WorldWideScience

Sample records for circulation water pumps

  1. Proper Sizing of Circulation Pumps

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Nørgaard, Jørgen

    2007-01-01

    , but the results can be applied to Europe in general. Despite the small sample of houses involved in the test, 15 houses, some rather safe conclusions can be drawn from the results, which showed that newly developed pumps with power consumption around 5-8 W, can perform the task of circulating the water......The paper describes the preliminary results from field tests of replacing various types of old pumps used for circulating water in heating systems in single- and double-family houses with new types of pumps. The tests were carried out in Denmark for the Danish Electricity Savings Trust...... sufficiently to keep the houses satisfactorily warm during the heating season of the test. The old replaced pumps used 5-10 times more power. In Europe alone, a gradual replacement of the present vastly oversized pumps with such small but sufficient pumps can save the construction of 17 large power plants...

  2. Technical Report for Water Circulation Pumping System for Trihalomethanes (THMs)

    Energy Technology Data Exchange (ETDEWEB)

    Bellah, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-08

    The TSWWS was added as an active source of supply to the permit (No. 03-10-13P-003) in 2010, but has never been used due to the potential for formation of trihalomethanes (THMs) in the distribution system. THMs are formed as a by-product when chlorine is used to disinfect water for drinking. THMs are a group of chemicals generally referred to as disinfection by-products (DBPs). THMs result from the reaction of chlorine with organic matter that is present in the water. Some of the THMs are volatile and may easily vaporize into the air. This fact forms the basis of the design of the system discussed in this technical report. In addition, the design is based on the results of a study that has shown success using aeration as a means to reduce TTHMs to within allowable concentration levels with turn-over times as long as ten days. The Primary Drinking Water Standards of Regulated Contaminants Maximum Contaminant Level (MCL) for TTHMs is 80 parts per billion (ppb). No other changes to the existing drinking water distribution system and chlorination operations are anticipated before switching to the TSWWS as the primary drinking water source. The two groundwater wells (Wells 20 and 18) which are currently the primary and backup water sources for the system would be maintained for use as backup supply. In the future, one of the wells may be removed from the system. A permit amendment would be filed at that time if this modification was deemed appropriate.

  3. 46 CFR 56.50-45 - Circulating pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Circulating pumps. 56.50-45 Section 56.50-45 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-45 Circulating pumps. (a) A main circulating pump and emergency means for circulating water through the main condenser shall be provided....

  4. The Corrosion and Protection of Circulating Water Pump in Nuclear Power Plant%核电厂循环水泵腐蚀与防护

    Institute of Scientific and Technical Information of China (English)

    李伟光; 赵万祥; 王佳栋; 孔全兴

    2014-01-01

    It Was simple analysed Based on the corrosion events of the circulating water pump occurring in some nuclear power plant, summarized the main corrosion types, and it was given relevant suggestion of corrosion and protection , it was provided the necessary technical and services support of the circulating pump maintenance for the subsequent serviced and refomed.%通过对某核电厂循环水泵出现的腐蚀事件进行简单的分析,总结其主要的腐蚀类型,并给出腐蚀与防护相关建议,为后续循环水泵维修和改造提供必要的技术和服务支持。

  5. Fluid-dynamic study and optimization of the pumping station of the circulation water system in Cofrentes NPP; Estudio fluido-dinamico y optimizacion de la estacion de bombeo del sistema de agua de circulacion de CN Cofrentes

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Munoz, S.

    2010-07-01

    The circulation water system in Cofrentes is located at the north-east of the plant. It is a closed cooling system composed of a channel that carries the water to the pumping station, made up of four vertical pumps, with four separate compartments for suction and supplied from the same channel.

  6. Diagnosis of feed water, condensate and circulation pumps in electric power plants; Diagnostico de bombas de agua de alimentacion, condensado y circulacion en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Colin Castellanos, Carlos [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    This article encompasses the analysis and the diagnosis of the pump`s performance that belong to the feed water, condensate and circulation systems of a fossil fuel power plant (FFPP). For this analysis pressure, temperature and flow data were collected by means of field installed instrumentation, as well as these pumps` motors current consumption and voltage values. Later on, the capacity and the pump efficiency are calculated and compared with the design values, to obtain the actual performance of the equipment with the aid of their characteristic curves (Q vs {Delta}H, Q vs {pi}, etc.). [Espanol] Este articulo comprende el analisis y el diagnostico de comportamiento de las bombas, las cuales forman parte de los sistemas de agua de alimentacion, condensado y circulacion de una central termoelectrica (CT). Para el analisis se recopilan datos de presion, temperatura y flujo de la instrumentacion instalada en campo, asi como de los valores de consumo de corriente y de voltaje en los motores de dichas bombas. Posteriormente, se calcula la capacidad y la eficiencia de las bombas en operacion real y se comparan con los valores de diseno, para obtener el comportamiento real del equipo con ayuda de las curvas caracteristicas (Q vs {Delta}H, Q vs {pi}, etcetera).

  7. Water Treatment Technology - Pumps.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  8. 采用热泵技术回收工业循环水余热%Recovery of Waste Heat from Industrial Circulating Water Using Heat Pump

    Institute of Scientific and Technical Information of China (English)

    闫晓燕

    2014-01-01

    如何利用工业余热,特别是30~50℃低温余热,是行业内普遍关注的问题,热泵技术在这方面具有很大潜力,是一项值得推广的节能技术。介绍了太钢自备电厂采用热泵技术回收工业循环水余热的方案与效℃计算。%It has been an issue of common concern in the steel sector to recover indus-trial waste heat, especially 30-50℃ low temperature waste heat. With great potential in this field the heat pump is of an energy saving technology deserving promotion. The project of recovering waste heat from industrial circulating water using heat pump technology at the self-supply power plant of Taiyuan Steel is introduced and economic benefit of the project is calculated as well.

  9. 滨海核电站循环水泵膨胀密封的应用分析%Application&Analysis of the Inflatable Seal of the Circulating Water Pump in a Coastal Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    李振; 易琳; 张宇

    2015-01-01

    Based on the technical adaptation on the inflatable seal of circulating water pump, the reasons for the low success rate of the inflatable seal on site assembly has been described in the paper. The effects of different forms of the inflatable seal on the installation and maintenance work for the circulating water pump has also been analyzed and the application of the inflatable seal has been suggested in some domestic coastal nuclear power plants.%从描述循环水泵膨胀密封气囊技术改进入手,分析了膨胀密封现场组装成功率低的原因,讨论了不同形式膨胀密封对循环水泵安装和维修工作的影响,提出了国内部分核电站循环水泵膨胀密封的应用建议.

  10. Analysis and Reform on Reliability of Circulating Water Pump and Hydraulic-control Butterfly Valve Control System%循环水泵及液控蝶阀控制系统可靠性分析及改造

    Institute of Scientific and Technical Information of China (English)

    郭凌云

    2014-01-01

    This paper introduces and analyzes existing problems of circulating water pump and hydraulic-control butterfly valve control system in Guangdong Datang Chaozhu power plant and proposes optimization measures for improving reliabili-ty.Referred measures are feasible to greatly improve reliability of circulating water pump and hydraulic-control butterfly valve control system and safety of the unit.%对广东大唐潮州电厂循环水泵、液控蝶阀控制系统存在的问题进行了介绍和分析,并提出提高可靠性改造的优化措施。这些措施大大提高了循环水泵及液控蝶阀控制系统的可靠性及机组的安全性。

  11. 吸收式热泵回收300MW机组循环水余热的设计研究%Design and Research of Absorption Type Heat Pump Recycling 300MW Unit Circulating Water Waste Heat

    Institute of Scientific and Technical Information of China (English)

    马光耀

    2015-01-01

    Low temperature waste heat of 300MW unit circulating water in a plant was recycled through the ab-sorption heatpump,circulating water of different temperature has great influence on the design scheme of heat pump.In this design, the temperature difference of heat pump import for the circulating wateris 7℃,the heatpump circulating water inlet temperature is 31~35℃,heating extraction steam pressure is about 0.3MPa,steam consump-tion for the steam driving is 270t/h,The temperature of hot topwater after heating by heat pump increases from 43℃ to 74℃,heat recovery capacity of the heat pumpis 131tMo,the whole heating capacity of the heat pump is about 318MW.%对某厂300MW机组循环水的低温余热通过吸收式热泵进行回收,不同的循环水温度对热泵的设计方案有着很大的影响.该设计中循环水进出热泵温差为7℃,热泵进口处循环水温度为31~35℃,采暖抽汽压力约为0.3MPa,驱动蒸汽用汽量为270t/h,热网水经热泵加热后温度从43℃升至74℃,热泵余热回收量为131MW,热泵总的制热量约为318MW.

  12. 某核电站循环水泵房结构的地震反应分析%Earthquake response analysis of circulation water pump house in nuclear power station

    Institute of Scientific and Technical Information of China (English)

    裴强; 薛志成

    2011-01-01

    文中运用动力时程反应分析方法,针对某百万千瓦级核电厂,利用Ansys对循环水泵房结构进行了抗震分析.针对循环水泵房结构场地岩性、结构特点,分别考虑不同设计水位、运行和检修情况、波浪压力、静动水压力和土压力以及地震荷载的组合工况,对结构进行了抗震性能计算分析,得到结构构件各个截面上内力包络,该成果对循环水泵房结构设计具有参考价值和指导意义.%Using dynamic time-history response analysis method, seismic analysis of circulation water pump house in the million-kilowatt nuclear power plant is carried out in this paper. Based on rock properties and structural characteristics of circulating water pump house, all kinds of combination with different design water levels, operation and maintenance conditions, wave pressure, static and dynamic water pressure and soil pressure and seismic loadings are considered. The internal force envelope of each section of the structure is obtained and the results can provide reference value and guidance significance for the structural design of circulating water pump house.

  13. Design of Dynamic Wind Pump Circulating Water Heat Recovery%动力风泵房循环水余热回收方案设计

    Institute of Scientific and Technical Information of China (English)

    宋学良; 宋玉强

    2014-01-01

    介绍了动力风泵房每年有大量的工业余热为没经过处理直接排放,造成能源的浪费,以及其解决的思路:利用水源热泵吸收动力风泵房中产生的余热来加热水源,变成洗浴用水,从而达到节能减排的目的。%This article introduces that there is much industrial waste heat in the dynamic wind house which is directly discharge without treating, which produces energy wasting, and there is also the solution-making use of waste heat generated from dynamic wind pump house to heat water with water source heat pump unit, which can achieve the goal of energy conservation and emission reduction.

  14. Control characteristics for heating system circulation pumps; Regelkennlinien fuer Heizungsumwaelzpumpen

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoe, C. S.; Bidstrup, N.; Bayer, M.

    2009-07-01

    This article takes a look at variable speed circulation pumps for space heating systems that are used in one and two-family housing. Although the control systems in most houses usually have just one characteristic, the need for several control characteristics in order to cope with varying needs is discussed. The basics of finding out what the control characteristic should look like in a particular case are discussed. Modern circulation pumps with integrated speed control and their interplay with thermostatic valves are examined and discussed. A new automatic adaptation algorithm is described and its way of working is explained. Experience gained in practice is examined.

  15. Operation Optimization of Constant-speed Circulating Water Pumps in a Thermal Power Plant under Full Conditions%火电机组定速循环水泵的全工况运行优化

    Institute of Scientific and Technical Information of China (English)

    刘吉臻; 王玮; 曾德良; 常太华; 柳玉

    2011-01-01

    为解决枚举法得出的定速循环水泵最优运行方式的局限性,通过分析汽轮机低压缸、冷却塔及凝汽器真空的全工况计算模型,提出了在环境温度相等的前提下进行循环水泵全工况运行优化,并对其流程进行了阐述,将排汽压力对汽轮机功率的修正曲线进行了全工况拟合,利用二分法求解机组各工况下循环水泵相邻运行方式的等效益点,进而获得等效益曲线,并采用二分法对某电厂的定速循环水泵进行了等效益曲线实例验证.结果表明:循环水泵优化运行后,平均可降低煤耗0.594g/(kw·h).%In order to overcome the limitation of optimized operation of constant-speed circulating water pumps obtained by enumeration method, the idea of optimizing the operation of circulating water pumps under full conditions was proposed on the premise of equal inlet temperature of cooling water, based on a- nalysis of full-condition calculation models for low-pressure cylinder, cooling tower and condenser vacuum. The specific optimization process is to fit the corrective curve between turbine power and exhaust pressure under full conditions, then to solve the equal efficiency points between adjacent operating modes of circu- lating water pumps by dichotomy method, and finally to acquire the equal efficiency curves. Verification results on the equal efficiency curves in a certain power plant show that an average of 0. 594 g/(kw .h) net coal consumption can be saved after the optimization of relevant circulating water pumps.

  16. Cotransporters as molecular water pumps

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; MacAulay, Nanna

    2002-01-01

    Molecular water pumps are membrane proteins of the cotransport type in which a flux of water is coupled to substrate fluxes by a mechanism within the protein. Free energy can be exchanged between the fluxes. Accordingly, the flux of water may be relatively independent of the external water chemical...

  17. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  18. 核电循环泵轴承冷却风扇结构及其流场分析%Structure and Flow Field Analysis of Bearing Cooling Fans of the Circulating Cooling Water Pump in a Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    吴明哲; 王晓冬; 孙德臣

    2016-01-01

    The circulating cooling water pump in a nuclear power plant operates in a high temperature environment,and the pump bearing receives a large amount of heat load,so the work reliability is of great importance.To reduce the bearing’s working temperature and ensure its safe operation,a cooling device should be installed in the pump system.The structure of the bearing’s axial flow cooling fan in the pump was proposed,and the optimum design method of the bearing’s axial flow cooling fan in the pump was established.For the fan blades,the optimized calculation using BFGS algorithm was proceeded.A simulation verification of the system was proposed by using FLUENT,whose results showed that the design method is suitable for the bearing’s axial flow cooling fan design in circulating cooling water pumps in a nuclear power plant.%核电站冷却水循环泵在高温环境下工作,泵轴承受到很大的热负载,其工作可靠性至关重要。为降低轴承工作温度、保证轴承安全工作,在泵轴系统上设置了冷却装置。提出了泵轴承冷却用轴流式风扇的结构,建立了风扇结构的 BFGS 优化计算方法,采用计算流体力学软件 FLUENT 对风扇流场进行了数值分析。数值模拟结果表明,基于 BFGS 设计方法得到的冷却风扇性能有较好的设计计算精度,能够满足核电站冷却水循环泵轴承冷却的要求,该计算方法方便可行。

  19. Automatic Control of Water Pumping Stations

    Institute of Scientific and Technical Information of China (English)

    Muhannad Alrheeh; JIANG Zhengfeng

    2006-01-01

    Automatic Control of pumps is an interesting proposal to operate water pumping stations among many kinds of water pumping stations according to their functions.In this paper, our pumping station is being used for water supply system. This paper is to introduce the idea of pump controller and the important factors that must be considering when we want to design automatic control system of water pumping stations. Then the automatic control circuit with the function of all components will be introduced.

  20. Energy saving in the auxiliaries consumption for circulation water pumps optimizing the thermal regime; Ahorro en el consumo de auxiliares por bombas de agua de circulacion optimando el regimen termico

    Energy Technology Data Exchange (ETDEWEB)

    Orozco Martinez, Roni [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    A methodology is proposed that should be followed in any thermal electric power plant to determine the load value at which a unit requires a second circulation water pump without affecting the thermal regime and avoiding an excessive auxiliaries consumption in partial loads. In applying this method the power plant would have an energy saving equivalent to the auxiliaries consumption during an hour, when the unit as operating at full load. [Espanol] Se propone una metodologia que debe seguirse en cualquier central termoelectrica para determinar el valor de la carga en la cual una unidad requiere de la segunda bomba de agua de circulacion sin afectar el regimen termico y evitadose un excesivo consumo de auxiliares en cargas parciales. Al aplicar este metodo la central tendria un ahorro de energia equivalente al consumo de auxiliares durante una hora cuando la unidad esta generando su maxima carga.

  1. Recycling Waste Heat of Circulating Water Using Absorption Heat Pump in Thermal Power Plant%利用吸收式热泵回收热电厂循环水余热

    Institute of Scientific and Technical Information of China (English)

    石会群; 高立江

    2013-01-01

    Recycle the waste heat of circulating water in heating power to heat water by using type I absorption heat pump. In this paper, it introduces the original design parameters, the system scheme and the selection of units. In addition, it introduces the energy efficiency, environmental benefits and the question of the project. Through the presentation of the use of heat pump technology for recovery of waste heat from power plant, the technology is feasible, reliable, and is worthy of popularizing in northern heating power plant.%利用第一类吸收式热泵技术回收供热电厂冷却循环水余热用于城市供热,本文从设计的原始参数、系统方案和机组选型等进行介绍,并介绍了项目达到的节能效益、环保效益,以及方案存在的问题,通过说明利用热泵技术回收电厂余热技术是可行、可靠的,在北方供热电厂值得大力推广。

  2. VCO Production from Fresh Old Coconut Bunch by Circulating and Pumping Method

    Directory of Open Access Journals (Sweden)

    Muhamad Maulana Azimatun Nur

    2012-02-01

    Full Text Available VCO (Virgin Coconut Oil is one of coco-diesel source, made without high heating and chemicals. Commercial processes production, such fermentation and centrifugation usually need more time and expensive in cost and investment. Circulating by pumping through a nozzle is a new process method invented to produce VCO. The process followed by coalescence method, breaking emulsion by hitting particles through pipe and nozzle. The problem of this method was that the product gave lower yield than another method and not yet qualified. This research was purposed to discover correlation between pressure and time of circulation variables against yield and content (FFA, Peroxide, water content represented by SNI (national Indonesian standard. Producing VCO initiated by producing coconut milk from fresh old coconut, then each 1 litre milk were pumped through the pipe and nozzle with variation of circulations pressures and time. The results were decanted for 10 hours so the oil and water would be separated. The oil at upper layer was taken as final product. Then the last step was analysed the oils and oil cake (blondo. The results showed that pressure and time of circulating variables gave impact to the yield. On optimum variables, 2 atm pressure and 15 minutes of circulating gave better results with 97% yield. This operating variables also affecting oil quality. The minimum water content is 0.1%, free fatty acid is 0.18% and peroxide value is 2 mg/kg eq. The results showed that all of parameters meet the SNI standard.

  3. VCO Production from Fresh Old Coconut Bunch by Circulating and Pumping Method

    Directory of Open Access Journals (Sweden)

    Muhamad Maulana Azimatun Nur

    2012-04-01

    Full Text Available VCO (Virgin Coconut Oil is one of coco-diesel source, made without high heating and chemicals. Commercial processes production, such fermentation and centrifugation usually need more time and expensive in cost and investment. Circulating by pumping through a nozzle is a new process method invented to produce VCO. The process followed by coalescence method, breaking emulsion by hitting particles through pipe and nozzle. The problem of this method was that the product gave lower yield than another method and not yet qualified. This research was purposed to discover correlation between pressure and time of circulation variables against yield and content (FFA, Peroxide, water content represented by SNI (national Indonesian standard. Producing VCO initiated by producing coconut milk from fresh old coconut, then each 1 litre milk were pumped through the pipe and nozzle with variation of circulations pressures and time. The results were decanted for 10 hours so the oil and water would be separated. The oil at upper layer was taken as final product. Then the last step was analysed the oils and oil cake (blondo. The results showed that pressure and time of circulating variables gave impact to the yield. On optimum variables, 2 atm pressure and 15 minutes of circulating gave better results with 97% yield. This operating variables also affecting oil quality. The minimum water content is 0.1%, free fatty acid is 0.18% and peroxide value is 2 mg/kg eq. The results showed that all of parameters meet the SNI standard.

  4. 溴化锂吸收式热泵回收循环水余热的模拟研究%Using lithium bromide absorption heat pump to recycle circulating water heat:a simulation

    Institute of Scientific and Technical Information of China (English)

    车德勇; 吕婧; 高龙; 李少华; 白章

    2014-01-01

    循环水的余热造成环境热污染,同时也损失了大量的热能。对此,利用吸收式热泵对其进行回收利用。以某200 MW抽凝机组及其供热系统为例,采用Aspen Plus软件建立单、双效溴化锂吸收式热泵模型,并进行变工况模拟对比分析。研究结果表明:当热泵出口热网水温度升高或热泵驱动汽源汽量增加时,单、双效循环热泵热力系数均降低;在相同热泵出口热网水温度下,双效循环比单效循环节省蒸汽率约30%;当采用多效循环且热泵出口热网水温度高于90℃时,可采用热泵先将热网回水加热到90℃左右,然后采用尖峰加热器加热热网水到需要的温度,以保证系统稳定运行。%Waste heat of circulating water emitted to the environment causes huge thermal pollution and los-ses lots of thermal energy.Thus,absorption heat pump is applied to recycle the heat.Taking a certain 200 MW extraction condensing unit and its heating system as the example,the Aspen Plus software was employed to establish the single/double effect lithium bromide absorption heat pump model.Moreover, comparative analysis for the system under variable conditions was performed.The results indicate that, with an increase in the heat pump outlet heating network water temperature or the heat pump driven steam source,the coefficient of performance (COP)of both the single and double effect cycle heat pump declined. For the same heating temperature,the double-effect cycle can save steam by about 30% more than the sin-gle-effect cycle.When the temperature of heat pump outlet heating network water exceeded 90 ℃,the heat-ing network return water can be heated to about 90 ℃ by heat pump first,and then to the required temper-ature by spike heater,thus to ensure the stable operation of system.

  5. Energy Savings Potential for Pumping Water in District Heating Stations

    Directory of Open Access Journals (Sweden)

    Ioan Sarbu

    2015-05-01

    Full Text Available In district heating stations, the heat carrier is circulated between the energy source and consumers by a pumping system. Fluid handling systems, such as pumping systems, are responsible for a significant portion of the total electrical energy use. Significant opportunities exist to reduce pumping energy through smart design, retrofitting, and operating practices. Most existing systems requiring flow control make use of bypass lines, throttling valves or pump speed adjustments. The most efficient of these options is pump speed control. One of the issues in using variable-speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper provides a comprehensive discussion about pump control in heating stations and analyzes the energy efficiency of flow control methods. Specific attention is also given to the selection of motor types, sizing and pump duty cycle. A comparative energy analysis is performed on the hot water discharge adjustment using throttling control valves and variable-speed drives in a district heating station constructed in Romania. To correlate the pumped flow rate with the heat demand and to ensure the necessary pressure using minimum energy, an automatic system has been designed. The performances of these control methods are evaluated in two practical applications. The results show that approximately 20%–50% of total pumping energy could be saved by using the optimal control method with variable-speed pumps. Additionally, some modernization solutions to reduce the environmental impact of heating stations are described.

  6. 46 CFR 108.471 - Water pump.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  7. Data from Sustainability Base Characterizing Hot Water Pump Differential Pressure Spikes for ACCEPT

    Data.gov (United States)

    National Aeronautics and Space Administration — During the heating season in Sustainability Base, a critical alarm associated with a hot water pump circulating heating water for the radiative system which...

  8. Water cooling thermal power measurement in a vacuum diffusion pump

    Directory of Open Access Journals (Sweden)

    Luís Henrique Cardozo Amorin

    2012-04-01

    Full Text Available Diffusion vacuum pumps are used both in industry and in laboratory science for high vacuum production. For its operation they must be refrigerated, and it is done by circulating water in open circuit. Considering that, vacuum systems stays operating by hours, the water consumption may be avoided if the diffusion vacuum pumps refrigeration were done in closed circuit. However, it is necessary to know the diffusion vacuum pump thermal power (the heat transferred to circulate water by time units to implement one of these and get in the refrigeration system dimension. In this paper the diffusion vacuum pump thermal power was obtained by measuring water flow and temperature variation and was calculated through the heat quantity variation equation time function. The thermal power value was 935,6 W, that is 397 W smaller and 35 W bigger than, respectively, the maximum and minimum diffusion pump thermal power suggested by its operation manual. This procedure have been shown useful to precisely determine the diffusion pump thermal power or of any other system that needs to be refrigerated in water closed circuit.

  9. 循环水泵前池水位降低对汽轮机冷端系统运行性能影响分析%Influence Analysis of Circulating Water Pump Forebay Water Lowering on the Operating Performance of Steam Turbine Cold-end System

    Institute of Scientific and Technical Information of China (English)

    田思来; 程东涛; 居文平

    2016-01-01

    Water lowering of the power station circulating water pump forebay compared to local water level influences the safety and economy of the steam turbine cold-end system.Through quantitative analysis and qualitative analysis ,the analysis of impact of water lowering of the circulating water pump forebay on the economic performance of the steam turbine cold -end system,clearly put forward decision criteria for operating safety of the steam turbine cold-end system.A set of simple and practical calculation method is developed , applied to the quantitative analysis on the problems existing in the circulating water system,at the same time provides guidance advice for the work of design and selection of circulating water system of same type.%电站循环水泵前池水位相对水源地水位下降,对汽轮机冷端系统安全性和经济性运行产生重要影响。通过定量分析和定性分析相结合,分析计算循环水泵前池水位下降对汽轮机冷端系统运行经济性的影响量,明确了对汽轮机冷端系统运行安全性影响的判定标准。形成了一套简便、实用的分析计算方法,对循环水取水系统存在的问题进行量化分析,同时为同类型循环水取水系统的设计选型工作提供了指导建议。

  10. Electromagnetic circulation pump for corrosive gases; Pompe de circulation electromagnetique pour gaz corrosifs

    Energy Technology Data Exchange (ETDEWEB)

    Noe, P.; Delafosse, D.; Deletre, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    In order to transport very corrosive products (fluorinated compounds) we have been led to develop a totally metallic circulation pump capable of operating at above room temperatures and with a molecular vacuum. We have aimed at maximum simplicity both in its conception and in its operation. The tests showed that the compression ratios produced, although not high are interesting (1.5 at a pressure of 100 torr) (see curve I). The flow-rate range is very wide: about one hundred ccs/atm/min. to 3000 ccs/atm/min. (see curves IV, V, VI). The desorption of this pump presents no difficulty if both the aspiration and the reject sides are pumped together. A hole of 2 mm diameter drilled in the piston makes it possible to desorb the space between the two segments. The price of this pump is not high: 1300 F, with the electrical cabinet. (authors) [French] En vue de vehiculer des produits tres corrosifs (composes fluores) nous avons ete amene a realiser une pompe de circulation entierement metallique, capable de fonctionner en temperature et sous vide moleculaire. Nous avons recherche la simplicite tant dans sa realisation que dans son fonctionnement. Les essais ont montre que les taux de compression fournis, sans etre eleves, sont interessants (1,5 a la pression de 100 torr) (voir courbe I). La gamme des debits est tres large: d'une centaine de cm{sup 3}/atm/mn a 3000 cm{sup 3}/atm/mn (voir courbes IV, V, VI). La desorption de cette pompe ne presente pas de difficulte en pompant a la fois cote aspiration et cote refoulement. Un percage de 2 mm de diametre dans le piston permet la desorption de l'espace entre les 2 segments. Le cout de cette pompe est peu eleve: 1300 F, coffret electrique compris. (auteurs)

  11. 压水堆核电站循环冷却水泵齿轮箱传动设计研究%Design of Circulating Pump Gear Box for Pressurized Water Reator Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    邢志伟

    2011-01-01

    The development of nuclear power is our inevitable choice for sustainable economic development, but also is it a very arduous and difficult task. Based on pressurized water reactor nuclear power plant, the basic characteristics, domestic difficulties and development of the circulating pump gear box are introduced. Then, the transmission scheme of the gear box is discussed, involving the determination of basic parameters, design of contained bodies, selection and heat treatment of major components and so on. Finally, the future of the gear box for nuclear power is prospected.%基于压水堆核电站,介绍了循环水泵用齿轮箱减速器的基本特点、国产化难点及国内发展概况.讨论了核电用齿轮箱的传动方案设计,涉及基本参数的确定、均载机构的设计、主要零件的选材与热处理等.最后展望核电用齿轮箱的发展前景.

  12. PV water pumping: NEOS Corporation recent PV water pumping activities

    Energy Technology Data Exchange (ETDEWEB)

    Lane, C.

    1995-11-01

    NEOS Corporation has been very active in PV-powered water pumping, particularly with respect to electric utilities. Most of the recent activity has been through the Photovoltaic Services Network (PSN). The PSN is an independent, not-for-profit organization comprised of all types of electric utilities: rural electric coops, public power districts, investor-owned utilities, and power marketing agencies. The PSN`s mission is to work pro-actively to promote utility involvement in PV through education and training. PV information is distributed by the PSN in three primary forms: (1) consultation with PSN technical service representatives: (2) literature generated by the PSN; and (3) literature published by other organizations. The PSN can also provide assistance to members in developing PV customer service programs. The PSN`s product support activities include consolidation of information on existing packaged PV systems and facilitation of the development of new PV product packages that meet utility-defined specifications for cost performance, and reliability. The PSN`s initial product support efforts will be focused on commercially available packaged PV systems for a variety of off-grid applications. In parallel with this effort, if no products exist that meet the PSN`s functional specifications, the PSN will initiate the second phase of product development support process by encouraging the development of new packaged systems. Through these services and product support activities, the PSN anticipates engaging all segments for the PV industry, thus providing benefits to PV systems suppliers as well as local PV service contractors.This paper describes field testing of pv power systems for water pumping.

  13. Power consumption of circulation pumps - Much too high; Viel zu gross

    Energy Technology Data Exchange (ETDEWEB)

    Nipkow, J.

    2010-07-01

    This short article takes a look at the European Union 'Ecodesign' directive and, in particular, the situation with respect to circulation pumps as used in heating systems. These pumps account for around three per cent of Swiss electricity consumption, or as the author quotes, is equivalent to the power consumption of all domestic refrigerators. The very low efficiency of older pumps is commented on and improvements in newer models are noted. The European guidelines on the energy-efficiency of these circulation pumps are looked at and the future effects on pump power consumption are discussed.

  14. Failure analyses and weld repair of boiler feed water pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vulpen, R. van [KemaPower Generation, Arnhem (Netherlands)

    1998-12-31

    During a regular inspection of the Boiler Auxiliaries at one of the Dutch Electricity Production Companies serious cracks were found in the cover and casings of the feed water circulation pumps in two units after 108.000 and 122.000 hours of boiler operation. Kema Laboratories carried out Failure analyses on boat samples at the cracked areas. Corrosion fatigue cracking was found on the inner side of the GS-24CrNiMo325 casing. Shop Weld repairs were carried out using a newly developed mechanized Plasma Welding Technique. The repaired feed water circulation pumps showed no problems alter several years of operation. The costs of repair were substantially lower than the costs of replacement. (orig.) 3 refs.

  15. Circulation model for water circulation and purification in a water Cerenkov detector

    Institute of Scientific and Technical Information of China (English)

    LU Hao-Qi; YANG Chang-Gen; WANG Ling-Yu; XU Ji-Lei; WANG aui-Guang; WANG Zhi-Min; WANG Yi-Fang

    2009-01-01

    Owing to its low cost and good transparency, highly purified water is widely used as a medium in large water Cerenkov detector experiments. The water circulation and purification system is usually needed to keep the water in good quality. In this work, a practical circulation model is built to describe the variation of the water resistivity in the circulation process and compared with the data obtained from a prototype experiment. The successful test of the model makes it useful in the future design and optimization of the circulation/purification system.

  16. Unitary water-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-10-01

    Performance and cost functions for nine unitary water-to-air heat pumps ranging in nominal size from /sup 1///sub 2/ to 26 tons are presented in mathematical form for easy use in heat pump computer simulations. COPs at nominal water source temperature of 60/sup 0/F range from 2.5 to 3.4 during the heating cycle; during the cooling cycle EERs range from 8.33 to 9.09 with 85/sup 0/F entering water source temperatures. The COP and EER values do not include water source pumping power or any energy requirements associated with a central heat source and heat rejection equipment.

  17. Development of Electronic Circulating Pump by Axial Air-gap Type Brush less Motor for Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Uk; Lee, Chang Eon; Kim, Young Seok; Yim, Chang Soon [Inha University (Korea, Republic of); Kim, Dong Chun [Pyung Taek Technical Junior College (Korea, Republic of); Suh, Sung Won [Bupyung Technical High School (Korea, Republic of)

    1997-04-30

    Canned type household circulating pump in the country almost depends on the act of imports, however it has disadvantage of low efficiency because an air gap of between rotor and stator is large and when the boiler is not used in a period of summer, a can and a rotor become adhered each other. Accordingly the pump is impossible to drive the initial state, and a lifetime of the pump gets shortening. To overcome these defects a electronic circulating pump by axial air-gap type brush less motor which is completely depart from the general idea for the conventional pump is developed. This paper is verified through experiments that the developed pump has good performance for reduction of size and noise, retrenchment of cost, and improvement of efficiency in comparison with the conventional pump. (author). refs., figs., tabs.

  18. Performance evaluation of four different methods for circulating water in commercial-scale, split-pond aquaculture systems

    Science.gov (United States)

    The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two conveyance structures. Water is circulated between the two basins with high-volume pumps and many different pumping systems are being used on commercial farms. Pump performance was evaluated with fou...

  19. DEVELOPMENT OF WATER CIRCULATION MODEL INCLUDING IRRIGATION

    Science.gov (United States)

    Kotsuki, Shunji; Tanaka, Kenji; Kojiri, Toshiharu; Hamaguchi, Toshio

    It is well known that since agricultural water withdrawal has much affect on water circulation system, accurate analysis of river discharge or water balance are difficult with less regard for it. In this study, water circulation model composed of land surface model and distributed runoff model is proposed at 10km 10km resolution. In this model, irrigation water, which is estimated with land surface model, is introduced to river discharge analysis. The model is applied to the Chao Phraya River in Thailand, and reproduced seasonal water balance. Additionally, the discharge on dry season simulated with the model is improved as a result of including irrigation. Since the model, which is basically developed from global data sets, simulated seasonal change of river discharge, it can be suggested that our model has university to other river basins.

  20. Application of Heat Pump in Cooling Water System of HIRFL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Accelerator generates a lot of heat when it is working.It must be cooled by the circulating cooling water.Generally the heat was released to atimosphere by the cooling water tower.Because the heat energy is very huge(about 2M watts for HIRFL),it is big waste and the machine can’t be cooled to appropriate temperature when ambient temperature is high in summer.In order to solve the problems,the heat pump has been used

  1. Circular pump support of blood circulation in the human body

    Science.gov (United States)

    Medvedev, A. E.; Fomin, V. M.; Prikhodko, Yu. M.; Cherniavskiy, A. M.; Fomichev, V. P.; Fomichev, A. V.; Chekhov, V. P.; Ruzmatov, T. M.

    2016-10-01

    The need of circulatory support systems in the treatment of chronic heart failure is increasing constantly, as 20% of patients in the waiting list die every year. Despite the great need for mechanical heart support systems, using of available systems is limited by the expensiveness. In addition, there is no one system that is 100% responsible to all medical and technical requirements, and would be completely safe for patient. Therefore, further research in the field of circu-latory support systems, considering health and technical requirements is relevant. One of the new directions in the study are disc pumps of viscous friction for liquid transporting, based on the Tesla pump principle. The operation principle of pumps based on the phenomenon of the boundary layer which is formed on the disk rotating in a fluid. There are experimental studies results of models with different variants of the rotor suspension, the various forms and the number of disks, forms the pump housing. However, none of the above samples was not brought to clinical trials. Furthermore, despite the promise of this model is still used today in some circulatory support systems are no similar type pump. Published data provide a basis for further development and testing of the pump model and allow to hope for leveling a number of significant shortcomings of modern left ventricular bypass systems.

  2. Elevator was Worked by Water and Water Pump

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Masoumi

    2012-12-01

    Full Text Available In this research, it has been attempted to show that some elevators work with water and their energy consumption could be reduced because of water pump usage instead of powerful gear motor of the present day elevators. Power of gear motor elevators is between 3.7 to 7.5 kw and the power of water pump elevator is 1.5 kw. Water, a tank of counter weight and water pumps operate this elevator. Consequently, it can save energy especially when two or more elevators are placed adjacent to each other. The discussion of this study concentrates on the dynamic simulation and physics of this type of elevators.

  3. Water Hammer in Pumped Sewer Mains

    DEFF Research Database (Denmark)

    Larsen, Torben

    This publication is intended for engineers seeking an introduction to the problem of water hammer in pumped pressure mains. This is a subject of increasing interest because of the development of larger and more integrated sewer systems. Consideration of water hammer is essential for structural...

  4. Innovation-enabling policy and regime transformation towards increased energy efficiency: The case of the circulator pump industry in Europe

    DEFF Research Database (Denmark)

    Ruby, Tobias Møller

    2015-01-01

    of the industry envisioned and worked for a voluntary energy label, bringing technological innovation, new business and energy savings of approx. 85% for each new circulator pump. The case study explores the complexities of innovation processes where technology, market, actors and policy co-evolve over time......When new energy efficient products are struggling with their commercialisation and diffusion into widespread applications you would typically expect policy-makers and green lead-users to guide the way. This paper examines the case of the hot water circulator pump industry in Europe, where parts...... to transform an existing socio-technical regime. The paper highlights the importance of policies to reduce barriers towards innovation and energy efficiency and shows that it is not always policy-makers that establish the crucial policies that change the innovation dynamics for the benefit of the environment...

  5. Modelling a directly coupled photovoltaic pumping system in a solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Y.; Fraisse, G. [Savoy Univ., Le Bourget du lac (FR). Design Optimization and Environmental Engineering Laboratory (LOCIE)

    2008-07-01

    This paper presents a photovoltaic (PV) powered pumping system applying in a solar domestic hot water (SDHW) system. Two circulators ('Standard' and 'Solar') are employed respectively. A new model of circulator is developed in TRNSYS based on a 'Standard' type that consists of a DC-brushless motor and a centrifugal pump. Model validation is carried out by comparing with the experimental measurement. The experimental performance of these two circulators is analyzed on the aspects of startup and the stable operation stage. (orig.)

  6. A charge-driven molecular water pump

    Science.gov (United States)

    Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping

    2007-11-01

    Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.

  7. 大型吸收式热泵应用于火电厂回收余热供热的试验研究%The Experiment Study on Waste Heat Recovery from Circulating Water in Thermal Power Plant Using Large Absorption Heat Pump

    Institute of Scientific and Technical Information of China (English)

    周崇波; 俞聪; 郭栋; 丁贯林

    2013-01-01

    An experiment on waste heat recovery thermal characteristics from circulating water in 125MW and 300MW thermal power plants using large absorption heat pump is conducted. The steam pressure, the temperature of the backwater from heat-supply network, the inlet circulating water temperature of the large absorption heat pump system are analyzed under other external conditions and different parameters. Then the effects of main external parameters on heating capacity, the recovery of residual heat, energy efficiency ratio and other important indicators in the large absorption heat pump are quantitatively discussed . The conclusion provide the firsthand information for the design of the waste heat recovery engineering and regular operation of large absorption heat pump.%针对已在125MW及300MW等级火电厂中投产的大型吸收式热泵系统的变工况热力特性进行试验测试,并分析其试验数据,对吸收式热泵系统在驱动蒸汽压力、热网水回水温度、余热水进水温度等主要外部条件和参数变化条件下的运行指标进行了测试和分析,从而获得了这些主要外部参数改变对吸收式热泵制热能力、余热回收量、能效比等重要指标的定量影响.该试验结果为采用大型吸收式热泵系统进行电厂冷凝热回收供热改造工程的初期设计及投产后的优化运行提供了第一手参考资料.

  8. Water Hammer in Pumped Sewer Mains

    DEFF Research Database (Denmark)

    Larsen, Torben

    This publication is intended for students and engineers seeking an introduction to the problem of water transients in pumped sewer and water mains. This is a subject of increasing interest because of the development of larger and more integrated systems. Consideration of transients is essential...... for the structural design of pipelines and for the planning of the proper function of the systems. The text is written by Torben Larsen, who is a professor of environmental hydraulics at the Department of Civil Engineering, Aalborg University. Torben Larsen has many years of experience with computer simulations...... of transients in pumped pipeline systems. This present publication can be understood as the second and revised edition of the pamphlet ”Transients in pumped sewer mains” (2006) which was published as a technical report by The EVA committee under The Danish Water Pollution Committee (The Danish Society...

  9. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...

  10. Biocorrosion of evaporators of water/water heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Denier, P.; Sutter, E.M.M.; Cornet, A. (Ecole Nationale Superieure des Arts et Industries, 67 - Strasbourg (FR))

    1990-12-01

    During the last twenty years, many heat pumps were installed in Alsace (France) using groundwater. It appeared that water contained bacteria able to induce metallic corrosion. Thus, it was necessary to have a better knowledge of the situation. A statistical study on water analysis was realised. There is no noticeable relation between bacterial contamination and water chemistry or geographical location. Most of corrosion origines were - a bad water network conception (erosion, cavitation, oxygen differential cells...) - a bad use of metal coupling (galvanic corrosion). The presence of bacteria generally increases the phenomena described above. Solutions proposed are: PVC casing, stainless steel water pumps, heat pump evaporators in noble alloys or metals, PVC or resines lagging. For the actual set of heat pumps, there are less solutions but in some cases an intermediary exchanger would be a good and easy solution.

  11. Operability Analysis of Sea Water Circulation Pump in AP 1000 PWR%AP1000核电站海水循环泵可运行性分析

    Institute of Scientific and Technical Information of China (English)

    欧鸣雄; 严建华; 盛绛; 施卫东; 滕国荣

    2014-01-01

    建立了A P1000立式循环泵机组的整机有限元模型,采用响应谱法针对循环泵在设计地震载荷工况下的强度及其动、静部件的变形位移进行了分析,并对该泵在设计地震载荷工况下的结构完整性和可运行性进行了评估。分析结果显示,该泵的1阶横向弯曲振动频率为14.4 Hz ,在单位水平激励载荷下,其前4阶振型在模型中的有效质量分数达0.94。在设计地震载荷工况下,作为主承压部件的泵体最大组合应力为203 M Pa ,叶轮室段壳体最大变形位移不超过1.5mm,转子部件最大组合应力为1.7MPa,最大变形位移为0.8mm,该系列响应值均在循环泵设计允许范围内,分析结果显示该泵能满足结构完整性和可运行性的要求。%The integrated definite element model of vertical circulation pump assembles in AP1000 was built .The static analysis and response spectrum analysis were used for normal design condition and design earthquake condition respectively , and the integrality and operability of pump were evaluated through strength and displacement analysis .The results demonstrate that the 1st lateral natural frequency of the pump is 14.4 Hz ,and the first 4 vibration mode shapes consist of an effective mass ratio of 0.94 in the model under a horizontal excitation load .At the design seismic load condition ,the max combination stress of pump case as the main pressure-bearing container is 203 M Pa ,the max displacement in impeller case is 1.5 mm ,the max combination stress of motor assemble is 1.7 M Pa ,and the max displacement of motor assemble is 0.8 mm , all these results are allowable in design . The analysis results demonstrate that the integrality and operability demands of pump are met in this design .

  12. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  13. Development of a Prototype Water Pump for Future Space Suit Applications

    Science.gov (United States)

    Hartman, David; Hodgson, Edward; Dionne, Steven; Gervais, Edward, III; Trevino, Luis

    2009-01-01

    NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  14. 300 MW 机组循环水余热-热泵回收系统的经济性分析%Economic Analysis of the Introduction of Absorption Heat Pump to Reclaim Waste-heat of Circulating Water In a 300 MW Unit

    Institute of Scientific and Technical Information of China (English)

    高建强; 王玉兰; 李寒冰; 王玉皓

    2015-01-01

    In the thermal power plant ,circulating cooling water contains abundant residual heat resources .Turbine-generator thermal efficiency is greatly improved by the introduction of absorption heat pump .This thesis takes thermal system energy efficiency distribution matrix equation ( EEDM ) to analyze and calculate a 300 MW unit which adopts the fifth segment extraction steam to drive the heat pump .The results show that cycle efficiency and heat energy utilization ratio increased respectively by 1.246% and 10.67%, because of the introduction of the heat pump technology , which can greatly save energy and reduce pollution .%热力发电厂循环冷却水蕴含较为丰富的低温余热资源,利用吸收式热泵技术将这一部分热量回收能够大幅度提高机组的热效率。采用热力系统能效分布矩阵方程(EEDM)对采用5段抽汽驱动热泵的某300MW机组进行分析计算,结果表明采用热泵技术使机组循环效率和热能利用率分别提高了1.246%和10.67%,能够很大程度的节约能源,减少污染。

  15. Optimization of a Centrifugal Boiler Circulating Pump's Casing Based on CFD and FEM Analyses

    Directory of Open Access Journals (Sweden)

    Zhigang Zuo

    2014-04-01

    Full Text Available It is important to evaluate the economic efficiency of boiler circulating pumps in manufacturing process from the manufacturers' point of view. The possibility of optimizing the pump casing with respect to structural pressure integrity and hydraulic performance was discussed. CFD analyses of pump models with different pump casing sizes were firstly carried out for the hydraulic performance evaluation. The effects of the working temperature and the sealing ring on the hydraulic efficiency were discussed. A model with casing diameter of 0.875D40 was selected for further analyses. FEM analyses were then carried out on different combinations of casing sizes, casing wall thickness, and materials, to evaluate its safety related to pressure integrity, with respect to both static and fatigue strength analyses. Two models with forging and cast materials were selected as final results.

  16. Livestock water pumping with wind and solar power

    Science.gov (United States)

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  17. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    Science.gov (United States)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  18. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  19. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  20. Comparison of the standard roller pump and a pulsatile centrifugal pump for extracorporeal circulation during routine coronary artery bypass grafting.

    Science.gov (United States)

    Driessen, J J; Fransen, G; Rondelez, L; Schelstraete, E; Gevaert, L

    1991-01-01

    The present prospective study compared the standard nonpulsatile twin roller pump with the Sarns centrifugal pump, in the pulsatile mode, as arterial pumps for extracorporeal circulation during coronary artery bypass grafting (CABG). The study was conducted in two consecutive groups of 25 patients receiving a standard anaesthetic and surgical protocol. The investigated parameters included haemodynamic profiles, oxygen exchange, blood gas and acid-base homeostasis, haematology, coagulation and complement consumption. With comparable settings for pump flow, gas flow and delivered oxygen concentrations, there was no difference between the groups in the main haemodynamic parameters during cardiopulmonary bypass (CPB). However, a tenfold lower dose of sodium nitroprusside was required to keep systemic vascular resistance within physiologic limits during CPB in the centrifugal group (C group) compared with the roller group (R group). During rewarming oxygen extraction was higher in the C group than in the R group. During the first eight hours after CPB no differences in haemodynamics, oxygenation parameters and pulmonary shunt between the groups were observed. During, as well as after, CPB there was no significant difference in blood gas and acid-base homeostasis between either group. Average postoperative blood loss via chest tubes, total transfusions of blood products, haemoglobin and coagulation did not differ between the two groups. However, the white blood cell count, corrected for changes in haematocrit, decreased during the early phase of CPB in the R group, but not in the C group.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Development of an annular linear induction electromagnetic pump for the na-coolant circulation of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Reyoung; Lee, Yong Bum; Kim, Yong Kyun; Nam, Ho Yun [KAERI, Taejon (Korea, Republic of)

    1998-07-01

    The EM (ElectroMagnetic) pump operated by Lorentz force (J x B) is developed for the sodium coolant circulation of LMFBR (Liquid Metal Fast Breeder Reactors). Design and experimental characterization are carried out on the linear induction EM pump of the narrow annular channel type. The pump which obtains propulsion force resultantly by the three phase symmetric alternating input currents is analyzed by the electrical equivalent circuit method used in the analyses of the induction machines. Then, the equivalent circuit for the pump consists of equivalent variables of primary and secondary resistances and magnetizing and leakage reactances given as functions of pump geometrical and electrical variables by Laithwaithe's standard formulae. Developing pressure-flowrate relation given by pump variables is sought from the balance equation on the circuit. Developing pressure and efficiency of the pump according to the pump variables are analyzed for the pump with a flowrate of 200 l/min. It is shown that pump is mainly characterized by length of the core, diameter of the inner core and channel gap geometrically and by input frequency electrically. Optimum values of pump geometrical and operational variables are determined to maximize the developing force and overall efficiency. The pump has geometrical size of 60 cm in length, 4.27 cm in inner core diameter and electrical input of 6,428 VA and 17 Hz. Optimally designed pump is manufactured by the consideration of material and operational requirements in the chemically-active sodium environment with high temperature of 600 .deg. C. Silicon-iron steel plates with high magnetic permeability in the high temperature are stacked for generation of the high magnetic flux and alumina-dispersion-strengthened-copper bands are used as exciting coils. Each turn of coil is insulated by asbestos band to protect electrical short in the high temperature. Stainless steel which can be compatible with sodium is selected as structural

  2. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 1

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard; Madsen, C.; Elmegaard, Brian

    2014-01-01

    The purpose of the Isolated System Energy Charging (ISEC) is to provide a high-efficient ammonia heat pump system for hot water production. The ISEC concept uses two storage tanks for the water, one discharged and one charged. The charged tank is used for the industrial process while the discharged...... to investigate the performance of the ISEC system. The ISEC concept approaches the efficiency of a number of heat pumps in series and the COP of the system may reach 6.8, which is up to 25 % higher than a conventional heat pump heating water in one step....... tank, is charging. Charging is done by circulating the water in the tank through the condenser several times and thereby gradually heats the water. This result in a lower condensing temperature than if the water was heated in one step. A dynamic model of the system, implemented in Dymola, is used...

  3. 77 FR 2957 - Application for Manufacturing Authority, Liberty Pumps, Inc. (Submersible and Water Pumps...

    Science.gov (United States)

    2012-01-20

    ... Foreign-Trade Zones Board Application for Manufacturing Authority, Liberty Pumps, Inc. (Submersible and Water Pumps), Bergen, NY An application has been submitted to the Foreign-Trade Zones Board (the Board... manufacturing authority on behalf of Liberty Pumps, Inc., located in Bergen, New York. The application...

  4. HYDRODYNAMICS THEORY AND CALCULATION IN WATER WAVE PUMP DESIGN

    Institute of Scientific and Technical Information of China (English)

    LIU Ying-xue; TAO Yi; LIU Gao-lian

    2005-01-01

    This paper introduces the hydrodynamics theory related to water wave pump.Water wave pump is a new type pump, which uses the particular quality of water wave and re-divides the inflow energy to increase the pressure of one part of the inflow water with the rest water flowing away freely.The research and development of such a pump is of importance and significant value and profitable social interest in that it can fully utilize the residual energy of natural source in industrial and civil water circle systems.Through hydrodynamics research and calculation, a series of valid design parameters were obtained and the predicted results achieved.

  5. Performance of a small wind powered water pumping system

    Science.gov (United States)

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  6. Stability of Thermohaline circulation with respect to fresh water release

    OpenAIRE

    Patwardhan, Ajay; Tewary, Vivek

    2008-01-01

    The relatively warm climate found in the North- Western Europe is due to the gulf stream that circulates warm saline water from southern latitudes to Europe. In North Atlantic ocean the stream gives out a large amount of heat, cools down and sinks to the bottom to complete the Thermohaline circulation. There is considerable debate on the stability of the stream to inputs of fresh water from the melting ice in Greenland and Arctic. The circulation, being switched off, will have massive impact ...

  7. System curves for 100-K water plant expansion pump analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rudock, E.R.

    1958-06-05

    Modifications to the 100-K water plant will be made, under Project CG-775, to increase total process water flow rates to 175,000 gpm or greater. Included in the modifications will be the installation of new pump impellers for the primary and secondary process water pumps located in the 190-K Buildings.

  8. 46 CFR 76.25-15 - Pumps and water supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically... water from the two highest fire hose outlets in a manner similar to that described in §...

  9. Enhancement of natural circulation type domestic solar hot water system performance by using a wind turbine

    Science.gov (United States)

    Ramasamy, K. K.; Srinivasan, P. S. S.

    2011-08-01

    Performance improvement of existing 200 litres capacity natural convection type domestic solar hot water system is attempted. A two-stage centrifugal pump driven by a vertical axis windmill having Savonius type rotor is added to the fluid loop. The windmill driven pump circulates the water through the collector. The system with necessary instrumentation is tested over a day. Tests on Natural Circulation System (NCS) mode and Wind Assisted System (WAS) mode are carried out during January, April, July and October, 2009. Test results of a clear day are reported. Daily average efficiency of 25-28 % during NCS mode and 33-37 % during WAS mode are obtained. With higher wind velocities, higher collector flow rates and hence higher efficiencies are obtained. In general, WAS mode provides improvements in efficiency when compared to NCS mode.

  10. Audel water well pumps and systems mini-ref

    CERN Document Server

    Woodson, Roger D

    2011-01-01

    Introducing an Audel ""Mini-Ref"" for tradespeople working on water well pumps and pumping systems Water well pumps are used everywhere, with installations numbering in the millions. It's hard to believe that no one has written a small field book that covers these pieces of equipment. Finally, here's a great handy guide is for anyone who needs to know how these pumps work, how to troubleshoot problems unique to this type of piping system, and how to make common repairs for both above ground and submersible pumps. It contains vital and specific references applicable to a wide range of

  11. Heat Pump Water Heater Durabliltiy Testing - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAND.

    2004-05-29

    Ten heat pump water heaters (HPWH) were placed in an environmentally controlled test facility and run through a durability test program of approximately 7300 duty cycles (actual cycles accumulated ranged from 6640 to 8324 for the ten units). Five of the units were upgraded integral types (HPWH mounted on storage tank, no pump) from the same manufacturer as those tested in our first durability program in 2001 (Baxter and Linkous, 2002). The other five were ''add-on'' type units (HPWH with circulation pump plumbed to a separate storage tank) from another manufacturer. This durability test was designed to represent approximately 7-10 years of normal operation to meet the hot water needs of a residence. The integral units operated without incident apart from two control board failures. Both of these were caused by inadvertent exposure to very hot and humid (>135 F dry bulb and >120 F dew point) conditions that occurred due to a test loop failure. It is not likely that any residential water heater would be installed where such conditions were expected so these failures are not considered a long-term reliability concern. Two of the integral HPWHs featured a condensate management system (CMS) option that effectively eliminated any need for an evaporator condensate drain, but imposed significant efficiency penalties when operating in high humidity ambient conditions. The add-on units experienced no operational failures (breakdowns with loss of hot water production) during the course of the testing. However, their control systems exhibited some performance degradation under the high temperature, high humidity test conditions--HPWHs would shut off with tank water temperatures 15-20 F lower than when operating under moderate ambient conditions. One unit developed a refrigerant leak during the test program and lost about 50% of its charge resulting in reduced efficiency. Efficiency measurements on all the integral units and four of the add-on units showed

  12. PARAMETERS OF WATER CIRCULATION NETWORK FOR A DISTRICT HEATING AND COOLING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In a district heating and cooling system, i.e. Beijing combined heating cooling and power (CHCP) system studied here, high temperature water generated by two cogeneration plants circulates through a network between the plants and heat substations. At heat substations, supply water of high temperature from the network drives absorption chillers for air-conditioning in summer and meets space heating demands in winter or domestic hot water demands by heat exchangers in the whole year. The parameters, i.e. supply/return water temperature in the network, has a great impact on primary energy consumption (PEC) of the absorption chillers, circulation pumps and domestic hot water (DHW), which is studied in this paper.

  13. Water Pump Development for the EVA PLSS

    Science.gov (United States)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  14. CFD Investigation of the Influence of Volute Geometrical Variations on Hydrodynamic Characteristics of Circulator Pump

    Institute of Scientific and Technical Information of China (English)

    WU Denghao; YUAN Shouqi; REN Yun; MU Jiegang; YANG Youdong; LIU Jian

    2016-01-01

    Improper design of volute geometry can be the main cause that leads to unsteady pressure pulsation and radial force in pumps. Therefore, it is important to understand the influence of volute geometrical parameters on hydrodynamic characteristics of pump and the mechanism. However, the existing studies are limited to investigate the influence of only one or two volute geometrical parameters each time, and a systematic study of the influence of the combinations of different volute geometrical parameters on the pump’s hydrodynamic characteristics is missing. In this paper, a study on the understanding of the influence of volute geometrical variations on hydrodynamic characteristics of a high speed circulator pump by using computational fluid dynamics(CFD) technology is presented. Five main volute geometrical parametersD3,A8,a0,j0 andRt are selected and 25 different volute configurations are generated by using design of experiments(DOE) method. The 3D unsteady flow numerical simulations, which are based on the SSTk-w turbulence model and sliding mesh technique provided by CFX, are executed on the 25 different volute configurations. The hydraulic performance, pressure pulsation and unsteady radial force inside the pump at design condition are obtained and analyzed. It has been found that volute geometrical parametersD3 andA8 are major influence factors on hydrodynamic characteristics of the pump, whilea0,j0 andRt are minor influence factors. The minimum contribution from bothD3 andA8 is 58% on head, and maximum contribution from bothD3 and A8 is 90% on pressure pulsation. Regarding the pressure pulsation intensity, two peaks can be found. One is in the tongue area and the other is in the diffusor area. The contributions are around 60% from tongue and 25% from diffusor, respectively. The amplitude of pressure pulsation has a quadratic polynomial functional relationship with respect toD3/D2 andA8/A10, and fluctuating level of radial force has a quadratic polynomial

  15. 多边界条件下热泵利用循环水余热的CPCS-RBF预测控制%Heat Pump CPCS-RBF Predictive Control Based on Multiple Boundary Conditions in Circulating Water Waste Heat Recovery System

    Institute of Scientific and Technical Information of China (English)

    周洪煜; 杜学森; 张振华; 黄耀珍

    2015-01-01

    In the circulating water waste heat recovery system, when heat pump heating net water outlet temperature trace heating load demand, that’s not only adjusted by driven steam capacity, and is easily influenced by operating conditions variation of the heating net backwater and circulating water, the traditional PID control method has a large overshoot volume and a poor load tracking ability. So a chaotic particle clone selection (CPCS)-radial basis function (RBF) direct multi-step predictive control strategy was proposed, with difference between heat pump heat supply network water outlet temperature predicted value and the set values as the objective function, using CPCS optimization algorithm to calculate the optimal values of driven steam when the objective function is the minimum. The prediction model was constructed by two RBF neural networks according to the field operation data in order to improve the model variable condition adaptability. The experimental results show that the control strategy can comprehensively learn the change of the parameters such as the heating net backwater temperature and circulating water temperature, and make driven steam tone act in advance, trace heating load demand change in time, and adapt fluctuation of exhaust gas residual heat under power generation load change, so has better energy saving effect and variable condition adaptability.%循环水余热回收系统中,热泵热网水出口温度在跟踪供热负荷需求时,在受驱动蒸汽量的调节的同时,往往易受热网回水、循环水等工况变化的影响,传统 PID 控制方式超调量大、负荷跟踪能力差。提出一种混沌变异克隆选择−径向基函数(CPCS-RBF)直接多步预测控制策略,以热泵热网水出口温度预测值与设定值差值为目标函数,利用CPCS优化算法求取目标函数最小时的驱动蒸汽最佳值。预测模型由2个RBF神经网络结合热泵现场运行数据构建,以提高热泵系统

  16. 电厂循环水水源热泵供热系统可行性分析%Feasibility analysis of circulating water-source heat pump heating system in power plant

    Institute of Scientific and Technical Information of China (English)

    孙志新; 戴义平; 王江峰; 李平

    2011-01-01

    Establishes a mathematical model, analyses the effect of the temperature of condenser on the main parameters such as evaporator temperature and COP. Through calculation, obtains the critical parameters when heat pump heating is superior to extraction steam heating. The calculation result of an example shows that heat pump heating is more economical than extraction steam heating when the temperature of the condenser is above 33.65 ℃.%建立了电厂循环水水源热泵数学模型,分析了凝汽器温度对热泵蒸发温度和制热系数等主要参数的影响,经过计算得到了热泵供热优于抽汽供热的临界参数.实际算例表明,当凝汽器温度高于33.65℃时,热泵供热比抽汽供热更为经济.

  17. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation; Weitzel, E. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation

    2017-03-03

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  18. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  19. The Performance test of Mechanical Sodium Pump with Water Environment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang [SAM JIN Industrial Co. LTD., Chunan (Korea, Republic of)

    2015-10-15

    As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance

  20. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  1. Corrosion protection of steel in ammonia/water heat pumps

    Science.gov (United States)

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  2. Fluid circulating pump operated by same incident solar energy which heats energy collection fluid

    Science.gov (United States)

    Collins, E. R.

    1980-01-01

    The application of using a spacecraft solar powered pump terrestrially to reduce or eliminate the need for fossil fuel generated electricity for domestic solar hot water systems was investigated. A breadboard prototype model was constructed utilizing bimetals to convert thermal energy into mechanical motion by means of a toggle operated shutter mechanism. Although it did not meet expected thermal efficiency, the prototype model was sufficient to demonstrate the mechanical concept.

  3. Assessing variable speed pump efficiency in water distribution systems

    Directory of Open Access Journals (Sweden)

    A. Marchi

    2012-03-01

    Full Text Available Energy savings and greenhouse gas emission reductions are increasingly becoming important design targets in many industrial systems where fossil fuel based electrical energy is heavily utilised. In water distribution systems (WDSs a significant portion of operational cost is related to pumping. Recent studies have considered variable speed pumps (VSPs which aim to vary the operating point of the pump to match demand to pumping rate. Depending on the system characteristics, this approach can lead to considerable savings in operational costs. In particular, cost reductions can take advantage of the demand variability and can decrease energy consumption significantly. One of the issues in using variable speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper aims to provide a comprehensive discussion about the components of WDS that incorporate variable speed pumps (including electric motors, inverters and the pumps themselves to provide an insight of ways of increasing the system efficiency and hence to reduce energy consumption. In addition, specific attention is given to selection of motor types, sizing, duty cycle of pump (ratio of on-time and time period, losses due to installation and motor faults. All these factors affect the efficiency of motor drive/pump system.

  4. Assessing variable speed pump efficiency in water distribution systems

    Directory of Open Access Journals (Sweden)

    A. Marchi

    2012-07-01

    Full Text Available Energy savings and greenhouse gas emission reductions are increasingly becoming important design targets in many industrial systems where fossil fuel based electrical energy is heavily utilised. In water distribution systems (WDSs a significant portion of operational cost is related to pumping. Recent studies have considered variable speed pumps (VSPs which aim to vary the operating point of the pump to match demand to pumping rate. Depending on the system characteristics, this approach can lead to considerable savings in operational costs. In particular, cost reductions can take advantage of the demand variability and can decrease energy consumption significantly. One of the issues in using variable speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper aims to provide a comprehensive discussion about the components of WDS that incorporate variable speed pumps (including electric motors, variable frequency drives and the pumps themselves to provide an insight of ways of increasing the system efficiency and hence to reduce energy consumption. In addition, specific attention is given to selection of motor types, sizing, duty cycle of pump (ratio of on-time and time period, losses due to installation and motor faults. All these factors affect the efficiency of motor drive/pump system.

  5. [Magnetic field numerical calculation and analysis for magnetic coupling of centrifugal blood pump for extracorporeal circulation].

    Science.gov (United States)

    Hu, Zhaoyan; Lu, Lijun; Zhang, Tianyi; Chen, Zhenglong; Zhang, Tao

    2013-12-01

    This paper mainly studies the driving system of centrifugal blood pump for extracorporeal circulation, with the core being disc magnetic coupling. Structure parameters of disc magnetic coupling are related to the ability of transferring magnetic torque. Therefore, it is necessary to carry out disc magnetic coupling permanent magnet pole number (n), air gap length (L(g)), permanent magnet thickness (L(m)), permanent magnet body inside diameter (R(i)) and outside diameter (R(o)), etc. thoroughly. This paper adopts the three-dimensional static magnetic field edge element method of Ansys for numerical calculation, and analyses the relations of magnetic coupling each parameter to transmission magnetic torque. It provides a good theory basis and calculation method for further optimization of the disc magnetic coupling.

  6. Water pumps generate power efficiently; Wasserpumpen erzeugen wirtschaftlich Strom

    Energy Technology Data Exchange (ETDEWEB)

    Orchard, Bryan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2010-09-15

    The water supply utility of Baden-Wuerttemberg and Bavaria (Zweckverband Landeswasserversorgung - ZV-LW) intended to construct another power generation stage in the Geislingen station. A longitudinally divided, single-stage spiral casing pump with a capacity of 600 kW was used as turbine; the investment cost and installation cost was only one fourth of the cost of a Francis turbine. Further, it is an advantage that the pump can also be used conventionally, i.e. in pump operation, to support drinking water transport. (orig.)

  7. Aquifer-Circulating Water Curtain Cultivation System To Recover Groundwater Level And Temperature

    Science.gov (United States)

    Kim, Y.; Ko, K.; Chon, C.; Oh, S.

    2011-12-01

    Groundwater temperature, which generally ranges 14 to 16 degree of Celsius all year long, can be said to be 'constant' compared to the amplitude of daily variation of air temperature or surface water. Water curtain cultivating method utilizes this 'constant' groundwater temperature to warm up the inside of greenhouse during winter night by splash groundwater on the roof of inner greenhouse. The area of water curtain cultivation system have increased up to 107.5 square kilometers as of 2006 since when it is first introduced to South Korea in 1984. Groundwater shortage problem became a great issue in a concentrated water curtain cultivation area because the pumped and splashed groundwater is abandoned to nearby stream and natural recharge rate is reduced by greenhouses. The amount of groundwater use for water curtain cultivation system in South Korea is calculated to be 587 million cubic meters which is 35% of national agricultural use of groundwater. A new water curtain cultivation system coupled with aquifer circulating of the splashed groundwater and greenhouse roof-top rainwater harvesting is developed and applied to field site in Nonsan-si, Chungnam province to minimize groundwater shortage problem and recover groundwater level. The aquifer circulating water curtain cultivation system is consist of a pumping well and a injection well of 80 m deep, groundwater transfer and splashing system, recovery tank and rainwater collecting waterway. The distance between injection and pumping well is 15 m and an observation well is installed in the middle of the wells. To characterize hydrogeological properties of this site, hydraulic test such as pumping tests and tracer tests with dye tracer, thermal tracer and ion tracer. Once the integrated system is constructed in this site, hydraulic head in all the wells and temperature of air, recovery tank and groundwater in all the wells are monitored during the operation for 3months in winter season. Hydraulic test and tracer

  8. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  9. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    Science.gov (United States)

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-05-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  10. Computation of water hammer protection of modernized pumping station

    Science.gov (United States)

    Himr, Daniel

    2014-03-01

    Pumping station supplies water for irrigation. Maximal capacity 2 × 1.2m3·s-1 became insufficient, thus it was upgraded to 2 × 2m3·s-1. Paper is focused on design of protection against water hammer in case of sudden pumps trip. Numerical simulation of the most dangerous case (when pumps are giving the maximal flow rate) showed that existing air vessels were not able to protect the system and it would be necessary to add new vessels. Special care was paid to influence of their connection to the main pipeline, because the resistance of the connection has a significant impact on the scale of pressure pulsations. Finally, the pump trip was performed to verify if the system worked correctly. The test showed that pressure pulsations are lower (better) than computation predicted. This discrepancy was further analysed.

  11. Stability of Thermohaline circulation with respect to fresh water release

    CERN Document Server

    Patwardhan, Ajay

    2008-01-01

    The relatively warm climate found in the North- Western Europe is due to the gulf stream that circulates warm saline water from southern latitudes to Europe. In North Atlantic ocean the stream gives out a large amount of heat, cools down and sinks to the bottom to complete the Thermohaline circulation. There is considerable debate on the stability of the stream to inputs of fresh water from the melting ice in Greenland and Arctic. The circulation, being switched off, will have massive impact on the climate of Europe. Intergovernmental panel on climate change (IPCC) has warned of this danger in its recent report. Our aim is to model the Thermohaline circulation at the point where it sinks in the North-Atlantic. We create a two dimensional discrete map modeling the salinity gradient and vertical velocity of the stream. We look for how a perturbation in the form of fresh water release can destabilise the circulation by pushing the velocity below a certain threshold.

  12. Theory of wind-electric water pumping

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, M.; Probst, O. [Instituto Tecnologico y de Estudios Superiores de Monterrey (Mexico). Physics Dept.; Instituto Tecnologico y de Estudios Superiores de Monterrey (Mexico). Center for Energy Studies; Acevedo, S. [Instituto Tecnologico y de Estudios Superiores de Monterrey (Mexico). Center for Energy Studies; Instituto Tecnologico y de Estudios Superiores de Monterrey (Mexico). Dept. of Electrical Engineering

    2004-05-01

    A proper understanding of the electrical and mechanical behavior of the system and its components is essential for the successful operation of a wind-electric pumping system. In the present article we present a formal theory of such a system, developing a framework for the determination of the steady-state operating point, as well as the study of its transient behavior, particularly at start-up. It is shown that the sufficient accumulation of kinetic energy in the wind turbine before connecting it to its load is critical for a successful start-up, even when the system has been designed to function at optimal steady-state conditions. A detailed discussion of the start-up process in terms of stored kinetic energy in the braking power provided by both the pump and the electrical system losses is given. The results of this analysis are believed to be useful both for the steady-state design of wind-electric pumping systems, as well as the optimization of control schemes and energy capture. (author)

  13. Air-to-water heat pumps for the home

    Energy Technology Data Exchange (ETDEWEB)

    Bodzin, S. [ed.

    1997-07-01

    Heat pump water heaters may be on the rise again. Retrofitters have shied away from this form of water heating due to concerns about cost, moise, efficiency, and maintaenance. Recent advances have overcome some of these problems and are helping the technology find a niche in both hot and cold climates. The topics covered in this article include the following: how heat pump water heaters work; air source from where to where, including air conditioning, heat recovery ventilation, hybrid systems; nuisances; maintenance; costs; to install or not to install; performance: a trick to quantify. 2 figs.

  14. Wave Effect on the Ocean Circulations Through Mass Transport and Wave-Induced Pumping

    Institute of Scientific and Technical Information of China (English)

    BI Fan; WU Kejian

    2014-01-01

    The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data (ERA-40 data) and the Simple Ocean Data Assimilation (SODA) version 2.2.4 data, the magnitude of this transport is compared with that of wind-driven Sverdrup transport and a 5-to-10-precent contribution by the wave Stokes transport is found. Both transports are stronger in boreal winter than in summers. The wave effect can be either contribution or cancellation in different seasons. Examination with Kuroshio transport verifies similar seasonal variations. The clarification of the efficient wave boundary condition helps to understand the role of waves in mass transport. It acts as surface wind stress and can be functional down to the bottom of the ageostrophic layer. The pumping velocities resulting from wave-induced stress are zonally distributed and are significant in relatively high latitudes. Further work will focus on the model performance of the wave-stress-changed-boundary and the role of swells in the eastern part of the oceans.

  15. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based...

  16. Experimental studies toward the characterization of Inmetro's circulating water channel

    Science.gov (United States)

    Santos, A. M.; Alho, A. T. P.; Garcia, D. A.; Farias, M. H.; Massari, P. L.; Silva, V. V. S.

    2016-07-01

    Circulating water channels are facilities which can be used for conducting environmental, metrological and engineering studies. The Brazilian National Institute of Metrology-INMETRO has a water channel of innovative design, and the present work deals with the prior experimental investigation of its hydrodynamics performance. By using the optical technique PIV - Particle Image Velocimetry, under certain conditions, the velocity profile behavior in a region inside the channel was analyzed in order to evaluate the scope of applicability of such bench.

  17. Ionometric determination of chloride ion in circulating and waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Bebeshko, G.I.; Afanas' eva, V.I.; Danielova, I.I.; Dmitriev, M.A.; Radchenko, A.F.

    1986-09-01

    The authors attempt to develop selective ionometric methods to determine chloride ion in waste and circulating waters from technological ore processing, containing significant amounts of sulfide ion and various flotation reagents. These waters contain practically no cations that form hard to dissolve compounds with chloride ion such as Ag/sup +/, Cu/sup +/, Hg/sup +/ or Pb/sup 2 +/. The chloride ion concentration in water varies between 10 and 100 mg/liter. Information is shown on the concentration of the main anions and flotation reagents in waters that were analyzed.

  18. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    Institute of Scientific and Technical Information of China (English)

    Xiangchun; YU; Qingqing; LIN; Xuedong; ZHOU; Zhibin; YANG

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province,fresh water resource becomes increasingly insufficient.Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy.This needs modern irrigation method.Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture,and will have directive significance for Hainan Province developing photovoltaic agriculture.

  19. The Pumping Up Phenomenon of Double-Stage Bubble Pump with Water and Aqueous LiBr Solution

    Directory of Open Access Journals (Sweden)

    Hongtao Gao

    2013-02-01

    Full Text Available The double-stage bubble pump, using thermal energy as driving force to transport the solution, can replace the mechanical solution pump in the double-effect lithium bromide absorption chiller. By building a bench, a lot of experimental research and analysis were conducted with water and different concentrations of lithium bromide solution as the working fluid of the bubble pump. The first-stage bubble pump in the experiment pumps up by the external heat source. The heat for driving the second-stage bubble pump is provided by refrigerant steam produced from the first-stage bubble pump. The experiment data shows that the heating of refrigerant vapor is only one of the elements of pump-up phenomenon. Another is that the intermediate solution flashes to vapor to become bubbles. The pump-up phenomenon of double-stage bubble pump has much to do with the pressure difference of intermediate solution and first-stage refrigerant vapor. With water as the working fluid, when the pressure difference between refrigerant vapor and the intermediate liquefied refrigerant is 3.5-3.9 kPa, the bubble pump can pump up and run for some time and the start-up time decreases with the driving head. When the working fluid is lithium bromide solution, the pressure difference of the double-stage bubble pump increases with the solution concentration and is bigger than that of water. The start-up time increases with the concentrations of lithium bromide solution within the range of 45.5 to 54% and decreases within the range of 54-59.5%. The start-up time is largest at 54% under this experimental condition. The experimental result is also compared with the single-stage bubble pump. The start-up time of double-stage bubble pump decreases with the driving height, which is contrary to the single-stage bubble pump.

  20. Water immersion and changes in the foetoplacental and uteroplacental circulation

    DEFF Research Database (Denmark)

    Thisted, Dorthe Louise Ahrenkiel; Nørgaard, Lone Nikoline; Meyer, Helle Mølgaard;

    2015-01-01

    Abstract Objective: To evaluate the effect of immersion into water on maternal blood pressure, amount of amniotic fluid and on the foetoplacental- and uteroplacental circulation in healthy women with an uncomplicated singleton pregnancy. Methods: Twenty-five healthy women were included. Recordings...... of blood pressure, deepest vertical pocket of amniotic fluid and pulsatility index (PI) measured by Doppler in the umbilical and uterine arteries were obtained. The participants were immersed into water and the measurements were repeated after 5 and 25 min in water and again 15 and 30 min post immersion....... Results: The amount of amniotic fluid increased significantly (p 

  1. Performance analysis of air——water dual source heat pump water heater with heat recovery

    Institute of Scientific and Technical Information of China (English)

    CHEN ZeShao; TAO WenQuan; ZHU YanWen; HU Peng

    2012-01-01

    A new air-water dual source heat pump water heater with heat recovery is proposed.The heat pump system can heat water by using a single air source,a single water source,or air-water dual sources.The water is first pre-heated by waste hot water,then heated by the heat pump.Waste heat is recovered by first preheating the cold water and as water source of the heat pump.According to the correlated formulas of the coefficient of performance of air-source heat pump and water-source heat pump,and the gain coefficient of heat recovery-preheater,the formulas for the coefficient of performance of heat pump in six operating modes are obtained by using the dimensionless correspondence analysis method.The system characteristics of heat absorption and release associated with the heat recovery-preheater are analyzed at different working conditions.The developed approaches can provide reference for the optimization of the operating modes and parameters.The results of analysis and experiments show that the coefficient of performance of the device can reach 4-5.5 in winter,twice as much as air source heat pump water heater.The utilization of waste heat in the proposed system is higher than that in the system which only uses waste water to preheating or as heat source.Thus,the effect of energy saving of the new system is obvious.On the other hand,the dimensionless correspondence analysis method is introduced to performance analysis of the heat pump,which also has theoretical significance and practical value.

  2. Study on water environment restoration and urban water system healthy circulation

    Institute of Scientific and Technical Information of China (English)

    Zhang Jie; Li Dong

    2012-01-01

    Studied on the law and interaction of hydrological cycle and social water circulation on the earth, it is pointed out that the water environment, water resources and water cycle are the unity of water movement. The roots of contemporary crisis are also analyzed. The strategy of water environment recovery and social water healthy cycle is proposed and applied in many cities, which has achieved good results.

  3. Energy Saving in a Water Supply Network by Coupling a Pump and a Pump As Turbine (PAT) in a Turbopump

    OpenAIRE

    Armando Carravetta; Lauro Antipodi; Umberto Golia; Oreste Fecarotta

    2017-01-01

    The management of a water distribution network (WDN) is performed by valve and pump control, to regulate both the pressure and the discharge between certain limits. The energy that is usually merely dissipated by valves can instead be converted and used to partially supply the pumping stations. Pumps used as turbines (PAT) can be used in order to both reduce pressure and recover energy, with proven economic benefits. The direct coupling of the PAT shaft with the pump shaft in a PAT-pump turbo...

  4. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  5. Exergoeconomic optimization of an ammonia–water hybrid absorption–compression heat pump for heat supply in a spraydrying facility

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    load of 6.1 MW. The exhaust air from the drying process is 80 C. The implementation of anammonia–water hybrid absorption–compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation ratios for a number of ammonia mass...... fractions and heat pump loads. An exergo economic optimization is applied to minimize the lifetime cost of the system. Technological limitations are imposed to constrain the solution to commercial components. The best possible implementation is identified in terms of heat load, ammonia mass fraction...

  6. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  7. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  8. Refrigerant charge management in a heat pump water heater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  9. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkahshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S.; Mizuno, T. [Yazaki Corp., Tokyo (Japan)

    1997-11-25

    Optimal operation control was discussed on a forced-circulation solar water heater using solar cells not only as the power supply of a heat collecting pump, but also for controlling operation of the heat collecting pump. With this system, when the amount of power generated by solar cells reaches a sufficient level for operating the heat collecting pump, the heat collecting pump starts operation, wherein the heat collecting medium circulates in the system. The discussion was given by using simulation based on experimental expressions such as the relation expression between insolation and heat collecting medium flow rate as derived from the result of the system`s heat collecting performance test. As a result, the following conclusions were obtained: optimal insolation for activating the discussed system is from 50 to 100 W/m {sup 2}, and the heat collected within this range is within -1.5% of the collected heat amount at an optimum value; optimal activating insolation for the case of 1000 to 2000 W/m {sup 2} with low daily cumulative insolation is from 0 to 50 W/m {sup 2}, whereas the optimal activating insolation amount increases as the daily cumulative insolation amount increases; and the optimal activating insolation amount increases as water to be supplied requires higher temperature. 1 ref., 17 figs., 2 tabs.

  10. Performance analysis of photovoltaic based submersible water pump

    Directory of Open Access Journals (Sweden)

    Shiv Lal

    2013-04-01

    Full Text Available The performance of a photovoltaic (PV array based water pumping system situated at Kota Rajasthan (25.18 N and 75.83 E, India has been studied. A 2hp DC motor with 2200W (10 panels of each 225W have been used for discharge 30 m water head. The maximum discharge logged 163litre/minute between 11AM to 2PM at PV power output between 75 to 85W/m2and the system is operating approximately 8 hours in the of November of the winter season. The full day discharge has found 70995litre and it is more than the average discharge given by the manufacturer at 50m depth. It is revealed that PV array based water pumping system is suitable and feasible option for off-grid and drip irrigation system like the interior area of Kota, where clear sky days are more than 250 in a year.

  11. Pore Water Pumping by Upside-Down Jellyfish

    Science.gov (United States)

    Gaddam, Manikantam; Santhanakrishnan, Arvind

    2016-11-01

    Patchy aggregations of Cassiopea medusae, commonly called upside-down jellyfish, are found in sheltered marine environments with low-speed ambient flows. These medusae exhibit a sessile, non-swimming lifestyle, and are oriented such that their bells are attached to the substrate and oral arms point towards sunlight. Pulsations of their bells are used to generate currents for suspension feeding. Their pulsations have also been proposed to generate forces that can release sediment locked nutrients into the surrounding water. The goal of this study is to examine pore water pumping by Cassiopea individuals in laboratory aquaria, as a model for understanding pore water pumping in unsteady flows. Planar laser-induced fluorescence (PLIF) measurements were conducted to visualize the release of pore water via bell motion, using fluorescent dye introduced underneath the substrate. 2D particle image velocimetry (PIV) measurements were conducted on the same individuals to correlate PLIF-based concentration profiles with the jets generated by pulsing of medusae. The effects of varying bell diameter on pore water release and pumping currents will be discussed.

  12. EFFICIENT DESIGN OF A PHOTOVOLTAIC WATER PUMPING AND TREATMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Abderrahmen Ben Chaabene

    2013-01-01

    Full Text Available Through the world, the exploitation of solar energies knew a strong growth these last years. It is interesting to exploit them on the place of consumption, by directly transforming into heat, or in electricity according to needs and especially in remote areas where power from utility is not available or is too costly to install. The use of photovoltaic sources in water pumping and treatment domain is one of the most important renewable energy applications. Having an arid to a semi-arid climate, Tunisia receives low quantities of rain. Consequently, the available water resources in the country are rather modest in terms of both quantity and quality. 97% of water resources in Tunisia are of brackish water, particularly in the south parts of the country. Originate from ground water resources and surface, these waters are unsuitable for drinking or irrigation, because of the high salinity and biological contagion in sensitive (perceptible germs. The goal of this study is to direct the applied researches to the applications of coupling the photovoltaic energy, which is available in the south of the country and water domain (pumping, desalting and disinfecting. We present in this study some of pilot units coupled to photovoltaic sources and we propose a global system which gathers the water pumping, desalting and disinfecting operations. Some experimental and numerical results have been carried out to show the efficiency of the use of this system. The conception, the realization and the exploitation of this autonomous system will be the suitable solution for providing fresh water to a number of rural regions where important quantities of water are needed to either, the drinking and irrigation, in Tunisia and in the Mediterranean basin in general.

  13. THE CALCULATION OF THE PERFORMANCE PARAMETERS OF PUMPING EQUIPMENT AND PIPING NETWORK OF WATER SUPPLY AND RECLAMATION PUMPING STATIONS

    Directory of Open Access Journals (Sweden)

    Rahnyanskaya O. I.

    2015-06-01

    Full Text Available The calculation of pumping equipment and piping network parameters is presented. The method of cutting impeller pump diameter for optimal performance of pump unit with piping system on efficiency value is shown. The case of operating the distribution network and pumping station with three pump units D1250-25 is considered. Procedure of construction of loss-of-head curves in pipes, determination of the actual operating parameters of a single pump unit, selection of pump impeller diameter for essentials is indicated. Four points for graphing such curves are presented. According to the first point the whole network is divided into sections with suction, pressure main pipelines and pipelines with changing water flow compared with the previous ones. The second point involves definition of the electrical resistivity of each site. The resistance of network analyzer is determined in the third point, the loss-of -head of the whole network is determined in the fourth point. The article presents the scheme of pumping station with three pump units connected in parallel and a distribution network (Figure1, loss-of-head curves in pipes regardless the number of working pumps (Figure 2, the order of constructing three loss-of-head curves with operating one, two and three pumps with normal and cut pump impeller diameter (Figure 3 , the order of determination of the actual parameters of pump work characteristics according to combined characteristics of normal and cut pump impeller diameter ( Figure 4 In conclusion, it is stated that the question of proper definition of actual parameters of pumps and the support of these parameters in optimal mode remains open due to the lack of proper methods of constructing loss-of-head curves pipeline. Every similar calculation is preliminary and should be carried out in field conditions

  14. Comparison of solar powered water pumping systems which use diaphragm pumps

    Science.gov (United States)

    Four solar photovoltaic (PV) powered diaphragm pumps were tested at different simulated pumping depths at the USDA-ARS Conservation and Production Research Laboratory near Bushland, Texas. Two of the pumps were designed for intermediate pumping depths (30 to 70 meters), and the other two pumps were...

  15. First experience of water pumping system in Yemen

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, C. [Soleco Ltd., Borgaa (Finland)

    2000-07-01

    A photovoltaic water pump (PVP) was installed and monitored in a village at sea level in the east coast of Yemen. Economic study showed PVP to be competitive within the power range of small diesel pumps, where they often even constitute the least-cost option. Social study showed the high acceptance and better integration of PVP into the project village. The water in Yemen is found in wells at depths of 15 m down to 100 m, and more. The village population usually lives on the top of the steep mountains and the well is down in the valley. The first pilot PVP was installed in a village at sea level with an existing well. The work is supported by World Bank financing and a co-operation with a Danish and Finnish CTF of World Bank. (au)

  16. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  17. [Effect of exercise in water on maternal blood circulation].

    Science.gov (United States)

    Asai, M; Saegusa, S; Yamada, A; Suzuki, M; Noguchi, M; Niwa, S; Nakanishi, M

    1994-02-01

    To elucidate the effects of exercise in water on the maternal circulation, twenty normal pregnancies were examined under the following three conditions; 1) on the land at rest, 2) during water immersion and 3) after the exercise in water. Their gestational ages were from 25 to 37 weeks (31 +/- 4 weeks, mean +/- S.D., n = 20). We examined the blood pressure, the urine volume throughout the examination, CBC and the levels of vasopressin, plasma renin activity and human atrial natriuretic peptide (hANP). The blood volume calculated from the Hb and Ht were significantly (p water immersion (105.8 +/- 2.5%), even after the exercise (101.6 +/- 2.9%). Vasopressin was decreased during the water immersion and increased after the exercise, but plasma renin activity was decreased in these two conditions. The hANP concentration was significantly (p exercise in water and correlated with the urine volume (ml/hour) during the examination. These results show that the decline in blood pressure and the increase in the urine volume during the maternal swimming were caused by the decreased plasma renin activity and the increased hANP concentration resulted from the blood volume expansion during the exercise in water.

  18. Water pumping and analysis of flow in burrowing zoobenthos - a short overview

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Larsen, Poul Scheel

    2005-01-01

    Burrowing animals maintain contact with the water above the sediment by pumping water through a tube system and therefore measurements of water pumping rate of burrowing animals is of crucial importance for the study of many processes both within and above the sea floor. This review deals...... with the measuring of water pumping and the analysis of flow generated by burrowing deposit- and filter-feeding zoobenthos in order to determine the type of pump and mechanisms involved, flow rate, pump pressure, and pumping power. The practical use of fluid mechanical principles is examined, and it is stressed...... that not only the pump pressure that a burrowing animal can apply is of interest for assessing the energy cost of pumping, but also the distribution of excess pressure along its burrow is of importance for assessing the seepage flow of oxygen-rich water into the sediment surrounding the burrow because...

  19. Impacts of Groundwater Pumping on Regional and Global Water Resources

    Science.gov (United States)

    Wada, Yoshihide

    2016-01-01

    Except frozen water in ice and glaciers (68%), groundwater is the world's largest distributed store of freshwater (30%), and has strategic importance to global food and water security. In this chapter, the most recent advances assessing human impact on regional and global groundwater resources are reviewed. This chapter critically evaluates the recently advanced modeling approaches quantifying the effect of groundwater pumping in regional and global groundwater resources and the evidence of feedback to the Earth system including sea-level rise associated with groundwater use. At last, critical challenges and opportunities are identified in the use of groundwater to adapt to growing food demand and uncertain climate.

  20. Exergoeconomic optimization of an ammonia-water hybrid heat pump for heat supply in a spray drying facility

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2014-01-01

    Spray drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 XC. The inlet flow...... rate is 100,000 m3/h which yields a heat load of 6.1 MW. The exhaust air from the drying process is 80 XC. The implementation of an ammonia-water hybrid absorption-compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation...... ratios for a number of ammonia mass fractions and heat pump loads. An exergoeconomic optimization is applied to minimize the lifetime cost of the system. Technological limitations are applied to constrain the solution to commercial components. The best possible implementation is identified in terms...

  1. Pump-stopping water hammer simulation based on RELAP5

    Science.gov (United States)

    Yi, W. S.; Jiang, J.; Li, D. D.; Lan, G.; Zhao, Z.

    2013-12-01

    RELAP5 was originally designed to analyze complex thermal-hydraulic interactions that occur during either postulated large or small loss-of-coolant accidents in PWRs. However, as development continued, the code was expanded to include many of the transient scenarios that might occur in thermal-hydraulic systems. The fast deceleration of the liquid results in high pressure surges, thus the kinetic energy is transformed into the potential energy, which leads to the temporary pressure increase. This phenomenon is called water hammer. Generally water hammer can occur in any thermal-hydraulic systems and it is extremely dangerous for the system when the pressure surges become considerably high. If this happens and when the pressure exceeds the critical pressure that the pipe or the fittings along the pipeline can burden, it will result in the failure of the whole pipeline integrity. The purpose of this article is to introduce the RELAP5 to the simulation and analysis of water hammer situations. Based on the knowledge of the RELAP5 code manuals and some relative documents, the authors utilize RELAP5 to set up an example of water-supply system via an impeller pump to simulate the phenomena of the pump-stopping water hammer. By the simulation of the sample case and the subsequent analysis of the results that the code has provided, we can have a better understand of the knowledge of water hammer as well as the quality of the RELAP5 code when it's used in the water-hammer fields. In the meantime, By comparing the results of the RELAP5 based model with that of other fluid-transient analysis software say, PIPENET. The authors make some conclusions about the peculiarity of RELAP5 when transplanted into water-hammer research and offer several modelling tips when use the code to simulate a water-hammer related case.

  2. Heat flux distribution on circulating fluidized bed boiler water wall

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The future of circulating fluidized bed (CFB)combustion technology is in raising the steam parameters to supercritical levels.Understanding the heat flux distribution on the water wall is one of the most important issues in the design and operation of supercritical pressure CFB boilers.In the present paper,the finite element analysis (FEA) method is adopted to predict the heat transfer coefficient as well as the heat flux of the membrane wall and the results are validated by direct measurement of the temperature around the tube.Studies on the horizontal heat flux distribution were conducted in three CFB boilers with different furnace size,tube dimension and water temperature.The results are useful in supercritical pressure CFB boiler design.

  3. Failure Analysis of a Water Supply Pumping Pipeline System

    Directory of Open Access Journals (Sweden)

    Oscar Pozos-Estrada

    2016-09-01

    Full Text Available This paper describes the most important results of a theoretical, experimental and in situ investigation developed in connection with a water supply pumping pipeline failure. This incident occurred after power failure of the pumping system that caused the burst of a prestressed concrete cylinder pipe (PCCP. Subsequently, numerous hydraulic transient simulations for different scenarios and various air pockets combinations were carried out in order to fully validate the diagnostic. As a result, it was determined that small air pocket volumes located along the pipeline profile were recognized as the direct cause of the PCCP rupture. Further, a detail survey of the pipeline was performed using a combination of non-destructive technologies in order to determine if immediate intervention was required to replace PCC pipes. In addition, a hydraulic model was employed to analyze the behavior of air pockets located at high points of the pipeline.

  4. Design method of water jet pump towards high cavitation performances

    Science.gov (United States)

    Cao, L. L.; Che, B. X.; Hu, L. J.; Wu, D. Z.

    2016-05-01

    As one of the crucial components for power supply, the propulsion system is of great significance to the advance speed, noise performances, stabilities and other associated critical performances of underwater vehicles. Developing towards much higher advance speed, the underwater vehicles make more critical demands on the performances of the propulsion system. Basically, the increased advance speed requires the significantly raised rotation speed of the propulsion system, which would result in the deteriorated cavitation performances and consequently limit the thrust and efficiency of the whole system. Compared with the traditional propeller, the water jet pump offers more favourite cavitation, propulsion efficiency and other associated performances. The present research focuses on the cavitation performances of the waterjet pump blade profile in expectation of enlarging its advantages in high-speed vehicle propulsion. Based on the specifications of a certain underwater vehicle, the design method of the waterjet blade with high cavitation performances was investigated in terms of numerical simulation.

  5. Performance monitoring of a bubble pumped solar domestic hot water system - final report

    Energy Technology Data Exchange (ETDEWEB)

    Makuch, P.D.; Harrison, S.J. [Queen`s Univ., Kingston, ON (Canada). Solar Calorimetry Lab.

    1995-12-01

    A new type of solar domestic hot water (SDHW) system for cold climates was described. The bubble pump system is self pumping and self regulating (it circulates anti-freeze). The system transports heat from roof mounted solar collectors to a thermal storage located at a lower level when there is available solar radiation. The design is unique in that it has no moving parts and requires no external electrical or mechanical input to operate. A unit was installed on a row house in Kingston, Ontario, to evaluate its performance. The average daily solar fraction was 32.4 per cent, and the average system efficiency for the monitored period was 13.4 per cent. This was below expectations due to low hot water demand. Performance improved somewhat towards the end of the monitoring period due to increased demand for hot water, improvements to the system, and increased solar insulation. A more realistic annual performance was estimated at 19 per cent for system efficiency and 41 per cent for solar fraction. Further improvements could be expected, especially in mid-winter performance, if the solar collector slope could be increased to a value of 45 to 60 degrees to the horizontal. 8 refs., 14 tabs., 9 figs.

  6. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  7. The circulation of Icelandic waters – a modelling study

    Directory of Open Access Journals (Sweden)

    K. Logemann

    2013-10-01

    Full Text Available The three-dimensional flow, temperature and salinity fields of the North Atlantic, including the Arctic Ocean, covering the time period 1992 to 2006 are simulated with the numerical ocean model CODE. The simulation reveals several new insights and previously unknown structures which help us to clarify open questions on the regional oceanography of Icelandic waters. These relate to the structure and geographical distribution of the coastal current, the primary forcing of the North Icelandic Irminger Current (NIIC and the path of the Atlantic Water south-east of Iceland. The model's adaptively refined computational mesh has a maximum resolution of 1 km horizontal and 2.5 m vertical in Icelandic waters. CTD profiles from this region and the river discharge of 46 Icelandic watersheds, computed by the hydrological model WaSiM, are assimilated into the simulation. The model realistically reproduces the established elements of the circulation around Iceland. However, analysis of the simulated mean flow field also provides further insights. It suggests a distinct freshwater-induced coastal current that only exists along the south-west and west coasts, which is accompanied by a counter-directed undercurrent. The simulated transport of Atlantic Water over the Icelandic shelf takes place in a symmetrical system of two currents, with the established NIIC over the north-western and northern shelf, and a hitherto unnamed current over the southern and south-eastern shelf, which is simulated to be an upstream precursor of the Faroe Current (FC. Both currents are driven by barotropic pressure gradients induced by a sea level slope across the Greenland–Scotland Ridge. The recently discovered North Icelandic Jet (NIJ also features in the model predictions and is found to be forced by the baroclinic pressure field of the Arctic Front, to originate east of the Kolbeinsey Ridge and to have a volume transport of around 1.5 Sv within northern Denmark Strait. The

  8. The circulation of Icelandic waters – a modelling study

    Directory of Open Access Journals (Sweden)

    K. Logemann

    2013-04-01

    Full Text Available The three-dimensional flow, temperature and salinity fields of the North Atlantic including the Arctic Ocean covering the time period 1992 to 2006 are simulated with the numerical ocean model CODE. The model reveals several new insights and previously unknown structures which help us to clarify open questions on the regional oceanography of Icelandic waters. These relate to the structure and geographical distribution of the coastal current, the primary forcing of the North Icelandic Irminger Current (NIIC, the path of the Atlantic Water south-east of Iceland and the structure of the North Icelandic Jet (NIJ. The model's adaptively refined computational mesh has a maximum resolution of 1 km horizontal and 2.5 m vertical in Icelandic waters. CTD profiles from this region and the river discharge of 46 Icelandic watersheds, computed by the hydrological model WaSiM, are assimilated into the simulation. The model realistically reproduces the established elements of the circulation around Iceland. However, analysis of the simulated mean flow field also provides further insights. It suggests a distinct freshwater-induced coastal current that only exists along the south-west and west coasts which is accompanied by a counter-directed undercurrent. The simulated transport of Atlantic Water over the Icelandic shelf takes place in a symmetrical system of two currents, with the established NIIC over the north-western and northern shelf, and a current over the southern and south-eastern shelf herein called the South Icelandic Current (SIC. Both currents are driven by topographically induced distortions of the Arctic Front's barotropic pressure field. The SIC is simulated to be an upstream precursor of the Faroe Current (FC. The recently discovered North Icelandic Jet (NIJ also features in the model predictions and is found to be forced by the baroclinic pressure field of the Arctic Front, to originate east of the Kolbeinsey Ridge and to have a volume transport

  9. Heat Pump Water Heaters and American Homes: A Good Fit?

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  10. CNT based thermal Brownian motor to pump water in nanodevices

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Zambrano, Harvey; Walther, Jens Honore

    2016-01-01

    Brownian molecular motors are nanoscale machines that exploit thermal fluctuations for directional motion by employing mechanisms such as the Feynman-Smoluchowski ratchet. In this study, using Non Equilibrium Molecular Dynamics, we propose a novel thermal Brownian motor for pumping water through...... Carbon Nanotubes (CNTs). To achieve this we impose a thermal gradient along the axis of a CNT filled with water and impose, in addition, a spatial asymmetry by flxing specific zones on the CNT in order to modify the vibrational modes of the CNT. We find that the temperature gradient and imposed spatial...... asymmetry drive the water ow in a preferential direction. We systematically modified the magnitude of the applied thermal gradient and the axial position of the fixed points. The analysis involves measurement of the vibrational modes in the CNTs using a Fast Fourier Transform (FFT) algorithm. We observed...

  11. High Efficiency R-744 Commercial Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  12. Calculation of Earthing System at Bangladesh Storm Water Pumping Station

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaolei; QIAN Zhongyang; LIANG Wei; WANG Qin

    2015-01-01

    A Storm Water Pumping Station funded by the World Bank is under construction and commissioning, of which the earthing system design is a crucial part for the electrical design. Based on IEEE and BS standards, this article fully introduces the analysis methodology and calculation of the system within the framework of the World Bank supported project. A solution of this practical case satisfied with the requirements of international standards is shown in order to bring experience and convenience for engineers who are dedicated to projects abroad.

  13. Experimental and analytical study of stability characteristics of natural circulation boiling water reactors during startup transient

    Science.gov (United States)

    Woo, Kyoungsuk

    Two-phase natural circulation loops are unstable at low pressure operating conditions. New reactor design relying on natural circulation for both normal and abnormal core cooling is susceptible to different types of flow instabilities. In contrast to forced circulation boiling water reactor (BWR), natural circulation BWR is started up without recirculation pumps. The tall chimney placed on the top of the core makes the system susceptible to flashing during low pressure start-up. In addition, the considerable saturation temperature variation may induce complicated dynamic behavior driven by thermal non-equilibrium between the liquid and steam. The thermal-hydraulic problems in two-phase natural circulation systems at low pressure and low power conditions are investigated through experimental methods. Fuel heat conduction, neutron kinetics, flow kinematics, energetics and dynamics that govern the flow behavior at low pressure, are formulated. A dimensionless analysis is introduced to obtain governing dimensionless groups which are groundwork of the system scaling. Based on the robust scaling method and start-up procedures of a typical natural circulation BWR, the simulation strategies for the transient with and without void reactivity feedback is developed. Three different heat-up rates are applied to the transient simulations to study characteristics of the stability during the start-up. Reducing heat-up rate leads to increase in the period of flashing-induced density wave oscillation and decrease in the system pressurization rate. However, reducing the heat-up rate is unable to completely prevent flashing-induced oscillations. Five characteristic regions of stability are discovered at low pressure conditions. They are stable single-phase, flashing near the separator, intermittent oscillation, sinusoidal oscillation and low subcooling stable regions. Stability maps were acquired for system pressures ranging 100 kPa to 400 kPa. According to experimental investigation

  14. TESTING THE INTERACTION OF HEART LEFT VENTRICLE AND CONTINUOUS-FLOW PUMP ON A MOCK CIRCULATION MODEL UNDER NORMAL AND PATHOLOGICAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    G. P. Itkin

    2015-01-01

    Full Text Available Introduction. The preliminary study of new developed pumps for circulatory support on the hydrodynamic circulation model is an important step in the process of their designing. Hydrodynamic circulation models that can closely imitate cardio – vascular system are important to defi ne the range of effective functioning of the pumps under normal and heart disease conditions which is of great importance for defi ning the mode of these pumps in real clinical conditions.The aim of study is to create a new hydrodynamic circulation model of the systemic circulation to study the processes of interaction of heart left ventricle and continuous – fl ow pumps.Materials and methods. The main components of the mock circulation model (arterial and venous blocks are designed as closed reservoirs with an air bag providing the necessary elasticity value of these reservoirs. The heart left ventricle was simulated with an artifi cial heart ventricle with a pneumatic drive Sinus-IS which allows to change its options in a wide range. As a test pump we used the fi rst native implantable axial pump VISH – 1. In the course of research we made the registration and recording of the basic hemodynamic parameters (pressure, fl ow with a multichannel module Pumpax for the measurement of pressure parameters.Results. The designed circulation model allows to adequately reproduce the main hemodynamic parameters of the circulatory system in normal (arterial pressure – 110/77 mmHg, left atrium pressure – 7 mmHg and cardiac output – 4.2 l/min and heart failure conditions (arterial pressure – 79/53 mmHg, left atrium pressure – 15 mmHg and cardiac output – 3.1 l/min. On the circulation model the interaction of heart left ventricle and continuous-fl ow pump in heart failure simulation was studied. The dynamics of the main circulation fi gures is shown under conditions of changing of the pump rotor speed. Meanwhile, the conditions of the closing of

  15. Technical and Economic Working Domains of Industrial Heat Pumps: Part 2 - Ammonia-Water Hybrid Absorption-Compression Heat Pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2014-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) is a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change...... of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best possible vapour...... compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 140 XC and temperature lifts up to 60 K...

  16. Technical and economic working domains of industrial heat pumps: Part 2 - ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase...... change of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best available...... vapour compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 150 °C and temperature lifts...

  17. Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia.

    Science.gov (United States)

    Fadlillah, Lintang N; Widyastuti, M

    2016-08-01

    Lakes provide water resources for domestic use, livestock, irrigational use, etc. Water availability of lakes can be estimated using lake water balance. Lake water balance is calculated from the water input and output of a lake. Dieng Highland has several volcanic lakes in its surroundings. Lake Merdada in Dieng Highland has been experiencing extensive water pumping for several years more than other lakes in the surrounding area. It provides irrigation water for potato farming in Dieng Highland. The hydrological model of this lake has not been studied. The modeled water balance in this research uses primary data, i.e., bathymetric data, soil texture, and outflow discharge, as well as secondary data, i.e., rainfall, temperature, Landsat 7 ETM+ band 8 image, and land use. Water balance input components consist of precipitation on the surface area, surface (direct) runoff from the catchment area, and groundwater inflow and outflow (G net), while the output components consist of evaporation, river outflow, and irrigation. It shows that groundwater is the dominant input and output of the lake. On the other hand, the actual irrigation water pumping plays the leading role as human-induced alteration of outflow discharge. The maximum irrigation pumping modeling shows that it will decrease lake storage up to 37.14 % per month and may affect the ecosystem inside the lake.

  18. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  19. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.

    2013-08-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  20. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkanshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S.; Mizuno, T. [Yazaki Resources Co. Ltd., Shizuoka (Japan)

    1996-10-27

    For the purpose of satisfying demands for qualitative improvement on tapwater temperature and pressure, an indirect-type solar water heater using solar cells, in which a closed type hot water storage tank connected directly to the water supply is integrated with a solar collector, was examined for its characteristics and performance. The heat collecting medium is a water solution of polypropylene glycol, which circulates through the solar collector pump, cistern, solar collector, and heat exchanger (hot water storage tank). The results of the test are summarized below. When comparison is made between the two solar collector pump control methods, the solar cells direct connection method and the differential thermo method utilizing temperature difference between the solar collector and the hot water storage tank, they are alike in collecting heat on clear days, but on cloudy days the latter collects 5% more than the former. In winter, when the heat exchanger heat transfer area is 0.4m{sup 2} large, a further increase in the area improves but a little the heat collecting efficiency. An increase in the medium flow rate and temperature, or in the Reynolds number, enhances the heat collecting efficiency. 13 figs., 6 tabs.

  1. CNT based thermal Brownian motor to pump water in nanodevices

    Science.gov (United States)

    Oyarzua, Elton; Zambrano, Harvey; Walther, J. H.

    2016-11-01

    Brownian molecular motors are nanoscale machines that exploit thermal fluctuations for directional motion by employing mechanisms such as the Feynman-Smoluchowski ratchet. In this study, using Non Equilibrium Molecular Dynamics, we propose a novel thermal Brownian motor for pumping water through Carbon Nanotubes (CNTs). To achieve this we impose a thermal gradient along the axis of a CNT filled with water and impose, in addition, a spatial asymmetry by fixing specific zones on the CNT in order to modify the vibrational modes of the CNT. We find that the temperature gradient and imposed spatial asymmetry drive the water flow in a preferential direction. We systematically modified the magnitude of the applied thermal gradient and the axial position of the fixed points. The analysis involves measurement of the vibrational modes in the CNTs using a Fast Fourier Transform (FFT) algorithm. We observed water flow in CNTs of 0.94, 1.4 and 2.0 nm in diameter, reaching a maximum velocity of 5 m/s for a thermal gradient of 3.3 K/nm. The proposed thermal motor is capable of delivering a continuous flow throughout a CNT, providing a useful tool for driving liquids in nanofluidic devices by exploiting thermal gradients. We aknowledge partial support from Fondecyt project 11130559.

  2. Circulation of water masses in the Baltic Proper revealed through iodine isotopes

    DEFF Research Database (Denmark)

    Yi, P.; Chen, X.G.; Aldahan, A.

    2013-01-01

    in the Arctic and North Atlantic Ocean. Here, 129I, together with 127I, is utilized as a tracer of water pathways and circulation in the Baltic Sea through collection of seawater depth profiles. The results indicate the presence of 129I signatures which are distinct for each water mass and provide evidence for......Tracer technology has been used to understand water circulation in marine systems where the tracer dose is commonly injected into the marine waters through controlled experiments, accidental releases or waste discharges. Anthropogenic discharges of 129I have been used to trace water circulation...

  3. Hot water preparation using only a heat-pump; Warmwasserbereitung immer mit Waermepumpe

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, H.; Gabathuler, H. R. [Gabathuler AG, beratende Ingenieure, Diessenhofen (Switzerland); Baumgartner, T. [Th. Baumgartner und Partner AG, Duebendorf (Switzerland)

    2007-07-01

    This article discusses the use of heat-pumps to heat up domestic hot water. The authors note that previously, heat-pumps were used to provide only space heating and domestic hot water was heated up using separate electrical heating elements. The results of a research and development project that defined standard configurations for small heat-pump installations that also provide hot water are discussed. An existing installation with two heat-pumps with ground-loop heat probes and a hot water store was used for tests. Measurements made and the results obtained are presented and discussed. Six configuration variants are described and their operation examined in detail. It is concluded that heat pumps may always be used for hot water preparation despite hygiene regulations demanding hot water temperatures up to 60 {sup o}C to prevent legionella growth.

  4. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range...

  5. Demonstration of a heat pump water heater. Volume 3. Design report

    Energy Technology Data Exchange (ETDEWEB)

    Sloane, B.D.; Krise, R.C.; Kent, D.D.

    1979-12-01

    Work performed during the pilot run manufacturing and laboratory testing stages of a heat pump water heater for residential installations is described. A general description of the heat pump water heater is provided, as are detailed discussions of individual components. Also included is a description of the pilot run manufacturing facility and experience, laboratory operations, and laboratory test data.

  6. Water pumping and analysis of flow in burrowing zoobenthos - a short overview

    DEFF Research Database (Denmark)

    Riisgård, H. U.; Larsen, Poul Scheel

    2002-01-01

    Measurement of water pumping rates of burrowing animals is of crucial importance for the study of many processes both within and above the sea floor. This short review deals with water pumping and analysis of flow, including available techniques and bio-fluid mechanical theory, in burrowing deposit...

  7. Assessing the Amazon Basin Circulation with Stable Water Isotopes

    Science.gov (United States)

    McGuffie, K.; Henderson-Sellers, A.

    2004-05-01

    greenhouse warming. At a minimum, large-scale simulations of South American climate ought to be tested against these isotopic data in any validation effort. Specific caveats our conclusions include: (i)monthly isotope data only are available in GNIP and hence analysed; (ii) the statistically significant seasonal changes reported might be related to, or even exaggerated by, El Niño-Southern Oscillation (ENSO) events or other climatic variations that modify the Walker circulation and Inter-Tropical Convergence Zone (ITCZ) position and hence affect the moisture climatology of the Amazon; (iii)no information on fluxes from simulated open water as a surface type in the Amazon GCM experiments has been considered; (iv)the selected models are failing to correctly simulate the relative components of transpiration and re-evaporated canopy interception in the Amazon dry season; and (v) no isotope tracking in the Amazon deforestation simulations was reviewed, because none is yet available. These shortcomings deserve further work.

  8. Experimental and Analytical Modeling of Natural Circulation and Forced Circulation BWRs : Thermal-Hydraulic, Core-Wide, and Regional Stability Phenomena

    OpenAIRE

    2006-01-01

    Currently, 434 nuclear power plants are in operation worldwide. 21% of them are known as Boiling Water Reactors (BWRs). These BWRs have pumps that cool their reactor cores (the forced circulation BWRs). In the design of new BWRs, ways to cool the core by a natural circulation flow, without pumps, also called natural circulation BWRs, are being considered. A possible disadvantage of natural circulation BWRs might be their susceptibility to instabilities, which could then lead to both flow and ...

  9. Reduced-scale water test of natural circulation for decay heat removal in loop-type sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, T., E-mail: murakami@criepi.denken.or.jp [Central Research Institute of Electric Power Industry, 1646 Abiko, Chiba (Japan); Eguchi, Y., E-mail: eguchi@criepi.denken.or.jp [Central Research Institute of Electric Power Industry, 1646 Abiko, Chiba (Japan); Oyama, K., E-mail: kazuhiro_oyama@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 2-34-17 Jinguumae, Shibuya, Tokyo (Japan); Watanabe, O., E-mail: osamu4_watanabe@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 2-34-17 Jinguumae, Shibuya, Tokyo (Japan)

    2015-07-15

    Highlights: • The natural circulation characteristics of a loop-type SFR are examined by a water test. • The performance of decay heat removal system is evaluated using a similarity law. • The effects of flow deviation in the parallel piping of a primary loop are clarified. • The reproducibility of the natural circulation test is confirmed. - Abstract: Water tests of a loop-type sodium-cooled fast reactor have been conducted to physically evaluate the natural circulation characteristics. The water test apparatus was manufactured as a 1/10-scale mock-up of the Japan Sodium-Cooled Fast Reactor, which adopts a decay heat removal system (DHRS) utilizing natural circulation. Tests simulating a variety of events and operation conditions clarified the thermal hydraulic characteristics and core-cooling performance of the natural circulation in the primary loop. Operation conditions such as the duration of the pump flow coast-down and the activation time of the DHRS affect the natural circulation characteristics. A long pump flow coast-down cools the upper plenum of the reactor vessel (RV). This causes the loss of the buoyant force in the RV. The test result indicates that a long pump flow coast-down tends to result in a rapid increase in the core temperature because of the loss of the buoyant force. The delayed activation of the DHRS causes a decrease in the natural circulation flow rate and a temperature rise in the RV. Flow rate deviation and a reverse flow appear in the parallel cold-leg piping in some events, which cause thermal stratification in the cold-leg piping. The DHRS prevents the core temperature from fatally rise even for the most severe design-basis event, in which sodium leakage in a secondary loop of the DHRS and the opening failure of a single damper of the air cooler occur simultaneously. In the water test for the case of siphon break in the primary loop, which is one of the design extension conditions, a circulation flow consisting of ascendant

  10. Hand-pumps as reservoirs for microbial contamination of well water.

    Science.gov (United States)

    Ferguson, Andrew S; Mailloux, Brian J; Ahmed, Kazi M; van Geen, Alexander; McKay, Larry D; Culligan, Patricia J

    2011-12-01

    The retention and release of total coliforms and Escherichia coli was investigated in hand-pumps removed from tubewells tapping a faecally contaminated aquifer in Matlab, Bangladesh, and from a new hand-pump deliberately spiked with E. coli. All hand-pumps were connected to reservoirs of sterile water and flushed. Faecal coliforms were observed in the discharge from all three of the previously used hand-pumps, at concentrations comparable to levels measured in discharge when they were attached to the tubewells. During daily flushing of one of the previously used hand-pumps, the concentration of total coliforms in the discharge remained relatively constant (approximately 10³ MPN/100 mL). Concentrations of E. coli in the pump discharge declined over time, but E. coli was still detectable up to 29 days after the start of flushing. In the deliberately spiked hand-pump, E. coli was observed in the discharge over 125 days (t₅₀ = 8 days) and found to attach preferentially to elastomeric materials within the hand-pump. Attempts to disinfect both the village and new hand-pumps using shock chlorination were shown to be unsuccessful. These results demonstrate that hand-pumps can act as persistent reservoirs for microbial indicator bacteria. This could potentially influence drinking water quality and bias testing of water quality.

  11. EFFECT OF THE CRITICAL IRRADIANCE ON PHOTOVOLTAIC WATER PUMP DISCHARGE UNDER EGYPTIAN CONDITIONS

    Directory of Open Access Journals (Sweden)

    Mamdouh Abbas HELMY

    2015-04-01

    Full Text Available The present investigation aimed to study the effect of critical irradiance due to changing tilt angle of PV panel and tracking sun on submersible pump discharge. The authors used solar tracker and suitable tilt angle for the panel to increase the time interval during which the water pump operates. For the same irradiance collected by the PV, all systems pump the same amount of water, although they occur at different periods of the day. The pump itself 'does not know whether the electric power comes from any processes, as long as it has the same intensity.

  12. Circulation pattern of the Egyptian Mediterranean waters during winter and summer seasons

    OpenAIRE

    Said, M.A. (M Abdullah); Eid, F. M. [فهمي محمدعيد

    1994-01-01

    The water circulation of the Egyptian Mediterranean waters was computed during winter and summer seasons using the dynamic method. The reference level was set at the 1000db surface. The results showed that the surface circulation is dominated by the Atlantic water inflow along the North African coast and by two major gyres, the Mersa Matruth anticyclonic gyre and El-Arish cyclonic gyre. The results showed a seasonal reversal of El-Arish gyre, being cyclonic in winter and anticyclonic in summe...

  13. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  14. Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping

    Science.gov (United States)

    Buie, Cullen R.; Posner, Jonathan D.; Fabian, Tibor; Cha, Suk-Won; Kim, Daejoong; Prinz, Fritz B.; Eaton, John K.; Santiago, Juan G.

    Recent experimental and numerical investigations on proton exchange membrane fuel cells (PEMFCs) emphasize water management as a critical factor in the design of robust, high efficiency systems. Although various water management strategies have been proposed, water is still typically removed by pumping air into cathode channels at flow rates significantly higher than required by fuel cell stoichiometry. Such methods are thermodynamically unfavorable and constrain cathode flow channel design. We have developed proton exchange membrane fuel cells (PEMFCs) with integrated planar electroosmotic (EO) pumping structures that actively remove liquid water from cathode flow channels. EO pumps can relieve cathode design barriers and facilitate efficient water management in fuel cells. EO pumps have no moving parts, scale appropriately with fuel cells, operate across a wide range of conditions, and consume a small fraction of fuel cell power. We demonstrate and quantify the efficacy of EO water pumping using controlled experiments in a single channel cathode flow structure. Our results show that, under certain operating conditions, removing water from the cathode using integrated EO pumping structures improves fuel cell performance and stability. The application of EO pumps for liquid water removal from PEMFC cathodes extends their operational range and reduces air flow rates.

  15. Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping

    Energy Technology Data Exchange (ETDEWEB)

    Buie, Cullen R.; Posner, Jonathan D.; Fabian, Tibor; Cha, Suk-Won; Kim, Daejoong; Prinz, Fritz B.; Eaton, John K.; Santiago, Juan G. [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2006-10-20

    Recent experimental and numerical investigations on proton exchange membrane fuel cells (PEMFCs) emphasize water management as a critical factor in the design of robust, high efficiency systems. Although various water management strategies have been proposed, water is still typically removed by pumping air into cathode channels at flow rates significantly higher than required by fuel cell stoichiometry. Such methods are thermodynamically unfavorable and constrain cathode flow channel design. We have developed proton exchange membrane fuel cells (PEMFCs) with integrated planar electroosmotic (EO) pumping structures that actively remove liquid water from cathode flow channels. EO pumps can relieve cathode design barriers and facilitate efficient water management in fuel cells. EO pumps have no moving parts, scale appropriately with fuel cells, operate across a wide range of conditions, and consume a small fraction of fuel cell power. We demonstrate and quantify the efficacy of EO water pumping using controlled experiments in a single channel cathode flow structure. Our results show that, under certain operating conditions, removing water from the cathode using integrated EO pumping structures improves fuel cell performance and stability. The application of EO pumps for liquid water removal from PEMFC cathodes extends their operational range and reduces air flow rates. (author)

  16. Dynamics of the water circulations in the southern South China Sea and its seasonal transports

    DEFF Research Database (Denmark)

    Daryabor, Farshid; Ooi, See Hai Ooi; Samah, Azizan Abu

    2016-01-01

    A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re......-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast...... circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China...

  17. Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports

    DEFF Research Database (Denmark)

    Daryabor, Farshid

    2016-01-01

    of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic......A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re......-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast...

  18. TRADING-OFF CONSTRAINTS IN THE PUMP SCHEDULING OPTIMIZATION OF WATER DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    Gencer Genço\\u011Flu

    2016-01-01

    Full Text Available Pumps are one of the essential components of water supply systems. Depending of the topography, a water supply system may completely rely on pumping. They may consume non-negligible amount of water authorities' budgets during operation. Besides their energy costs, maintaining the healthiness of pumping systems is another concern for authorities. This study represents a multi-objective optimization method for pump scheduling problem. The optimization objective contains hydraulic and operational constraints. Switching of pumps and usage of electricity tariff are assumed to be key factors for operational reliability and energy consumption and costs of pumping systems. The local optimals for systems operational reliability, energy consumptions and energy costs are investigated resulting from trading-off pump switch and electricity tariff constraints within given set of boundary conditions. In the study, a custom made program is employed that combines genetic algorithm based optimization module with hydraulic network simulation software -EPANET. Developed method is applied on the case study network; N8-3 pressure zone of the Northern Supply of Ankara (Turkey Water Distribution Network. This work offers an efficient method for water authorities aiming to optimize pumping schedules considering expenditures and operational reliability mutually.

  19. Feasibility study of a wind powered water pumping system for rural Ethiopia

    Directory of Open Access Journals (Sweden)

    Misrak Girma

    2015-12-01

    Full Text Available Water is the primary source of life for mankind and one of the most basic necessities for rural development. Most of the rural areas of Ethiopia do not have access to potable water. Is some regions of the country access potable water is available through use of manual pumping and Diesel engine. In this research, wind water pump is designed to supply drinking water for three selected rural locations in Ethiopia. The design results show that a 5.7 m diameter windmill is required for pumping water from borehole through a total head of 75, 66 and 44 m for Siyadberand Wayu, Adami Tulu and East Enderta to meet the daily water demand of 10, 12 and 15 m3, respectively. The simulation for performance of the selected wind pump is conducted using MATLAB software and the result showed that monthly water discharge is proportional to the monthly average wind speed at the peak monthly discharge of 685 m3 in June, 888 m3 in May and 1203 m3 in March for Siyadberand Wayu, Adami Tulu and East Enderta sites, respectively. An economic comparison is conducted, using life cycle cost analysis, for wind mill and Diesel water pumping systems and the results show that windmill water pumping systems are more feasible than Diesel based systems.

  20. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  1. 76 FR 28025 - East Maui Pumped Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-05-13

    ... Energy Regulatory Commission Project No. 14142-000 East Maui Pumped Storage Water Supply LCC; Notice of... Competing Applications On April 1, 2011, East Maui Pumped Storage Water Supply LCC filed an application for... the feasibility of the East Maui Pumped Storage Water Supply Project to be located on the Miliko...

  2. Pump as Turbine (PAT) Design in Water Distribution Network by System Effectiveness

    OpenAIRE

    Oreste Fecarotta; Helena M. Ramos; Giuseppe Del Giudice; Armando Carravetta

    2013-01-01

    Water distribution networks face several problems related to leakages, where the pressure control strategy is a common practice for water loss management. Small-scale hydropower schemes, where pumps as turbines replace pressure reducing valves, can be considered an interesting technical solution, which ensures both economic convenience and system flexibility. Due to the water networks’ variable operating conditions, a new methodology to model the effectiveness of pumps as turbines was develop...

  3. Feasibility study of a solar photovoltaic water pumping system for rural Ethiopia

    Directory of Open Access Journals (Sweden)

    Misrak Girma

    2015-06-01

    Full Text Available Solar Photovoltaic (SPV water pumping system is one of the best technologies that utilize the solar energy to pump water from deep well underground water sources and to provide clean drinking water worldwide. The availability of abundant solar radiation and enough underground water sources in Ethiopia can be combined together to make clean drinking water available to rural communities. The software PVsyst 5.56 was used to study the feasibility of solar photovoltaic water pumping system in the selected sites. The designed system is capable of providing a daily average of 10.5, 7 and 6.5 m3/day for 700, 467 and 433 people in Siadberand Wayu, Wolmera and Enderta sites respectively, with average daily water consumption of 15 liters per day per person and the costs of water without any subsidy, are approximately 0.1, 0.14 and 0.16 $/m3for each site respectively. If diesel generator is used instead of solar photovoltaic water pumping system, to provide the same average daily water for the selected community, the costs of water without any subsidy are approximately 0.2, 0.23 and 0.27 $/m3 for each site respectively. A life cycle cost analysis method was also carried out for economic comparison between solar PV and the diesel pumping system. The results of this study are encouraging the use of the PV system for drinking water supply in the remote areas of the country.

  4. Ply Thickness Fiber Glass on Windmill Drive Salt Water Pump

    Science.gov (United States)

    Sifa, Agus; Badruzzaman; Suwandi, Dedi

    2016-04-01

    Factors management of salt-making processes need to be considered selection of the location and the season is very important to support the efforts of salting. Windmills owned by the farmers are still using wood materials are made each year it is not effectively done and the shape of windmills made not in accordance with the requirements without considering the wind speed and the pumping speed control influenced by the weight and size of windmill, it affects the productivity of salt. to optimize the function of windmills on pumping salt water by change the material blade on the wheel by using a material composite, composite or fiberglass are used for blades on windmills made of a material a mixture of Epoxy-Resin and Matrix E-Glass. The mechanical characteristics of the power of his blade one of determining the materials used and the thickness of the blade, which needed a strong and lightweight. The calculation result thick fiberglass with a composition of 60% fiber and 40% epoxy, at a wind speedof area salt fields 9 m/s, the drag force that occurs at 11,56 kg, then the calculation result by 0,19 mm thick with a layer of 10, the total thickness of 1,9 mm, with a density of 1760 kg/m3, mechanical character of elongated elastic modulus of 46200 MPa, modulus of transverse elasticity of 10309,6 MPa, shear modulus of 3719 MPa and Poisson ratio of 0,31, then the calculation using the finite element ABAQUS obtained critical point at the confluence of the blade to the value of Von Mises tension was happening 1,158e9 MPa maximum and minimum 2,123e5 MPa, for a maximum value of displacement occurred condition at the tip of the blade. The performance test results windmills at a wind speed of 5,5 m/s wind power shows that occur 402,42 watts and power turbines produced 44,21 watt, and TSR 0,095 and the value Cp of 0,1, test results windmill in salt fields in the beginning rotation windmill lighter, able to move above wind speed of 5.5 m/s.

  5. Water characteristics, mixing and circulation in the Bay of Bengal during southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Sarma, Y.V.B.; Rao, D.P.; Murty, C.S.

    Influence of the freshwater influx, the wind forcing and the Indian Ocean monsoon drift current on the property distributions and the circulation in the Bay of Bengal during southwest monsoon has been quantified. At the head of the Bay, waters...

  6. Conventional and advanced exergoenvironmental analysis of an ammonia-water hybridabsorption-compression heat pump

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) is a technology suitable for industrial scale heat pumps in the process industry. A helpful tool in the design of cost effective and low environmental impact energy conversion systems, such as the HACHP, is the application...

  7. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...

  8. Experimental and Analytical Modeling of Natural Circulation and Forced Circulation BWRs : Thermal-Hydraulic, Core-Wide, and Regional Stability Phenomena

    NARCIS (Netherlands)

    Furuya, M.

    2006-01-01

    Currently, 434 nuclear power plants are in operation worldwide. 21% of them are known as Boiling Water Reactors (BWRs). These BWRs have pumps that cool their reactor cores (the forced circulation BWRs). In the design of new BWRs, ways to cool the core by a natural circulation flow, without pumps, al

  9. System analysis on seawater desalination of heat pump circulating%热泵循环海水淡化系统分析

    Institute of Scientific and Technical Information of China (English)

    秦景江; 董旭

    2012-01-01

    对三种主流的热法海水淡化方法进行评述,并对热泵循环海水淡化系统进行理论分析与计算,最后得出结论认为热泵循环海水淡化系统能耗没有显著降低,相比于低温多效蒸馏法无节能优势,系统能耗偏高的主要原因在于两种工质通过间壁换热,由于存在换热温差损失了大量可用能。%This paper introduced three kinds of mainstream in heat pump circulating seawater desalination methods,and made theoretical analysis and calculation to heat pump circulating seawater desalination system.Finally drew the conclusion that the energy consumption of heat pump circulating seawater desalination system did not significantly reduced,compared to the low temperature multi-effect distillation method without the advantage of energy saving.The main reason of system energy consumption high was because of the two kinds of refrigerant through the heat exchanger,due to the temperature difference lost a large amount of available energy.

  10. Economical Feasibility of Utilizing Photovoltaics for Water Pumping in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmet Z. Sahin

    2012-01-01

    Full Text Available Energy and water are the two major need of the globe which need to be addressed for the sustenance of the human beings on this planet. All the nations, no matter most populous, developed and developing need to diversify the means and ways of producing energy and at the same time guarding the environment. This study aims at techno economical feasibility of producing energy using PV solar panels and utilizing it to pump-water at Dhahran, Riyadh, Jeddah, Guriat, and Nejran regions in Saudi Arabia. The solar radiation data from these stations was used to generate electricity using PV panels of 9.99 kW total capacity. Nejran region was found to be most economical in terms of minimal payback period and cost of energy and maximum internal rate of return whereas PV power production was concerned. Water-pumping capacity of the solar PV energy system was calculated at five locations based on the PV power production and Goulds model 45J series of pumps. Monthly total and annual total water pumping capacities were determined. Considering the capital cost of combined solar PV energy system and the pump unit a cost analysis of water pumping for a well of 50 m total dynamic head (TDH was carried out. The cost of water pumping was found to vary between 2 and 3 /m3.

  11. Effect of Pumping Strategies on Pesticide Concentrations in Water Abstraction Wells

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Albrechtsen, Hans-Jørgen;

    and pumping wells show that pesticide concentrations vary greatly in both time and space. This study aimed to use models to determine how pumping affects pesticide concentrations in drinking water wells placed in two hypothetical aquifer systems; a homogeneous layered aquifer and a layered aquifer...... pumping rates can generate temporal variability in the concentration at the well, similar to that observed in groundwater monitoring programmes. The results are also used to provide guidance on the design of pumping and remediation strategies for the long-term supply of safe potable groundwater...

  12. Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

    Directory of Open Access Journals (Sweden)

    Jukka Yrjölä

    2015-08-01

    Full Text Available Producing domestic hot water (DHW with a ground source heat pump (GSHP is challenging due to the high temperature (HT of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.

  13. Computation of water hammer protection of modernized pumping station

    Directory of Open Access Journals (Sweden)

    Himr Daniel

    2014-03-01

    Finally, the pump trip was performed to verify if the system worked correctly. The test showed that pressure pulsations are lower (better than computation predicted. This discrepancy was further analysed.

  14. WEXA: exergy analysis for increasing the efficiency of air/water heat pumps - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, L.; Wellig, B.; Hilfiker, K.

    2008-04-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study at the made by the Engineering and Architecture department at the Lucerne University of Applied Sciences and Arts. The subject of the WEXA study (Waermepumpen-Exergie-Analyse - heat pump exergy analysis) is the analysis of the operation of air/water heat-pumps using exergy analysis methods. The basic thermodynamics of heating systems using heat-pumps is discussed. The exergy analyses and exergy balances for the various components and processes of an air/water heat-pump are presented and discussed. Comparisons are presented for heat-pumps with on/off and continuous control systems for their compressors and fans. The paper is concluded with a collection of appendices on the subject.

  15. Groundwater heat pumps with turbines for the return water; Grundwasser-Waermepumpe mit Rueckgabe-Turbinierung

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, M.

    2007-09-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on improvements in the efficiency of a ground water heat pump installation in an office building. The water return well was equipped with a turbine. In this installation, the ground water is pumped up from a depth of 45 meters which means that a lot of electricity is needed for the pumping of the water. Coefficients of performance of the system are quoted for the situation with and without the turbine. The conversion of a pump for use as a turbine is commented on. The construction of a specially developed turbine with reduced electricity consumption is suggested. Seasonal performance data of the system is provided in tabular form.

  16. Responses of the circulation and water mass in the Beibu Gulf to the seasonal forcing regimes

    Institute of Scientific and Technical Information of China (English)

    GAO Jingsong; SHI Maochong; CHEN Bo; GUO Peifang; ZHAO Dongliang

    2014-01-01

    In the past 20 a, the gulf-scale circulation in the Beibu Gulf has been commonly accepted to be driven by a wind stress or density gradient. However, using three sensitive experiments based on a three-dimensional baroclinic model that was verified by observations, the formation mechanisms were revealed:the circula-tion in the northern Beibu Gulf was triggered by the monsoon wind throughout a year;whereas the southern gulf circulation was driven by the monsoon wind and South China Sea (SCS) circulation in winter and sum-mer, respectively. The force of heat flux and tidal harmonics had a strong effect on the circulation strength and range, as well as the local circulation structures, but these factors did not influence the major circulation structure in the Beibu Gulf. On the other hand, the Beibu Gulf Cold Water Mass (BGCWM) would disappear without the force of heat flux because the seasonal thermocline layer was generated by the input of heat so that the vertical mixing between the upper hot water and lower cold water was blocked. In addition, the wind-induced cyclonic gyre in the northern gulf was favorable to the existence of the BGCWM. However, the coverage area of the BGCWM was increased slightly without the force of the tidal harmonics. When the model was driven by the monthly averaged surface forcing, the circulation structure was changed to some extent, and the coverage area of the BGCWM almost extended outwards 100%, implying the circulation and water mass in the Beibu Gulf had strong responses to the temporal resolution of the surface forces.

  17. Cold water corals of the Northeast Atlantic margin: Archives of intermediate water circulation during the Holocene

    Science.gov (United States)

    Frank, N.; Paterne, M.; Ayliffe, L.; Lutringer, A.; Blamart, D.; van Weering, T.

    2003-04-01

    We present combined 230Th/U and 14C dating and stable isotope analyses on benthic corals from the northeastern North Atlantic in order to investigate past changes of the thermohaline circulation. The reef forming cold water corals Lophelia pertusa and Madrepora oculata were raised from intermediate depth (˜750m bsl) from carbonate mounds along Rockall and Porcupine Bank and Porcupine Seabight.The 230Th/U ages range from today to 247,400yr. The δ234U, 230Th/232Th, and X-ray images indicate negligible alteration of the investigated corals, i.e. open system behavior. Very young deep-sea corals were accurately dated by means of 230Th/U dating. One in-situ living Lophelia coral yielded a mean age of 1995AD, matching the date of collection in 1999AD. From this coral, the measured and calculated seawater Δ14C values are indistinguishable, and the reservoir age Rinterm of the upper intermediate waters is 710±80 years. Several modern corals, being dated between 1950AD and 1986AD, recorded the atmospheric 14C/12C increase due to the nuclear tests in the early 60s. The modern pre-bomb Δ14C value of the North Atlantic intermediate waters was determined at an average of -65±7o/oo, and the mean reservoir age at 500±50 years. Finally, several investigated benthic coral grew during the second step of the deglaciation and during the Holocene climate optimum (from 10,900 to about 8,000 CAL yr BP). The reservoir age of average 530±65 years is equivalent to that of today indicating that, during the studied coral growth episodes, a modern type oceanic circulation, as well as the air-sea and surface to deeper adjacent water 14CO2 exchanges prevailed in the Northeast Atlantic Ocean.

  18. Effects of pumping strategies on pesticide concentration of a drinking water well

    Science.gov (United States)

    Aisopou, A.; Bjerg, P. L.; Binning, P. J.; Albrechtsen, H.

    2011-12-01

    Groundwater is an important source of drinking water production in many countries including Denmark. This requires high quality groundwater that meets the standards of the European Water Framework Directive. Yet as a result of agricultural activitity, deposition and previous handling, pesticides are frequently found in groundwater and can raise a substantial problem for ground water abstraction. The concentration of this contamination may vary between different layers. The heterogeneity of the subsurface geology and the depth of the drinking water well's screen are important parameters that affect the resulting contamination of the abstracted groundwater. The pesticide concentration in wells may also be affected by the pumping strategy because pumping can alter the structure of the flow field, the flowpath of water going to the well and subsequently the age of water at the well. The purpose of this study was to examine numerically the effects of pumping on pesticide contamination of drinking water wells using a reactive transport model in a hypothetical aquifer system resembling a typical Danish well field. The application history of the pesticides is crucial. This can be taken into account by assessing the effects of pumping on water age distribution along the well. Three compounds with different application histories were considered: an old banned pesticide MCPP (Mecoprop) which is mobile and relatively persistent in deeper aquifers, and a highly applied, biodegradable and strongly sorbing pesticide glyphosate, and its degradation product AMPA. A steady state flow field was first computed. A well field was then introduced and different pumping regimes were applied for a period of 180 years; a low-rate pumping, a high-rate pumping and a varying pumping regime. A constant application rate at the surface was assumed for the application period of each pesticide. The pre-abstraction age distribution of the water in the system was first estimated using a steady

  19. Numerical simulation of dynamic flow characteristics in a centrifugal water pump with three-vaned diffuser

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Shuai

    2015-08-01

    Full Text Available The complex three-dimensional turbulent flow field in a centrifugal water pump with three asymmetrical diffusers was numerically simulated. The characteristics of pressure and force fluctuations inside the model pump were investigated. Fast Fourier transformation was performed to obtain the spectra of pressure and force fluctuations. It indicates that the dominant frequency of pressure fluctuations is the blade passing frequency in all the sub-domains inside the pump and the first blade passing frequency energy (first order of blade passing frequency is the most significant. The dominant frequency of pressure fluctuations at the location of diffuser outlet is featured by low frequency (less than 1 Hz, which may be due to the locally generated eddy structures. Besides, the dominant frequency force fluctuations on the impeller blades are also the blade passing frequency. The existence of the three asymmetrical diffusers has damping effect on the pressure fluctuation amplitude and energy amplitude of pressure fluctuations in the diffuser domain dramatically, which indicates that the diffusers can effectively control the hydraulically excited vibration in the pump. Besides, the prediction of the dominant frequency of pressure fluctuations inside the pump can help to utilize the pump effectively and to extend the pump life. The main findings of this work can provide prediction of the pump performance and information for further optimal design of centrifugal pumps as well.

  20. Parametric Study on a Horizontal Axis Wind Turbine Proposed for Water Pumping

    Directory of Open Access Journals (Sweden)

    Dr. Abdullateef A. Jadallah

    2014-01-01

    Full Text Available Water pumping is considered an economically competitive sustainable process of providing water to communities, rural areas and livestock's. A parametric analysis on HAWT is carried out to explore the influence of the performance parameters on the power generated and withdrawal quantity of water. Effect of wind speed, radius of rotor, ambient condition, well depth, and efficiencies of turbine, generator and the pump were studied and reflected in important generalized performance maps. These performance graphs are valuable in best understanding of on‐design and off‐ design constraints of the horizontal axis wind turbine in water pumping. The blade geometry was also studied. Results showed the reasonable range of wind turbine performance and the corresponding water discharge within the abovementioned constraints. Rating and the effect of pitch angle on discharged water are also presented. Methodology necessary to achieve the abovementioned results is processed by a computer program written in Matlab

  1. A simple, low-cost method to monitor duration of ground water pumping.

    Science.gov (United States)

    Massuel, S; Perrin, J; Wajid, M; Mascre, C; Dewandel, B

    2009-01-01

    Monitoring ground water withdrawals for agriculture is a difficult task, while agricultural development leads frequently to overexploitation of the aquifers. To fix the problem, sustainable management is required based on the knowledge of water uses. This paper introduces a simple and inexpensive direct method to determine the duration of pumping of a well by measuring the temperature of its water outlet pipe. A pumping phase is characterized by a steady temperature value close to ground water temperature. The method involves recording the temperature of the outlet pipe and identifying the different stages of pumping. It is based on the use of the low-cost and small-size Thermochron iButton temperature logger and can be applied to any well, provided that a water outlet pipe is accessible. The temperature time series are analyzed to determine the duration of pumping through manual and automatic posttreatments. The method was tested and applied in South India for irrigation wells using electricity-powered pumps. The duration of pumping obtained by the iButton method is fully consistent with the duration of power supply (1.5% difference).

  2. Technologies for Safe Water Supply in Arsenic Affected Villages of Bangladesh Utilizing a Pedal Pump

    Science.gov (United States)

    Biswas, Wahidul K.; Leslie, Greg

    2007-10-01

    This paper presents information on the socio-techno-economic aspects of a water purification system for the arsenic contaminated villages of Bangladesh. The proposed system which is based on hollow fiber membranes and granular activated carbon columns can be used to harvest potable water from ponds without many of the problems inherent in the conventional pond sand filters. This paper also examines the possible application of human operated pedal pump, instead of diesel or electricity driven pump, for pumping water from ponds to overcome limitations in existing water technologies in the arsenic-contaminated villages in Bangladesh. A market model of this technology has been suggested that allows the rural poor to access to safe water at affordable monthly rate.

  3. Fast Water Thermo-pumping Flow Across Nanotube Membranes for Desalination.

    Science.gov (United States)

    Zhao, Kuiwen; Wu, Huiying

    2015-06-10

    Development of high-efficiency and low-cost seawater desalination technologies is critical to meet global water crisis. Here we report a fast water pumping method in which the water molecules in seawater are continuously pumped across nanotube membranes driven by a small temperature difference, opening the possibility of high-throughput small-scale desalination devices driven by low-grade thermal energy. Using molecular dynamics simulations, we show that an equivalent driving pressure of 5.3 MPa is achieved with a temperature difference of only 15 K. The remarkable water pumping ability is attributed to the asymmetric thermal fluctuation of water molecules. With this method, a 10 cm(2) nanotube membrane with 1.5 × 10(13) pores per cm(2) will produce freshwater with a flow rate of 7.77 L/h under a small temperature difference of 15 K.

  4. Effects of pumping strategies on pesticide concentration of a drinking water well

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Binning, Philip John; Bjerg, Poul Løgstrup

    are frequently found in groundwater and can raise a substantial problem for ground water abstraction. The concentration of this contamination may vary between different layers. The heterogeneity of the subsurface geology and the depth of the drinking water well’s screen are important parameters that affect...... the resulting contamination of the abstracted groundwater. The pesticide concentration in wells may also be affected by the pumping strategy because pumping can alter the structure of the flow field, the flowpath of water going to the well and subsequently the age of water at the well. The purpose of this study...... was to examine numerically the effects of pumping on pesticide contamination of drinking water wells using a reactive transport model in a hypothetical aquifer system resembling a typical Danish well field. The application history of the pesticides is crucial. This can be taken into account by assessing...

  5. 地下水源热泵系统热平衡模拟三维数值模型%Three-dimensional numerical model for heat balance simulation of ground-water heat pump

    Institute of Scientific and Technical Information of China (English)

    骆祖江; 李伟; 王琰; 张德忠; 方连育

    2014-01-01

    In order to simulate and predict the change law of heat balance accurately and avoid heat penetration phenomenon during the groundwater heat pump operation, a three dimensional coupling numerical model of groundwater seepage and thermal transport was established and applied to the demonstration project of groundwater heat pump system in Zhengding, Hebei province. The model was based on the groundwater seepage theory, saturated water-bearing medium thermal transport theory and Terzaghi effective stress principle, combined with the design scheme and operation situation of groundwater heat pump, the future heat balance development tendency of groundwater heat pump system under three different conditions was forecasted and analyzed. The water temperature difference between the pumping well and recharge well reduced by 20%(eight degree centigrade) or increased by 20%(twelve degree centigrade) was the first condition which means the cooling and heating load was kept constant. Second condition was the water temperature difference between pumping well and recharge well confirmed and the circulating water volume increased by 20%, or the volume of circulating water kept constant and water temperature difference between pumping well and recharge well increased 20%, which means the cooling and heating load was increased. Meanwhile, in the third condition, the cooling and heating load was reduced. The water temperature difference between the pumping well and recharge well was confirmed and the volume of circulating water reduced 20%, or the water temperature difference between pumping well and recharge well reduced 20%while the circulating water volume kept constant. It was shown that there is a heat penetration phenomenon between the pumping well and recharge well in the demonstration project under the condition of design scheme, which has one pumping well and one recharge well. When the cooling and heating load of the groundwater heat pump system is confirmed, increasing 20

  6. Design of Nano Screw Pump for Water Transport and its Mechanisms

    Science.gov (United States)

    Wang, LiYa; Wu, HengAn; Wang, FengChao

    2017-01-01

    Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires’ surface energy and the screw’s diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications. PMID:28155898

  7. Design of Nano Screw Pump for Water Transport and its Mechanisms

    Science.gov (United States)

    Wang, Liya; Wu, Hengan; Wang, Fengchao

    2017-02-01

    Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires’ surface energy and the screw’s diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications.

  8. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  9. The role of capacitance in a wind-electric water pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Shitao [West Texas A& M Univ., Canyon, TX (United States); Clark, R.N. [Conservation and Production Research Lab., Bushland, TX (United States)

    1997-12-31

    The development of controllers for wind-electric water pumping systems to enable the use of variable voltage, variable frequency electricity to operate standard AC submersible pump motors has provided a more efficient and flexible water pumping system to replace mechanical windmills. A fixed capacitance added in parallel with the induction motor improves the power factor and starting ability of the pump motor at the lower cut-in frequency. The wind-electric water pumping system developed by USDA-Agricultural Research Service, Bushland, TX, operated well at moderate wind speeds (5-12 m/s), but tended to lose synchronization in winds above 12 m/s, especially if they were gusty. Furling generally did not occur until synchronization had been lost and the winds had to subside before synchronization could be reestablished. The frequency needed to reestablish synchronization was much lower (60-65 Hz) than the frequency where synchronization was lost (70-80 Hz). As a result, the load (motor and pump) stayed off an excessive amount of time thus causing less water to be pumped and producing a low system efficiency. The controller described in this paper dynamically connects additional capacitance of the proper amount at the appropriate time to keep the system synchronized (running at 55 to 60 Hz) and pumping water even when the wind speed exceeds 15 m/s. The system efficiency was improved by reducing the system off-line time and an additional benefit was reducing the noise caused by the high speed blade rotation when the load was off line in high winds.

  10. Solar Load Voltage Tracking for Water Pumping: An Algorithm

    Science.gov (United States)

    Kappali, M.; Udayakumar, R. Y.

    2014-07-01

    Maximum power is to be harnessed from solar photovoltaic (PV) panel to minimize the effective cost of solar energy. This is accomplished by maximum power point tracking (MPPT). There are different methods to realise MPPT. This paper proposes a simple algorithm to implement MPPT lv method in a closed loop environment for centrifugal pump driven by brushed PMDC motor. Simulation testing of the algorithm is done and the results are found to be encouraging and supportive of the proposed method MPPT lv .

  11. Effect of suction pipe leaning angle and water level on the internal flow of pump sump

    Science.gov (United States)

    Chen, Z.-M.; Lee, Y.-B.; Kim, K.-Y.; Park, S.-H.; Choi, Y.-D.

    2016-11-01

    The pump sump, which connects forebay and intake of pump station, supplies good flow condition for the intake of the pump. If suction sumps are improperly shaped or sized, air entraining vortices or submerged vortices may develop. This may greatly affect pump operation if vortices grow to an appreciable extent. Moreover, the noise and vibration of the pump can be increased by the remaining of vortices in the pump flow passage. Therefore, the vortices in the pump flow passage have to be reduced for a good performance of pump sump station. In this study, the effect of suction pipe leaning angle on the pump sump internal flow with different water level has been investigated by CFD analysis. Moreover, an elbow type pipe was also investigated. There are 3 leaning angles with 0°, 45° and 90° for the suction pipe. The suction pipe inlet centre is kept same for all the cases. In addition, the three different water levels of H/D=1.85, 1.54, and 1.31, is applied to different suction pipe types. The result shows that the amount of air sucked into the suction pipe increases with increasing the suction pipe leaning angle. Especially for the horizontal suction pipe, there is maximum air sucked into the suction pipe. However, there is certain effect of the elbow type bell mouth installation in the horizontal suction pipe on suppressing the amount of air sucked into the pipe. Moreover, vertical suction pipe plays an effective role on reducing the free surface vortex intake area.

  12. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  13. Optimal Operation for Baoying Pumping Station in East Route Project of South-to-North Water Transfer

    Institute of Scientific and Technical Information of China (English)

    FENG Xiaoli; QIU Baoyun; CAO Haihong; WEI Qianglin; TENG Haibo

    2009-01-01

    Baoying pumping station is a part of source pumping stations in East Route Project of South-to-North Water Transfer in China. Aiming at the characteristics of head varying, and making use of the function of pump adjustable blade, mathematical models of pumping station optimal operation are established and solved with genetic algorithm. For different total pumping discharge and total pumping volume of water per day, in order to minimize pumping station operation cost, the number and operation duties of running pump units are respectively determined at different periods of time in a day. The results indicate that the saving of electrical cost is significantly effected by the schemes of adjusting blade angles and time-varying electrical price when pumping certain water volume of water per day, and compared with conventional operation schemes (namely, the schemes of pumping station operation at design blade angles based on certain pumping discharge), the electrical cost is saved by 4.73%-31.27%. Also, compared with the electrical cost of conventional operation schemes, the electrical cost is saved by 2.03%-5.79% by the schemes of adjusting blade angles when pumping certain discharge.

  14. Water Pumping Stations, wPump - collected data from As-Builts, Published in 2010, 1:2400 (1in=200ft) scale, Effingham County Board Of Commissioners.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Pumping Stations dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Hardcopy Maps information as of 2010. It is described as...

  15. THE INVESTIGATION OF THE INTERACTION OF THE IMPLANTABLE ROTARY BLOOD PUMP AND THE LEFT VENTRICLE ON THE MOCK CIRCULATION SYSTEM

    Directory of Open Access Journals (Sweden)

    E. G. Konysheva

    2010-01-01

    Full Text Available We analyzed the dynamics of the interaction of rotary pump, connected to the scheme «the left ventricle – aor- ta», and left ventricle in norms and heart failure, using data obtained on the mock circulatory system. Adverse pumping states such as suction and regurgitation can be detected. These limits depend on the degree of cardiac failure, which confirms the need to control the speed of rotation of the impeller in the range of the cardiac failure from pathology to normal. It has been shown that the pulsating pressure at the inlet of the pump modulates the flow of the pump, making it a pulsating, what positively affects on the dynamics of cardiac output. 

  16. The Studies of Regional Water Circulation Patterns in the Yerqiang River Basin

    Institute of Scientific and Technical Information of China (English)

    REN Jiaguo; WU Qianqian; ZHENG Xilai; XU Mo

    2006-01-01

    Based on the characteristic of ‘one river one oasis' in the arid areas, the Yerqiang River Basin, which is the largest irrigated area of Xinjiang, is taken as an example in this paper, and the regional water circulation pattern is investigated through the analysis of 60 groups of isotope data in the basin. From the phreatic evaporation data analysis of different soils, we study the law of phreatic evaporation, complete the research of the main consumption path of the groundwater,and improve the assessment precision of water resources. The transformation mount of regional water resources are predicted by calculation, which provides a scientific basis for water resources assessment and allocation in arid regions, and offers a new method for the study of regional water circulation patterns.

  17. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  18. Crystal balls into the future: are global circulation and water balance models ready?

    Science.gov (United States)

    Fekete, Balázs M.; Pisacane, Giovanna; Wisser, Dominik

    2016-10-01

    Variabilities and changes due to natural and anthropogenic causes in the water cycle always presented a challenge for water management planning. Practitioners traditionally coped with variabilities in the hydrological processes by assuming stationarity in the probability distributions and attempted to address non-stationarity by revising this probabilistic properties via continued hydro-climatological observations. Recently, this practice was questioned and more reliance on Global Circulation Models was put forward as an alternative for water management plannig. This paper takes a brief assessment of the state of Global Circulation Models (GCM) and their applications by presenting case studies over Global, European and African domains accompanied by literature examples. Our paper demonstrates core deficiencies in GCM based water resources assessments and articulates the need for improved Earth system monitoring that is essential not only for water managers, but to aid the improvements of GCMs in the future.

  19. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-12-01

    Full Text Available The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal efficiency of the system was found to be 8% with an operating temperature of 120 °C. The hot water produced by the unit has a temperature of 40 °C. Economic assessment was done for 1-kW and 5-kW solar ORC water pumping systems. These systems use different types of solar collectors: a parabolic trough collector (PTC and an evacuated tube collector (ETC. The economic analysis showed that the costs of water are $2.47/m3 (highest and $1.86/m3 (lowest for the 1-kW system and a 150-m pumping head. In addition, the cost of water is reduced when the size of the system is increased and the pumping head is reduced. The minimum volumes of water pumped are 2190 m3 and 11,100 m3 yearly for 1 kW and 5 kW, respectively. The payback period is eight years with a profitability index of 1.6. The system is highly feasible and promising in the context of Nepal.

  20. 76 FR 30936 - West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-05-27

    ... Energy Regulatory Commission West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit... April 1, 2011, West Maui Pumped Storage Water Supply, LLC, filed an application for a preliminary permit... supply project effluent water to an existing irrigation system; (5) a powerhouse with two...

  1. Energetic Efficiency Evaluation by Using GroundWater Heat Pumps

    Directory of Open Access Journals (Sweden)

    Tokar Adriana

    2012-09-01

    Full Text Available Romania has significant energy potential from renewable sources, but the potential used is much lower due to technical and functional disadvantages, to economic efficiency, the cost elements and environmental limitations. However, efforts are being made to integrate renewable energy in the national energy system. To promote and encourage private investments for renewable energy utilization, programs have been created in order to access funds needed to implement these technologies. Assessment of such investments was carried out from technical and economical point of view, by analyzing a heat pump using as heat source the solar energy from the ground.

  2. Reliability of water distribution networks due to pumps failure: comparison of VSP and SSP application

    Directory of Open Access Journals (Sweden)

    N. Mehzad

    2012-07-01

    Full Text Available Reliability is an important indicator to ensure the operation of Water Distribution Networks (WDNs. To optimize the operation of WDN, it is necessary to incorporate the reliability of active components (such as pumps and tanks besides the reliability of pipes. In this research, a concept is suggested to calculate the reliability of WDNs' pumping stations. A computer code is provided in Visual Basic and is linked to EPANET2.0. To evaluate the proposed methodology a real WDN near the city of Tehran is considered. According to the obtained results, it is concluded that by increasing the demand of the WDN during a day, the reliability of pumps decrease. Therefore, it seems that decision-making is necessary if high demand hours are considered, in order to increase the reliability of the system. On the other hand, it is observed in this research that using variable speed pumps not only reduces the energy cost of the network, but also the reliability of the pumping stations with variable speed pumps is higher than single speed pumps. Therefore, using VSP is highly recommended in WDNs.

  3. Performance of a 10 kilowatt wind-electric water pumping system for irrigating crops

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [Conservation and Production Research Lab., Bushland, TX (United States); Molla, S. [Texas A& M Univ., College Station, TX (United States)

    1997-12-31

    A 10 kW wind-electric water pumping system was tested for field crop irrigation at pumping depths from 50 to 120 m. The wind turbine for this system used a permanent magnet alternator that powered off-the-shelf submersible motors and pumps without the use of an inverter. Pumping performance was determined at the USDA-Agricultural Research Service (ARS), Wind Energy Laboratory in Bushland, TX for the 10 kW wind turbine using a pressure valve and a pressure tank to simulate different pumping depths. Pumping performance was measured for two 10 kW wind turbines of the same type at farms near the cities of Garden City, TX and Stiles, TX. The pumping performance data collected at these actual wells compared favorably with the data collected at the USDA-ARS, Wind Energy Laboratory. If utility generated electricity was accessible, payback on the wind turbine depended on the cost of utility generated electricity and the transmission line extension cost.

  4. Wind-Driven Ocean Circulation in Shallow Water Lattice Boltzmann Model

    Institute of Scientific and Technical Information of China (English)

    ZHONG Linhao; FENG Shide; GAO Shouting

    2005-01-01

    A lattice Boltzmann (LB) model with overall second-order accuracy is applied to the 1.5-layer shallow water equation for a wind-driven double-gyre ocean circulation. By introducing the second-order integral approximation for the collision operator, the model becomes fully explicit. In this case, any iterative technique is not needed. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretized accuracy of the LB equation. The numerical results show correct physics of the ocean circulation driven by the double-gyre wind stress with different Reynolds numbers and different spatial resolutions. An intrinsic low-frequency variability of the shallow water model is also found. The wind-driven ocean circulation exhibits subannual and interannual oscillations, which are comparable to those of models in which the conventional numerical methods are used.

  5. The feasibilities to use circulation water as feed water of the paper chemicals; Kiertovesien kaeyttoemahdollisuudet kemikaalien syoettoevesinae - MPKT 07

    Energy Technology Data Exchange (ETDEWEB)

    Manner, H.; Ryoesoe, K.; Harju, E.; Viik, H.; Toeyry, M. [Lappeenranta Univ. of Technology (Finland). Dept. of Chemical Technology

    1998-12-31

    A lot of water is needed for dilution and feed of the paper chemicals. Usually only fresh water is used for this purpose. In this project the use of fresh water was investigated at seven paper machines. The amount of fresh water used for the dilution of chemicals was 0,45-2,6 m{sup 3}/t paper. Most of this part of the fresh water is needed for dilution and feed of the retention aid and the starch. Neutral size and fixing agents need a lot of water, as well. Different kinds of dissolved and colloidal substances in dilution water can interfere the function of paper chemicals. It could be clearly seen that anionic substances in feed water of the cationic polyelectrolytes are very detrimental. Also some salts can be detrimental for instance in dilution water of polyelectrolytes or AKD-size. These contaminants can also lead to depositions in supply equipments. For this reason it is very important to remove or at least minimize the amount of anionic polyelectrolytes and for instance Ca{sup 2+} and SO{sub 4}{sup 2-} ions from the feed water of the paper chemicals. This can be done by using membrane filtration. The fresh water can be replaced by membrane filtered circulation water but some loss of efficiency of polyelectrolytes or AKD-size can, however, be seen. As the feed water of the bentonite circulation water can instead be used without any harmful effect. The nanofiltered circulation water seem to be fairly as useful as fresh water for dilution of paper chemicals. (orig.)

  6. Development of a capillary plasma pump with vapour bubble for water purification: experimental and theoretical investigation

    Science.gov (United States)

    Uehara, S.; Ishihata, K.; Nishiyama, H.

    2016-10-01

    This paper describes the development of a small-sized reactive plasma pump driven by capillary bubble discharge for the purification of treated water. The apparatus we developed decomposes the pollutants in the water by using chemical species generated by the plasma discharge. The resulting stream of bubbles obviates the need for an external gas supply or pump to transport the water. A high-speed camera was used to investigate the bubble dynamics responsible for the pumping effect, which is achieved by selecting the shape of the capillary such that the bubble ejections within enhance the ‘self-repetition’ action required for the pumping motion. Our experiments showed that optimal bubble generation requires a consumed power of 17.8 W. A theoretical model was developed to investigate the pumping mechanism. We solve the problems associated with liquid oscillations in the U-shaped water reservoir by employing a non-uniform cross-sectional area in our model. The chemical reactivity of the device was confirmed by using emission spectroscopy of OH radical and by measuring the decomposition of methylene blue.

  7. Pump as Turbine (PAT Design in Water Distribution Network by System Effectiveness

    Directory of Open Access Journals (Sweden)

    Oreste Fecarotta

    2013-08-01

    Full Text Available Water distribution networks face several problems related to leakages, where the pressure control strategy is a common practice for water loss management. Small-scale hydropower schemes, where pumps as turbines replace pressure reducing valves, can be considered an interesting technical solution, which ensures both economic convenience and system flexibility. Due to the water networks’ variable operating conditions, a new methodology to model the effectiveness of pumps as turbines was developed based on the efficiency and the mechanical reliability of the hydropower device and the flexibility of the plant. System effectiveness is proposed as the objective function in the optimization procedure and applied to a real system, enabling one to emphasize that the hydraulic regulation mode of the plant is better than the electric regulation mode for American Petroleum Industry (API manufacturing standards of pumps.

  8. On the Model Selection of Heat Exchange Station Circulating Pump in Coal Mine%浅谈煤矿热交换站循环泵的选型

    Institute of Scientific and Technical Information of China (English)

    刘军辉

    2015-01-01

    The circulating pump of the heat exchange station is the core equipment and the source of power of the heating system, just like the heart of human. Its selection directly concerns the operation of the whole heating system. This paper analyzes the misunderstanding of circulating pump selection in some newly built and rebuilt heat exchange stations which the author has contact with and points out the countermeasures to solve the problem.%热交换站中的循环泵是整个采暖系统的核心设备,动力之源,重要性如同一个人的心脏,它的选型正确与否,直接关乎整个采暖系统的运转。本文对作者接触到的几个新建、改建的煤矿热交换站在循环泵选型上存在的误区进行分析,指出解决问题的对策。

  9. Water source heat pumps for greenhouse soil cooling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spieser, H.

    1987-06-01

    In an attempt to diversify and grow flowers which are in high demand, growers are looking to produce certain exotic flowers which require unique growing conditions. One example is the Alstroemerias also knwon as the Peruvian Lily. If the plants are grown continuously at about 12-15/sup 0/C soil temperature, the plant will continue to flower regardless of air temperature and photoriod. These latter two factors are considered secondary to the importance of cool soil temperatures. Alstroemeria production is still relatively new to the greenhouse industry. Some controversy still exists as to the direct benefits of planned soil cooling. This project was set up to evaluate a mechanical soil cooling system for continuous year round Alstroemeria production. A heat pump soil cooling system was installed in two greenhouses each with dimensions of 16 m by 61 m. Combined these greenhouses have a growing area of 1952 m/sup 2/. These greenhouses are older wooden greenhouses, covered by double poly, air-inflated glazing. This system worked very well, maintaining the soil temperature at the proper levels throughout the spring and summer months. During the rest of the year the soil cooling system is used less intensely. During winter months when soil cooling is not required, the heat pumps provide base load heating to the greenhouse through fan forced unit heaters.

  10. Development of a nonazeotropic heat pump for crew hygiene water heating

    Science.gov (United States)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A Phase 2 SBIR Program funded by the NASA Marshall Space Flight Center to develop a Nonazeotropic Heat Pump is described. The heat pump system which was designed, fabricated, and tested in the Foster-Miller laboratory, is capable of providing crew hygiene water heating for future manned missions. The heat pump utilizes a nonazeotropic refrigerant mixture which, in this application, provides a significant Coefficient of Performance improvement over a single-constituent working fluid. In order to take full advantage of the refrigerant mixture, compact tube-in-tube heat exchangers were designed. A high efficiency scroll compressor with a proprietary lubrication system was developed to meet the requirements of operation in zero-gravity. The prototype heat pump system consumes less than 200W of power compared to the alternative of electric cartridge heaters which would require 2 to 5 kW.

  11. A Comparative Cycle and Refrigerant Simulation Procedure Applied on Air-Water Heat Pumps

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2012-01-01

    A vapor compression heat pump absorbs heat from the environment at a low temperature level and rejects heat at a high temperature level. The bigger the difference between the two temperature levels the more challenging is it to gain high energy efficiency with a basic cycle layout as found in most...... small capacity heat pump applications today. Many of the applicable refrigerants also reach their technical limits regarding low vapor pressure for very low source temperatures and high discharge temperatures for high sink temperatures. These issues are especially manifest for air-water heat pumps. Many...... alternative cycle setups and refrigerants are known to improve the energy efficiency of a vapor compression cycle and reduce discharge temperatures. However not all of them are feasible for small capacity heat pumps from a cost and complexity point of view. This paper presents a novel numerical approach...

  12. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    . The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR....../year) and the lowest operation (320 EUR/year) expenditures. Electric heater-based concepts consume 5-14 times more electricity, which leads to relatively high annual operation costs (530-970 EUR/year); while investment costs are lower (326-76 EUR/year). The suggested DHW heat pump-based system is cost......-efficient for private consumers already today. Furthermore, application of the micro booster heat pump in low energy houses complies with the energy consumption requirements, set by the recent Danish Building Regulations. The use of electrical heater variants would exceed this limit....

  13. Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports

    Science.gov (United States)

    Ooi, See Hai; Samah, Azizan Abu; Akbari, Abolghasem

    2016-01-01

    A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea. PMID:27410682

  14. 变频循环泵振动噪声特性试验研究%Experimental Study on Noise and Vibration Characteristics of Variable Speed Circulator Pump

    Institute of Scientific and Technical Information of China (English)

    孙霖; 谢江辉; 尚进; 张德满

    2014-01-01

    为了较为系统地理解变频循环泵的振动噪声特性,以一台比转速为200和最高转速为5600r/min的变频循环泵为研究对象,在背景噪声小于16dB的半消音室和固有频率小于10Hz的振动试验台的试验条件下,对不同流量和转速下的船用循环泵振动噪声特性进行深入的试验研究。试验结果表明:循环泵的总体噪声水平低于66 dB(A),水力诱导的空气传递噪声小于3dB(A);噪声的主要激励频率为工频及谐波,总体结构振动烈度低于1.1mm/s,振动烈度与转速具有良好线性函数关系;结构振动烈度的大小排序为电机、法兰、电机座和泵体.%To understand the noise and vibration characteristics of variable speed circulator pump,a circulator pump with spe-cific speed of 200 and maximum speed of 5600r/min is selected as study object.The noise and vibration characteristics of circula-tor pump under different flow rates and speeds conditions are deeply investigated in the condition of hemi-anechoic room with background noise level lower than 16dB and vibration test bed with natural frequency lower than 10Hz.Experimental results show that overall noise level is lower than 66dB(A) and has a good linear function with speed;air-borne noise level generated by fluid is lower than 3dB(A).Working frequency and its harmonics are the main contributors for the noise.Overall structural vibration level is lower than 1.1mm/s and has a good linear function with speed.The sort of amplitude of structural vibration is motor,flan-ges,motor stool and pump casing.

  15. 49 CFR 230.61 - Arch tubes, water bar tubes, circulators and thermic siphons.

    Science.gov (United States)

    2010-10-01

    ... (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Washing Boilers § 230.61 Arch tubes, water bar tubes, circulators and thermic siphons. (a) Frequency of cleaning. Each time the boiler is washed, arch tubes...

  16. Experimental and numerical stability investigations on natural circulation boiling water reactors

    NARCIS (Netherlands)

    Marcel, C.P.

    2007-01-01

    The stability of natural circulation boiling water reactors is investigated with a strong emphasis on experiments. Two different facilities are used for such a task: the GENESIS facility (to which a void reactivity feedback system is artificially added) and the CIRCUS facility. In addition, numerica

  17. Photovoltaic water pumping applications: Assessment of the near-term market

    Science.gov (United States)

    Rosenblum, L.; Bifano, W. J.; Scudder, L. R.; Poley, W. A.; Cusick, J. P.

    1978-01-01

    Water pumping applications represent a potential market for photovoltaics. The price of energy for photovoltaic systems was compared to that of utility line extensions and diesel generators. The potential domestic demand was defined in the government, commercial/institutional and public sectors. The foreign demand and sources of funding for water pumping systems in the developing countries were also discussed briefly. It was concluded that a near term domestic market of at least 240 megawatts and a foreign market of about 6 gigawatts exist.

  18. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars;

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure ......, and 140 bar up to 147 °C. If the compressor discharge temperature limit is increased to 250 °C and the vapour water content constraint is removed, this becomes: 182 °C, 193 °C and 223 °C....

  19. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  20. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M

    1987-01-01

    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients.

  1. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  2. Simple systems for treating pumped, turbid water with flocculants and a geotextile dewatering bag.

    Science.gov (United States)

    Kang, Jihoon; McLaughlin, Richard A

    2016-11-01

    Pumping sediment-laden water from excavations is often necessary on construction sites. This water is often treated by pumping it through geotextile dewatering bags. The bags are not designed to filter the fine sediments that create high turbidity, but dosing with a flocculant prior to the bag could result in greater turbidity control. This study compared two systems for introducing flocculant: passive dosing of commercial solid biopolymer (chitosan) and injection of dissolved polyacrylamide (PAM) in a length of corrugated pipe connected to the bag. The biopolymer system consisted of sequential porous socks containing a "charging agent" followed by chitosan in the corrugated pipe with two levels of dosing. The dissolved PAM was injected into turbid water at a flow-weighted concentration at 1 mg L(-1). For each treatment, sediment-laden turbid water in the range of 2000 to 3500 nephelometric turbidity units (NTU) was pumped into the upstream of corrugated pipe and samples were taken from pipe entrance, pipe exit, and dewatering bag exit. Without flocculant treatment, the dewatering bag reduced turbidity by 70% but the addition of flocculant increased the turbidity reduction up to 97% relative to influent. At the pipe exit, the low-dose biopolymer was less effective in reducing turbidity (37%) but it was equally effective as the high-dose biopolymer or PAM injection after the bag. Our results suggest that a relatively simple treatment with flocculants, either passively or actively, can be very effective in reducing turbidity for pumped water on construction sites.

  3. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. 431.107 Section 431.107 Energy DEPARTMENT OF ENERGY ENERGY... method for the measurement of energy efficiency of commercial heat pump water heaters....

  4. CFD Numerical Simulation of the Complex Turbulent Flow Field in an Axial-Flow Water Pump

    Directory of Open Access Journals (Sweden)

    Wan-You Li

    2014-09-01

    Full Text Available Further optimal design of an axial-flow water pump calls for a thorough recognition of the characteristics of the complex turbulent flow field in the pump, which is however extremely difficult to be measured using the up-to-date experimental techniques. In this study, a numerical simulation procedure based on computational fluid dynamics (CFD was elaborated in order to obtain the fully three-dimensional unsteady turbulent flow field in an axial-flow water pump. The shear stress transport (SST k-ω model was employed in the CFD calculation to study the unsteady internal flow of the axial-flow pump. Upon the numerical simulation results, the characteristics of the velocity field and pressure field inside the impeller region were discussed in detail. The established model procedure in this study may provide guidance to the numerical simulations of turbomachines during the design phase or the investigation of flow and pressure field characteristics and performance. The presented information can be of reference value in further optimal design of the axial-flow pump.

  5. Measure Guideline. Heat Pump Water Heaters in New and Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Owens, Douglas [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs

  6. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    Science.gov (United States)

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...

  7. Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

    2012-07-01

    Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

  8. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  9. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  10. Absorption heat pump for space applications

    Science.gov (United States)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  11. Test results for the Oasis 3C high performance water-pumping windmill

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, D.M. [DME Engineering, Midland, TX (United States)

    1997-12-31

    The WINDTech International, L.L.C. Oasis 3C, a 3 m diameter, high-performance water-pumping windmill, was tested at the DME Engineering Wind Test Site just south of Midland, Texas from August through December, 1996. This machine utilizes a 3:1 gearbox with rotating counterweights, similar to a conventional oilfield pumping unit, driven by a multibladed rotor. The rotating counterweight system balances most of the pumping loads and reduces gear loads and starting torque by a factor of at least two and often by a factor of four or more. The torque reduction substantially extends gear and bearing life, and reduces wind speeds required for starting by 30 to 50% or more. The O3C was tested pumping from a quiescent fluid depth of 12.2 m (40 ft) from a 28.3 m (93 ft)-deep well, with additional pumping depth simulated using a pressure regulator valve system. A 9.53 cm (3.75 in.) diameter Harbison-Fischer seal-less single-acting piston pump was used to eliminate pump seal friction as a variable, and standard O3C stroke lengths of 30.5 and 15.2 cm (12 and 6 inches) were used. The regulator spring was set to give a maximum stroke rate of 33 strokes per minute. The water pumped was returned to the well after flowing through a settling tank. The tests were performed in accordance with AWEA WECS testing standards. Instrumentation provided 16 channels of data to accurately measure machine performance, including starting wind speeds, flow rates, O3C azimuth, tail furl angle, wind direction tracking errors, RPM, sucker rod loads, and other variables. The most significant performance data is summarized herein. A mathematical model of machine performance was developed that fairly accurately predicts performance for each of three test conditions. The results verify that the O3C is capable of pumping water at wind speeds from 30% to more than 50% lower than comparable un-counterbalanced units.

  12. Deep water pipe, pump, and mooring study: Ocean Thermal Energy Conversion program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, T.E.; Marks, J.D.; Wellman, K.H.

    1976-06-01

    The ocean engineering issues affecting the design, construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) power plants are of key importance. This study addressed the problems associated with the conceptual design of the deep-water pipe, cold-water-pumping, and platform mooring arrangements. These subsystems fall into a natural grouping since the parameters affecting their design are closely related to each other and to the ocean environment. Analysis and evaluations are provided with a view toward judging the impact of the various subsystems on the overall plant concept and to provide an estimate of material and construction cost. Parametric data is provided that describes mooring line configurations, mooring line loads, cold water pipe configurations, and cold water pumping schemes. Selected parameters, issues, and evaluation criteria are used to judge the merits of candidate concepts over a range of OTEC plant size from 100 MWe to 1000 MWe net output power.

  13. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 2

    DEFF Research Database (Denmark)

    Olesen, Martin F.; Madsen, Claus; Olsen, Lars

    2014-01-01

    The Isolated System Energy Charging (ISEC) concept allows for a high efficiency of a heat pump system for hot water production. The ISEC concept consists of two water storage tanks, one charged and one discharged. The charged tank is used for the industrial process, while the discharged tank...... modelling of the heat pump and tank system is performed (in continuation of Part I). The modelling is extended to include the system performance with different natural refrigerants and the influence of different types of compressors....... is charging. The charging of the tank is done by recirculating water through the condenser and thereby gradually heating the water. The modelling of the system is described in Part I [1]. In this part, Part II, an experimental test setup of the tank system is reported, the results are presented and further...

  14. Effects of air vessel on water hammer in high-head pumping station

    Science.gov (United States)

    Wang, L.; Wang, F. J.; Zou, Z. C.; Li, X. N.; Zhang, J. C.

    2013-12-01

    Effects of air vessel on water hammer process in a pumping station with high-head were analyzed by using the characteristics method. The results show that the air vessel volume is the key parameter that determines the protective effect on water hammer pressure. The maximum pressure in the system declines with increasing air vessel volume. For a fixed volume of air vessel, the shape of air vessel and mounting style, such as horizontal or vertical mounting, have little effect on the water hammer. In order to obtain good protection effects, the position of air vessel should be close to the outlet of the pump. Generally, once the volume of air vessel is guaranteed, the water hammer of a entire pipeline is effectively controlled.

  15. Water temperature adjustment in spas by the aid of heat pumps

    Directory of Open Access Journals (Sweden)

    Riznić Dejan T.

    2012-01-01

    Full Text Available Mineral spas are considered an important national resource, used mainly for therapeutical and recreational purposes. However, raw mineral waters are often at temperatures different from the required ones and need to be cooled or heated to be adjusted to the level adequate for a specified purpose. For such an adjustment, energy is either released (when cooling down the mineral water or consumed (for heating up the mineral water. Heat pumps may be used to multiply the gain of energy when released, or reduce the energy needed for heating the water. The report deals with technical possibilities and economic benefits of the use of heat pumps in such case studies in two spas of Serbia, Mataruska spa near Kraljevo, and Bukovicka spa in Arandjelovac.

  16. Trailing edge devices to improve performance and increase lifetime of wind-electric water pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [USDA-Agricultural Research Service, Bushland, TX (United States)

    1996-12-31

    Trailing edge flaps were applied to the blades of a 10 kW wind turbine used for water pumping to try to improve the performance and decrease the structural fatigue on the wind turbine. Most small wind turbines (10 kW and below) use furling (rotor turns out of wind similar to a mechanical windmill) to protect the wind turbine from overspeed during high winds. Some small wind turbines, however, do not furl soon enough to keep the wind turbine from being off line part of the time in moderately high wind speeds (10 - 16 m/s). As a result, the load is disconnected and no water is pumped at moderately high wind speeds. When the turbine is offline, the frequency increases rapidly often causing excessive vibration of the wind turbine and tower components. The furling wind speed could possibly be decreased by increasing the offset between the tower centerline and the rotor centerline, but would be a major and potentially expensive retrofit. Trailing edge flaps (TEF) were used as a quick inexpensive method to try to reduce the furling wind speed and increase the on time by reducing the rotor RPM. One TEF configuration improved the water pumping performance at moderately high wind speeds, but degraded the pumping performance at low wind speeds which resulted in little change in daily water volume. The other TEF configuration differed very little from the no flap configuration. Both TEF configurations however, reduced the rotor RPM in high wind conditions. The TEF, did not reduce the rotor RPM by lowering the furling wind speed as hoped, but apparently did so by increasing the drag which also reduced the volume of water pumped at the lower wind speeds. 6 refs., 9 figs.

  17. Experimental and Numerical Studies of Controlling Thermal Cracks in Mass Concrete Foundation by Circulating Water

    Directory of Open Access Journals (Sweden)

    Wenchao Liu

    2016-04-01

    Full Text Available This paper summarizes an engineering experience of solving the problem of thermal cracking in mass concrete by using a large project, Zhongguancun No.1 (Beijing, China, as an example. A new method is presented for controlling temperature cracks in the mass concrete of a foundation. The method involves controlled cycles of water circulating between the surface of mass concrete foundation and the atmospheric environment. The temperature gradient between the surface and the core of the mass concrete is controlled at a relatively stable state. Water collected from the well-points used for dewatering and from rainfall is used as the source for circulating water. Mass concrete of a foundation slab is experimentally investigated through field temperature monitoring. Numerical analyses are performed by developing a finite element model of the foundation with and without water circulation. The calculation parameters are proposed based on the experiment, and finite element analysis software MIDAS/CIVIL is used to calculate the 3D temperature field of the mass concrete during the entire process of heat of hydration. The numerical results are in good agreement with the measured results. The proposed method provides an alternative practical basis for preventing thermal cracks in mass concrete.

  18. Analysis of a Residential Heating System Utilizing a Solar Assisted Water-to-Air Heat Pump.

    Science.gov (United States)

    1979-07-01

    heat pump heating system were analyzed. A realistic residence and solar assisted water-to-air heat pump system were modeled for this northern climate using the transient simulation computer code TRNSYS developed by the University of Wisconsin. The system was studied over a one month winter period, December, using actual hourly weather data. The system was analyzed for both the cloudiest and clearest December weather recorded in the last 30 years. The collector area and storage tank capacity were varied and the effects on system performance were

  19. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  20. Nano-porous-water Absorbents for Solid-absorbebt Heat Pump System

    Science.gov (United States)

    Mizota, Tadato; Nakayama, Noriaki

    Zeolite-water heat-pump system has been developed in these 25 years. Recently, an instant beer-cooling system has appeared by using the zeolite heat pump system as a commercial product. It takes so long time for the development since the first proposal. The most serious problem through the development has been of the ability of absorbents. Themaximum heat exchange capacity to date exceeds 1MJ•kg-1 for Mg89-A, which is comparable to the energy storage capacity of modern alkaline-ion batteries in weight-bases. But it needs high temperature heat sources more than 200°C for the activation. Absorbents useful at lower temperatures are thus desirable for effective use of various kinds of lower temperature heat sources Various nano-porous materials as well as zeolites now under investigation as candidates of heat-pump absorbents, such as silica-gels, allophane, imogolite, hydrotalcite, etc.

  1. Analysis of air-to-water heat pump in cold climate: comparison between experiment and simulation

    Directory of Open Access Journals (Sweden)

    Karolis Januševičius

    2015-10-01

    Full Text Available Heat pump systems are promising technologies for current and future buildings and this research presents the performance of air source heat pump (ASHP system. The system was monitored, analysed and simulated using TRNSYS software. The experimental data were used to calibrate the simulation model of ASHP. The specific climate conditions are evaluated in the model. It was noticed for the heating mode that the coefficient of performance (COP varied from 1.98 to 3.05 as the outdoor temperature changed from –7.0 ºC to +5.0 ºC, respectively. TRNSYS simulations were also performed to predict seasonal performance factor of the ASHP for Vilnius city. It was identified that seasonal performance prediction could be approximately 15% lower if frost formation effects are not included to air-water heat pump simulation model.

  2. Experimental and Numerical Studies of Controlling Thermal Cracks in Mass Concrete Foundation by Circulating Water

    OpenAIRE

    Wenchao Liu; Wanlin Cao; Huiqing Yan; Tianxiang Ye; Wang Jia

    2016-01-01

    This paper summarizes an engineering experience of solving the problem of thermal cracking in mass concrete by using a large project, Zhongguancun No.1 (Beijing, China), as an example. A new method is presented for controlling temperature cracks in the mass concrete of a foundation. The method involves controlled cycles of water circulating between the surface of mass concrete foundation and the atmospheric environment. The temperature gradient between the surface and the core of the mass con...

  3. Energy Efficiency Modelling of Residential Air Source Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Cong Toan Tran

    2016-03-01

    Full Text Available The heat pump water heater is one of the most energy efficient technologies for heating water for household use. The present work proposes a simplified model of coefficient of performance and examines its predictive capability. The model is based on polynomial functions where the variables are temperatures and the coefficients are derived from the Australian standard test data, using regression technics. The model enables to estimate the coefficient of performance of the same heat pump water heater under other test standards (i.e. US, Japanese, European and Korean standards. The resulting estimations over a heat-up phase and a full test cycle including a draw off pattern are in close agreement with the measured data. Thus the model allows manufacturers to avoid the need to carry out physical tests for some standards and to reduce product cost. The limitations of the methodology proposed are also discussed.

  4. Automatic estimation of aquifer parameters using long-term water supply pumping and injection records

    Science.gov (United States)

    Luo, Ning; Illman, Walter A.

    2016-09-01

    Analyses are presented of long-term hydrographs perturbed by variable pumping/injection events in a confined aquifer at a municipal water-supply well field in the Region of Waterloo, Ontario (Canada). Such records are typically not considered for aquifer test analysis. Here, the water-level variations are fingerprinted to pumping/injection rate changes using the Theis model implemented in the WELLS code coupled with PEST. Analyses of these records yield a set of transmissivity ( T) and storativity ( S) estimates between each monitoring and production borehole. These individual estimates are found to poorly predict water-level variations at nearby monitoring boreholes not used in the calibration effort. On the other hand, the geometric means of the individual T and S estimates are similar to those obtained from previous pumping tests conducted at the same site and adequately predict water-level variations in other boreholes. The analyses reveal that long-term municipal water-level records are amenable to analyses using a simple analytical solution to estimate aquifer parameters. However, uniform parameters estimated with analytical solutions should be considered as first rough estimates. More accurate hydraulic parameters should be obtained by calibrating a three-dimensional numerical model that rigorously captures the complexities of the site with these data.

  5. Emergy evaluation of a pumping irrigation water production system in China

    Science.gov (United States)

    Chen, Dan; Luo, Zhaohui; Webber, Michael; Chen, Jing; Wang, Weiguang

    2014-03-01

    The emergy concept was used to evaluate a pumping irrigation water production system in China. A framework for emergy evaluation of the significance of irrigation water and its production process was developed. The results show that the irrigation water saved has the highest emergy value (8.73E + 05 sej·J-1), followed by the irrigation water supplied to farmlands (1.72E + 05 sej·J-1), the pumped water (4.81E + 04 sej·J-1), with the lowest value shown from water taken from the local river (3.72E + 04 sej·J-1). The major contributions to the emergy needed for production are the inputs of soil and water. This production system could contribute to the irrigated agriculture and economy, according to several calculated emergy indices: emergy yield ratio ( EYR), emergy investment ratio ( EIR), environmental load ratio ( ELR), and environmental sustainability index ( ESI). The comparative analysis shows that the emergy theory and method, different from the conventional monetary-based analysis, could be used to evaluate irrigation water and its production process in terms of the biophysical account. Additional emergy evaluations should be completed on different types of water production and irrigated agricultural systems to provide adequate guidelines for the sustainability of irrigation development.

  6. Heat pump using dual heat sources of air and water. Performance in cooling mode; Mizu kuki ryonetsugen heat pump no kenkyu. Reibo unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S.; Miura, N. [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y. [Kubota Corp., Osaka (Japan)

    1997-11-25

    When a heat pump is used for cooling purpose, it is possible to utilize different kinds of waste water as high-heat sources. However, these heat sources would have their temperatures vary with seasons and time in a day. Therefore, a discussion was given on performance of a heat pump when water and air heat sources are used for condensers during cooling operation independently, in series and in parallel, respectively. The air condenser shows an equivalent COP as compared with the water condenser when air temperature is lower by about 8 degC than water temperature. At the same heat source temperature, the COP for the water condenser indicated a value higher by about 0.6 than the case of the air condenser. A method to use condensers in parallel experiences little contribution from the air heat source, and performance of the heat pump decreases below the case of using the water heat source independently when the air heat source temperature becomes higher than that of the water heat source. In the case of series use in which a water condenser is installed in front and an air condenser in rear, its effect is exhibited when temperature in the air heat source is lower than that in the water heat source. Better performance was shown than in operating the water heat source independently. 2 refs., 9 figs.

  7. Heat engines and heat pumps in a hydrostatic atmosphere: How surface pressure and temperature control wind power output and circulation cell size

    CERN Document Server

    Makarieva, A M; Nefiodov, A V; Sheil, D; Nobre, A D; Shearman, P L; Li, B -L

    2015-01-01

    The gross spatial features of the atmospheric kinetic energy budget are analytically investigated. Kinetic energy generation is evaluated in a hydrostatic atmosphere where the axisymmetric circulation cells are represented by Carnot cycles. The condition that kinetic energy generation is positive in the lower atmosphere is shown to limit the poleward cell extension via a relationship between the meridional differences in surface pressure and temperature $\\Delta p_s$ and $\\Delta T_s$: an upper limit to cell size exists when $\\Delta p_s$ increases sublinearly with $\\Delta T_s$. This is the case for the Hadley cells as demonstrated here using data from MERRA re-analysis. The limited cell size necessitates the appearance of heat pumps -- circulation cells with negative work output where the low-level air moves towards colder areas. These cells consume the positive work output of heat engines -- cells where the low-level air moves towards the warmer areas -- and can in principle drive the global efficiency of atmo...

  8. Analysis of data from water lift powered by solar energy pump

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Paulo Takashi [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil); Ricieri, Reinaldo Prandini [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Dept. de Engenharia Agricola], E-mail: ricieri@unioeste.br; Halmeman, Maria Cristina Rodrigues [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Gnoatto, Estor; Kavanagh; Brenneisen, Paulo Job [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: gnoatto@utfpr.edu.br, kavanagh@utfpr.edu.br, brenneisen@utfpr.edu.br

    2008-07-01

    Due to the high costs to install electricity in remote locations, away from the regular urban electrical installations, photovoltaic solar energy has ample application in public illumination, water pumping, health services offices, etc. With the purpose to contribute to a better use of this kind of energy, this project aimed in analyzing the outflow and efficiency of a motor pump powered by photovoltaic panels, the irradiation necessary to activate it for water lift, collecting data at every 6- meter height, ranging from 6,2 to 18,2 meters. This study is part of a development project of the Universidade Tecnologica Federal do Parana (UTFPR), by making use of photovoltaic panels, motor pump, pyranometers, thermocouple type K, pressure transducer and outflow transducer. The data show a maximum average outflow of 584,299 Lh{sup -1} and maximum efficiency of 23,338% for a lift of 18,2 m. There is also the need of irradiation for the activation of the motor pump proportional to the height of the lift, in a polynomial dependence of the third order. (author)

  9. Optimal Duration of Submersible Pump Equipped Deep Water Borehole Project in Ikwuano, Nigeria

    Directory of Open Access Journals (Sweden)

    Nwankwojike, B. Nduka

    2014-12-01

    Full Text Available Optimal duration for constructing a submersible pump equipped deep water borehole in Ikwuano and optimal durations of distinct jobs in this project were determined to aid effective planning and implementation of borehole projects in this area. The investigation was conducted and analyzed using network modeling procedure. Results revealed 13days as the optimal duration of the borehole project when construction of overhead water distribution tank stantion constitutes part of the contract and 12days when the overhead structure is not involved. The optimal duration in hours for the distinct jobs involved in this borehole construction include 25.92 for site preparation/mobilization of geophysical survey team, 36 for geophysical analysis/selection of the best water yielding point in the site, 72 for mobilizing labour and materials to the selected site, 168 for constructing overhead water distribution tank stantion, 3.12 for placement of overhead tank(s on its stantion/installation of its water conveying pipes/accessories, 4.56 for casing/gravel packing/flushing materials preparation, 19.44 for well drilling, 1.92 for casing, 1.92 for gravel packing, 1.2 for flushing, 25.92 for water collection/analysis, 1.2 for water treatment, 13.44 for pumping test, 25.92 for platforming, 77.04 for pump installation/integration of water conveying systems, 4.8 for test running and 0.96 for training end users/project commission. Thus, a guide for effective planning to ensure adequate and timely implementation of deep borehole water supply projects in Ikwuano is set.

  10. Comparisons of Hydraulic Performance in Permanent Maglev Pump for Water-Jet Propulsion

    Directory of Open Access Journals (Sweden)

    Puyu Cao

    2014-08-01

    Full Text Available The operation of water-jet propulsion can generate nonuniform inflow that may be detrimental to the performance of the water-jets. To reduce disadvantages of the nonuniform inflow, a rim-driven water-jet propulsion was designed depending on the technology of passive magnetic levitation. Insufficient understanding of large performance deviations between the normal water-jets (shaft and permanent maglev water-jets (shaftless is a major problem in this paper. CFD was directly adopted in the feasibility and superiority of permanent maglev water-jets. Comparison and discussion of the hydraulic performance were carried out. The shaftless duct firstly has a drop in hydraulic losses (K1, since it effectively avoids the formation and evolution of the instability secondary vortex by the normalized helicity analysis. Then, the shaftless intake duct improves the inflow field of the water-jet pump, with consequencing the drop in the backflow and blocking on the blade shroud. So that the shaftless water-jet pump delivers higher flow rate and head to the propulsion than the shaft. Eventually, not only can the shaftless model increase the thrust and efficiency, but it has the ability to extend the working range and broaden the high efficiency region as well.

  11. Coupling of methylmercury uptake with respiration and water pumping in freshwater tilapia Oreochromis niloticus.

    Science.gov (United States)

    Wang, Rui; Wong, Ming-Hung; Wang, Wen-Xiong

    2011-09-01

    The relationships among the uptake of toxic methylmercury (MeHg) and two important fish physiological processes-respiration and water pumping--in the Nile tilapia (Oreochromis niloticus) were explored in the present study. Coupled radiotracer and respirometric techniques were applied to measure simultaneously the uptake rates of MeHg, water, and oxygen under various environmental conditions (temperature, dissolved oxygen level, and water flow). A higher temperature enhanced MeHg influx and the oxygen consumption rate but had no effect on the water uptake, indicating the influence of metabolism on MeHg uptake. The fish showed a high tolerance to hypoxia, and the oxygen consumption rate was not affected until the dissolved oxygen concentration decreased to extremely low levels (below 1 mg/L). The MeHg and water uptake rates increased simultaneously as the dissolved oxygen level decreased, suggesting the coupling of water flux and MeHg uptake. The influence of fish swimming performance on MeHg uptake was also investigated for the first time. Rapidly swimming fish showed significantly higher uptake rates of MeHg, water, and oxygen, confirming the coupling relationships among respiration, water pumping, and metal uptake. Moreover, these results support that MeHg uptake is a rate-limiting process involving energy. Our study demonstrates the importance of physiological processes in understanding mercury bioaccumulation in fluctuating aquatic environments.

  12. Evaluating Performance of Water Hammer Control Equipment using Hytran Software in Hasanlu Dam Pumping Station

    Directory of Open Access Journals (Sweden)

    Parisa Nazari

    2016-09-01

    Full Text Available Unsteady flows start from a steady state and end the other steady state condition. In water lines unsteady flows occur mainly due to the closure of valves, sudden pumps stops or sudden pumps starts. To prevent these losses, the major ways which can be used are pressure valves, air tanks and surge tanks. All various methods of controlling water hammer pursue a common goal, and that is to balance pressure from water hammer to adjust the pressure in an acceptable range in the network. In this paper, unsteady hydraulic flow control methods include protective measures such as the use of check valve and installation of air valves, air chambers and surge tanks are investigated and compared. And so that the1400 mm existing pipe line of Hasanlu dam pump station, can be simulated using Hytran software, and then minimum and maximum pressure due to the different choking in the throat connecting the main route was evaluated. The results presented that the use of check valve with built-in soft starter in the present case study reduces the positive and negative pressure caused by the water hammer phenomenon as possible value.

  13. Water hammer in the pump-rising pipeline system with an air chamber

    Institute of Scientific and Technical Information of China (English)

    KIM Sang-Gyun; LEE Kye-Bock; KIM Kyung-Yup

    2014-01-01

    Water hammer following the tripping of pumps can lead to overpressure and negative pressure. Reduction in overpressure and negative pressure may be necessary to avoid failure, to improve the efficiency of operation and to avoid fatigue of system components. The field tests on the water hammer have been conducted on the pump rising pipeline system with an air chamber. The hydraulic transient was simulated using the method of characteristics. Minimizing the least squares problem representing the difference between the measured and predicted transient response in the system performs the calibration of the simulation program. Among the input variables used in the water hammer analysis, the polytropic exponent, the discharge coefficient and the wave speed were calibrated. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system. The correct selection of air chamber size and the effect of the inner diameter of the orifice to minimize water hammer have been investigated by both field measurements and numerical modeling.

  14. Flux Vector Splitting Schemes for Water Hammer Flows in Pumping Supply Systems with Air Vessels

    Institute of Scientific and Technical Information of China (English)

    Qiang Sun; Yuebin Wu; Ying Xu; Tae Uk Jang

    2015-01-01

    To solve water hammer problems in pipeline systems, many numerical simulation approaches have been developed. This paper improves a flux vector splitting ( FVS) scheme whose grid is the same as the fixed⁃grid MOC scheme. The proposed FVS scheme is used to analyze water hammer problems caused by a pump abrupt shutdown in a pumping system with an air vessel. This paper also proposes a pump⁃valve⁃vessel model combining a pump⁃valve model with an air vessel model. The results show that the data obtained by the FVS scheme are similar to the ones obtained by the fixed⁃grid method of characteristics ( MOC ) . And the results using the pump⁃valve⁃vessel model are almost the same as the ones using both the pump⁃valve model and the air vessel model. Therefore, it is effective that the proposed FVS scheme is used to solve water hammer problems and the pump⁃valve⁃vessel model replaces both the pump⁃valve model and the air vessel model to simulate water hammer flows in the pumping system with the air vessel.

  15. Importance of body-water circulation for body-heat dissipation in hot-humid climates: a distinctive body-water circulation in swamp buffaloes

    Directory of Open Access Journals (Sweden)

    S. Chanpongsang

    2010-02-01

    Full Text Available Thermo-regulation in swamp buffaloes has been investigated as an adaptive system to hot-humid climates, and several distinctive physiological responses were noted. When rectal temperature increased in hot conditions, blood volume, blood flow to the skin surface and skin temperature markedly increased in buffaloes relatively to cattle. On the other hand, the correlation between blood volume and plasma concentration of arginine vasopressin (AVP was compared between buffaloes and cattle under dehydration. Although plasma AVP in cattle increased immediately for reducing urine volume against a decrease in blood volume as well as the response observed in most animal species, the increase in plasma AVP was delayed in buffaloes, even after a large decrease in blood volume. In buffaloes, a marked increase in blood volume facilitated the dissipation of excess heat from the skin surface during wallowing. In addition, the change in plasma AVP observed in buffaloes was consistent with that of other animals living in habitats with the high availability of water. These results suggest that the thermo-regulatory system in buffaloes accelerates body-water circulation internally and externally. This system may be adaptive for heat dissipation in hot-humid climates, where an abundance of water is common.

  16. Shallow circulation groundwater – the main type of water containing hazardous radon concentration

    Directory of Open Access Journals (Sweden)

    T. A. Przylibski

    2011-06-01

    Full Text Available The main factors affecting the value of 222Rn activity concentration in groundwater are the emanation coefficient of reservoir rocks (Kem, the content of parent 226Ra in these rocks (q, changes in the volume and flow velocity as well as the mixing of various groundwater components in the circulation system. The highest values of 222Rn activity concentration are recorded in groundwaters flowing towards an intake through strongly cracked reservoir rocks undergoing weathering processes. Because of these facts, waters with hazardous radon concentration levels, i.e. containing more than 100 Bq dm−3 222Rn, could be characterised in the way that follows. They are classified as radon waters, high-radon waters and extreme-radon waters. They belong to shallow circulation systems (at less than a few dozen metres below ground level and are contemporary infiltration waters, i.e. their underground flow time ranges from several fortnights to a few decades. Because of this, these are usually poorly mineralised waters (often below 0.2–0.5 g dm−3. Their resources are renewable, but also vulnerable to contamination.

    Waters of this type are usually drawn from private intakes, supplying water to one or at most a few households. Due to an increased risk of developing lung tumours, radon should be removed from such waters when still in the intake. To achieve this aim, appropriate legislation should be introduced in many countries.

  17. Investigations of hydraulic operating conditions of air lift pump with three types of air-water mixers

    Directory of Open Access Journals (Sweden)

    Kalenik Marek

    2015-03-01

    Full Text Available Investigations of hydraulic operating conditions of air lift pump with three types of air-water mixers. The paper presents the analysis of results of the investigations concerning the influence of various constructive solutions of the air-water mixers on hydraulic operating conditions of the air lift pump. The scope of the investigations encompassed the determination of characteristics of delivery head and delivery rate for three types of air-water mixers applied in the constructed air lift pump. Using the obtained results, the efficiency of the three types of air-water mixers applied in this air lift pump was determined. The analysis was carried out and there was checked whether the improved analytical Stenning-Martin model can be used to design air lift pumps with the air-water mixers of these types. The highest capacity in the water transport was reached by the air lift pump with the 1st type air-water mixer, the lowest one – with the 3rd type air-water mixer. The water flow in the air lift pump increases along with the rise in the air flow. The lower are the hydraulic losses generated during flow of the air flux by the air-water mixer, the higher is the air lift pump capacity. Along with the rise in the water delivery head, the capacity of the air lift pump decreases. The highest efficiency is reached by the air lift pump with the 1st type air-water mixer, the lowest – with the 3st type air-water mixer. The efficiency of the air lift pump for the three investigated types of air-water mixers decreases along with the rise in air flow rate and water delivery head. The values of submergence ratio (h/L of the delivery pipe, calculated with the use of the improved analytical Stenning-Martin model, coincide quite well with the values of h/L determined from the measurements.

  18. Deep-water Circulation: Processes & Products (16-18 June 2010, Baiona): introduction and future challenges

    Science.gov (United States)

    Hernández-Molina, Francisco Javier; Stow, Dorrik A. V.; Llave, Estefanía; Rebesco, Michele; Ercilla, Gemma; van Rooij, David; Mena, Anxo; Vázquez, Juan-Tomás; Voelker, Antje H. L.

    2011-12-01

    Deep-water circulation is a critical part of the global conveyor belt that regulates Earth's climate. The bottom (contour)-current component of this circulation is of key significance in shaping the deep seafloor through erosion, transport, and deposition. As a result, there exists a high variety of large-scale erosional and depositional features (drifts) that together form more complex contourite depositional systems on continental slopes and rises as well as in ocean basins, generated by different water masses flowing at different depths and at different speeds either in the same or in opposite directions. Yet, the nature of these deep-water processes and the deposited contourites is still poorly understood in detail. Their ultimate decoding will undoubtedly yield information of fundamental importance to the earth and ocean sciences. The international congress Deep-water Circulation: Processes & Products was held from 16-18 June 2010 in Baiona, Spain, hosted by the University of Vigo. Volume 31(5/6) of Geo-Marine Letters is a special double issue containing 17 selected contributions from the congress, guest edited by F.J. Hernández-Molina, D.A.V. Stow, E. Llave, M. Rebesco, G. Ercilla, D. Van Rooij, A. Mena, J.-T. Vázquez and A.H.L. Voelker. The papers and discussions at the congress and the articles in this special issue provide a truly multidisciplinary perspective of interest to both academic and industrial participants, contributing to the advancement of knowledge on deep-water bottom circulation and related processes, as well as contourite sedimentation. The multidisciplinary contributions (including geomorphology, tectonics, stratigraphy, sedimentology, paleoceanography, physical oceanography, and deep-water ecology) have demonstrated that advances in paleoceanographic reconstructions and our understanding of the ocean's role in the global climate system depend largely on the feedbacks among disciplines. New insights into the link between the biota of

  19. A Review of Water Isotopes in Atmospheric General Circulation Models: Recent Advances and Future Prospects

    Directory of Open Access Journals (Sweden)

    Xi Xi

    2014-01-01

    Full Text Available Stable water isotopologues, mainly 1H2O, 1H2HO (HDO, and H12O18, are useful tracers for processes in the global hydrological cycle. The incorporation of water isotopes into Atmospheric General Circulation Models (AGCMs since 1984 has helped scientists gain substantial new insights into our present and past climate. In recent years, there have been several significant advances in water isotopes modeling in AGCMs. This paper reviews and synthesizes key advances accomplished in modeling (1 surface evaporation, (2 condensation, (3 supersaturation, (4 postcondensation processes, (5 vertical distribution of water isotopes, and (6 spatial δ18O-temperature slope and utilizing (1 spectral nudging technique, (2 higher model resolutions, and (3 coupled atmosphere-ocean models. It also reviews model validation through comparisons of model outputs and ground-based and spaceborne measurements. In the end, it identifies knowledge gaps and discusses future prospects of modeling and model validation.

  20. Investigation of ammonia/water hybrid absorption/compression heat pumps for heat supply temperatures above 100 °C

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Reinholdt, Lars; Markussen, Wiebke Brix

    2014-01-01

    The hybrid absorption/compression heat pump (HACHP) using ammonia-water as working fluid is a promising technology for development of a high temperature industrial heat pump. This is due to two properties inherent to the use of zeotropic mixtures: non-isothermal phase change and reduced vapour...

  1. Operational performance of the photovoltaic-powered grain mill and water pump at Tangaye, Upper Volta

    Science.gov (United States)

    Martz, J. E.; Ratajczak, A. F.; Delombard, R.

    1982-01-01

    The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well, and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included.

  2. Development of a Bench-Top Air-to-Water Heat Pump Experimental Apparatus

    Directory of Open Access Journals (Sweden)

    H. I. Abu-Mulaweh

    2009-09-01

    Full Text Available A bench-top air-to-water heat pump experimental apparatus was designed,developed, and constructed for instructional and demonstrative purposes. Thisair-to-water heat pump experimental apparatus is capable of demonstratingthermodynamics and heat transfer concepts and principles. This heat pumpexperimental setup was designed around the vapor compression refrigerationcycle. This experimental apparatus has an intuitive user interface, reliable, safefor student use, and portable. The interface is capable of allowing dataacquisition by a computer. A PC-based control system which consists ofLabVIEW and data acquisition unit is employed to monitor and control thisexperimental laboratory apparatus. This paper provides details about thedevelopment of this unit and the integration of the electrical/electronic componentand the control system.

  3. LMFBR with booster pump in pumping loop

    Science.gov (United States)

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  4. Correcting Working Postures in Water Pump AssemblyTasks using the OVAKO Work Analysis System (OWAS)

    OpenAIRE

    Atiya Kadhim Al-Zuheri; Hussein S. Ketan

    2008-01-01

    Ovako Working Postures Analyzing System (OWAS) is a widely used method for studying awkward working postures in workplaces. This study with OWAS, analyzed working postures for manual material handling of laminations at stacking workstation for water pump assembly line in Electrical Industrial Company (EICO) / Baghdad. A computer program, WinOWAS, was used for the study. In real life workstation was found that more than 26% of the working postures observed were classified as either AC2 (slight...

  5. Two proposals for pumping calculations of non–newtonian fluids, water treatment plants disposal sludges case

    OpenAIRE

    H. Gardea–Villegas

    2008-01-01

    This paper presents two ways to calculate the pumping power of non Newtonian fluids and especially yield pseudoplastics which are the kind of disposal fluids from Water Treatment Plants. Fluids called sludges. The proposals included here, are based in methods suggested by Levenspiel (1986) applicable to determine the performance of Bingham plastics and pseudoplastic fluids using a graphical approximation of the rheological behavior of these materials. This approach has the advantage that is a...

  6. Study of hybrid power system potential to power agricultural water pump in mountain area

    Science.gov (United States)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-03-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.

  7. A product development process for a photovoltaic water pump system in a small to medium enterprise

    OpenAIRE

    2009-01-01

    D.Ing. The effective management of technology and new product development in a high technology small to medium enterprise associated with a large corporation with specific reference to the development of solar photovoltaic water pumps is investigated in this study. Innovative product and the development thereof have already become this century's battleground. The availability of information to all and the ease of communication have contributed to changing the battleground. Small organizati...

  8. Efficient air-water heat pumps for high temperature lift residential heating, including oil migration aspects

    OpenAIRE

    Zehnder, Michele; Favrat, Daniel

    2005-01-01

    This thesis presents a system approach with the aim to develop improved concepts for small capacity, high temperature lift air-water heat pumps. These are intended to replace fuel fired heating systems in the residential sector, which leads to a major reduction of the local greenhouse gas emissions. Unfavorable temperature conditions set by the existing heat distribution systems and by the use of atmospheric air, as the only accessible heat source, have to be overcome. The proposed concepts a...

  9. Thermodynamic analysis of the gasification of coal water slurry fuels for a circulating fluidized bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, H.; Yavuzkurt, S.; Scaroni, A. [National Taiwan University, Taipei (Taiwan)

    2002-07-01

    To validate the concept of coal gasification in the integrated coal gasification combined cycle (IGCC), a novel laboratory gasifier consisting of a circulating fluidized bed and a cyclone combustor has been constructed. This paper reports a thermodynamic analysis conducted to predict the maximum capacity and the condition for best operation of this circulating fluidized bed gasifier, which has an inside diameter of 0.3048 m and a height of 2.5 m. The equilibrium feed rates of materials and the quality of the product gas are described as a function of the reactor temperature, the thermal capacity of the gasifier, and the water concentration in coal water slurry fuel. The results of parametric analysis show that the thermal efficiency decreases, but the efficiency of desulfurization increases as the reactor temperature increases. The thermal capacity of the gasifier has no influence on the quality of the product gas. The thermal efficiency and the efficiency of desulfurization decrease as the water concentration in the coal water slurry increases. The desulfurization in the gasifier at equilibrium conditions is very efficient and meets the EPA regulations of the USA.

  10. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH

  11. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    Science.gov (United States)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  12. Development of Absorption Heat Pump Driven by Low Temperature Hot Water

    Science.gov (United States)

    Hoshida, Toshihiro; Nakamura, Naoto; Asai, Hiroshi; Hasatani, Masanobu; Watanabe, Fujio; Fujisawa, Ryou

    We developed an Adsorption Heat Pump (AHP) system, which applies silica-gel as adsorbent and H2O as refrigerant, and is possibly intended to use low temperature hot water (333K) as a driving force. The growing importance to save energy, leads us to develop energy saving systems such as Co-generation systems, including fuel cell system. It is important to use low temperature hot water in order to achieve high efficiency in total. It is, however, noticed that the lower water temperature is, the more difficult its' heat recovery becomes. We reported experimental results of the AHP system, and estimated the possibility to apply low temperature hot water from fuel cell system to the AHP system. We showed quantitatively that the AHP system is able to be driven by low temperature hot water(333K).

  13. Experimental Investigation of a Natural Circulation Solar Domestic Water Heater Performance under Standard Consumption Rate

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Taherian, H.; Ganji, D. D.

    2012-01-01

    consumption influence on the solar water heater efficiency, and on the input temperature of the collector are studied and the delivered daily useful energy has been obtained. The results show that by withdrawing from storage tank, the system as well as its collector efficiency will increase. Considering......This paper reports experimental studies on the performance of a natural circulation solar water heater considering the weather condition of a city in north of Iran. The tests are done on clear and partly cloudy days. The variations of storage tank temperature due to consumption from the tank, daily...... the value of the coefficient FRUL and τα, which are obtained experimentally as 6.03 and 0.83 respectively, average. monthly total load that is covered by this solar water heating system is estimated....

  14. A comparison of diesel, biodiesel and solar PV-based water pumping systems in the context of rural Nepal

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Pokharel, Govind Raj; Østergaard, Poul Alberg

    2014-01-01

    Nepal is heavily dependent on the traditional energy sources and imported fossil fuel, which has an adverse impact on the environment and economy. Renewable energy technologies promoted in the country are regarded as a means of satisfying rural energy needs of the country for operating different...... rural end-uses. In this context, this article is prepared to investigate energy alternatives to pump drinking water in one of the remote rural village of Nepal, which has no means of running water source. Analyses in this article are based on the formulation of three technical scenarios of water pumping...... using petro-diesel, jatropha-based biodiesel and solar photovoltaic pumps. The technical system design consists of system sizing of prime mover (engine, solar panel and pumps) and estimation of reservoir capacity, which are based on the annual aggregate water demand modelling. With these investigations...

  15. Influence of preoperative coronary collateral circulation on in-hospital mortality in patients undergoing coronary artery bypass graft surgery with intra-aortic balloon pump support

    Institute of Scientific and Technical Information of China (English)

    Hasan Gungor; Cemil Zencir; Abraham Samuel Babu; Cagdas Akgullu; Ufuk Eryilmaz; Ali Zorlu; Mithat Selvi

    2014-01-01

    Background Outcomes in patients requiring coronary artery bypass graft (CABG) surgery have been improved with devices such as the intra-aortic balloon pump (IABP).Good coronary collateral circulation (CCC) has been shown to reduce mortality in patients with coronary artery disease (CAD).We aimed to investigate whether poor preoperative CCC grade is a predictor of in-hospital mortality in CABG surgery requiring IABP support.Methods Fifty-five consecutive patients who were undergoing isolated first time on-pump CABG surgery with IABP support were enrolled into this study and CCC of those patients was evaluated.Results Twenty-seven patients had poor CCC and 28 patients had good CCC.In-hospital mortality rate in poor CCC group was significantly higher than good CCC group (14 (50%) vs.4 (13%),P=0.013).Preoperative hemoglobin level (OR:0.752; 95% CI,0.571-0.991,P=0.043),chronic obstructive pulmonary disease (OR:6.731; 95% CI,1.159-39.085,P=0.034) and poor CCC grade (OR:5.750; 95% CI,1.575-20.986,P=0.008) were associated with post-CABG in-hospital mortality.Poor CCC grade (OR:4.853; 95% CI,1.124-20.952,P=0.034) and preoperative hemoglobin level (OR:0.624; 95% CI,0.476-0.954,P=0.026) were independent predictors of in-hospital mortality after CABG.Conclusion Preoperative poor CCC and hemoglobin are predictors of in-hospital mortality after CABG with IABP support.

  16. Nearshore circulation

    NARCIS (Netherlands)

    Battjes, J.A.; Sobey, R.J.; Stive, M.J.F.

    1990-01-01

    Shelf circulation is driven primarily by wind- and tide-induced forces. It is laterally only weakly constrained so that the geostrophic (Coriolis) acceleration is manifest in the response. Nearshore circulation on the other hand is dominated by wave-induced forces associated with shallow-water. wave

  17. Water circulation and recharge pathways of coastal lakes along the southern Baltic Sea in northern Poland

    Directory of Open Access Journals (Sweden)

    Cieśliński Roman

    2016-12-01

    Full Text Available The purpose of this paper is to describe water circulation patterns for selected lakes found along the Baltic coast in northern Poland and to determine primary recharge mechanisms or pathways that produce an influx or loss of lake water. A secondary purpose of the paper is to determine the magnitude of recharge for each studied source of water – river water influx, surface runoff from direct catchments, forced influx from polders surrounding lakes, and periodic marine water intrusions from the nearby Baltic Sea. It is also important to determine the magnitude of water outflow from lakes to the sea via existing linkages as well as to compare horizontal influx and outflow data. The study area consisted of five lakes located along the Baltic Sea in northern Poland: Łebsko, Gardno, Bukowo, Kopań, Resko Przymorskie. The main driving force of the studied lakes are large rivers that drain lake catchment areas and periodic brackish water intrusions by the Baltic Sea.

  18. Experimental Study of Thermoelectric Heat Pump Water Heater with Exhaust Heat Recovery from Kitchens

    Institute of Scientific and Technical Information of China (English)

    LIU Zhong-bing; ZHANG Ling; YANG Zhang; XU Ming; HAN Tian-he

    2009-01-01

    A new kind of thermoelectric heat pump water heater for kitchens exhaust heat recovery was pre-sented,and its performances were investigated under different operating voltages.The experiment results show that the coefficient of performance decreases and the temperature difference between the hot and cold sides be-comes larger with the increase of the operating voltage,but the heating time becomes short.The higher the temperature of water,the greater the temperature difference between the hot and cold sides,leading to a smaller eoeffieient of performance.Under an exhaust temperature of 36℃,the coefficient of performance decreases from 1.66 tO 1.22 when the temperature of water increases from 28℃to 46℃with operating voltage 16 V.Performance tests illustrate that,compared with the conventional electrical water heaters,the new kind of ther-moelectric heat pump water heater is more coefficient.

  19. The water cycle in the general circulation model of the martian atmosphere

    Science.gov (United States)

    Shaposhnikov, D. S.; Rodin, A. V.; Medvedev, A. S.

    2016-03-01

    Within the numerical general-circulation model of the Martian atmosphere MAOAM (Martian Atmosphere: Observation and Modeling), we have developed the water cycle block, which is an essential component of modern general circulation models of the Martian atmosphere. The MAOAM model has a spectral dynamic core and successfully predicts the temperature regime on Mars through the use of physical parameterizations typical of both terrestrial and Martian models. We have achieved stable computation for three Martian years, while maintaining a conservative advection scheme taking into account the water-ice phase transitions, water exchange between the atmosphere and surface, and corrections for the vertical velocities of ice particles due to sedimentation. The studies show a strong dependence of the amount of water that is actively involved in the water cycle on the initial data, model temperatures, and the mechanism of water exchange between the atmosphere and the surface. The general pattern and seasonal asymmetry of the water cycle depends on the size of ice particles, the albedo, and the thermal inertia of the planet's surface. One of the modeling tasks, which results from a comparison of the model data with those of the TES experiment on board Mars Global Surveyor, is the increase in the total mass of water vapor in the model in the aphelion season and decrease in the mass of water ice clouds at the poles. The surface evaporation scheme, which takes into account the turbulent rise of water vapor, on the one hand, leads to the most complete evaporation of ice from the surface in the summer season in the northern hemisphere and, on the other hand, supersaturates the atmosphere with ice due to the vigorous evaporation, which leads to worse consistency between the amount of the precipitated atmospheric ice and the experimental data. The full evaporation of ice from the surface increases the model sensitivity to the size of the polar cap; therefore, the increase in the

  20. Hot water preparation with heat pumps; Warmwasserbereitung mit Waermepumpe. Messungen an einer Anlage in Rorschacherberg

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, H.; Gabathuler, H. R. [Gabathuler AG, Beratende Ingenieure, Diessenhofen (Switzerland); Baumgartner, Th. [Th. Baumgartner and Partner AG, Duebendorf (Switzerland)

    2007-07-15

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of measurements made on an installation in Rorschacherberg, Switzerland. The paper examines the results obtained as a result of implementing recommendations for designing domestic hot water heating systems using heat pumps. These were published in the STASCH project on standard circuit diagrams for small-scale heat pump plants. The effectiveness of these recommendations was investigated in this project. Furthermore, optimum hydraulic circuits and control procedures were developed based on measurements made on the experimental plant in Rorschacherberg. The installation examined is described and commented on. Six configuration variants conforming to the STASCH concept are examined and operational aspects are commented on. Finally, recommendations on temperatures and operational modi are made.

  1. Numerical and experimental study on heat pump water heater with PCM for thermal storage

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jian-You; Zhu, Dong-Sheng [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, Academy of Chemistry and Energy, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2008-07-01

    An air source heat pump water heater with phase change material (PCM) for thermal storage was designed to take advantage of off-peak electrical energy. The heat transfer model of PCM was based upon a pure conduction formulation. Quasi-steady state method was used to calculate the temperature distribution and phase front location of PCM during thermal storage process. Temperature and thermal resistance iteration approach has been developed for the analysis of temperature variation of heat transfer fluid (HTF) and phase front location of PCM during thermal release process. To test the physical validity of the calculational results, experimental studies about storing heat and releasing heat of PCM were carried. Comparison between the calculational results and the experimental data shows good agreement. Graphical results including system pressure and input power of heat pump, time-wise variation of stored and released thermal energy of PCM were presented and discussed. (author)

  2. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    Science.gov (United States)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  3. Theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single-phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the steam generator, the natural circulation characteristics were studied. On the basis of the preliminary calculation analysis, it was found that natural circulation mass flow rate was proportional to the exponential function of the power and that the value of the exponent is related to the operating conditions of the secondary side of the steam generator. The higher the outlet pressure of the secondary side of the steam generator, the higher the primary natural circulation mass flow rate. The larger height difference between the core center and the steam generator center is favorable for the heat removal capacity of the natural circulation.

  4. COSTEAU - preheating and cooling by means of underground collectors with water circulation - case study (Perret building at Satigny, Geneva) and generalisation; COSTEAU. Prechauffage et rafraichissement par collecteurs souterrains a eau. Etude de cas (batiment Perret a Satigny, Geneve) et generalisation

    Energy Technology Data Exchange (ETDEWEB)

    Hollmuller, P.; Lachal, B.

    2003-07-01

    Since a couple of years, underground collectors with air circulation have been becoming increasingly popular as a simple means for preheating (at winter time) and cooling (at summer time) of outdoor air ahead of a ventilation system for well insulated buildings. This report considers underground collectors with water circulation used for similar purposes. They are connected to the ventilation system via an air/water heat exchanger. Starting from a case study - one-year detailed in-situ measurements and data analysis from an air-heated office building near Geneva, Switzerland - computerised simulations have been performed as a sensitivity analysis tool as well as to establish recommendations and sizing rules for planners, including cost considerations. In the case study it turned out that the water-circulated underground collector, which is installed right under the basement of this well insulated building, is in thermal contact with the basement. Its main function is to damp the daily temperature oscillation of the inlet ventilation air, bringing the expected thermal comfort improvement in the summer time. However, this underground collector is unable to collect seasonally stored heat from the ground. Hence, in the winter time the main preheating contribution arises from the series-connected heat-recovery unit from the exit air. Numerical simulations show that optimal sizing of underground collectors is essential, and that both the underground collector and the well insulated building as a physical system with thermal inertia have to be simultaneously considered in the optimization process. Optimization also has to include parasitic energy (electricity) needed by fans and pumps. As outdoor air inlet can never be flooded in the case of underground collectors with water circulation the sanitary risk encountered with air-circulated underground collectors does not exist for them. Initial investment cost for water-circulated underground collectors is higher than for a

  5. Investigation of the Performance of a Heat Pump Using Waste Water as a Heat Source

    Directory of Open Access Journals (Sweden)

    Ali Kahraman

    2009-08-01

    Full Text Available In this research, a water-water heat pump system using waste water as a heat source, a type that is not often used in Turkey and the World, was experimentally modeled. The experiments were performed under the conditions of simulated waste water temperature values of 20 °C, 30 °C and 40 °C. Inlet and outlet water temperatures of the evaporator and condenser, water flow rates in the evaporator and condenser circuits, pressures at the compressor inlet and outlet and power consumption of the system were measured. The heating coefficients of performance were calculated based on the measurements. It was found that the maximum temperature in the energy storage tank was about 50.6 °C. For the heat source temperatures of 20 °C, 30 °C and 40 °C, the heating coefficients of the performance of the system became 3.36, 3.43 and 3.69, respectively, 6 min. after the start time of the experiments and then they were decreased to 1.87, 1.83 and 1.77 with increasing water temperature in the condenser tank. The mean uncertainty value of the measurement parameters was found to be about ±2.47%. Finally, for the purpose of meeting hot water need as well as floor heating system requirements, it is seen that energy quality level of a waste low grade temperature heat source can be increased by using a heat pump system.

  6. WATER ENERGY IN HYDROAMELIORATIVE SYSTEMS USING THE HYDRAULIC TRANSFORMER TYPE A. BARGLAZAN AND THE HYDRAULIC HAMMER (HYDRAULIC PUMP

    Directory of Open Access Journals (Sweden)

    Teodor Eugen Man

    2010-01-01

    Full Text Available This paper presents two examples of exploitation of water energy that can be used in the irrigation field. First of theseexamples is the hydraulic transformer type A. Barglazan used for irrigation, pumped water is taken directly from theriver’s well, using a hydraulic pump which simultaneously carried out a double transformation in this way: hydraulicenergy into mechanic energy and mechanical energy into hydraulic energy. Technology preparation and devices designwas done in record time, seeing that this constructive solution is more robust, reliable and with improved energyperformance versus the laboratory prototype. The experimental research which was made at 1:1 scale proved theirgood function over time. Another example is the hydraulic hammer (hydraulic pump that uses low-head energy topump water, with a global efficiency of about 10 - 50%. Currently, the new situation of private ownership of landprovides conditions for new pumping microstations to be made where irrigation is necessary and optimal hydrauliclocations exist.

  7. Optimization and thermoeconomics research of a large reclaimed water source heat pump system.

    Science.gov (United States)

    Zhang, Zi-ping; Du, Fang-hui

    2013-01-01

    This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS.

  8. Numerical simulation and artificial neural network modeling of natural circulation boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Sastry, P.S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Pandey, M. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India)]. E-mail: manmohan@iitg.ac.in; Dixit, U.S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Gupta, S.K. [Atomic Energy Regulatory Board, Mumbai 400085 (India)

    2007-02-15

    Numerical simulation of natural circulation boiling water reactor is important in order to study its performance for different designs and under various off-design conditions. Numerical simulations can be performed by using thermal-hydraulic codes. Very fast numerical simulations, useful for extensive parametric studies and for solving design optimization problems, can be achieved by using an artificial neural network (ANN) model of the system. In the present work, numerical simulations of natural circulation boiling water reactor have been performed with RELAP5 code for different values of design parameters and operational conditions. Parametric trends observed have been discussed. The data obtained from these simulations have been used to train artificial neural networks, which in turn have been used for further parametric studies and design optimization. The ANN models showed error within {+-}5% for all the simulated data. Two most popular methods, multilayer perceptron (MLP) and radial basis function (RBF) networks, have been used for the training of ANN model. Sequential quadratic programming (SQP) has been used for optimization.

  9. 沿海电厂露天布置循环水泵出口液控蝶阀的可靠性优化%Circulating Pump Hydraulic Pressure Valve in Power Station Along the Coast Improve Reliability

    Institute of Scientific and Technical Information of China (English)

    王鹏

    2014-01-01

    Circulating water pump outlet Hydraulic Control Butterfly valve is related to the unit itself and even the safe operation of the entire. However compared with the traditional interior layout of the hydraulic control valve the open layout is facing worse operating environment, which brings many hidden dangers into the system's security. Aiming at my plant's problems, this article proposed some suggestions on the selection ,installation and maintenance, from the angle of thermal control.%循环水泵出口液控蝶阀关系到循环水泵自身乃至整台机组的安全运行。但露天布置的液控蝶阀跟传统室内布置的液控蝶阀比,其运行环境比较恶劣,对系统的安全投运带来许多隐患。针对浙江大唐乌沙山发电厂出现的问题,本文从热控角度提出选型、安装、维护等方面的几点建议。

  10. Water Pumping Stations, Included in water system layer above, Published in Not Provided, 1:600 (1in=50ft) scale, Town of Franklin.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Pumping Stations dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Field Survey/GPS information as of Not Provided. It is...

  11. Water Pumping Stations, washoe county water resources utility data, Published in 2007, 1:1200 (1in=100ft) scale, Washoe County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Pumping Stations dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of 2007. It is described...

  12. Pump schedules optimisation with pressure aspects in complex large-scale water distribution systems

    Directory of Open Access Journals (Sweden)

    P. Skworcow

    2014-02-01

    Full Text Available This paper considers optimisation of pump and valve schedules in complex large-scale water distribution networks (WDN, taking into account pressure aspects such as minimum service pressure and pressure-dependent leakage. An optimisation model is automatically generated in GAMS language from a hydraulic model in EPANET format and from additional files describing operational constraints, electricity tariffs and pump station configurations. The paper describes in details how each hydraulic component is modelled. To reduce the size of the optimisation problem the full hydraulic model is simplified using module reduction algorithm, while retaining the nonlinear characteristics of the model. Subsequently, a nonlinear programming solver CONOPT is used to solve the optimisation model, which is in the form of Nonlinear Programming with Discontinuous Derivatives (DNLP. The results produced by CONOPT are processed further by heuristic algorithms to generate integer solution. The proposed approached was tested on a large-scale WDN model provided in EPANET format. The considered WDN included complex structures and interactions between pump stations. Solving of several scenarios considering different horizons, time steps, operational constraints, demand levels and topological changes demonstrated ability of the approach to automatically generate and solve optimisation problems for variety of requirements.

  13. Pump schedules optimisation with pressure aspects in complex large-scale water distribution systems

    Directory of Open Access Journals (Sweden)

    P. Skworcow

    2014-06-01

    Full Text Available This paper considers optimisation of pump and valve schedules in complex large-scale water distribution networks (WDN, taking into account pressure aspects such as minimum service pressure and pressure-dependent leakage. An optimisation model is automatically generated in the GAMS language from a hydraulic model in the EPANET format and from additional files describing operational constraints, electricity tariffs and pump station configurations. The paper describes in details how each hydraulic component is modelled. To reduce the size of the optimisation problem the full hydraulic model is simplified using module reduction algorithm, while retaining the nonlinear characteristics of the model. Subsequently, a nonlinear programming solver CONOPT is used to solve the optimisation model, which is in the form of Nonlinear Programming with Discontinuous Derivatives (DNLP. The results produced by CONOPT are processed further by heuristic algorithms to generate integer solution. The proposed approached was tested on a large-scale WDN model provided in the EPANET format. The considered WDN included complex structures and interactions between pump stations. Solving of several scenarios considering different horizons, time steps, operational constraints, demand levels and topological changes demonstrated ability of the approach to automatically generate and solve optimisation problems for a variety of requirements.

  14. Recirculation pump discharge line break tests at ROSA-III for a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.; Anoda, Y.; Kumamaru, H.; Nakamura, H.; Shiba, M.; Tasaka, K.

    1985-08-01

    Three loss-of-coolant accident (LOCA) tests were conducted at the Rig of Safety Assessment (ROSA)-III test facility, which simulates boiling water reactor (BWR)/6-251 with a volumetric scaling factor of 1/424. The fundamental features of the recirculation pump discharge line break LOCA and the effects of break areas on the features are investigated. It has been confirmed experimentally that the LOCA phenomena in the discharge line break are analogous to those in the suction line break with the same effective choking flow area, which is a sum of the least choking flow areas along the break flow paths and controls the system pressure responses. In general, the maximum effective choking flow area is (A /SUB j/ + A /SUB p/ ) for discharge line breaks and (A /SUB j/ + A /SUB o/ ) for suction line breaks, where A /SUB j/ , A /SUB p/ , and A /SUB o/ are the flow areas of the jet pump drive nozzles, the main recirculation pump discharge nozzle, and the break, respectively. The similarity between the ROSA-III test and a BWR LOCA has been confirmed in the key phenomena by the analyses using the RELAP5/MOD1 code. An atypical behavior is observed in the fuel rod surface temperature transient in the early phase of blowdown due to the limitation of the ROSA-III initial core power.

  15. Analysis of pumping systems to large flows of cooling water in power plants; Analisis de sistemas de bombeo para grandes flujos de agua de enfriamiento en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Sanchez, Ramon; Herrera Velarde, Jose Ramon; Gonzalez Sanchez, Angel [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rsanchez@iie.org.mx; jrhv@iie.org.mx; ags@iie.org.mx

    2010-11-15

    Accurate measurement of large water flows remains being a challenge in the problems of implementation of circulating water systems of power plants and other applications. This paper, presents a methodology for the analysis in pumping systems with high rates of water in power plants, as well as their practical application and results in pipelines water flow of a thermoelectrical power plant of 350 MW. In this power plant, the water flow per pipeline for a half of condenser oscillates around 7 m{sup 3}/s (14 m{sup 3}/s per power generating unit). In this analysis, we present the techniques used to measure large flows of water with high accurately, as well as the computational model for water circulating system using PIPE FLO and the results of practical application techniques. [Spanish] La medicion precisa de grandes flujos de agua, sigue siendo un reto en los problemas de aplicacion de sistemas de agua de circulacion de centrales termoelectricas, entre otras aplicaciones. En este articulo, se presenta una metodologia para el analisis de sistemas de bombeo con grandes flujos de agua en centrales termoelectricas, asi como, su aplicacion practica y los resultados obtenidos en los ductos de agua de circulacion de una central generadora con unidades de 350 MW. En esta central, los flujos por caja de agua oscilan alrededor de los 7 m{sup 3}/s (14 m{sup 3}/s por unidad generadora). En el analisis, se presentan las tecnicas utilizadas para medir con precision grandes flujos de agua (tubo de Pitot), asi como, el modelado del sistema de agua de circulacion por medio de un paquete computacional (PIPE FLO) y resultados obtenidos de la aplicacion de dichas tecnicas.

  16. 换热站循环泵选型与常见故障分析%On type selection for circulation pump of heat exchange stations and its analysis of common faults

    Institute of Scientific and Technical Information of China (English)

    马金龙

    2012-01-01

    Taking some heat exchange station as the example,the paper explores the type selection for the circulation pump,indicates the investigation over the heating coverage,the system heat loading and the volume identification,and the resistance calculation of the pipe network,and analyzes its common faults,so as to ensure the common operation of the circulation pump.%以某换热站为例,探讨了循环泵的选型,就其中供热面积调查、系统热负荷及流量确定、管网阻力计算等问题作了论述,并对常见故障进行了分析,以保证循环泵的正常运行。

  17. Pumping time required to obtain tube well water samples with aquifer characteristic radon concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Ricardo, Carla Pereira; Oliveira, Arno Heeren de, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Dept. de Engenharia Nuclear; Rocha, Zildete; Palmieri, Helena E.L.; Linhares, Maria G.M.; Menezes, Maria Angela B.C., E-mail: rochaz@cdtn.br, E-mail: help@cdtn.br, E-mail: mgml@cdtn.br, E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Radon is an inert noble gas, which comes from the natural radioactive decay of uranium and thorium in soil, rock and water. Radon isotopes emanated from radium-bearing grains of a rock or soil are released into the pore space. Radon that reaches the pore space is partitioned between the gaseous and aqueous phases. Thus, the groundwater presents a radon signature from the rock that is characteristic of the aquifer. The characteristic radon concentration of an aquifer, which is mainly related to the emanation, is also influenced by the degree of subsurface degassing, especially in the vicinity of a tube well, where the radon concentration is strongly reduced. Looking for the required pumping time to take a tube well water sample that presents the characteristic radon concentration of the aquifer, an experiment was conducted in an 80 m deep tube well. In this experiment, after twenty-four hours without extraction, water samples were collected periodically, about ten minutes intervals, during two hours of pumping time. The radon concentrations of the samples were determined by using the RAD7 Electronic Radon Detector from Durridge Company, a solid state alpha spectrometric detector. It was realized that the necessary time to reach the maximum radon concentration, that means the characteristic radon concentration of the aquifer, is about sixty minutes. (author)

  18. [Legionella contamination risk factors in non-circulating hot spring water].

    Science.gov (United States)

    Karasudani, Tatsuya; Kuroki, Toshiro; Otani, Katsumi; Yamaguchi, Seiichi; Sasaki, Mie; Saito, Shioko; Fujita, Masahiro; Sugiyama, Kanji; Nakajima, Hiroshi; Murakami, Koichi; Taguri, Toshitsugu; Kuramoto, Tsuyoshi; Kura, Fumiaki; Yagita, Kenji; Izumiyama, Shinji; Amemura-Maekawa, Junko; Yamazaki, Toshio; Agata, Kunio; Inouye, Hiroo

    2009-01-01

    We examined water from 182 non-circulating hot spring bathing facilities in Japan for possible Legionella occurrence from June 2005 to December 2006, finding Legionella-positive cultures in 119 (29.5%) of 403 samples. Legionellae occurrence was most prevalent in bathtub water (39.4%), followed by storage tank water (23.8%), water from faucets at the bathtub edge (22.3%), and source-spring water (8.3%), indicating no statistically significant difference, in the number of legionellae, having an overall mean of 66 CFU/100mL. The maximum number of legionellae in water increased as water was sampled downstream:180 CFU/100 mL from source spring, 670 from storage tanks, 4,000 from inlet faucets, and 6,800 from bathtubs. The majority--85.7%--of isolated species were identified as L. pneumophila : L. pneumophila serogroup (SG) 1 in 22%, SG 5 in 21%, and SG 6 in 22% of positive samples. Multivariate logistic regression models used to determine the characteristics of facilities and sanitary management associated with Legionella contamination indicated that legionellae was prevalent in bathtub water under conditions where it was isolated from inlet faucet/pouring gate water (odds ratio [OR] = 6.98, 95% confidence interval [CI] = 2.14 to 22.8). Risk of occurrence was also high when the bathtub volume exceeded 5 m3 (OR = 2.74, 95% CI = 1.28 to 5.89). Legionellae occurrence was significantly reduced when the bathing water pH was lower than 6.0 (OR = 0.12, 95% CI = 0.02 to 0.63). Similarly, occurrence was rare in inlet faucet water or the upper part of the plumbing system for which pH was lower than 6.0 (OR = 0.06, 95% CI = 0.01 to 0.48), and when the water temperature was maintained at 55 degrees C or more (OR = 0.10, 95% CI = 0.01 to 0.77). We also examined the occurrence of amoeba, Mycobacterium spp., Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus in water samples.

  19. Small-signal modelling and control of photovoltaic based water pumping system.

    Science.gov (United States)

    Ghosh, Arun; Ganesh Malla, Siva; Narayan Bhende, Chandrasekhar

    2015-07-01

    This paper studies small-signal modelling and control design for a photovoltaic (PV) based water pumping system without energy storage. First, the small-signal model is obtained and then, using this model, two proportional-integral (PI) controllers, where one controller is used to control the dc-link voltage and the other one to control the speed of induction motor, are designed to meet control goals such as settling time and peak overshoot of the closed loop responses. The loop robustness of the design is also studied. For a given set of system parameters, simulations are carried out to validate the modelling and the control design.

  20. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. L. [Southface Energy Inst., Atlanta, GA (United States); Francisco, A. [Southface Energy Inst., Atlanta, GA (United States); Roberts, S. G. [Southface Energy Inst., Atlanta, GA (United States)

    2016-05-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas.

  1. Heat pump applications and water heating by means of solar collectors. Waermepumpenanwendungen und Wasserwaermung mit Sonnenkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Szokody, G.

    1990-01-15

    About 25 to 30% of all newly constructed single-family houses in Switzerland are equipped with heat pump systems. This increasing attractivity is partly due to new techniques, e.g. microprocessor control, as well as to higher component efficiencies, a more efficient heat exchange technology, and to the compactness of systems. Active solar energy conversion, i.e. by means of solar collectors, is another technique which is predominantly applied for water heating in single-family buildings. Public investments in this field are scarce. (BWI).

  2. Limiting pumping from the Edwards Aquifer: An economic investigation of proposals, water markets, and spring flow guarantees

    Science.gov (United States)

    McCarl, Bruce A.; Dillon, Carl R.; Keplinger, Keith O.; Williams, R. Lynn

    1999-04-01

    The Edwards Aquifer, near San Antonio, Texas, is an important water source for both pumping and spring flow, which in turn provides water for recreation and habitat for several endangered species. A management authority is charged with aquifer management and is mandated to reduce pumping, facilitate water markets, protect agricultural rights, and protect the species habitat. This paper examines the economic dimensions of authority duties. A combined hydrologic-economic model is used in the investigation. The results indicate that proposed pumping limits are shown to have large consequences for agricultural usage and to decrease the welfare of current aquifer pumping users. However, the spring flow habitat is found to be protected, and the gains from that protection would have to exceed pumping user losses in order for the protection measures to increase regional economic welfare. Agricultural guarantees are shown to cause use value differences, indicating the opportunity for emergence of an active water market. Fixed quantity pumping limits are found to be an expensive way of insuring adequate spring flow.

  3. Simulating on water storage and pump capacity of "Kencing" river polder system in Kudus regency, Central Java, Indonesia

    Science.gov (United States)

    Wahyudi, Slamet Imam; Adi, Henny Pratiwi; Santoso, Esti; Heikoop, Rick

    2017-03-01

    Settlement in the Jati District, Kudus Regency, Central Java Province, Indonesia, is growing rapidly. Previous paddy fields area turns into new residential, industrial and office buildings. The rain water collected in small Kencing river that flows into big Wulan River. But the current condition, during high rain intensity Wulan river water elevation higher than the Kencing river, so that water can not flow gravity and the area inundated. To reduce the flooding, required polder drainage system by providing a long channel as water storage and pumping water into Wulan river. How to get optimal value of water storage volume, drainage system channels and the pump capacity? The result used to be efficient in the operation and maintenance of the polder system. The purpose of this study is to develop some scenarios water storage volume, water gate operation and to get the optimal value of operational pumps removing water from the Kencing River to Wulan River. Research Method is conducted by some steps. The first step, it is done field orientation in detail, then collecting secondary data including maps and rainfall data. The map is processed into Watershed or catchment area, while the rainfall data is processed into runoff discharge. Furthermore, the team collects primary data by measuring topography to determine the surface and volume of water storage. The analysis conducted to determine of flood discharge, water channel hydraulics, water storage volume and pump capacity corresponding. Based on the simulating of long water storage volume and pump capacity with some scenario trying, it can be determined optimum values. The results used to be guideline in to construction proses, operation and maintenance of the drainage polder system.

  4. 水泵轴承故障的诊断分析%Determination and Analysis of Water Pump Bearing Failure

    Institute of Scientific and Technical Information of China (English)

    韩博; 赵福东

    2013-01-01

    In pump faults, determination of water pump bearing faults is representative. It is of great significance of applying the spectral analysis method that uses vibration to de-terminate faults of rolling bearing. The examples of No.5 water pump and P60A spray pump for the oxygen plant of Benxi Iron & Steel (Group) Co., Ltd are cited.%  在泵体类故障中,水泵轴承故障诊断是具有代表性的。应用振动诊断的频谱分析方法对滚动轴承的故障判断很有意义。列举了本钢氧气厂5#水泵及 P60A 喷淋泵这两个示例加以说明。

  5. Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis

    Directory of Open Access Journals (Sweden)

    Mauro De Marchis

    2016-10-01

    Full Text Available Complex systems of water distribution networks (WDS are used to supply water to users. WDSs are systems where a lot of distributed energy is available. Historically, this energy is artificially dissipated by pressure reduction valves (PRVs, thanks to which water utilities manage the pressure level in selected nodes of the network. The present study explores the use of economic hydraulic machines, pumps as turbines (PATs to produce energy in a small network located in a town close to Palermo (Italy. The main idea is to avoid dissipation in favor of renewable energy production. The proposed study is applied to a WDN typical of the Mediterranean countries, where the users, to collect water during the period of water scarcity conditions, install private tanks. The presence of private tanks deeply modifies the network from its designed condition. In the proposed analysis, the economic benefit of PATs application in water distribution networks has been investigated, accounting for the presence of users’ private tanks. The analysis, carried out by mean of a mathematical model able to dynamically simulate the water distribution network with PATs, shows the advantage of their installation in terms of renewable energy recovery, even though the energy production of PATs is strictly conditioned by their installation position.

  6. Summer circulation dynamics within the Perth coastal waters of southwestern Australia

    Science.gov (United States)

    Ruiz-Montoya, L.; Lowe, R. J.

    2014-04-01

    The dynamics of the summer circulation in the coastal waters off Perth in Western Australia were investigated during a two-month field experiment. The study included the deployment of an array of moorings spanning the outer shelf, the inner shelf, within the inshore Perth coastal lagoon, and in the large coastal embayment of Cockburn Sound. The results revealed highly transient coastal circulation patterns that responded to variability in both the locally- and remotely-generated forcing. Local wind forcing played a primary role in driving much of the alongshore current variability at the shallower (Perth, which propagated down the Western Australia coast. On the outer shelf, local wind forcing played a minor (but still not a negligible) role in driving alongshore current variability, with this momentum balance instead dominated by the alongshore pressure gradient variability. Due to the unusually large alongshore pressure gradient that persists year round along the Western Australia coast, currents on the shelf were on average southward. However, large-scale northward reversals of the shelf flow were also observed when northward wind stresses were sufficiently large and/or the local alongshore pressure gradient became episodically weak.

  7. Ocean Circulation and Water Mass Characteristics around the Galápagos Archipelago Simulated by a Multiscale Nested Ocean Circulation Model

    Directory of Open Access Journals (Sweden)

    Yanyun Liu

    2014-01-01

    Full Text Available Ocean circulation and water mass characteristics around the Galápagos Archipelago are studied using a four-level nested-domain ocean system (HYCOM. The model sensitivity to atmospheric forcing frequency and spatial resolution is examined. Results show, that with prescribed atmospheric forcing, HYCOM can generally simulate the major El Niño events especially the strong 1997-1998 events. Waters surrounding the archipelago show a large range of temperature and salinity in association with four different current systems. West zones of Isabella and Fernandina Islands are the largest upwelling zones, resulting from the collision of the Equatorial Undercurrent (EUC with the islands, bringing relatively colder, salty waters to the surface and marking the location of the highest biological production. Model results, which agree well with observations, show a seasonal cycle in the transport of the EUC, reaching a maximum during the late spring/early summer and minimum in the late fall. The far northern region is characterized by warmer, fresher water with the greatest mixed layer depth as a result of Panama Current waters entering from the northeast. Water masses over the remainder of the region result from mixing of cool Peru Current waters and upwelled Cold Tongue waters entering from the east.

  8. Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply

    Science.gov (United States)

    Sahu, Paulami; Michael, Holly A.; Voss, Clifford I.; Sikdar, Pradip K.

    2013-01-01

    Water supply to the world's megacities is a problem of quantity and quality that will be a priority in the coming decades. Heavy pumping of groundwater beneath these urban centres, particularly in regions with low natural topographic gradients, such as deltas and floodplains, can fundamentally alter the hydrological system. These changes affect recharge area locations, which may shift closer to the city centre than before development, thereby increasing the potential for contamination. Hydrogeological simulation analysis allows evaluation of the impact on past, present and future pumping for the region of Kolkata, India, on recharge area locations in an aquifer that supplies water to over 13 million people. Relocated recharge areas are compared with known surface contamination sources, with a focus on sustainable management of this urban groundwater resource. The study highlights the impacts of pumping on water sources for long-term development of stressed city aquifers and for future water supply in deltaic and floodplain regions of the world.

  9. Chemical oxidation methods in the closure of paper mill water circulations; Hapetustekniikoiden kaeyttoe metsaeteollisuuden vesikiertojen sulkemisessa - EKT 04

    Energy Technology Data Exchange (ETDEWEB)

    Laari, A.; Kallas, J. [Lappeenranta Univ. of Technology (Finland); Korhonen, S. [Kuopio Univ. (Finland); Tuhkanen, T. [Mikkelin Ammattikorkeakoulu, Mikkeli (Finland)

    1998-12-31

    When water circulations are closed some harmful compounds tend to accumulate in the circulation waters. These compounds include lipophilic extractives, like resin and fatty acids, triglycerides and sterols, but also other compounds, like lignins, lignans and sugars. Microbial growth will increase due to elevated organic concentrations. The purpose of this project is to find out the possibilities of the use of ozonation and wet oxidation in the treatment of paper mill water circulations. In chemical oxidation organic matter is destroyed in oxidation reactions. Especially lipophilic extractives are selectively oxidated by ozone. Chemical oxidation reactions are carried out in gas-liquid reactors, where ozone or oxygen are transferred from gas to liquid phase where the oxidation reactions happen. One target of the project is to estimate kinetic parameters for different groups of compounds on the basis of experimental data. Kinetic parameters are then used in modelling of reactors and in estimation of process costs. (orig.)

  10. Thermocline circulation and ventilation of the East/Japan Sea, part I: Water-mass characteristics and transports

    Science.gov (United States)

    You, Yuzhu; Chang, Kyung-Il; Yun, Jae-Yul; Kim, Kyung-Ryul

    2010-07-01

    three other major convection sites of the world's oceans, the Gulf of Lions, Labrador Sea and Greenland Sea, showing some common and distinctive features, especially the extremely low salinity of the EJS. Water-mass properties on neutral density surfaces are analyzed with the water-mass Turner angle (WTu) and circulation and transport are deducted from geostrophic calculations. From the 15-year mean hydrography, a basin-wide net annual mean transport of about 2.10±0.29 Sv (1 Sv=10 6 m 3 s -1) is estimated with summer and winter transports of 2.56±0.36 and 1.63±0.23 Sv, respectively. This transport is slightly less than the annual mean transport of the Tsushima Current at the KTS, 2.4 Sv from cable and 2.3 Sv from other direct current meter and geostrophic methods but matches the ±14% error bar of ±0.29 Sv adjusted by ±150 dbar from the reference level of 800 dbar. This error bar is close to the error of ±0.34 Sv determined from water-mass conservation residual in a separated study. Three mechanisms are discovered to explain the seasonal difference in the Tsushima Current transports: the stronger winter Ekman pumping, outcropping and southward crossing flow. During winter, the Tsushima Current branches are imposed under strong wind stress curl in the Ulleung Basin and Yamato Basin, showing a doubling Ekman downwelling transport, partly weakening the Tsushima Current flow in the eastern boundary. Meanwhile the thermocline isopycnal surfaces outcrop in winter, reducing volume transport due to reduced space and thickness. The southward currents in the southern Ulleung Basin and Yamato Basin are perpendicular to the Tsushima Current branches west of Japan, which weakens the eastern boundary current in winter.

  11. Ocean water cycle: its recent amplification and impact on ocean circulation

    Science.gov (United States)

    Vinogradova, Nadya

    2016-04-01

    Oceans are the largest reservoir of the world's water supply, accounting for 97% of the Earth's water and supplying more than 75% of the evaporated and precipitated water in the global water cycle. Therefore, in order to predict the future of the global hydrological cycle, it is essential to understand the changes in its largest component, which is the flux of freshwater over the oceans. Here we examine the change in the ocean water cycle and the ocean's response to such changes that were happening during the last two decades. The analysis is based on a data-constrained ocean state estimate that synthesizes all of the information available in the surface fluxes, winds, observations of sea level, temperature, salinity, geoid, etc., as well as in the physical constraints, dynamics, and conservation statements that are embedded in the equations of the MIT general circulation model. Closeness to observations and dynamical consistency of the solution ensures a physically realistic correspondence between the atmospheric forcing and oceanic fluxes, including the ocean's response to freshwater input. The results show a robust pattern of change in the ocean water cycle in the last twenty years. The pattern of changes indicates a general tendency of drying of the subtropics, and wetting in the tropics and mid-to-high latitudes, following the "rich get richer and the poor get poorer" paradigm in many ocean regions. Using a closed property budget analysis, we then investigate the changes in the oceanic state (salinity, temperature, sea level) during the same twenty-year period. The results are discussed in terms of the origin of surface signatures, and differentiated between those that are attributed to short-term natural variability and those that result from an intensified hydrological cycle due to warming climate.

  12. Study on Reactivity of Circulating Fluidized Bed Combustion Fly Ashes in the Presence of Water

    Directory of Open Access Journals (Sweden)

    Salain I.M.A.K.

    2010-01-01

    Full Text Available A study on reactivity of four different Circulating Fluidized Bed Combustion (CFBC fly ashes has been realized in the presence of water. Paste of each ash was prepared and analyzed for its setting time, expansion and strength. The products of hydration, and their evolutions over a period of time were identified by X-ray diffraction and differential thermal analysis. The results of this study show that the reactivity of the CFBC fly ashes is strongly related to their chemical composition, essentially to their quantity of silica, alumina, lime and sulfate, which promote principally the formation of ettringite, gypsum and C-S-H. It is further noted that the intensity and the proportion of these phases determine the hydration behavior of the CFBC fly ashes.

  13. Overall solution for water circulation based on evaporation; Kiertovesien kaesittelyn kokonaisratkaisu perustuen haihdutustekniikkaan - KLT 01

    Energy Technology Data Exchange (ETDEWEB)

    Fagernaes, L.; Mckeough, P.; Buchert, J. [VTT Energy, Espoo (Finland)

    1998-12-31

    The aim of the project is to investigate and evaluate treatment methods for concentrates from the evaporation of circulation waters. The most feasible process, from both a technical and economical viewpoint, will be identified from a group of alternative concepts. Experimental research will focus on further evaporation of concentrates of TMP filtrates. Laboratory, PDU and pilot equipment will be employed in the work. The main tasks will be to study further evaporation of concentrates and to improve evaporation with the aid of different pre- and intermediate treatments, like enzyme treatment. Process evaluation will focus on a separate final treatment of the high-solids concentrate of the TMP filtrate. Treatment concepts will be developed and a techno-economic assessment of the processes will be carried out. (orig.)

  14. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    Science.gov (United States)

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications. PMID:28079171

  15. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    Science.gov (United States)

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  16. Carbon dioxide as refrigerant for tap water heat pumps: A comparison with the traditional solution

    Energy Technology Data Exchange (ETDEWEB)

    Cecchinato, Luca; Corradi, Marco; Fornasieri, Ezio; Zamboni, Lorenzo [Dipartimento di Fisica Tecnica, Universita degli Studi di Padova, Via Venezia, 1 I-35131 Padova (Italy)

    2005-12-01

    Increased concern about the environmental impact of the refrigeration technology is leading toward design solutions aimed at improving the energy efficiency of the related applications, using eco-friendly refrigerants, i.e. ozone-friendly and with the least possible global warming potential (GWP). In this respect, carbon dioxide (ASHRAE R744) is seen today as one of the most promising refrigerants and is raising great interest in industrial and scientific fields. In the present work, the plant options are investigated, which are related to the design of air/water heat pumps for tap water using CO{sub 2}. A comparison is made, in terms of energy efficiency, between a system working with CO{sub 2} and a similar one working with HFC R134a; such a comparison is carried out by means of a simulation model of a refrigerating machine/heat pump, characterized by a detailed representation of the heat exchangers, based on their subdivision into elementary volumes. Results show that carbon dioxide is an interesting substitute for synthetic fluids, if the design of the system is focused to take advantage of its properties. (author)

  17. Design Approach for Solar Photovoltaic Ground Water Pumping System for Eastern India

    Directory of Open Access Journals (Sweden)

    Atiqur Rahman

    2014-08-01

    Full Text Available Eastern India has rich resource base for intensive and diversified agriculture, but the production and productivity of this region is quite low due to lack of assured irrigation as even a short dry spell of drought adversely affects the stability of agricultural production. The foremost reason energy squeeze in terms of lack of electricity and substantial increase in diesel price, which refrain farmers from operating required number hours of diesel pumps. This region is endowed with enormous solar energy potential with solar radiation of 4 - 6.4 kWh/m2/day and 250 - 300 bright sunshine days. Therefore, it can be a year round reliable source of energy for ground water pumpingto meet supplementary irrigation requirement. In addition to reliability,environmental pollution would also be reduced. However,in view of initial investment cost, cropping pattern and land holding sizes of the region,solar photovoltaic pumping system should be of appropriatesize and it should be designed keeping in view the solar irradianceround the year and water requirement in different seasons. This technical discusses few important aspects to fulfilthis proposition.

  18. Nozzle optimization for water jet propulsion with a positive displacement pump

    Science.gov (United States)

    Yang, You-sheng; Xie, Ying-chun; Nie, Song-lin

    2014-06-01

    In the water jet propulsion system with a positive displacement (PD) pump, the nozzle, which converts pressure energy into kinetic energy, is one of the key parts exerting great influence on the reactive thrust and the efficiency of the system due to its high working pressure and easily occurring cavitation characteristics. Based on the previous studies of the energy loss and the pressure distribution of different nozzles, a model of water jet reactive thrust, which fully takes the energy loss and the nozzle parameters into consideration, is developed to optimize the nozzle design. Experiments and simulations are carried out to investigate the reactive thrust and the conversion efficiency of cylindrical nozzles, conical nozzles and optimized nozzles. The results show that the optimized nozzles have the largest reactive thrust and the highest energy conversion efficiency under the same inlet conditions. The related methods and conclusions are extended to the study of other applications of the water jet, such as water jet cutting, water mist fire suppression, water injection molding.

  19. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  20. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  1. Nozzle Optimization for Water Jet Propulsion with A Positive Displacement Pump

    Institute of Scientific and Technical Information of China (English)

    杨友胜; 谢迎春; 聂松林

    2014-01-01

    In the water jet propulsion system with a positive displacement (PD) pump, the nozzle, which converts pressure energy into kinetic energy, is one of the key parts exerting great influence on the reactive thrust and the efficiency of the system due to its high working pressure and easily occurring cavitation characteristics. Based on the previous studies of the energy loss and the pressure distribution of different nozzles, a model of water jet reactive thrust, which fully takes the energy loss and the nozzle parameters into consideration, is developed to optimize the nozzle design. Experiments and simulations are carried out to investigate the reactive thrust and the conversion efficiency of cylindrical nozzles, conical nozzles and optimized nozzles. The results show that the optimized nozzles have the largest reactive thrust and the highest energy conversion efficiency under the same inlet conditions. The related methods and conclusions are extended to the study of other applications of the water jet, such as water jet cutting, water mist fire suppression, water injection molding.

  2. Investment and Economy Analysis of Water-Source Heat Pump System in Chongqing, China

    Directory of Open Access Journals (Sweden)

    Yong Ding

    2013-01-01

    Full Text Available In China, the application of renewable energy witnesses rapid development. In the near future, a lot of demonstration projects will be built and thus it is urgent to know the economics of renewable energy building application technologies. Based on the renewable energy demonstration projects in Chongqing city, the author discussed the economy issue of water-source heat pump system (WSHPs in order to provide suggestions for the application projects. According to the design information of demonstration projects, the average incremental investment, allowance, and payback period are calculated in this paper. Comparing WSHPs with traditional heating, ventilation, and air conditioning (HVAC system, the saved energy of WSHPs is estimated in the current paper. The author calculated the amount of saved energy in unit applied area and unit intake water. Besides, the economy and efficiency of WSHPs project is analyzed at the end of this paper.

  3. Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

    2012-02-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

  4. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  5. Influence of the Aral Sea negative water balance on its seasonal circulation patterns: use of a 3D hydrodynamic model

    Science.gov (United States)

    Sirjacobs, D.; Grégoire, M.; Delhez, E.; Nihoul, J. C. J.

    2004-06-01

    A 3D hydrodynamic model of the Aral Sea was successfully implemented to address the complex hydrodynamic changes induced by the combined effect of hydrologic and climatic change in the Aral region. The first barotropic numerical experiments allowed us to produce a comparative description of the mean general seasonal circulation patterns corresponding to the original situation (1956-1960) and of the average situation for the period from 1981 to 1985, a very low river flow period. The dominant anticyclonic circulation suggested by our seasonal simulation is in good agreement with previous investigations. In addition, this main anticyclonic gyre was shown to be stable and clearly established from February to September, while winter winds led to another circulation scenario. In winter, the main anticyclonic gyre was considerably limited, and cyclonic circulations appeared in the deep western basin and in the northeast of the shallow basin. In contrast, stronger anticyclonic circulation was observed in the Small Aral Sea during winter. As a consequence of the 10-m sea level drop observed between the two periods considered, the 1981-1985 simulation suggests an intensification of seasonal variability. Total water transport of the main gyre was reduced with sea level drop by a minimum of 30% in May and up to 54% in September. Before 1960, the study of the net flows through Berg and Kokaral Straits allowed us to evaluate the component of water exchange between the Small and the Large Seas linked with the general anticyclonic circulation around Kokaral Island. This exchange was lowest in summer (with a mean anticyclonic exchange of 222 m 3/s for July and August), highest in fall and winter (with a mean value of 1356 m 3/s from September to February) and briefly reversed in the spring (mean cyclonic circulation of 316 m 3/s for April and May). In summer, the water exchange due to local circulation at the scale of each strait was comparatively more important because net flows

  6. Dense water formation and BiOS-induced variability in the Adriatic Sea simulated using an ocean regional circulation model

    Science.gov (United States)

    Dunić, Natalija; Vilibić, Ivica; Šepić, Jadranka; Somot, Samuel; Sevault, Florence

    2016-08-01

    A performance analysis of the NEMOMED8 ocean regional circulation model was undertaken for the Adriatic Sea during the period of 1961-2012, focusing on two mechanisms, dense water formation (DWF) and the Adriatic-Ionian Bimodal Oscillating System (BiOS), which drive interannual and decadal variability in the basin. The model was verified based on sea surface temperature and sea surface height satellite measurements and long-term in situ observations from several key areas. The model qualitatively reproduces basin-scale processes: thermohaline-driven cyclonic circulation and freshwater surface outflow along the western Adriatic coast, dense water dynamics, and the inflow of Ionian and Levantine waters to the Adriatic. Positive temperature and salinity biases are reported; the latter are particularly large along the eastern part of the basin, presumably because of the inappropriate introduction of eastern Adriatic rivers into the model. The highest warm temperature biases in the vertical direction were found in dense-water-collecting depressions in the Adriatic, indicating either an inappropriate quantification of DWF processes or temperature overestimation of modelled dense water. The decadal variability in the thermohaline properties is reproduced better than interannual variability, which is considerably underestimated. The DWF rates are qualitatively well reproduced by the model, being larger when preconditioned by higher basin-wide salinities. Anticyclonic circulation in the northern Ionian Sea was modelled only during the Eastern Mediterranean Transient. No other reversals of circulation that could be linked to BiOS-driven changes were modelled.

  7. Autonomous BDFIG-wind generator with torque and pitch control for maximum efficiency in a water pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Camocardi, P. [LEICI, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900) La Plata (Argentina); CONICET (Argentina); Battaiotto, P. [LEICI, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900) La Plata (Argentina); Mantz, R. [LEICI, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900) La Plata (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina)

    2010-06-15

    This paper presents and analyzes the operation strategy for an autonomous wind energy conversion system oriented to water pumping. It consists of a wind turbine with a Brushless Doubly-Fed Induction Generator (BDFIG), electrically coupled with a squirrel cage induction machine moving a centrifugal type water pump. Because of no brushes and slip rings, the BDFIG is suitable for autonomous systems, which often work in hard conditions. Additionally, the power flow on the BDFIG principal stator could be driven from a fractional power converter connected on the auxiliary stator winding. This Turbine-BDFIG and Motor-Pump configuration provides a high robustness and reliability, reducing the operational and maintenance costs. The operation strategy proposes, for wind speeds smaller than the rated, to maximize the volume of water pumped based on the optimization of the wind energy capture. To do that, a sliding mode control tracks the optimal turbine torque by means of a torque control. Meanwhile, for wind speeds greater than the rated, a pitch control keeps the water pump within the safe operation area by adjusting the speed and power of the turbine in their rated values. To assess and corroborate the proposed strategy, simulations with different wind profiles are made. (author)

  8. Methodology for energetic diagnosis for a water pumping station; Metodologia de diagnostico energetico em estacao de captacao de agua

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Filho, Delly; Damiao, Jorge H.A. de C. [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola], Emails: delly@ufv.br, jorge.damiao@ufv.br; Sampaio, Ricardo P. [Vale, Nova Lima, MG (Brazil); Moraes, Maria J. de [Universidade Estadual de Goias (UEG), Anapolis, GO (Brazil)], E-mail: maria.moraes@ufv.br; Pizziolo, Tarcisio de A. [Universidade Federal de Vicosa (DEL/UFV), MG (Brazil). Dept. de Engenharia Eletrica], E-mail: pizziolo@ufv.br

    2011-10-15

    This study aimed to develop a methodology to diagnose energetically a water supply system for a irrigation system and for a city. The steps taken were: the energy quality supplied by the utility in relation to level and unbalanced of the supplied voltage; the electrical energy consumption and demand for the pumping station; the study of the electrical and hydraulic load's characteristics; the tariff and demand contracts optimization; the water storage capacity; and the working hours management. This methodology was tested and validated for the water pumping station in a town of about 70,000 inhabitants. Among the proposed actions, which saved the most, were: the sizing of pumps and motors and the optimization of tariff and demand contracts. It was noted that this methodology is simple and easy to apply and there is a great potential for saving energy up to 52%. (author)

  9. Successive bifurcations in a shallow-water model applied to the wind-driven ocean circulation

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Full Text Available Climate - the "coarse-gridded" state of the coupled ocean - atmosphere system - varies on many time and space scales. The challenge is to relate such variation to specific mechanisms and to produce verifiable quantitative explanations. In this paper, we study the oceanic component of the climate system and, in particular, the different circulation regimes of the mid-latitude win driven ocean on the interannual time scale. These circulations are dominated by two counterrotating, basis scale gyres: subtropical and subpolar. Numerical techniques of bifurcation theory are used to stud the multiplicity and stability of the steady-state solution of a wind-driven, double-gyre, reduced-gravity, shallow water model. Branches of stationary solutions and their linear stability are calculated systematically as parameter are varied. This is one of the first geophysical studies i which such techniques are applied to a dynamical system with tens of thousands of degrees of freedom. Multiple stationary solutions obtain as a result of nonlinear interactions between the two main recirculating cell (cyclonic and anticyclonic of the large- scale double-gyre flow. These equilibria appear for realistic values of the forcing and dissipation parameters. They undergo Hop bifurcation and transition to aperiodic solutions eventually occurs. The periodic and chaotic behaviour is probably related to an increased number of vorticity cells interaction with each other. A preliminary comparison with observations of the Gulf Stream and Kuroshio Extensions suggests that the intern variability of our simulated mid-latitude ocean is a important factor in the observed interannual variability o these two current systems.

  10. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.

    Science.gov (United States)

    Zhou, Zhen; Qiao, Weimin; Lin, Yangbo; Shen, Xuelian; Hu, Dalong; Zhang, Jianqiao; Jiang, Lu-Man; Wang, Luochun

    2014-01-01

    Phosphonate is a commonly used corrosion and scale inhibitor for a circulating cooling water (CCW) system. Its discharge could cause eutrophication of receiving waters. The iron-carbon (Fe/C) micro-electrolysis technology was used to degrade and remove phosphonate from discharged CCW. The influences of initial pH, Fe/C ratio (FCR) and temperature on phosphonate removal were investigated in a series of batch tests and optimized by response surface methodology. The quadratic model of phosphonate removal was obtained with satisfactory degrees of fitness. The optimum conditions with total phosphorus removal efficiency of 95% were obtained at pH 7.0, FCR of 1.25, and temperature of 45 °C. The phosphonate removal mechanisms were also studied. Phosphonate removal occurred predominantly via two consecutive reactive phases: the degradation of phosphonate complexes (Ca-phosphonate) and the precipitation of Fe/C micro-electrolysis products (PO₄(3-), Ca²⁺ and Fe³⁺).

  11. Shear turbulence, Langmuir circulation and scalar transfer at an air-water interface

    Science.gov (United States)

    Hafsi, Amine; Tejada-Martinez, Andres; Veron, Fabrice

    2016-11-01

    DNS of an initially quiescent coupled air-water interface driven by an air-flow with free stream speed of 5 m/s generates gravity-capillary waves and small-scale (centimeter-scale) Langmuir circulation (LC) beneath the interface. In addition to LC, the waterside turbulence is characterized by shear turbulence with structures similar to classical "wall streaks" in wall-bounded flow. These streaks, denoted here as "shear streaks", consist of downwind-elongated vortices alternating in sign in the crosswind direction. The presence of interfacial waves causes interaction between these vortices giving rise to bigger vortices, namely LC. LES with momentum equation augmented with the Craik-Leibovich (C-L) vortex force is used to understand the roles of the shear streaks (i.e. the shear turbulence) and the LC in determining scalar flux from the airside to the waterside and vertical scalar transport beneath. The C-L force consists of the cross product between the Stokes drift velocity (induced by the interface waves) and the flow vorticity. It is observed that Stokes drift shear intensifies the shear streaks (with respect to flow without wave effects) leading to enhanced scalar flux at the air-water interface. LC leads to increased vertical scalar transport at depths below the interface.

  12. Economic feasibility of large scale PV water pumping applications utilizing real field data for a case study in Jordan

    Directory of Open Access Journals (Sweden)

    Ibrahim Odeh

    2014-05-01

    Full Text Available Economic viability of photovoltaic, diesel and grid connected water pumping systems is investigated and compared for system capacities in the range 1500 m4/day to 100,000 m4/day. Actual performance data from installed systems are considered in calculating systems outputs for base case scenarios. Sensitivity analysis is carried out to generalize results for other locations and conditions. Several scenarios of the effect of variation electricity tariffs, components prices, diesel fuel prices, operation cost and interest rate on the output water unit cost (US$/1000m4  are investigated.  Breakeven points of PV pumping systems are determined at certain input parameters.

  13. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. L. [Southface Energy Inst., Upper Marlboro, MD (United States); Francisco, A.; Roberts, S. G.

    2016-05-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk of condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.

  14. Geohydrology of the Central Oahu, Hawaii, Ground-Water Flow System and Numerical Simulation of the Effects of Additional Pumping

    Science.gov (United States)

    Oki, Delwyn S.

    1998-01-01

    A two-dimensional, finite-difference, ground-water flow model was developed for the central Oahu flow system, which is the largest and most productive ground-water flow system on the island. The model is based on the computer code SHARP which simulates both freshwater and saltwater flow. The ground-water model was developed using average pumping and recharge conditions during the 1950's, which was considered to be a steady-state period. For 1950's conditions, model results indicate that 62 percent (90.1 million gallons per day) of the discharge from the Schofield ground-water area flows southward and the remaining 38 percent (55.2 million gallons per day) of the discharge from Schofield flows northward. Although the contribution of recharge from infiltration of rainfall and irrigation water directly on top of the southern and northern Schofield ground-water dams was included in the model, the distribution of natural discharge from the Schofield ground-water area was estimated exclusive of the recharge on top of the dams. The model was used to investigate the long-term effects of pumping under future land-use conditions. Future recharge was conservatively estimated by assuming no recharge associated with agricultural activities. Future pumpage used in the model was based on the 1995-allocated rates. Model results indicate that the long-term effect of pumping at the 1995-allocated rates will be a reduction of water levels from present (1995) conditions in all ground-water areas of the central Oahu flow system. In the Schofield ground-water area, model results indicate that water levels could decline about 30 feet from the 1995 water-level altitude of about 275 feet. In the remaining ground-water areas of the central Oahu flow system, water levels may decline from less than 1 foot to as much as 12 feet relative to 1995 water levels. Model results indicate that the bottoms of several existing deep wells in northern and southern Oahu extend below the model

  15. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    Science.gov (United States)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  16. Reliable, Economic, Efficient CO2 Heat Pump Water Heater for North America

    Energy Technology Data Exchange (ETDEWEB)

    Radcliff, Thomas D; Sienel, Tobias; Huff, Hans-Joachim; Thompson, Adrian; Sadegh, Payman; Olsommer, Benoit; Park, Young

    2006-12-31

    Adoption of heat pump water heating technology for commercial hot water could save up to 0.4 quads of energy and 5 million metric tons of CO2 production annually in North America, but industry perception is that this technology does not offer adequate performance or reliability and comes at too high of a cost. Development and demonstration of a CO2 heat pump water heater is proposed to reduce these barriers to adoption. Three major themes are addressed: market analysis to understand barriers to adoption, use of advanced reliability models to design optimum qualification test plans, and field testing of two phases of water heater prototypes. Market experts claim that beyond good performance, market adoption requires 'drop and forget' system reliability and a six month payback of first costs. Performance, reliability and cost targets are determined and reliability models are developed to evaluate the minimum testing required to meet reliability targets. Three phase 1 prototypes are designed and installed in the field. Based on results from these trials a product specification is developed and a second phase of five field trial units are built and installed. These eight units accumulate 11 unit-years of service including 15,650 hours and 25,242 cycles of compressor operation. Performance targets can be met. An availability of 60% is achieved and the capability to achieve >90% is demonstrated, but overall reliability is below target, with an average of 3.6 failures/unit-year on the phase 2 demonstration. Most reliability issues are shown to be common to new HVAC products, giving high confidence in mature product reliability, but the need for further work to minimize leaks and ensure reliability of the electronic expansion valve is clear. First cost is projected to be above target, leading to an expectation of 8-24 month payback when substituted for an electric water heater. Despite not meeting all targets, arguments are made that an industry leader could

  17. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  18. Performance of water source heat pump system using high-density polyethylene tube heat exchanger wound with square copper wire

    Directory of Open Access Journals (Sweden)

    Xin Wen Zhang

    2015-07-01

    Full Text Available Surface water source heat pump system is an energy-efficient heat pump system. Surface water heat exchanger is an important part of heat pump system that can affect the performance of the system. In order to enhance the performance of the system, the overall heat transfer coefficient (U value of the water exchanger using a 32A square copper coiled high-density polyethylene tube was researched. Comparative experiments were conducted between the performance of the coiled high-density polyethylene tube and the 32A smooth high-density polyethylene tube. At the same time, the coefficient of performance of the heat pump was investigated. According to the result, the U value of the coiled tube was 18% higher than that of the smooth tube in natural convection and 19% higher in forced convection. The coefficient of performance of the heat pump with the coiled tube is higher than that with the smooth tube. The economic evaluation of the coiled tube was also investigated.

  19. Method of evaluation of efficiency improvement potential for water supply systems with focus on variable speed centrifugal pumps

    Directory of Open Access Journals (Sweden)

    D. Pilscikovs

    2012-11-01

    Full Text Available The goal of this research is the derivation of the method for evaluation of efficiency improvement potential for public water supply systems with a focus on centrifugal network pumps. The efficiency of proportional pressure control usage has been analyzed for variable speed pumps. It has been done if proportional pressure control is used in comparison with constant pressure control mode. For this reason, energy calculation analyses have been realized for variable speed centrifugal pumps, and the theoretical tool of estimation of the efficiency improvement potential for public water supply systems has been derived. The conclusions are as follows: (1 it has been found that 1110 MWh of annually consumed electrical energy can be saved up, if the control mode of variable speed network pumps will be changed from constant pressure to proportional pressure control mode with the deviation of 20% from head value of duty point at zero flow; (2 about 13 MWh of annually consumed electrical energy can be saved up, if the proportional pressure control mode with the deviation of 15% will be changed to the deviation of 20%; (3 totally about 1123 MWh or 1.12 GWh (14% of the annually consumed electrical energy by variable speed network pumps can be saved up in small public water supply systems in Latvia.

  20. Simulated effects of proposed ground-water pumping in 17 basins of east-central and southern Nevada

    Science.gov (United States)

    Schaefer, D.H.; Harrill, J.R.

    1995-01-01

    The Las Vegas Valley Water District filed 146 applications in 1989 to pump about 180,800 acre- ft/yr in 17 basins for use in Las Vegas Valley. A previously constructed, two-layer computer model of the carbonate-rock province area was configured to simulate transient conditions and used to develop first approximations of the possible effects of these withdrawals. Simulations were made using the phased pumping schedule proposed by the water district. Ground-water-level declines of several hundred feet could ultimately develop in the basins scheduled to supply most of the pumped ground water. Simulated declines in the carbonate-rock aquifer were somewhat larger than simulated declines in the overlying basin-fill deposits. Decreases in simulated regional spring flow were shown in several cells including those representing the Muddy River Springs, Hiko-Crystal-Ash spring area, and the Ash Meadows spring area. Model simulations show flow decreases of about 11 percent, 14 percent, and 2 percent, respectively, at these springs after almost 100 years of pumping. Simulated evapotranspiration also decreased in many basins, with the largest decreases occurring in the basins where ground-water withdrawals were greatest. These basins include Railroad, Spring, and Snake Valleys. The largest decrease in simulated evapotranspiration occurred in Railroad Valley, 64 percent after almost 100 years of pumpage. Model-sensitivity tests indicate that long-term results were relatively insensitive to variations in values used for aquifer storage. The adequacy of the model to simulate the effects of this proposed pumping will remain untested until actual pumping stresses have been in place long enough to cause measurable effects within the system.

  1. A serendipitous, long-term infiltration experiment: Water and tritium circulation beneath the CAMBRIC trench at the Nevada Test Site

    Science.gov (United States)

    Maxwell, Reed M.; Tompson, Andrew F. B.; Kollet, Stefan

    2009-08-01

    Underground nuclear weapons testing at the Nevada Test Site introduced numerous radionuclides that may be used subsequently to characterize subsurface hydrologic transport processes in arid climates. In 1965, a unique, 16-year pumping experiment designed to examine radionuclide migration away from the CAMBRIC nuclear test, conducted in the saturated zone beneath Frenchman Flat, Nevada, USA, gave rise to an unintended second experiment involving radionuclide infiltration through the vadose zone, as induced by seepage of pumping effluents beneath an unlined discharge trench. The combined experiments have been reanalyzed using a detailed, three-dimensional numerical model of transient, variably saturated flow and mass transport in a heterogeneous subsurface, tailored specifically for large-scale and efficient calculations. Simulations have been used to estimate tritium travel and residence times in various parts of the system for comparison with observations in wells. Model predictions of mass transport were able to clearly demonstrate radionuclide recycling behavior between the trench and pumping well previously suggested by isotopic age dating information; match travel time estimates for radionuclides moving between the trench, the water table, and monitoring and pumping wells; and provide more realistic ways in which to interpret the pumping well elution curves. Collectively, the results illustrate the utility of integrating detailed numerical modeling with diverse observational data in developing more accurate interpretations of contaminant migration processes.

  2. Heat-Powered Pump for Liquid Metals

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  3. Design and Evaluation of a Photovoltaic/Thermal-Assisted Heat Pump Water Heating System

    Directory of Open Access Journals (Sweden)

    Huan-Liang Tsai

    2014-05-01

    Full Text Available This paper presents the design, modelling and performance evaluation of a photovoltaic/thermal-assisted heat pump water heating (PVTA-HPWH system. The cooling effect of a refrigerant simultaneously enhances the PVT efficiency and effectively improves the coefficient of performance (COP of the HPWH system. The proposed model was built in the MATLAB/Simulink environment by considering the reciprocal energy exchange between a PVT evaporator and a HPWH system. In addition, the power consumption needs of the HPWH are provided by the PV electricity using a model-based control methodology. System performance is evaluated through a real field test. The results have demonstrated the power autarchy of the proposed PVTA-HPWH system with better PVT efficiency and COP. In addition, the good agreement between the model simulation and the experimental measurements demonstrate the proposed model with sufficient confidence.

  4. Oil Coking Prevention Using Electric Water Pump for Turbo-Charge Spark-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Han-Ching Lin

    2014-01-01

    Full Text Available Turbocharger has been widely implemented for internal combustion engine to increase an engine's power output and reduce fuel consumption. However, its operating temperature would rise to 340°C when engine stalls. This higher temperature may results in bearing wear, run-out, and stick, due to oil coking and insufficient lubrication. In order to overcome these problems, this paper employs Electric Water Pump (EWP to supply cool liquid to turbocharger actively when the engine stalls. The system layout, operating timing, and duration of EWP are investigated for obtaining optimal performance. The primarily experimental results show that the proposed layout and control strategy have a lower temperature of 100°C than the conventional temperature 225°C.

  5. The measured field performances of eight different mechanical and air-lift water-pumping wind-turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kentfield, J.A.C. [Univ. of Calgary, Alberta (Canada)

    1996-12-31

    Results are presented of the specific performances of eight, different, water-pumping wind-turbines subjected to impartial tests at the Alberta Renewable Energy Test Site (ARETS), Alberta, Canada. The results presented which were derived from the test data, obtained independently of the equipment manufacturers, are expressed per unit of rotor projected area to eliminate the influence of machine size. Hub-height wind speeds and water flow rates for a common lift of 5.5 m (18 ft) constitute the essential test data. A general finding was that, to a first approximation, there were no major differences in specific performance between four units equipped with conventional reciprocating pumps two of which employed reduction gearing and two of which did not. It was found that a unit equipped with a Moyno pump performed well but three air-lift machines had, as was expected, poorer specific performances than the more conventional equipment. 10 refs., 9 figs.

  6. Centennial-scale variability in Peru Margin intermediate water circulation during the last deglaciation

    Science.gov (United States)

    Bova, S. C.; Herbert, T.; Altabet, M. A.; Rosenthal, Y.

    2012-12-01

    During the Last Glacial Termination (~18-11 ka) global patterns of ocean circulation underwent large-scale change (e.g. Denton et al. 2010). Collapse of the Northern Hemisphere ice sheets led to a near shutdown of North Atlantic Deep Water formation (McManus et al. 2004), while wind-driven upwelling in the Southern Ocean strengthened (Anderson et al. 2009). The Peru Margin is linked directly to the southern high latitudes through an oceanic pathway; the Equatorial Undercurrent (EUC) carries cool, saline Subantarctic Mode Water (SAMW) directly into the Peru Margin upwelling system (Toggweiler et al. 1991). The strength of the EUC is dependent on the strength of the equatorial trade winds, which create an east-west pressure gradient as surface water piles-up in the western Pacific. Thus, Peru Margin paleo-records should reflect both local and remote signals. Here, we present evidence for rapid changes in intermediate water circulation along the Peru Margin during the last deglaciation. Benthic foraminiferal oxygen isotopic records from two rapidly accumulating sediment cores recovered from a recent cruise by the R.V. Knorr, document variability in temperature and salinity gradients at 375 and 1000 m depth, respectively. Between 14.5 and 11 ka, the oxygen isotopic values at 375 m shift to heavier values on average, approaching those observed at 1000 m. However, this is not a smooth transition. Instead, the δ18O record at 375 m exhibits centennial-scale oscillations, of up to 0.64‰ during this interval, while the deeper site shows only a smooth trend toward interglacial values. The modern boundary between SAMW and the equatorward flowing Antarctic Intermediate Water (AAIW) lies at ~600 m (Basak et al. 2010, Fiedler and Talley 2006). Therefore, we suggest the depth of the SAMW/AAIW boundary oscillated during the last deglacial, affecting only the shallow core directly. The depth of this boundary is dependent on both tropical (EUC) and remote forcing (AAIW). Changes

  7. Shallow circulation groundwater - the main type of water containing hazardous radon concentration

    Science.gov (United States)

    Przylibski, Tadeusz

    2010-05-01

    surface water forming a stream, radon very quickly escapes to the atmosphere. This is the main reason, that even in regions, where the bottoms of streams and rivers are formed by the rocks containing high amounts of radium (and uranium), surface waters very quickly lose radon escaping to the atmosphere. Concluding, surface waters cannot be the source of hazardous radon concentration. One may expect completely different situation in the case of groundwater. When the groundwater is exploited without any contact with the atmosphere, it contains higher concentration of Rn-222, than surface water in the same neighbourhood with regard to geological structure. Concentration of radon dissolved in groundwater depends first of all on the emanation coefficient of the reservoir rock. This coefficient may be calculated taking into account a few parameters, like cancentration of parent Ra-226 isotope in the reservoir rocks, effective porosity of the rock and the density of the grain framework of the rock. The way of radium atoms disposition in crystals or mineral grains of rock with reference to the pores and cracks filled with groundwater is also an important parameter. Calculations made by the author for more than 100 intakes of groundwater proove, that the highest values of emanation coefficient are characteristic for the rocks in the weathering zone - on the depths between surface level and 30 - 50 m below surface level. Groundwater exploited from the rocks of this zone contains the highest concentration of Rn-222. On the greater depths even high Ra-226 content in the reservoir rock does not affect to the Rn-222 concentration in groundwater flowing through this rock. Summing up, potentially the great radon concentration may contain groundwater of shallow circulation (up to ~50 m b.s.l.), flowing through weathered resrvoir rock with high content of parent Ra-226 isotope.

  8. Study on water lubricated bearings of high speed pump based on numerical simulation

    Science.gov (United States)

    Bai, Y. X.; Kong, F. Y.; Sun, J. R.; Yuan, X.

    2016-05-01

    A method is presented for calculating and analyzing the performance of water lubricated bearing of high speed pump under different structure. In present work, six kinds of bearings in different radial clearance(C), which are 0.02, 0.04, 0.06, 0.08, 0.10and0.12 respectively, under the same minimum water film thickness, have been designed. The models are built by CREO and numerical simulated by ansys. The main content of the present work is to analyze the relationship between the pressure and the load carrying capacity with different radial clearance(C) by ansys workbench based on Fluid-Solid coupling through ansys workbench.The stress deformations of bearings are also acquired through thermal-structure coupling. From the comparing result among the numerical analysis under the six different model of water lubricated bearing, the relationship between radial clearance(C) and load carrying capacity, as well as the deformation of bearing under different radial clearance(C), are obtained. Further, results indicates that, a proper selection of radial clearance(C) is essential to enhance the bearing performance.

  9. Theoretical heating coefficient of a heat pump water heater with heat recovery applied in household bathing room

    Institute of Scientific and Technical Information of China (English)

    KOUGuangxiao; WANGHanqing; GUWeili; KOUJianguo

    2003-01-01

    Presents the components and flow diagram of a heat pump water heater with heat reclaim applied In household bathing room, analyzes its characteristics from thermodynamical principle, calculates its theoretical heating coefficient under different operating conditions. The result shows that the maximum value of its heating coefficient is 12.9 under a typical operating condition.

  10. Analog Fixed Maximum Power Point Control for a PWM Step-downConverter for Water Pumping Installations

    DEFF Research Database (Denmark)

    Beltran, H.; Perez, E.; Chen, Zhe

    2009-01-01

    This paper describes a Fixed Maximum Power Point analog control used in a step-down Pulse Width Modulated power converter. The DC/DC converter drives a DC motor used in small water pumping installations, without any electric storage device. The power supply is provided by PV panels working around...

  11. Ground-water heat pumps: an examination of hydrogeologic, environmental, legal, and economic factors affecting their use

    Energy Technology Data Exchange (ETDEWEB)

    Armitage, D M; Bacon, D J; Massey-Norton, J T; Miller, J D

    1980-11-12

    Groundwater is attractive as a potential low-temperature energy source in residential space-conditioning applications. When used in conjuncton with a heat pump, ground water can serve as both a heat source (for heating) and a heat sink (for cooling). Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground-water quality is considered as it affects the performance and life-expectancy of the water-side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface (usually via injection wells) is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and Federal levels. Although Federal regulations currently exist, the agencies are not equipped to regulate individual, domestic installations. Computer smulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life-cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.

  12. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, J. D.; Culling, J. R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  13. 电机高效再制造在某石化厂循环水泵中的应用%High-Efficient Remanufacturing Motor for Applications of Circulating Pump Energy-Saving in Petrochemical Plant

    Institute of Scientific and Technical Information of China (English)

    刘憬奇; 张维

    2012-01-01

    For the circulating pump motor system, which load is relatively stable and longer running time but no flow regulator, the use of high efficiency motor replace the simple motor can not intuitively reflect effect of energy saving. Test and analyze the operating parameters for the circulation pump motor in a petrochemical plant, adopting high-efficient remanufacturing technology, including retain parts of original rotor, replace by a new design high-efficient stator core. The test of manufacturing motor laboratory verifies it, which meet the design requirements. When applied to the original circulating pump system and measured under the same conditions, the systems get a good energy saving effect and short payback period.%对于负荷比较稳定且运行时间较长而又无流量调节的循环水泵电机系统来说,使用高效电机简单替换并不能直观体现节能效果.在对某石化公司循环水泵电机的运行参数进行详细测试并分析后,采用电机高效再制造技术,有针对性地保留了原电机转子部分,电机定子改为新设计高效定子铁心.再制造电机实验室测试验证达到设计要求,并应用于原循环水泵系统,在前后工况一致下进行实测,获得了较好的节能效果和较短的投资回收期.

  14. Is Ekman pumping responsible for the seasonal variation of warm circumpolar deep water in the Amundsen Sea?

    Science.gov (United States)

    Kim, T. W.; Ha, H. K.; Wåhlin, A. K.; Lee, S. H.; Kim, C. S.; Lee, J. H.; Cho, Y. K.

    2017-01-01

    Ekman pumping induced by horizontally varying wind and sea ice drift is examined as an explanation for observed seasonal variation of the warm layer thickness of circumpolar deep water on the Amundsen Sea continental shelf. Spatial and temporal variation of the warm layer thickness in one of the deep troughs on the shelf (Dotson Trough) was measured during two oceanographic surveys and a two-year mooring deployment. A hydrographic transect from the deep ocean, across the shelf break, and into the trough shows a local elevation of the warm layer at the shelf break. On the shelf, the water flows south-east along the trough, gradually becoming colder and fresher due to mixing with cold water masses. A mooring placed in the trough shows a thicker and warmer layer in February and March (late summer/early autumn) and thinner and colder layer in September, October and November (late winter/early spring). The amplitude of this seasonal variation is up to 60 m. In order to investigate the effects of Ekman pumping, remotely sensed wind (Antarctic Mesoscale Prediction System wind data) and sea ice velocity and concentration (EASE Polar Pathfinder) were used. From the estimated surface stress field, the Ekman transport and Ekman pumping were calculated. At the shelf break, where the warm layer is elevated, the Ekman pumping shows a seasonal variation correlating with the mooring data. Previous studies have not been able to show a correlation between observed wind and bottom temperature, but it is shown here that when sea ice drift is taken into account the Ekman pumping at the outer shelf correlates with bottom temperature in Dotson Trough. The reason why the Ekman pumping varies seasonally at the shelf break appears to be the migration of the ice edge in the expanding polynya in combination with the wind field which on average is westward south of the shelf break.

  15. Potential depletion of surface water in the Colorado River and agricultural drains by groundwater pumping in the Parker-Palo Verde-Cibola area, Arizona and California

    Science.gov (United States)

    Leake, Stanley A.; Owen-Joyce, Sandra J.; Heilman, Julian A.

    2013-01-01

    Water use along the lower Colorado River is allocated as “consumptive use,” which is defined to be the amount of water diverted from the river minus the amount that returns to the river. Diversions of water from the river include surface water in canals and water removed from the river by pumping wells in the aquifer connected to the river. A complication in accounting for water pumped by wells occurs if the pumping depletes water in drains and reduces measured return flow in those drains. In that case, consumptive use of water pumped by the wells is accounted for in the reduction of measured return flow. A method is needed to understand where groundwater pumping will deplete water in the river and where it will deplete water in drains. To provide a basis for future accounting for pumped groundwater in the Parker-Palo Verde-Cibola area, a superposition model was constructed. The model consists of three layers of finite-difference cells that cover most of the aquifer in the study area. The model was run repeatedly with each run having a pumping well in a different model cell. The source of pumped water that is depletion of the river, expressed as a fraction of the pumping rate, was computed for all active cells in model layer 1, and maps were constructed to understand where groundwater pumping depletes the river and where it depletes drains. The model results indicate that if one or more drains exist between a pumping well location and the river, nearly all of the depletion will be from drains, and little or no depletion will come from the Colorado River. Results also show that if a well pumps on a side of the river with no drains in the immediate area, depletion will come from the Colorado River. Finally, if a well pumps between the river and drains that parallel the river, a fraction of the pumping will come from the river and the rest will come from the drains. Model results presented in this report may be considered in development or refinement of strategies

  16. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  17. The Influence of Pumping on Observed Bacterial Counts in Groundwater Samples: Implications for Sampling Protocol and Water Quality Interpretation

    Science.gov (United States)

    Kozuskanich, J.; Novakowski, K.; Anderson, B.

    2008-12-01

    Drinking water quality has become an important issue in Ontario following the events in Walkerton in 2000. Many rural communities are reliant on private groundwater wells for drinking water, and it is the responsibility of the owner to have the water tested to make sure it is safe for human consumption. Homeowners can usually take a sample to the local health unit for total coliform and E. Coli analysis at no charge to determine if the water supply is being tainted by surface water or fecal matter, both of which could indicate the potential for negative impacts on human health. However, is the sample coming out of the tap representative of what is going on the aquifer? The goal of this study is to observe how bacterial counts may vary during the course of well pumping, and how those changing results influence the assessment of water quality. Multiple tests were conducted in bedrock monitoring wells to examine the influence of pumping rate and pumped volume on observed counts of total coliform, E. Coli, fecal streptococcus, fecal coliform and heterotrophic plate count. Bacterial samples were collected frequently during the course of continuous purging events lasting up to 8 hours. Typical field parameters (temperature, salinity, pH, dissolved oxygen and ORP) were also continuously monitored during the course of each test. Common practice in groundwater studies is to wait until these parameters have stabilized or three well volumes have been removed prior to sampling, to ensure the sample is taken from new water entering the well from the aquifer, rather than the original water stored in the borehole prior to the test. In general, most bacterial counts were low, but did go above the drinking water standard of 0 counts/100mL (total coliform and E. Coli) at times during the tests. Results show the greatest variability in the observed bacterial counts at the onset of pumping prior to the removal of three well volumes. Samples taken after the removal of three well

  18. Building America Case Study: Multifamily Central Heat Pump Water Heaters, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-08

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16-month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  19. Fate of water pumped from underground and contributions to sea-level rise

    Science.gov (United States)

    Wada, Yoshihide; Lo, Min-Hui; Yeh, Pat J.-F.; Reager, John T.; Famiglietti, James S.; Wu, Ren-Jie; Tseng, Yu-Heng

    2016-08-01

    The contributions from terrestrial water sources to sea-level rise, other than ice caps and glaciers, are highly uncertain and heavily debated. Recent assessments indicate that groundwater depletion (GWD) may become the most important positive terrestrial contribution over the next 50 years, probably equal in magnitude to the current contributions from glaciers and ice caps. However, the existing estimates assume that nearly 100% of groundwater extracted eventually ends up in the oceans. Owing to limited knowledge of the pathways and mechanisms governing the ultimate fate of pumped groundwater, the relative fraction of global GWD that contributes to sea-level rise remains unknown. Here, using a coupled climate-hydrological model simulation, we show that only 80% of GWD ends up in the ocean. An increase in runoff to the ocean accounts for roughly two-thirds, whereas the remainder results from the enhanced net flux of precipitation minus evaporation over the ocean, due to increased atmospheric vapour transport from the land to the ocean. The contribution of GWD to global sea-level rise amounted to 0.02 (+/-0.004) mm yr-1 in 1900 and increased to 0.27 (+/-0.04) mm yr-1 in 2000. This indicates that existing studies have substantially overestimated the contribution of GWD to global sea-level rise by a cumulative amount of at least 10 mm during the twentieth century and early twenty-first century. With other terrestrial water contributions included, we estimate the net terrestrial water contribution during the period 1993-2010 to be +0.12 (+/-0.04) mm yr-1, suggesting that the net terrestrial water contribution reported in the IPCC Fifth Assessment Report report is probably overestimated by a factor of three.

  20. Evaluation of some natural water-insoluble cellulosic material as lost circulation control additives in water-based drilling fluid

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed Alsabagh

    2015-12-01

    In this work, three natural water-insoluble cellulosic materials; peanut hulls, bagasse and sawdust were investigated as lost circulation control materials. One hundred and eight different LCM samples made of various materials were tested with mud. The experiments were conducted in a permeability plugging apparatus (PPA at a differential pressure of 100 psi and 300 psi, using 10, 60 and 90 ceramic discs. The performance of each LCM sample was determined based on the amount of spurt loss and total fluid loss of the mud according to the American Petroleum Institute (API standard. The obtained results showed that, the amount of the fluid loss depends on the LCM material, concentration and size distribution, testing results show that, the peanut gives the best results among the bagasse and sawdust, especially fine size which exhibited better results in the filtration characteristics due to the better filling properties of this size. Peanut hulls, bagasse and sawdust show a slight effect on the rheological properties of the mud. The results were discussed on light of particle size distribution.

  1. Application of MF,Ozone and RO in Treatment of Municipal Sewage Reused as Circulating Cooling Water

    Institute of Scientific and Technical Information of China (English)

    Zhang Liqiang

    2007-01-01

    @@ Reuse of treated municipal sewage as circulating cooling water of fossil-fired power plants is a very theme worthy to be studied and spread because of the water shortage in most areas of China. This paper presents a process using coagulation + MF + ozone + partial RO to deal with the recycled sewage after treated preliminarily in sewage treatment plant. The process solves effectively the problem of higher TDS and higher total hardness in product water in winter, thus is especially fit for cities where sewage quality changes obviously with seasons.

  2. West Village Community: Quality Management Processes and Preliminary Heat Pump Water Heater Performance

    Energy Technology Data Exchange (ETDEWEB)

    Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

    2012-11-01

    West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. The project when complete will provide housing for students, faculty, and staff with a vision to minimize the community's impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

  3. West Village Community. Quality Management Processes and Preliminary Heat Pump Water Heater Performance

    Energy Technology Data Exchange (ETDEWEB)

    Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2012-11-01

    West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. When complete, the project will provide housing for students, faculty, and staff with a vision to minimize the community’s impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

  4. Research and development of a heat-pump water heater. Volume 2. R and D task reports

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, R.L.; Amthor, F.R.; Doyle, E.J.

    1978-08-01

    The heat pump water heater is a device that works much like a window air conditioner except that heat from the home is pumped into a water tank rather than to the outdoors. The objective established for the device is to operate with a Coefficient of Performance (COP) of 3 or, an input of one unit of electric energy would create three units of heat energy in the form of hot water. With such a COP, the device would use only one-third the energy and at one-third the cost of a standard resistance water heater. This Volume 2 contains the final reports of the three major tasks performed in Phase I. In Task 2, a market study identifies the future market and selects an initial target market and channel of distribution, all based on an analysis of the parameters affecting feasibility of the device and the factors that will affect its market acceptance. In the Task 3 report, the results of a design and test program to arrive at final designs of heat pumps for both new water heaters and for retrofitting existing water heaters are presented. In the Task 4 report, a plan for an extensive field demonstration involving use in actual homes is presented. Volume 1 contains a final summary report of the information in Volume 2.

  5. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  6. Optimization of Water Hammer Protection in Water Supply System for Pump Station%泵站供水系统水锤防护措施优化

    Institute of Scientific and Technical Information of China (English)

    梅红

    2012-01-01

    In order to ensure the safe operation of water supply system in pump station, priority scheme of overflow type surge tank is selected and water hammer protection measures in the water supply system are discussed. The surge tank is adjacent to the pump station, which would reduce the water hammer pressure of pump starting and ensure the water supply system safety. The practice operation in pump station also proves the rationality of design scheme.%为确保泵站供水系统的安全运行,通过对供水系统水锤防护措施的多方案分析研究,优选了溢流式调压塔.调压塔紧邻泵站布置,有利于消减水泵开停机产生的水锤压力,供水系统运行安全可靠.泵站工程运行实践验证了水锤防护设计方案的合理性.

  7. A Serendipitous, Long-Term Infiltration Experiment: Water and Tritium Circulation Beneath the CAMBRIC Ditch at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R M; Tompson, A B; Kollet, S J

    2008-11-20

    Underground nuclear weapons testing at the Nevada Test Site introduced numerous radionuclides that may be used to characterize subsurface hydrologic transport processes in arid climates. A sixteen year pumping experiment designed to examine radionuclide migration away from the CAMBRIC nuclear test, conducted in groundwater beneath Frenchman Flat in 1965, gave rise to an unintended second experiment involving radionuclide infiltration through the vadose zone, as induced by seepage of pumping effluents beneath an unlined discharge trench. The combined experiments have been reanalyzed using a detailed, three-dimensional numerical model of transient, variably saturated flow and mass transport, tailored specifically for large scale and efficient calculations. Simulations have been used to estimate radionuclide travel and residence times in various parts of the system for comparison with observations in wells. Model predictions of mass transport were able to clearly demonstrate radionuclide recycling behavior between the ditch and pumping well previously suggested by isotopic age dating information; match travel time estimates for radionuclides moving between the ditch, the water table, and monitoring wells; and provide more realistic ways in which to interpret the pumping well elution curves. Collectively, the results illustrate the utility of integrating detailed numerical modeling with diverse observational data in developing accurate interpretations and forecasts of contaminant migration processes.

  8. What Depth Should Deep-Sea Water be Pumped up from in the South China Sea for Medicinal Research?

    Institute of Scientific and Technical Information of China (English)

    HE Shan; LIU Hongbing; YANG Xue; LI Chunxia; GUAN Huashi

    2013-01-01

    In this study,seawater was pumped up from 150,200,300,500 and 1000m in the South China Sea and analyzed to make certain what depth should deep-sea water (DSW) be pumped up for medicinal usage.The pumping depth of DSW was determined on the basis of chemical ingredients.The analyses of inorganic elements and dissolved organic matter (DOM) were performed by inductively coupled plasma mass spectrometry (ICP-MS) and ultra performance liquid chromatography-mass spectrometry (UPLC-MS) respectively.The raw data were used for hierarchical cluster analysis (HCA) and principal component analysis (PCA).The results showed that seawater pumped up from 500m and 1000m was similar in their chemical ingredients,and was different from the seawater pumped up from other depths.These results indicated that seawater from more than 500 m depth had relatively stable chemical ingredients and could be used as DSW in the South China Sea.

  9. Proposition of Corrosion Expertise method for water pumping stations Application to the case of northern station of Fez city - Morocco

    Directory of Open Access Journals (Sweden)

    Iatimad AKHRIF

    2014-01-01

    Full Text Available In a constant progress of a regulatory and environmental context, the diagnostic and the expertise of the corrosion, the determination of its causes and factors, and the proposed solutions to this phenomenon represent a real challenge for all stakeholders of industry. We propose in this paper to a complete study of the corrosion risk in the case of water pumping stations, based on some industrial methods of risk analysis (FMEA and multiple laboratory tests and analysis. Finally we have proposed a masterplan (chart as perspectives, indicating the encounter corrosion problems in the case of the northern pumping station of Fez city (as case study. The masterplan includes also the corresponding solutions, that can stop or minimize degradation of the focused equipments by the various mechanisms of corrosion. Our proposals will serve as reference during futur installation of new water equipments, or during the study and choice of appropriate materials in the Water Studies Department.

  10. A contribution to water hammer analysis in pumped-storage power plants; Ein Beitrag zur Druckstossberechnung von Pumpspeicheranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hoeller, Stefan; Jaberg, Helmut [TU Graz (Austria). Inst. fuer Hydraulische Stroemungsmaschinen

    2013-03-01

    The operation of pumped-storage power plants induces a highly transient fluid flow in the penstock of high head water power plants. In the planning phase a reliable prediction of the transient plant behaviour in unsteady load cases such as e.g. machine start or switching load cases is necessary. Numerical simulation methods provide a tool to calculate the occurring pressure pulsations or mass oscillations as well as for the optimization of the transient behaviour. Commercial software-packages for water hammer simulations usually do not provide numerical models for a realistic calculation of complex components like surge tanks, turbines or emergency closing valves in a high head water power plant. But especially these components need to be modelled correctly in order to get a significant and reliable solution. This article shows the practice ofthe development of a custom-designed numerical model on the example of a pump turbine. (orig.)

  11. Fate of Water Pumped from Underground and Contributions to Sea Level Rise

    Science.gov (United States)

    Wada, Yoshihide; Lo, Min-Hui; Yeh, Pat J.-F.; Reager, John T.; Famiglietti, James S.; Wu, Ren-Jie; Tseng, Yu-Heng

    2016-01-01

    The contributions from terrestrial water sources to sea-level rise, other than ice caps and glaciers, are highly uncertain and heavily debated1-5. Recent assessments indicate that groundwater depletion (GWD) may become the most important positive terrestrial contribution6-10 over the next 50 years, probably equal in magnitude to the current contributions from glaciers and ice caps6. However, the existing estimates assume that nearly 100% of groundwater extracted eventually ends up in the oceans. Owing to limited knowledge of the pathways and mechanisms governing the ultimate fate of pumped groundwater, the relative fraction of global GWD that contributes to sea-level rise remains unknown. Here, using a coupled climate-hydrological model11,12 simulation, we show that only 80% of GWDends up in the ocean. An increase in runo to the ocean accounts for roughly two-thirds, whereas the remainder results from the enhanced net flux of precipitation minus evaporation over the ocean, due to increased atmospheric vapour transport from the land to the ocean. The contribution of GWD to global sea-level rise amounted to 0.02 (+/- 0.004)mm yr(sup-1) in 1900 and increased to 0.27 (+/- 0.04)mm yr(sup-1) in 2000. This indicates that existing studies have substantially overestimated the contribution of GWD to global sea-level rise by a cumulative amount of at least 10 mm during the twentieth century and early twenty-first century. With other terrestrial water contributions included, we estimate the net terrestrial water contribution during the period 1993-2010 to be +0.12 +/-0.04)mm yr(sup-1), suggesting that the net terrestrialwater contribution reported in the IPCC Fifth Assessment Report report is probably overestimated by a factor of three.

  12. Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

    2014-07-21

    Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes’ space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

  13. The integration of water loop heat pump and building structural thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  14. Hemólise em circulação extracorpórea: estudo comparativo entre bomba de rolete e bomba centrífuga Hemolysis in extracorporeal circulation: a comparative study between roller and centrifugal pumps

    Directory of Open Access Journals (Sweden)

    Paulo M Pêgo-Fernandes

    1989-12-01

    Full Text Available O uso de bomba centrífuga como suporte circulatório para pacientes em choque cardiogênico, após a realização de cirurgia cardíaca e como suporte para pacientes com falência cardíaca que estão aguardando doação para transplante cardíaco, tem sido progressivamente ampliado. Alguns centros utilizam a bomba centrífuga em circulação extracorpórea de rotina, como substituto do rolete arterial,. No INCOR, operamos dois grupos de pacientes triarteriais submetidos a revascularização do miocárdio, operados pelo mesmo cirurgião, com o mesmo método de proteção miocárdica (cardioplegia cristalóide, hipotermia sistêmica a 28ºC e tópica com soro fisiológico. Todos os parâmetros dos dois grupos foram sem diferença estatística no pré-operatório: idade, sexo, superfície corpórea e parâmetros hematológicos. Foram operados 27 pacientes consecutivos e divididos, alternadamente, em 13 pacientes com bomba centrífuga e 14 com rolete arterial. O oxigenador utilizado em todos foi o de bolhas da Macchi. O perfusionista foi sempre o mesmo. O tempo de perfusão médio foi de 105 minutos no Grupo 1 (rolete e 103 minutos no Grupo 2 (bomba centrífuga. Analisamos os seguintes parâmetros: haptoglobina (HP, tempo de tromboplastina parcial ativada (TTPA, tempo de trombina (TT e número e plaquetas pré e pós circulação extracorpórea e, comparando-se os dois grupos, não houve diferença estatística significante entre eles, nos diversos parâmetros. Concluímos que, para circulação extracorpórea com duração habitual, não há diferença hematológica no uso da bomba centrífuga em relação ao rolete arterial.The utilization of centrifugal pumps as circulatory support in patients with cardiogenic shock after cardiac surgery and as support in patients waiting for cardiac transplant has been progressively extended. Some centers utilize the centrifugal pump in routine extracorporeal circulation as a substitute for roller pump. At

  15. The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle.

    Science.gov (United States)

    Yano, Naomine; Muramoto, Kazumasa; Shimada, Atsuhiro; Takemura, Shuhei; Baba, Junpei; Fujisawa, Hidenori; Mochizuki, Masao; Shinzawa-Itoh, Kyoko; Yamashita, Eiki; Tsukihara, Tomitake; Yoshikawa, Shinya

    2016-11-11

    Bovine heart cytochrome c oxidase (CcO) pumps four proton equivalents per catalytic cycle through the H-pathway, a proton-conducting pathway, which includes a hydrogen bond network and a water channel operating in tandem. Protons are transferred by H3O(+) through the water channel from the N-side into the hydrogen bond network, where they are pumped to the P-side by electrostatic repulsion between protons and net positive charges created at heme a as a result of electron donation to O2 bound to heme a3 To block backward proton movement, the water channel remains closed after O2 binding until the sequential four-proton pumping process is complete. Thus, the hydrogen bond network must collect four proton equivalents before O2 binding. However, a region with the capacity to accept four proton equivalents was not discernable in the x-ray structures of the hydrogen bond network. The present x-ray structures of oxidized/reduced bovine CcO are improved from 1.8/1.9 to 1.5/1.6 Å resolution, increasing the structural information by 1.7/1.6 times and revealing that a large water cluster, which includes a Mg(2+) ion, is linked to the H-pathway. The cluster contains enough proton acceptor groups to retain four proton equivalents. The redox-coupled x-ray structural changes in Glu(198), which bridges the Mg(2+) and CuA (the initial electron acceptor from cytochrome c) sites, suggest that the CuA-Glu(198)-Mg(2+) system drives redox-coupled transfer of protons pooled in the water cluster to the H-pathway. Thus, these x-ray structures indicate that the Mg(2+)-containing water cluster is the crucial structural element providing the effective proton pumping in bovine CcO.

  16. 浅谈离心式水泵启动时真空的重要性%Discussion on Significance of Vacuum while Starting up Centrifugal Water Pump

    Institute of Scientific and Technical Information of China (English)

    宋红英

    2011-01-01

    The paper presents the structure and working principles of centrifugal water pump and analyzes the hazards caused by the air existing in pump,which shows that vacuum is essential to the pump drainage.%阐述了离心式水泵的结构和工作原理,说明真空是水泵排水的必要条件。分析泵内存有空气引起的危害。

  17. Correcting Working Postures in Water Pump AssemblyTasks using the OVAKO Work Analysis System (OWAS

    Directory of Open Access Journals (Sweden)

    Atiya Kadhim Al-Zuheri

    2008-01-01

    Full Text Available Ovako Working Postures Analyzing System (OWAS is a widely used method for studying awkward working postures in workplaces. This study with OWAS, analyzed working postures for manual material handling of laminations at stacking workstation for water pump assembly line in Electrical Industrial Company (EICO / Baghdad. A computer program, WinOWAS, was used for the study. In real life workstation was found that more than 26% of the working postures observed were classified as either AC2 (slightly harmful, AC3 (distinctly harmful. Postures that needed to be corrected soon (AC3 and corresponding tasks, were identified. The most stressful tasks observed were grasping, handling, and positioning of the laminations from workers. The construction of real life workstation is modified simultaneously by redesign suggestions in the values of location (positioning factors for stacking workstation. The simulation workstation executed by mean of parametric CAD software. That modifications lead to improvement in the percentage of harmful postures. It was therefore recommended the use of supplementary methods is required to identify ergonomic risk factors for handling work or other hand-intensive activities on industry sites.

  18. The Dynamic Characteristic Analysis of the Water Lubricated Bearing-Rotor System in Seawater Desalination Pump

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ye

    2014-05-01

    Full Text Available In order to study the water lubricated bearing-rotor system in seawater desalination pump, this paper is based on the coupling between the lubricating flow field and the rotor dynamics. The fluid-solid interaction (FSI method, Rigid Body, was adopted to study the journal orbit of the bearing-rotor system under the periodic unbalancing load. The influences of geometric and working parameter to the journal orbit were combined to analyze the stability and reliability of the bearing-rotor system. The result shows that increasing the rotating speed would increase the journal whirling amplitude and the system sensitivity to the external excitation and unbalancing load were promoted; increasing the aspect ratio would reduce the journal whirling amplitude and cause the system to be more unstable; increasing the inlet pressure would reduce the journal whirling amplitude and cause the system to be more unstable; increasing the unbalancing load would reduce the stability margin and the system is easy to be unstable if obstructed; increasing the radial clearance would reduce the journal whirling amplitude and cause the system to be more unstable. The attitude angle has no influence on the journal whirling amplitude but would influence the stability of system and the value of attitude angle should not be large.

  19. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  20. Two proposals for pumping calculations of non–newtonian fluids, water treatment plants disposal sludges case

    Directory of Open Access Journals (Sweden)

    H. Gardea–Villegas

    2008-04-01

    Full Text Available This paper presents two ways to calculate the pumping power of non Newtonian fluids and especially yield pseudoplastics which are the kind of disposal fluids from Water Treatment Plants. Fluids called sludges. The proposals included here, are based in methods suggested by Levenspiel (1986 applicable to determine the performance of Bingham plastics and pseudoplastic fluids using a graphical approximation of the rheological behavior of these materials. This approach has the advantage that is appropriate to any kind of regime. Otherwise, Levenspiel underlines, that there is not yet a chart who relates the roughness coefficient with the Reynolds number for general plastics, so it is not possible by now to calculate the yield pseudoplastic fluid. Its calculation is the aim of this study. Levenspiel proposes an approach subject to the assessment of the project manager, and will therefore entail personal observations, with the limitations that this can cause. The results obtained by both propositions, are very similar. This is part of a doctorate study done by the author under the direction of Dr. Rafael B. Carmona in the Faculty of Engineering of the National Autonomous University of Mexico.

  1. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  2. Study of the surface water circulation in San Blas channel (Argentina using landsat imagery

    Directory of Open Access Journals (Sweden)

    Débora Beigt

    2011-09-01

    Full Text Available This paper deals with the application of satellite images to study turbidity and water circulation patterns in San Blas channel during a theoretical tidal cycle. Eight Landsat TM and ETM images acquired under clear-sky conditions and representing different tidal stages were selected from a pool of Landsat images provided by the argentinean National Commission of Space Activities (CONAE and the US Geological Survey. Standard digital image processing techniques were used to perform geometric and radiometric corrections on the visible and near-infrared bands. An image-based atmospheric correction (COST method by CHAVEZ, 1996 was applied. An ISODATA unsupervised classification was performed in order to identify different turbidity levels throughout the channel and adjacent areas. The results suggest that suspended sediment transport towards the channel mouth by ebb currents occurs along both flanks. These currents carry suspended sediment into the open sea, generating an ebb tidal delta which tends to rotate in a clockwise direction. Flood currents trigger turbidity mostly over the southern flank of the channel, generating a flood tidal delta with elongated banks extending in the direction of the tidal currents. From the elongated shape of the turbidity plumes, general tidal circulation patterns were identified.Este trabalho analisa a turbidez e a circulação da agua no canal San Blas durante um ciclo de maré teórico através de imagens satelitais. Foram utilizadas 8 imagens Landsat TM e ETM adquiridas em condições de céu claro e ao longo de diferentes momentos da maré. As imagens foram proporcionadas pela Comisión Nacional de Actividades Espaciales (CONAE y pelo Serviço Geológico dos Estados Unidos (USGS. As correções geométricas e radiométricas foram realizadas nas bandas do espectro visível e do infravermelho próximo, utilizando técnicas padrões de processamento digital. Foi aplicada a correção atmosférica COST (CHAVEZ, 1996

  3. Effect of PEG and water-soluble chitosan coating on moxifloxacin-loaded PLGA long-circulating nanoparticles.

    Science.gov (United States)

    Mustafa, Sanaul; Devi, V Kusum; Pai, Roopa S

    2017-02-01

    Moxifloxacin (MOX) is a Mycobacterium tuberculosis DNA gyrase inhibitor. Due to its intense hydrophilicity, MOX is cleared from the body within 24 h and required for repetitive doses which may then result in hepatotoxicity and acquisition of MOX resistant-TB, related with its use. To overcome the aforementioned limitations, the current study aimed to develop PLGA nanoparticles (PLGA NPs), to act as an efficient carrier for controlled delivery of MOX. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to MOX-PLGA NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was rose for surface modification of NPs. Surface modified NPs (MOX-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetic and in vivo biodistribution following oral administration were investigated. NP surface charge was closed to neutral +4.76 mV and significantly affected by the WSC coating. MOX-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long-drawn-out the blood circulation half-life with resultant reduced liver sequestration vis-à-vis MOX-PLGA NPs. The studies, therefore, indicate the successful formulation development of MOX-PEG-WSC NPs that showed sustained release behavior from nanoparticles which indicates low frequency of dosing.

  4. Air/water heat pumps in older buildings. Energy conservation in a stock; Luft/Wasser-Waermepumpen im Altbau. Energiesparen im Bestand

    Energy Technology Data Exchange (ETDEWEB)

    Bauknecht, Steffen [Mitsubishi Electric, Ratingen (Germany)

    2010-02-15

    Due to the technical development, nowadays it is possible to heat older buildings which are not insulated thermally subsequently with monovalent air/water heat pumps. For example, in Bonn-Oberkassel (Federal Republic of Germany) a nearly one hundred year old art nouveau mansion is supplied with apartment warmth and warm water by means of two air/water heat pumps. The economical heat supply as well as the small structural expenditure decided to use this technology.

  5. Energy efficient ammonia heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Claus; Pijnenburg, B.; Schumann Grindorf, H. [Danish Technological Institute, Aarhus (Denmark); Christensen, Rolf [Alfa Laval, Lund (Sweden); Rasmussen, Bjarne D. [Grundfos, Bjerringbro (Denmark); Gram, S.; Fredborg Jakobsen, D. [Svedan Industri Koeleanlaeg, Greve (Denmark)

    2013-09-15

    The report describes the development of a highly effective ammonia heat pump. Heat pumps play an increasingly important role in the search for more effective use of energy in our society. Highly efficient heat pumps can contribute to reduced energy consumption and improved economy of the systems which they are a part of. An ammonia heat pump with high pressure reciprocating compressor and a novel split condenser was developed to prove potential for efficiency optimization. The split of the condenser in two parts can be utilized to obtain smaller temperature approaches and, thereby, improved heat pump efficiency at an equal heat exchanger area, when compared to the traditional solution with separate condenser and de-superheater. The split condenser design can also be exploited for heating a significant share of the total heating capacity to a temperature far above the condensing temperature. Furthermore, the prototype heat pump was equipped with a plate type evaporator combined with a U-turn separator with a minimum liquid height and a liquid pump with the purpose of creating optimum liquid circulation ratio for the highest possible heat transfer coefficients at the lowest possible pressure drop. The test results successfully confirmed the highest possible efficiency; a COP of 4.3 was obtained when heating water from 40 deg. C to 80 deg. C while operating with evaporating/condensing temperatures of +20 deg C/+73 deg C. (Author)

  6. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted

  7. Water-jet Propulsion with Positive Displacement Pump%正排量泵喷水推进技术

    Institute of Scientific and Technical Information of China (English)

    杨友胜; 朱玉泉; 罗小辉

    2011-01-01

    喷水推进是一种高性能的船舶推进方式.针对当前船舶推进器存在的问题,介绍了一种新型以正排量泵为核心的喷水推进方式,比较分析了正/负排量泵喷水推进两者的优缺点,得出正排量泵喷泵喷是一种能进一步改善船只性能的推进技术.%Water-jet propulsion is a high performance propulsion method. Regarding the current problems in ship propulsion appliances, a new type of water-jet propulsion is introduced, which uses positive displacement (PD) pump as power unit. A comparative study is made between the positive and negative displacement (ND) pump water-jet propulsions. The results show that the PD pump water-jet propulsion can further improves the performance ofwatercraft.

  8. 反应器外循环泵机械密封失效分析及改造%Analysis and Renovation of Mechanical Seal Leak on Circulation Pump outside the Reactor

    Institute of Scientific and Technical Information of China (English)

    李峥

    2012-01-01

    分析某装置反应器循环泵机械密封频繁泄漏量及端面温度高的原因.指出介质端密封载荷系数选择不当,导致密封端面比压偏小,是介质侧密封失效的主要原因;泵送环输送能力低,循环隔离液不能有效将密封摩擦热传递出去是导致大气侧端面温度高过高的主要原因.通过调整载荷系数和提高机械密封泵送能力,密封改造后使用寿命大幅提高,解决了循环泵机械密封频繁泄漏的问题.%The reason for the frequent leak on the mechanical seal of the circulating pump outside the reactor and for the high temperature on the seal end face was analyzed. Inappropriate load factor of the medium side seal leading to the low pressure on the seal end face was the main reason for the leakage of the seal. High temperature on atmospheric side was mainly caused by the low delivery capacity of pump ring and failure friction heat transfer of cycle fluid. By adjusting the load factor and improving the delivery capacity of the mechanical seal, the life of the mechanical seal is increased greatly after the renovation and the problem of frequently leak on mechanical seal of the circulating pump is solved.

  9. Spinning Reserve from Pump Load: A Technical Findings Report to the California Department of Water Resources

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, BJ

    2005-05-06

    The Oak Ridge National Laboratory (ORNL), at the request of the California Energy Commission and the U.S. Department of Energy, is investigating opportunities for electrical load to provide the ancillary service of spinning reserve to the electric grid. The load would provide this service by stopping for a short time when there is a contingency on the grid such as a transmission line or generator outage. There is a possibility that a significant portion of the California Independent System Operator's (CAISO's) spinning reserve requirement could be supplied from the California Department of Water Resources (CDWR) pumping load. Spinning reserve has never been supplied from load before, and rule changes would be needed to allow it. In this report, we are presenting technical findings on the possibility of supplying spinning reserve from pumping system load. In parallel, we are pursuing the needed rule changes with the North American Electric Reliability Council (NERC), the Federal Energy Regulatory Commission (FERC), the Western Electricity Coordinating Council (WECC), and the CAISO. NERC and FERC have agreed that they have no prohibition against supplying spinning reserve from load. The WECC Minimum Operability Reliability Criteria working group has agreed that the concept should be considered, and they are presently discussing the needed tariff and rule changes. Presently, spinning reserve is provided by generation that is actually spinning but is operating at low power levels and can be ramped up quickly to provide reserve power. In a sense, this is an inefficient and environmentally unfriendly way of providing reserves because it requires the generator to operate at a low power level that may be inefficient and may discharge more pollutants per kW than operating at rated power. It would be better if this generation capacity were in a position to bid into the energy market. Providing an additional supply of spinning reserve would tend to reduce prices for

  10. A model study of influence of circulation on the pollutant transport in the Zhujiang River Estuary and adjacent coastal waters

    Institute of Scientific and Technical Information of China (English)

    WONG Lai Ah; GUAN Weibing; CHEN Jay-Chung; SU Jilan

    2004-01-01

    A tracer model with random diffusion coupled to the hydrodynamic model for the Zhujiang River Estuary (Pearl River Estuary, PRE) is to examine the effect of circulations on the transport of completely conservative pollutants. It is focused on answering the following questions: (1) What role does the estuarine plume front in the winter play in affecting the pollutants transport and its distribution in the PRE ? (2) What effect do the coastal currents driven by the monsoon have on the pollutants transport? The tracer experiment results show that: (1) the pollutant transport paths strongly depend on the circulation structures and plume frontal dynamics of the PRE and coastal waters; (2) during the summer when a southwesterly monsoon prevails, the pollutants from the four easterly river inlets and those from the bottom layer of offshore stations will greatly influence the water quality in Hong Kong waters, however, the pollutants released from the four westerly river-inlets will seldom affect the water quality of Hong Kong waters due to their transport away from Hong Kong; (3) during the winter when a northeasterly monsoon prevails, all pollutants released from the eight river gates will be laterally transported seaward inside the estuary and transport westward in the coastal waters along the river plume frontal zone. However, pollutants released from the surface layer of offshore stations near or east of the Dangan Channel will be carried into the coastal waters of Hong Kong by the landward component of the westward coastal current driven by the winter northeasterly monsoon. But the pollutants from the bottom layer of the offshore stations will be carried away from the offshore by the bottom flow driven by the northeasterly monsoon. This implies that only surface-released matter from offshore stations will affect the water quality of the coastal waters around Hong Kong during the winter when a northeasterly monsoon prevails.

  11. Discussion on water pump installation of thermal power station%谈热力站内水泵的安装

    Institute of Scientific and Technical Information of China (English)

    钱景

    2014-01-01

    结合工作实践经验,对热力站内常见水泵的安装过程作了较详细的叙述,并就水泵底数安装、电动机安装、管路安装等环节总结了几点安装注意事项,对类似工程有一定的参考价值。%Combining with working practice,the paper illustrates common water pump installation process of thermal power station,summarizes water pump bottom value installation,electrical machine installation and pipeline installation and other installation matters,which has certain guiding meaning for similar engineering.

  12. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 2: Appendix A through E

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  13. Pierre Gorce working on a helium pump.

    CERN Multimedia

    1975-01-01

    This type of pump was designed by Mario Morpurgo, to circulate liquid helium in superconducting magnets wound with hollow conductors. M. Morpurgo, Design and construction of a pump for liquid helium, CRYIOGENICS, February 1977, p. 91

  14. ENERGY AND ENVIRONMENTAL ANALYSIS OF AN OPEN-LOOP GROUND-WATER HEAT PUMP SYSTEM IN AN URBAN AREA

    Directory of Open Access Journals (Sweden)

    Giorgia Baccino

    2010-01-01

    Full Text Available In this paper a multidisciplinary methodology for analyzing the opportunities for exploitation of open-loop groundwater heat pump is proposed. The approach starts from a model for calculation of a time profile of thermal requirements (heat and domestic hot water. This curve is then coupled with a model of the control system in order to determine the heat pump operation, which includes its energy performances (primary energy consumption as well as profiles of water discharge to the aquifer in terms of mass flow rate and temperature. Then the thermo-fluid dynamics of the aquifer is performed in order to determine the system impact on the environment as on possible other systems. The application to a case study in the Piedmont region, in Italy, is proposed. Energy analysis of the system shows that ground-water heat pumps constitute an interesting option in areas with small housing density, where there is not district heating. In comparison with typical heating/cooling systems, environmental benefits are related with reduction in global emissions. These benefits may be significantly enhanced using renewables as the primary energy source to produce electricity. The analysis also shows that possible issues related with the extension of the subsurface thermal plume may arise in the case of massive utilization of this technology.

  15. Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2016-12-01

    Full Text Available This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP and wastewater source heat pump (WSHP technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and condenser outlet water temperature at 50 °C, the theoretical COP of the system can reach 9.784 at an evaporating temperature of 14.96 °C, condensing temperature of 48.74 °C, and preheated water temperature of 27.19 °C.

  16. 焦化污水零排放和水循环系统的建立%Zero discharge of cokemaking waste water and water circulation system

    Institute of Scientific and Technical Information of China (English)

    闻晓今

    2013-01-01

      焦化污水通过采用生化处理、深度处理和中水回用技术处理后,用作循环水补充水,能节约新水,实现污水零排放和水资源的综合利用,取得一定的经济效益和社会效益。%Waste water from cokemaking, after bio-treatment, deep treatment and reuse of reclaimed water,can be recycled as makeup water of circulation for new water saving and utilization of waste water zero discharge and reclaimed water reuse ,which achieves economic benefit and social benefit .

  17. Experimental and numerical stability investigations on natural circulation boiling water reactors

    CERN Document Server

    Marcel, CP

    2007-01-01

    In the design of novel nuclear reactors active systems are replaced by passive ones in order to reduce the risk of failure. For that reason natural circulation is being considered as the primary cooling mechanism in next generation nuclear reactor designs

  18. Cooling water pump of a rotary piston internal combustion engine. Kuehlwasserpumpe einer Rotationskolbenbrennkraftmaschine

    Energy Technology Data Exchange (ETDEWEB)

    Eiermann, D.; Nuber, R.

    1991-05-23

    Spatial arrangement of a cooling pump of a trochoid-type rotary piston internal combustion engine with a liquid-cooled casing. First the coolant is conducted isochronically and in parallel through cooling chambers of the jacket and a side part into a common hollow space from where it is transported by the cooling pump into the other side part, on past a thermostat to a cooler located in the other side part and back into the cooling loop in the casing. The cooling pump is located in the jacket and its impeller is positioned in a cooling chamber of the other side part. Its shaft can be fitted with a speed controller for the fresh air supply and a lubricating pump.

  19. Comparison of circulation times of thermal waters discharging from the Idaho batholith based on geothermometer temperatures, helium concentrations, and 14C measurements

    Science.gov (United States)

    Mariner, R.H.; Evans, William C.; Young, H.W.

    2006-01-01

    Circulation times of waters in geothermal systems are poorly known. In this study, we examine the thermal waters of the Idaho batholith to verify whether maximum system temperatures, helium concentrations, and 14C values are related to water age in these low-to-moderate temperature geothermal systems. He/N2 values of gas collected from thermal waters that circulate solely through distinct units of the Idaho batholith correlate linearly with Na-K-(4/3)Ca geothermometer temperatures, showing that both variables are excellent indicators of relative water age. Thermal waters that circulate in early Tertiary (45-50 Ma) granite of the Sawtooth batholith have 3.5 times more helium than thermal waters of the same aquifer temperature that circulate through the main Cretaceous granite (average 91 Ma). Hot spring waters circulating in hydrothermally altered parts of the batholith have very little dissolved helium and no correlation between He/N2 values and geothermometer temperatures. Thermal waters discharging from the Idaho batholith are more depleted in deuterium than modern precipitation in the area. Recharge to these geothermal systems occurred from at least 10,000 BP for the cooler systems up to about 33,000 BP for the hotter systems.

  20. Water Pumping Stations, MFRDC has WPS for some of the counties and cities., Published in 2008, 1:1200 (1in=100ft) scale, Middle Flint RDC.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Pumping Stations dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of 2008. It is described...

  1. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2004-08-04

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other

  2. Alternative backing up pump for turbomolecular pumps

    Science.gov (United States)

    Myneni, Ganapati Rao

    2003-04-22

    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  3. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers.

  4. Strategic market approach for entering the Indian solar water pump market : plan the marketing strategy for solar off-grid applications

    OpenAIRE

    Almanasreh, Khalil

    2011-01-01

    This study examines the strategic market approach for investing in solar water pumps market (SWP) in India, and Punjab state as a business case. The main research question is: What is an appropriate strategic market approach to invest in solar water pump market in India? The study focuses on the marketing strategy and strategic planning to enter the Indian market. The thesis follows the qualitative study design where the data was collected by observing the market and interviewing main sta...

  5. Conceptual design of a passive moderator cooling system for a pressure tube type natural circulation boiling water cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Pal, Eshita, E-mail: eshi.pal@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Nayak, Arun K.; Vijayan, Pallipattu K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-09-15

    Highlights: • Passive moderator cooling system is designed to cool moderator passively during SBO. • PMCS is a system of two natural circulation loops, coupled via a heat exchanger. • RELAP5 analyses show that PMCS maintains moderator within safe limits for 7 days. - Abstract: The recent Fukushima accident has raised strong concern and apprehensions about the safety of reactors in case of a prolonged Station Black Out (SBO) continuing for several days. In view of this, a detailed study was performed simulating this condition in Advanced Heavy Water Reactor. In this study, a novel concept of moderator cooling by passive means has been introduced in the reactor design. The Passive Moderator Cooling System (PMCS) consists of a shell and tube heat exchanger designed to remove 2 MW heat from the moderator inside Calandria. The heat exchanger is located at a suitable elevation from the Calandria of the reactor, such that the hot moderator rises due to buoyancy into the heat exchanger and upon cooling from shell side water returns to Calandria forming a natural circulation loop. The shell side of the heat exchanger is also a natural circulation loop connected to an overhead large water reservoir, namely the GDWP. The objective of the PMCS is to remove the heat from the moderator in case of an SBO and maintaining its temperature below the permissible safe limit (100 °C) for at least 7 days. The paper first describes the concept of the PMCS. The concept has been assessed considering a prolonged SBO for at least 7 days, through an integrated analysis performed using the code RELAP5/MOD3.2 considering all the major components of the reactor. The analysis shows that the PMCS is able to maintain the moderator temperature below boiling conditions for 7 days.

  6. Apartment block with heat-pumps and solar energy; Mit Waermepumpe und Sonnenenergienutzung

    Energy Technology Data Exchange (ETDEWEB)

    Haltiner, E. W.

    2008-07-01

    This article takes a look at how the owner of an apartment block in Zurich, Switzerland has moved away from conventional heating-oil and installed two air/water heat pumps and 36 m{sup 2} of solar collectors to provide the necessary heating power and domestic hot water. The new installation, which also features speed-controlled circulation pumps in the heating circuit is briefly described. Subsidies received and tax-saving aspects are discussed. The heat pumps, which use the Enhanced Vapour Injection EVI system are briefly looked at. This system allows higher flow temperatures to be attained.

  7. Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations

    Science.gov (United States)

    Steen-Larsen, H. C.; Risi, C.; Werner, M.; Yoshimura, K.; Masson-Delmotte, V.

    2017-01-01

    The skills of isotope-enabled general circulation models are evaluated against atmospheric water vapor isotopes. We have combined in situ observations of surface water vapor isotopes spanning multiple field seasons (2010, 2011, and 2012) from the top of the Greenland Ice Sheet (NEEM site: 77.45°N, 51.05°W, 2484 m above sea level) with observations from the marine boundary layer of the North Atlantic and Arctic Ocean (Bermuda Islands 32.26°N, 64.88°W, year: 2012; south coast of Iceland 63.83°N, 21.47°W, year: 2012; South Greenland 61.21°N, 47.17°W, year: 2012; Svalbard 78.92°N, 11.92°E, year: 2014). This allows us to benchmark the ability to simulate the daily water vapor isotope variations from five different simulations using isotope-enabled general circulation models. Our model-data comparison documents clear isotope biases both on top of the Greenland Ice Sheet (1-11‰ for δ18O and 4-19‰ for d-excess depending on model and season) and in the marine boundary layer (maximum differences for the following: Bermuda δ18O = 1‰, d-excess = 3‰; South coast of Iceland δ18O = 2‰, d-excess = 5‰; South Greenland δ18O = 4‰, d-excess = 7‰; Svalbard δ18O = 2‰, d-excess = 7‰). We find that the simulated isotope biases are not just explained by simulated biases in temperature and humidity. Instead, we argue that these isotope biases are related to a poor simulation of the spatial structure of the marine boundary layer water vapor isotopic composition. Furthermore, we specifically show that the marine boundary layer water vapor isotopes of the Baffin Bay region show strong influence on the water vapor isotopes at the NEEM deep ice core-drilling site in northwest Greenland. Our evaluation of the simulations using isotope-enabled general circulation models also documents wide intermodel spatial variability in the Arctic. This stresses the importance of a coordinated water vapor isotope-monitoring network in order to discriminate amongst these model

  8. Influence of electromagnetic field intensity on the metastable zone width of CaCO3 crystallization in circulating water

    Science.gov (United States)

    Wang, Jianguo; Liang, Yandong; Chen, Si

    2016-09-01

    In this study, changes in the metastable zone width of CaCO3 crystallization was determined through conductivity titration by altering electromagnetic field parameters applied to the circulating water system. The critical conductivity value and metastable zone curves of CaCO3 crystallization were determined under different solution concentrations and electromagnetic field intensities. Experimental results indicate that the effect of the electromagnetic field intensity on the critical conductivity value intensifies with the increase of solution concentration. Moreover, the metastable zone width of CaCO3 crystallization increases with the increase of electromagnetic field intensity within 200 Gs, thereby prolonging the induction period of nucleation.

  9. The use of water as a high temperature heat pump fluid at the Auchroisk distillery, Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Castle, T. [EA Technology Ltd., Chester (United Kingdom)

    1995-12-01

    The first steam heat pump for distillation in the UK was installed in a malt whisky distillery in 1987. Novel aspects of the system are modifications to the batch process to enable continuous and efficient operation of the heat pump across a number of stills, the use of steam in a closed cycle and compression of the steam by a twin-screw compressor. The heat pump is incorporated into the distillery steam distribution system operating in parallel with the existing boiler, allowing complete flexibility of operation. The installation demonstrates the large primary energy savings that can be achieved by the optimisation of integrated heat pumps in batch processes. The principle and much of the system design could be applied to continuous distillation processes and to other batch operations such as drying, steam stripping and solvent recovery. In this paper a steam heat pump is described which has been installed in the Auchroisk malt whisky distillery of International Distillers and Vintners Ltd (IDV). It is a result of a four year R and D programme at EA Technology Ltd. 7 figs., 3 refs.

  10. Commercial Integrated Heat Pump with Thermal Storage --Demonstrate Greater than 50% Average Annual Energy Savings, Compared with Baseline Heat Pump and Water Heater (Go/No-Go) FY16 4th Quarter Milestone Report

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abu-Heiba, Ahmad [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    For this study, we authored a new air source integrated heat pump (AS-IHP) model in EnergyPlus, and conducted building energy simulations to demonstrate greater than 50% average energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, based on the EnergyPlus quick-service restaurant template building. We also assessed water heating energy saving potentials using ASIHP versus gas heating, and pointed out climate zones where AS-IHPs are promising.

  11. ALOPEX stochastic optimization for pumping management in fresh water coastal aquifers

    Science.gov (United States)

    Stratis, P. N.; Saridakis, Y. G.; Zakynthinaki, M. S.; Papadopoulou, E. P.

    2014-03-01

    Saltwater intrusion in freshwater aquifers is a problem of increasing significance in areas nearby the coastline. Apart from natural disastrous phenomena, such as earthquakes or floods, intense pumping human activities over the aquifer areas may change the chemical composition of the freshwater aquifer. Working towards the direction of real time management of freshwater pumping from coastal aquifers, we have considered the deployment of the stochastic optimization Algorithm of Pattern Extraction (ALOPEX), coupled with several penalty strategies that produce convenient management policies. The present study, which further extents recently derived results, considers the analytical solution of a classical model for underground flow and the ALOPEX stochastic optimization technique to produce an efficient approach for pumping management over coastal aquifers. Numerical experimentation also includes a case study at Vathi area on the Greek island of Kalymnos, to compare with known results in the literature as well as to demonstrate different management strategies.

  12. Circulation of the thermocline salinity maximum waters off the Northern Brazil as inferred from in situ measurements and numerical results

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.C. [Universidade Federal do Ceara, Fortaleza, CE (Brazil). Inst. de Ciencias do Mar; Bourles, B. [Inst. de Recherche pour le Developpement, Cotonou (Benin); Araujo, M. [UFPE, Recife, PE (Brazil). Lab. de Oceanografia Fisica Estuarina e Costeira

    2009-07-01

    High resolution hydrographic observations of temperature and salinity are used to analyse the subsurface circulation along the coast of North Brazil, off the Amazon mouth, between 2 S and 6 N. Observations are presented from four cruises carried out in different periods of the year (March-May 1995, May-June 1999, July-August 2001 and October-November 1997). Numerical model outputs complement the results of the shipboard measurements, and are used to complete the descriptions of mesoscale circulation. The Salinity Maximum Waters are here analyzed, principally in order to describe the penetration of waters originating in the Southern Hemisphere toward the Northern Hemisphere through the North Brazil Current (NBC)/North Brazil Undercurrent (NBUC). Our results show that, if the Equatorial Undercurrent (EUC) is fed by Northern Atlantic Waters, this contribution may only occur in the ocean interior, east of the western boundary around 100 m depth. Modeling results indicate a southward penetration of the Western Boundary Undercurrent (WBUC) below the thermocline, along the North Brazilian coast into the EUC or the North Equatorial Undercurrent (NEUC) (around 48 W-3 N). The WBUC in the region does not flow more south than 3 N. The northern waters are diverted eastward either by the NBC retroflection or by the northern edge of the associated clockwise rings. The existence of subsurface mesoscale rings associated to the NBC retroflection is evidenced, without any signature in the surface layer, so confirming earlier numerical model outputs. These subsurface anticyclones, linked to the NBC/NBUC retroflection into the North Equatorial Undercurrent and the EUC, contribute to the transport of South Atlantic high salinity water into the Northern Hemisphere. (orig.)

  13. Circulation of the thermocline salinity maximum waters off the Northern Brazil as inferred from in situ measurements and numerical results

    Directory of Open Access Journals (Sweden)

    A. C. Silva

    2009-05-01

    Full Text Available High resolution hydrographic observations of temperature and salinity are used to analyse the subsurface circulation along the coast of North Brazil, off the Amazon mouth, between 2° S and 6° N. Observations are presented from four cruises carried out in different periods of the year (March–May 1995, May–June 1999, July–August 2001 and October–November 1997. Numerical model outputs complement the results of the shipboard measurements, and are used to complete the descriptions of mesoscale circulation. The Salinity Maximum Waters are here analyzed, principally in order to describe the penetration of waters originating in the Southern Hemisphere toward the Northern Hemisphere through the North Brazil Current (NBC/North Brazil Undercurrent (NBUC. Our results show that, if the Equatorial Undercurrent (EUC is fed by Northern Atlantic Waters, this contribution may only occur in the ocean interior, east of the western boundary around 100 m depth. Modeling results indicate a southward penetration of the Western Boundary Undercurrent (WBUC below the thermocline, along the North Brazilian coast into the EUC or the North Equatorial Undercurrent (NEUC (around 48° W–3° N. The WBUC in the region does not flow more south than 3° N. The northern waters are diverted eastward either by the NBC retroflection or by the northern edge of the associated clockwise rings. The existence of subsurface mesoscale rings associated to the NBC retroflection is evidenced, without any signature in the surface layer, so confirming earlier numerical model outputs. These subsurface anticyclones, linked to the NBC/NBUC retroflection into the North Equatorial Undercurrent and the EUC, contribute to the transport of South Atlantic high salinity water into the Northern Hemisphere.

  14. IMITATING THE MODEL OF THE FREQUENCY CONVERTER - INDUCTION MOTOR OF A PUMP WATER SYSTEM WITH ADAPTIVE CONTROL ALGORITHM

    Directory of Open Access Journals (Sweden)

    Taranov D. M.

    2015-06-01

    Full Text Available This article presents main water supply systems and justifies the choice of direct flow of water supply system in the application of regulation of electric drive for pumps, which doesn’t have any tanks to create pressures required for fire-governmental purposes. This avoids interruption in the supply of reserve while water freezing. In the article the substantiation of the necessity of implementation of adaptive algorithm in modern-WIDE frequency converters by a substantiation of the number of stages of ratio control of voltage-frequency mains. It was revealed that the number of degrees of regulation of 10-12 gives optimum. Modern frequency converters allow you to change the regulation law, establishing 3-5 points of regulation. Therefore, the introduction of adaptive algorithm will reduce the power consumption of the electric drive of the pump of the water supply system. The article shows the simulation model of the "the converter frequency-induction motor," plots of the stator current of mains frequency and active power, surface speed and phase current when changing the voltage and frequency of the mains. These dependences confirm to have applicability of adaptive algorithm in the regulation of modern frequency converters with the skalar administration. Simulation model confirms the sub-physical experiments on a real motor and frequency converter with adaptive control algorithm. As a result of the selection of the parameters, we obtain the voltage reduction of the phase current, and reduce electricity consumption by 5-7%

  15. Global-scale water circulation in the Earth's mantle: Implications for the mantle water budget in the early Earth

    Science.gov (United States)

    Nakagawa, Takashi; Spiegelman, Marc W.

    2017-04-01

    We investigate the influence of the mantle water content in the early Earth on that in the present mantle using numerical convection simulations that include three processes for redistribution of water: dehydration, partitioning of water into partially molten mantle, and regassing assuming an infinite water reservoir at the surface. These models suggest that the water content of the present mantle is insensitive to that of the early Earth. The initial water stored during planetary formation is regulated up to 1.2 OMs (OM = Ocean Mass; 1.4 ×1021 kg), which is reasonable for early Earth. However, the mantle water content is sensitive to the rheological dependence on the water content and can range from 1.2 to 3 OMs at the present day. To explain the evolution of mantle water content, we computed water fluxes due to subducting plates (regassing), degassing and dehydration. For weakly water dependent viscosity, the net water flux is almost balanced with those three fluxes but, for strongly water dependent viscosity, the regassing dominates the water cycle system because the surface plate activity is more vigorous. The increased convection is due to enhanced lubrication of the plates caused by a weak hydrous crust for strongly water dependent viscosity. The degassing history is insensitive to the initial water content of the early Earth as well as rheological strength. The degassing flux from Earth's surface is calculated to be approximately O (1013) kg /yr, consistent with a coupled model of climate evolution and mantle thermal evolution.

  16. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  17. 46 CFR 154.1135 - Pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pumps. 154.1135 Section 154.1135 Shipping COAST GUARD... Pumps. (a) Water to the water spray system must be supplied by: (1) A pump that is only for the use of the system; (2) A fire pump; or (3) A pump specially approved by the Commandant (CG-522)....

  18. Effect of diesel leakage in circulating cooling water system on preponderant bacteria diversity and bactericidal effect of biocides.

    Science.gov (United States)

    Zhong, Huiyun; Liu, Fang; Lu, Jinjin; Yang, Wei; Zhao, Chaocheng

    2015-01-01

    Petroleum products leakage results in adverse effect on the normal operation of a circulating cooling water system. However, relatively little research has been done to explore the effect of petroleum products leakage on circulating cooling water quality and biofilm preponderant bacteria diversity. Also, normal biocides application modes cannot fulfil the need for biofilm control. In this study, diesel oil was used as the experimental subject representing leaking petroleum products; the effect of diesel addition on biofilm preponderant bacteria diversity and the bactericidal effect of chlorine dioxide and tetradecyl dimethyl benzyl ammonium chloride (1427) was investigated. Bacterial community structures were examined by PCR-denaturing gradient gel electrophoresis and PCR cloning of 16S rDNA genes. Except for 100 mg/L diesel, increasing diesel concentration enhanced the biofilm detachment ratio compared with the control test. The microstructure of biofilm samples with 0, 300 and 900 mg/L diesel addition was observed. The species of preponderant bacteria in the biofilm sample with 300 mg/L diesel addition were more and the bacterial distribution was more uniform than those in the biofilm sample with 900 mg/L diesel addition. With ClO2 and 1427 addition, chemical oxygen demand increased, lipid phosphorus and bacterial count first decreased and then remained stable, and the bactericidal ratio first increased and then remained stable. Diesel addition variation has more obvious effect on ClO2 than 1427.

  19. Maldistribution in air-water heat pump evaporators. Part 2: Economic analysis of counteracting technologies

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    In this study a methodology is applied to quantify the effect of evaporator maldistributionon operating costs of airewater heat pumps. The approach is used to investigate the cost-effectivenessof two technologies enabling to counteract maldistribution: a flash gasbypass setup and the individual...

  20. Heat pumps for sanitary hot water; Bombas de calor para agua caliente sanitaria

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, I.

    2010-07-01

    Directive 2009/28/EC on the promotion of the use of energy from renewable sources, published last summer is a policy that makes a difference in that for the first time, it envisages the aerothermal renewable energy source. One of the more energies used by heat pumps. (Author)

  1. Offshore watersource heat pump applications

    Energy Technology Data Exchange (ETDEWEB)

    Clark, W.H. II [ARK Associates, Round Rock, TX (United States)

    1996-10-01

    This paper discusses applications of the Water Source Heat Pump (WSHP) technology for offshore drilling or production operations to result in a substantial savings in space conditioning to result in a substantial savings in space conditioning and domestic hot water production. An even more cost competitive application of the WSHP is the once thorough design which circulates cool water from deep in the ocean straight through the unit, then discharges it to the ocean surface. A modification of this open loop technique circulates the fluid within an abandoned well bore casing. The advantage of this system is that natural convection of warm water from deep in the well upward, as the unit returns cool water at or near the surface, will greatly enhance the thermal advantage of the system. This will enable direct use in the heating season and perhaps be sufficient to operate an absorption chiller in the cooling season. The initial cost of either of these systems is equivalent to a packaged ac system, making the WSHP an ideal energy conservation measure.

  2. Near-Surface Circulation and Fate of Upper Layer Fresh Water from Rivers Runoff and Rain in the Bay of Bengal near Sri Lanka

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Near -Surface Circulation and Fate of Upper Layer Fresh...Water from Rivers Runoff and Rain in the Bay of Bengal near Sri Lanka Luca Centurioni Scripps Institution of Oceanography 9500 Gilman Drive...GOALS Improve the knowledge of the near -surface circulation in the BoB and of the pathways through which the freshwater fluxes occur. OBJECTIVES

  3. Water circulation in non-isothermal droplet-laden turbulent channel flow

    NARCIS (Netherlands)

    Russo, E.; Kuerten, J.G.M.; Geld, van der C.W.M.; Geurts, B.J.; Simos, T.; Psihoyios, G.; Tsitouras, Ch.

    2013-01-01

    We propose a point-particle model for two-way coupling of water droplets dispersed in turbulent flow of a carrier gas consisting of air and water vapor. An incompressible flow formulation is applied for direct numerical simulation (DNS) of turbulent channel flow with a warm and a cold wall. Compared

  4. Efficiency optimization of a photovoltaic water pumping system for irrigation in Ouargla, Algeria

    Science.gov (United States)

    Louazene, M. L.; Garcia, M. C. Alonso; Korichi, D.

    2017-02-01

    This work is technical study to contribute to the optimization of pumping systems powered by solar energy (clean) and used in the field of agriculture. To achieve our goals, we studied the techniques that must be entered on a photovoltaic system for maximum energy from solar panels. Our scientific contribution in this research is the realization of an efficient photovoltaic pumping system for irrigation needs. To achieve this and extract maximum power from the PV generator, two axes have been optimized: 1. Increase in the uptake of solar radiation by choice an optimum tilt angle of the solar panels, and 2. it is necessary to add an adaptation device, MPPT controller with a DC-DC converter, between the source and the load.

  5. Pumps for medium sized solar systems

    DEFF Research Database (Denmark)

    Furbo, Simon

    1996-01-01

    The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated.......The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated....

  6. Sources and circulation of water and arsenic in the Giant Mine, Yellowknife, NWT, Canada.

    Science.gov (United States)

    Clark, Ian D; Raven, Kenneth G

    2004-06-01

    Recovery of gold from arsenopyrite-hosted ore in the Giant Mine camp, Yellowknife, NWT, Canada, has left a legacy of arsenic contamination that poses challenges for mine closure planning. Seepage from underground chambers storing some 237,000 tonnes of arsenic trioxide dust, has As concentrations exceeding 4000 ppm. Other potential sources and sinks of As also exist. Sources and movement of water and arsenic are traced using the isotopes of water and sulphate. Mine waters (16 ppm As; AsV/AsIII approximately 150) are a mixture of two principal water sources--locally recharged, low As groundwaters (0.5 ppm As) and Great Slave Lake (GSL; 0.004 ppm As) water, formerly used in ore processing and discharged to the northwest tailings impoundment (NWTP). Mass balance with delta18O shows that recirculation of NWTP water to the underground through faults and unsealed drillholes contributes about 60% of the mine water. Sulphate serves to trace direct infiltration to the As2O3 chambers. Sulphate in local, low As groundwaters (0.3-0.6 ppm As; delta34SSO4 approximately 4% and delta18OSO4 approximately -10%) originates from low-temperature aqueous oxidation of sulphide-rich waste rock. The high As waters gain a component of 18O-enriched sulphate derived from roaster gases (delta18OSO4) = + 3.5%), consistent with their arsenic source from the As2O3 chambers. High arsenic in NWTP water (approximately 8 ppm As; delta18OSO4 = -2%) derived from mine water, is attenuated to close to 1 ppm during infiltration back to the underground, probably by oxidation and sorption by ferrihydrite.

  7. Hazard Evaluation for a Salt Well Centrifugal Pump Design Using Service Water for Lubrication and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    GRAMS, W.H.

    2000-10-09

    This report documents the results of a preliminary hazard analysis (PHA) covering the new salt well pump design. The PHA identified ten hazardous conditions mapped to four analyzed accidents: flammable gas deflagrations, fire in contaminated area, tank failure due to excessive loads, and waste transfer leaks. This document also presents the results of the control decision/allocation process. A backflow preventer and associated limiting condition were assigned.

  8. 循环水提高浓缩倍率的条件和影响因素%Improving the concentration ratio of circulating water cooling water of the conditions and the influencing factors

    Institute of Scientific and Technical Information of China (English)

    梁慧军

    2012-01-01

    Through to the comparison of the operation of circulating water over the years in Tianji Group Gaoping Chemical Co. , Ltd. , the impact of turbidity on the concentration ratio of circulating water is analyzed and a method to reduce the turbidity of circulating water is presented. The measures to improve the concentration ratio of circulating water are presented.%对天脊集团高平公司历年循环水运行情况进行比较,分析了浊度对循环水提高浓缩倍率的影响,提出了降低循环水浊度的办法,介绍了提高循环水浓缩倍率的条件。

  9. Energy saving by reducing the diameter of the impeller for water pumping in the dilution stage of honey in alcohol production. Distillery "Paradise."

    Directory of Open Access Journals (Sweden)

    Edelvy Bravo Amarante

    2014-06-01

    Full Text Available The sugar industry is a big consumer of the resource water in all its processes, including the alcohol production industry, one of the derivatives of its main process. Associated to water consumption there are important energetic expenses mainly for the necessity of using electro-pumps for its transfer. In the alcohol production the highest values of water consumed are concentrated in the fermentation stage. In the industry, object of study the highest consumptions are associated to the molasses dilution stage in alcohol production. This is the reason why this investigation is developed with the objective of assessing the water pumping system in the dilution stage in the distillery "Paradise", located in Sancti Spiritus, Cuba. As a result of this analysis it is proposed the reduction of the diameter of the pump impeller, it would make possible to save 38 249 kW-h per year, equivalent to $ 8 315, 67 per year.

  10. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Richard W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  11. Sterilization of circulating cooling water by ultrasound%超声用于循环冷却水灭菌

    Institute of Scientific and Technical Information of China (English)

    张帆; 吕效平; 韩萍芳; 秦振宝

    2011-01-01

    将超声用于石油化工循环冷却水中异养菌的灭菌处理,详细系统地考察了各个影响因素:超声频率、声强、声场形式对冷却水净化处理的影响规律。通过正交实验得出,在超声声强为0.30W/cm2下,采用28/40kHz混频超声处理1000mL循环冷却水,处理时间为60min时灭菌率达到94.6%。抑菌实验表明,经过72h后抑菌率仍为82.1%。结果说明了超声灭菌不仅能起到较好的灭菌效果,还有长久抑菌的作用。同时,利用超声处理KI溶液后的吸光度变化表示超声频率、声强与超声空化强度的关系,以此探索了超声灭菌的机理,认为超声空化作用是超声灭菌的一个重要原因,将超声用于循环冷却水灭菌过程将成为绿色环保的工业循环冷却水净化新方法。%The use of ultrasound in circulating cooling water sterilization is effective, moreover a long-term effect of bacteriostasis function exists. Several factors, including ultrasonic frequency and intensity, acoustic form which affect the treating result of cooling water were investigated. The optimum condition of sterilization: ultrasonic mixing frequency of 28/40kHz, ultrasonic intensity of 0.30W/cm2, sterilization time of 60min was obtained through orthogonal test. Under this condition 1000 mL circulating water was treated and the bactericidal rate was up to 94.6%. Bacteriostasis test showed that bacteriostasis rate was 82.1% after 72 h. Ultrasonic cavitation could influence the absorbance of KI solution, so the relationship between ultrasonic frequency, intensity with ultrasonic cavitation was obtained. Ultrasonic cavitation was one of the important reasons for ultrasonic sterilization by exploring the mechanism of ultrasonic sterilization. Ultrasound used for sterilization of circulation cooling water will be a new environment-friendly method for purification of industrial circulating cooling water.

  12. Operation Characteristics of Ground Source Heat Pump for Centralized Hot Water Supply in High-rise Buildings%地源热泵用于高层建筑集中供热水的运行特性

    Institute of Scientific and Technical Information of China (English)

    王艳; 胡映宁; 林俊

    2012-01-01

    自主设计了地源热泵热水/空调冷热联供系统和单纯的地源热泵供热水系统,并将其应用于高层建筑中.运用单因素方法,研究循环介质流量等对热泵系统运行特性的影响,确定最佳流量,并通过测试计算系统的能耗.结果表明,在地源热泵热水/空调冷热联供系统中,采用地源制热水时的机组能效比和系统能效比分别为4.7和4.2,冷热联供时的机组综合能效比和系统综合能效比分别为8.63和6.39;系统全年制热水耗电量为6.35 kW·h/m3,与电锅炉加热方式和太阳能+电辅助加热方式相比,可分别节省82.2%和46.7%的电量.在单纯的地源热泵供热水系统中,机组能效比和系统能效比分别为4.8和4.3,全年制热水总耗电量为11.13 kW·h/m3,与电锅炉加热方式和太阳能+电辅助加热方式相比,可分别节省74.69%和24%的电量.由此说明,地源热泵集中供热水系统应用于高层建筑的节能效果显著.%A ground source heat pump hot-water/air-conditioning system and a stand-alone ground source heat pump hot-water system were designed and used in high-rise buildings. The influence of circulation medium flow on the operation characteristics of heat pump system was studied, the optimal flow was determined, and the energy consumption of the systems was calculated by testing. The results showed that for the ground source heap pump hot-water/air-conditioning system, the unit energy efficiency ratio and the system energy efficiency ratio were 4. 7 and 4. 2, respectively, when supplying hot water. The unit integrated energy efficiency ratio and the system integrated energy efficiency ratio were 8. 63 and 6. 39, respectively, when supplying hot water and cooling. The annual power consumption for supplying hot water was 6. 35 kW · h/m3, and the power savings were 82. 2% and 46. 7% compared with electric boiler heating and solar electric heating. For the ground source heat pump hot-water system, the

  13. Water pumping system using solar photovoltaic induction motor; Sistema de bombeamento de agua com energia solar fotovoltaica utilizando motor de inducao trifasico

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Eduardo Henrique Pereira de; Bezerra, Luiz Daniel Santos; Antunes, Fernando Luiz Marcelo [Universidade Federal do Ceara (DEE/PPGEE/UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica. Programa de Pos -Graduacao em Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET), PE (Brazil)

    2008-07-01

    One of the main difficulties to people who live in remote areas or isolated community and not grid connected, certainly is to access potable drink water. In the world, more than 6000 children dies everyday by some kind of illnesses associated to non-potable drink water. At state of Ceara, during the dry weather periods, remain water reservoir becomes practically a mud puddle, as a result, people and animals are forced to drink this inappropriate water. To minimize this consequences in this periods some water is distributed by tankers but, sometimes, even this water is not enough potable. Underground water is an alternative to mitigate this problem. The most common technique is the use of direct current (DC) pumps set supplied by solar photovoltaic systems. However, this kind of pump-set is relatively expensive and too hard to maintain. This paper brings an alternative lower expensive and sustainable to water pumping system, it uses a three phase induction machine coupled to an underwater centrifugal pump supplied by solar photovoltaic energy system. (author)

  14. First Report on the Soaking Seeds with Circulating Water and Coating Seeds with Rice Seedling-Protecting Seed Coating Agent%护苗种衣剂包衣稻种循环水浸种试验初报

    Institute of Scientific and Technical Information of China (English)

    姜波

    2011-01-01

    通过对水稻护苗种衣剂包衣稻种采用"循环水浸种技术",测试药剂脱落对防病效果影响情况,结果表明:利用有氧恒温浸种机浸种或循环泵浸种,不会造成严重的药剂脱落现象,不会影响药剂的防病效果,而且还可以提高浸种质量,提高籽粒发芽势和出苗率,使得水稻出苗快且整齐。%Using the technology of soaking seeds with circulating water to study the control efficiency when the medicament fall off,the results indicated that soak seeds using aerobic homothermal soaking seed machine or circulation pump will be no severe effect on the peeling of medicament and does not affect the effect to prevent disease,it can increase the seed quality,germinating potential and germination rate and made the emergence Fast and orderliness.

  15. Real-time Control of sewer pumps by using ControlNEXT to smooth inflow at Waste Water Treatment Plant Garmerwolde

    Science.gov (United States)

    van Heeringen, Klaas-Jan; van Nooijen, Ronald; Kooij, Kees; Postma, Bokke

    2016-04-01

    The Garmerwolde waste water treatment plant (WWTP) in the Groningen area of the Netherlands, receives waste water from a large area. That waste water is collected from many sewer systems and transported to the WWTP through pressurized pipes. The supply of waste water to the WWTP is relatively low and very irregular during dry-weather conditions, resulting in a random pattern of flows. This irregularity is the effect of the local control of the pumps, where the pumps are individually operated as an on/off control based on the water levels in the connected sewer system. The influent may change from zero to high values in a few minutes. The treatment processes at the WWTP are negatively influenced by this irregularity, which ends in high costs for energy and use of chemicals. The ControlNEXT central control system is used to control the 5 largest pump stations, such that the total inflow at the WWTP becomes much smoother. This results in a reduction of operational costs of about 10%. The control algorithm determines whether the actual condition is dry or wet, based on real-time radar precipitation images and the rainfall forecast product HiRLAM. All actual data is also collected and validated, like water levels, pump operations and pump availability. This data management is done using Delft-FEWS. If the situation is identified as "wet", the sewer systems are emptied as far as possible to create maximum storage. If the situation is "dry" (and of course there is a dead band between dry and wet), the pumps are operated such that the total inflow into the WWTP is smoothed. This is done with a Greedy algorithm, developed by Delft University of Technology. The algorithm makes a plan for the next 24 hours (as the daily inflow has a typical daily pattern) and generally stores some water volume in the sewer systems during the day to be able to continue operations during the night. The pumps are controlled with a time step of 5 minutes, where ControlNEXT manages the

  16. Modeling the water circulation in the North Atlantic in the scope of the CORE-II experiment

    Science.gov (United States)

    Ushakov, K. V.; Grankina, T. B.; Ibraev, R. A.

    2016-07-01

    A numerical experiment on the reproduction of the variability in the state of North Atlantic water in 1948-2007 with a spatial resolution of 0.25° has been performed using the global ocean model developed at Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), and the Shirshov Institute of Oceanology (IO RAS) (the INM-IO model). The data on the state of the atmosphere, radiation fluxes, and bulk formulas of the CORE-II protocol are used as boundary conditions. Five successive 60-year calculation cycles have been performed in order to obtain the quasi-equilibrium state of a model ocean. For the last 20 years, the main elements of large-scale ocean circulation have been analyzed and compared with the WOA09 atlas data and the results of other models.

  17. 外环流活塞泵数值计算与内流特性分析%Numerical Calculation and Analysis of Internal Flow Characteristics of Outside Circulation Piston Pump

    Institute of Scientific and Technical Information of China (English)

    范意斐; 王新华; 毛洲

    2016-01-01

    外环流活塞泵是一种适于输送高黏度介质的双转子泵,广泛用于化工、石油等领域。对于这种泵的设计与优化已有一定理论基础,但对其内流特性尚缺少认识。为了研究泵内的流场特性,采用浸入式模型对外环流活塞泵进行了三维瞬态数值计算,并结合相关理论对计算结果进行了分析。结果表明,转子腔室的排液过程由两部分组成,一是转子啮合产生的主脉动,二是易闭死区域的局部高压产生的次脉动。传统流量计算公式误差较大,而根据内流特性提出的用叶片体积计算流量的方法相对误差最小。采用圆弧作为过渡曲线时,增大圆弧半径有助于降低易闭死区域内的压力与真空度,缓解振动、噪声和空化等问题,但流量会小幅降低。%Outside circulation piston pump is a kind of dual rotor pump for transporting high viscosity medium. The design and optimization of this kind of pump already has theoretical basis, but the internal flow characteristics of it is still lack of understanding. To study the internal flow characteristics of outside circulation piston pump, three-dimensional transient numerical calculation is carried out using immersed solid model, and the results are analyzed using related theory. The result shows, the discharge process of the rotor chamber consists of two parts, one is the main pulse produced by the rotor meshing, the other one is the secondary pulse produced by the local high pressure in the dead volume area. Flow rate calculated by traditional formula has a larger error, flow rate calculated according to the volume of the blades has the smallest error. When using arc line as the transition curve, increasing the radius of the arc line could reduce the high pressure and vacuum in the dead volume area, but the flow rate will decrease slightly.

  18. Aquifer geochemistry and effects of pumping on ground-water quality at the Green Belt Parkway Well Field, Holbrook, Long Island, New York

    Science.gov (United States)

    Brown, Craig J.; Colabufo, Steven; Coates, John D.

    2002-01-01

    Geochemistry, microbiology, and water quality of the Magothy aquifer at a new supply well in Holbrook were studied to help identify factors that contribute to iron-related biofouling of public-supply wells. The organic carbon content of borehole sediments from the screen zone, and the dominant terminal electron-accepting processes (TEAPs), varied by depth. TEAP assays of core sediments indicated that iron reduction, sulfate reduction, and undetermined (possibly oxic) reactions and microbial activity are correlated with organic carbon (lignite) content. The quality of water from this well, therefore, reflects the wide range of aquifer microenvironments at this site. High concentrations of dissolved iron (3.6 to 6.4 micromoles per liter) in water samples from this well indicate that some water is derived from Fe(III)-reducing sediments within the aquifer, but traces of dissolved oxygen indicate inflow of shallow, oxygenated water from shallow units that overlie the local confining units. Water-quality monitoring before and during a 2-day pumping test indicates that continuous pumping from the Magothy aquifer at this site can induce downward flow of shallow, oxygenated water despite the locally confined conditions. Average concentrations of dissolved oxygen are high (5.2 milligrams per liter, or mg/L) in the overlying upper glacial aquifer and at the top of the Magothy aquifer (4.3 mg/L), and low (<0.1 mg/L) in the deeper, anaerobic part of the Magothy; average concentrations of phosphate are high (0.4 mg/L) in the upper glacial aquifer and lower (0.008 mg/L) at the top of the Magothy aquifer and in the deeper part of the Magothy (0.013 mg/L). Concentrations of both constituents increased during the 2 days of pumping. The d34S of sulfate in shallow ground water from observation wells (3.8 to 6.4 per mil) was much heavier than that in the supplywell water (-0.1 per mil) and was used to help identify sources of water entering the supply well. The d34S of sulfate in a

  19. Performance of polypropylene and steel tubes in solar water heaters with natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Riazi, M.R. [Kuwait Univ., Safat (Kuwait). Chemical Engineering Dept.; Razavi, J. [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Chemical Engineering Dept.

    1997-02-01

    Performance of solar water heaters in thermosyphonic flow with polypropylene and steel tubes was studied experimentally. An experimental apparatus consisting of 36 south-facing parallel tubes was designed and built especially for this study. Experiments were performed at Sharif University of Technology in Tehran during July--August 1994 from 0900 to 1700, when the ambient temperature varied from 29 to 36 C. Overall, 30 experiments were conducted for both types of tubes. At first, it was found that the best collector slope for both types of tubes was 36{degree} and it is independent of tube type. Generally, it was found that polypropylene tubes under similar conditions can increase water temperature by 10 C more than steel tubes. Based on the results shown in this study, use of polypropylene tubes in solar water heating systems is recommended.

  20. An open reversed Brayton cycle with regeneration using moist air for deep freeze cooled by circulating water

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shaobo [Guangdong Ocean University, College of Engineering, East Jiefang Rd. No. 40, Xiashan, Zhanjiang, Guangdong 524006 (China); Northwestern Polytechnical University, School of Aeroengine and Thermal Power Engineering, Xi' an, Shaanxi 710072 (China); Zhang, Hefei [Northwestern Polytechnical University, School of Aeroengine and Thermal Power Engineering, Xi' an, Shaanxi 710072 (China)

    2009-01-15

    This paper presents an open reversed Brayton cycle with regeneration using moist air for deep freeze cooled by circulating water, and proves its feasibility through performance simulation. Pinch technology is used to analyze the cooling of the wet air after compressor and the water used for cooling wet air after compressor. Its refrigeration depends mainly on the sensible heat of air and the latent heat of water vapor, its performance is more efficient than a conventional air-cycle, and the utilization of turbo-machinery makes it possible. The adoption of this cycle will make deep freeze easily and reduce initial cost because very low temperature, about -55 C, air is obtained. The sensitivity analysis of coefficient of performance to the efficiency of compressor and the efficiency of compressor, and the results of the cycle are also given. The simulation results show that the COP of this system depends on the temperature before turbine, the efficiency of compressor and the efficiency of compressor, and varies with the wet bulb temperature of the outdoor air. Humid air is a perfect working fluid for deep freeze with no cost to the user. (author)

  1. Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater Part 1: Southern and South Central Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick J [ORNL; Shen, Bo [ORNL; Keinath, Christopher M. [Stone Mountain Technologies, Inc., Johnson City; Garrabrant, Michael A. [Stone Mountain Technologies, Inc., Johnson City

    2016-01-01

    Commercial hot water heating accounts for approximately 0.78 Quads of primary energy use with 0.44 Quads of this amount from natural gas fired heaters. An ammonia-water based commercial absorption system, if fully deployed, could achieve a high level of savings, much higher than would be possible by conversion to the high efficiency nonheat-pump gas fired alternatives. In comparison with air source electric heat pumps, the absorption system is able to maintain higher coefficients of performance in colder climates. The ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. A thermodynamic model of a single effect ammonia-water absorption system for commercial space and water heating was developed, and its performance was investigated for a range of ambient and return water temperatures. This allowed for the development of a performance map which was then used in a building energy modeling software. Modeling of two commercial water heating systems was performed; one using an absorption heat pump and another using a condensing gas storage system. The energy and financial savings were investigated for a range of locations and climate zones in the southern and south central United States. A follow up paper will analyze northern and north/central regions. Results showed that the system using an absorption heat pump offers significant savings.

  2. Jet Pump Principle-based Workover Fluid Direct-reversed Circulation Reversing Drilling Tool%基于射流泵原理的修井液正反循环换向钻具

    Institute of Scientific and Technical Information of China (English)

    赵崇镇

    2016-01-01

    常规套磨铣修井工艺采用修井液正循环冲洗井底,套磨铣钻屑经钻具与套管之间环空上返,易造成卡钻事故。为此,基于射流泵原理研制了修井液正反循环换向钻具,通过试验优选了换向钻具的喷嘴和喉管直径,并对钻具进行了现场试验。该钻具能够与钻杆旋转和螺杆钻2种套磨铣修井工艺配套,达到正循环泵入修井液、反循环套磨铣的目的,非常适合在水平井和大斜度井施工;同时钻屑不会进入环空,避免了钻具遇卡事故的出现。现场试验结果表明,修井液正反循环换向钻具实现了修井液在井下转向,可顺利打捞出井下落物。该钻具的研制成功为修井作业提供了一种高效的技术手段。%Conventional washover⁃milling operation adopts direct circulation of workover fluid for hole bottom washing to return drill cuttings via the annulus between drilling tool and casing, which is prone to drill pipe stick⁃ing accidents�In order to solve this problem, a workover fluid direct⁃reversed circulation reversing drilling tool was developed based on the jet pump principle�Nozzle and pipe diameter of the reversing drilling tool has been opti⁃mized by testing and a field test has been conducted for instruments�The drilling tool can be matched with two washover⁃milling workover techniques, namely drill pipe rotation and PDM drill, in order to reach positive circula⁃tion for pumping workover fluids and reverse circulation for washover and milling�It is very suitable for operation in the horizontal well and highly deviated well; it can protect the annulus from drill cuttings in order to avoid pipe sticking accidents�Field test results show that, the workover fluid direct⁃reversed circulation reversing drilling tool can reverse the direction of downhole workover fluids to successfully fish downhole junks�It provides an efficient technical method for workover operation.

  3. Impact of vertical structure on water mass circulation in a tropical lagoon (Ebrié, Ivory Coast)

    Science.gov (United States)

    Brenon, Isabelle; Audouin, Olivier; Pouvreau, Nicolas; Maurin, Jean-Christophe

    2009-09-01

    A one-dimensional vertical model has been developed to simulate the water mass circulation along the vertical structure in all deep coastal areas. The model has hydrodynamic and transport components solved using finite difference scheme. The one-dimensional vertical model results are coupled to the vertically averaged two-dimensional model results at each point of a horizontal grid. A theoretical salinity profile is introduced for each vertically integrated value obtained from the 2DH model results. A viscosity profile, simulating a viscosity value close to zero at the surface and with large viscosity gradients, is applied along the water column. The model is applied to the Vridi channel, connecting the Ebrié lagoon to the sea (Ivory Coast). The response of the Ebrié lagoon is studied in terms of inflow and outflow of water in the system through the Vridi channel. Due to the abrupt variation of the surface slope, vertical velocities along the water column show an anticlockwise spiral from bottom to surface during a tidal cycle. Due to the bottom friction and to the vertical viscosity profile, velocities decrease from surface to bottom. However, the freshwater inflow slows down the tidal propagation during the flood and causes the surface velocity to be smaller than the bottom velocity at mid-tide. Close to the bottom, velocities follow an anticlockwise movement due to the tidal propagation. At the water surface, velocities follow only an alternative movement of either ebb or flood, along the channel direction. No cross shore velocities can develop at the surface in the channel.

  4. Water Masses and the Thermohaline Circulation at the Entrance to the Gulf of California

    Science.gov (United States)

    1993-09-01

    depressions to Delfin Basin. Then, as the surface waters of the northern Gulf (CDW) cool in the winter, thus increasing their 11 density above that of the...conduit for inflow of CGW into the northern Gulf is through the channel connecting Wagner Basin, via depressions to Delfin Basin. Then, as the surface

  5. The Development of Water Hydraulic Transmission and Water Hydraulic Axial Piston Pump (Motor)%水压传动及柱塞泵(马达)的现状和发展

    Institute of Scientific and Technical Information of China (English)

    聂松林; 张铁华; 李壮云

    2000-01-01

    介绍了国内外水压传动技术及其水压轴向柱塞泵(马达)的设计制造和发展。%Introduces the developments of Water Hydraulic transmission and Water Hydraulic Axial Piston Pump (Motor). The challenges for designing water hydraulic components and analyzed.

  6. Relationships among Brewer-Dobson circulation, double tropopauses, ozone and lower-stratospheric water vapor

    Science.gov (United States)

    Castanheira, J. M.; Peevey, T. R.; Marques, C. A. F.; Olsen, M. A.

    2012-04-01

    This communication will discuss the statistical relationships between the variability of the area covered by double tropopause events and the variabilities of total column ozone and of lower-stratospheric water vapor. The QBO signal in double tropopause events statistics and the relationship between tropical upwelling and the near global (50oS - 50oN) lower stratospheric water vapour will be also presented. The analysis is based on both reanalysis data (ERA-Interim) and satellite data. Significant correlations were found between the area covered by double tropopause events in the latitudinal band 20 - 65oN and the gradient of total column ozone in the subtropical Northern Hemisphere. Significant correlations were also found between de global area of double tropopause events and the near global (50oS - 50oN) water vapour in the lower stratosphere. The relationship between double tropopause events and lower stratospheric ozone is detailed by a correlation analysis between the frequencies of ozone laminae and double tropopause events as found in the HIRDLS data. The correlations of DT variables with total column ozone and ozone laminae are both consistent with intrusion events of tropospheric tropical air into the lower extratropical stratosphere, with the tropical tropopause overlaying the extratropical one. The poleward excursions of the tropical tropopause are also consistent with the found negative correlation between the area extension of DTs and the near global lower stratospheric water vapour. Finally, we will show the existence of a significant negative correlation between the tropical upwelling, determined using the "downward control principle", and the near global lower stratospheric water vapor.

  7. Um circuito simples com bomba única para circulação extracorpórea com oxigenação autógena A simple circuit with only centrifugal pump for extracorporeal circulation with autogenous oxygenation

    Directory of Open Access Journals (Sweden)

    Euclydes MARQUES

    2002-06-01

    Full Text Available MATERIAL E MÉTODOS: Foi testado em 30 cães um circuito capaz de promover circulação extracorpórea (CEC com oxigenação autógena (OA do sangue, usando apenas uma bomba centrífuga. Esta montagem dispensou bombeamento para o lado direito: o gradiente de pressão bastante para vencer a resistência arterial pulmonar foi vencido aumentando-se a pressão nas artérias pulmonares pela expansão da volemia e diminuindo-se a pressão do átrio esquerdo pela drenagem dessa câmara mediante um sifão. O coração foi mantido em ritmo de fibrilação ventricular durante o período de perfusão e ao seu término, o ritmo próprio foi recuperado mediante cardioversão elétrica. RESULTADOS: Este circuito permitiu a manutenção de parâmetros hemodinâmicos e gases sangüíneos adequados durante a perfusão. O campo operatório e a mobilidade do coração foram similares aos proporcionados pela CEC convencional. CONCLUSÃO: Concluímos que o uso de bomba centrífuga única simplifica a OA, podendo tornar-se uma escolha prática nos procedimentos de revascularização do miocárdio.It was tested in 30 dogs a circuit capable to allow extracorporeal circulation (ECC with autogenous oxygenation (AO of the blood employing an only centrifugal pump. With this assembly is unnecessary a pump to the right side: the gradient of transpulmonary pressure was obtained by increasing the pulmonary artery pressure by volemic expansion and decreasing the left atrial pressure by draining this camera by means of a siphon. The heart was electrically fibrillated in the beginning of the bypass and defibrillated in the end. This circuit allowed the maintenance of normal hemodynamic parameters and normal blood gases level during ECC. The operative field and the mobility of the heart were similar to those provided by conventional CEC. We concluded that the use of an only centrifugal pump simplifies ECC with AO, turning it a practical choice for the procedures of myocardial

  8. Investigating the role that the Southern Ocean biological pump plays in determining global ocean oxygen concentrations and deoxygenation

    OpenAIRE

    Keller, David; Oschlies, Andreas

    2013-01-01

    Global ocean circulation connects marine biogeochemical cycles through the long-range transport of nutrients and oxygen with the Southern Ocean (SO) acting as a water mass crossroads. The biological pump in the SO has been shown to play an important role in these dynamics and the amount of export production is known to have a large impact on remote deep ocean nutrients and dissolved inorganic carbon. However, the role that the SO biological pump plays in determining ocean oxygen concentration...

  9. Circulation and mixing of Mediterranean water west of the Iberian Peninsula

    Science.gov (United States)

    Daniault, N.; Mazé, J. P.; Arhan, M.

    1994-11-01

    The spreading of water of Mediterranean origin west of the Iberian Peninsula was studied with hydrographic data from several recent cruises and current measurements from the BORD-EST programme. The vertical breakdown of the "Mediterranean salt" content reveals the dominant contribution of the so-called lower core of the outflow (60%), and the significant fraction (22%) brought downward to levels below 1500 m by diffusion. Intense salinity maxima in the upper core (18%) are only encountered south of 38°N in the vein flowing northward along the continental slope, and at a few stations in the deep ocean. Apart from the coastally trapped vein, other preferred paths of the water mass are revealed by the horizontal distributions of salinity maximum and Mediterranean Water percentage. One is southward, west of the Gorringe Bank, and two northwestward ones lie around 40°N and west of the Galicia Bank. Year-long velocity measurements in the Tagus Basin show westward mean values of 7 × 10 -2 m s -1 at 1000 m associated with a very intense mesoscale variability. This variability is related to the pronounced dynamical signature of the outflow which favours instability in any branch having detached from the slope current. From a mixing point of view, the strong interleaving activity occurring near Cape St-Vincent is illustrated, but its contribution to the downstream salinity decrease in the coastally trapped vein is weak. Current and meddy detachment play the dominant role, with a scaling estimate of their associated lateral diffusivity of order 500 m 2 s -1. The statistical distribution of the density ratio parameter, which governs double-diffusion at the base of the Mediterranean Water, was found to be very tight around Rπ = 1.3 in the temperature range of 5°C< φ < 8°C. North of 40°N, the presence of a fraction of Labrador Sea Water in the underlying water is shown to decrease that parameter and should favour the formation of salt fingers.

  10. 33 CFR 157.126 - Pumps.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pumps. 157.126 Section 157.126... Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.126 Pumps. (a) Crude oil must be supplied to the COW machines by COW system pumps or cargo pumps. (b) The pumps under...

  11. 46 CFR 119.520 - Bilge pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bilge pumps. 119.520 Section 119.520 Shipping COAST... Ballast Systems § 119.520 Bilge pumps. (a) Each vessel must be provided with bilge pumps in accordance... have a portable hand bilge pump that must be: (1) Capable of pumping water, but not...

  12. The Discussion about Closed Circulating Cooling Water System in Coal Chemical Industry%煤化工项目中闭式循环水系统探讨

    Institute of Scientific and Technical Information of China (English)

    安显威

    2015-01-01

    The characteristic of closed circulating cooling water system and the water-saving reason of closed cooling water were discussed. The process of closed cooling water system and some problem for closed cooling water system were introduced.%探讨了煤化工项目中循环水系统的特点和闭式冷却塔的节水原因,介绍了闭式循环水系统的流程及闭式循环水系统中可能面临的一些问题。

  13. Experimental evaluation of a heat pump for the water-supply heating of a public swimming pool

    Science.gov (United States)

    López, R.; Vaca, M.; Terres, H.; Lizardi, A.; Morales, J.; Chávez, S.

    2017-01-01

    In this work the analysis of the thermodynamic behavior of heat pumps (HP) which supply the energy needed in the public pool at the Aquatic Center of Azcapotzalco was performed. There are 18 installed HP’s but only those needed to provide the energy required are alternately activated. The evaluation was conducted during May and June of 2015. We selected one of the HP to implement temperature and pressure gauges at the inlet and outlet of the compressor. The measurements were made every day at three times, 6:30, 13:00 and 18:00 hours. In a period of 24 hours, 1 000 L evaporated, there was no variation registered overnight, since the pool was covered with plastic to avoid loss of the fluid. The heat pump provided 150 kW to maintain the water temperature at the right level of operation, namely 28 °C. The coefficients of performance (COP) of the HP were 6.39 at 6:30, 7.42 at 13:00 and 7:32 at 18:00 hrs., values which are very close to the one provided by the manufacturer.

  14. Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2012-01-01

    Full Text Available The application of solar energy provides an alternative way to replace the primary source of energy, especially for large-scale installations. Heat pump technology is also an effective means to reduce the consumption of fossil fuels. This paper presents a practical case study of combined hybrid PV/T solar assisted heat pump (SAHP system for sports center hot water production. The initial design procedure was first presented. The entire system was then modeled with the TRNSYS 16 computation environment and the energy performance was evaluated based on year round simulation results. The results show that the system COP can reach 4.1 under the subtropical climate of Hong Kong, and as compared to the conventional heating system, a high fractional factor of energy saving at 67% can be obtained. The energy performances of the same system under different climatic conditions, that include three other cities in France, were analyzed and compared. Economic implications were also considered in this study.

  15. A Methodology for the Optimization of Flow Rate Injection to Looped Water Distribution Networks through Multiple Pumping Stations

    Directory of Open Access Journals (Sweden)

    Christian León-Celi

    2016-12-01

    Full Text Available The optimal function of a water distribution network is reached when the consumer demands are satisfied using the lowest quantity of energy, maintaining the minimal pressure required at the same time. One way to achieve this is through optimization of flow rate injection based on the use of the setpoint curve concept. In order to obtain that, a methodology is proposed. It allows for the assessment of the flow rate and pressure head that each pumping station has to provide for the proper functioning of the network while the minimum power consumption is kept. The methodology can be addressed in two ways: the discrete method and the continuous method. In the first method, a finite set of combinations is evaluated between pumping stations. In the continuous method, the search for the optimal solution is performed using optimization algorithms. In this paper, Hooke–Jeeves and Nelder–Mead algorithms are used. Both the hydraulics and the objective function used by the optimization are solved through EPANET and its Toolkit. Two case studies are evaluated, and the results of the application of the different methods are discussed.

  16. Refrigerant Selection for Cascade Water-to-water Heat Pump%复叠式水水热泵的制冷剂筛选

    Institute of Scientific and Technical Information of China (English)

    赵海波; 杨昭

    2012-01-01

    结合我国现行制冷剂标准,按照环境相容性、安全性、热工循环性能原则进行了高温复叠式热泵循环的制冷剂筛选,对不同制冷剂组合进行了计算和分析.结果表明,高低温侧制冷剂可采用R245fa/R134a、R245fa/R420A、R245fa/R413A、R245ca/R420A等组合.若进一步考虑制冷剂获得的容易程度、经济性等因素时,可选择R245fa/R134a组合.%Based on China National Standard-Number Designation and Safety Classification of Refrigerants, refrigerant for the cascade water-to-water heat pump were selected according to principles of environmental-friendly, safety and thermodynamic cycle performances. Different refrigerant combinations for high- and low-temperature cycles in the cascade heat pump were calculated and compared. Results show that combinations of R245fa/R134a, R245fa/R420A, R245fa/R413A, R245ca/R420A are better for the cascade heat pump. It also shows that, considering easy access and economy of refrigerants, R245fa/R134a combination will be a better choice.

  17. Simulation of Reclaimed-Water Injection and Pumping Scenarios and Particle-Tracking Analysis near Mount Pleasant, South Carolina

    Science.gov (United States)

    Petkewich, Matthew D.; Campbell, Bruce G.

    2009-01-01

    The effect of injecting reclaimed water into the Middendorf aquifer beneath Mount Pleasant, South Carolina, was simulated using a groundwater-flow model of the Coastal Plain Physiographic Province of South Carolina and parts of Georgia and North Carolina. Reclaimed water, also known as recycled water, is wastewater or stormwater that has been treated to an appropriate level so that the water can be reused. The scenarios were simulated to evaluate potential changes in groundwater flow and groundwater-level conditions caused by injecting reclaimed water into the Middendorf aquifer. Simulations included a Base Case and two injection scenarios. Maximum pumping rates were simulated as 6.65, 8.50, and 10.5 million gallons per day for the Base Case, Scenario 1, and Scenario 2, respectively. The Base Case simulation represents a non-injection estimate of the year 2050 groundwater levels for comparison purposes for the two injection scenarios. For Scenarios 1 and 2, the simulated injection of reclaimed water at 3 million gallons per day begins in 2012 and continues through 2050. The flow paths and time of travel for the injected reclaimed water were simulated using particle-tracking analysis. The simulations indicated a general decline of groundwater altitudes in the Middendorf aquifer in the Mount Pleasant, South Carolina, area between 2004 and 2050 for the Base Case and two injection scenarios. For the Base Case, groundwater altitudes generally declined about 90 feet from the 2004 groundwater levels. For Scenarios 1 and 2, although groundwater altitudes initially increased in the Mount Pleasant area because of the simulated injection, these higher groundwater levels declined as Mount Pleasant Waterworks pumping increased over time. When compared to the Base Case simulation, 2050 groundwater altitudes for Scenario 1 are between 15 feet lower to 23 feet higher for production wells, between 41 and 77 feet higher for the injection wells, and between 9 and 23 feet higher for

  18. Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

    Directory of Open Access Journals (Sweden)

    Milan Krishna Singha Sarkar

    2017-02-01

    Full Text Available Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

  19. Influence of Valve's Characteristic on Total Performance of Three Cylinders Internal Combustion Water Pump

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongxin; ZHANG Tiezhu; WANG Weichao

    2009-01-01

    lntenal combustion pump (ICP) is a new type power device turning the thermal energy from fuel combustion into fluid pressure energy. Three cylinders prototype has just been developed. The study on the influence of valve's characteristic on ICP's total performance will found the base for its optimum design. Based on the theoretical and testing fruits of single cylinder prototype, the performance of the valves and complete appliance of the latest is simulated. When the natural frequency of valves is approximately to the round number times of the working frequency, volumetric efficiency is seriously low. The nominal rotational speed of the prototype is nearly to the speed where the volumetric efficiency is lowest, which is harmful to the normal work of ICP, so further structure optimization of valves should be carried out. The change of volumetric efficiency has great influence on the fuel consumption rate,output flow, effective thermal efficiency, effective power, and so on, but little on output pressure.

  20. Evaluation of ERTS data for certain oceanographic uses. [upwelling, water circulation, and pollution in Great Lakes

    Science.gov (United States)

    Strong, A. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Upwelling along the eastern shore of Lake Michigan was occurring during the 3 and 21 August 1973 visits by ERTS-1. The NOAA-2 VHRR thermal-IR data are being digitized for comparison. Early indications are that these upwellings induced a calcium carbonate precipitate to form in the surface waters. It is most pronounced in the MSS-4 channel. On the lake bottom this jell-like sediment is known as marl and adds to the eutrophication of the lake. This phenomenon may help to explain the varve-like nature of bottom cores that have been observed in the Great Lakes.

  1. Simulated effects of groundwater pumping and artificial recharge on surface-water resources and riparian vegetation in the Verde Valley sub-basin, Central Arizona

    Science.gov (United States)

    Leake, Stanley A.; Pool, Donald R.

    2010-01-01

    In the Verde Valley sub-basin, groundwater use has increased in recent decades. Residents and stakeholders in the area have established several groups to help in planning for sustainability of water and other resources of the area. One of the issues of concern is the effect of groundwater pumping in the sub-basin on surface water and on groundwater-dependent riparian vegetation. The Northern Arizona Regional Groundwater-Flow Model by Pool and others (in press) is the most comprehensive and up-to-date tool available to understand the effects of groundwater pumping in the sub-basin. Using a procedure by Leake and others (2008), this model was modified and used to calculate effects of groundwater pumping on surface-water flow and evapotranspiration for areas in the sub-basin. This report presents results for the upper two model layers for pumping durations of 10 and 50 years. Results are in the form of maps that indicate the fraction of the well pumping rate that can be accounted for as the combined effect of reduced surface-water flow and evapotranspiration. In general, the highest and most rapid responses to pumping were computed to occur near surface-water features simulated in the modified model, but results are not uniform along these features. The results are intended to indicate general patterns of model-computed response over large areas. For site-specific projects, improved results may require detailed studies of the local hydrologic conditions and a refinement of the modified model in the area of interest.

  2. VARIAN加速器内循环水冷维修%Maintenance of Internal Circulation Water Cooling System of VARIAN Accelerator

    Institute of Scientific and Technical Information of China (English)

    逄宏义

    2012-01-01

    介绍了VARIAN(瓦里安)加速器内循环水冷系统的原理及故障维修。%Introduce the working principles and trouble shooting of the internal circulation water cooling system of VARIAN Accelerator.

  3. 循环冷却水氨污染的危害分析与控制%Hazard analysis and control of ammonia leak to circulating water

    Institute of Scientific and Technical Information of China (English)

    郭爱兵; 魏美平

    2014-01-01

    简要介绍氨合成水冷器漏氨影响循环水水质的情况,对循环水受氨污染的危害、漏氨源的判定、氨污染原因、漏氨后的防控及处置作了分析总结。%The paper briefly introduces the effect of ammonia leak from ammonia synthesis water cooler to water quality of circulating water, it also analyzes and summarizes ammonia leak hazard of ammonia leak to circulating water, predicate of ammonia leak source, reasons of ammonia pollution, prevention and control after ammonia leak.

  4. Water exit pathways and proton pumping mechanism in B-type cytochrome c oxidase from molecular dynamics simulations.

    Science.gov (United States)

    Yang, Longhua; Skjevik, Åge A; Han Du, Wen-Ge; Noodleman, Louis; Walker, Ross C; Götz, Andreas W

    2016-09-01

    Cytochrome c oxidase (CcO) is a vital enzyme that catalyzes the reduction of molecular oxygen to water and pumps protons across mitochondrial and bacterial membranes. While proton uptake channels as well as water exit channels have been identified for A-type CcOs, the means by which water and protons exit B-type CcOs remain unclear. In this work, we investigate potential mechanisms for proton transport above the dinuclear center (DNC) in ba3-type CcO of Thermus thermophilus. Using long-time scale, all-atom molecular dynamics (MD) simulations for several relevant protonation states, we identify a potential mechanism for proton transport that involves propionate A of the active site heme a3 and residues Asp372, His376 and Glu126(II), with residue His376 acting as the proton-loading site. The proposed proton transport process involves a rotation of residue His376 and is in line with experimental findings. We also demonstrate how the strength of the salt bridge between residues Arg225 and Asp287 depends on the protonation state and that this salt bridge is unlikely to act as a simple electrostatic gate that prevents proton backflow. We identify two water exit pathways that connect the water pool above the DNC to the outer P-side of the membrane, which can potentially also act as proton exit transport pathways. Importantly, these water exit pathways can be blocked by narrowing the entrance channel between residues Gln151(II) and Arg449/Arg450 or by obstructing the entrance through a conformational change of residue Tyr136, respectively, both of which seem to be affected by protonation of residue His376.

  5. An Analysis of Water Hammer Sensitivity in Double-pump Water Supply Systems%双泵给水系统水锤敏感度分析

    Institute of Scientific and Technical Information of China (English)

    韩伟实; 王鑫; 幸奠川; 王明鹤

    2012-01-01

    In this paper, based on the model of a specific parallel two-pump water supply system, the numerical simulation and quan- titative analysis of water hammer of this water supply system are carried out, with emphasis on sensitivity analysis of water hammer. The research results show that the effect of flow on water hammers is significant, with the initial flow rate increasing, fluctuations of pressure increases significantly. As the moment of inertia of centrifugal increases, the water hammer effect will be weakened. In the case of constant water supply, the increase of diameter of the pipeline will ease water hammer pressure. In addition, the ways of the control valve closes will have a significant impact on the water hammer effect.%建立双泵并联给水系统,对本给水系统水锤过程进行了数值模拟以及定量分析,重点进行双泵给水系统水锤作用敏感度分析。结果表明:初始流量对水锤作用效果影响明显,随着初始流量增大,输水管道后压差波动明显增强;离心泵转动惯量增加,停泵水锤作用效果将减弱;输水流量不变情况下,输水管道管径增加将缓解水锤压力;另外,改变调节阀关闭方式也将对水锤效果产生明显影响。

  6. Fetal Circulation

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Fetal Circulation Updated:Oct 18,2016 click to enlarge The ... fetal heart. These two bypass pathways in the fetal circulation make it possible for most fetuses to survive ...

  7. Variability of the Brewer-Dobson circulation's meridional and vertical branch using Aura/MLS water vapor

    Directory of Open Access Journals (Sweden)

    T. Flury

    2012-08-01

    Full Text Available We use Aura/MLS stratospheric water vapor measurements to infer interannual variations in the speed of the Brewer-Dobson circulation (BDC from 2004 to 2011. Stratospheric water vapor (H2O is utilized as a tracer for dynamics and we follow its path along the vertical and meridional branch of the BDC from the tropics to mid-latitudes. We correlate one year time series of H2O in the lower stratosphere at two subsequent altitude levels (68 hPa, ~18.8 km and 56 hPa, ~19.9 km at the Equator and determine the time lag for best correlation. The same calculation is made on the horizontal on the 100 hPa (~16.6 km level by correlating the H2O time series at the Equator with the ones at 40° N and 40° S. From these lag coefficients we derive the vertical and horizontal speeds of the BDC in the tropics and extra-tropics respectively. We observe a clear interannual variability of the vertical and horizontal branch. The variability reflects signatures of the Quasi Biennial Oscillation (QBO. Our measurements confirm the QBO meridional circulation anomalies and show that the speed variations in the two branches of the BDC are out of phase and fairly well anti-correlated. Maximum ascent rates are found during the QBO easterly phase. We also find that the transport towards the Northern Hemisphere (NH is on the average two times faster than to the Southern Hemisphere (SH with a mean speed of 1.15 m s−1 at 100 hPa. Furthermore, the speed towards the NH shows much more variability with an amplitude of about 21% whilst the speed towards the SH varies by only 10%. An amplitude of 21% is also observed in the variability of the ascent rate at the Equator which is on the average 0.2 mm s−1 and hence about 5000 times slower than the meridional branch.

  8. Dimensionamento de motores para o bombeamento de água Sizing motors for water pumping

    Directory of Open Access Journals (Sweden)

    Delly Oliveira Filho

    2010-12-01

    Full Text Available O dimensionamento de motores com potência acima da necessária acarreta maior custo inicial, menor rendimento e menor fator de potência. Desde 1996, que se fabricam no Brasil motores elétricos com fator de serviço maior do que a unidade, obedecendo a valores prescritos em norma. O fator de serviço informa a potência disponível do motor em regime contínuo para as condições de carga nominal. A literatura técnica de dimensionamento de motores para acionamento de bombas hidráulicas indica a necessidade da adoção de acréscimos na potência dos motores. Tanto o fator de serviço, quanto o acréscimo na potência constituem fatores de segurança para o dimensionamento. Estes fatores de segurança têm a função de suprir maior demanda de potência devido a variações nas condições de trabalho, como curvas características da bomba ou do motor, e a qualidade de energia, como oscilação e desequilíbrio do sinal de tensão. Conclui-se que não seja utilizado acréscimo na potência no dimensionamento de motores com fator de serviço maior do que a unidade para acionamento de bomba hidráulica, tendo em vista que o superdimensionamento pode acarretar redução de rendimento do sistema e maior custo inicial. O dimensionamento que considera, simultaneamente, os dois fatores de segurança, implica superdimensionamento de 15% a 88%.Sizing motors with power above the required implies in higher initial cost, lower performance and lower power factor. Since 1996, that electrical motor is built in Brazil with service factors greater than the unity, obeying the standard values. The service factor informs the motor's available power in continuous regime under nominal condition. The technical literature for sizing motors to operate hydraulic pumps indicates the need of adoption of sizing factors in the motor's power. Both the service factor and the sizing factor are security factors to size motors. These safety factors have the function to supply

  9. Monitoring of the state of the paper machine circulation water with a wide-band impedance measurement; Paperikoneen kiertoveden tilan seuranta laajakaistaisella impedanssimittauksella - MPKT 02

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, T. [VTT Automation, Espoo (Finland). Measurement Technology

    1998-12-31

    A new measurement method for monitoring the chemical state of the circulation water in the paper machine is proposed and studied. In the method, the electrical properties - conductivity and permittivity - of the water are measured in a wide frequency band: 20 Hz - 10 mhz. Large-molecule organic compounds in the water are expected cause characteristic changes in the dielectric properties of the water. Continuous monitoring of the permittivity in the wide frequency band thus reveals their presence. Various electronic measurement setups for the measurement are constructed and studied by using test samples. If the method turns out to be promising, a prototype device will be made. (orig.)

  10. Energy-saving Design of Multi-pump Control Constant Pressure Water Supply System by Single Converter%单变频器多泵恒压供水系统节能设计

    Institute of Scientific and Technical Information of China (English)

    李焦明

    2009-01-01

    介绍了基于多泵控制器的多泵恒压供水控制系统的结构,给出了一用一备定时换泵加附属小泵恒压供水系统、多泵恒压供水固定泵变频控制系统、多泵恒压供水循环软启动方式控制系统的电气工作原理、设计要点与性能特点.应用实践表明,基于多泵控制器的多泵恒压供水控制系统应用简单、功能强大、节能效果显著.%The multi-pump control constant pressure water supply system structure was introduced. One pump to run a backup from time to time to exchange the water pump plus affiliated small pump constant pres-sure water supply systems, multi-pump constant pressure water supply fixed pump frequency control systems, multi-pump constant pressure water supply cycle soft-start control system for electrical working principle, de-sign features and performance characteristics were given. Application of practice shows, that based on multi-pump controller, the multi-pump constant pressure water supply control system is simple, powerful, and has obvious energy-saving results.

  11. Accommodation Mode of Wind Power Based on Water Source Heat Pump Technology%基于水源热泵技术的风电消纳模式

    Institute of Scientific and Technical Information of China (English)

    李群英; 冯利民; 许宇辉; 李春亮; 王绍然

    2012-01-01

    Based on the water source heat pump technology,a novel mode on wind power accommodation is proposed.The principle of this mode is analyzed firstly,its impacts on the improvement of the wind power accommodation,the promotion of energy-saving and emission-reduction,the improvement of city heat supply and the economic enhancement of the electrical generation enterprises are studied.With the proposed mode,the residual heat of the circulating water in the heat-engine plants can be recycled to improve the quality of city heat supply,the stability of the heat supply network and the capacity of wind power accommodation in the power grid,and reduce carbon emission during the process of electric power generation.The economic,social,environmental benefits and its application prospect are verified by the research data.%提出了基于水源热泵技术的风电消纳模式。分析了该模式的原理,研究了其在增加风电消纳、促进节能减排、改善城市供热及提高发电企业经济效益等方面的作用。研究表明,通过该模式,可将火力发电厂冷却循环水中的低品位余热转变为有用热能进行城市供暖,提高城市集中供热的质量和稳定性,同时还能够显著增加电网风电消纳能力,并有利于减少电能生产过程中的污染物排放。分析表明,该模式具有良好的经济、社会与环境效益,具备良好的发展前景。

  12. Integrated solar pump design incorporating a brushless DC motor for use in a solar heating system

    Energy Technology Data Exchange (ETDEWEB)

    Swan, Lukas G.; Allen, Peter L. [Department of Mechanical Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1 (Canada)

    2010-09-15

    Most solar thermal hot water heating systems utilize a pump for circulation of the working fluid. An elegant approach to powering the pump is via solar energy. A ''solar pump'' employs a photovoltaic module, electric motor, and pump to collect and convert solar energy to circulate the working fluid. This article presents an experimental investigation of a new integrated solar pump design that employs the stator of a brushless DC motor and a magnetically coupled pump that has no dynamic seal. This design significantly reduces total volume and mass, and eliminates redundant components. The integrated design meets a hydraulic load of 1.7 bar and 1.4 litres per minute, equal to 4.0 watts, at a rotational speed of 500 revolutions per minute. The brushless DC motor and positive displacement pump achieve efficiencies of 62% and 52%, respectively, resulting in an electric to hydraulic efficiency of 32%. Thus, a readily available photovoltaic module rated 15 watts output is suitable to power the system. A variety of design variations were tested to determine the impact of the armature winding, pump size, pulse width modulation frequency, seal can material, etcetera. The physical and magnetic design was found to dominate efficiency. The efficiency characteristics of a photovoltaic module are such that over-sizing is wasteful. The integrated design presents a robust, efficient package for use as a solar pump. Although focus has been placed on application to a solar thermal collector system, variations of the design are suitable for a wide variety of applications such as remote location water pumping. (author)

  13. Stratification and mixing in Lake Elsinore, California: an assessment of axial flow pumps for improving water quality in a shallow eutrophic lake.

    Science.gov (United States)

    Lawson, Rebecca; Anderson, Michael A

    2007-11-01

    A 3-year study was conducted to quantify the effectiveness of a destratification system on weakening thermal stratification and increasing dissolved oxygen (DO) levels in Lake Elsinore, California. Biweekly measurements of temperature, DO, and other parameters were made at 14 sites across the lake beginning in July 2003. A destratification system consisting of 20 axial flow pumps fitted with 3 HP electric motors and 1.8m diameter impellers mounted 2m below the water surface was installed in the spring of 2004 and made fully operational in July 2004. An unusually wet winter of 2005 raised the summer mean depth from 3.0m in 2004 to 6.7 m in 2005. This study thus allowed us to quantify the influence of axial flow pump operation on water column properties under shallow water conditions (i.e., before and after axial flow pump installation), and also to compare the effectiveness of the destratification system at two strongly different lake levels. Transparencies increased substantially after the winter storms in 2005 and thermal stability was shown to be strongly dependent upon lake level. Stratification and a large area of anoxic sediments persisted despite pump operation in the summers of 2004 and 2005. Acoustic Doppler current profiler (ADCP) measurements showed that mixing energy was not being efficiently transmitted laterally into the water column.

  14. Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons

    Science.gov (United States)

    Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.

    2009-01-01

    Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.

  15. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  16. Multi-Objective Optimization Design for Indirect Forced-Circulation Solar Water Heating System Using NSGA-II

    Directory of Open Access Journals (Sweden)

    Myeong Jin Ko

    2015-11-01

    Full Text Available In this study, the multi-objective optimization of an indirect forced-circulation solar water heating (SWH system was performed to obtain the optimal configuration that minimized the life cycle cost (LCC and maximized the life cycle net energy saving (LCES. An elitist non-dominated sorting genetic algorithm (NSGA-II was employed to obtain the Pareto optimal solutions of the multi-objective optimization. To incorporate the characteristics of practical SWH systems, operation-related decision variables as well as capacity-related decision variables were included. The proposed method was used to conduct a case study wherein the optimal configuration of the SWH system of an office building was determined. The case study results showed that the energy cost decreases linearly and the equipment cost increases more significantly as the LCES increases. However, the results also showed that it is difficult to identify the best solution among the Pareto optimal solutions using only the correlation between the corresponding objective function values. Furthermore, regression analysis showed that the energy and economic performances of the Pareto optimal solutions are significantly influenced by the ratio of the storage tank volume to the collector area (RVA. Therefore, it is necessary to simultaneously consider the trade-off and the effect of the RVA on the Pareto optimal solutions while selecting the best solution from among the optimal solutions.

  17. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  18. Pumping life

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel

    2012-01-01

    of membrane proteins: P-type ATPase pumps. This article takes the reader on a tour from Aarhus to Copenhagen, from bacteria to plants and humans, and from ions over protein structures to diseases caused by malfunctioning pump proteins. The magazine Nature once titled work published from PUMPKIN ‘Pumping ions......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  19. Mass flow rate sensitivity and uncertainty analysis in natural circulation boiling water reactor core from Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto, E-mail: gepe@xanum.uam.m [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico D.F., 09340 (Mexico); Verma, Surendra P. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/no., Col Centro, Apartado Postal 34, Temixco 62580 (Mexico); Vazquez-Rodriguez, Alejandro [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico D.F., 09340 (Mexico); Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragan 779, Col. Narvarte, Mexico D.F. 03020 (Mexico)

    2010-05-15

    Our aim was to evaluate the sensitivity and uncertainty of mass flow rate in the core on the performance of natural circulation boiling water reactor (NCBWR). This analysis was carried out through Monte Carlo simulations of sizes up to 40,000, and the size, i.e., repetition of 25,000 was considered as valid for routine applications. A simplified boiling water reactor (SBWR) was used as an application example of Monte Carlo method. The numerical code to simulate the SBWR performance considers a one-dimensional thermo-hydraulics model along with non-equilibrium thermodynamics and non-homogeneous flow approximation, one-dimensional fuel rod heat transfer. The neutron processes were simulated with a point reactor kinetics model with six groups of delayed neutrons. The sensitivity was evaluated in terms of 99% confidence intervals of the mean to understand the range of mean values that may represent the entire statistical population of performance variables. The regression analysis with mass flow rate as the predictor variable showed statistically valid linear correlations for both neutron flux and fuel temperature and quadratic relationship for the void fraction. No statistically valid correlation was observed for the total heat flux as a function of the mass flow rate although heat flux at individual nodes was positively correlated with this variable. These correlations are useful for the study, analysis and design of any NCBWR. The uncertainties were propagated as follows: for 10% change in the mass flow rate in the core, the responses for neutron power, total heat flux, average fuel temperature and average void fraction changed by 8.74%, 7.77%, 2.74% and 0.58%, respectively.

  20. The relationships of water and air when pumping a mixture into a stratum and in a productive level with intrastratum oil combustion

    Energy Technology Data Exchange (ETDEWEB)

    Papp, I.; Racz, D.; Voll, L.

    1985-01-01

    The results are cited of theoretical studies of optimization of the water and air relationship with pumping of a mixture into a stratum, as well as the disposition of perforations with moist, intrastratum combustion. The studies were conducted in a single slanted, uniform model and in a nonuniform model which corresponds to the stratification of the Demyenvostok field. An analysis of the distribution of the water and air relationships in the collector, identified by modeling a three phase section, is conducted.

  1. Cultivation of rice for animal feed with circulated irrigation of treated municipal wastewater for enhanced nitrogen removal: comparison of cultivation systems feeding irrigation water upward and downward.

    Science.gov (United States)

    Muramatsu, A; Ito, H; Sasaki, A; Kajihara, A; Watanabe, T

    2015-01-01

    To achieve enhanced nitrogen removal, we modified a cultivation system with circulated irrigation of treated municipal wastewater by using rice for animal feed instead of human consumption. The performance of this modified system was evaluated through a bench-scale experiment by comparing the direction of circulated irrigation (i.e. passing through paddy soil upward and downward). The modified system achieved more than three times higher nitrogen removal (3.2 g) than the system in which rice for human consumption was cultivated. The removal efficiency was higher than 99.5%, regardless of the direction of circulated irrigation. Nitrogen in the treated municipal wastewater was adsorbed by the rice plant in this cultivation system as effectively as chemical fertilizer used in normal paddy fields. Circulated irrigation increased the nitrogen released to the atmosphere, probably due to enhanced denitrification. Neither the circulation of irrigation water nor its direction affected the growth of the rice plant and the yield and quality of harvested rice. The yield of rice harvested in this system did not reach the target value in normal paddy fields. To increase this yield, a larger amount of treated wastewater should be applied to the system, considering the significant amount of nitrogen released to the atmosphere.

  2. Efficiency of small wind generator powered water pumping systems; Rendimento de unidade de bombeamento de agua acionada por gerador eolico de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Mendeleyev Guerreiro; Carvalho, Paulo Cesar Marques de; Costa, Levy Ferreira [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET), PE (Brazil)

    2008-07-01

    The present paper aims to evaluate the efficiency of a small wind generator powered water pumping system; the generator is a permanent magnet generator of 1 kw of axial flow, using three fiber glass blades with 2.46 m diameter. The used centrifugal pump is connected to a 0.5 c v motor, three-phase, frequency of 60 Hz, rotational speed of 3450 rpm. For the efficiency evaluation a shell anemometer, a flow and pressure sensor were used, connected to a data logger to the collection and storage of the data. An energy analyzer was also used to collect the current, voltage and power generated from the wind generator. (author)

  3. Production of gerbera throughout a year by utilizing water heat accumulating heat pumps. Practical application of control of culture medium temperature by rock wool cultivation, and technology to produce gerbera throughout a year; Mizu chikunetsushiki heat pump wo riyoshite gabera wo shunen seisan. Rokku uruko ni yoru baichion seigyo to gabera no shunen seisan gijutsu no jitsuyoka

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, M. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1999-03-10

    In order to utilize electric power more effectively in agriculture, technology to produce gerbera throughout a year by using rock wool cultivation has been established, by which culture medium temperature is cooled (heated) by using heat pumps. Once implanted, gerbera can provide flowers for two years, and demand for its cut flowers is increasing year after year. However, because high temperature in summer can create deformed flowers, reducing the rate of acceptable flower production, cut flower production is suspended during summer at the present. Therefore, nighttime electric power was utilized to accumulate cold (warm) water in a heat accumulation tank, circulate the water, and control the rock wool culture medium temperature to 20 to 25 degrees C which is suitable for growth of the plant. This system has made it possible to reduce greenhouse warming cost in winter. A non-control area had the average culture medium temperature vary to 30 degrees C or higher in summer and 15 degrees C in winter, while the control area maintained the temperature at 22 {+-} 1 degrees C both in summer and winter. The control area created not too great difference in flow quality as flower diameter and weight as compared to that in the non-control area, but had better flower stalk length with less deformed flower production, enhanced the acceptable product rate, and attained annual yield as great as 1.4 times. The assignment to the system is cost reduction. (NEDO)

  4. Hydrogeology and water quality of the Floridan aquifer system and effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Fort Stewart, Georgia

    Science.gov (United States)

    Clarke, John S.; Cherry, Gregory C.; Gonthier, Gerard J.

    2011-01-01

    Test drilling, field investigations, and digital modeling were completed at Fort Stewart, GA, during 2009?2010, to assess the geologic, hydraulic, and water-quality characteristics of the Floridan aquifer system and evaluate the effect of Lower Floridan aquifer (LFA) pumping on the Upper Floridan aquifer (UFA). This work was performed pursuant to the Georgia Environmental Protection Division interim permitting strategy for new wells completed in the LFA that requires simulation to (1) quantify pumping-induced aquifer leakage from the UFA to LFA, and (2) identify the equivalent rate of UFA pumping that would produce the same maximum drawdown in the UFA that anticipated pumping from LFA well would induce. Field investigation activities included (1) constructing a 1,300-foot (ft) test boring and well completed in the LFA (well 33P028), (2) constructing an observation well in the UFA (well 33P029), (3) collecting drill cuttings and borehole geophysical logs, (4) collecting core samples for analysis of vertical hydraulic conductivity and porosity, (5) conducting flowmeter and packer tests in the open borehole within the UFA and LFA, (6) collecting depth-integrated water samples to assess basic ionic chemistry of various water-bearing zones, and (7) conducting aquifer tests in new LFA and UFA wells to determine hydraulic properties and assess interaquifer leakage. Using data collected at the site and in nearby areas, model simulation was used to assess the effects of LFA pumping on the UFA. Borehole-geophysical and flowmeter data indicate the LFA at Fort Stewart consists of limestone and dolomitic limestone between depths of 912 and 1,250 ft. Flowmeter data indicate the presence of three permeable zones at depth intervals of 912-947, 1,090-1,139, and 1,211?1,250 ft. LFA well 33P028 received 50 percent of the pumped volume from the uppermost permeable zone, and about 18 and 32 percent of the pumped volume from the middle and lowest permeable zones, respectively. Chemical

  5. Processes to improve energy efficiency during pumping and aeration of recirculating water in circular tank systems

    Science.gov (United States)

    Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular tank can interfere with the hydrodynamics of water rotation and the spee...

  6. The human Na+-glucose cotransporter is a molecular water pump

    DEFF Research Database (Denmark)

    Meinild, A; Klaerke, D A; Loo, D D

    1998-01-01

    1. The human Na+-glucose cotransporter (hSGLT1) was expressed in Xenopus laevis oocytes. The transport activity, given by the Na+ current, was monitored as a clamp current and the concomitant flux of water followed optically as the change in oocyte volume. 2. When glucose was added to the bathing...

  7. Energy-saving Transformation of Feed Water Pump Supporting 50MW Units%50 MW 机组配套给水泵节能改造

    Institute of Scientific and Technical Information of China (English)

    杨超

    2015-01-01

    The feed water pump for the 50 MW steam boiler has a high head of delivery, causing high power consumption. By comparative analysis of three retrofit schemes which are the pump type replacement, motor frequency conversion regulation and removing primary impeller of feed water pump, the third retroift scheme has been selected. After impeller-saving transformation, the feed water pump can reduce power consumption from 6.17 kW•h/t to 5.45 kW•h/t, resulting in a remarkable economic beneift.%针对50 MW 汽轮机组锅炉给水泵扬程富裕过高,引起锅炉给水电耗率高的问题,提出给水泵换型、电机变频调节和抽掉给水泵一级叶轮3种改造方案,通过对比分析,选用抽掉给水泵一级叶轮的改造方案。减一级叶轮后,给水泵电耗率由6.17 kW•h/t 降至5.45 kW•h/t,经济效果显著。

  8. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  9. 间歇性充气压力泵在预防主动脉球囊反搏泵置入病人下肢循环障碍中的应用研究%Application study on intermittent pneumatic pressure pump in prevention of lower limb circulation disorder in pa-tients with aortic balloon pump

    Institute of Scientific and Technical Information of China (English)

    范羽飞; 常芸

    2016-01-01

    Objective:To probe into the effectiveness of intermittent pneumatic pressure pump for prevention and improvement of lower extremity circulation disorder in patients with aortic balloon pump(IABP).Methods:A total of 76 cases of patients were selected as the research objects who received percutaneous femoral artery puncture IABP and retaining the sheath in CCU from January 2014 to January 201 6 in our hospital.They were randomly divided into two groups,the patients in control group(n =39)did IABP catheter lateral ankle pump motor:ankle flexion and extension,by varus,valgus combination of the “ring”movement,every morning,noon, afternoon,bedtime for 4 times,each time for 100 circles.The patients in observation group(n=37)on the basis of ankle pump motor used the intermittent Airpro 600 pneumatic pressure pump produced by Chongqing li-fotronic medical instrument company,setting the initial inflation pressure at 40 mmHg,then according to the patient’s tolerance to adjust pressure from 80 mmHg to 120 mmHg,once every morning and 30 mins for once. On the second day,fourth day,seventh day after IABP catheter and second days after catheter extubation,the lower limb blood circulation indexes:toe end SpO 2 ,skin color,temperature,feeling,lower leg circumference, foot dorsal artery palpation,dorsal Doppler ultrasound,ankle brachial index(ABI),the patient’s subjective feel-ings.Results:There were statistically significant differences in the subjective feelings of patients between both groups on the second day of IABP (P < 0.01 ).There were statistically significant differences in the toe end SpO 2 ,lower limb temperature,lower leg circumference,and subjective feelings between both groups on the fourth day of catheter(P <0.05 or P <0.01).On the seventh day after catherter,there was statistically signifi-cant difference in toe end SpO 2 ,lower extremity temperature,lower leg circumference,foot dorsal artery palpa-tion,the dorsalis pedis artery Doppler ultrasound and

  10. Assistência circulatória com bomba centrífuga no choque cardiogênico após cirurgia com extracorpórea Assisted circulation for cardiogenic shock following cardiopulmonary bypass with a centrifugal pump

    Directory of Open Access Journals (Sweden)

    Paulo M Pêgo-Fernandes

    1991-08-01

    progressiva de função ventricular, sendo possível a retirada da bomba centrífuga após 60 horas. O paciente faleceu no 35º dia de pós-operatório por complicações respiratórias. Acreditamos que a utilização com maior freqüência e mais precocemente de assistência circulatória, permitirá uma redução da mortalidade global. O uso de ecocardiograma intra-esofágico nos nossos quatro pacientes foi útil na avaliação da evolução da função ventricular, fornecendo subsídios para retirada ou não da assistência.From April to December 1990, four patients were submitted to left ventricular assistance with centrifugal pump, because they presented cardiogenic shock after cardiac surgery, not responsive to intraortic balloon pump and drugs. The first patient had an aneurysm of anterior wall of the left ventricle with ejection fraction of 16% in the pre-operative period. The cardiac surgery was technically successful, but the patient could not be weaned from cardiopulmonary bypass with maximal pharmacological therapy and intra-aortic balloon pump. Then we used Biomedicus centrifugal pump for left ventricular assistance. The patient was assisted for 48 hours. Nowadays, she is in NYHA class II at eleventh post-operative month. The second case was a patient submitted to coronary bypass and mitral valve replacement. At second post-operative day the graft to LAD was occluded, resulting in cardiac arrest. The patient was put again in cardiopulmonary bypass, and could not be weaned. The left ventricle had a myocardial infarction, and the assisted circulation was used as a bridge to cardiac transplantation. After five days, without heart donor, he died due to a large embolus at lung. The third case was a patient with bad left ventricular function, submitted to coronary bypass. The patient could not be weaned of cardiopulmonary bypass. He was put in left assisted circulation for 32 hours. This patient had bleeding diathesis. He died in the fourth post-operative day due to

  11. New composite sorbents of water and ammonia for chemical and adsorption heat pumps

    Science.gov (United States)

    Aristov, Yu. I.; Vasiliev, L. L.

    2006-11-01

    New sorbents of water and ammonia — “salt in porous matrix” composites and “salt on fiber” composites — have been reviewed. The possibility of “constructing” the sorption properties of the composites at the nanophase level by varying their composition, the size of the host-matrix pores, and synthesis conditions has been shown. The application of the new materials in adsorption refrigerating devices has been considered.

  12. 矿井带压开采疏水降压可行性模拟分析%Simulation Analysis on Feasibility of Water Pumping and Water Table Dropping for Pressurized Water Mining in Underground Mine

    Institute of Scientific and Technical Information of China (English)

    郭国强

    2013-01-01

    Based on the seams in North China Taiyuan Formation threatened by high pressurized water in the aquifer of Ordovician limestone,in order to improve the effective recovery rate of the coal resources,to avoid the waste of the coal resources and to reduce the danger of the pressurized mining,with the analysis on the hydrogeological conditions of the Ordovician limestone aquifer,an evaluation on the danger of the pressurized mining was conducted.Visual MODFLOW software was applied to establish a mine hydrogeological model.A safety water pumping and water pressure was set as 1 MPa and the water pumping quantity from the aquifer in Ordovician limestone was calculated.A feasibility analysis on the water pumping and pressure dropping was conducted on the water pumping quantity size,mine water drainage capacity,hydrogeological conditions,comprehensive utilization of the coal resources and others.The results showed that when the water pumping quantity was 8 676 m3/d,after 9 days water drainage,the water pressure of the Ordovician limestone would be stable,would be reduced to 1 MPa and would reach the designed safety water level.Thus the water pumping and the pressure dropping would be feasible and the pressurized mining could be safely conducted.%基于华北太原组煤层受到奥陶系灰岩含水层高承压水威胁,为提高煤炭资源采出率,减少煤炭资源损失以及降低矿井带压开采的危险性.通过分析奥灰含水层的水文地质条件,进行了带压开采危险性评价,利用Visual MODFLOW软件建立矿井水文地质模型,设定安全疏降水压为1 MPa,计算了矿井奥灰含水层疏降水量.从疏降水量大小、矿井排水能力、水文地质条件、水资源综合利用等方面进行了疏水降压可行性分析.结果表明,当疏降水量为8 676 m3/d时,经过9d排水,奥灰水压可稳定并降至1 MPa,达到设计的安全水位,疏水降压是可行的,矿井带压开采可以安全进行.

  13. Solar and wind systems utilization in water pumping for irrigation; Utilizacao de sistemas solar e eolico no bombeamento de agua para uso na irrigacao

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Cicero Urbanetto

    2009-07-01

    In this work, it was made an applied research in two stations, the first one located at Canabarro locality and the second one at Polytechnic School at UFSM, in Santa Maria city, RS, with wind and photovoltaic equipment for pumping water. These ones are used for fruit trees irrigation in irrigation systems of low pressure. The research work was developed from September 2007 to August 2009, when the results showed the viability of wind and photovoltaic equipment for utilization in the complementary irrigation in fruit cultures such as guava, fig and grape trees. In the fruit culture sector, are installed: one multivane fans wind indicator one savonius wind indicator and respective pumps as well as pump set and a photovoltaic board. With the photovoltaic system, the pumped volume was about 5000 m{sup 3}/ha and, with the wind system, the pumped volume was approximately 6m{sup 3}/ha. The wind groups demonstrated low efficiency, if compared to photovoltaic systems, which showed more efficient. (author)

  14. CFD simulation of reverse water-hammer induced by collapse of draft-tube cavity in a model pump-turbine during runaway process

    Science.gov (United States)

    Zhang, Xiaoxi; Cheng, Yongguang; Xia, Linsheng; Yang, Jiandong

    2016-11-01

    This paper reports the preliminary progress in the CFD simulation of the reverse water-hammer induced by the collapse of a draft-tube cavity in a model pump-turbine during the runaway process. Firstly, the Fluent customized 1D-3D coupling model for hydraulic transients and the Schnerr & Sauer cavitation model for cavity development are introduced. Then, the methods are validated by simulating the benchmark reverse water-hammer in a long pipe caused by a valve instant closure. The simulated head history at the valve agrees well with the measured data in literature. After that, the more complicated reverse water-hammer in the draft-tube of a runaway model pump-turbine, which is installed in a model pumped-storage power plant, is simulated. The dynamic processes of a vapor cavity, from generation, expansion, shrink to collapse, are shown. After the cavity collapsed, a sudden increase of pressure can be evidently observed. The process is featured by a locally expending and collapsing vapor cavity that is around the runner cone, which is different from the conventional recognition of violent water- column separation. This work reveals the possibility for simulating the reverse water-hammer phenomenon in turbines by 3D CFD.

  15. Water-Tank Experiment on the Thermal Circulation Induced by the Bottom Heating in an Asymmetric Valley

    Institute of Scientific and Technical Information of China (English)

    刘辉志; 梁彬; 朱凤荣; 张伯寅; 桑建国

    2004-01-01

    Water tank experiments were carried out to investigate the thermal convection due to the bottom heating in an asymmetrical valley under neutral and stably stratified approach flows with the Particle Image Velometry (PIV) visualization technique. In the neutral stratification approach flow, the ascending draft induced by bottom heating is mainly located in the center of the valley in calm ambient wind. However,with ambient wind flow, the thermal convection is shifted leeward, and the descending draft is located on the leeward side of the valley, while the ascending draft is located on the windward side. The descending draft is minorly turbulent and organized, while the ascending draft is highly turbulent. With the increase of the towing speed, the descending and ascending drafts induced by the mechanical elevation begin to play a more dominant role in the valley flow, while the role of the thermal convection in the valley airflow becomes limited. In the stable stratification approach flow, the thermal convection is limited by the stable stratification and no distinct circulation is formed in calm ambient wind. With ambient wind, agravity wave appears in the upper layer in the valley. With the increase of the ambient wind speed, a gravity wave plays an important role in the valley flow, and the location and intensity of the thermal convection are also modulated by the gravity internal waves. The thermal convection has difficulty penetrating the upper stable layer. Its exchange is limited between the air in the upper layer and that in the lower layer in the valley, and it is adverse to the diffusion of pollutants in the valley.

  16. Influence of LGM boundary conditions on the global water isotope distribution in an atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    T. Tharammal

    2012-04-01

    Full Text Available A series of experiments was conducted using a water isotope tracers-enabled atmospheric general circulation model (Community Atmosphere Model version 3.0, CAM3.0-Iso, by changing the individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea-surface temperature each at a time to Last Glacial Maximum (LGM values. In addition, a combined simulation with all the boundary conditions being set to LGM values was carried out. A pre-industrial (PI simulation with boundary conditions taken according to the PMIP2 (Paleoclimate Modelling Intercomparison Project protocol was performed as the control experiment. The experiments were designed in order to analyze the temporal and spatial variations of the oxygen isotopic composition of precipitation (δ18Oprecip in response to individual climate factors. The change in topography (due to the change in land-ice cover played a significant role in reducing the surface temperature and δ18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and δ18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3. Large reductions in δ18Oprecip over the LGM ice sheets were highly correlated with the temperature decrease over them. The SST and ice sheet topography changes were found to be responsible for most of the changes in the climate and hence the δ18Oprecip distribution among the simulations.

  17. DYNAMICS MODEL AND SIMULATION OF FLAT VALVE SYSTEM OF INTERNAL COMBUSTION WATER PUMP

    Institute of Scientific and Technical Information of China (English)

    Zhang Hongxin; Zhang Tiezhu; Wang Yushun; Zhao Hong; Huo Wei

    2005-01-01

    The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently.

  18. 太阳能-空气复合热源热泵热水系统%Solar-air composite heat source heat pump hot water system

    Institute of Scientific and Technical Information of China (English)

    王岗; 全贞花; 赵耀华; 侯隆澍; 徐俊芳; 邓月超

    2014-01-01

    In the light of low efficiency of photovoltaic power generation and the problems of air source heat pump applied in cold regions, a composite heat exchanger evaporator is developed and a new type of solar-air composite heat source heat pump hot water system is designed in this study, which is comprised of independent solar photovoltaic-thermal collector based on flat plate micro heat pipe and air source heat pump. The performance of heat pump hot water system is evaluated experimentally under different operating conditions, including water temperature of the tank, heating time of hot water, suction and discharge pressure, consumption of compressor power and heat pump coefficient of performance (COP), etc. Experimental results show that at ambient temperature of 5℃, 10℃ and 15℃, with 73 L hot water heated by heat pump and water temperature in the tank ranged from 15℃ to 50℃, the running time of composite heat source operation is shorter than that of separate air heat source operation, decreased by 5.14%, 10.29% and 11.38%, respectively. COPs are increased by 5.99%, 9.28%and 11.96%, respectively.%针对光伏发电效率较低和空气源热泵在寒冷地区应用中存在的问题,研发了一种新型复合蒸发器,将平板微热管阵列太阳能光伏光热(PV/T)集热器与空气源热泵相结合,组成新型太阳能-空气复合热源热泵热水系统。并对该热水系统在不同运行工况下的水箱水温、吸排气压力、压缩机功率和性能等进行了实验研究。实验结果表明,在环境温度分别为5、10和15℃的条件下,热泵加热73 L水,水温从15℃加热到50℃时,双热源运行工况的加热时间比单空气热源运行工况依次缩短了5.14%、10.29%和11.38%,COP依次提高了5.99%、9.28%和11.96%。

  19. Integrated subsurface water solutions for coastal environments through integrated pump&treat and aquifer storage and recovery (ASR) schemes

    Science.gov (United States)

    Perdikaki, Martha; Kallioras, Andreas; Christoforidis, Christophoros; Iossifidis, Dimitris; Zafeiropoulos, Anastasios; Dimitriadis, Klisthenis; Makropoulos, Christos; Raat, Klaasjan; van den Berg, Gerard

    2016-04-01

    Coastal wetlands in semi-arid regions, as in Circum-Mediterranean, are considered important ecosystems that provide valuable services to human population and the environment, such as: flood protection, erosion control, wildlife habitat, water quality, recreation and carbon sequestration. Un-managed surface and groundwater exploitation in these areas usually leads to deterioration of such sensitive ecosystems by means of water resources degradation and/or increased salinity. Groundwater usually plays a vital role for the sustainability of these hydrological systems, as the underlying aquifers operate as regulators for both quantity and quality of their waters. Multi-layer and multi-objective Managed Aquifer Recharge (MAR) systems can be proved effective groundwater engineered solutions for the restoration of deteriorated coastal wetlands in semi- and arid regions. The plain of Marathon is a typical Mediterranean environment that hosts a naturally occurring -and today degraded- coastal wetland with the characteristics of a distinct ecosystem linked to a typical coastal hydrogeological system of a semi-arid region; and therefore can serve as a model for similar systems world-wide. The geo-hydrological setting of the area involves a multi-layer aquifer system consisting of (i) an upper un-consolidated formation of depositional unit dominated mostly by fluvial sediments and (ii) the surrounding and underlying karstified marbles; both being linked to the investigated wetland and also subjected to seawater encroachment. A smart engineered MAR system via an optimised Pump & Treat system integrated with an Aquifer Storage and Recovery (ASR) scheme in this area would include the abstraction of brackish groundwater from the deeper karst aquifer at a location close to the shoreline and direct treatment with Reverse Osmosis (RO). for desalination. Two-fold re-use scheme of the purified effluent can then be engineered for (i) the restoration of the coastal wetland; and (ii

  20. 某商业建筑地下水源热泵系统设计%The System Design of Ground Water Heat Pumps in a Commercial Building

    Institute of Scientific and Technical Information of China (English)

    高亮

    2014-01-01

    地下水源热泵是地源热泵的一种形式。与土壤源热泵比,其具有投资小、运行费用低的特点,因此在工程实际中可推广性更强。文章以某商业建筑为例,以建筑形式、面积为基础,进行了水源热泵系统设计,并对工程投资和运行费用进行了估算。%Ground water heat pump is a form of ground source heat pumps, and compare with the soil source heat pump, its investment smal and operating cost low, so it has stronger generalization in engineering practice. This article takes a commercial building as example and based on the