan Province. The samples providing information were 105 persons selected by interviewing and Participant Observation. Data were analyzed in characteristic. Then, the findings were presented in descriptive analysis. Results: The research findings found that: (1 the moving force for Mo-lam Media Use, was caused by the rapid Isan Social and Cultural Changes after the Second World War owing to the economic developmental policy as specified by the public sector As a result, Isan society faced trouble in social, economic, and political aspects. There were migration and moving to work in big sized cities, lack of educational management as well as basic public health service, (2 the roles of Mo-lam in solving social problems were as follows: Klon-lam campaigning in the enhancement for national security, was composed, lam against the communist doctrine and enhancing the democracy, campaigning for people to be interested in Education as well as controlling the population number, infectious disease, and supporting the exercise. In solving the environmental problems, the natural resources were campaigned, and the waste in community was got rid of, the prevention and treatment for drug addiction problem was campaigned, (3 the effect of campaign and changes in viewpoint and behavior of Klon Lam Receivers, in political and governmental security as a part of

  15. Solving Large-Scale Optimization Problems Related to Bell's Theorem

    CERN Document Server

    Gondzio, Jacek; Hall, J A Julian; Laskowski, Wiesław; Żukowski, Marek

    2014-01-01

    Impossibility of finding local realistic models for quantum correlations due to entanglement is an important fact in foundations of quantum physics, gaining now new applications in quantum information theory. We present an in-depth description of a method of testing the existence of such models, which involves two levels of optimization: a higher-level non-linear task and a lower-level linear programming (LP) task. The article compares the performances of the existing implementation of the method, where the LPs are solved with the simplex method, and our new implementation, where the LPs are solved with a matrix-free interior point method. We describe in detail how the latter can be applied to our problem, discuss the basic scenario and possible improvements and how they impact on overall performance. Significant performance advantage of the matrix-free interior point method over the simplex method is confirmed by extensive computational results. The new method is able to solve problems which are orders of ma...

  16. Network Analysis of Students' Use of Representations in Problem Solving

    Science.gov (United States)

    McPadden, Daryl; Brewe, Eric

    2016-03-01

    We present the preliminary results of a study on student use of representations in problem solving within the Modeling Instruction - Electricity and Magnetism (MI-E&M) course. Representational competence is a critical skill needed for students to develop a sophisticated understanding of college science topics and to succeed in their science courses. In this study, 70 students from the MI-E&M, calculus-based course were given a survey of 25 physics problem statements both pre- and post- instruction, covering both Newtonian Mechanics and Electricity and Magnetism (E&M). For each problem statement, students were asked which representations they would use in that given situation. We analyze the survey results through network analysis, identifying which representations are linked together in which contexts. We also compare the representation networks for those students who had already taken the first-semester Modeling Instruction Mechanics course and those students who had taken a non-Modeling Mechanics course.

  17. Separable cross decomposition to solve the assign–routing problem

    Directory of Open Access Journals (Sweden)

    M. Elizondo–Cortés

    2008-01-01

    Full Text Available The Inventory–Routing Problem emerges on a logistical context, that is presented into the companies and that it seeks to satisfy the demands of a group of clients distributed geographically, using a flotilla of vehicles of limited capacity, which are in a central ware house, at the small est possible cost. The IRP is a NP–hard problem that is usually great size in real applications. For its solution was designed an strategy that uses of combined form, the crossed de composition and the separable Lagrangean relaxation in order to solve the assign–distribution phase, with what it is obtained a ping–pong type scheme between two subproblems, which are from transport type, with which it is obtained a very efficient algorithm of order O(n3 and easy to implement for the complete problem.

  18. Solving Optimization Problems by the Spatial Public Goods Game

    CERN Document Server

    Javarone, Marco Alberto

    2016-01-01

    We introduce a method based on the spatial Public Goods Game for solving optimization tasks. In particular, we focus on the Traveling Salesman Problem, i.e., a problem whose search space exponentially grows increasing the number of cities, then becoming NP-hard. The proposed method considers a population whose agents are provided with a random solution to the given problem. Then, agents interact by playing the Public Goods Game using the fitness of their solution as currency of the game. In doing so, agents with better solutions provide higher contributions, while agents with lower ones tend to imitate the solution of richer agents to increase their fitness. Numerical simulations show that the proposed method allows to compute exact solutions, and suboptimal ones, in the considered search spaces. As result, beyond to propose a new heuristic for combinatorial optimization tasks, our work aims to highlight the potentiality of evolutionary game theory outside its current horizons.

  19. Multi-Criteria Genetic Algorithms for Solving Pig Food Problems

    Directory of Open Access Journals (Sweden)

    Anon Sukstrienwong

    2011-01-01

    Full Text Available This paper presents an algorithm based on genetic algorithms (GAs for multi-criteria problems to solve pig food problems. The proposed algorithm called Era-GAs scheme forms pig food formulations with the aim of finding the lowest cost under the conditions of the ingredient prices and pig’s nutritional requirements such as energy, fat, protein, minerals, and vitamins. The requirements and the average price of pig food are primarily considered as multiple objectives for Era-GAs scheme. The simulation results of a proposed approach are compared with the traditional GAs. Experimental results indicate that Era-GAs scheme performs better in any environments. The advantage of the proposed approach is that it does not require any additional information about the problem.

  20. Alternative Method for Solving Traveling Salesman Problem by Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Zuzana Čičková

    2008-06-01

    Full Text Available This article describes the application of Self Organizing Migrating Algorithm (SOMA to the well-known optimization problem - Traveling Salesman Problem (TSP. SOMA is a relatively new optimization method that is based on Evolutionary Algorithms that are originally focused on solving non-linear programming problems that contain continuous variables. The TSP has model character in many branches of Operation Research because of its computational complexity; therefore the use of Evolutionary Algorithm requires some special approaches to guarantee feasibility of solutions. In this article two concrete examples of TSP as 8 cities set and 25 cities set are given to demonstrate the practical use of SOMA. Firstly, the penalty approach is applied as a simple way to guarantee feasibility of solution. Then, new approach that works only on feasible solutions is presented.