WorldWideScience

Sample records for circulating vascular progenitors

  1. Reversing resistance to vascular-disrupting agents by blocking late mobilization of circulating endothelial progenitor cells.

    Taylor, Melissa; Billiot, Fanny; Marty, Virginie; Rouffiac, Valérie; Cohen, Patrick; Tournay, Elodie; Opolon, Paule; Louache, Fawzia; Vassal, Gilles; Laplace-Builhé, Corinne; Vielh, Philippe; Soria, Jean-Charles; Farace, Françoise

    2012-05-01

    The prevailing concept is that immediate mobilization of bone marrow-derived circulating endothelial progenitor cells (CEP) is a key mechanism mediating tumor resistance to vascular-disrupting agents (VDA). Here, we show that administration of VDA to tumor-bearing mice induces 2 distinct peaks in CEPs: an early, unspecific CEP efflux followed by a late yet more dramatic tumor-specific CEP burst that infiltrates tumors and is recruited to vessels. Combination with antiangiogenic drugs could not disrupt the early peak but completely abrogated the late VDA-induced CEP burst, blunted bone marrow-derived cell recruitment to tumors, and resulted in striking antitumor efficacy, indicating that the late CEP burst might be crucial to tumor recovery after VDA therapy. CEP and circulating endothelial cell kinetics in VDA-treated patients with cancer were remarkably consistent with our preclinical data. These findings expand the current understanding of vasculogenic "rebounds" that may be targeted to improve VDA-based strategies. Our findings suggest that resistance to VDA therapy may be strongly mediated by late, rather than early, tumor-specific recruitment of CEPs, the suppression of which resulted in increased VDA-mediated antitumor efficacy. VDA-based therapy might thus be significantly enhanced by combination strategies targeting late CEP mobilization. © 2012 AACR

  2. Progenitor cells in pulmonary vascular remodeling

    Yeager, Michael E.; Frid, Maria G.; Stenmark, Kurt R.

    2011-01-01

    Pulmonary hypertension is characterized by cellular and structural changes in the walls of pulmonary arteries. Intimal thickening and fibrosis, medial hypertrophy and fibroproliferative changes in the adventitia are commonly observed, as is the extension of smooth muscle into the previously non-muscularized vessels. A majority of these changes are associated with the enhanced presence of α-SM-actin+ cells and inflammatory cells. Atypical abundances of functionally distinct endothelial cells, particularly in the intima (plexiform lesions), and also in the perivascular regions, are also described. At present, neither the origin(s) of these cells nor the molecular mechanisms responsible for their accumulation, in any of the three compartments of the vessel wall, have been fully elucidated. The possibility that they arise from either resident vascular progenitors or bone marrow–derived progenitor cells is now well established. Resident vascular progenitor cells have been demonstrated to exist within the vessel wall, and in response to certain stimuli, to expand and express myofibroblastic, endothelial or even hematopoietic markers. Bone marrow–derived or circulating progenitor cells have also been shown to be recruited to sites of vascular injury and to assume both endothelial and SM-like phenotypes. Here, we review the data supporting the contributory role of vascular progenitors (including endothelial progenitor cells, smooth muscle progenitor cells, pericytes, and fibrocytes) in vascular remodeling. A more complete understanding of the processes by which progenitor cells modulate pulmonary vascular remodeling will undoubtedly herald a renaissance of therapies extending beyond the control of vascular tonicity and reduction of pulmonary artery pressure. PMID:22034593

  3. Mobilization of Circulating Vascular Progenitors in Cancer Patients Receiving External Beam Radiation in Response to Tissue Injury

    Allan, David S.; Morgan, Scott C.; Birch, Paul E.; Yang, Lin; Halpenny, Michael J.; Gunanayagam, Angelo; Li Yuhua; Eapen, Libni

    2009-01-01

    Purpose: Endothelial-like vascular progenitor cells (VPCs) are associated with the repair of ischemic tissue injury in several clinical settings. Because the endothelium is a principal target of radiation injury, VPCs may be important in limiting toxicity associated with radiotherapy (RT) in patients with cancer. Methods and Materials: We studied 30 patients undergoing RT for skin cancer (n = 5), head-and-neck cancer (n = 15), and prostate cancer (n = 10) prospectively, representing a wide range of irradiated mucosal volumes. Vascular progenitor cell levels were enumerated from peripheral blood at baseline, midway through RT, at the end of treatment, and 4 weeks after radiation. Acute toxicity was graded at each time point by use of the National Cancer Institute's Common Toxicity Criteria, version 3.0. Results: Significant increases in the proportion of CD34 + /CD133 + VPCs were observed after completion of RT, from 0.012% at baseline to 0.048% (p = 0.029), and the increase in this subpopulation was most marked in patients with Grade 2 peak toxicity or greater after RT (p = 0.034). Similarly, CD34 + /vascular endothelial growth factor receptor 2-positive VPCs were increased after the completion of radiation therapy in comparison to baseline (from 0.014% to 0.027%, p = 0.043), and there was a trend toward greater mobilization in patients with more significant toxicity (p = 0.08). The mobilization of CD34 + hematopoietic stem cells did not increase after treatment (p = 0.58), and there was no relationship with toxicity. Conclusions: We suggest that VPCs may play an important role in reducing radiation-induced tissue damage. Interventions that increase baseline VPC levels or enhance their mobilization and recruitment in response to RT may prove useful in facilitating more rapid and complete tissue healing.

  4. Towards the therapeutic use of vascular smooth muscle progenitor cells.

    Merkulova-Rainon, Tatyana; Broquères-You, Dong; Kubis, Nathalie; Silvestre, Jean-Sébastien; Lévy, Bernard I

    2012-07-15

    Recent advances in the development of alternative proangiogenic and revascularization processes, including recombinant protein delivery, gene therapy, and cell therapy, hold the promise of greater efficacy in the management of cardiovascular disease in the coming years. In particular, vascular progenitor cell-based strategies have emerged as an efficient treatment approach to promote vessel formation and repair and to improve tissue perfusion. During the past decade, considerable progress has been achieved in understanding therapeutic properties of endothelial progenitor cells, while the therapeutic potential of vascular smooth muscle progenitor cells (SMPC) has only recently been explored; the number of the circulating SMPC being correlated with cardiovascular health. Several endogenous SMPC populations with varying phenotypes have been identified and characterized in the peripheral blood, bone marrow, and vascular wall. While the phenotypic entity of vascular SMPC is not fully defined and remains an evolving area of research, SMPC are increasingly recognized to play a special role in cardiovascular biology. In this review, we describe the current approaches used to define vascular SMPC. We further summarize the data on phenotype and functional properties of SMPC from various sources in adults. Finally, we discuss the role of SMPC in cardiovascular disease, including the contribution of SMPC to intimal proliferation, angiogenesis, and atherosclerotic plaque instability as well as the benefits resulting from the therapeutic use of SMPC.

  5. Opportunities and Challenges for Repair of Macrovascular Disease using Circulating Blood-Derived Progenitor Cells

    Loeken, Mary R.

    2014-01-01

    There are currently few solutions for diabetic vascular disease that involve repair of damaged tissues. The manuscript by Porat, et al., suggests a possible method to use a patient’s own circulating blood cells to provide progenitors to repair damaged vascular tissues.

  6. From here to there, progenitor cells and stem cells are everywhere in lung vascular remodeling

    Rebecca L. Heise

    2016-08-01

    Full Text Available The field of stem cell biology, cell therapy and regenerative medicine has expanded almost exponentially in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD, chronic obstructive pulmonary disease (COPD, idiopathic pulmonary fibrosis (IPF or pulmonary arterial hypertension (PAH. Extensive research activity is exploring lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field.

  7. [Circulating endothelial progenitor cell levels in treated hypertensive patients].

    Maroun-Eid, C; Ortega-Hernández, A; Abad, M; García-Donaire, J A; Barbero, A; Reinares, L; Martell-Claros, N; Gómez-Garre, D

    2015-01-01

    Most optimally treated hypertensive patients still have an around 50% increased risk of any cardiovascular event, suggesting the possible existence of unidentified risk factors. In the last years there has been evidence of the essential role of circulating endothelial progenitor cells (EPCs) in the maintenance of endothelial integrity and function, increasing the interest in their involvement in cardiovascular disease. In this study, the circulating levels of EPCs and vascular endothelial growth factor (VEGF) are investigated in treated hypertensive patients with adequate control of blood pressure (BP). Blood samples were collected from treated hypertensive patients with controlled BP. Plasma levels of EPCs CD34+/KDR+ and CD34+/VE-cadherin+ were quantified by flow cytometry. Plasma concentration of VEGF was determined by ELISA. A group of healthy subjects without cardiovascular risk factors was included as controls. A total of 108 hypertensive patients were included (61±12 years, 47.2% men) of which 82.4% showed BP<140/90 mmHg, 91.7% and 81.5% controlled diabetes (HbA1c <7%) and cLDL (<130 or 100 mg/dL), respectively, and 85.2% were non-smokers. Around 45% of them were obese. Although patients had cardiovascular parameters within normal ranges, they showed significantly lower levels of CD34+/KDR+ and CD34+/VE-cadherin+ compared with healthy control group, although plasma VEGF concentration was higher in patients than in controls. Despite an optimal treatment, hypertensive patients show a decreased number of circulating EPCs that could be, at least in part, responsible for their residual cardiovascular risk, suggesting that these cells could be a therapeutic target. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.

  8. Impairment of circulating endothelial progenitors in Down syndrome

    Costa Valerio

    2010-09-01

    Full Text Available Abstract Background Pathological angiogenesis represents a critical issue in the progression of many diseases. Down syndrome is postulated to be a systemic anti-angiogenesis disease model, possibly due to increased expression of anti-angiogenic regulators on chromosome 21. The aim of our study was to elucidate some features of circulating endothelial progenitor cells in the context of this syndrome. Methods Circulating endothelial progenitors of Down syndrome affected individuals were isolated, in vitro cultured and analyzed by confocal and transmission electron microscopy. ELISA was performed to measure SDF-1α plasma levels in Down syndrome and euploid individuals. Moreover, qRT-PCR was used to quantify expression levels of CXCL12 gene and of its receptor in progenitor cells. The functional impairment of Down progenitors was evaluated through their susceptibility to hydroperoxide-induced oxidative stress with BODIPY assay and the major vulnerability to the infection with human pathogens. The differential expression of crucial genes in Down progenitor cells was evaluated by microarray analysis. Results We detected a marked decrease of progenitors' number in young Down individuals compared to euploid, cell size increase and some major detrimental morphological changes. Moreover, Down syndrome patients also exhibited decreased SDF-1α plasma levels and their progenitors had a reduced expression of SDF-1α encoding gene and of its membrane receptor. We further demonstrated that their progenitor cells are more susceptible to hydroperoxide-induced oxidative stress and infection with Bartonella henselae. Further, we observed that most of the differentially expressed genes belong to angiogenesis, immune response and inflammation pathways, and that infected progenitors with trisomy 21 have a more pronounced perturbation of immune response genes than infected euploid cells. Conclusions Our data provide evidences for a reduced number and altered

  9. Smoking decreases the level of circulating CD34+ progenitor cells in young healthy women - a pilot study

    Baumann Gert

    2010-05-01

    Full Text Available Abstract Background Decreased levels of circulating bone marrow-derived progenitor cells have been associated with risk factors and cardiovascular diseases. Smoking is the most important modifiable risk factor for atherosclerosis in young women. The aim of this pilot study was to assess in healthy premenopausal women without other risk factors for cardiovascular disease the influence of nicotine abuse on the number of circulating progenitor cells in relation to endothelial function. Methods The number of endothelial progenitor cells, measured as colony-forming units in a cell-culture assay (EPC-CFU and the number of circulating CD34 + and CD34 + /CD133 + cells, measured by flow cytometry, was estimated in 32 women at the menstrual phase of the menstrual cycle. In addition, flow-mediated dilation (FMD was assessed as a marker for vascular function. In a subgroup of these women (n = 20, progenitor cells were also investigated at the mid-follicular and luteal phases of the menstrual cycle. Results Compared to non-smokers, the abundance of circulating CD34 + cells was significantly lower in smoking women in the menstrual, mid-luteal, and mid-follicular phases of the menstrual cycle. The number of CD34 + progenitor cells was revealed to have significant positive correlation with FMD in young healthy women, whereas CD34 + /CD133 + progenitor cells and EPC-CFU showed no significant correlation. Conclusion The number of CD34 + progenitor cells positively correlates with FMD in young healthy women and is decreased by smoking.

  10. Erythropoietin Receptor Positive Circulating Progenitor Cells and Endothelial Progenitor Cells in Patients with Different Stages of Diabetic Retinopathy

    Liu-mei Hu; Guo-xu Xu; Guo-tong XU; Wei-ye Li; Xia Lei; Bo Ma; Yu Zhang; Yan Yan; Ya-lan Wu; Ge-zhi Xu; Wen Ye; Ling Wang

    2011-01-01

    Objective To investigate the possible involvement of erythropoietin (EPO)/erythropoietin receptor(EPOR) system in neovascularization and vascular regeneration in diabetic retinopathy (DR).Methods EPOR positive circulating progenitor cells (CPCs: CD34+) and endothelial progenitor cells (EPCs: CD34+KDR+) were assessed by flow cytometry in type 2 diabetic patients with different stages of DR. The cohort consisted of age- and sex-matched control patients without diabetes (n=7), non-prolif-erative DR (NPDR, n=7), proliferative DR (PDR, n=8), and PDR complicated with diabetic nephropathy (PDR-DN, n=7). Results The numbers of EPOR+ CPCs and EPOR+ EPCs were reduced remarkably in NPDR compared with the control group (both P<0.01), whereas rebounded in PDR and PDR-DN groups in varying degrees. Similar changes were observed in respect of the proportion of EPOR+ CPCs in CPCs (NPDR vs.control, P< 0.01) and that of EPOR+ EPCs in EPCs (NPDR vs. control, P< 0.05). Conclusion Exogenous EPO, mediated via the EPO/EPOR system of EPCs, may alleviate the im-paired vascular regeneration in NPDR, whereas it might aggravate retinal neovascularization in PDR due to a rebound of EPOR+ EPCs associated with ischemia.

  11. Functional evaluation of circulating hematopoietic progenitors in Noonan syndrome

    TIMEUS, FABIO; CRESCENZIO, NICOLETTA; BALDASSARRE, GIUSEPPINA; DORIA, ALESSANDRA; VALLERO, STEFANO; FOGLIA, LUISELDA; PAGLIANO, SARA; ROSSI, CESARE; SILENGO, MARGHERITA CIRILLO; RAMENGHI, UGO; FAGIOLI, FRANCA; DI MONTEZEMOLO, LUCA CORDERO; FERRERO, GIOVANNI BATTISTA

    2013-01-01

    Noonan syndrome (NS) is an autosomal dominant disorder, characterized by short stature, multiple dysmorphisms and congenital heart defects. A myeloproliferative disorder (NS/MPD), resembling juvenile myelomonocytic leukemia (JMML), is occasionally diagnosed in infants with NS. In the present study, we performed a functional evaluation of the circulating hematopoietic progenitors in a series of NS, NS/MPD and JMML patients. The different functional patterns were compared with the aim to identify a possible NS subgroup worthy of stringent hematological follow-up for an increased risk of MPD development. We studied 27 NS and 5 JMML patients fulfilling EWOG-MDS criteria. The more frequent molecular defects observed in NS were mutations in the PTPN11 and SOS genes. The absolute count of monocytes, circulating CD34+ hematopoietic progenitors, their apoptotic rate and the number of circulating CFU-GMs cultured in the presence of decreasing concentrations or in the absence of granulocyte-macrophage colony-stimulating factor (GM-CSF) were evaluated. All JMML patients showed monocytosis >1,000/μl. Ten out of the 27 NS patients showed monocytosis >1,000/μl, which included the 3 NS/MPD patients. In JMML patients, circulating CD34+ cells were significantly increased (median, 109.8/μl; range, 44–232) with a low rate of apoptosis (median, 2.1%; range, 0.4–12.1%), and circulating CFU-GMs were hyper-responsive to GM-CSF. NS/MPD patients showed the same flow cytometric pattern as the JMML patients (median, CD34+ cells/μl, 205.7; range, 58–1374; median apoptotic rate, 1.4%; range, 0.2–2.4%) and their circulating CFU-GMs were hyper-responsive to GM-CSF. These functional alterations appeared 10 months before the typical clinical manifestations in 1 NS/MPD patient. In NS, the CD34+ absolute cell count and circulating CFU-GMs showed a normal pattern (median CD34+ cells/μl, 4.9; range, 1.3–17.5), whereas the CD34+ cell apoptotic rate was significantly decreased in

  12. The level of circulating endothelial progenitor cells may be associated with the occurrence and recurrence of chronic subdural hematoma

    Yan Song

    2013-01-01

    Full Text Available OBJECTIVES: The onset of chronic subdural hematoma may be associated with direct or indirect minor injuries to the head or a poorly repaired vascular injury. Endothelial progenitor cells happen to be one of the key factors involved in hemostasis and vascular repair. This study was designed to observe the levels of endothelial progenitor cells, white blood cells, platelets, and other indicators in the peripheral blood of patients diagnosed with chronic subdural hematoma to determine the possible relationship between the endothelial progenitor cells and the occurrence, development, and outcomes of chronic subdural hematoma. METHOD: We enrolled 30 patients with diagnosed chronic subdural hematoma by computer tomography scanning and operating procedure at Tianjin Medical University General Hospital from July 2009 to July 2011. Meanwhile, we collected 30 cases of peripheral blood samples from healthy volunteers over the age of 50. Approximately 2 ml of blood was taken from veins of the elbow to test the peripheral blood routine and coagulation function. The content of endothelial progenitor cells in peripheral blood mononuclear cells was determined by flow cytometry. RESULTS: The level of endothelial progenitor cells in peripheral blood was significantly lower in preoperational patients with chronic subdural hematomas than in controls. There were no significant differences between the two groups regarding the blood routine and coagulation function. However, the levels of circulating endothelial progenitor cells were significantly different between the recurrent group and the non-recurrent group. CONCLUSIONS: The level of circulating endothelial progenitor cells in chronic subdural hematoma patients was significantly lower than the level in healthy controls. Meanwhile, the level of endothelial progenitor cells in recurrent patients was significantly lower than the level in patients without recurrence. Endothelial progenitor cells may be related to the

  13. Circulating CD34+ progenitor cells and risk of mortality in a population with coronary artery disease.

    Patel, Riyaz S; Li, Qunna; Ghasemzadeh, Nima; Eapen, Danny J; Moss, Lauren D; Janjua, A Umair; Manocha, Pankaj; Kassem, Hatem Al; Veledar, Emir; Samady, Habib; Taylor, W Robert; Zafari, A Maziar; Sperling, Laurence; Vaccarino, Viola; Waller, Edmund K; Quyyumi, Arshed A

    2015-01-16

    Low circulating progenitor cell numbers and activity may reflect impaired intrinsic regenerative/reparative potential, but it remains uncertain whether this translates into a worse prognosis. To investigate whether low numbers of progenitor cells associate with a greater risk of mortality in a population at high cardiovascular risk. Patients undergoing coronary angiography were recruited into 2 cohorts (1, n=502 and 2, n=403) over separate time periods. Progenitor cells were enumerated by flow cytometry as CD45(med+) blood mononuclear cells expressing CD34, with additional quantification of subsets coexpressing CD133, vascular endothelial growth factor receptor 2, and chemokine (C-X-C motif) receptor 4. Coefficient of variation for CD34 cells was 2.9% and 4.8%, 21.6% and 6.5% for the respective subsets. Each cohort was followed for a mean of 2.7 and 1.2 years, respectively, for the primary end point of all-cause death. There was an inverse association between CD34(+) and CD34(+)/CD133(+) cell counts and risk of death in cohort 1 (β=-0.92, P=0.043 and β=-1.64, P=0.019, respectively) that was confirmed in cohort 2 (β=-1.25, P=0.020 and β=-1.81, P=0.015, respectively). Covariate-adjusted hazard ratios in the pooled cohort (n=905) were 3.54 (1.67-7.50) and 2.46 (1.18-5.13), respectively. CD34(+)/CD133(+) cell counts improved risk prediction metrics beyond standard risk factors. Reduced circulating progenitor cell counts, identified primarily as CD34(+) mononuclear cells or its subset expressing CD133, are associated with risk of death in individuals with coronary artery disease, suggesting that impaired endogenous regenerative capacity is associated with increased mortality. These findings have implications for biological understanding, risk prediction, and cell selection for cell-based therapies. © 2014 American Heart Association, Inc.

  14. Prognostic value of circulating VEGFR2+ bone marrow-derived progenitor cells in patients with advanced cancer.

    Massard, Christophe; Borget, Isabelle; Le Deley, Marie Cécile; Taylor, Melissa; Gomez-Roca, Carlos; Soria, Jean Charles; Farace, Françoise

    2012-06-01

    We hypothesised that host-related markers, possibly reflecting tumour aggressiveness, such as circulating endothelial cells (CEC) and circulating VEGFR2(+) bone marrow-derived (BMD) progenitor cells, could have prognostic value in patients with advanced cancer enrolled in early anticancer drug development trials. Baseline CECs (CD45(-)CD31(+)CD146(+)7AAD(-) cells) and circulating VEGFR2(+)-BMD progenitor cells (defined as CD45(dim)CD34(+)VEGFR2(+)7AAD(-) cells) were measured by flow-cytometry in 71 and 58 patients included in phase 1 trials testing novel anti-vascular or anti-angiogenic agents. Correlations between levels of CECs, circulating VEGFR2(+)-BMD progenitor cells, clinical and biological prognostic factors (i.e. the Royal Marsden Hospital (RMH) score), and overall survival (OS) were studied. The median value of CECs was 12 CEC/ml (range 0-154/ml). The median level of VEGFR2(+)-BMD progenitor cells was 1.3% (range 0-32.5%) of circulating BMD-CD34(+) progenitors. While OS was not correlated with CEC levels, it was significantly worse in patients with high VEGFR2(+)-BMD progenitor levels (>1%) (median OS 9.0 versus 17.0 months), and with a RMH prognostic score >0 (median OS 9.0 versus 24.2 months). The prognostic value of VEGFR2(+)-BMD progenitor levels remained significant (hazard ratio (HR) = 2.3, 95% confidence interval (CI), 1.1-4.6, p = 0.02) after multivariate analysis. A composite VEGFR2(+)-BMD progenitor level/RHM score ≥ 2 was significantly associated with an increased risk of death compared to scores of 0 or 1 (median OS 9.0 versus 18.4 months, HR = 2.6 (95%CI, 1.2-5.8, p = 0.02)). High circulating VEGFR2(+)-BMD progenitor levels are associated with poor prognostics and when combined to classical clinical and biological parameters could provide a new tool for patient selection in early anticancer drug trials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis.

    Gössl, Mario; Mödder, Ulrike I; Atkinson, Elizabeth J; Lerman, Amir; Khosla, Sundeep

    2008-10-14

    This study was designed to test whether patients with coronary atherosclerosis have increases in circulating endothelial progenitor cells (EPCs) expressing an osteogenic phenotype. Increasing evidence indicates a link between bone and the vasculature, and bone marrow and circulating osteogenic cells have been identified by staining for the osteoblastic marker, osteocalcin (OCN). Endothelial progenitor cells contribute to vascular repair, but repair of vascular injury may result in calcification. Using cell surface markers (CD34, CD133, kinase insert domain receptor [KDR]) to identify EPCs, we examined whether patients with coronary atherosclerosis had increases in the percentage of EPCs expressing OCN. We studied 72 patients undergoing invasive coronary assessment: control patients (normal coronary arteries and no endothelial dysfunction, n = 21) versus 2 groups with coronary atherosclerosis-early coronary atherosclerosis (normal coronary arteries but with endothelial dysfunction, n = 22) and late coronary atherosclerosis (severe, multivessel coronary artery disease, n = 29). Peripheral blood mononuclear cells were analyzed using flow cytometry. Compared with control patients, patients with early or late coronary atherosclerosis had significant increases (approximately 2-fold) in the percentage of CD34+/KDR+ and CD34+/CD133+/KDR+ cells costaining for OCN. Even larger increases were noted in the early and late coronary atherosclerosis patients in the percentage of CD34+/CD133-/KDR+ cells costaining for OCN (5- and 2-fold, p < 0.001 and 0.05, respectively). A higher percentage of EPCs express OCN in patients with coronary atherosclerosis compared with subjects with normal endothelial function and no structural coronary artery disease. These findings have potential implications for the mechanisms of vascular calcification and for the development of novel markers for coronary atherosclerosis.

  16. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors.

    Reichman, David E; Park, Laura; Man, Limor; Redmond, David; Chao, Kenny; Harvey, Richard P; Taketo, Makoto M; Rosenwaks, Zev; James, Daylon

    2018-01-08

    Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs. © 2018. Published by The Company of Biologists Ltd.

  17. Characterization of vascular endothelial progenitor cells from chicken bone marrow

    Bai Chunyu

    2012-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPC are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR. Results We found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro. Conclusions These results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.

  18. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  19. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma.

    Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua

    2015-07-01

    Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p cell level correlated positively with the number of patient colonies (r = 0.762, p Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results indicate the important significance of VEGF-R2(+) circulating endothelial progenitors in patients with renal cell carcinoma. Copyright © 2015 American Urological Association Education and Research

  20. High levels of circulating VEGFR2+ Bone marrow-derived progenitor cells correlate with metastatic disease in patients with pediatric solid malignancies.

    Taylor, Melissa; Rössler, Jochen; Geoerger, Birgit; Laplanche, Agnès; Hartmann, Olivier; Vassal, Gilles; Farace, Françoise

    2009-07-15

    Pediatric solid malignancies display important angiogenic potential, and blocking tumor angiogenesis represents a new therapeutic approach for these patients. Recent studies have evidenced rare circulating cells with endothelial features contributing to tumor neovascularization and have shown the pivotal role of bone marrow-derived (BMD) progenitor cells in metastatic disease progression. We measured these cells in patients with pediatric solid malignancies as a prerequisite to clinical trials with antiangiogenic therapy. Peripheral blood was drawn from 45 patients with localized (n = 23) or metastatic (n = 22) disease, and 20 healthy subjects. Subsets of circulating vascular endothelial growth factor receptor (VEGFR)2+-BMD progenitor cells, defined as CD45-CD34+VEGFR2(KDR)+7AAD- and CD45(dim)CD34+VEGFR2+7AAD- events, were measured in progenitor-enriched fractions by flow cytometry. Mature circulating endothelial cells (CEC) were measured in whole blood as CD31+CD146+CD45-7AAD- viable events. Data were correlated with VEGF and sVEGFR2 plasma levels. The CD45-CD34+VEGFR2(KDR)+7AAD- subset represented <0.003% of circulating BMD progenitor cells (< or =0.05 cells/mL). However, the median level (range) of the CD45(dim)CD34+VEGFR2+7AAD- subset was higher in patients compared with healthy subjects, 1.5% (0%-10.3%) versus 0.3% (0%-1.6%) of circulating BMD progenitors (P < 0.0001), and differed significantly between patients with localized and metastatic disease, 0.7% (0%-8.6%) versus 2.9% (0.6%-10.3%) of circulating BMD progenitors (P < 0.001). Median CEC value was 7 cells/mL (0-152 cells/mL) and similar in all groups. Unlike VEGFR2+-BMD progenitors, neither CECs, VEGF, or sVEGFR2 plasma levels correlated with disease status. High levels of circulating VEGFR2+-BMD progenitor cells correlated with metastatic disease. Our study provides novel insights for angiogenesis mechanisms in pediatric solid malignancies for which antiangiogenic targeting of VEGFR2+-BMD progenitors

  1. Impact of age and gender interaction on circulating endothelial progenitor cells in healthy subjects.

    Rousseau, Alexandra; Ayoubi, Fida; Deveaux, Christel; Charbit, Beny; Delmau, Catherine; Christin-Maitre, Sophie; Jaillon, Patrice; Uzan, Georges; Simon, Tabassome

    2010-02-01

    To assess the level of circulating endothelial progenitor cells (CEPC) in cycling women compared with men and menopausal women. Controlled clinical study. Healthy, nonsmoking volunteers. Twelve women, aged 18-40 years, with regular menstrual cycles, 12 menopausal women, and two groups of 12 age-matched men were recruited. Women did not receive any hormone therapy. Collection of 20 mL of peripheral blood. The number of CEPC, defined as (Lin-/7AAD-/CD34+/CD133+/KDR+) cells per 10(6) mononuclear cells (MNC), was measured by flow cytometry. The number of CEPC was significantly higher in cycling women than in age-matched men and menopausal women (26.5 per 10(6) MNC vs. 10.5 per 10(6) MNC vs. 10 per 10(6) MNC, respectively). The number of CEPC was similar in menopausal women, age-matched, and young men. The number of CEPC is influenced by an age-gender interaction. This phenomenon may explain in part the better vascular repair and relative cardiovascular protection in younger women as compared with age-matched men. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Circulating elastin peptides, role in vascular pathology.

    Robert, L; Labat-Robert, J

    2014-12-01

    The atherosclerotic process starts with the degradation of elastic fibers. Their presence was demonstrated in the circulation as well as several of their biological properties elucidated. We described years ago a procedure to obtain large elastin peptides by organo-alkaline hydrolysis, κ-elastin. This method enabled also the preparation of specific antibodies used to determine elastin peptides, as well as anti-elastin antibodies in body fluids and tissue extracts. Elastin peptides were determined in a large number of human blood samples. Studies were carried out to explore their pharmacological properties. Similar recent studies by other laboratories confirmed our findings and arose new interest in circulating elastin peptides for their biological activities. This recent trend justified the publication of a review of the biological and pathological activities of elastin peptides demonstrated during our previous studies, subject of this article. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects.

    Mikirova, Nina A; Jackson, James A; Hunninghake, Ron; Kenyon, Julian; Chan, Kyle W H; Swindlehurst, Cathy A; Minev, Boris; Patel, Amit N; Murphy, Michael P; Smith, Leonard; Ramos, Famela; Ichim, Thomas E; Riordan, Neil H

    2010-04-08

    The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors.

  4. Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects

    Minev Boris

    2010-04-01

    Full Text Available Abstract The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors.

  5. Kinetics of circulating endothelial progenitor cells in patients undergoing carotid artery surgery

    Kalender G

    2016-12-01

    Full Text Available G Kalender,1 A Kornberger,2 M Lisy,1 Andres Beiras-Fernandez,2 UA Stock2 1Deparment of General, Thoracic and Vascular Surgery, Hoechst Hospital, 2Department of Thoracic and Cardiovascular Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany Aim: Endothelial progenitor cells (EPCs are primitive cells found in the bone marrow and peripheral blood (PB. In particular, the potential of EPCs to differentiate into mature endothelial cells remains of high interest for clinical applications such as bio-functionalized patches for autologous seeding after implantation. The objective of this study was to determine EPCs’ kinetics in patients undergoing carotid artery thromboendarterectomy (CTEA and patch angioplasty. Methods: Twenty CTEA patients were included (15 male, mean age 76 years. PB samples were taken at 1 day preoperatively, and at 1, 3, and 5 days postoperatively. Flow cytometric analysis was performed for CD34, CD133, KDR, and CD45. Expression of KDR, SDF-1α, and G-CSF was analyzed by means of enzyme-linked immunosorbent assay. Results: Fluorescence-activated cell sorting analysis revealed 0.031%±0.016% (% of PB mononuclear cells KDR+ cells and 0.052%±0.022% CD45-/CD34+/CD133+ cells, preoperatively. A 33% decrease of CD45–/CD34+/CD133+ cells was observed at day 1 after surgery. However, a relative number (compared to initial preoperative values of CD45-/CD34+/CD133+ cells was found on day 3 (82% and on day 5 (94% postoperatively. More profound upregulated levels of CD45–CD34+/CD133+ cells were observed for diabetic (+47% compared to nondiabetic and male (+38% compared to female patients. No significant postoperative time-dependent differences were found in numbers of KDR+ cells and the concentrations of the cytokines KDR and G-CSF. However, the SDF-1α levels decreased significantly on day 1 postoperatively but returned to preoperative levels by day 3. Conclusion: CTEA results in short-term downregulation of circulating

  6. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  7. Open the gates: vascular neurocrine signaling mobilizes hematopoietic stem and progenitor cells.

    Itkin, Tomer; Gómez-Salinero, Jesús María; Rafii, Shahin

    2017-12-01

    Mobilization of hematopoietic stem and progenitor cells (HSPCs) from the bone marrow (BM) into the peripheral blood is a complex process that is enhanced dramatically under stress-induced conditions. A better understanding of how the mobilization process is regulated will likely facilitate the development of improved clinical protocols for stem cell harvesting and transplantation. In this issue of the JCI, Singh et al. (1) showed that the truncated cleaved form of neurotransmitter neuropeptide Y (NPY) actively promotes a breach of BM vascular sinusoidal portals, thereby augmenting HSPC trafficking to the circulation. The authors report a previously unrecognized axis, in which expression of the enzyme dipeptidylpeptidase-4 (DPP4)/CD26 by endothelial cells activates NPY-mediated signaling by increasing the bioavailability of the truncated form of NPY. These findings underscore the importance of and urgency to develop pharmacological therapies that target the vasculature and regulate diverse aspects of hematopoiesis, such as HSPC trafficking, in steady-state and stress-induced conditions.

  8. Circulating vascular endothelial growth factor during the normal menstrual cycle

    Kusumanto, YH; Hospers, GAP; Sluiter, WJ; Dam, WA; Meijer, C; Mulder, NH

    2004-01-01

    Background: The purpose of the study was to investigate whether cycle-related variations in circulating Vascular Endothelial Growth Factor (VEGF) levels would increase the metastatic potential at specific times during the menstrual cycle. Materials and Methods: VEGF levels in serum and whole blood

  9. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  10. The association between circulating endothelial progenitor cells and coronary collateral formation.

    Tokgözoğlu, Lale; Yorgun, Hikmet; Gürses, Kadri Murat; Canpolat, Uğur; Ateş, Ahmet Hakan; Tülümen, Erol; Kaya, Ergün Barış; Aytemir, Kudret; Kabakçı, Giray; Tuncer, Murat; Oto, Ali

    2011-12-01

    We investigated the relationship between coronary collateral formation and circulating endothelial progenitor cells (EPC) in patients undergoing coronary angiography. Circulating CD133(+)/34(+) and CD34(+)/KDR(+) EPCs were determined in 68 patients (normal coronary vessels in 24 patients and coronary artery disease (CAD) in 44 patients) (age: 58.7 ± 10.1, 64.7% male). Circulating EPCs were higher among patients with normal coronary vessels compared to patients with CAD for CD133(+)/34(+) (p collateral formation (p collateral formation after adjustment for other cardiovascular risk factors and extent of CAD (p = 0.037). In patients with severe coronary stenosis, those with increased circulating EPCs had better collateral formation compared to those with lower EPC counts. Our findings implicate that in addition to presence of critical stenosis, intact response of bone marrow is necessary for collateral formation in CAD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Vascular pattern of the dentate gyrus is regulated by neural progenitors.

    Pombero, Ana; Garcia-Lopez, Raquel; Estirado, Alicia; Martinez, Salvador

    2018-05-01

    Neurogenesis is a vital process that begins during early embryonic development and continues until adulthood, though in the latter case, it is restricted to the subventricular zone and the subgranular zone of the dentate gyrus (DG). In particular, the DG's neurogenic properties are structurally and functionally unique, which may be related to its singular vascular pattern. Neurogenesis and angiogenesis share molecular signals and act synergistically, supporting the concept of a neurogenic niche as a functional unit between neural precursors cells and their environment, in which the blood vessels play an important role. Whereas it is well known that vascular development controls neural proliferation in the embryonary and in the adult brain, by releasing neurotrophic factors; the potential influence of neural cells on vascular components during angiogenesis is largely unknown. We have demonstrated that the reduction of neural progenitors leads to a significant impairment of vascular development. Since VEGF is a potential regulator in the neurogenesis-angiogenesis crosstalk, we were interested in assessing the possible role of this molecule in the hippocampal neurovascular development. Our results showed that VEGF is the molecule involved in the regulation of vascular development by neural progenitor cells in the DG.

  12. Predisposing factors in posterior circulation infarcts: a vascular morphological assessment

    Coban, Goekcen; Cifci, Egemen; Yildirim, Erkan; Agildere, Ahmet Muhtesem [Baskent University Faculty of Medicine, Department of Radiology, Konya (Turkey)

    2015-05-01

    The aim of the study is to assess the effect of shape, diameter, elongation and deviation criteria of basilar artery (BA), convergence angle and diameter variations of vertebral arteries, and concurrent chronic diseases on posterior circulation infarcts. Between January 2010 and May 2013, 186 patients who underwent brain and diffusion magnetic resonance imaging (MRI) with suspected cerebrovascular accident and were diagnosed with posterior circulation infarct and 120 infarct negative control subjects were included in this case-control retrospective study. Vertebral artery (VA) and BA diameter, right (R) and left (L) VA angles at the level of bifurcation, and BA elongation-deviation, and shape of BA were assessed in a total of 306 subjects. Ischemic lesions in the posterior circulation were classified according to their anatomical location and vascular perfusion areas. No significant difference was noted between the control and patient groups with respect to BA diameter (p = 0.676). The most effective risk factors for posterior circulation infarcts were as follows: BA elongation of 2 or 3, BA transverse location of 2 or 3, increase in left VA angle, and history of hypertension, hypercholesterolemia, and diabetes mellitus. Our results suggest that prominent elongation and deviation, C and J shape of BA, and increased L VA angle may be the predictors of at-risk patients in posterior circulation infarcts. Reporting marked morphological BA and VA variations detected at routine brain MRI will aid in selection of patients. Timely detection and treatment of at-risk patients may be life-saving. (orig.)

  13. Predisposing factors in posterior circulation infarcts: a vascular morphological assessment

    Coban, Goekcen; Cifci, Egemen; Yildirim, Erkan; Agildere, Ahmet Muhtesem

    2015-01-01

    The aim of the study is to assess the effect of shape, diameter, elongation and deviation criteria of basilar artery (BA), convergence angle and diameter variations of vertebral arteries, and concurrent chronic diseases on posterior circulation infarcts. Between January 2010 and May 2013, 186 patients who underwent brain and diffusion magnetic resonance imaging (MRI) with suspected cerebrovascular accident and were diagnosed with posterior circulation infarct and 120 infarct negative control subjects were included in this case-control retrospective study. Vertebral artery (VA) and BA diameter, right (R) and left (L) VA angles at the level of bifurcation, and BA elongation-deviation, and shape of BA were assessed in a total of 306 subjects. Ischemic lesions in the posterior circulation were classified according to their anatomical location and vascular perfusion areas. No significant difference was noted between the control and patient groups with respect to BA diameter (p = 0.676). The most effective risk factors for posterior circulation infarcts were as follows: BA elongation of 2 or 3, BA transverse location of 2 or 3, increase in left VA angle, and history of hypertension, hypercholesterolemia, and diabetes mellitus. Our results suggest that prominent elongation and deviation, C and J shape of BA, and increased L VA angle may be the predictors of at-risk patients in posterior circulation infarcts. Reporting marked morphological BA and VA variations detected at routine brain MRI will aid in selection of patients. Timely detection and treatment of at-risk patients may be life-saving. (orig.)

  14. Predisposing factors in posterior circulation infarcts: a vascular morphological assessment.

    Çoban, Gökçen; Çifçi, Egemen; Yildirim, Erkan; Ağıldere, Ahmet Muhteşem

    2015-05-01

    The aim of the study is to assess the effect of shape, diameter, elongation and deviation criteria of basilar artery (BA), convergence angle and diameter variations of vertebral arteries, and concurrent chronic diseases on posterior circulation infarcts. Between January 2010 and May 2013, 186 patients who underwent brain and diffusion magnetic resonance imaging (MRI) with suspected cerebrovascular accident and were diagnosed with posterior circulation infarct and 120 infarct negative control subjects were included in this case-control retrospective study. Vertebral artery (VA) and BA diameter, right (R) and left (L) VA angles at the level of bifurcation, and BA elongation-deviation, and shape of BA were assessed in a total of 306 subjects. Ischemic lesions in the posterior circulation were classified according to their anatomical location and vascular perfusion areas. No significant difference was noted between the control and patient groups with respect to BA diameter (p = 0.676). The most effective risk factors for posterior circulation infarcts were as follows: BA elongation of 2 or 3, BA transverse location of 2 or 3, increase in left VA angle, and history of hypertension, hypercholesterolemia, and diabetes mellitus. Our results suggest that prominent elongation and deviation, C and J shape of BA, and increased L VA angle may be the predictors of at-risk patients in posterior circulation infarcts. Reporting marked morphological BA and VA variations detected at routine brain MRI will aid in selection of patients. Timely detection and treatment of at-risk patients may be life-saving.

  15. Effects of Clopidogrel Therapy on Oxidative Stress, Inflammation, Vascular Function and Progenitor Cells in Stable Coronary Artery Disease

    Ramadan, Ronnie; Dhawan, Saurabh S.; Syed, Hamid; Pohlel, F. Khan; Binongo, Jose Nilo G.; Ghazzal, Ziyad B.; Quyyumi, Arshed A.

    2014-01-01

    Background Traditional cardiovascular risk factors lead to endothelial injury and activation of leucocytes and platelets that initiate and propagate atherosclerosis. We proposed that clopidogrel therapy in patients with stable CAD imparts a pleiotropic effect that extends beyond anti-platelet aggregation to other athero-protective processes. Methods Forty-one subjects were randomized in a double-blind, placebo-controlled crossover study to either clopidogrel 75 mg daily or placebo for 6-weeks, and then transitioned immediately to the other treatment for an additional 6 weeks. We assessed 1) endothelial function as flow-mediated dilation of the brachial artery, 2) arterial stiffness and central augmentation index using applanation tonometry, 3) vascular function as fingertip reactive hyperemia index, 4) inflammation by measuring plasma CD40 ligand and serum high-sensitivity c-reactive protein levels, 5) oxidative stress by measuring plasma aminothiols, and 6) circulating progenitor cells, at baseline and at the end of each 6-week treatment period. Results Clopidogrel therapy resulted in a significant reduction in soluble CD40 ligand (p=0.03), a pro-thrombotic and pro-inflammatory molecule derived mainly from activated platelets. However, clopidogrel therapy had no effect on endothelial function, arterial stiffness, inflammatory and oxidative stress markers, or progenitor cells. Conclusions Our findings suggest a solitary anti-platelet effect of clopidogrel therapy in patients with stable CAD, with no effect on other sub-clinical markers of cardiovascular disease risk. PMID:24336012

  16. Effects of Hypoglycemia on Circulating Stem and Progenitor Cells in Diabetic Patients.

    Fadini, Gian Paolo; Boscari, Federico; Cappellari, Roberta; Galasso, Silvia; Rigato, Mauro; Bonora, Benedetta Maria; D'Anna, Marianna; Bruttomesso, Daniela; Avogaro, Angelo

    2018-03-01

    Iatrogenic hypoglycemia is the most common acute diabetic complication, and it significantly increases morbidity. In people with diabetes, reduction in the levels of circulating stem and progenitor cells predicts adverse outcomes. To evaluate whether hypoglycemia in diabetes affects circulating stem cells and endothelial progenitor cells (EPCs). We performed an experimental hypoglycemia study (Study 1) and a case-control study (Study 2). Tertiary referral inpatient clinic. Type 1 diabetic patients (Study 1, n = 19); diabetic patients hospitalized for severe iatrogenic hypoglycemia, matched inpatient and outpatient controls (Study 2, n = 22/group). Type 1 diabetic patients underwent two in-hospital sessions of glucose monitoring during a breakfast meal with or without induction of hypoglycemia in random order. In Study 2, patients hospitalized for hypoglycemia and matched controls were compared. Circulating stem cells and EPCs were measured by flow cytometry based on the expression of CD34 and kinase insert domain receptor (KDR). In Study 1, the physiologic decline of CD34+KDR+ EPCs from 8 am to 2 pm was abolished by insulin-induced hypoglycemia in type 1 diabetic patients. In Study 2, diabetic patients hospitalized for severe iatrogenic hypoglycemia had significantly lower levels of CD34+ stem cells and CD34+KDR+ EPCs compared with diabetic inpatients or outpatient controls. In diabetic patients, a single mild hypoglycemic episode can compromise the physiologic EPC fluctuation, whereas severe hypoglycemia is associated with a marked reduction in stem cells and EPCs. These data provide a possible link between hypoglycemia and adverse outcomes of diabetes.

  17. IR imaging of blood circulation of patients with vascular disease

    Wang, Hsin; Wade, Dwight R., Jr.; Kam, Jack

    2004-04-01

    We conducted a preliminary IR imaging study of blood circulation in patients with peripheral vascular diseases. Abnormal blood flow is common in older adults, especially those with elevated blood lipids, diabetes, hypertension, and a history of smoking. All of these conditions have a high prevalence in our population, often with more than one condition in the same individual. The differences in blood flow is revealed by temperature differences in areas of the extremities as well as other regions of the body. However, what is needed is an imaging technique that is relatively inexpensive and can reveal the blood flow in real time. The IR imaging can show detailed venous system and small tempearture changes associated with blood flow. Six patients with vascular diseases were tested in a clinic set up. Their legs and feet were imaged. We observed large temperature differences (cooling of more than 10° C) at the foot, especially toes. More valuable information were obtained from the temperature distribution maps. IR thermography is potentially a very valuable tool for medical application, especially for vascular diseases.

  18. Influence of depression and anxiety on circulating endothelial progenitor cells in patients with acute coronary syndromes.

    Felice, Francesca; Di Stefano, Rossella; Pini, Stefano; Mazzotta, Gianfranco; Bovenzi, Francesco M; Bertoli, Daniele; Abelli, Marianna; Borelli, Lucia; Cardini, Alessandra; Lari, Lisa; Gesi, Camilla; Michi, Paola; Morrone, Doralisa; Gnudi, Luigi; Balbarini, Alberto

    2015-05-01

    Circulating endothelial progenitor cells (EPCs) are related to endothelial function and progression of coronary artery disease. There is evidence of decreased numbers of circulating EPCs in patients with a current episode of major depression. We investigated the relationships between the level of circulating EPCs and depression and anxiety in patients with acute coronary syndrome (ACS). Patients with ACS admitted to three Cardiology Intensive Care Units were evaluated by the SCID-I to determine the presence of lifetime and/or current mood and anxiety disorders according to DSM-IV criteria. The EPCs were defined as CD133(+) CD34(+) KDR(+) and evaluated by flow cytometry. All patients underwent standardized cardiological and psychopathological evaluations. Parametric and nonparametric statistical tests were performed where appropriate. Out of 111 ACS patients, 57 were found to have a DSM-IV lifetime or current mood or anxiety disorder at the time of the inclusion in the study. The ACS group with mood or anxiety disorders showed a significant decrease in circulating EPC number compared with ACS patients without affective disorders. In addition, EPC levels correlated negatively with severity of depression and anxiety at index ACS episode. The current study indicates that EPCs circulate in decreased numbers in ACS patients with depression or anxiety and, therefore, contribute to explore new perspectives in the pathophysiology of the association between cardiovascular disorders and affective disorders. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Treating fat grafts with human endothelial progenitor cells promotes their vascularization and improves their survival in diabetes mellitus.

    Hamed, Saher; Ben-Nun, Ohad; Egozi, Dana; Keren, Aviad; Malyarova, Nastya; Kruchevsky, Danny; Gilhar, Amos; Ullmann, Yehuda

    2012-10-01

    Bone marrow-derived endothelial progenitor cells are required for vascularization of a fat graft to form a functional microvasculature within the graft and to facilitate its integration into the surrounding tissues. Organ transplantation carries a high risk of graft loss and rejection in patients with diabetes mellitus because endothelial progenitor cell function is impaired. The authors investigated the influence of endothelial progenitor cell treatment on the phenotype and survival of human fat grafts in immunocompromised mice with experimentally induced diabetes mellitus. The authors injected 1 ml of human fat tissue into the scalps of 14 nondiabetic and 28 diabetic immunocompromised mice, and then treated some of the grafts with endothelial progenitor cells that was isolated from the blood of a human donor. The phenotype of the endothelial progenitor cell-treated fat grafts from the 14 diabetic mice was compared with that of the untreated fat grafts from 14 nondiabetic and 14 diabetic mice, 18 days and 15 weeks after fat transplantation. Determination of graft phenotype included measurements of weight and volume, vascular endothelial growth factor levels, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase, and caspase 3 expression levels, and histologic analysis of the extent of vascularization. The untreated grafts from the diabetic mice were fully resorbed 15 weeks after fat transplantation. The phenotype of endothelial progenitor cell-treated fat grafts from the diabetic mice was similar to that of the untreated fat grafts from the nondiabetic mice. Endothelial progenitor cell treatment of transplanted fat can increase the survival of a fat graft by inducing its vascularization and decreasing the extent of apoptosis.

  20. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Circulating progenitor and angiogenic cell frequencies are abnormally static over pregnancy in women with preconception diabetes: A pilot study.

    Lima, Patricia D A; Chen, Zhilin; Tayab, Aysha; Murphy, Malia S Q; Pudwell, Jessica; Smith, Graeme N; Croy, B Anne

    2017-01-01

    Type 1 and 2 diabetes decrease the frequencies and functional capacities of circulating angiogenic cells (CAC). Diabetes also elevates gestational complications. These observations may be interrelated. We undertook pilot studies to address the hypothesis that preconception diabetes deviates known gestational increases in CACs. Cross-sectional study of type 1 diabetic, type 2 diabetic and normoglycemic pregnant women was conducted at 1st, 2nd, and 3rd trimester and compared to a 6mo postpartum surrogate baseline. Circulating progenitor cells (CPC; CD34+CD45dimSSlow) and CACs (CD34+CD45dimSSlow expressing CD133 without or with KDR) were quantified by flow cytometry and by colony assay (CFU-Hill). In pregnant normoglycemic women, CD34+CD45dimSSlow cell frequency was greater in 1st and 3rd trimester than postpartum but frequency of these cells was static over type 1 or 2 diabetic pregnancies. Type 1 and type 2 diabetic women showed CACs variance versus normal controls. Type 1 diabetic women had more total CD34+KDR+ CACs in 1st trimester and a higher ratio of CD133+KDR+ to total CD133+ cells in 1st and 2nd trimesters than control women, demonstrating an unbalance in CD133+KDR+ CACs. Type 2 diabetic women had more CD133+KDR+ CACs in 1st trimester and fewer CD133+KDR- CACs at mid-late pregnancy than normal pregnant women. Thus, pregnancy stage-specific physiological fluctuation in CPCs (CD34+) and CACs (CD133+KDR+ and CD133+KDR-) did not occur in type 1 and type 2 diabetic women. Early outgrowth colonies were stable across normal and diabetic pregnancies. Therefore, preconception diabetes blocks the normal dynamic pattern of CAC frequencies across gestation but does not alter colony growth. The differences between diabetic and typical women were seen at specific gestational stages that may be critical for initiation of the uterine vascular pathologies characterizing diabetic gestations.

  2. Circulating progenitor and angiogenic cell frequencies are abnormally static over pregnancy in women with preconception diabetes: A pilot study.

    Patricia D A Lima

    Full Text Available Type 1 and 2 diabetes decrease the frequencies and functional capacities of circulating angiogenic cells (CAC. Diabetes also elevates gestational complications. These observations may be interrelated. We undertook pilot studies to address the hypothesis that preconception diabetes deviates known gestational increases in CACs. Cross-sectional study of type 1 diabetic, type 2 diabetic and normoglycemic pregnant women was conducted at 1st, 2nd, and 3rd trimester and compared to a 6mo postpartum surrogate baseline. Circulating progenitor cells (CPC; CD34+CD45dimSSlow and CACs (CD34+CD45dimSSlow expressing CD133 without or with KDR were quantified by flow cytometry and by colony assay (CFU-Hill. In pregnant normoglycemic women, CD34+CD45dimSSlow cell frequency was greater in 1st and 3rd trimester than postpartum but frequency of these cells was static over type 1 or 2 diabetic pregnancies. Type 1 and type 2 diabetic women showed CACs variance versus normal controls. Type 1 diabetic women had more total CD34+KDR+ CACs in 1st trimester and a higher ratio of CD133+KDR+ to total CD133+ cells in 1st and 2nd trimesters than control women, demonstrating an unbalance in CD133+KDR+ CACs. Type 2 diabetic women had more CD133+KDR+ CACs in 1st trimester and fewer CD133+KDR- CACs at mid-late pregnancy than normal pregnant women. Thus, pregnancy stage-specific physiological fluctuation in CPCs (CD34+ and CACs (CD133+KDR+ and CD133+KDR- did not occur in type 1 and type 2 diabetic women. Early outgrowth colonies were stable across normal and diabetic pregnancies. Therefore, preconception diabetes blocks the normal dynamic pattern of CAC frequencies across gestation but does not alter colony growth. The differences between diabetic and typical women were seen at specific gestational stages that may be critical for initiation of the uterine vascular pathologies characterizing diabetic gestations.

  3. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina

    2016-01-01

    Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions

  4. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    Gemma Chiva-Blanch

    Full Text Available Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke.Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls.Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions.Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger

  5. Erythropoietin Attenuates Pulmonary Vascular Remodeling in Experimental Pulmonary Arterial Hypertension through Interplay between Endothelial Progenitor Cells and Heme Oxygenase

    van Loon, Rosa Laura E; Bartelds, Beatrijs; Wagener, Frank A D T G; Affara, Nada; Mohaupt, Saffloer; Wijnberg, Hans; Pennings, Sebastiaan W C; Takens, Janny; Berger, Rolf M F

    2015-01-01

    BACKGROUND: Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO) attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progenitor cells (EPCs) and activation of the cytoprotective enzyme heme oxygenase-1 (HO-1). METHODS: Rats with flow-associated PAH, resembling pediatric PAH, were treated with HO-1 inducer EPO in the pre...

  6. Erythropoietin Attenuates Pulmonary Vascular Remodeling in Experimental Pulmonary Arterial Hypertension through Interplay between Endothelial Progenitor Cells and Heme Oxygenase

    van Loon, Rosa Laura E.; Bartelds, Beatrijs; Wagener, Frank A. D. T. G.; Affara, Nada; Mohaupt, Saffloer; Wijnberg, Hans; Pennings, Sebastiaan W. C.; Takens, Janny; Berger, Rolf M. F.

    2015-01-01

    Background Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO) attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progenitor cells (EPCs) and activation of the cytoprotective enzyme heme oxygenase-1 (HO-1). Methods Rats with flow-associated PAH, resembling pediatric PAH, were treated with HO-1 inducer EPO i...

  7. Lipid lowering and HDL raising gene transfer increase endothelial progenitor cells, enhance myocardial vascularity, and improve diastolic function.

    Stephanie C Gordts

    Full Text Available BACKGROUND: Hypercholesterolemia and low high density lipoprotein (HDL cholesterol contribute to coronary heart disease but little is known about their direct effects on myocardial function. Low HDL and raised non-HDL cholesterol levels carried increased risk for heart failure development in the Framingham study, independent of any association with myocardial infarction. The objective of this study was to test the hypothesis that increased endothelial progenitor cell (EPC number and function after lipid lowering or HDL raising gene transfer in C57BL/6 low density lipoprotein receptor deficient (LDLr(-/- mice may be associated with an enhanced relative vascularity in the myocardium and an improved cardiac function. METHODOLOGY/PRINCIPAL FINDINGS: Lipid lowering and HDL raising gene transfer were performed using the E1E3E4-deleted LDLr expressing adenoviral vector AdLDLr and the human apolipoprotein A-I expressing vector AdA-I, respectively. AdLDLr transfer in C57BL/6 LDLr(-/- mice resulted in a 2.0-fold (p<0.05 increase of the circulating number of EPCs and in an improvement of EPC function as assessed by ex vivo EPC migration and EPC adhesion. Capillary density and relative vascularity in the myocardium were 28% (p<0.01 and 22% (p<0.05 higher, respectively, in AdLDLr mice compared to control mice. The peak rate of isovolumetric relaxation was increased by 12% (p<0.05 and the time constant of isovolumetric relaxation was decreased by 14% (p<0.05 after AdLDLr transfer. Similarly, HDL raising gene transfer increased EPC number and function and raised both capillary density and relative vascularity in the myocardium by 24% (p<0.05. The peak rate of isovolumetric relaxation was increased by 16% (p<0.05 in AdA-I mice compared to control mice. CONCLUSIONS/SIGNIFICANCE: Both lipid lowering and HDL raising gene transfer have beneficial effects on EPC biology, relative myocardial vascularity, and diastolic function. These findings raise concerns over the

  8. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells

    Gori, Jennifer L.; Butler, Jason M.; Chan, Yan-Yi; Chandrasekaran, Devikha; Poulos, Michael G.; Ginsberg, Michael; Nolan, Daniel J.; Elemento, Olivier; Wood, Brent L.; Adair, Jennifer E.; Rafii, Shahin; Kiem, Hans-Peter

    2015-01-01

    Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC–derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina–induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain–null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood–derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence. PMID:25664855

  9. Obesity suppresses circulating level and function of endothelial progenitor cells and heart function

    Tsai Tzu-Hsien

    2012-07-01

    Full Text Available Abstract Background and aim This study tested the hypothesis that obesity suppresses circulating number as well as the function of endothelial progenitor cells (EPCs and left ventricular ejection fraction (LVEF. Methods High fat diet (45 Kcal% fat was given to 8-week-old C57BL/6 J mice (n = 8 for 20 weeks to induce obesity (group 1. Another age-matched group (n = 8 were fed with control diet for 20 weeks as controls (group 2. The animals were sacrificed at the end of 20 weeks after obesity induction. Results By the end of study period, the heart weight, body weight, abdominal fat weight, serum levels of total cholesterol and fasting blood sugar were remarkably higher in group 1 than in group 2 (all p Conclusions Obesity diminished circulating EPC level, impaired the recovery of damaged endothelium, suppressed EPC angiogenesis ability and LVEF, and increased LV remodeling.

  10. Distinct profile of vascular progenitor attachment to extracellular matrix proteins in cancer patients.

    Labonté, Laura; Li, Yuhua; Addison, Christina L; Brand, Marjorie; Javidnia, Hedyeh; Corsten, Martin; Burns, Kevin; Allan, David S

    2012-04-01

    Vascular progenitor cells (VPCs) facilitate angiogenesis and initiate vascular repair by homing in on sites of damage and adhering to extracellular matrix (ECM) proteins. VPCs also contribute to tumor angiogenesis and induce angiogenic switching in sites of metastatic cancer. In this study, the binding of attaching cells in VPC clusters that form in vitro on specific ECM proteins was investigated. VPC cluster assays were performed in vitro on ECM proteins enriched in cancer cells and in remodelling tissue. Profiles of VPC clusters from patients with cancer were compared to healthy controls. The role of VEGF and integrin-specific binding of angiogenic attaching cells was addressed. VPC clusters from cancer patients were markedly increased on fibronectin relative to other ECM proteins tested, in contrast to VPC clusters from control subjects, which formed preferentially on laminin. Specific integrin-mediated binding of attaching cells in VPC clusters was matrix protein-dependent. Furthermore, cancer patients had elevated plasma VEGF levels compared to healthy controls and VEGF facilitated preferential VPC cluster formation on fibronectin. Incubating cells from healthy controls with VEGF induced a switch from the 'healthy' VPC binding profile to the profile observed in cancer patients with a marked increase in VPC cluster formation on fibronectin. The ECM proteins laminin and fibronectin support VPC cluster formation via specific integrins on attaching cells and can facilitate patterns of VPC cluster formation that are distinct in cancer patients. Larger studies, however, are needed to gain insight on how tumor angiogenesis may differ from normal repair processes.

  11. Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue

    Kopp, Hans-Georg; Ramos, Carlos A.; Rafii, Shahin

    2010-01-01

    Purpose of review During the last several years, a substantial amount of evidence from animal as well as human studies has advanced our knowledge of how bone marrow derived cells contribute to neoangiogenesis. In the light of recent findings, we may have to redefine our thinking of endothelial cells as well as of perivascular mural cells. Recent findings Inflammatory hematopoietic cells, such as macrophages, have been shown to promote neoangiogenesis during tumor growth and wound healing. Dendritic cells, B lymphocytes, monocytes, and other immune cells have also been found to be recruited to neoangiogenic niches and to support neovessel formation. These findings have led to the concept that subsets of hematopoietic cells comprise proangiogenic cells that drive adult revascularization processes. While evidence of the importance of endothelial progenitor cells in adult vasculogenesis increased further, the role of these comobilized hematopoietic cells has been intensely studied in the last few years. Summary Angiogenic factors promote mobilization of vascular endothelial growth factor receptor 1-positive hematopoietic cells through matrix metalloproteinase-9 mediated release of soluble kit-ligand and recruit these proangiogenic cells to areas of hypoxia, where perivascular mural cells present stromal-derived factor 1 (CXCL-12) as an important retention signal. The same factors are possibly involved in mobilization of vascular endothelial growth factor receptor 2-positive endothelial precursors that may participate in neovessel formation. The complete characterization of mechanisms, mediators and signaling pathways involved in these processes will provide novel targets for both anti and proangiogenic therapeutic strategies. PMID:16567962

  12. Circulating endothelial progenitor cell numbers are not associated with donor organ age or allograft vasculopathy in cardiac transplant recipients.

    Thomas, H E; Parry, G; Dark, J H; Arthur, H M; Keavney, B D

    2009-02-01

    Increasing age is associated with reduced numbers of circulating endothelial progenitor cells (EPCs). It is unclear whether this relates to depletion or impairment of bone marrow progenitors, or to deficient mobilization signals from aging tissues. In cardiac transplant patients, one previous study has reported an association between circulating EPCs and the risk of cardiac allograft vasculopathy (CAV). We investigated whether increased donor heart age, a strong risk factor for CAV, was associated with reduced circulating EPC numbers in a group of cardiac transplant recipients matched for factors which influence EPC numbers, but with maximally discordant donor heart ages. We identified 32 patient pairs, matched for factors known to influence EPC numbers, but who had discordant donor heart ages by at least 20 years. EPCs were quantified using flow cytometry for absolute counts of cells expressing all the combinations of CD45, CD34, CD133 and the kinase domain receptor (KDR). There were no significant differences in the numbers of circulating EPCs between patients with old or young donor heart age. There was no association between the presence of CAV and circulating EPC numbers. We suggest that the increased susceptibility to CAV of older donor hearts is not mediated via circulating EPCs. Our results are consistent with the theory that the normal age-related decline in EPC numbers relates to bone marrow aging rather than failure of target tissues to induce EPC mobilization.

  13. Dynamics of circulating endothelial cells and endothelial progenitor cells in breast cancer patients receiving cytotoxic chemotherapy

    Kuo Yu-Hsuan

    2012-12-01

    Full Text Available Abstract Background The abundance of circulating endothelial cells (CECs and circulating endothelial progenitor cells (CEPs, which serve as surrogate markers for angiogenesis, may be affected by chemotherapy. We studied their dynamic change during consecutive cycles of chemotherapy. Methods We collected blood samples from 15 breast cancer patients, who received a total of 56 courses of systemic chemotherapy, and measured the CECs, viable CECs (V-CECs, and CEPs by six-color flow cytometry within the seven days prior to chemotherapy, twice a week during the first and second cycles of chemotherapy, and then once a week during the subsequent cycles. Results The CEC, V-CEC, and CEP levels all significantly decreased from day 1 of treatment to the first week of chemotherapy. After one week of chemotherapy, the CEC and V-CEC levels returned to a level similar to day 1. The CEP level remained significantly reduced after the first week of chemotherapy, but gradually rebounded until the next course of chemotherapy. After six cycles of chemotherapy, the total number of CEC and V-CEC cells trended toward a decrease and the CEP cells toward an increase. Clinical factors, including the existence of a tumor, chemotherapy regimens, and the use of granulocyte colony stimulating factor, did not significantly affect these results. Conclusions The CEC and CEP counts change dynamically during each course of chemotherapy and after the chemotherapy cycles, providing background data for any future study planning to use CECs and CEPs as surrogate markers of angiogenesis in antiangiogenesis treatments combined with chemotherapy.

  14. Vildagliptin, but not glibenclamide, increases circulating endothelial progenitor cell number: a 12-month randomized controlled trial in patients with type 2 diabetes.

    Dei Cas, Alessandra; Spigoni, Valentina; Cito, Monia; Aldigeri, Raffaella; Ridolfi, Valentina; Marchesi, Elisabetta; Marina, Michela; Derlindati, Eleonora; Aloe, Rosalia; Bonadonna, Riccardo C; Zavaroni, Ivana

    2017-02-23

    Fewer circulating endothelial progenitor cells (EPCs) and increased plasma (C-term) stromal cell-derived factor 1α (SDF-1α), a substrate of DPP-4, are biomarkers, and perhaps mediators, of cardiovascular risk and mortality. Short-term/acute treatment with DPP-4 inhibitors improve EPC bioavailability; however, long-term effects of DPP-4i on EPCs bioavailability/plasma (C-term) SDF-1α are unknown. Randomized (2:1) open-label trial to compare the effects of vildagliptin (V) (100 mg/day) vs glibenclamide (G) (2.5 mg bid to a maximal dose of 5 mg bid) on circulating EPC levels at 4 and 12 months of treatment in 64 patients with type 2 diabetes in metformin failure. At baseline, and after 4 and 12 months, main clinical/biohumoral parameters, inflammatory biomarkers, concomitant therapies, EPC number (CD34 + /CD133 + /KDR + /10 6 cytometric events) and plasma (C-term) SDF-1α (R&D system) were assessed. Baseline characteristics were comparable in the two groups. V and G similarly and significantly (p < 0.0001) improved glucose control. At 12 months, V significantly increased EPC number (p < 0.05) and significantly reduced (C-term) SDF-1α plasma levels (p < 0.01) compared to G, with no differences in inflammatory biomarkers. V exerts a long-term favorable effect on EPC and (C-term) SDF-1α levels at glucose equipoise, thereby implying a putative beneficial effect on vascular integrity. Trial registration Clinical Trials number: NCT01822548; name: Effect of Vildagliptin vs. Glibenclamide on Circulating Endothelial Progenitor Cell Number Type 2 Diabetes. Registered 28 March, 2013.

  15. Exercise increases the frequency of circulating hematopoietic progenitor cells, but reduces hematopoietic colony-forming capacity.

    Kroepfl, Julia Maria; Pekovits, Karin; Stelzer, Ingeborg; Fuchs, Robert; Zelzer, Sieglinde; Hofmann, Peter; Sedlmayr, Peter; Dohr, Gottfried; Wallner-Liebmann, Sandra; Domej, Wolfgang; Mueller, Wolfram

    2012-11-01

    Circulating hematopoietic progenitor cells (CPCs) may be triggered by physical exercise and/or normobaric hypoxia from the bone marrow. The aim of the study was to investigate the influence of physical exercise and normobaric hypoxia on CPC number and functionality in the peripheral blood as well as the involvement of oxidative stress parameters as possibly active agents. Ten healthy male subjects (25.3±4.4 years) underwent a standardized cycle incremental exercise test protocol (40 W+20 W/min) under either normoxic (FiO2 ∼0.21) or hypoxic conditions (FiO2exercise. The number of CPCs in the peripheral blood was analyzed by flow cytometry (CD34/CD45-positive cells). The functionality of cells present was addressed by secondary colony-forming unit-granulocyte macrophage (CFU-GM) assays. To determine a possible correlation between the mobilization of CPCs and reactive oxygen species, parameters for oxidative stress such as malondialdehyde (MDA) and myeloperoxidase (MPO) were obtained. Data showed a significant increase of CPC release under normoxic as well as hypoxic conditions after 10 min of recovery (Pexercise (Pexercise, possibly due to the influence of increased oxidative stress levels.

  16. Endothelial and circulating progenitor cells in hematological diseases and allogeneic hematopoietic stem cell transplantation.

    Ruggeri, Annalisa; Paviglianiti, Annalisa; Volt, Fernanda; Kenzey, Chantal; Rafii, Hanadi; Rocha, Vanderson; Gluckman, Eliane

    2017-10-12

    Circulating endothelial cells (CECs), originated form endothelial progenitors (EPCs) are mature cells which are not associated with vessel walls, and that are detached from the endothelium. Normally, they are present in insignificant amounts in the peripheral blood of healthy individuals. On the other hand, elevated CECs and EPCs levels have been reported in the peripheral blood of patients with different types of cancers and some other diseases. Consequently, CECs and EPCs represent a potential biomarker in several clinical conditions involving endothelial turnover and remodeling, such as hematological diseases. These cells may be involved in disease progression and the neoplastic angiogenesis process. Moreover, CESs and EPCs are probably involved in endothelial damage that is a marker of several complications following allogeneic hematopoietic stem cell transplantation. This review aims to provide an overview on the characterization of CECs and EPCs, describe isolation methods and to identify the potential role of these cells in hematological diseases and hematopoietic stem cell transplantation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Circulating endothelial progenitor cells, Th1/Th2/Th17-related cytokines, and endothelial dysfunction in resistant hypertension.

    Magen, Eli; Feldman, Arie; Cohen, Ziona; Alon, Dora Ben; Minz, Evegeny; Chernyavsky, Alexey; Linov, Lina; Mishal, Joseph; Schlezinger, Menacham; Sthoeger, Zev

    2010-02-01

    A possible link between chronic vascular inflammation and arterial hypertension is now an object of intensive studies. To compare Th1/Th2/Th17 cells-related cytokines, circulating endothelial progenitor cells (EPC), and endothelial function in subjects with resistant arterial hypertension (RAH) and controlled arterial hypertension (CAH). Blood pressure was measured by electronic sphygmomanometer. EPC were identified as CD34+/CD133+/kinase insert domain receptor (KDR)+ cells by flow cytometry. Th1/Th2/Th17 cells-related cytokines were identified using the Human Th1/Th2/Th17 Cytokines MultiAnalyte ELISArray Kit. Endothelium-dependent (FMD) vasodilatation of brachial artery was measured by Doppler ultrasound scanning. RAH group (n = 20) and CAH group (n = 20) and 17 healthy individuals (control group) were recruited. In the RAH group, lower blood levels of EPC number (42.4 +/- 16.7 cells/mL) and EPC% (0.19 +/- 0.08%) were observed than in the CAH group (93.1 +/- 88.7 cells/mL; P = 0.017; 0.27 +/- 0.17; P = 0.036) and control group (68.5 +/- 63.6 cells/mL; P < 0.001; 0.28 +/- 0.17%; P = 0.003), respectively. Plasma transforming growth factor-beta1 levels were significantly higher in the RAH group (1767 +/- 364 pg/mL) than in the CAH group (1292 +/- 349; P < 0.001) and in control group (1203 +/- 419 pg/mL; P < 0.001). In the RAH group, statistically significant negative correlation was observed between systolic blood pressure and EPC% (r = -0.72, P < 0.01). FMD in the RAH group was significantly lower (5.5 +/- 0.8%) than in the CAH group (9.2 +/- 1.4; P < 0.001) and in healthy controls (10.1 +/- 1.1%; P < 0.001). RAH is characterized by reduced circulating EPC, substantial endothelial dysfunction, and increased plasma transforming growth factor-beta1 levels.

  18. Activated Fps/Fes partially rescues the in vivo developmental potential of Flk1-deficient vascular progenitor cells.

    Haigh, Jody J; Ema, Masatsugu; Haigh, Katharina; Gertsenstein, Marina; Greer, Peter; Rossant, Janet; Nagy, Andras; Wagner, Erwin F

    2004-02-01

    Relatively little is known about the modulators of the vascular endothelial growth factor A (VEGF-A)/Flk1 signaling cascade. To functionally characterize this pathway, VEGF-A stimulation of endothelial cells was performed. VEGF-A-mediated Flk1 activation resulted in increased translocation of the endogenous Fps/Fes cytoplasmic tyrosine kinase to the plasma membrane and increased tyrosine phosphorylation, suggesting a role for Fps/Fes in VEGF-A/Flk1 signaling events. Addition of a myristoylation consensus sequence to Fps/Fes resulted in VEGF-A-independent membrane localization of Fps/Fes in endothelial cells. Expression of the activated Fps/Fes protein in Flk1-deficient embryonic stem (ES) cells rescued their contribution to the developing vascular endothelium in vivo by using ES cell-derived chimeras. Activated Fps/Fes contributed to this rescue event by restoring the migratory potential to Flk1 null progenitors, which is required for movement of hemangioblasts from the primitive streak region into the yolk sac proper. Activated Fps/Fes in the presence of Flk1 increased the number of hemangioblast colonies in vitro and increased the number of mesodermal progenitors in vivo. These results suggest that Fps/Fes may act synergistically with Flk1 to modulate hemangioblast differentiation into the endothelium. We have also demonstrated that activated Fps/Fes causes hemangioma formation in vivo, independently of Flk1, as a result of increasing vascular progenitor density.

  19. Circulating hyaluronate: concentration in different vascular beds in man

    Bentsen, K D; Henriksen, Jens Henrik Sahl; Laurent, T C

    1986-01-01

    The plasma concentration of hyaluronate (hyaluronic acid; HA) was measured in different vascular beds in order to determine regional kinetics of endogenous HA in fasting, supine subjects with normal (n = 6) or moderately decreased kidney function (n = 9). In both groups hepatic venous HA was sign......The plasma concentration of hyaluronate (hyaluronic acid; HA) was measured in different vascular beds in order to determine regional kinetics of endogenous HA in fasting, supine subjects with normal (n = 6) or moderately decreased kidney function (n = 9). In both groups hepatic venous HA...

  20. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.

    Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang

    2011-12-01

    This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.

  1. Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol.

    Caroline Schmidt-Lucke

    2010-11-01

    Full Text Available Circulating endothelial progenitor cells (EPC, involved in endothelial regeneration, neovascularisation, and determination of prognosis in cardiovascular disease can be characterised with functional assays or using immunofluorescence and flow cytometry. Combinations of markers, including CD34+KDR+ or CD133+KDR+, are used. This approach, however may not consider all characteristics of EPC. The lack of a standardised protocol with regards to reagents and gating strategies may account for the widespread inter-laboratory variations in quantification of EPC. We, therefore developed a novel protocol adapted from the standardised so-called ISHAGE protocol for enumeration of haematopoietic stem cells to enable comparison of clinical and laboratory data.In 25 control subjects, 65 patients with coronary artery disease (CAD; 40 stable CAD, 25 acute coronary syndrome/acute myocardial infarction (ACS, EPC were quantified using the following approach: Whole blood was incubated with CD45, KDR, and CD34. The ISHAGE sequential strategy was used, and finally, CD45(dimCD34(+ cells were quantified for KDR. A minimum of 100 CD34(+ events were collected. For comparison, CD45(+CD34(+ and CD45(-CD34(+ were analysed simultaneously. The number of CD45(dimCD34(+KDR(+ cells only were significantly higher in healthy controls compared to patients with CAD or ACS (p = 0.005 each, p<0.001 for trend. An inverse correlation of CD45(dimCD34(+KDR(+ with disease activity (r = -0.475, p<0.001 was confirmed. Only CD45(dimCD34(+KDR(+ correlated inversely with the number of diseased coronaries (r = -0.344; p<0.005. In a second study, a 4-week de-novo treatment of atorvastatin in stable CAD evoked an increase only of CD45(dimCD34(+KDR(+ EPC (p<0.05. CD45(+CD34(+KDR(+ and CD45(-CD34(+KDR(+ were indifferent between the three groups.Our newly established protocol adopted from the standardised ISHAGE protocol achieved higher accuracy in EPC enumeration confirming previous

  2. Transplantation of endothelial progenitor cells ameliorates vascular dysfunction and portal hypertension in carbon tetrachloride-induced rat liver cirrhotic model.

    Sakamoto, Masaharu; Nakamura, Toru; Torimura, Takuji; Iwamoto, Hideki; Masuda, Hiroshi; Koga, Hironori; Abe, Mitsuhiko; Hashimoto, Osamu; Ueno, Takato; Sata, Michio

    2013-01-01

    In cirrhosis, sinusoidal endothelial cell injury results in increased endothelin-1 (ET-1) and decreased nitric oxide synthase (NOS) activity, leading to portal hypertension. However, the effects of transplanted endothelial progenitor cells (EPCs) on the cirrhotic liver have not yet been clarified. We investigated whether EPC transplantation reduces portal hypertension. Cirrhotic rats were created by the administration of carbon tetrachloride (CCl(4) ) twice weekly for 10 weeks. From week 7, rat bone marrow-derived EPCs were injected via the tail vein in this model once a week for 4 weeks. Endothelial NOS (eNOS), vascular endothelial growth factor (VEGF) and caveolin expressions were examined by Western blots. Hepatic tissue ET-1 was measured by a radioimmunoassay (RIA). Portal venous pressure, mean aortic pressure, and hepatic blood flow were measured. Endothelial progenitor cell transplantation reduced liver fibrosis, α-smooth muscle actin-positive cells, caveolin expression, ET-1 concentration and portal venous pressure. EPC transplantation increased hepatic blood flow, protein levels of eNOS and VEGF. Immunohistochemical analyses of eNOS and isolectin B4 demonstrated that the livers of EPC-transplanted animals had markedly increased vascular density, suggesting reconstitution of sinusoidal blood vessels with endothelium. Transplantation of EPCs ameliorates vascular dysfunction and portal hypertension, suggesting this treatment may provide a new approach in the therapy of portal hypertension with liver cirrhosis. © 2012 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  3. Elevated circulating homocyst(e)ine levels in placental vascular disease and associated pre-eclampsia.

    Wang, J; Trudinger, B J; Duarte, N; Wilcken, D E; Wang, X L

    2000-07-01

    We examined the hypothesis that hyperhomocyst(e)inaemia in the maternal or fetal circulation is associated with placental vascular disease with either the maternal syndrome of pre-eclampsia and/or fetal syndrome of growth restriction. Maternal plasma homocyst(e)ine levels were significantly higher in pregnancies complicated by pre-eclampsia, pregnancies with evidence of umbilical placental vascular disease, and pregnancies with both complications compared with the normal pregnancy group. In the fetal circulation mean plasma homocyst(e)ine concentration was significantly higher in the pre-eclampsia group compared with the normal group. The results suggest that hyperhomocyst(e)inaemia may be a risk marker for placental vascular disease and maternal pre-eclampsia. The elevated fetal plasma homocyst(e)ine concentrations, found only in the group of pregnancies with pre-eclampsia in the absence of umbilical placental vascular disease, may be due to an effect of placental vascular disease on homocyst(e)ine transfer from the maternal to fetal circulation.

  4. Plasma levels of stromal cell-derived factor-1 (CXCL12) and circulating endothelial progenitor cells in women with idiopathic heavy menstrual bleeding.

    Elsheikh, E; Andersson, E; Sylvén, C; Ericzon, B-G; Palmblad, J; Mints, M

    2014-01-01

    Do plasma levels of stromal cell-derived factor-1 (CXCL12, sometimes termed SDF-1) and the numbers of circulating endothelial progenitor cells (EPCs), EPC colony-forming units (EPC-CFU) and mature endothelial cells (ECs) differ between women with idiopathic heavy menstrual bleeding of endometrial origin (HMB-E) and controls and are they related to plasma levels of other angiogenic growth factors? Angiogenesis is altered in women with HMB-E, characterized by a reduction in mean plasma levels of CXCL12, a low number of EPCs-CFUs and a high level of circulating ECs. Plasma levels of CXCL12 are significantly higher during the proliferative than the secretory phase of the menstrual cycle in healthy women and exhibit a negative correlation with blood EPC-CFUs. A prospective cohort study in a university hospital setting. Between 2008 and 2009 10 HMB-E patients were recruited from Karolinska University Hospital. Ten healthy women were also included in the analysis. Ten healthy control women and 10 HMB-E patients, all with regular menstrual cycles, provided 4 blood samples during a single menstrual cycle: 2 in the proliferative phase, 1 at ovulation and 1 in the secretory phase. We assessed plasma levels of CXCL12, vascular endothelial growth factor A(165) (VEGFA), basic fibroblast growth factor (bFGF) and granulocyte and granulocyte-macrophage colony-stimulating factors by ELISA. We counted circulating EPC-CFUs by culture, and ECs and EPCs by flow cytometry and immunostaining for cell surface markers. Plasma levels of CXCL12 were significantly lower in HMB-E patients compared with control women (P Market Insurance. The authors have no conflict of interest to declare.

  5. The analysis of cerebro-vascular circulation time using digital subtraction angiography (DSA)

    Han, D. G.; Kim, D. H.; Lee, H. K.; Kwon, K. H.; Kim, K. J.

    1986-01-01

    We analyzed the cerebral arterio-venous circulation time of 141 cases of cranial DSA in 136 patients, for the assessment of cerebral circulatory dynamics. IV-DSA was 111 cases, IA-DSA 30 cases. The results were as follows: 1. There was no significant difference in arterio-venous circulation time between IA-DSA and IV-DSA, if the disease pattern was not considered (P > 0.1). 2. Prolongation of arterio-venous circulation time was noted in the cases of cerebral (cerebellar) hemorrhage, subarachnoid hemorrhage, intracranial hematoma, brain abscess, acute stage of cerebra-vascular occlusive disease, acute stage of postoperative follow up, and acute stage of cerebral contusion (p > 0.05). 3. Compared the chronic stage of cerebra-vascular occlusive disease, postoperative follow up, and cerebral contusion with acute stage, significant decrement of arterio-venous circulation time was resulted (p > 0.05). 4. DSA was a useful modality for the assessment of circulatory dynamics, including measurement of arterio-venous circulation time.

  6. Increased circulating endothelial apoptotic microparticle to endothelial progenitor cell ratio is associated with subsequent decline in glomerular filtration rate in hypertensive patients.

    Chien-Yi Hsu

    Full Text Available BACKGROUND: Recent research indicates hypertensive patients with microalbuminuria have decreased endothelial progenitor cells (EPCs and increased levels of endothelial apoptotic microparticles (EMP. However, whether these changes are related to a subsequent decline in glomerular filtration rate (GFR remains unclear. METHODS AND RESULTS: We enrolled totally 100 hypertensive out-patients with eGFR ≥ 30 mL/min/1.73 m(2. The mean annual rate of GFR decline (△GFR/y was -1.49 ± 3.26 mL/min/1.73 m(2 per year during the follow-up period (34 ± 6 months. Flow cytometry was used to assess circulating EPC (CD34(+/KDR(+ and EMP levels (CD31(+/annexin V(+ in peripheral blood. The △GFR/y was correlated with the EMP to EPC ratio (r= -0.465, p<0.001, microalbuminuria (r= -0.329, p=0.001, and the Framingham risk score (r= -0.245, p=0.013. When we divided the patients into 4 groups according to the EMP to EPC ratio, there was an association between the EMP to EPC ratio and the ΔGFR/y (mean ΔGFR/y: 0.08 ± 3.04 vs. -0.50 ± 2.84 vs. -1.25 ± 2.49 vs. -4.42 ± 2.82, p<0.001. Multivariate analysis indicated that increased EMP to EPC ratio is an independent predictor of ΔeGFR/y. CONCLUSIONS: An increased circulating EMP to EPC ratio is associated with subsequent decline in GFR in hypertensive patients, which suggests endothelial damage with reduced vascular repair capacity may contribute to further deterioration of renal function in patients with hypertension.

  7. Late Release of Circulating Endothelial Cells and Endothelial Progenitor Cells after Chemotherapy Predicts Response and Survival in Cancer Patients

    Jeanine M. Roodhart

    2010-01-01

    Full Text Available We and others have previously demonstrated that the acute release of progenitor cells in response to chemotherapy actually reduces the efficacy of the chemotherapy. Here, we take these data further and investigate the clinical relevance of circulating endothelial (progenitor cells (CE(PCs and modulatory cytokines in patients after chemotherapy with relation to progression-free and overall survival (PFS/OS. Patients treated with various chemotherapeutics were included. Blood sampling was performed at baseline, 4 hours, and 7 and 21 days after chemotherapy. The mononuclear cell fraction was analyzed for CE(PC by FACS analysis. Plasma was analyzed for cytokines by ELISA or Luminex technique. CE(PCs were correlated with response and PFS/OS using Cox proportional hazard regression analysis. We measured CE(PCs and cytokines in 71 patients. Only patients treated with paclitaxel showed an immediate increase in endothelial progenitor cell 4 hours after start of treatment. These immediate changes did not correlate with response or survival. After 7 and 21 days of chemotherapy, a large and consistent increase in CE(PC was found (P < .01, independent of the type of chemotherapy. Changes in CE(PC levels at day 7 correlated with an increase in tumor volume after three cycles of chemotherapy and predicted PFS/OS, regardless of the tumor type or chemotherapy. These findings indicate that the late release of CE(PC is a common phenomenon after chemotherapeutic treatment. The correlation with a clinical response and survival provides further support for the biologic relevance of these cells in patients' prognosis and stresses their possible use as a therapeutic target.

  8. High-intensity Interval training enhances mobilization/functionality of endothelial progenitor cells and depressed shedding of vascular endothelial cells undergoing hypoxia.

    Tsai, Hsing-Hua; Lin, Chin-Pu; Lin, Yi-Hui; Hsu, Chih-Chin; Wang, Jong-Shyan

    2016-12-01

    Exercise training improves endothelium-dependent vasodilation, whereas hypoxic stress causes vascular endothelial dysfunction. Monocyte-derived endothelial progenitor cells (Mon-EPCs) contribute to vascular repair process by differentiating into endothelial cells. This study investigates how high-intensity interval (HIT) and moderate-intensity continuous (MCT) exercise training affect circulating Mon-EPC levels and EPC functionality under hypoxic condition. Sixty healthy sedentary males were randomized to engage in either HIT (3-min intervals at 40 and 80 % VO 2max for five repetitions, n = 20) or MCT (sustained 60 % VO 2max , n = 20) for 30 min/day, 5 days/week for 6 weeks, or to a control group (CTL) that did not received exercise intervention (n = 20). Mon-EPC characteristics and EPC functionality under hypoxic exercise (HE, 100 W under 12 % O 2 ) were determined before and after HIT, MCT, and CTL. The results demonstrated that after the intervention, the HIT group exhibited larger improvements in VO 2peak , estimated peak cardiac output (Q C ), and estimated peak perfusions of frontal cerebral lobe (Q FC ) and vastus lateralis (Q VL ) than the MCT group. Furthermore, HIT (a) increased circulating CD14 ++ /CD16 - /CD34 + /KDR + (Mon-1 EPC) and CD14 ++ /CD16 + /CD34 + /KDR + (Mon-2 EPC) cell counts, (b) promoted the migration and tube formation of EPCs, (c) diminished the shedding of endothelial (CD34 - /KDR + /phosphatidylserine + ) cells, and (d) elevated plasma nitrite plus nitrate, stromal cell-derived factor-1, matrix metalloproteinase-9, and vascular endothelial growth factor-A concentrations at rest or following HE, compared to those of MCT. In addition, Mon-1 and -2 EPC counts were directly related to VO 2peak and estimated peak Q C , Q FC , and Q VL . HIT is superior to MCT for improving hemodynamic adaptation and Mon-EPC production. Moreover, HIT effectively enhances EPC functionality and suppresses endothelial injury undergoing hypoxia.

  9. Macrophages control vascular stem/progenitor cell plasticity through tumor necrosis factor-α-mediated nuclear factor-κB activation.

    Wong, Mei Mei; Chen, Yikuan; Margariti, Andriani; Winkler, Bernhard; Campagnolo, Paola; Potter, Claire; Hu, Yanhua; Xu, Qingbo

    2014-03-01

    Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.

  10. Impact of obesity control on circulating level of endothelial progenitor cells and angiogenesis in response to ischemic stimulation

    Chen Yung-Lung

    2012-07-01

    Full Text Available Abstract Background and aim We tested the hypothesis that obesity reduced circulating number of endothelial progenitor cells (EPCs, angiogenic ability, and blood flow in ischemic tissue that could be reversed after obesity control. Methods 8-week-old C57BL/6J mice (n = 27 were equally divided into group 1 (fed with 22-week control diet, group 2 (22-week high fat diet, and group 3 (14-week high fat diet, followed by 8-week control diet. Critical limb ischemia (CLI was induced at week 20 in groups 2 and 3. The animals were sacrificed at the end of 22 weeks. Results Heart weight, body weight, abdominal fat weight, serum total cholesterol level, and fasting blood sugar were highest in group 2 (all p  Conclusion Obesity suppressed abilities of angiogenesis and recovery from CLI that were reversed by obesity control.

  11. Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice

    Bentzon, Jacob Fog; Weile, Charlotte; Sondergaard, Claus S

    2006-01-01

    Recent studies of bone marrow (BM)-transplanted apoE knockout (apoE-/-) mice have concluded that a substantial fraction of smooth muscle cells (SMCs) in atherosclerosis arise from circulating progenitor cells of hematopoietic origin. This pathway, however, remains controversial. In the present st...

  12. Relationship between spontaneous γH2AX foci formation and progenitor functions in circulating hematopoietic stem and progenitor cells among atomic-bomb survivors.

    Kajimura, Junko; Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Weng, Nan-Ping; Young, Lauren F; Shieh, Jae-Hung; Moore, Malcolm A; van den Brink, Marcel R M; Kusunoki, Yoichiro

    2016-05-01

    Accumulated DNA damage in hematopoietic stem cells is a primary mechanism of aging-associated dysfunction in human hematopoiesis. About 70 years ago, atomic-bomb (A-bomb) radiation induced DNA damage and functional decreases in the hematopoietic system of A-bomb survivors in a radiation dose-dependent manner. The peripheral blood cell populations then recovered to a normal range, but accompanying cells derived from hematopoietic stem cells still remain that bear molecular changes possibly caused by past radiation exposure and aging. In the present study, we evaluated radiation-related changes in the frequency of phosphorylated (Ser-139) H2AX (γH2AX) foci formation in circulating CD34-positive/lineage marker-negative (CD34+Lin-) hematopoietic stem and progenitor cells (HSPCs) among 226Hiroshima A-bomb survivors. An association between the frequency of γH2AX foci formation in HSPCs and the radiation dose was observed, but the γH2AX foci frequency was not significantly elevated by past radiation. We found a negative correlation between the frequency of γH2AX foci formation and the length of granulocyte telomeres. A negative interaction effect between the radiation dose and the frequency of γH2AX foci was suggested in a proportion of a subset of HSPCs as assessed by the cobblestone area-forming cell assay (CAFC), indicating that the self-renewability of HSPCs may decrease in survivors who were exposed to a higher radiation dose and who had more DNA damage in their HSPCs. Thus, although many years after radiation exposure and with advancing age, the effect of DNA damage on the self-renewability of HSPCs may be modified by A-bomb radiation exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    Otsuru, Satoru; Tamai, Katsuto; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-01-01

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood

  14. Indoxyl Sulfate Impairs Endothelial Progenitor Cells and Might Contribute to Vascular Dysfunction in Patients with Chronic Kidney Disease

    Cheng-Jui Lin

    2016-12-01

    Full Text Available Background/Aims: Indoxyl sulfate (IS is a protein-bound uremic toxin that accumulates in patients with chronic kidney disease (CKD. We explored the effect of IS on human early endothelial progenitor cells (EPCs and analyzed the correlation between serum IS levels and parameters of vascular function, including endothelial function in a CKD-based cohort. Methods: A cross-sectional study with 128 stable CKD patients was conducted. Flow-mediated dilation (FMD, pulse wave velocity (PWV, ankle brachial index, serum IS and other biochemical parameters were measured and analyzed. In parallel, the activity of early EPCs was also evaluated after exposure to IS. Results: In human EPCs, a concentration-dependent inhibitory effect of IS on chemotactic motility and colony formation was observed. Additionally, serum IS levels were significantly correlated with CKD stages. The total IS (T-IS and free IS (F-IS were strongly associated with age, hypertension, cardiovascular disease, blood pressure, PWV, blood urea nitrogen, creatine and phosphate but negatively correlated with FMD, the estimated glomerular filtration rate (eGFR, hemoglobin, hematocrit, and calcium. A multivariate linear regression analysis also showed that FMD was significantly associated with IS after adjusting for other confounding factors. Conclusions: In humans, IS impairs early EPCs and was strongly correlated with vascular dysfunction. Thus, we speculate that this adverse effect of IS may partly result from the inhibition of early EPCs.

  15. Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia

    Luciana Teofili

    2015-05-01

    Full Text Available We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs, and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS. Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34+ cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b+ and CD41+ cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia.

  16. Correlation of circulating CD133+ progenitor subclasses with a mild phenotype in Duchenne muscular dystrophy patients.

    Chiara Marchesi

    2008-05-01

    Full Text Available Various prognostic serum and cellular markers have been identified for many diseases, such as cardiovascular diseases and tumor pathologies. Here we assessed whether the levels of certain stem cells may predict the progression of Duchenne muscular dystrophy (DMD.The levels of several subpopulations of circulating stem cells expressing the CD133 antigen were determined by flow cytometry in 70 DMD patients. The correlation between the levels and clinical status was assessed by statistical analysis. The median (+/-SD age of the population was 10.66+/-3.81 (range 3 to 20 years. The levels of CD133+CXCR4+CD34- stem cells were significantly higher in DMD patients compared to healthy controls (mean+/-standard deviation: 17.38+/-1.38 vs. 11.0+/-1.70; P = 0.03 with a tendency towards decreased levels in older patients. Moreover, the levels of this subpopulation of cells correlated with the clinical condition. In a subgroup of 19 DMD patients after 24 months of follow-up, increased levels of CD133+CXCR4+CD34- cells was shown to be associated with a phenotype characterised by slower disease progression. The circulating CD133+CXCR4+CD34- cells in patients from different ages did not exhibit significant differences in their myogenic and endothelial in vitro differentiation capacity.Our results suggest that levels of CD133+CXCR4+CD34- could function as a new prognostic clinical marker for the progression of DMD.

  17. The non-alcoholic fraction of beer increases stromal cell derived factor 1 and the number of circulating endothelial progenitor cells in high cardiovascular risk subjects: a randomized clinical trial.

    Chiva-Blanch, Gemma; Condines, Ximena; Magraner, Emma; Roth, Irene; Valderas-Martínez, Palmira; Arranz, Sara; Casas, Rosa; Martínez-Huélamo, Miriam; Vallverdú-Queralt, Anna; Quifer-Rada, Paola; Lamuela-Raventos, Rosa M; Estruch, Ramon

    2014-04-01

    Moderate alcohol consumption is associated with a decrease in cardiovascular risk, but fermented beverages seem to confer greater cardiovascular protection due to their polyphenolic content. Circulating endothelial progenitor cells (EPC) are bone-marrow-derived stem cells with the ability to repair and maintain endothelial integrity and function and are considered as a surrogate marker of vascular function and cumulative cardiovascular risk. Nevertheless, no study has been carried out on the effects of moderate beer consumption on the number of circulating EPC in high cardiovascular risk patients. To compare the effects of moderate consumption of beer, non-alcoholic beer and gin on the number of circulating EPC and EPC-mobilizing factors. In this crossover trial, 33 men at high cardiovascular risk were randomized to receive beer (30 g alcohol/d), the equivalent amount of polyphenols in the form of non-alcoholic beer, or gin (30 g alcohol/d) for 4 weeks. Diet and physical exercise were carefully monitored. The number of circulating EPC and EPC-mobilizing factors were determined at baseline and after each intervention. After the beer and non-alcoholic beer interventions, the number of circulating EPC significantly increased by 8 and 5 units, respectively, while no significant differences were observed after the gin period. In correlation, stromal cell derived factor 1 increased significantly after the non-alcoholic and the beer interventions. The non-alcoholic fraction of beer increases the number of circulating EPC in peripheral blood from high cardiovascular risk subjects. http://www.controlled-trials.com/ISRCTN95345245 ISRCTN95345245. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury

    Hagensen, Mette; Raarup, Merete Krog; Mortensen, Martin Bødtker

    2012-01-01

    into endothelial cells (ECs). We tested this theory in a murine arterial injury model using carotid artery transplants and fluorescent reporter mice. METHODS AND RESULTS: Wire-injured carotid artery segments from wild-type mice were transplanted into TIE2-GFP transgenic mice expressing green fluorescent protein...... (GFP) in ECs. We found that the endothelium regenerated with GFP(+) ECs as a function of time, evolving from the anastomosis sites towards the centre of the transplant. A migration front of ECs at Day 7 was verified by scanning electron microscopy and by bright-field microscopy using recipient TIE2-lac......Z mice with endothelial β-galactosidase expression. These experiments indicated migration of flanking ECs rather than homing of circulating cells as the underlying mechanism. To confirm this, we interposed non-injured wild-type carotid artery segments between the denuded transplant and the TIE2-GFP...

  19. Circulating endothelial progenitor cells: a new approach to anti-aging medicine?

    Patel Amit N

    2009-12-01

    Full Text Available Abstract Endothelial dysfunction is associated with major causes of morbidity and mortality, as well as numerous age-related conditions. The possibility of preserving or even rejuvenating endothelial function offers a potent means of preventing/treating some of the most fearful aspects of aging such as loss of mental, cardiovascular, and sexual function. Endothelial precursor cells (EPC provide a continual source of replenishment for damaged or senescent blood vessels. In this review we discuss the biological relevance of circulating EPC in a variety of pathologies in order to build the case that these cells act as an endogenous mechanism of regeneration. Factors controlling EPC mobilization, migration, and function, as well as therapeutic interventions based on mobilization of EPC will be reviewed. We conclude by discussing several clinically-relevant approaches to EPC mobilization and provide preliminary data on a food supplement, Stem-Kine, which enhanced EPC mobilization in human subjects.

  20. Vascular anomalies in the mesenteric circulation of patients with Crohn’s disease: a pilot study

    Matilde Zamboni

    2017-07-01

    Full Text Available Crohn’s disease (CD is a chronic inflammatory bowel disease and its pathogenesis is still not well understood. Previous studies suggested the possibility of the involvement of vascular system, but, todate, the mesenteric circulation has poor been investigated, especially in complicated CD cases requiring colectomy. We investigated the mesenteric circulation in a case-control pilot study, including 19 controls and 7 patients affected by complicated cases of CD. Cases and controls underwent selective angiography of both superior and inferior mesenteric district. Transit time was found either significantly shortened in 2/7 cases (29%, or prolonged 5/7 (71% (P=0.0034 in the superior mesenteric district; P=0.0079 in the inferior mesenteric district, respectively due to the presence of A-V malformations and of a miscellaneous of venous abnormalities, which included thrombosis, hypoplasia and extra-truncular venous malformations. Our study demonstrates the presence of congenital or acquired vascular anomalies in a small sample of CD patients not responder to current treatment and with severe complications. The present pilot study warrants further investigations.

  1. Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction

    Creer Michael H

    2010-03-01

    Full Text Available Abstract Human stem cells from adult sources have been shown to contribute to the regeneration of muscle, liver, heart, and vasculature. The mechanisms by which this is accomplished are, however, still not well understood. We tested the engraftment and regenerative potential of human umbilical cord blood-derived ALDHhiLin-, and ALDHloLin- cells following transplantation to NOD/SCID or NOD/SCID β2m null mice with experimentally induced acute myocardial infarction. We used combined nanoparticle labeling and whole organ fluorescent imaging to detect human cells in multiple organs 48 hours post transplantation. Engraftment and regenerative effects of cell treatment were assessed four weeks post transplantation. We found that ALDHhiLin- stem cells specifically located to the site of injury 48 hours post transplantation and engrafted the infarcted heart at higher frequencies than ALDHloLin- committed progenitor cells four weeks post transplantation. We found no donor derived cardiomyocytes and few endothelial cells of donor origin. Cell treatment was not associated with any detectable functional improvement at the four week endpoint. There was, however, a significant increase in vascular density in the central infarct zone of ALDHhiLin- cell-treated mice, as compared to PBS and ALDHloLin- cell-treated mice. Conclusions Our data indicate that adult human stem cells do not become a significant part of the regenerating tissue, but rapidly home to and persist only temporarily at the site of hypoxic injury to exert trophic effects on tissue repair thereby enhancing vascular recovery.

  2. Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration.

    Nih, Lina R; Deroide, Nicolas; Leré-Déan, Carole; Lerouet, Dominique; Soustrat, Mathieu; Levy, Bernard I; Silvestre, Jean-Sébastien; Merkulova-Rainon, Tatiana; Pocard, Marc; Margaill, Isabelle; Kubis, Nathalie

    2012-04-01

    Pro-angiogenic cell-based therapies constitute an interesting and attractive approach to enhancing post-stroke neurogenesis and decreasing neurological deficit. However, most new stroke-induced neurons die during the first few weeks after ischemia, thus impairing total recovery. Although the neovascularization process involves different cell types and various growth factors, most cell therapy protocols are based on the biological effects of single-cell-type populations or on the administration of heterogeneous populations of progenitors, namely human cord blood-derived CD34(+) cells, with scarce vascular progenitor cells. Tight cooperation between endothelial cells and smooth muscle cells/pericytes is critical for the development of functional neovessels. We hypothesized that neuroblast survival in stroke brain depends on mature vascular network formation. In this study, we injected a combination of endothelial progenitor cells (EPCs) and smooth muscle progenitor cells (SMPCs), isolated from human umbilical cord blood, into a murine model of permanent focal ischemia induced by middle cerebral artery occlusion. The co-administration of SMPCs and EPCs induced enhanced angiogenesis and vascular remodeling in the peri-infarct and infarct areas, where vessels exhibited a more mature phenotype. This activation of vessel growth resulted in the maintenance of neurogenesis and neuroblast migration to the peri-ischemic cortex. Our data suggest that a mature vascular network is essential for neuroblast survival after cerebral ischemia, and that co-administration of EPCs and SMPCs may constitute a novel therapeutic strategy for improving the treatment of stroke. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Data regarding association between serum osteoprotegerin level, numerous of circulating endothelial-derived and mononuclear-derived progenitor cells in patients with metabolic syndrome

    Alexander E. Berezin

    2016-09-01

    Full Text Available Metabolic syndrome (MetS is defined as cluster of multiple metabolic and cardiovascular (CV abnormalities included abdominal obesity, high-normal blood pressure, dyslipidaemia, and impaired fasting glucose tolerance that exhibits has a growing prevalence worldwide. We investigated whether an elevated level of osteoprotegerin (OPG predicts imbalance between different phenotypes of circulating endothelial (EPCs and mononuclear (MPCs progenitor cells in MetS patients. We have analyzed data regarding dysmetabolic disorder subjects without known CV disease, as well as with known type two diabetes mellitus. All patients have given their informed written consent for participation in the study. This article contains data on the independent predictors of depletion in numerous of circulating EPCs and MPCs in MetS patients. The data are supplemental to our original research article describing detailed associations of elevated OPG level in MetS patients with numerous of EPCs and MPCs beyond traditional CV risk factors. Keywords: Metabolic syndrome, Osteoprotegerin, Circulating endothelial derived progenitor cells, Mononuclear-derived progenitor cells

  4. Enhanced adhesion of early endothelial progenitor cells to radiation-induced senescence-like vascular endothelial cells in vitro

    Sermsathanasawadi, N.; Inoue, Yoshinori; Iwai, Takehisa; Ishii, Hideto; Yoshida, Masayuki; Igarashi, Kaori; Miura, Masahiko

    2009-01-01

    The effects of ionizing radiation (IR) on tumor neovascularization are still unclear. We previously reported that vascular endothelial cells (ECs) expressing the IR-induced senescence-like (IRSL) phenotype exhibit a significant decrease in angiogenic activity in vitro. In this study, we examined the effects of the IRSL phenotype on adhesion to early endothelial progenitor cells (early EPCs). Adhesion of human peripheral blood-derived early EPCs to human umbilical vein endothelial cells (HUVECs) expressing the IRSL phenotype was evaluated by an adhesion assay under static conditions. It was revealed that the IRSL HUVECs supported significantly more adhesion of early EPCs than normal HUVECs. Expressions of ICAM-1, VCAM-1 and E-selectin were up-regulated in IRSL HUVECs. Pre-treatment of IRSL HUVECs with adhesion-blocking monoclonal antibodies against E-selectin and VCAM-1 significantly reduced early EPC adhesion to IRSL HUVECs, suggesting a potential role for the E-selectin and VCAM-1 in the adhesion between IRSL ECs and early EPCs. Therefore, the IRSL phenotype expressed in ECs may enhance neovascularization via increased homing of early EPCs. Our findings are first to implicate the complex effects of this phenotype on tumor neovascularization following irradiation. (author)

  5. Levels of circulating CD45dimCD34+VEGFR2+ progenitor cells correlate with outcome in metastatic renal cell carcinoma patients treated with tyrosine kinase inhibitors

    Farace, F; Gross-Goupil, M; Tournay, E; Taylor, M; Vimond, N; Jacques, N; Billiot, F; Mauguen, A; Hill, C; Escudier, B

    2011-01-01

    Background: Predicting the efficacy of antiangiogenic therapy would be of clinical value in patients (pts) with metastatic renal cell carcinoma (mRCC). We tested the hypothesis that circulating endothelial cell (CEC), bone marrow-derived CD45dimCD34+VEGFR2+ progenitor cell or plasma angiogenic factor levels are associated with clinical outcome in mRCC pts undergoing treatment with tyrosine kinase inhibitors (TKI). Methods: Fifty-five mRCC pts were prospectively monitored at baseline (day 1) and day 14 during treatment (46 pts received sunitinib and 9 pts received sorafenib). Circulating endothelial cells (CD45−CD31+CD146+7-amino-actinomycin (7AAD)− cells) were measured in 1 ml whole blood using four-color flow cytometry (FCM). Circulating CD45dimCD34+VEGFR2+7AAD− progenitor cells were measured in progenitor-enriched fractions by four-color FCM. Plasma VEGF, sVEGFR2, SDF-1α and sVCAM-1 levels were determined by ELISA. Correlations between baseline CEC, CD45dimCD34+VEGFR2+7AAD− progenitor cells, plasma factors, as well as day 1–day 14 changes in CEC, CD45dimCD34+VEGFR2+7AAD− progenitor, plasma factor levels, and response to TKI, progression-free survival (PFS) and overall survival (OS) were examined. Results: No significant correlation between markers and response to TKI was observed. No association between baseline CEC, plasma VEGF, sVEGFR-2, SDF-1α, sVCAM-1 levels with PFS and OS was observed. However, baseline CD45dimCD34+VEGFR2+7AAD− progenitor cell levels were associated with PFS (P=0.01) and OS (P=0.006). Changes in this population and in SDF-1α levels between day 1 and day 14 were associated with PFS (P=0.03, P=0.002). Changes in VEGF and SDF-1α levels were associated with OS (P=0.02, P=0.007). Conclusion: Monitoring CD45dimCD34+VEGFR2+ progenitor cells, plasma VEGF and SDF-1α levels could be of clinical interest in TKI-treated mRCC pts to predict outcome. PMID:21386843

  6. Relation between prognosis and collateral circulation or recanalization in occlusive cerebral vascular diseases

    Saito, Yuko

    1982-01-01

    CT images and angiograms were compared, in occlusive cerebral vascular diseases with complete stroke in the region of internal carotid artery, and following subjects were discussed. 1) Relation between size of final low density area on CT and prognosis. 2) Effectiveness of collateral circulation and recanalization to the low density area on CT in the teritorry of occluded artery. For the subject 1,100 cases of infarction of the region of middle cerebral artery were chosen at random, and the prognosis was compared with the size of low density area on CT. For the subject 2,186 cases of infarction in the region on internal carotid artery were selected, and CT images and angiograms were compared, considering the duration between stroke and angiography. With these studies, following conclusions were obtained. There is tendency that cases with the smaller low density areas on CT have the better prognosis. The low density on CT appeares inside of the teritorry of the occluded artery. When there is neither collateral circulation nor recanalization, appearance of the low density on CT is not avoided. Collateral circulation or recanalization is able to rescue the affected area from appearance of low density on CT, even if it is formed later than 6 hours after ictus. The critical period when collateral circulation or recanalization effects on the involved area is variable depending on each cases, but it is suspected to be 24 or 72 hours after onset. Blood supply which begins later than 73 hours after occlusion of artery does not effect on the involved area. (J.P.N.)

  7. Relation between prognosis and collateral circulation or recanalization in occlusive cerebral vascular diseases

    Saito, Yuko (Tokyo Women' s Medical Coll. (Japan))

    1982-09-01

    CT images and angiograms were compared, in occlusive cerebral vascular diseases with complete stroke in the region of internal carotid artery, and following subjects were discussed. 1) Relation between size of final low density area on CT and prognosis. 2) Effectiveness of collateral circulation and recanalization to the low density area on CT in the territory of occluded artery. For the subject 1,100 cases of infarction of the region of middle cerebral artery were chosen at random, and the prognosis was compared with the size of low density area on CT. For the subject 2,186 cases of infarction in the region on internal carotid artery were selected, and CT images and angiograms were compared, considering the duration between stroke and angiography. With these studies, following conclusions were obtained. There is tendency that cases with the smaller low density areas on CT have the better prognosis. The low density on CT appears inside of the territory of the occluded artery. When there is neither collateral circulation nor recanalization, appearance of the low density on CT is not avoided. Collateral circulation or recanalization is able to rescue the affected area from appearance of low density on CT, even if it is formed later than 6 hours after ictus. The critical period when collateral circulation or recanalization effects on the involved area is variable depending on each cases, but it is suspected to be 24 or 72 hours after onset. Blood supply which begins later than 73 hours after occlusion of artery does not effect on the involved area.

  8. Molecular Characterization of the Interactions between Vascular Selectins and Glycoprotein Ligands on Human Hematopoietic Stem/Progenitor Cells

    Abusamra, Dina

    2016-12-01

    The human bone marrow vasculature constitutively expresses both E-selectin and P-selectin where they interact with the cell-surface glycan moiety, sialyl Lewis x, on circulating hematopoietic stem/progenitor cells (HSPCs) to mediate the essential tethering/rolling step. Although several E-selectin glycoprotein ligands (E-selLs) have been identified, the importance of each E-selL on human HSPCs is debatable and requires additional methodologies to advance their specific involvement. The first objective was to fill the knowledge gap in the in vitro characterization of the mechanisms used by selectins to mediate the initial step in the HSPCs homing by developing a real time immunoprecipitation-based assay on a surface plasmon resonance chip. This novel assay bypass the difficulties of purifying ligands, enables the use of natively glycosylated forms of selectin ligands from any model cell of interest and study its binding affinities under flow. We provide the first comprehensive quantitative binding kinetics of two well-documented ligands, CD44 and PSGL-1, with E-selectin. Both ligands bind monomeric E-selectin transiently with fast on- and off-rates while they bind dimeric E-selectin with remarkably slow on- and off-rates with the on-rate, but not the off-rate, is dependent on salt concentration. Thus, suggest a mechanism through which monomeric selectins mediate initial fast-on and -off binding to capture the circulating cells out of shear-flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to slow rolling significantly. The second objective is to fully identify and characterize E/P-selectin ligand candidates expressed on CD34+ HSPCs which cause enhanced migration after intravenous transplantation compared to their CD34- counterparts. CD34 is widely recognized marker of human HSPCs but its natural ligand and function on these cells remain elusive. Proteomics identified CD34 as an E-selL candidate on human HSPCs, whose binding to E

  9. Identification of p63+ keratinocyte progenitor cells in circulation and their matrix-directed differentiation to epithelial cells.

    Nair, Renjith P; Krishnan, Lissy K

    2013-04-11

    In the event of chronic diabetes or burn wounds, accomplishing skin regeneration is a major concern. Autologous skin grafting is the most effective remedy, but the tissue harvest may create more nonhealing wounds. Currently available skin substitutes have a limited clinical outcome because of immune reactions arising from the xenobiotic scaffold or allogenous cells. Autologous stem cells that can be collected without an additional injury may be a viable option for skin-tissue engineering. Presence of a low number of keratinocyte progenitor cells (KPCs) within the peripheral blood mononuclear cell (PBMNC) population has been indicated. Identification, isolation, expansion, and differentiation of KPCs is necessary before they are considered for skin regeneration, which is the focus of this study. Culture of isolated human PBMNCs on a cell-specific matrix was carried out to induce differentiation of KPCs. Flow cytometry and reverse transcriptase polymerase chain reaction were done for epithelial stem cell marker p63 and lineage markers cytokeratin 5 and cytokeratin 14, to track differentiation. Proliferation was confirmed by quantifying the proliferating cell nuclear antigen-expressing cells. Immunostaining with epithelial cell markers, involucrin and filaggrin, was carried out to establish terminal differentiation. Microscopic analysis confirmed growth and survival of KPCs on the dermal fibroblast monolayer and on a transplantable fibrin sheet. We demonstrated that KPCs are p63(+) and CD34-. The specifically designed composition of the extracellular matrix was found to support selective adhesion, proliferation, and differentiation of p63(+) KPCs. The PBMNC culture for 12 days under controlled conditions resulted in a homogenous population that expressed cytokeratins, and >90% of the cells were found to proliferate. Subculture for 5 days resulted in expression of filaggrin and involucrin, suggesting terminal differentiation. Transfer of matrix-selected KPCs to a

  10. Endothelial progenitor cells in mothers of low-birthweight infants: a link between defective placental vascularization and increased cardiovascular risk?

    King, Thomas F J

    2013-01-01

    Offspring birthweight is inversely associated with future maternal cardiovascular mortality, a relationship that has yet to be fully elucidated. Endothelial progenitor cells (EPCs) are thought to play a key role in vasculogenesis, and EPC numbers reflect cardiovascular risk.

  11. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage.

    Frid, Maria G; Brunetti, Jacqueline A; Burke, Danielle L; Carpenter, Todd C; Davie, Neil J; Reeves, John T; Roedersheimer, Mark T; van Rooijen, Nico; Stenmark, Kurt R

    2006-02-01

    Vascular remodeling in chronic hypoxic pulmonary hypertension includes marked fibroproliferative changes in the pulmonary artery (PA) adventitia. Although resident PA fibroblasts have long been considered the primary contributors to these processes, we tested the hypothesis that hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage, termed fibrocytes. Using two neonatal animal models (rats and calves) of chronic hypoxic pulmonary hypertension, we demonstrated a dramatic perivascular accumulation of mononuclear cells of a monocyte/macrophage lineage (expressing CD45, CD11b, CD14, CD68, ED1, ED2). Many of these cells produced type I collagen, expressed alpha-smooth muscle actin, and proliferated, thus exhibiting mesenchymal cell characteristics attributed to fibrocytes. The blood-borne origin of these cells was confirmed in experiments wherein circulating monocytes/macrophages of chronically hypoxic rats were in vivo-labeled with DiI fluorochrome via liposome delivery and subsequently identified in the remodeled pulmonary, but not systemic, arterial adventitia. The DiI-labeled cells that appeared in the vessel wall expressed monocyte/macrophage markers and procollagen. Selective depletion of this monocytic cell population, using either clodronate-liposomes or gadolinium chloride, prevented pulmonary adventitial remodeling (ie, production of collagen, fibronectin, and tenascin-C and accumulation of myofibroblasts). We conclude that circulating mesenchymal precursors of a monocyte/macrophage lineage, including fibrocytes, are essential contributors to hypoxia-induced pulmonary vascular remodeling.

  12. In vivo endothelization of tubular vascular grafts through in situ recruitment of endothelial and endothelial progenitor cells by RGD-fused mussel adhesive proteins

    Kang, Tae-Yun; Lee, Jung Ho; Kang, Jo-A; Rhie, Jong-Won; Kim, Bum Jin; Cha, Hyung Joon; Hong, Jung Min; Kim, Byoung Soo; Cho, Dong-Woo

    2015-01-01

    The use of tissue mimics in vivo, including patterned vascular networks, is expected to facilitate the regeneration of functional tissues and organs with large volumes. Maintaining patency of channels in contact with blood is an important issue in the development of a functional vascular network. Endothelium is the only known completely non-thrombogenic material; however, results from treatments to induce endothelialization are inconclusive. The present study was designed to evaluate the clinical applicability of in situ recruitment of endothelial cells/endothelial progenitor cells (EC/EPC) and pre-endothelization using a recombinant mussel adhesive protein fused with arginine–glycine–aspartic acid peptide (MAP-RGD) coating in a model of vascular graft implantation. Microporous polycaprolactone (PCL) scaffolds were fabricated with salt leaching methods and their surfaces were modified with collagen and MAP-RGD. We then evaluated their anti-thrombogenicity with an in vitro hemocompatibility assessment and a 4-week implantation in the rabbit carotid artery. We observed that MAP-RGD coating reduced the possibility of early in vivo graft failure and enhanced re-endothelization by in situ recruitment of EC/EPC (patency rate: 2/3), while endothelization prior to implantation aggravated the formation of thrombosis and/or IH (patency rate: 0/3). The results demonstrated that in situ recruitment of EC/EPC by MAP-RGD could be a promising strategy for vascular applications. In addition, it rules out several issues associated with pre-endothelization, such as cell source, purity, functional modulation and contamination. Further evaluation of long term performance and angiogenesis from the luminal surface may lead to the clinical use of MAP-RGD for tubular vascular grafts and regeneration of large-volume tissues with functional vascular networks. (paper)

  13. Physiologic Impact of Circulating RBC Microparticles upon Blood-Vascular Interactions

    Ahmed S. Said

    2018-01-01

    Full Text Available Here, we review current data elucidating the role of red blood cell derived microparticles (RMPs in normal vascular physiology and disease progression. Microparticles (MPs are submicron-size, membrane-encapsulated vesicles derived from various parent cell types. MPs are produced in response to numerous stimuli that promote a sequence of cytoskeletal and membrane phospholipid changes and resulting MP genesis. MPs were originally considered as potential biomarkers for multiple disease processes and more recently are recognized to have pleiotropic biological effects, most notably in: promotion of coagulation, production and handling of reactive oxygen species, immune modulation, angiogenesis, and in initiating apoptosis. RMPs, specifically, form normally during RBC maturation in response to injury during circulation, and are copiously produced during processing and storage for transfusion. Notably, several factors during RBC storage are known to trigger RMP production, including: increased intracellular calcium, increased potassium leakage, and energy failure with ATP depletion. Of note, RMP composition differs markedly from that of intact RBCs and the nature/composition of RMP components are affected by the specific circumstances of RMP genesis. Described RMP bioactivities include: promotion of coagulation, immune modulation, and promotion of endothelial adhesion as well as influence upon vasoregulation via influence upon nitric oxide (NO bioavailability. Of particular relevance, RMPs scavenge NO more avidly than do intact RBCs; this physiology has been proposed to contribute to the impaired oxygen delivery homeostasis that may be observed following transfusion. In summary, RMPs are submicron particles released from RBCs, with demonstrated vasoactive properties that appear to disturb oxygen delivery homeostasis. The clinical impact of RMPs in normal and patho-physiology and in transfusion recipients is an area of continued investigation.

  14. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells.

    Rose, Jonathan A; Erzurum, Serpil; Asosingh, Kewal

    2015-01-01

    During development, hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life, this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow (BM)-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative "endothelial progenitor cells" that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multidisciplinary expertise in flow cytometry, hematology, and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and BM. © 2014 International Society for Advancement of Cytometry.

  15. Circulating hematopoietic progenitors and CD34+ cells predicted successful hematopoietic stem cell harvest in myeloma and lymphoma patients: experiences from a single institution

    Yu JT

    2016-02-01

    Full Text Available Jui-Ting Yu,1,2,* Shao-Bin Cheng,3,* Youngsen Yang,1 Kuang-Hsi Chang,4 Wen-Li Hwang,1 Chieh-Lin Jerry Teng,1,5,6 1Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, 2Division of Hematology/Medical Oncology, Tungs' Taichung MetroHarbor Hospital, 3Division of General Surgery, Department of Surgery, 4Department of Medical Research and Education, Taichung Veterans General Hospital, 5Department of Life Science, Tunghai University, 6School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China *These authors contributed equally to this work Background: Previous studies have shown that the numbers of both circulating hematopoietic progenitor cell (HPC and CD34+ cell are positively correlated with CD34+ cell harvest yield. However, the minimal numbers of both circulating HPCs and CD34+ cells required for performing an efficient hematopoietic stem cell (HSC harvest in lymphoma and myeloma patients have not been defined in our institution. Patients and methods: Medical records of 50 lymphoma and myeloma patients undergoing peripheral blood HSC harvest in our institution were retrospectively reviewed. The minimal and optimal HSC harvest yield required for the treatment was considered to be ≥2×106 CD34+ cells/kg and ≥5×106 CD34+ cells/kg, respectively. Results: The minimally required or optimal HSC yield obtained was not influenced by age (≥60 years, sex, underlying malignancies, disease status, multiple rounds of chemotherapy, or history of radiotherapy. The numbers of both circulating HPC and CD34+ cell were higher in patients with minimally required HSC yields (P=0.000 for HPC and P=0.000 for CD34+ cell and also in patients with optimal HSC yields (P=0.011 for HPC and P=0.006 for CD34+ cell. The cell count cutoff for obtaining minimally required HSC harvest was determined to be 20/mm3 for HPCs and 10/mm3 for CD34+ cells. Furthermore, the cell count cutoff for obtaining

  16. Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44

    Abu Samra, Dina Bashir Kamil

    2017-12-27

    CD34 is routinely used to identify and isolate human hematopoietic stem/progenitor cells (HSPCs) for use clinically in bone marrow transplantation, but its function on these cells remains elusive. Glycoprotein ligands on HSPCs help guide their migration to specialized microvascular beds in the bone marrow that express vascular selectins (E- and P-selectin). Here, we show that HSPC-enriched fractions from human hematopoietic tissue expressing CD34 (CD34pos) bound selectins, whereas those lacking CD34 (CD34neg) did not. An unbiased proteomics screen identified potential glycoprotein ligands on CD34pos cells revealing CD34 itself as a major vascular selectin ligand. Biochemical and CD34 knockdown analyses highlight a key role for CD34 in the first prerequisite step of cell migration, suggesting that it is not just a marker on these cells. Our results also entice future potential strategies to investigate the glycoforms of CD34 that discriminate normal HSPCs from leukemic cells and to manipulate CD34neg HSPC-enriched bone marrow or cord blood populations as a source of stem cells for clinical use.

  17. Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44

    Abu Samra, Dina Bashir Kamil; Aleisa, Fajr A; Al-Amoodi, Asma S.; Jalal Ahmed, Heba M.; Chin, Chee Jia; AbuElela, Ayman; Bergam, Ptissam; Sougrat, Rachid; Merzaban, Jasmeen

    2017-01-01

    CD34 is routinely used to identify and isolate human hematopoietic stem/progenitor cells (HSPCs) for use clinically in bone marrow transplantation, but its function on these cells remains elusive. Glycoprotein ligands on HSPCs help guide their migration to specialized microvascular beds in the bone marrow that express vascular selectins (E- and P-selectin). Here, we show that HSPC-enriched fractions from human hematopoietic tissue expressing CD34 (CD34pos) bound selectins, whereas those lacking CD34 (CD34neg) did not. An unbiased proteomics screen identified potential glycoprotein ligands on CD34pos cells revealing CD34 itself as a major vascular selectin ligand. Biochemical and CD34 knockdown analyses highlight a key role for CD34 in the first prerequisite step of cell migration, suggesting that it is not just a marker on these cells. Our results also entice future potential strategies to investigate the glycoforms of CD34 that discriminate normal HSPCs from leukemic cells and to manipulate CD34neg HSPC-enriched bone marrow or cord blood populations as a source of stem cells for clinical use.

  18. The effect of angiotensin-2 receptor blocker valsartan on circulating level of endothelial progenitor cells in diabetic patients with asymptomatic coronary artery disease.

    Berezin, Alexander E; Kremzer, Alexander A; Martovitskaya, Yulia V; Samura, Tatyana A

    2015-01-01

    Decreased circulating endothelial progenitor cells (EPCs) are considered as strong and robust biomarkers for the prediction of cardiovascular outcomes in diabetic populations. The perspectives for modulating EPCs levels in T2DM with known coronary artery disease (CAD) with different drugs, affected mechanisms of improving mobilization of EPCs from tissue, are not still understood. To evaluate an effect of angiotensin-2 receptor blocker valsartan on circulating level of EPCs in diabetic patients with asymptomatic CAD. The study population was structured retrospectively after determining the CAD by contrast-enhanced spiral computed tomography angiography in 126 asymptomatic subjects. All subjects were distributed into two cohorts depending on daily doses of valsartan given. Low (80-160 mg daily orally) and high doses (240-320 mg daily orally) of valsartan were used and they were adjusted depending on achieving BP level less than 140/80 mmHg. The change from baseline in CD34(+) subset cells (frequencies and absolute values) was not significantly different between treatment cohorts. We found a significant increase of circulating level of CD14(+)CD309(+) cells in two patient cohorts. But more prominent change of CD14(+)CD309(+) cells was verified in subjects who were given valsartan in high daily doses when compared with persons who were included into cohort with low daily doses of the drug (1.96% versus 2.59%, respectively; Pvalsartan only. We found positive influence of angiotensin-2 receptor blocker valsartan in escalation doses on bone marrow-derived EPCs phenotyped as CD14(+)CD309(+) and CD14(+)CD309(+)Tie(2+) in T2DM patients with known asymptomatic CAD. Copyright © 2014 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  19. Circulating hematopoietic progenitors and CD34(+) cells predicted successful hematopoietic stem cell harvest in myeloma and lymphoma patients: experiences from a single institution.

    Yu, Jui-Ting; Cheng, Shao-Bin; Yang, Youngsen; Chang, Kuang-Hsi; Hwang, Wen-Li; Teng, Chieh-Lin Jerry

    2016-01-01

    Previous studies have shown that the numbers of both circulating hematopoietic progenitor cell (HPC) and CD34(+) cell are positively correlated with CD34(+) cell harvest yield. However, the minimal numbers of both circulating HPCs and CD34(+) cells required for performing an efficient hematopoietic stem cell (HSC) harvest in lymphoma and myeloma patients have not been defined in our institution. Medical records of 50 lymphoma and myeloma patients undergoing peripheral blood HSC harvest in our institution were retrospectively reviewed. The minimal and optimal HSC harvest yield required for the treatment was considered to be ≥2×10(6) CD34(+) cells/kg and ≥5×10(6) CD34(+) cells/kg, respectively. The minimally required or optimal HSC yield obtained was not influenced by age (≥60 years), sex, underlying malignancies, disease status, multiple rounds of chemotherapy, or history of radiotherapy. The numbers of both circulating HPC and CD34(+) cell were higher in patients with minimally required HSC yields (P=0.000 for HPC and P=0.000 for CD34(+) cell) and also in patients with optimal HSC yields (P=0.011 for HPC and P=0.006 for CD34(+) cell). The cell count cutoff for obtaining minimally required HSC harvest was determined to be 20/mm(3) for HPCs and 10/mm(3) for CD34(+) cells. Furthermore, the cell count cutoff for obtaining optimal HSC harvest was determined to be 60/mm(3) for HPCs and 35/mm(3) for CD34(+) cells. A total of 60/mm(3) of HPCs and 35/mm(3) of CD34(+) cells in peripheral blood predicted optimal HSC harvest in lymphoma and myeloma patients.

  20. Analysis of Circulating Vascular Endothelial Growth Factor and Its Soluble Receptors in Patients with Different Forms of Chronic Urticaria

    Julia Jagodzinska

    2015-01-01

    Full Text Available Background. Vascular endothelial growth factor (VEGF is a powerful enhancer of vascular permeability and inflammatory response; however its significance in chronic urticaria is poorly recognised. Aim. To compare free circulating levels of VEGF and its soluble receptors (sVEGFR1 and VEGFR2 in patients with different forms of chronic urticaria. Methods. The concentrations of VEGF and its receptors in plateletpoor plasma (PPP/plasma were measured using enzyme-linked immunosorbent assay in chronic urticaria: (1 chronic spontaneous urticaria (CSU with positive autologous serum skin test (ASST, (2 CSU with negative response to ASST, (3 CSU with concomitant euthyroid Hashimoto’s thyroiditis (CSU/Hashimoto, (4 delayed pressure urticaria (DPU, and the healthy subjects. Results. There were no significant differences in VEGF concentration in PPP between CSU groups and the healthy subjects. Contrary, VEGF concentration was significantly higher in DPU and CSU/Hashimoto patients as compared with the healthy subjects and CSU groups. Furthermore, VEGF value in CSU/Hashimoto patients during the remission was similar to that of the active period and significantly higher than the healthy subjects; VEGF concentration was significantly correlated with TSH. Plasma concentrations of sVEGF1 and sVEGF2 were similar in chronic urticaria patients and the healthy subjects. Conclusions. Increased free circulating VEGF concentration may result from the urticarial process itself as well as concomitant Hashimoto’s thyroiditis.

  1. Circulation of progenitor cells after intensive chemotherapy followed by combination G-CSF and EPO in breast carcinoma

    Filip, S.; Vanasek, J.; Blaha, M.; Vavrova, J.

    1997-01-01

    Hematologic effects of granulocyte colony-stimulating factor (G-CSF) and erythropoietic (EPO) combination after priming intensive chemotherapy in the treatment of female breast carcinoma are presented. In a previous group treated with G-CSF alone, 36% of patients became anemic and to be transfused for correction of their anemia. To the present study consecutive patients with different stages of breast carcinoma were admitted. All were given priming intensive chemotherapy (epirubicin 150 m/m 2 and cyclophosphamide 1300 mg/m 2 ) followed by subcutaneous application of G-CSF at a dose of 5 μg/kg/day and EPO 250 IU/kg/day. In cases where leucocyte counts dropped below 1 x 10 9 /dm 3 and hemoglobin level fell to 85 g/dm 3 administration of growth factors was started. The therapy was stopped when normal leukocyte count reached 4 x 10 9 /dm 3 for G-CSF and hemoglobin level rose to 115 g/dm 3 for EPO. Our results show significant difference between MNC/Tl (min.), CD34 + cells/μl (min.), CFU-GM/ml (min.), BFU-E/ml (min) and MNC/μl (max.), CD34 + cells/μl (max.), CFU-GM/ml (max.), BFU-E/ml (ml) p + cells/μl, 23.4-fold for CFU-GM/ml and 28.7-fold increase for BFU-E/ml. Side effects were minimal, no infectious complications occurred, body temperature did not rise over 3 grad C and no corrections of anemia were needed. It is concluded that the administration of G-CSF plus EPO combination following intensive chemotherapy reduces hematologic toxicity and induces large amount of hemopoietic progenitors suitable for autologous transplantation in women with breast carcinoma. (author)

  2. Endothelial progenitor cells in mothers of low-birthweight infants: a link between defective placental vascularization and increased cardiovascular risk?

    King, Thomas F J; Bergin, David A; Kent, Etaoin M; Manning, Fiona; Reeves, Emer P; Dicker, Patrick; McElvaney, Noel G; Sreenan, Seamus; Malone, Fergal D; McDermott, John H

    2013-01-01

    Offspring birthweight is inversely associated with future maternal cardiovascular mortality, a relationship that has yet to be fully elucidated. Endothelial progenitor cells (EPCs) are thought to play a key role in vasculogenesis, and EPC numbers reflect cardiovascular risk. Our objective was to ascertain whether EPC number or function was reduced in mothers of low-birthweight infants. This was a prospective cohort study in a general antenatal department of a university maternity hospital. Twenty-three mothers of small for gestational age (SGA) infants (birthweight mothers of appropriate for gestational age (AGA) infants (birthweight ≥ 10th centile) were recruited. Maternal EPC number and function, conventional cardiovascular risk markers, and cord blood adiponectin were measured. Median EPC count was lower (294 vs. 367, P = 0.005) and EPC migration was reduced (0.91 vs. 1.59, P < 0.001) in SGA compared with AGA infants, with no difference in EPC adhesion (0.221 vs. 0.284 fluorescence units, P = 0.257). Maternal triglyceride levels were higher in SGA than AGA infants (0.98 vs. 0.78 mmol/liter, P = 0.006), but there was no difference in cholesterol, glucose, insulin, glycosylated hemoglobin, adiponectin, or blood pressure. There was a moderate monotone (increasing) relationship between birthweight and umbilical cord blood adiponectin (r = 0.475, P = 0.005). Giving birth to an SGA infant was associated with lower maternal EPC number and reduced migratory function. Cord blood adiponectin was significantly correlated with birthweight.

  3. Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation.

    Li, Wei; Wang, Guanjun; Cui, Jiuwei; Xue, Lu; Cai, Lu

    2004-11-01

    The aim of this study was to investigate the stimulating effect of low-dose radiation (LDR) on bone marrow hematopoietic progenitor cell (HPC) proliferation and peripheral blood mobilization. Mice were exposed to 25- to 100-mGy x-rays. Bone marrow and peripheral blood HPCs (BFU-E, CFU-GM, and c-kit+ cells) were measured, and GM-CSF, G-CSF, and IL-3 protein and mRNA expression were detected using ELISA, slot blot hybridization, and Northern blot methods. To functionally evaluate LDR-stimulated and -mobilized HPCs, repopulation of peripheral blood cells in lethally irradiated recipients after transplantation of LDR-treated donor HPCs was examined by WBC counts, animal survival, and colony-forming units in the recipient spleens (CFUs-S). 75-mGy x-rays induced a maximal stimulation for bone marrow HPC proliferation (CFU-GM and BFU-E formation) 48 hours postirradiation, along with a significant increase in HPC mobilization into peripheral blood 48 to 72 hours postradiation, as shown by increases in CFU-GM formation and proportion of c-kit+ cells in the peripheral mononuclear cells. 75-mGy x-rays also maximally induced increases in G-CSF and GM-CSF mRNA expression in splenocytes and levels of serum GM-CSF. To define the critical role of these hematopoietic-stimulating factors in HPC peripheral mobilization, direct administration of G-CSF at a dose of 300 microg/kg/day or 150 microg/kg/day was applied and found to significantly stimulate GM-CFU formation and increase c-kit+ cells in the peripheral mononuclear cells. More importantly, 75-mGy x-rays plus 150 microg/kg/day G-CSF (LDR/150-G-CSF) produced a similar effect to that of 300 microg/kg/day G-CSF alone. Furthermore, the capability of LDR-mobilized donor HPCs to repopulate blood cells was confirmed in lethally irradiated recipient mice by counting peripheral WBC and CFUs-S. These results suggest that LDR induces hematopoietic hormesis, as demonstrated by HPC proliferation and peripheral mobilization, providing a

  4. Endothelial progenitor cells from human dental pulp-derived iPS cells as a therapeutic target for ischemic vascular diseases.

    Yoo, Chae Hwa; Na, Hee-Jun; Lee, Dong-Seol; Heo, Soon Chul; An, Yuri; Cha, Junghwa; Choi, Chulhee; Kim, Jae Ho; Park, Joo-Cheol; Cho, Yee Sook

    2013-11-01

    Human dental pulp cells (hDPCs) are a valuable source for the generation of patient-specific human induced pluripotent stem cells (hiPSCs). An advanced strategy for the safe and efficient reprogramming of hDPCs and subsequent lineage-specific differentiation is a critical step toward clinical application. In present research, we successfully generated hDPC-iPSCs using only two non-oncogenic factors: Oct4 and Sox2 (2F hDPC-hiPSCs) and evaluated the feasibility of hDPC-iPSCs as substrates for endothelial progenitor cells (EPCs), contributing to EPC-based therapies. Under conventional differentiation conditions, 2F hDPC-hiPSCs showed higher differentiation efficiency, compared to hiPSCs from other cell types, into multipotent CD34(+) EPCs (2F-hEPCs) capable to differentiate into functional endothelial and smooth muscle cells. The angiogenic and neovasculogenic activities of 2F-hEPCs were confirmed using a Matrigel plug assay in mice. In addition, the therapeutic effects of 2F-hEPC transplantation were confirmed in mouse models of hind-limb ischemia and myocardial infarction. Importantly, 2F-EPCs effectively integrated into newly formed vascular structures and enhanced neovascularization via likely both direct and indirect paracrine mechanisms. 2F hDPC-hiPSCs have a robust capability for the generation of angiogenic and vasculogenic EPCs, representing a strategy for patient-specific EPC therapies and disease modeling, particularly for ischemic vascular diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Bone engineering in dog mandible: Coculturing mesenchymal stem cells with endothelial progenitor cells in a composite scaffold containing vascular endothelial growth factor.

    Khojasteh, Arash; Fahimipour, Farahnaz; Jafarian, Mohammad; Sharifi, Davoud; Jahangir, Shahrbanoo; Khayyatan, Fahimeh; Baghaban Eslaminejad, Mohamadreza

    2017-10-01

    We sought to assess the effects of coculturing mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) in the repair of dog mandible bone defects. The cells were delivered in β-tricalcium phosphate scaffolds coated with poly lactic co-glycolic acid microspheres that gradually release vascular endothelial growth factor (VEGF). The complete scaffold and five partial scaffolds were implanted in bilateral mandibular body defects in eight beagles. The scaffolds were examined histologically and morphometrically 8 weeks after implantation. Histologic staining of the decalcified scaffolds demonstrated that bone formation was greatest in the VEGF/MSC scaffold (63.42 ± 1.67), followed by the VEGF/MSC/EPC (47.8 ± 1.87) and MSC/EPC (45.21 ± 1.6) scaffolds, the MSC scaffold (34.59 ± 1.49), the VEGF scaffold (20.03 ± 1.29), and the untreated scaffold (7.24 ± 0.08). Hence, the rate of new bone regeneration was highest in scaffolds containing MSC, either mixed with EPC or incorporating VEGF. Adding both EPC and VEGF with the MSC was not necessary. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1767-1777, 2017. © 2016 Wiley Periodicals, Inc.

  6. Circulating vascular cell adhesion molecule-1 in pre-eclampsia, gestational hypertension, and normal pregnancy: evidence of selective dysregulation of vascular cell adhesion molecule-1 homeostasis in pre-eclampsia.

    Higgins, J R; Papayianni, A; Brady, H R; Darling, M R; Walshe, J J

    1998-08-01

    Our purpose was to investigate circulating levels of vascular cell adhesion molecule-1 in the peripheral and uteroplacental circulations during normotensive and hypertensive pregnancies. This prospective observational study involved 2 patient groups. Group 1 consisted of 22 women with pre-eclampsia and 30 normotensive women followed up longitudinally through pregnancy and post partum. There were an additional 13 women with established gestational hypertension. Group 2 consisted of 20 women with established pre-eclampsia and 19 normotensive control subjects undergoing cesarean delivery. Plasma levels of vascular cell adhesion molecule-1 were measured in blood drawn from the antecubital vein (group 1) and from both the antecubital and uterine veins (group 2). Data were analyzed by analysis of variance. In group 1 vascular cell adhesion molecule-1 levels did not change significantly throughout normal pregnancy and post partum. Women with established pre-eclampsia had increased vascular cell adhesion molecule-1 levels compared with the normotensive pregnancy group (P = .01). Vascular cell adhesion molecule-1 levels were not elevated in women with established gestational hypertension. In group 2 significantly higher levels of vascular cell adhesion molecule-1 were detected in the uteroplacental (P post partum, is not a feature of nonproteinuric gestational hypertension, and is not observed with other major leukocyte adhesion molecules. Induction of vascular cell adhesion molecule-1 expression in pre-eclampsia may contribute to leukocyte-mediated tissue injury in this condition or may reflect perturbation of other, previously unrecognized, functions of this molecule in pregnancy.

  7. The adventitia: Essential role in pulmonary vascular remodeling.

    Stenmark, Kurt R; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia; Anwar, Adil; Li, Min; Riddle, Suzette; Frid, Maria

    2011-01-01

    A rapidly emerging concept is that the vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and comprises a variety of cells including fibroblasts, immunomodulatory cells, resident progenitor cells, vasa vasorum endothelial cells, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to then influence tone and structure of the vessel wall. Experimental data indicate that the adventitial fibroblast, the most abundant cellular constituent of adventitia, is a critical regulator of vascular wall function. In response to vascular stresses such as overdistension, hypoxia, or infection, the adventitial fibroblast is activated and undergoes phenotypic changes that include proliferation, differentiation, and production of extracellular matrix proteins and adhesion molecules, release of reactive oxygen species, chemokines, cytokines, growth factors, and metalloproteinases that, collectively, affect medial smooth muscle cell tone and growth directly and that stimulate recruitment and retention of circulating inflammatory and progenitor cells to the vessel wall. Resident dendritic cells also participate in "sensing" vascular stress and actively communicate with fibroblasts and progenitor cells to simulate repair processes that involve expansion of the vasa vasorum, which acts as a conduit for further delivery of inflammatory/progenitor cells. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of pulmonary vascular wall function and structure from the "outside in." © 2011 American Physiological Society.

  8. Circulating Markers of Vascular Injury and Angiogenesis in ANCA-Associated Vasculitis

    Monach, Paul A; Tomasson, Gunnar; Specks, Ulrich; Stone, John H; Cuthbertson, David; Krischer, Jeffrey; Ding, Linna; Fervenza, Fernando C; Fessler, Barri J; Hoffman, Gary S; Ikle, David; Kallenberg, Cees GM; Langford, Carol A; Mueller, Mark; Seo, Philip; St.Clair, E William; Spiera, Robert; Tchao, Nadia; Ytterberg, Steven R; Gu, Yi-Zhong; Snyder, Ronald D; Merkel, Peter A

    2011-01-01

    Objective To identify biomarkers that distinguish between active ANCA-associated vasculitis (AAV) and remission in a manner superior or complementary to established markers of systemic inflammation. Methods Markers of vascular injury and angiogenesis were measured before and after treatment in a large clinical trial in AAV. 163 subjects enrolled in the Rituximab in ANCA-Associated Vasculitis (RAVE) trial were studied. Serum levels of E-selectin, ICAM-3, MMP1, MMP3, MMP9, P-selectin, thrombomodulin, and VEGF were measured at study screening (time of active disease) and at month 6. ESR and CRP levels had been measured at the time of the clinical visit. The primary outcome was the difference in marker level between screening and month 6 among patients in remission (BVAS/WG score of 0) at month 6. Results All subjects had severe active vasculitis (mean BVAS/WG score 8.6 +/− 3.2 SD) at screening. Among the 123 subjects clinically in remission at month 6, levels of all markers except E-selectin showed significant declines. MMP3 levels were also higher among the 23 subjects with active disease at month 6 than among the 123 subjects in remission. MMP3 levels correlated weakly with ESR and CRP. Conclusion Many markers of vascular injury and angiogenesis are elevated in severe active AAV and decline with treatment, but MMP3 appears to distinguish active AAV from remission better than the other markers studied. Further study of MMP3 is warranted to determine its clinical utility in combination with conventional markers of inflammation and ANCA titers. PMID:21953143

  9. Usefulness of peripheral vascular function to predict functional health status in patients with Fontan circulation.

    Goldstein, Bryan H; Golbus, Jessica R; Sandelin, Angela M; Warnke, Nicole; Gooding, Lindsay; King, Karen K; Donohue, Janet E; Gurney, James G; Goldberg, Caren S; Rocchini, Albert P; Charpie, John R

    2011-08-01

    After the Fontan operation, patients are at a substantial risk of the development of impaired functional health status. Few early markers of suboptimal outcomes have been identified. We sought to assess the association between peripheral vascular function and functional health status in Fontan-palliated patients. Asymptomatic Fontan patients (n = 51) and age- and gender-matched healthy controls (n = 22) underwent endothelial pulse amplitude testing using a noninvasive fingertip peripheral arterial tonometry (PAT) device. Raw data were transformed into the PAT ratio, an established marker of vascular function. Cardiopulmonary exercise testing was performed using the Bruce protocol. In the Fontan cohort, 94% of patients were New York Heart Association functional class I and 88% had a B-type natriuretic peptide level of interquartile range 1.96 to 4.13 vs median 1.86, interquartile range 1.14 to 2.79, p = 0.03). The PAT ratio, a measure of reactive hyperemia, was lower in Fontan patients (median 0.17, interquartile range -0.04 to 0.44, vs median 0.50, interquartile range 0.27 to 0.74, p = 0.002). The key parameters of exercise performance, including peak oxygen consumption (median 28.8 ml/kg/min, interquartile range 25.6 to 33.2 vs median 45.5 ml/kg/min, interquartile range 41.7 to 49.9, p interquartile range 150 to 246 vs median 330, interquartile range 209 to 402 W, p <0.0001), were lower in Fontan patients than in the controls. The PAT ratio correlated with the peak oxygen consumption (r = 0.28, p = 0.02) and peak work (r = 0.26, p = 0.03). In conclusion, in an asymptomatic Fontan population, there is evidence of reduced basal peripheral arterial tone and vasodilator response, suggesting dysfunction of the endothelium-derived nitric oxide pathway. Vasodilator function appears to correlate with exercise performance. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Molecular Characterization of the Interactions between Vascular Selectins and Glycoprotein Ligands on Human Hematopoietic Stem/Progenitor Cells

    Abu Samra, Dina Bashir Kamil

    2016-01-01

    The first objective was to fill the knowledge gap in the in vitro characterization of the mechanisms used by selectins to mediate the initial step in the HSPCs homing by developing a real time immunoprecipitation-based assay on a surface plasmon resonance chip. This novel assay bypass the difficulties of purifying ligands, enables the use of natively glycosylated forms of selectin ligands from any model cell of interest and study its binding affinities under flow. We provide the first comprehensive quantitative binding kinetics of two well-documented ligands, CD44 and PSGL-1, with E-selectin. Both ligands bind monomeric E-selectin transiently with fast on- and off-rates while they bind dimeric E-selectin with remarkably slow on- and off-rates with the on-rate, but not the off-rate, is dependent on salt concentration. Thus, suggest a mechanism through which monomeric selectins mediate initial fast-on and -off binding to capture the circulating cells out of shear-flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to slow rolling significantly. The second objective is to fully identify and characterize E/P-selectin ligand candidates expressed on CD34+ HSPCs which cause enhanced migration after intravenous transplantation compared to their CD34- counterparts. CD34 is widely recognized marker of human HSPCs but its natural ligand and function on these cells remain elusive. Proteomics identified CD34 as an E-selL candidate on human HSPCs, whose binding to E-selectin was confirmed using some static and flow-based assays. E-selectin binds to CD34 with an affinity comparable to the well-described E-selLs CD44/HCELL and PSGL-1. CD34 knockdown resulted in faster-rolling velocities compared to control cells especially at and above three dyne/cm2. CD34 is the first selectin ligand since PSGL-1 reported to bind E-/P-/L-selectins and likely plays a key role in directing the migration of human HSPCs to the bone marrow.

  11. Clinical significance of circulating vascular cell adhesion molecule-1 to white matter disintegrity in Alzheimer's dementia.

    Huang, Chi-Wei; Tsai, Meng-Han; Chen, Nai-Ching; Chen, Wei-Hsi; Lu, Yan-Ting; Lui, Chun-Chung; Chang, Ya-Ting; Chang, Wen-Neng; Chang, Alice Y W; Chang, Chiung-Chih

    2015-11-25

    Endothelial dysfunction leads to worse cognitive performance in Alzheimer's dementia (AD). While both cerebrovascular risk factors and endothelial dysfunction lead to activation of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin, it is not known whether these biomarkers extend the diagnostic repertoire in reflecting intracerebral structural damage or cognitive performance. A total of 110 AD patients and 50 age-matched controls were enrolled. Plasma levels of VCAM-1, ICAM-1 and E-selectin were measured and correlated with the cognitive performance, white matter macro-structural changes, and major tract-specific fractional anisotropy quantification. The AD patients were further stratified by clinical dementia rating score (mild dementia, n=60; moderate-to-severe dementia, n=50). Compared with the controls, plasma levels of VCAM-1 (p< 0.001), ICAM-1 (p=0.028) and E-selectin (p=0.016) were significantly higher in the patients, but only VCAM-1 levels significantly reflected the severity of dementia (p< 0.001). In addition, only VCAM-1 levels showed an association with macro- and micro- white matter changes especially in the superior longitudinal fasciculus (p< 0.001), posterior thalamic radiation (p=0.002), stria terminalis (p=0.002) and corpus callosum (p=0.009), and were independent of, age and cortical volume. These tracts show significant association with MMSE, short term memory and visuospatial function. Meanwhile, while VCAM-1 level correlated significantly with short-term memory (p=0.026) and drawing (p=0.025) scores in the AD patients after adjusting for age and education, the significance disappeared after adjusting for global FA. Endothelial activation, especially VCAM-1, was of clinical significance in AD that reflects macro- and micro-structural changes and poor short term memory and visuospatial function.

  12. FLAIR vascular hyperintensities and dynamic 4D angiograms for the estimation of collateral blood flow in posterior circulation occlusion

    Foerster, Alex; Wenz, Holger; Kerl, Hans Ulrich; Al-Zghloul, Mansour; Habich, Sonia; Groden, Christoph

    2014-01-01

    The objectives of this paper are to assess collateral blood flow in posterior circulation occlusion by MRI-based approaches (fluid-attenuated inversion recovery (FLAIR) vascular hyperintensities (FVHs), collateralization on dynamic 4D angiograms) and investigate its relation to ischemic lesion size and growth. In 28 patients with posterior cerebral artery (PCA) and 10 patients with basilar artery (BA) occlusion, MRI findings were analyzed, with emphasis on distal FVH and collateralization on dynamic 4D angiograms. In PCA occlusion, distal FVH was observed in 18/29 (62.1 %), in BA occlusion, in 8/10 (80 %) cases. Collateralization on dynamic 4D angiograms was graded 1 in 8 (27.6 %) patients, 2 in 1 (3.4 %) patient, 3 in 12 (41.4 %) patients, and 4 in 8 (27.6 %) patients with PCA occlusion and 0 in 1 (10 %) patient, 2 in 3 (30 %) patients, 3 in 1 (10 %) patient, and 4 in 5 (50 %) patients with BA occlusion. FVH grade showed neither correlation with initial or follow-up diffusion-weighted image (DWI) lesion size nor DWI-perfusion-weighted imaging (PWI) mismatch ratio. Collateralization on dynamic 4D angiograms correlated inversely with initial DWI lesion size and moderately with the DWI-(PWI) mismatch ratio. The combination of distal FVH and collateralization grade on dynamic 4D angiograms correlated inversely with initial as well as follow-up DWI lesion size and highly with the DWI-PWI mismatch ratio. In posterior circulation occlusion, FVH is a frequent finding, but its prognostic value is limited. Dynamic 4D angiograms are advantageous to examine and graduate collateral blood flow. The combination of both parameters results in an improved characterization of collateral blood flow and might have prognostic relevance. (orig.)

  13. Autoantigens targeted in scleroderma patients with vascular disease are enriched in endothelial lineage cells

    McMahan, Zsuzsanna H.; Cottrell, Tricia R.; Wigley, Fredrick M.; Antiochos, Brendan; Zambidis, Elias T.; Park, Tea Soon; Halushka, Marc K.; Gutierrez-Alamillo, Laura; Cimbro, Raffaello; Rosen, Antony; Casciola-Rosen, Livia

    2016-01-01

    Objective Scleroderma patients with autoantibodies to centromere proteins (CENPs) and/or interferon-inducible protein 16 (IFI16) are at increased risk of severe vascular complications. We set out to define whether these autoantigens are enriched in cells of the vasculature. Methods Successive stages of embryoid bodies (EBs) as well as vascular progenitors were used to evaluate the expression of scleroderma autoantigens IFI16 and CENP by immunoblotting. CD31 was included to mark early blood vessels. IFI16 and CD31 expression were defined in skin paraffin sections from scleroderma patients and from healthy controls. IFI16 expression was determined by flow cytometry in circulating endothelial cells (CECs) and circulating progenitor cells (CPCs). Results Expression of CENP-A, IFI16 and CD31 was enriched in EBs at days 10 and 12 of differentiation, and particularly in cultures enriched in vascular progenitors (IFI16, CD31, CENPs A and-B). This pattern was distinct from that of comparator autoantigens. Immunohistochemical staining of skin paraffin sections showed enrichment of IFI16 in CD31-positive vascular endothelial cells in biopsies from scleroderma patients and normal controls. Flow cytometry analysis revealed IFI16 expression in CPCs, but minimal expression in CECs. Conclusion Expression of scleroderma autoantigens IFI16 and CENPs, which are associated with severe vascular disease, is increased in vascular progenitors and mature endothelial cells. High level, lineage-enriched expression of autoantigens may explain the striking association between clinical phenotypes and the immune targeting of specific autoantigens. PMID:27159521

  14. Black Tea Increases Circulating Endothelial Progenitor Cells and Improves Flow Mediated Dilatation Counteracting Deleterious Effects from a Fat Load in Hypertensive Patients: A Randomized Controlled Study

    Grassi, Davide; Draijer, Richard; Schalkwijk, Casper; Desideri, Giovambattista; D’Angeli, Anatolia; Francavilla, Sandro; Mulder, Theo; Ferri, Claudio

    2016-01-01

    (1) Background: Endothelial dysfunction predicts cardiovascular events. Circulating angiogenic cells (CACs) maintain and repair the endothelium regulating its function. Tea flavonoids reduce cardiovascular risk. We investigated the effects of black tea on the number of CACs and on flow-mediated dilation (FMD) before and after an oral fat in hypertensives; (2) Methods: In a randomized, double-blind, controlled, cross-over study, 19 patients were assigned to black tea (150 mg polyphenols) or a placebo twice a day for eight days. Measurements were obtained in a fasted state and after consuming whipping cream, and FMD was measured at baseline and after consumption of the products; (3) Results: Compared with the placebo, black tea ingestion increased functionally active CACs (36 ± 22 vs. 56 ± 21 cells per high-power field; p = 0.006) and FMD (5.0% ± 0.3% vs. 6.6% ± 0.3%, p FMD 1, 2, 3, and 4 h after consumption, with maximal response 2 h after intake (p FMD, while tea consumption counteracted FMD impairment (p < 0.0001); (4) Conclusions: We demonstrated the vascular protective properties of black tea by increasing the number of CACs and preventing endothelial dysfunction induced by acute oral fat load in hypertensive patients. Considering that tea is the most consumed beverage after water, our findings are of clinical relevance and interest. PMID:27854314

  15. Black Tea Increases Circulating Endothelial Progenitor Cells and Improves Flow Mediated Dilatation Counteracting Deleterious Effects from a Fat Load in Hypertensive Patients: A Randomized Controlled Study

    Davide Grassi

    2016-11-01

    Full Text Available (1 Background: Endothelial dysfunction predicts cardiovascular events. Circulating angiogenic cells (CACs maintain and repair the endothelium regulating its function. Tea flavonoids reduce cardiovascular risk. We investigated the effects of black tea on the number of CACs and on flow-mediated dilation (FMD before and after an oral fat in hypertensives; (2 Methods: In a randomized, double-blind, controlled, cross-over study, 19 patients were assigned to black tea (150 mg polyphenols or a placebo twice a day for eight days. Measurements were obtained in a fasted state and after consuming whipping cream, and FMD was measured at baseline and after consumption of the products; (3 Results: Compared with the placebo, black tea ingestion increased functionally active CACs (36 ± 22 vs. 56 ± 21 cells per high-power field; p = 0.006 and FMD (5.0% ± 0.3% vs. 6.6% ± 0.3%, p < 0.0001. Tea further increased FMD 1, 2, 3, and 4 h after consumption, with maximal response 2 h after intake (p < 0.0001. Fat challenge decreased FMD, while tea consumption counteracted FMD impairment (p < 0.0001; (4 Conclusions: We demonstrated the vascular protective properties of black tea by increasing the number of CACs and preventing endothelial dysfunction induced by acute oral fat load in hypertensive patients. Considering that tea is the most consumed beverage after water, our findings are of clinical relevance and interest.

  16. IGF-1 Receptor Expression on Circulating Osteoblast Progenitor Cells Predicts Tissue-Based Bone Formation Rate and Response to Teriparatide in Premenopausal Women With Idiopathic Osteoporosis.

    Cohen, Adi; Kousteni, Stavroula; Bisikirska, Brygida; Shah, Jayesh G; Manavalan, J Sanil; Recker, Robert R; Lappe, Joan; Dempster, David W; Zhou, Hua; McMahon, Donald J; Bucovsky, Mariana; Kamanda-Kosseh, Mafo; Stubby, Julie; Shane, Elizabeth

    2017-06-01

    We have previously reported that premenopausal women with idiopathic osteoporosis (IOP) have profound microarchitectural deficiencies and heterogeneous bone remodeling. Those with the lowest bone formation rate have higher baseline serum insulin-like growth factor-1 (IGF-1) levels and less robust response to teriparatide. Because IGF-1 stimulates bone formation and is critical for teriparatide action on osteoblasts, these findings suggest a state of IGF-1 resistance in some IOP women. To further investigate the hypothesis that osteoblast and IGF-1-related mechanisms mediate differential responsiveness to teriparatide in IOP, we studied circulating osteoblast progenitor (COP) cells and their IGF-1 receptor (IGF-1R) expression. In premenopausal women with IOP, peripheral blood mononuclear cells (PBMCs) were obtained at baseline (n = 25) and over 24 months of teriparatide treatment (n = 11). Flow cytometry was used to identify and quantify COPs (non-hematopoetic lineage cells expressing osteocalcin and RUNX2) and to quantify IGF-1R expression levels. At baseline, both the percent of PBMCs that were COPs (%COP) and COP cell-surface IGF-1R expression correlated directly with several histomorphometric indices of bone formation in tetracycline-labeled transiliac biopsies. In treated subjects, both %COP and IGF-1R expression increased promptly after teriparatide, returning toward baseline by 18 months. Although neither baseline %COP nor increase in %COP after 3 months predicted the bone mineral density (BMD) response to teriparatide, the percent increase in IGF-1R expression on COPs at 3 months correlated directly with the BMD response to teriparatide. Additionally, lower IGF-1R expression after teriparatide was associated with higher body fat, suggesting links between teriparatide resistance, body composition, and the GH/IGF-1 axis. In conclusion, these assays may be useful to characterize bone remodeling noninvasively and may serve to predict early response to

  17. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  18. Evaluation of blood flow distribution asymmetry and vascular geometry in patients with Fontan circulation using 4-D flow MRI

    Jarvis, Kelly; Markl, Michael; Schnell, Susanne; Barker, Alex J.; Garcia, Julio; Chowdhary, Varun; Carr, James; Lorenz, Ramona; Rose, Michael; Robinson, Joshua D.; Rigsby, Cynthia K.

    2016-01-01

    Asymmetrical caval to pulmonary blood flow is suspected to cause complications in patients with Fontan circulation. The aim of this study was to test the feasibility of 4-D flow MRI for characterizing the relationship between 3-D blood flow distribution and vascular geometry. We hypothesized that both flow distribution and geometry can be calculated with low interobserver variability and will detect a direct relationship between flow distribution and Fontan geometry. Four-dimensional flow MRI was acquired in 10 Fontan patients (age: 16 ± 4 years [mean ± standard deviation], range: 9-21 years). The Fontan connection was isolated by 3-D segmentation to evaluate flow distribution from the inferior vena cava (IVC) and superior vena cava (SVC) to the left and right pulmonary arteries (LPA, RPA) and to characterize geometry (cross-sectional area, caval offset, vessel angle). Flow distribution results indicated SVC flow tended toward the RPA while IVC flow was more evenly distributed (SVC to RPA: 78% ± 28 [9-100], IVC to LPA: 54% ± 28 [4-98]). There was a significant relationship between pulmonary artery cross-sectional area and flow distribution (IVC to RPA: R"2=0.50, P=0.02; SVC to LPA: R"2=0.81, P=0.0004). Good agreement was found between observers and for flow distribution when compared to net flow values. Four-dimensional flow MRI was able to detect relationships between flow distribution and vessel geometry. Future studies are warranted to investigate the potential of patient specific hemodynamic analysis to improve diagnostic capability. (orig.)

  19. Evaluation of blood flow distribution asymmetry and vascular geometry in patients with Fontan circulation using 4-D flow MRI

    Jarvis, Kelly; Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States); Schnell, Susanne; Barker, Alex J.; Garcia, Julio; Chowdhary, Varun; Carr, James [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Lorenz, Ramona [University Medical Center Freiburg, Department of Radiology, Freiburg (Germany); Rose, Michael [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Robinson, Joshua D. [Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert H. Lurie Children' s Hospital of Chicago, Division of Cardiology, Chicago, IL (United States); Rigsby, Cynthia K. [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States)

    2016-10-15

    Asymmetrical caval to pulmonary blood flow is suspected to cause complications in patients with Fontan circulation. The aim of this study was to test the feasibility of 4-D flow MRI for characterizing the relationship between 3-D blood flow distribution and vascular geometry. We hypothesized that both flow distribution and geometry can be calculated with low interobserver variability and will detect a direct relationship between flow distribution and Fontan geometry. Four-dimensional flow MRI was acquired in 10 Fontan patients (age: 16 ± 4 years [mean ± standard deviation], range: 9-21 years). The Fontan connection was isolated by 3-D segmentation to evaluate flow distribution from the inferior vena cava (IVC) and superior vena cava (SVC) to the left and right pulmonary arteries (LPA, RPA) and to characterize geometry (cross-sectional area, caval offset, vessel angle). Flow distribution results indicated SVC flow tended toward the RPA while IVC flow was more evenly distributed (SVC to RPA: 78% ± 28 [9-100], IVC to LPA: 54% ± 28 [4-98]). There was a significant relationship between pulmonary artery cross-sectional area and flow distribution (IVC to RPA: R{sup 2}=0.50, P=0.02; SVC to LPA: R{sup 2}=0.81, P=0.0004). Good agreement was found between observers and for flow distribution when compared to net flow values. Four-dimensional flow MRI was able to detect relationships between flow distribution and vessel geometry. Future studies are warranted to investigate the potential of patient specific hemodynamic analysis to improve diagnostic capability. (orig.)

  20. Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature.

    Psaltis, Peter J; Puranik, Amrutesh S; Spoon, Daniel B; Chue, Colin D; Hoffman, Scott J; Witt, Tyra A; Delacroix, Sinny; Kleppe, Laurel S; Mueske, Cheryl S; Pan, Shuchong; Gulati, Rajiv; Simari, Robert D

    2014-07-18

    Macrophages regulate blood vessel structure and function in health and disease. The origins of tissue macrophages are diverse, with evidence for local production and circulatory renewal. We identified a vascular adventitial population containing macrophage progenitor cells and investigated their origins and fate. Single-cell disaggregates from adult C57BL/6 mice were prepared from different tissues and tested for their capacity to form hematopoietic colony-forming units. Aorta showed a unique predilection for generating macrophage colony-forming units. Aortic macrophage colony-forming unit progenitors coexpressed stem cell antigen-1 and CD45 and were adventitially located, where they were the predominant source of proliferating cells in the aortic wall. Aortic Sca-1(+)CD45(+) cells were transcriptionally and phenotypically distinct from neighboring cells lacking stem cell antigen-1 or CD45 and contained a proliferative (Ki67(+)) Lin(-)c-Kit(+)CD135(-)CD115(+)CX3CR1(+)Ly6C(+)CD11b(-) subpopulation, consistent with the immunophenotypic profile of macrophage progenitors. Adoptive transfer studies revealed that Sca-1(+)CD45(+) adventitial macrophage progenitor cells were not replenished via the circulation from bone marrow or spleen, nor was their prevalence diminished by depletion of monocytes or macrophages by liposomal clodronate treatment or genetic deficiency of macrophage colony-stimulating factor. Rather adventitial macrophage progenitor cells were upregulated in hyperlipidemic ApoE(-/-) and LDL-R(-/-) mice, with adventitial transfer experiments demonstrating their durable contribution to macrophage progeny particularly in the adventitia, and to a lesser extent the atheroma, of atherosclerotic carotid arteries. The discovery and characterization of resident vascular adventitial macrophage progenitor cells provides new insight into adventitial biology and its participation in atherosclerosis and provokes consideration of the broader existence of local macrophage

  1. Circulating peroxiredoxin 4 and type 2 diabetes risk : the Prevention of Renal and Vascular Endstage Disease (PREVEND) study

    Abbasi, Ali; Corpeleijn, Eva; Gansevoort, Ron T; Gans, Rijk O B; Struck, Joachim; Schulte, Janin; Hillege, Hans L; van der Harst, Pim van der; Stolk, Ronald P; Navis, Gerarda; Bakker, Stephan J L

    2014-01-01

    AIMS/HYPOTHESIS: Oxidative stress plays a key role in the development of type 2 diabetes mellitus. We previously showed that the circulating antioxidant peroxiredoxin 4 (Prx4) is associated with cardiometabolic risk factors. We aimed to evaluate the association of Prx4 with type 2 diabetes risk in

  2. Endothelial progenitor cell subsets and preeclampsia: Findings and controversies

    Armin Attar

    2017-10-01

    Full Text Available Vascular remodeling is an essential component of gestation. Endothelial progenitor cells (EPCs play an important role in the regulation of vascular homeostasis. The results of studies measuring the number of EPCs in normal pregnancies and in preeclampsia have been highly controversial or even contradictory because of some variations in technical issues and different methodologies enumerating three distinct subsets of EPCs: circulating angiogenic cells (CAC, colony forming unit endothelial cells (CFU-ECs, and endothelial colony-forming cells (ECFCs. In general, most studies have shown an increase in the number of CACs in the maternal circulation with a progression in the gestational age in normal pregnancies, while functional capacities measured by CFU-ECs and ECFCs remain intact. In the case of preeclampsia, mobilization of CACs and ECFCs occurs in the peripheral blood of pregnant women, but the functional capacities shown by culture of the derived colony-forming assays (CFU-EC and ECFC assays are altered. Furthermore, the number of all EPC subsets will be reduced in umbilical cord blood in the case of preeclampsia. As EPCs play an important role in the homeostasis of vascular networks, the difference in their frequency and functionality in normal pregnancies and those with preeclampsia can be expected. In this review, there was an attempt to provide a justification for these controversies.

  3. Acute response of circulating vascular regulating microRNAs during and after high-intensity and high-volume cycling in children

    Yvonne eKilian

    2016-03-01

    Full Text Available Aim: The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126 and the VEGF mRNA following an acute bout of HIIT and HVT in children. Methods: Twelve healthy competitive young male cyclists (14.4 ± 0.8 yrs; 57.9 ± 9.4 ml·min-1·kg-1 peak oxygen uptake performed one session of high intensity 4x4 min intervals (HIIT at 90-95% peak power output, each interval separated by 3 min of active recovery, and one high volume session (HVT consisting of a constant load exercise for 90 min at 60% peak power output. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min, and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126 and VEGF mRNA.Results: HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre values, whereas HIIT showed no significant influence on the miRNAs compared to pre values. VEGF mRNA significantly increased during and after HIIT (d1, 30`, 60`, 180` and HVT (d3, 0`, 60`. Conclusion: Results of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126 in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues.

  4. Circulating CD4+CD28null T Cells May Increase the Risk of an Atherosclerotic Vascular Event Shortly after Kidney Transplantation

    Michiel G. H. Betjes

    2013-01-01

    Full Text Available Proinflammatory CD4+ T cells without the costimulatory molecule CD28 (CD4+CD28null T cells are expanded in patients with end-stage renal disease (ESRD and associated with atherosclerotic vascular events (AVE. In a prospective study, the number of circulating CD4+CD28null T cells was established in 295 ESRD patients prior to receiving a kidney allograft. Within the first year after transplantation, an AVE occurred in 20 patients. Univariate analysis showed that besides a history of cardiovascular disease (CVDpos, HR 8.1, , age (HR 1.04, , dyslipidaemia (HR 8.8, , and the % of CD4+CD28null T cells (HR 1.04 per % increase, 95% CI 1.00–1.09, were significantly associated with the occurrence of a posttransplantation AVE. In a multivariate analysis, only CVDpos remained a significant risk factor with a significant and positive interaction between the terms CVDpos and the % of CD4+CD28null T cells (HR 1.05, 95% CI 1.03–1.11, . Within the CVDpos group, the incidence of an AVE was 13% in the lowest tertile compared to 25% in the highest tertile of % of CD4+CD28null T cells. In conclusion, the presence of circulating CD4+CD28null T cells is associated with an increased risk for a cardiovascular event shortly after kidney transplantation.

  5. Circulating CD34-positive cells, glomerular filtration rate and triglycerides in relation to hypertension.

    Shimizu, Yuji; Sato, Shimpei; Koyamatsu, Jun; Yamanashi, Hirotomo; Nagayoshi, Mako; Kadota, Koichiro; Maeda, Takahiro

    2015-11-01

    Serum triglycerides have been reported to be independently associated with the development of chronic kidney disease (CKD), which is known to play a role in vascular disturbance. On the other hand, circulating CD34-positve cells, including endothelial progenitor cells, are reported to contribute to vascular repair. However, no studies have reported on the correlation between triglycerides and the number of CD34-positive cells. Since hypertension is well known factor for vascular impairment, the degree of correlation between serum triglycerides and circulating CD34-positve cells should account for hypertension status. We conducted a cross-sectional study of 274 elderly Japanese men aged ≥ 60 years (range 60-79 years) undergoing general health checkups. Multiple linear regression analysis of non-hypertensive subjects adjusting for classical cardiovascular risk factors showed that although triglyceride levels (1SD increments; 64 mg/dL) did not significantly correlate with glomerular filtration rate (GFR) (β = -2.06, p = 0.163), a significant positive correlation was seen between triglycerides and the number of circulating CD34-positive cells (β = 0.50, p = 0.004). In hypertensive subjects, a significant inverse correlation between triglycerides and GFR was observed (β = -2.66, p = 0.035), whereas no significant correlation between triglycerides and the number of circulating CD34-positive cells was noted (β = -0.004, p = 0.974). Since endothelial progenitor cells (CD34-positive cells) have been reported to contribute to vascular repair, our results indicate that in non-hypertensive subjects, triglycerides may stimulate an increase in circulating CD34-positive cells (vascular repair) by inducing vascular disturbance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Progenitor Epithelium

    Marty-Santos, Leilani

    2015-01-01

    Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell–cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages. PMID:26216134

  7. Comparative analysis of circulating endothelial progenitor cells in age-related macular degeneration patients using automated rare cell analysis (ARCA and fluorescence activated cell sorting (FACS.

    Emil Anthony T Say

    Full Text Available BACKGROUND: Patients with age-related macular degeneration (ARMD begin with non-neovascular (NNV phenotypes usually associated with good vision. Approximately 20% of NNV-ARMD patients will convert to vision debilitating neovascular (NV ARMD, but precise timing of this event is unknown. Developing a clinical test predicting impending conversion to NV-ARMD is necessary to prevent vision loss. Endothelial progenitor cells (EPCs, defined as CD34(+VEGR2(+ using traditional fluorescence activated cell sorting (FACS, are rare cell populations known to be elevated in patients with NV-ARMD compared to NNV-ARMD. FACS has high inter-observer variability and subjectivity when measuring rare cell populations precluding development into a diagnostic test. We hypothesized that automated rare cell analysis (ARCA, a validated and FDA-approved technology for reproducible rare cell identification, can enumerate EPCs in ARMD patients more reliably. This pilot study serves as the first step in developing methods for reproducibly predicting ARMD phenotype conversion. METHODS: We obtained peripheral venous blood samples in 23 subjects with NNV-ARMD or treatment naïve NV-ARMD. Strict criteria were used to exclude subjects with known angiogenic diseases to minimize confounding results. Blood samples were analyzed in masked fashion in two separate laboratories. EPCs were independently enumerated using ARCA and FACS within 24 hours of blood sample collection, and p<0.2 was considered indicative of a trend for this proof of concept study, while statistical significance was established at 0.05. RESULTS: We measured levels of CD34(+VEGFR2(+ EPCs suggestive of a trend with higher values in patients with NV compared to NNV-ARMD (p = 0.17 using ARCA. Interestingly, CD34(+VEGR2(+ EPC analysis using FACS did not produce similar results (p = 0.94. CONCLUSIONS: CD34(+VEGR2(+ may have predictive value for EPC enumeration in future ARCA studies. EPC measurements in a small sample

  8. Comparative analysis of circulating endothelial progenitor cells in age-related macular degeneration patients using automated rare cell analysis (ARCA) and fluorescence activated cell sorting (FACS).

    Say, Emil Anthony T; Melamud, Alex; Esserman, Denise Ann; Povsic, Thomas J; Chavala, Sai H

    2013-01-01

    Patients with age-related macular degeneration (ARMD) begin with non-neovascular (NNV) phenotypes usually associated with good vision. Approximately 20% of NNV-ARMD patients will convert to vision debilitating neovascular (NV) ARMD, but precise timing of this event is unknown. Developing a clinical test predicting impending conversion to NV-ARMD is necessary to prevent vision loss. Endothelial progenitor cells (EPCs), defined as CD34(+)VEGR2(+) using traditional fluorescence activated cell sorting (FACS), are rare cell populations known to be elevated in patients with NV-ARMD compared to NNV-ARMD. FACS has high inter-observer variability and subjectivity when measuring rare cell populations precluding development into a diagnostic test. We hypothesized that automated rare cell analysis (ARCA), a validated and FDA-approved technology for reproducible rare cell identification, can enumerate EPCs in ARMD patients more reliably. This pilot study serves as the first step in developing methods for reproducibly predicting ARMD phenotype conversion. We obtained peripheral venous blood samples in 23 subjects with NNV-ARMD or treatment naïve NV-ARMD. Strict criteria were used to exclude subjects with known angiogenic diseases to minimize confounding results. Blood samples were analyzed in masked fashion in two separate laboratories. EPCs were independently enumerated using ARCA and FACS within 24 hours of blood sample collection, and ptrend for this proof of concept study, while statistical significance was established at 0.05. We measured levels of CD34(+)VEGFR2(+) EPCs suggestive of a trend with higher values in patients with NV compared to NNV-ARMD (p = 0.17) using ARCA. Interestingly, CD34(+)VEGR2(+) EPC analysis using FACS did not produce similar results (p = 0.94). CD34(+)VEGR2(+) may have predictive value for EPC enumeration in future ARCA studies. EPC measurements in a small sample size were suggestive of a trend in ARMD using ARCA but not FACS. ARCA could be a

  9. Evidence for possible biological advantages of the newly emerging HIV-1 circulating recombinant form from Malaysia - CRF33_01B in comparison to its progenitors - CRF01_AE and subtype B.

    Lau, Katherine A; Wang, Bin; Miranda-Saksena, Monica; Boadle, Ross; Kamarulzaman, Adeeba; Ng, Kee-Peng; Saksena, Nitin K

    2010-04-01

    In Malaysia, co-circulation of CRF01_AE and subtype B has resulted in the emergence of the second generation derivative; CRF33_01B in approximately 20% of its HIV-1 infected individuals. Our objective was to identify possible biological advantages that CRF33_01B possesses over its progenitors. Biological and molecular comparisons of CRF33_01B against its parental subtypes clearly show that CRF33_01B replicated better in activated whole peripheral blood mononuclear cells (PBMCs) and CD4+ T-lymphocytes, but not monocyte-derived macrophages (MDMs). Also, its acquired fitness was greater than CRF01_AE but not subtype B. Moreover, CRF33_01B has higher rate of apoptotic cell death and syncytia induction compared to subtype B. These adaptive and survival abilities could have been acquired by CRF33_01B due to the incorporation of subtype B fragments into the gag-RT region of its full-length genome. Our studies confirm the previously held belief that HIV-1 strains may harbor enhanced biological fitness upon recombination. We therefore estimate a possible gradual replacement of the current predominance of CRF01_AE, as well as wider dissemination of CRF33_01B, together with the identification of other new CRF01_AE/B inter-subtype recombinants in Malaysia.

  10. The CMV early enhancer/chicken beta actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors

    Alexopoulou, Annika N; Couchman, John R; Whiteford, James

    2008-01-01

    BACKGROUND: Mouse embryonic stem cells cultured in vitro have the ability to differentiate into cells of the three germ layers as well as germ cells. The differentiation mimics early developmental events, including vasculogenesis and early angiogenesis and several differentiation systems are being...... used to identify factors that are important during the formation of the vascular system. Embryonic stem cells are difficult to transfect, while downregulation of promoter activity upon selection of stable transfectants has been reported, rendering the study of proteins by overexpression difficult....... RESULTS: CCE mouse embryonic stem cells were differentiated on collagen type IV for 4-5 days, Flk1+ mesodermal cells were sorted and replated either on collagen type IV in the presence of VEGFA to give rise to endothelial cells and smooth muscle cells or in collagen type I gels for the formation...

  11. Circulating Vascular Basement Membrane Fragments are Associated with the Diameter of the Abdominal Aorta and Their Expression Pattern is Altered in AAA Tissue.

    Holsti, Mari; Wanhainen, Anders; Lundin, Christina; Björck, Martin; Tegler, Gustaf; Svensson, Johan; Sund, Malin

    2018-04-12

    Abdominal aortic aneurysm (AAA) is characterised by enhanced proteolytic activity, and extracellular matrix (ECM) remodelling in the vascular wall. Type IV and XVIII collagen/endostatin are structural proteins in vascular basement membrane (VBM), a specialised ECM structure. Here the association between plasma levels of these collagens with the aortic diameter and expansion rate is studied, and their expression in aortic tissue characterised. This was a retrospective population based cohort study. Type IV and XVIII collagen/endostatin were analysed in plasma by ELISA assay in 615 men, divided into three groups based on the aortic diameter: 1) normal aorta ≤ 25 mm, 2) sub-aneurysmal aorta (SAA) 26-29 mm, and 3) AAA ≥ 30 mm. Follow up data were available for 159 men. The association between collagen levels and aortic diameter at baseline, and with the expansion rate at follow up were analysed in ordinal logistic regression and linear regression models, controlling for common confounding factors. Tissue expression of the collagens was analysed in normal aorta (n = 6) and AAA (n = 6) by immunofluorescence. Plasma levels of type XVIII collagen/endostatin (136 ng/mL [SD 29] in individuals with a normal aorta diameter, 154 ng/ml [SD 45] in SAA, and 162 ng/ml [SD 46] in AAA; p = .001) and type IV collagen (105 ng/mL [SD 42] normal aorta, 124 ng/ml [SD 46] SAA, and 127 ng/ml [SD 47] AAA; p = .037) were associated with a larger aortic diameter. A significant association was found between the baseline levels of type XVIII/endostatin and the aortic expansion rate (p = .035), but in the multivariable model, only the initial aortic diameter remained significantly associated with expansion (p = .005). Altered expression patterns of both collagens were observed in AAA tissue. Plasma levels of circulating type IV and XVIII collagen/endostatin increase with AAA diameter. The expression pattern of VBM proteins is altered in the aneurysm wall. Copyright

  12. LncRNA-AK131850 Sponges MiR-93-5p in Newborn and Mature Osteoclasts to Enhance the Secretion of Vascular Endothelial Growth Factor a Promoting Vasculogenesis of Endothelial Progenitor Cells

    Hongyu Quan

    2018-03-01

    Full Text Available Background/Aims: In the process of bone development and remodeling, the vasculature is regarded as the communicative network between the bone and neighboring tissues. Recently, it has been reported that the processes of angiogenesis and osteogenesis are coupled temporally and spatially. However, few studies reported the relationship and relevant mechanism between osteoclastogenesis and vasculogenesis. Methods: Arraystar Mouse lncRNA microarray V3.0 was firstly used to analyze the differentially expressed lncRNA genes in osteoclast different stages during osteoclastogenesis. Cell counting kit 8 (CCK-8 analysis, quantitative real-time polymerase chain reaction (qRT-PCR analysis, migration and tube formation assays were used to detect impact of osteoclast different stages on the proliferation, differentiation, migration and tube formation of endothelial progenitor cells (EPCs, respectively. Finally, transfection of AK131850 shRNA, miR-93-5p mimic and miR-93-5p inhibitor, qRT-PCR, western blotting, enzyme-linked immunosorbent assay (ELISA, fluorescence in situ hybridization (FISH and luciferase reporter assay were carried out to dissect molecular mechanisms. Results: In this study, we found that newborn OCs (N-OC and mature OCs (M-OC during osteoclastogenesis significantly promoted proliferation, differentiation, migration and tube formation of endothelial progenitor cells (EPCs. Through lncRNA microarray and GO&pathway analysis, we found that AK131850 and co-expressed gene, vascular endothelial growth factor a (VEGFa, were significantly up-regulated in N-OC and M-OC. After inhibition of AK131850 the promoting effect of N-OC and M-OC on EPCs was reversed. Furthermore, we found that AK131850 directly competed miR-93-5p in N-OC and M-OC through sponge, thereby increasing VEGFa transcription, expression and secretion through derepressing of miR-93-5p on VEGFa. Conclusion: Our results provided the first finding that lncRNA-AK131850 sponged miR-93-5p in

  13. Bone marrow endothelial progenitors augment atherosclerotic plaque regression in a mouse model of plasma lipid lowering

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Iida, Ryuji; Wang, Qilong; Zou, Ming-Hui; Barlic-Dicen, Jana

    2012-01-01

    The major event initiating atherosclerosis is hypercholesterolemia-induced disruption of vascular endothelium integrity. In settings of endothelial damage, endothelial progenitor cells (EPCs) are mobilized from bone marrow into circulation and home to sites of vascular injury where they aid endothelial regeneration. Given the beneficial effects of EPCs in vascular repair, we hypothesized that these cells play a pivotal role in atherosclerosis regression. We tested our hypothesis in the atherosclerosis-prone mouse model in which hypercholesterolemia, one of the main factors affecting EPC homeostasis, is reversible (Reversa mice). In these mice normalization of plasma lipids decreased atherosclerotic burden; however, plaque regression was incomplete. To explore whether endothelial progenitors contribute to atherosclerosis regression, bone marrow EPCs from a transgenic strain expressing green fluorescent protein under the control of endothelial cell-specific Tie2 promoter (Tie2-GFP+) were isolated. These cells were then adoptively transferred into atheroregressing Reversa recipients where they augmented plaque regression induced by reversal of hypercholesterolemia. Advanced plaque regression correlated with engraftment of Tie2-GFP+ EPCs into endothelium and resulted in an increase in atheroprotective nitric oxide and improved vascular relaxation. Similarly augmented plaque regression was also detected in regressing Reversa mice treated with the stem cell mobilizer AMD3100 which also mobilizes EPCs to peripheral blood. We conclude that correction of hypercholesterolemia in Reversa mice leads to partial plaque regression that can be augmented by AMD3100 treatment or by adoptive transfer of EPCs. This suggests that direct cell therapy or indirect progenitor cell mobilization therapy may be used in combination with statins to treat atherosclerosis. PMID:23081735

  14. Hypoxia, leukocytes, and the pulmonary circulation.

    Stenmark, Kurt R; Davie, Neil J; Reeves, John T; Frid, Maria G

    2005-02-01

    Data are rapidly accumulating in support of the idea that circulating monocytes and/or mononuclear fibrocytes are recruited to the pulmonary circulation of chronically hypoxic animals and that these cells play an important role in the pulmonary hypertensive process. Hypoxic induction of monocyte chemoattractant protein-1, stromal cell-derived factor-1, vascular endothelial growth factor-A, endothelin-1, and tumor growth factor-beta(1) in pulmonary vessel wall cells, either directly or indirectly via signals from hypoxic lung epithelial cells, may be a critical first step in the recruitment of circulating leukocytes to the pulmonary circulation. In addition, hypoxic stress appears to induce release of increased numbers of monocytic progenitor cells from the bone marrow, and these cells may have upregulated expression of receptors for the chemokines produced by the lung circulation, which thus facilitates their specific recruitment to the pulmonary site. Once present, macrophages/fibrocytes may exert paracrine effects on resident pulmonary vessel wall cells stimulating proliferation, phenotypic modulation, and migration of resident fibroblasts and smooth muscle cells. They may also contribute directly to the remodeling process through increased production of collagen and/or differentiation into myofibroblasts. In addition, they could play a critical role in initiating and/or supporting neovascularization of the pulmonary artery vasa vasorum. The expanded vasa network may then act as a conduit for further delivery of circulating mononuclear cells to the pulmonary arterial wall, creating a feedforward loop of pathological remodeling. Future studies will need to determine the mechanisms that selectively induce leukocyte/fibrocyte recruitment to the lung circulation under hypoxic conditions, their direct role in the remodeling process via production of extracellular matrix and/or differentiation into myofibroblasts, their impact on the phenotype of resident smooth muscle

  15. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release.

  16. The acute exposure effects of inhaled nickel nanoparticles on murine endothelial progenitor cells.

    Liberda, Eric N; Cuevas, Azita K; Qu, Qingshan; Chen, Lung Chi

    2014-08-01

    The discovery of endothelial progenitor cells (EPCs) may help to explain observed cardiovascular effects associated with inhaled nickel nanoparticle exposures, such as increases in vascular inflammation, generation of reactive oxygen species, altered vasomotor tone and potentiated atherosclerosis in murine species. Following an acute whole body inhalation exposure to 500 µg/m(3) of nickel nanoparticles for 5 h, bone marrow EPCs from C57BL/6 mice were isolated. EPCs were harvested for their RNA or used in a variety of assays including chemotaxis, tube formation and proliferation. Gene expression was assessed for important receptors involved in EPC mobilization and homing using RT-PCR methods. EPCs, circulating endothelial progenitor cells (CEPCs), circulating endothelial cells (CECs) and endothelial microparticles (EMPs) were quantified on a BD FACSCalibur to examine endothelial damage and repair associated with the exposure. Acute exposure to inhaled nickel nanoparticles significantly increased both bone marrow EPCs as well as their levels in circulation (CEPCs). CECs were significantly elevated indicating that endothelial damage occurred due to the exposure. There was no significant difference in EMPs between the two groups. Tube formation and chemotaxis, but not proliferation, of bone marrow EPCs was impaired in the nickel nanoparticle exposed group. These results coincided with a decrease in the mRNA of receptors involved in EPC mobilization and homing. These data provide new insight into how an acute nickel nanoparticle exposure to half of the current Occupational Safety & Health Administration (OSHA) permissible exposure limit may adversely affect EPCs and exacerbate cardiovascular disease states.

  17. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-01-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34 + KDR + cells) or early (CD34 + CD133 + KDR + cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2′,7′-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health.

  18. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  19. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms.

    Stenmark, Kurt R; Fagan, Karen A; Frid, Maria G

    2006-09-29

    Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.

  20. Bone marrow endothelial progenitors in atherosclerotic plaque resolution

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Barlic-Dicen, Jana

    2013-01-01

    Atherosclerosis is a major cause of morbidity and mortality in the United States. Persistently elevated circulating low-density lipoprotein, or hypercholesterolemia, and deposition of low-density lipoprotein in the vascular wall are the main inducers of atherosclerosis, which manifests itself as arterial lesions or plaques. Some plaques become thrombosis-prone and rupture, causing acute myocardial infarction or stroke. Lowering plasma cholesterol through the use of statins is the primary intervention against atherosclerosis. Treatment with statins slows progression of atherosclerosis but can only support limited plaque regression. Partially regressed plaques continue to pose a serious threat due to their remaining potential to rupture. Thus, new interventions inducing complete reversal of atherosclerosis are being sought. Implementation of new therapies will require clear understanding of the mechanisms driving plaque resolution. In this Commentary, we highlight the role of bone marrow endothelial progenitors in atherosclerotic plaque regression and discuss how regenerative cell-based interventions could be used in combination with plasma lipid-lowering to induce plaque reversal in order to prevent and/or reduce adverse cardiovascular events. PMID:23538778

  1. Effects on cerebral circulation of decimeter wave therapy and variable magnetic field in patients with hemiparesis of vascular and traumatic origin

    Strelkova, N.I.; Gavrilkov, A.T.; Dyuzhilova, N.F.; Strel' tsova, Ye.N.

    1981-08-01

    Both the artherosclerotic process in the case of cerebrovascular accident and cerebral trauma lead to impairment of cerebral hemodynamics, blood and spinal fluid circulation, macroscopic and microscopic disturbances. Electromagnetic waves in the decimeter range (decimeter waves - DMW) and a variable magnetic field (VMF) were used to treat these processes. Treatment was delivered directly to the region of the cerebral lesion, on the basis of the penetrating capacity of DMW and VMF to a relatively great depth (7 to 9 and 4 to 7 cm, respectively). Results of these treatments are discussed.

  2. Characterization of Endothelial Progenitor Cell Interactions with Human Tropoelastin.

    Young Yu

    Full Text Available The deployment of endovascular implants such as stents in the treatment of cardiovascular disease damages the vascular endothelium, increasing the risk of thrombosis and promoting neointimal hyperplasia. The rapid restoration of a functional endothelium is known to reduce these complications. Circulating endothelial progenitor cells (EPCs are increasingly recognized as important contributors to device re-endothelialization. Extracellular matrix proteins prominent in the vessel wall may enhance EPC-directed re-endothelialization. We examined attachment, spreading and proliferation on recombinant human tropoelastin (rhTE and investigated the mechanism and site of interaction. EPCs attached and spread on rhTE in a dose dependent manner, reaching a maximal level of 56±3% and 54±3%, respectively. EPC proliferation on rhTE was comparable to vitronectin, fibronectin and collagen. EDTA, but not heparan sulfate or lactose, reduced EPC attachment by 81±3%, while full attachment was recovered after add-back of manganese, inferring a classical integrin-mediated interaction. Integrin αVβ3 blocking antibodies decreased EPC adhesion and spreading on rhTE by 39±3% and 56±10% respectively, demonstrating a large contribution from this specific integrin. Attachment of EPCs on N-terminal rhTE constructs N25 and N18 accounted for most of this interaction, accompanied by comparable spreading. In contrast, attachment and spreading on N10 was negligible. αVβ3 blocking antibodies reduced EPC spreading on both N25 and N18 by 45±4% and 42±14%, respectively. In conclusion, rhTE supports EPC binding via an integrin mechanism involving αVβ3. N25 and N18, but not N10 constructs of rhTE contribute to EPC binding. The regulation of EPC activity by rhTE may have implications for modulation of the vascular biocompatibility of endovascular implants.

  3. Endothelial progenitor cell-based neovascularization : implications for therapy

    Krenning, Guido; van Luyn, Marja J. A.; Harmsen, Martin C.

    Ischemic cardiovascular events are a major cause of death globally. Endothelial progenitor cell (EPC)-based approaches can result in improvement of vascular perfusion and might offer clinical benefit. However, although functional improvement is observed, the lack of long-term engraftment of EPCs

  4. Color Doppler imaging of the retrobulbar circulation and plasmatic biomarkers of vascular risk in age-related macular degeneration: A pilot study

    Fermin Rodrigo

    2018-01-01

    Full Text Available Purpose: To evaluate preliminarily and compare the level of plasmatic biomarkers of vascular risk in patients with and without exudative age-related macular degeneration (ARMD and to relate it to vascular resistance alterations in the ophthalmic artery (OA, central retinal artery (CRA, posterior temporal ciliary artery (PTCA, and posterior nasal ciliary artery (PNCA. Methods: Color Doppler imaging of the OA, CRA, PTCA, and PNCA was performed in 30 eyes of 30 cataract patients (control group as well as in 30 eyes of 30 patients with naive exudative ARMD (study group, measuring the peak systolic velocity, end-diastolic velocity (EDV, and Pourcelot resistive index (RI. Likewise, in both groups, a blood test was performed to determine the plasmatic levels of homocysteine, C-reactive protein (CRP, B12 vitamin, and folic acid. Results: A positive and significant correlation was found between the level of CRP and RI of the OA in the ARMD group (r = 0.498, P = 0.005, with an increased RI in all arteries compared to controls, although differences only reached statistical significance for the PTCA (P = 0.035. Likewise, a significantly lower EDV for the CRA was found in ARMD eyes compared to controls (P = 0.041. In the study group, significantly higher plasmatic levels of homocysteine (P = 0.042 and CRP (P = 0.046 were found. In contrast, no significant differences were found between groups in the levels of folic acid (P = 0.265 and B12 vitamin (P = 0.520. Conclusion: The decrease of the choroidal perfusion related to hyperhomocysteinemia, and increase in the CRP plasmatic levels may play an etiological role on the exudative ARMD. This should be investigated in future studies with larger samples of patients.

  5. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease.

    Powell, Tiffany M; Paul, Jonathan D; Hill, Jonathan M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; McCoy, J Philip; Read, Elizabeth J; Khuu, Hanh M; Leitman, Susan F; Finkel, Toren; Cannon, Richard O

    2005-02-01

    Endothelial progenitor cells (EPCs) that may repair vascular injury are reduced in patients with coronary artery disease (CAD). We reasoned that EPC number and function may be increased by granulocyte colony-stimulating factor (G-CSF) used to mobilize hematopoietic progenitor cells in healthy donors. Sixteen CAD patients had reduced CD34(+)/CD133(+) (0.0224+/-0.0063% versus 0.121+/-0.038% mononuclear cells [MNCs], P<0.01) and CD133(+)/VEGFR-2(+) cells, consistent with EPC phenotype (0.00033+/-0.00015% versus 0.0017+/-0.0006% MNCs, P<0.01), compared with 7 healthy controls. Patients also had fewer clusters of cells in culture, with out-growth consistent with mature endothelial phenotype (2+/-1/well) compared with 16 healthy subjects at high risk (13+/-4/well, P<0.05) or 14 at low risk (22+/-3/well, P<0.001) for CAD. G-CSF 10 microg/kg per day for 5 days increased CD34(+)/CD133(+) cells from 0.5+/-0.2/microL to 59.5+/-10.6/microL and CD133(+)/ VEGFR-2(+) cells from 0.007+/-0.004/microL to 1.9+/-0.6/microL (both P<0.001). Also increased were CD133(+) cells that coexpressed the homing receptor CXCR4 (30.4+/-8.3/microL, P<0.05). Endothelial cell-forming clusters in 10 patients increased to 27+/-9/well after treatment (P<0.05), with a decline to 9+/-4/well at 2 weeks (P=0.06). Despite reduced EPCs compared with healthy controls, patients with CAD respond to G-CSF with increases in EPC number and homing receptor expression in the circulation and endothelial out-growth in culture. Endothelial progenitor cells (EPCs) are reduced in coronary artery disease. Granulocyte colony-stimulating factor (CSF) administered to patients increased: (1) CD133+/VEGFR-2+ cells consistent with EPC phenotype; (2) CD133+ cells coexpressing the chemokine receptor CXCR4, important for homing of EPCs to ischemic tissue; and (3) endothelial cell-forming clusters in culture. Whether EPCs mobilized into the circulation will be useful for the purpose of initiating vascular growth and myocyte repair

  6. Obstructive sleep apnea and endothelial progenitor cells

    Wang Q

    2013-10-01

    Full Text Available Qing Wang,1,* Qi Wu,2,* Jing Feng,3,4 Xin Sun5 1The Second Respiratory Department of the First People's Hospital of Kunming, Yunnan, People's Republic of China; 2Tianjin Haihe Hospital, Tianjin, People's Republic of China; 3Respiratory Department of Tianjin Medical University General Hospital, Tianjin, People's Republic of China; 4Division of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA; 5Respiratory Department of Tianjin Haihe Hospital, Tianjin, People's Republic of China *These authors contributed equally to this work Background: Obstructive sleep apnea (OSA occurs in 4% of middle-aged men and 2% of middle-aged women in the general population, and the prevalence is even higher in specific patient groups. OSA is an independent risk factor for a variety of cardiovascular diseases. Endothelial injury could be the pivotal determinant in the development of cardiovascular pathology in OSA. Endothelial damage ultimately represents a dynamic balance between the magnitude of injury and the capacity for repair. Bone marrow–derived endothelial progenitor cells (EPCs within adult peripheral blood present a possible means of vascular maintenance that could home to sites of injury and restore endothelial integrity and normal function. Methods: We summarized pathogenetic mechanisms of OSA and searched for available studies on numbers and functions of EPCs in patients with OSA to explore the potential links between the numbers and functions of EPCs and OSA. In particular, we tried to elucidate the molecular mechanisms of the effects of OSA on EPCs. Conclusion: Intermittent hypoxia cycles and sleep fragmentation are major pathophysiologic characters of OSA. Intermittent hypoxia acts as a trigger of oxidative stress, systemic inflammation, and sympathetic activation. Sleep fragmentation is associated with a burst of sympathetic activation and systemic inflammation. In most studies, a reduction in circulating EPCs has

  7. Vascular Ageing and Exercise: Focus on Cellular Reparative Processes

    Mark D. Ross

    2016-01-01

    Full Text Available Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs, such as diabetes and cardiovascular disease (CVD. The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO are associated with “vascular ageing” and are often accompanied by a reduced ability for the body to repair vascular damage, termed “reendothelialization.” Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC, have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this “vascular ageing” process.

  8. Vascular Ageing and Exercise: Focus on Cellular Reparative Processes.

    Ross, Mark D; Malone, Eva; Florida-James, Geraint

    2016-01-01

    Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with "vascular ageing" and are often accompanied by a reduced ability for the body to repair vascular damage, termed "reendothelialization." Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this "vascular ageing" process.

  9. The Effects of Inhaled Nickel Nanoparticles on Murine Endothelial Progenitor Cells

    Liberda, Eric N.

    Introduction. Particulate air pollution, specifically nickel found on or in particulate matter, has been associated with an increased risk of mortality in human population studies and can cause increases in vascular inflammation, generate reactive oxygen species, alter vasomotor tone, and potentiate atherosclerosis in murine exposures. With the discovery of endothelial progenitor cells (EPCs), a door has been opened which may explain these observed cardiovascular effects associated with inhaled air particles and nickel exposure. In order to further quantify the effects of inhaled nickel nanoparticles and attempt to elucidate how the observed findings from other studies may occur, several whole body inhalation exposure experiments to nickel nanoparticles were performed. Methods. Following whole body exposure to approximately 500mug/m3 of nickel nanoparticles for 5 hrs, bone marrow EPCs from C57BL/6 mice were isolated. EPCs were harvested for their RNA or used in a variety of assays including chemotaxis, tube formation, and proliferation. Gene expression was assessed for important receptors involved in EPC mobilization and homing using RT-PCR methods. EPCs, circulating endothelial progenitor cells, circulating endothelial cells (CECs), and endothelial microparticles (EMPs) were quantified on a BD FACSCalibur to examine endothelial damage and repair associated with the inhalation exposure. Plasma proteins were assessed using the 2D DIGE proteomic approach and commercially available ELISAs. Results and Conclusions. Exposure to inhaled nickel nanoparticles significantly increased both bone marrow EPCs as well as their levels in circulation. CECs were significantly upregulated suggesting that endothelial damage occurred due to the exposure. There was no significant difference in EMPs between the two groups. Tube formation and chemotaxis, but not proliferation, of bone marrow EPCs was impaired in the nickel nanoparticle exposed group. This decrease in EPC function

  10. Analysis of circulating hem-endothelial marker RNA levels in preterm infants

    Kuint Jacob

    2009-06-01

    Full Text Available Abstract Background Circulating endothelial cells may serve as novel markers of angiogenesis. These include a subset of hem-endothelial progenitor cells that play a vital role in vascular growth and repair. The presence and clinical implications of circulating RNA levels as an expression for hematopoietic and endothelial-specific markers have not been previously evaluated in preterm infants. This study aims to determine circulating RNA levels of hem-endothelial marker genes in peripheral blood of preterm infants and begin to correlate these findings with prenatal complications. Methods Peripheral blood samples from seventeen preterm neonates were analyzed at three consecutive post-delivery time points (day 3–5, 10–15 and 30. Using quantitative reverse transcription-polymerase chain reaction we studied the expression patterns of previously established hem-endothelial-specific progenitor-associated genes (AC133, Tie-2, Flk-1 (VEGFR2 and Scl/Tal1 in association with characteristics of prematurity and preterm morbidity. Results Circulating Tie-2 and SCL/Tal1 RNA levels displayed an inverse correlation to gestational age (GA. We observed significantly elevated Tie-2 levels in preterm infants born to mothers with amnionitis, and in infants with sustained brain echogenicity on brain sonography. Other markers showed similar expression patterns yet we could not demonstrate statistically significant correlations. Conclusion These preliminary findings suggest that circulating RNA levels especially Tie2 and SCL decline with maturation and might relate to some preterm complication. Further prospective follow up of larger cohorts are required to establish this association.

  11. Proangiogenic hematopoietic cells of monocytic origin: roles in vascular regeneration and pathogenic processes of systemic sclerosis.

    Yamaguchi, Yukie; Kuwana, Masataka

    2013-02-01

    New blood vessel formation is critical, not only for organ development and tissue regeneration, but also for various pathologic processes, such as tumor development and vasculopathy. The maintenance of the postnatal vascular system requires constant remodeling, which occurs through angiogenesis, vasculogenesis, and arteriogenesis. Vasculogenesis is mediated by the de novo differentiation of mature endothelial cells from endothelial progenitor cells (EPCs). Early studies provided evidence that bone marrow-derived CD14⁺ monocytes can serve as a subset of EPCs because of their expression of endothelial markers and ability to promote neovascularization in vitro and in vivo. However, the current consensus is that monocytic cells do not give rise to endothelial cells in vivo, but function as support cells, by promoting vascular formation and repair through their immediate recruitment to the site of vascular injury, secretion of proangiogenic factors, and differentiation into mural cells. These monocytes that function in a supporting role in vascular repair are now termed monocytic pro-angiogenic hematopoietic cells (PHCs). Systemic sclerosis (SSc) is a multisystem connective tissue disease characterized by excessive fibrosis and microvasculopathy, along with poor vascular formation and repair. We recently showed that in patients with SSc, circulating monocytic PHCs increase dramatically and have enhanced angiogenic potency. These effects may be induced in response to defective vascular repair machinery. Since CD14⁺ monocytes can also differentiate into fibroblast-like cells that produce extracellular matrix proteins, here we propose a new hypothesis that aberrant monocytic PHCs, once mobilized into circulation, may also contribute to the fibrotic process of SSc.

  12. Hydrogel-embedded endothelial progenitor cells evade LPS and mitigate endotoxemia.

    Ghaly, Tammer; Rabadi, May M; Weber, Mia; Rabadi, Seham M; Bank, Michael; Grom, John M; Fallon, John T; Goligorsky, Michael S; Ratliff, Brian B

    2011-10-01

    Sepsis and its complications are associated with poor clinical outcomes. The circulatory system is a well-known target of lipopolysaccharide (LPS). Recently, several clinical studies documented mobilization of endothelial progenitor cells (EPCs) during endotoxemia, with the probability of patients' survival correlating with the rise in circulating EPCs. This fact combined with endotoxemia-induced vascular injury led us to hypothesize that the developing functional EPC incompetence could impede vascular repair and that adoptive transfer of EPCs could improve hemodynamics in endotoxemia. We used LPS injection to model endotoxemia. EPCs isolated from endotoxemic mice exhibited impaired clonogenic potential and LPS exerted Toll-like receptor 4-mediated cytotoxic effects toward EPCs, which was mitigated by embedding them in hyaluronic acid (HA) hydrogels. Therefore, intact EPCs were either delivered intravenously or embedded within pronectin-coated HA hydrogels. Adoptive transfer of EPCs in LPS-injected mice improved control of blood pressure and reduced hepatocellular and renal dysfunction. Specifically, EPC treatment was associated with the restoration of renal microcirculation and improved renal function. EPC therapy was most efficient when cells were delivered embedded in HA hydrogel. These findings establish major therapeutic benefits of adoptive transfer of EPCs, especially when embedded in HA hydrogels, in mice with LPS-induced endotoxemia, and they argue that hemodynamic and renal abnormalities of endotoxemia are in significant part due to developing incompetence of endogenous EPCs.

  13. Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.

    Miao, Z G; Zhang, L P; Fu, X; Yang, Q Y; Zhu, M J; Dodson, M V; Du, M

    2016-01-01

    The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.

  14. [Stem and progenitor cells in biostructure of blood vessel walls].

    Korta, Krzysztof; Kupczyk, Piotr; Skóra, Jan; Pupka, Artur; Zejler, Paweł; Hołysz, Marcin; Gajda, Mariusz; Nowakowska, Beata; Barć, Piotr; Dorobisz, Andrzej T; Dawiskiba, Tomasz; Szyber, Piotr; Bar, Julia

    2013-09-18

    Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, "anchored" in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC). Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as "subendothelial or vasculogenic zones". Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  15. Stem and progenitor cells in biostructure of blood vessel walls

    Krzysztof Korta

    2013-09-01

    Full Text Available Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, “anchored” in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC. Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as “subendothelial or vasculogenic zones”. Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  16. Effect of Low Level Ionizing Radiation on Endothelial Progenitor Cells in Atherosclerotic Patients with Lower Limb Ischemia

    Taha, E.F.S.

    2013-01-01

    Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality throughout the developed world (Williamson et al., 2012). Coronary artery disease (CAD) or atherosclerotic heart disease is a chronic life-threatening disease, which characterized by reducing blood supply to the heart as a result of the accumulation of atheromatous plaques within the walls of the arteries supplying the myocardium. Progressive atherosclerosis in the coronary arteries may lead to intimal thickening and eventual artery occlusion. Coronary artery occlusion can cause acute myocardial ischemia as a result of reduced oxygen supply or increased oxygen demand (Luthje and Andreas, 2008). Convincing evidence indicates that atherosclerosis is associated with endothelial dysfunction at the early stage of the disease process (Chiang et al., 2012). The endothelium is a dynamic cell layer that represents a physiological barrier between circulating blood and the surrounding tissues. Impaired endothelial function is a critical event in the initiation of atherosclerotic plaque development and thus may lead to vasoconstriction, vascular smooth muscle proliferation, hypercoagulability, thrombosis, and eventually, adverse cardiovascular events (Berger and Lavie, 2011). Asahara et al., (1997) described endothelial progenitor cells (EPC) in human peripheral blood. EPC are immature endothelial circulating cells mobilized from the bone marrow. These cells are involved in Introduction and aim of the work repairing the damaged endothelium and in facilitating neovascularization after ischemia (Rouhl et al., 2008). The role of EPC in health and disease is not understood completely. Most studies of healthy subjects and patients with coronary artery disease (CAD) report that the number and function of circulating EPC decrease with age and with the presence of classical vascular risk factors (Fadini et al., 2007). Recent studies suggested that EPCs play an important role in the risk of vascular

  17. The effects of smoking on levels of endothelial progenitor cells and microparticles in the blood of healthy volunteers.

    Fariborz Mobarrez

    Full Text Available BACKGROUND: Cigarette smoking, both active and passive, is one of the leading causes of morbidity and mortality in cardiovascular disease. To assess the impact of brief smoking on the vasculature, we determined levels of circulating endothelial progenitor cells (EPCs and circulating microparticles (MPs following the smoking of one cigarette by young, healthy intermittent smokers. MATERIALS AND METHODS: 12 healthy volunteers were randomized to either smoking or not smoking in a crossover fashion. Blood sampling was performed at baseline, 1, 4 and 24 hours following smoking/not smoking. The numbers of EPCs and MPs were determined by flow cytometry. MPs were measured from platelets, leukocytes and endothelial cells. Moreover, MPs were also labelled with anti-HMGB1 and SYTO 13 to assess the content of nuclear molecules. RESULTS: Active smoking of one cigarette caused an immediate and significant increase in the numbers of circulating EPCs and MPs of platelet-, endothelial- and leukocyte origin. Levels of MPs containing nuclear molecules were increased, of which the majority were positive for CD41 and CD45 (platelet- and leukocyte origin. CD144 (VE-cadherin or HMGB1 release did not significantly change during active smoking. CONCLUSION: Brief active smoking of one cigarette generated an acute release of EPC and MPs, of which the latter contained nuclear matter. Together, these results demonstrate acute effects of cigarette smoke on endothelial, platelet and leukocyte function as well as injury to the vascular wall.

  18. Progenitors of white dwarfs

    Drilling, J.S.; Schoenberner, D.

    1985-01-01

    Direct observational evidence is presented which indicates that the immediate progenitors of white dwarfs are the central stars of planetary nebulae (approximately 70%), other post-AGB objects (approximately 30%), and post-HB objects not massive enough to climb the AGB (approximately 0.3%). The combined birth rate for these objects is in satisfactory agreement with the death rate of main-sequence stars and the birth rate of white dwarfs

  19. Vascular remodeling and mineralocorticoids.

    Weber, K T; Sun, Y; Campbell, S E; Slight, S H; Ganjam, V K

    1995-01-01

    Circulating mineralocorticoid hormones are so named because of their important homeostatic properties that regulate salt and water balance via their action on epithelial cells. A broader range of functions in nonclassic target cellular sites has been proposed for these steroids and includes their contribution to wound healing following injury. A chronic, inappropriate (relative to intravascular volume and dietary sodium intake) elevation of these circulating hormones evokes a wound healing response in the absence of tissue injury--a wound healing response gone awry. The adverse remodeling of vascularized tissues seen in association with chronic mineralocorticoid excess is the focus of this review.

  20. Sun Ginseng Protects Endothelial Progenitor Cells From Senescence Associated Apoptosis

    Im, Wooseok; Chung, Jin-Young; Bhan, Jaejun; Lim, Jiyeon; Lee, Soon-Tae; Chu, Kon; Kim, Manho

    2012-01-01

    Endothelial progenitor cells (EPC) are a population of cells that circulate in the blood stream. They play a role in angiogenesis and, therefore, can be prognostic markers of vascular repair. Ginsenoside Rg3 prevents endothelial cell apoptosis through the inhibition of the mitochondrial caspase pathway. It also affects estrogen activity, which reduces EPC senescence. Sun ginseng (SG), which is heat-processed ginseng, has a high content of ginsenosides. The purpose of this study was to investigate the protective effects of SG on senescence-associated apoptosis in EPCs. In order to isolate EPCs, mononuclear cells of human blood buffy coats were cultured and characterized by their uptake of acetylated low-density lipoprotein (acLDL) and their binding of Ulex europaeus agglutinin I (ulex-lectin). Flow cytometry with annexin-V staining was performed in order to assess early and late apoptosis. Senescence was determined by β-galactosidase (β-gal) staining. Staining with 4′-6-Diamidino-2-phenylindole verified that most adherent cells (93±2.7%) were acLDL-positive and ulex-lectin-positive. The percentage of β-gal-positive EPCs was decreased from 93.8±2.0% to 62.5±3.6% by SG treatment. A fluorescence-activated cell sorter (FACS) analysis showed that 4.9% of EPCs were late apoptotic in controls. Sun ginseng decreased the apoptotic cell population by 39% in the late stage of apoptosis from control baseline levels. In conclusion, these results show antisenescent and antiapoptotic effects of SG in human-derived EPCs, indicating that SG can enhance EPC-mediated repair mechanisms. PMID:23717107

  1. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model.

    O'Loughlin, Aonghus; Kulkarni, Mangesh; Vaughan, Erin E; Creane, Michael; Liew, Aaron; Dockery, Peter; Pandit, Abhay; O'Brien, Timothy

    2013-01-01

    Diabetic foot ulceration is the leading cause of amputation in people with diabetes mellitus. Peripheral vascular disease is present in the majority of patients with diabetic foot ulcers. Despite standard treatments there exists a high amputation rate. Circulating angiogenic cells previously known as early endothelial progenitor cells are derived from peripheral blood and support angiogenesis and vasculogenesis, providing a potential topical treatment for non-healing diabetic foot ulcers. A scaffold fabricated from Type 1 collagen facilitates topical cell delivery to a diabetic wound. Osteopontin is a matricellular protein involved in wound healing and increases the angiogenic potential of circulating angiogenic cells. A collagen scaffold seeded with circulating angiogenic cells was developed. Subsequently the effect of autologous circulating angiogenic cells that were seeded in a collagen scaffold and topically delivered to a hyperglycemic cutaneous wound was assessed. The alloxan-induced diabetic rabbit ear ulcer model was used to determine healing in response to the following treatments: collagen seeded with autologous circulating angiogenic cells exposed to osteopontin, collagen seeded with autologous circulating angiogenic cells, collagen alone and untreated wound. Stereology was used to assess angiogenesis in wounds. The cells exposed to osteopontin and seeded on collagen increased percentage wound closure as compared to other groups. Increased angiogenesis was observed with the treatment of collagen and collagen seeded with circulating angiogenic cells. These results demonstrate that topical treatment of full thickness cutaneous ulcers with autologous circulating angiogenic cells increases wound healing. Cells exposed to the matricellular protein osteopontin result in superior wound healing. The wound healing benefit is associated with a more efficient vascular network. This topical therapy provides a potential novel therapy for the treatment of non

  2. Renal blood flow and oxygenation drive nephron progenitor differentiation.

    Rymer, Christopher; Paredes, Jose; Halt, Kimmo; Schaefer, Caitlin; Wiersch, John; Zhang, Guangfeng; Potoka, Douglas; Vainio, Seppo; Gittes, George K; Bates, Carlton M; Sims-Lucas, Sunder

    2014-08-01

    During kidney development, the vasculature develops via both angiogenesis (branching from major vessels) and vasculogenesis (de novo vessel formation). The formation and perfusion of renal blood vessels are vastly understudied. In the present study, we investigated the regulatory role of renal blood flow and O2 concentration on nephron progenitor differentiation during ontogeny. To elucidate the presence of blood flow, ultrasound-guided intracardiac microinjection was performed, and FITC-tagged tomato lectin was perfused through the embryo. Kidneys were costained for the vasculature, ureteric epithelium, nephron progenitors, and nephron structures. We also analyzed nephron differentiation in normoxia compared with hypoxia. At embryonic day 13.5 (E13.5), the major vascular branches were perfused; however, smaller-caliber peripheral vessels remained unperfused. By E15.5, peripheral vessels started to be perfused as well as glomeruli. While the interior kidney vessels were perfused, the peripheral vessels (nephrogenic zone) remained unperfused. Directly adjacent and internal to the nephrogenic zone, we found differentiated nephron structures surrounded and infiltrated by perfused vessels. Furthermore, we determined that at low O2 concentration, little nephron progenitor differentiation was observed; at higher O2 concentrations, more differentiation of the nephron progenitors was induced. The formation of the developing renal vessels occurs before the onset of blood flow. Furthermore, renal blood flow and oxygenation are critical for nephron progenitor differentiation. Copyright © 2014 the American Physiological Society.

  3. Strategies to reverse endothelial progenitor cell dysfunction in diabetes.

    Petrelli, Alessandra; Di Fenza, Raffaele; Carvello, Michele; Gatti, Francesca; Secchi, Antonio; Fiorina, Paolo

    2012-01-01

    Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  4. Strategies to Reverse Endothelial Progenitor Cell Dysfunction in Diabetes

    Alessandra Petrelli

    2012-01-01

    Full Text Available Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial, their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs. Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  5. Association of endothelial progenitor cells and peptic ulcer treatment in patients with type 2 diabetes mellitus.

    Nie, Zhihong; Xu, Limin; Li, Chuanyuan; Tian, Tao; Xie, Pingping; Chen, Xia; Li, Bojing

    2016-05-01

    The present study aimed to investigate the association between endothelial progenitor cells (EPCs) and peptic ulcers in patients with or without type 2 diabetes mellitus (T2DM), in association with the efficiency of peptic ulcer treatment. The study recruited healthy subjects and peptic ulcer patients with or without T2DM. All the ulcer patients, including those with and without T2DM, were administered omeprazole for 8 weeks. Peptic ulcer patients with T2DM were additionally treated with glipizide and novolin. Blood samples were then obtained from the three groups following ulcer treatment. CD133 + cells were isolated from the blood samples using magnetic bead selection, and cultured in complete medium 199. Morphological and quantity changes in EPCs were observed by light and fluorescence microscopy. In addition, flow cytometric analysis was used to quantify the number of vascular endothelial cells. The treatment was partially effective in 7 of the 32 peptic ulcer patients without T2DM and 12 of the 32 peptic ulcer patients with T2DM. However, this treatment was ineffective in 20 of the 32 peptic ulcer patients with T2DM. Notably, 25 peptic ulcer patients without T2DM were defined as completely recovered following treatment. In addition, the number of circulating EPCs as well as their colony forming ability was significantly reduced (Ppeptic ulcer patients with T2DM following ulcer treatment, compared with the other groups. Circulating EPC counts were significantly increased in peptic ulcer patients without T2DM, as compared with the healthy controls. With regards to colony formation, peptic ulcer patients without T2DM did not exhibit improved colony formation ability. In conclusion, the number of circulating EPCs and their colony-forming ability was significantly reduced in peptic ulcer patients with T2DM following ulcer treatment when compared with the other groups. This suggests that the poor curative effect of peptic ulcer treatment in these patients is

  6. Endothelial Progenitor Cell Mobilization in Preterm Infants With Sepsis Is Associated With Improved Survival.

    Siavashi, Vahid; Asadian, Simin; Taheri-Asl, Masoud; Keshavarz, Samaneh; Zamani-Ahmadmahmudi, Mohamad; Nassiri, Seyed Mahdi

    2017-10-01

    Microvascular dysfunction plays a key role in the pathology of sepsis, leading to multi-organ failure, and death. Circulating endothelial progenitor cells (cEPCs) are critically involved in the maintenance of the vascular homeostasis in both physiological and pathological contexts. In this study, concentration of cEPCs in preterm infants with sepsis was determined to recognize whether the EPC mobilization would affect the clinical outcome of infantile sepsis. One hundred and thirty-three preterm infants (81 with sepsis and 52 without sepsis) were enrolled in this study. The release of EPCs in circulation was first quantified. Thereafter, these cells were cultivated and biological features of these cells such as, proliferation and colony forming efficiency were analyzed. The levels of chemoattractant cytokines were also measured in infants. In mouse models of sepsis, effects of VEGF and SDF-1 as well as anti-VEGF and anti-SDF-1 were evaluated in order to shed light upon the role which the EPC mobilization plays in the overall survival of septic animals. Circulating EPCs were significantly higher in preterm infants with sepsis than in the non-sepsis group. Serum levels of VEGF, SDF-1, and Angiopoietin-2 were also higher in preterm infants with sepsis than in control non-sepsis. In the animal experiments, injection of VEGF and SDF-1 prompted the mobilization of EPCs, leading to an improvement in survival whereas injection of anti-VEGF and anti-SDF-1 was associated with significant deterioration of survival. Overall, our results demonstrated the beneficial effects of EPC release in preterm infants with sepsis, with increased mobilization of these cells was associated with improved survival. J. Cell. Biochem. 118: 3299-3307, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Masses of supernova progenitors

    Tinsley, B.M.

    1977-01-01

    The possible nature and masses of supernovae progenitors, and the bearing of empirical results on some unsolved theoretical problems concerning the origin of supernovae, are discussed. The author concentrates on two main questions: what is the lower mass limit for stars to die explosively and what stars initiate type I supernovae. The evidence considered includes local supernova rates, empirical estimates of msub(w) (the upper mass limit for death as a white dwarf), the distributions of supernovae among stellar populations in galaxies and the colors of supernova producing galaxies. (B.D.)

  8. Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices

    Krenning, Guido; Moonen, Jan-Renier A. J.; van Luyn, Marja J. A.; Harmsen, Martin C.

    The discovery of the endothelial progenitor cell (EPC) has led to an intensive research effort into progenitor cell-based tissue engineering of (small-diameter) blood vessels. Herein, EPC are differentiated to vascular endothelial cells and serve as the inner lining of bioartificial vessels. As yet,

  9. Progress of stem/progenitor cell-based therapy for retinal degeneration.

    Tang, Zhimin; Zhang, Yi; Wang, Yuyao; Zhang, Dandan; Shen, Bingqiao; Luo, Min; Gu, Ping

    2017-05-10

    Retinal degeneration (RD), such as age-related macular degeneration (AMD) and retinitis pigmentosa, is one of the leading causes of blindness. Presently, no satisfactory therapeutic options are available for these diseases principally because the retina and retinal pigmented epithelium (RPE) do not regenerate, although wet AMD can be prevented from further progression by anti-vascular endothelial growth factor therapy. Nevertheless, stem/progenitor cell approaches exhibit enormous potential for RD treatment using strategies mainly aimed at the rescue and replacement of photoreceptors and RPE. The sources of stem/progenitor cells are classified into two broad categories in this review, which are (1) ocular-derived progenitor cells, such as retinal progenitor cells, and (2) non-ocular-derived stem cells, including embryonic stem cells, induced pluripotent stem cells, and mesenchymal stromal cells. Here, we discuss in detail the progress in the study of four predominant stem/progenitor cell types used in animal models of RD. A short overview of clinical trials involving the stem/progenitor cells is also presented. Currently, stem/progenitor cell therapies for RD still have some drawbacks such as inhibited proliferation and/or differentiation in vitro (with the exception of the RPE) and limited long-term survival and function of grafts in vivo. Despite these challenges, stem/progenitor cells represent the most promising strategy for RD treatment in the near future.

  10. Angiogenesis Research to Improve Therapies for Vascular Leak Syndromes, Intra-Abdominal Adhesions, and Arterial Injuries

    Folkman, Judah; Puder, Mark; Bischoff, Joyce

    2006-01-01

    ...) to develop angiogenesis inhibitors which would inhibit post-operative abdominal adhesions; and (iii) to isolate endothelial progenitor cells from blood capable of being expanded in vitro and applied to vascular grafts...

  11. Angiogenesis Research to Improve Therapies for Vascular Leak Syndromes, Intra-Abdominal Adhesions, and Arterial Injuries

    Folkman, Judah; Puder, Mark; Bischoff, Joyce

    2007-01-01

    ...) to develop angiogenesis inhibitors which would inhibit post-operative abdominal adhesions; and, (iii) to isolate endothelial progenitor cells from blood, capable of being expanded in vitro and applied to vascular grafts...

  12. Angiogenesis Research to Improve Therapies for Vascular Leak Syndromes, Intra-abdominal Adhesions, and Arterial Injuries

    Folkman, Judah

    2008-01-01

    ...) to develop angiogenesis inhibitors which would inhibit post-operative abdominal adhesions; and, (iii) to isolate endothelial progenitor cells from blood, capable of being expanded in vitro and applied to vascular grafts...

  13. Endothelial progenitor cells (EPCs) in ageing and age-related diseases: How currently available treatment modalities affect EPC biology, atherosclerosis, and cardiovascular outcomes.

    Altabas, Velimir; Altabas, Karmela; Kirigin, Lora

    2016-10-01

    Endothelial progenitor cells (EPCs) are mononuclear cells that circulate in the blood and are derived from different tissues, expressing cell surface markers that are similar to mature endothelial cells. The discovery of EPCs has lead to new insights in vascular repair and atherosclerosis and also a new theory for ageing. EPCs from the bone marrow and some other organs aid in vascular repair by migrating to distant vessels where they differentiate into mature endothelial cells and replace old and injured endothelial cells. The ability of EPCs to repair vascular damage depends on their number and functionality. Currently marketed drugs used in a variety of diseases can modulate these characteristics. In this review, the effect of currently available treatment options for cardiovascular and metabolic disorders on EPC biology will be discussed. The various EPC-based therapies that will be discussed include lipid-lowering agents, antihypertensive agents, antidiabetic drugs, phosphodiesteraze inhibitors, hormones, as well as EPC capturing stents. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Tumor endothelial markers define novel subsets of cancer-specific circulating endothelial cells associated with antitumor efficacy

    Mehran, Reza; Nilsson, Monique; Khajavi, Mehrdad; Du, Zhiqiang; Cascone, Tina; Wu, Hua Kang; Cortes, Andrea; Xu, Li; Zurita, Amado; Schier, Robert; Riedel, Bernhard; El-Zein, Randa; Heymach, John V.

    2014-01-01

    Circulating endothelial cells (CEC) are derived from multiple sources including bone marrow (circulating endothelial progenitors [CEP]) and established vasculature (mature CEC). Although CEC have shown promise as a biomarker for cancer patients, their utility has been limited in part by the lack of specificity for tumor vasculature and the different non-malignant causes that can impact CEC. Tumor endothelial markers (TEM) are antigens enriched in tumor vs non-malignant endothelia. We hypothesized that TEMs may be detectable on CEC and that these circulating TEM+ endothelial cells (CTEC) may be a more specific marker for cancer and tumor response than standard CEC. We found that tumor-bearing mice had a relative increase in numbers of circulating CTEC, specifically with increased levels of TEM7 and TEM8 expression. Following treatment with various vascular targeting agents, we observed a decrease in CTEC that correlated with the reductions in tumor growth. We extended these findings to human clinical samples and observed that CTEC were present in esophageal cancer and non-small cell lung cancer (NSCLC) patients (N=40) and their levels decreased after surgical resection. These results demonstrate that CTEC are detectable in preclinical cancer models and cancer patients. Further, they suggest that CTEC offer a novel cancer-associated marker that may be useful as a blood-based surrogate for assessing the presence of tumor vasculature and antiangiogenic drug activity. PMID:24626092

  15. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Jin, E-mail: jinxxwang@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-11-15

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  16. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-01-01

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  17. Comparison of endothelial progenitor cells in Parkinson's disease patients treated with levodopa and levodopa/COMT inhibitor.

    Phil Hyu Lee

    Full Text Available BACKGROUND: Levodopa treatment in Parkinson's disease (PD increases in serum homocysteine levels due to its metabolism via catechol O-methyltransferase. Endothelial progenitor cells (EPCs have the capacity to differentiate into mature endothelial cells and are markers for endothelial functions and cardiovascular risks. Along with traditional vascular risk factors, hyperhomocysteinemia is known to decrease the level of EPCs. In the present study, we hypothesized that that levodopa-induced hyperhomocysteinemia leads to a change in EPC levels. METHODOLOGY/PRINCIPAL FINDINGS: We prospectively enrolled PD patients who had been prescribed either levodopa/carbidopa (PD-L group, n = 28 or levodopa/carbidopa/COMT inhibitor (PD-LC group, n = 25 for more than 1 year. The number of circulating EPCs was measured by flow cytometry using dual staining of anti-CD34 and anti-KDR antibodies. The EPCs were divided into tertiles based on their distributions and a logistic regression analysis was used to estimate independent predictors of the highest tertile of EPCs. The number of endothelial progenitor cells was significantly decreased in PD-L patients (118±99/mL compared with either PD-LC patients (269±258/mL, p = 0.007 or controls (206±204/mL, p = 0.012. The level of homocysteine was significantly increased in PD-L patients (14.9±5.3 µmol/L compared with either PD-LC patients (11.9±3.0 µmol/L, p = 0.028 or controls (11.1±2.5 µmol/L, p = 0.012. The level of homocysteine was negatively correlated with endothelial progenitor cell levels (r = -0.252, p = 0.028 and was an independent predictor of the highest tertile of endothelial progenitor cell levels (OR; 0.749 [95% CI: 0.584-0.961]. CONCLUSIONS/SIGNIFICANCE: These data indicate that a higher consumption of EPC for restoration of endothelial damage may be associated with chronic levodopa treatment in PD patients.

  18. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    Caterina Oriana Aragona

    2016-01-01

    Full Text Available Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina pectoris” or “myocardial infarction”; “stroke” or “cerebrovascular disease”; “homocysteine”; “C-reactive protein”; “vitamin D”. Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included. Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers. Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: Prospero CRD42015023717.

  19. Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination

    Alerie Guzman De La Fuente

    2017-08-01

    Full Text Available The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.

  20. Mesenchymal progenitor cells for the osteogenic lineage.

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  1. Diabetes and Retinal Vascular Dysfunction

    Eui Seok Shin

    2014-01-01

    Full Text Available Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR. We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR.

  2. Hypoxia inducible factor-2α regulates the development of retinal astrocytic network by maintaining adequate supply of astrocyte progenitors.

    Li-Juan Duan

    Full Text Available Here we investigate the role of hypoxia inducible factor (HIF-2α in coordinating the development of retinal astrocytic and vascular networks. Three Cre mouse lines were used to disrupt floxed Hif-2α, including Rosa26(CreERT2, Tie2(Cre, and GFAP(Cre. Global Hif-2α disruption by Rosa26(CreERT2 led to reduced astrocytic and vascular development in neonatal retinas, whereas endothelial disruption by Tie2(Cre had no apparent effects. Hif-2α deletion in astrocyte progenitors by GFAP(Cre significantly interfered with the development of astrocytic networks, which failed to reach the retinal periphery and were incapable of supporting vascular development. Perplexingly, the abundance of strongly GFAP(+ mature astrocytes transiently increased at P0 before they began to lag behind the normal controls by P3. Pax2(+ and PDGFRα(+ astrocytic progenitors and immature astrocytes were dramatically diminished at all stages examined. Despite decreased number of astrocyte progenitors, their proliferation index or apoptosis was not altered. The above data can be reconciled by proposing that HIF-2α is required for maintaining the supply of astrocyte progenitors by slowing down their differentiation into non-proliferative mature astrocytes. HIF-2α deficiency in astrocyte progenitors may accelerate their differentiation into astrocytes, a change which greatly interferes with the replenishment of astrocyte progenitors due to insufficient time for proliferation. Rapidly declining progenitor supply may lead to premature cessation of astrocyte development. Given that HIF-2α protein undergoes oxygen dependent degradation, an interesting possibility is that retinal blood vessels may regulate astrocyte differentiation through their oxygen delivery function. While our findings support the consensus that retinal astrocytic template guides vascular development, they also raise the possibility that astrocytic and vascular networks may mutually regulate each other

  3. The adventitia: essential regulator of vascular wall structure and function.

    Stenmark, Kurt R; Yeager, Michael E; El Kasmi, Karim C; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia V; Li, Min; Riddle, Suzette R; Frid, Maria G

    2013-01-01

    The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.

  4. Circulating serum interleukin-6, serum chitinase-3-like protein-1, and plasma vascular endothelial growth factor are not predictive for remission and radiographic progression in patients with early rheumatoid arthritis

    Brahe, C H; Dehlendorff, C; Østergaard, M

    2018-01-01

    OBJECTIVE: To investigate serum interleukin-6 (IL-6), serum chitinase-3-like protein-1 (YKL-40), and plasma vascular endothelial growth factor (VEGF) as measures of disease activity and predictors of clinical remission and radiographic progression in two early rheumatoid arthritis (RA) randomized...

  5. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy.

    Harshini Chakravarthy

    Full Text Available Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs. We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.

  6. Pulmonary circulation

    Bongartz, G.; Boos, M.; Scheffler, K.; Steinbrich, W.

    1998-01-01

    Evaluation of the pulmonary vasculature is mainly indicated in patients with suspected pulmonary thromboembolism. The routine procedure so far is ventilation-perfusion scintigraphy alone or in combination with diagnostic assessment of the legs to rule out deep venous thrombosis. The results are still not reliable for the majority of patients. In the case of equivocal diagnosis, invasive conventional angiography is considered the gold standard. With steady improvements in tomographic imaging techniques, such as computed tomography (CT) or magnetic resonance imaging (MRI), non-invasive alternatives to the routine diagnostic work-up are given. Helical CT and CTA techniques are already in clinical use and estimated to sufficiently serve the demands for detection/exclusion of pulmonary thromboembolism. The disadvantages mainly concern peripheral disease and reconstruction artifacts. MRI and MR angiography have been implemented in the diagnosis of pulmonary vascular disease since the introduction of contrast-enhanced MRA. In breath-hold techniques, the entire lung vascularization can be delineated and thromboemboli can be detected. The clinical experience in this field is limited, but MRI has the potential to demonstrate its superiority over CT due to its improved delineation of the vascular periphery and the more comprehensive three-dimensional reconstruction. (orig.)

  7. Basic Components of Vascular Connective Tissue and Extracellular Matrix.

    Halper, Jaroslava

    2018-01-01

    Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy. © 2018 Elsevier Inc. All rights reserved.

  8. Vascular Endothelial Growth Factor (VEGF) mRNA Isoforms are Altered in Bovine Granulosa Cells (GC) by Circulating Progestin Concentrations (P4) and May Indicate Follicle Status and Oocyte Competence

    Previously, Melengestrol Acetate (MGA) fed for 14 d (0.5mg/cow/d; < 1 ng/ml P4) resulted in persistent follicles with increased size, decreased number of GC/follicular fluid (FF) volume, and less fertile oocytes. An experiment was conducted to determine effects of circulating P4 on amount of mRNA fo...

  9. VASCULAR SURGERY

    2016-06-02

    Jun 2, 2016 ... with the literature from South Africa over the last four decades, and reflects the high rate of interpersonal violence in the country.14,15 As expected, cervical ... via the intact circle of Willis in young patients is the most likely explanation for the lack of strokes. Five patients were referred to the Durban vascular ...

  10. Vascular Disorders

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Vascular Disorders Email to a friend * required fields ...

  11. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3.

    Sarah L Appleby

    Full Text Available Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133(+ population of non-adherent endothelial forming cells (naEFCs which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38 together with mature endothelial cell markers (VEGFR2, CD144 and CD31. These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8 or myeloid markers (CD11b and CD14 which distinguishes them from 'early' endothelial progenitor cells (EPCs. Functional studies demonstrated that these naEFCs (i bound Ulex europaeus lectin, (ii demonstrated acetylated-low density lipoprotein uptake, (iii increased vascular cell adhesion molecule (VCAM-1 surface expression in response to tumor necrosis factor and (iv in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs. Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.

  12. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  13. Endothelial Progenitor Cells as Shuttle of Anticancer Agents.

    Laurenzana, Anna; Margheri, Francesca; Chillà, Anastasia; Biagioni, Alessio; Margheri, Giancarlo; Calorini, Lido; Fibbi, Gabriella; Del Rosso, Mario

    2016-10-01

    Cell therapies are treatments in which stem or progenitor cells are stimulated to differentiate into specialized cells able to home to and repair damaged tissues. After their discovery, endothelial progenitor cells (EPCs) stimulated worldwide interest as possible vehicles to perform autologous cell therapy of tumors. Taking into account the tumor-homing properties of EPCs, two different approaches to control cancer progression have been pursued by combining cell-based therapy with gene therapy or with nanomedicine. The first approach is based on the possibility of engineering EPCs to express different transgenes, and the second is based on the capacity of EPCs to take up nanomaterials. Here we review the most important progress covering the following issues: the characterization of bona fide endothelial progenitor cells, their role in tumor vascularization and metastasis, and preclinical data about their use in cell-based tumor therapy, considering antiangiogenic, suicide, immune-stimulating, and oncolytic virus gene therapy. The mixed approach of EPC cell therapy and nanomedicine is discussed in terms of plasmonic-dependent thermoablation and molecular imaging.

  14. Vascular Function Is Improved After an Environmental Enrichment Program: The Train the Brain-Mind the Vessel Study.

    Bruno, Rosa Maria; Stea, Francesco; Sicari, Rosa; Ghiadoni, Lorenzo; Taddei, Stefano; Ungar, Andrea; Bonuccelli, Ubaldo; Tognoni, Gloria; Cintoli, Simona; Del Turco, Serena; Sbrana, Silverio; Gargani, Luna; D'Angelo, Gennaro; Pratali, Lorenza; Berardi, Nicoletta; Maffei, Lamberto; Picano, Eugenio

    2018-06-01

    Environmental enrichment may slow cognitive decay possibly acting through an improvement in vascular function. Aim of the study was to assess the effects of a 7-month cognitive, social, and physical training program on cognitive and vascular function in patients with mild cognitive impairment. In a single-center, randomized, parallel-group study, 113 patients (age, 65-89 years) were randomized to multidomain training (n=55) or usual care (n=58). All participants underwent neuropsychological tests and vascular evaluation, including brachial artery flow-mediated dilation, carotid-femoral pulse wave velocity, carotid distensibility, and assessment of circulating hematopoietic CD34+ and endothelial progenitor cells. At study entry, an age-matched control group (n=45) was also studied. Compared with controls, patients had at study entry a reduced flow-mediated dilation (2.97±2.14% versus 3.73±2.06%; P =0.03) and hyperemic stimulus (shear rate area under the curve, 19.1±15.7 versus 25.7±15.1×10 -3 ; P =0.009); only the latter remained significant after adjustment for confounders ( P =0.03). Training improved Alzheimer disease assessment scale cognitive (training, 14.0±4.8 to 13.1±5.5; nontraining, 12.1±3.9 to 13.2±4.8; P for interaction visit×training=0.02), flow-mediated dilation (2.82±2.19% to 3.40±1.81%, 3.05±2.08% to 2.24±1.59%; P =0.006; P =0.023 after adjustment for diameter and shear rate area under the curve), and circulating hematopoietic CD34 + cells and prevented the decline in carotid distensibility (18.4±5.3 to 20.0±6.6, 23.9±11.0 to 19.5±7.1 Pa -1 ; P =0.005). The only clinical predictor of improvement of cognitive function after training was established hypertension. There was no correlation between changes in measures of cognitive and vascular function. In conclusion, a multidomain training program slows cognitive decline, especially in hypertensive individuals. This effect is accompanied by improved systemic endothelial function

  15. Effect of colorectal cancer on the number of normal stem cells circulating in peripheral blood.

    Marlicz, Wojciech; Sielatycka, Katarzyna; Serwin, Karol; Kubis, Ewa; Tkacz, Marta; Głuszko, Rafał; Białek, Andrzej; Starzyńska, Teresa; Ratajczak, Mariusz Z

    2016-12-01

    Bone marrow (BM) residing stem cells are mobilized from their BM niches into peripheral blood (PB) in several pathological situations including tissue organ injury and systemic inflammation. We recently reported that the number of BM-derived stem cells (SCs) increases in patients with pancreatic and stomach cancer. Accordingly, we observed higher numbers of circulating very small embryonic/epiblast‑like stem cells (VSELs) and mesenchymal stem cells (MSCs) that were associated with the activation of pro-mobilizing complement cascade and an elevated level of sphingosine-1 phosphate (S1P) in PB plasma. We wondered if a similar correlation occurs in patients with colorectal cancer (CRC). A total of 46 patients were enrolled in this study: 17 with CRC, 18 with benign colonic adenomas (BCA) and 11 healthy individuals. By employing fluorescence-activated cell sorting (FACS) we evaluated the number of BM-derived SCs circulating in PB: i) CD34+/Lin-/CD45- and CD133-/Lin-/CD45- VSELs; ii) CD45-/CD105+/CD90+/CD29+ MSCs; iii) CD45-/CD34+/CD133+/KDR+ endothelial progenitor cells (EPCs); and iv) CD133+/Lin-/CD45+ or CD34+/Lin-/CD45+ cells enriched for hematopoietic stem/progenitor cells (HSPCs). In parallel, we measured in the PB parameters regulating the egress of SCs from BM into PB. In contrast to pancreatic and gastric cancer patients, CRC subjects presented neither an increase in the number of circulating SCs nor the activation of pro-mobilizing factors such as complement, coagulation and fibrinolytic cascade, circulating stromal derived factor 1 (SDF‑1), vascular endothelial growth factor (VEGF) and intestinal permeability marker (zonulin). In conclusion, mobilization of SCs in cancer patients depends on the type of malignancy and its ability to activate pro-mobilization cascades.

  16. Circulating endothelial cells in patients with venous thromboembolism and myeloproliferative neoplasms.

    Cláudia Torres

    Full Text Available BACKGROUND: Circulating endothelial cells (CEC may be a biomarker of vascular injury and pro-thrombotic tendency, while circulating endothelial progenitor cells (CEP may be an indicator for angiogenesis and vascular remodelling. However, there is not a universally accepted standardized protocol to identify and quantify these cells and its clinical relevancy remains to be established. OBJECTIVES: To quantify CEC and CEP in patients with venous thromboembolism (VTE and with myeloproliferative neoplasms (MPN, to characterize the CEC for the expression of activation (CD54, CD62E and procoagulant (CD142 markers and to investigate whether they correlate with other clinical and laboratory data. PATIENTS AND METHODS: Sixteen patients with VTE, 17 patients with MPN and 20 healthy individuals were studied. The CEC and CEP were quantified and characterized in the blood using flow cytometry, and the demographic, clinical and laboratory data were obtained from hospital records. RESULTS: We found the CEC counts were higher in both patient groups as compared to controls, whereas increased numbers of CEP were found only in patients with MPN. In addition, all disease groups had higher numbers of CD62E+ CEC as compared to controls, whereas only patients with VTE had increased numbers of CD142+ and CD54+ CEC. Moreover, the numbers of total and CD62+ CEC correlated positively with the white blood cells (WBC counts in both groups of patients, while the numbers of CEP correlated positively with the WBC counts only in patients with MPN. In addition, in patients with VTE a positive correlation was found between the numbers of CD54+ CEC and the antithrombin levels, as well as between the CD142+ CEC counts and the number of thrombotic events. CONCLUSIONS: Our study suggests that CEC counts may reveal endothelial injury in patients with VTE and MPN and that CEC may express different activation-related phenotypes depending on the disease status.

  17. Circulating levels of interleukin-6, vascular endothelial growth factor, YKL-40, matrix metalloproteinase-3, and total aggrecan in spondyloarthritis patients during 3 years of treatment with TNFα inhibitors

    Pedersen, Susanne Juhl; Hetland, Merete Lund; Sørensen, Inge Juul

    2010-01-01

    The objectives of the study were to investigate short and long-term changes and relations to treatment response of plasma interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), YKL-40, matrix metalloproteinase-3 (MMP-3), and total aggrecan in patients with spondyloarthritis (SpA) treated...... with tumor necrosis factor-alpha (TNFα) inhibitors and to compare with levels in healthy subjects. Biomarkers were measured in an observational cohort of 49 SpA patients (ankylosing spondylitis, n=32, and psoriatic arthritis, n=17) initiating TNFα inhibitor therapy (infliximab, n=38; etanercept, n=8...

  18. The poster as modernist progenitor

    Katherine Hauser

    2015-12-01

    Full Text Available Ruth E. Iskin’s The Poster: Art, Advertising. Design, and Collecting, 1860s-1900s positions the late-nineteenth-century advertising poster as the progenitor of valued modernist practices typically attached solely to photography and film. Modernist biases separating high art from mass culture account for scholars ignoring posters, however the poster ushered in an innovative reductive graphic style as well as pioneered the notion of multiple originals.

  19. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    Moriya, Takashi J., E-mail: takashi.moriya@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583 (Japan)

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  20. Sources of Hematopoietic Stem and Progenitor Cells and Methods to Optimize Yields for Clinical Cell Therapy.

    Panch, Sandhya R; Szymanski, James; Savani, Bipin N; Stroncek, David F

    2017-08-01

    Bone marrow (BM) aspirates, mobilized peripheral blood, and umbilical cord blood (UCB) have developed as graft sources for hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation and other cellular therapeutics. Individualized techniques are necessary to enhance graft HSPC yields and cell quality from each graft source. BM aspirates yield adequate CD34 + cells but can result in relative delays in engraftment. Granulocyte colony-stimulating factor (G-CSF)-primed BM HSPCs may facilitate faster engraftment while minimizing graft-versus-host disease in certain patient subsets. The levels of circulating HSPCs are enhanced using mobilizing agents, such as G-CSF and/or plerixafor, which act via the stromal cell-derived factor 1/C-X-C chemokine receptor type 4 axis. Alternate niche pathway mediators, including very late antigen-4/vascular cell adhesion molecule-1, heparan sulfate proteoglycans, parathyroid hormone, and coagulation cascade intermediates, may offer promising alternatives for graft enhancement. UCB grafts have been expanded ex vivo with cytokines, notch-ligand, or mesenchymal stromal cells, and most studies demonstrated greater quantities of CD34 + cells ex vivo and improved short-term engraftment. No significant changes were observed in long-term repopulating potential or in patient survival. Early phase clinical trials using nicotinamide and StemReginin1 may offer improved short- and long-term repopulating ability. Breakthroughs in genome editing and stem cell reprogramming technologies may hasten the generation of pooled, third-party HSPC grafts. This review elucidates past, present, and potential future approaches to HSPC graft optimization. Published by Elsevier Inc.

  1. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus

    Brenner Benjamin

    2009-10-01

    Full Text Available Abstract Background The function of endothelial progenitor cells (EPCs, which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD, the enzyme that neutralizes superoxide anion (O2-. Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. Methods The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. Results EPCs from diabetic patients generated more O2-, had higher NAD(PH oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Conclusion Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  2. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus.

    Hamed, Saher; Brenner, Benjamin; Aharon, Anat; Daoud, Deeb; Roguin, Ariel

    2009-10-30

    The function of endothelial progenitor cells (EPCs), which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO) and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD), the enzyme that neutralizes superoxide anion (O2-). Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. EPCs from diabetic patients generated more O2-, had higher NAD(P)H oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  3. Roadmap for cardiovascular circulation model

    Bradley, Christopher P.; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R.; Omholt, Stig W.; Chase, J. Geoffrey; Müller, Lucas O.; Watanabe, Sansuke M.; Blanco, Pablo J.; de Bono, Bernard; Hunter, Peter J.

    2016-01-01

    Abstract Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well‐established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo‐skeletal system. The computational infrastructure for the cardiovascular model should provide for near real‐time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. PMID:27506597

  4. Vascular ultrasound.

    Pilcher, D B; Ricci, M A

    1998-04-01

    Surgeon-interpreted diagnostic ultrasound has become the preferred screening test and often the definitive test for the diagnosis of arterial stenosis, aneurysm, and venous thrombosis. As a modality for surveillance, its noninvasive quality makes it particularly appealing as the test of choice to screen patients for abdominal aortic aneurysms or to perform follow-up examinations on those patients with a carotid endartectomy or in situ bypass grafts. The increasing reliance on intraoperative duplex imaging of vascular procedures demands that the surgeon learn the skills to perform the studies without a technologist or radiologist to interpret the examination.

  5. Vascular dysfunction in preeclampsia.

    Brennan, Lesley J; Morton, Jude S; Davidge, Sandra T

    2014-01-01

    Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro- and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review. © 2013 John Wiley & Sons Ltd.

  6. Association between CYP4F2 genotype and circulating plasma vitamin K concentration in children on chronic warfarin therapy: Possible long-term implications for bone development and vascular health.

    Kampouraki, Emmanouela; Avery, Peter J; Biss, Tina; Kamali, Farhad

    2017-12-01

    Vitamin K is essential, for the activation of clotting proteins, as well as the biosynthesis of osteocalcin in bones and the activation of matrix-Gla protein needed in maintaining vasculature health. Cytochrome p450 4F2 (CYP4F2) enzyme is involved in vitamin K catabolism. Genetic polymorphism in CYP4F2 is thus likely to affect vitamin K systemic availability. We show that children on chronic warfarin therapy have low levels of vitamin K and vitamin K levels are linked to CYP4F2 genotype. Long-term low levels of vitamin K, influenced by CYP4F2 genotype, might affect bone development and vascular health in children on chronic warfarin therapy. © 2017 Wiley Periodicals, Inc.

  7. Proatherogenic pathways leading to vascular calcification

    Mazzini, Michael J.; Schulze, P. Christian

    2006-01-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the western world and atherosclerosis is the major common underlying disease. The pathogenesis of atherosclerosis involves local vascular injury, inflammation and oxidative stress as well as vascular calcification. Vascular calcification has long been regarded as a degenerative process leading to mineral deposition in the vascular wall characteristic for late stages of atherosclerosis. However, recent studies identified vascular calcification in early stages of atherosclerosis and its occurrence has been linked to clinical events in patients with cardiovascular disease. Its degree correlates with local vascular inflammation and with the overall impact and the progression of atherosclerosis. Over the last decade, diverse and highly regulated molecular signaling cascades controlling vascular calcification have been described. Local and circulating molecules such as osteopontin, osteoprogerin, leptin and matrix Gla protein were identified as critical regulators of vascular calcification. We here review the current knowledge on molecular pathways of vascular calcification and their relevance for the progression of cardiovascular disease

  8. The Use of Endothelial Progenitor Cells for the Regeneration of Musculoskeletal and Neural Tissues

    Kamei, Naosuke; Atesok, Kivanc; Ochi, Mitsuo

    2017-01-01

    Endothelial progenitor cells (EPCs) derived from bone marrow and blood can differentiate into endothelial cells and promote neovascularization. In addition, EPCs are a promising cell source for the repair of various types of vascularized tissues and have been used in animal experiments and clinical trials for tissue repair. In this review, we focused on the kinetics of endogenous EPCs during tissue repair and the application of EPCs or stem cell populations containing EPCs for tissue regenera...

  9. Autonomic Regulation of Splanchnic Circulation

    Kathleen A Fraser

    1991-01-01

    Full Text Available The role of the autonomic nervous system in circulatory regulation of the splanchnic organs (stomach, small intestine, colon, liver, pancreas and spleen is reviewed. In general, the sympathetic nervous system is primarily involved in vasoconstriction, while the parasympathetic contributes to vasodilation. Vasoconstriction in the splanchnic circulation appears to be mediated by alpha-2 receptors and vasodilation by activation of primary afferent nerves with subsequent release of vasodilatory peptides, or by stimulation of beta-adrenergic receptors. As well, an important function of the autonomic nervous system is to provide a mechanism by which splanchnic vascular reserve can be mobilized during stress to maintain overall cardiovascular homeostasis.

  10. Microparticle subpopulations are potential markers of disease progression and vascular dysfunction across a spectrum of connective tissue disease

    E.M. McCarthy

    2017-06-01

    The association between circulating MP levels and objective assessment of macro- and microvascular dysfunction within these disease areas suggests that MPs might have a useful role as novel circulating biomarkers of vascular disease within the CTDs.

  11. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Westerweel, Peter E; Teraa, Martin; Rafii, Shahin; Jaspers, Janneke E; White, Ian A; Hooper, Andrea T; Doevendans, Pieter A; Verhaar, Marianne C

    2013-01-01

    Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+)Flk-1(+) EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+) hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  12. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Peter E Westerweel

    Full Text Available Circulating Endothelial Progenitor Cell (EPC levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment.Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+Flk-1(+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+ hematopoietic progenitor cells (HPC and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed.In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro.EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  13. Progenitor's Signatures in Type Ia Supernova Remnants

    Chiotellis, A.; Kosenko, D.; Schure, K.M.; Vink, J.

    2013-01-01

    The remnants of Type Ia supernovae (SNe Ia) can provide important clues about their progenitor histories. We discuss two well-observed supernova remnants (SNRs) that are believed to have resulted from SNe Ia, and use various tools to shed light on the possible progenitor histories. We find that

  14. Pulpal progenitors and dentin repair.

    Harichane, Y; Hirata, A; Dimitrova-Nakov, S; Granja, I; Goldberg, A; Kellermann, O; Poliard, A

    2011-07-01

    Mesenchymal stem cells are present in the dental pulp. They have been shown to contribute to dentin-like tissue formation in vitro and to participate in bone repair after a mandibular lesion. However, their capacity to contribute efficiently to reparative dentin formation after pulp lesion has never been explored. After pulp exposure, we have identified proliferative cells within 3 zones. In the crown, zone I is near the cavity, and zone II corresponds to the isthmus between the mesial and central pulp. In the root, zone III, near the apex, at a distance from the inflammatory site, contains mitotic stromal cells which may represent a source of progenitor cells. Stem-cell-based strategies are promising treatments for tissue injury in dentistry. Our experiments focused on (1) location of stem cells induced to leave their quiescent state early after pulp injury and (2) implantation of pulp progenitors, a substitute for classic endodontic treatments, paving the way for pulp stem-cell-based therapies.

  15. Transplanting oligodendrocyte progenitors into the adult CNS

    Franklin, R.J.M.; Blakemore, W.F.; Cambridge Univ.

    1997-01-01

    This review covers a number of aspects of the behaviour of oligodendrocyte progenitors following transplantation into the adult CNS. First, an account is given of the ability of transplanted oligodendrocyte progenitors, grown in tissue culture in the presence of PDGF and bFGF, to extensively remyelinate focal areas of persistent demyelination. Secondly, we describe how transplanted clonal cell lines of oligodendrocyte progenitors will differentiate in to astrocytes as will oligodendrocytes following transplantation into pathological environments in which both oligodendrocytes and astrocytes are absent, thereby manifesting the bipotentially demonstrable in vitro but not during development. Finally, a series of studies examining the migratory behaviour of transplanted oligodendrocyte progenitors (modelled using the oligodendrocyte progenitor cell line CG4) are described. (author)

  16. Adventitial SCA-1+ Progenitor Cell Gene Sequencing Reveals the Mechanisms of Cell Migration in Response to Hyperlipidemia

    Ioannis Kokkinopoulos

    2017-08-01

    Full Text Available Adventitial progenitor cells, including SCA-1+ and mesenchymal stem cells, are believed to be important in vascular remodeling. It has been shown that SCA-1+ progenitor cells are involved in neointimal hyperplasia of vein grafts, but little is known concerning their involvement in hyperlipidemia-induced atherosclerosis. We employed single-cell sequencing technology on primary adventitial mouse SCA-1+ cells from wild-type and atherosclerotic-prone (ApoE-deficient mice and found that a group of genes controlling cell migration and matrix protein degradation was highly altered. Adventitial progenitors from ApoE-deficient mice displayed an augmented migratory potential both in vitro and in vivo. This increased migratory ability was mimicked by lipid loading to SCA-1+ cells. Furthermore, we show that lipid loading increased miRNA-29b expression and induced sirtuin-1 and matrix metalloproteinase-9 levels to promote cell migration. These results provide direct evidence that blood cholesterol levels influence vascular progenitor cell function, which could be a potential target cell for treatment of vascular disease.

  17. Direct observation of hematopoietic progenitor chimerism in fetal freemartin cattle

    Taponen Juhani

    2007-11-01

    Full Text Available Abstract Background Cattle twins are well known as blood chimeras. However, chimerism in the actual hematopoietic progenitor compartment has not been directly investigated. Here, we analyzed fetal liver of chimeric freemartin cattle by combining a new anti-bovine CD34 antibody and Y-chromosome specific in situ hybridization. Results Bull-derived CD34+ cells were detected in the liver of the female sibling (freemartin at 60 days gestation. The level of bull-derived CD34+ cells was lower in the freemartin than in its male siblings. Bull (Y+ and cow hematopoietic cells often occurred in separate clusters. Around clusters of Y+CD34+ cells, Y+CD34- cells were typically observed. The thymi were also strongly chimeric at 60 days of gestation. Conclusion The fetal freemartin liver contains clusters of bull-derived hematopoietic progenitors, suggesting clonal expansion and differentiation. Even the roots of the hematopoietic system in cattle twins are thus strongly chimeric from the early stages of fetal development. However, the hematopoietic seeding of fetal liver apparently started already before the onset of functional vascular anastomosis.

  18. Intestinal circulation during inhalation anesthesia

    Tverskoy, M.; Gelman, S.; Fowler, K.C.; Bradley, E.L.

    1985-01-01

    This study was designed to evaluate the influence of inhalational agents on the intestinal circulation in an isolated loop preparation. Sixty dogs were studied, using three intestinal segments from each dog. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mmHg. A mixture of 86 Rb and 9-microns spheres labeled with 141 Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A very strong and significant correlation was found between rubidium clearance and microsphere entrapment (r = 0.97, P less than 0.0001). Nitrous oxide anesthesia was accompanied by a higher vascular resistance (VR), lower flow (F), rubidium clearance (Cl-Rb), and microspheres entrapment (Cl-Sph) than pentobarbital anesthesia, indicating that the vascular bed in the intestinal segment was constricted and flow (total and nutritive) decreased. Halothane, enflurane, and isoflurane anesthesia were accompanied by a much lower arteriovenous oxygen content difference (AVDO 2 ) and oxygen uptake than pentobarbital or nitrous oxide. Compared with pentobarbital, enflurane anesthesia was not accompanied by marked differences in VR, F, Cl-Rb, and Cl-Sph; halothane at 2 MAC decreased VR and increased F and Cl-Rb while isoflurane increased VR and decreased F. alpha-Adrenoceptor blockade with phentolamine (1 mg . kg-1) abolished isoflurane-induced vasoconstriction, suggesting that the increase in VR was mediated via circulating catecholamines

  19. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  20. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy.

    Klein, Diana

    2016-01-01

    Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.

  1. Norepinephrine stimulates mobilization of endothelial progenitor cells after limb ischemia.

    Qijun Jiang

    Full Text Available OBJECTIVE: During several pathological processes such as cancer progression, thermal injury, wound healing and hindlimb ischemia, the mobilization of endothelial progenitor cells (EPCs mobilization was enhanced with an increase of sympathetic nerve activity and norepinephrine (NE secretion, yet the cellular and molecular mechanisms involved in the effects of NE on EPCs has less been investigated. METHODS AND RESULTS: EPCs from BMs, peripheral circulation and spleens, the VEGF concentration in BM, skeletal muscle, peripheral circulation and spleen and angiogenesis in ischemic gastrocnemius were quantified in mice with hindlimbs ischemia. Systemic treatment of NE significantly increased EPCs number in BM, peripheral circulation and spleen, VEGF concentration in BM and skeletal muscle and angiogenesis in ischemic gastrocnemius in mice with hind limb ischemia, but did not affair VEGF concentration in peripheral circulation and spleen. EPCs isolated from healthy adults were cultured with NE in vitro to evaluate proliferation potential, migration capacity and phosphorylations of Akt and eNOS signal moleculars. Treatment of NE induced a significant increase in number of EPCs in the S-phase in a dose-dependent manner, as well as migrative activity of EPCs in vitro (p<0.05. The co-treatment of Phentolamine, I127, LY294002 and L-NAME with NE blocked the effects of NE on EPCs proliferation and migration. Treatment with NE significantly increased phosphorylation of Akt and eNOS of EPCs. Addition of phentolamine and I127 attenuated the activation of Akt/eNOS pathway, but metoprolol could not. Pretreatment of mice with either Phentolamine or I127 significantly attenuated the effects of NE on EPCs in vivo, VEGF concentration in BM, skeletal muscle and angiogenesis in ischemic gastrocnemius, but Metoprolol did not. CONCLUSION: These results unravel that sympathetic nervous system regulate EPCs mobilization and their pro-angiogenic capacity via α adrenoceptor

  2. Bioprinting for vascular and vascularized tissue biofabrication.

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  3. Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential

    Cindy J.M. Loomans

    2018-03-01

    Full Text Available Summary: Generating an unlimited source of human insulin-producing cells is a prerequisite to advance β cell replacement therapy for diabetes. Here, we describe a 3D culture system that supports the expansion of adult human pancreatic tissue and the generation of a cell subpopulation with progenitor characteristics. These cells display high aldehyde dehydrogenase activity (ALDHhi, express pancreatic progenitors markers (PDX1, PTF1A, CPA1, and MYC, and can form new organoids in contrast to ALDHlo cells. Interestingly, gene expression profiling revealed that ALDHhi cells are closer to human fetal pancreatic tissue compared with adult pancreatic tissue. Endocrine lineage markers were detected upon in vitro differentiation. Engrafted organoids differentiated toward insulin-positive (INS+ cells, and circulating human C-peptide was detected upon glucose challenge 1 month after transplantation. Engrafted ALDHhi cells formed INS+ cells. We conclude that adult human pancreatic tissue has potential for expansion into 3D structures harboring progenitor cells with endocrine differentiation potential. : In the context of β cell replacement therapy for diabetes, de Koning and colleagues describe a 3D culture platform that supports ex vivo expansion of human pancreatic tissue as organoids. These organoids harbor a subpopulation of ALDHhi cells that display proliferative capacity and can differentiate to an endocrine fate. Keywords: pancreas, organoid, human, ALDH, endocrine differentiation, beta cells, insulin, progenitor, fetal, diabetes

  4. Capture of circulatory endothelial progenitor cells and accelerated re-endothelialization of a bio-engineered stent in human ex vivo shunt and rabbit denudation model

    K. Larsen (Katarína); C. Cheng (Caroline (Ka Lai)); D. Tempel (Dennie); S. Parker (Sherry); S. Yazdani (Saami); W.K. den Dekker (Wijnand); H.J. Houtgraaf (Jaco); R. de Jong (Renate); S. Swager-ten Hoor (Stijn); E. Ligtenberg (Erik); S.R. Hanson (Stephen); R. Rowland (Steve); F. Kolodgie (Frank); P.W.J.C. Serruys (Patrick); R. Virmani (Renu); H.J. Duckers (Henricus)

    2012-01-01

    textabstractThe Genous™ Bio-engineered R™ stent (GS) aims to promote vascular healing by capture of circulatory endothelial progenitor cells (EPCs) to the surface of the stent struts, resulting in accelerated re-endothelialization. Here, we assessed the function of the GS in comparison to bare-metal

  5. Human Migratory Meniscus Progenitor Cells Are Controlled via the TGF-β Pathway

    Muhammad, Hayat; Schminke, Boris; Bode, Christa; Roth, Moritz; Albert, Julius; von der Heyde, Silvia; Rosen, Vicki; Miosge, Nicolai

    2014-01-01

    Summary Degeneration of the knee joint during osteoarthritis often begins with meniscal lesions. Meniscectomy, previously performed extensively after meniscal injury, is now obsolete because of the inevitable osteoarthritis that occurs following this procedure. Clinically, meniscus self-renewal is well documented as long as the outer, vascularized meniscal ring remains intact. In contrast, regeneration of the inner, avascular meniscus does not occur. Here, we show that cartilage tissue harvested from the avascular inner human meniscus during the late stages of osteoarthritis harbors a unique progenitor cell population. These meniscus progenitor cells (MPCs) are clonogenic and multipotent and exhibit migratory activity. We also determined that MPCs are likely to be controlled by canonical transforming growth factor β (TGF-β) signaling that leads to an increase in SOX9 and a decrease in RUNX2, thereby enhancing the chondrogenic potential of MPC. Therefore, our work is relevant for the development of novel cell biological, regenerative therapies for meniscus repair. PMID:25418724

  6. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    Jantzen, Kim; Møller, Peter Horn; Karottki, Dorina Gabriela

    2016-01-01

    . Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate......Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked...... to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related...

  7. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension.

    Stenmark, Kurt R; Frid, Maria G; Graham, Brian B; Tuder, Rubin M

    2018-03-15

    Pulmonary hypertension (PH) is the end result of interaction between pulmonary vascular tone and a complex series of cellular and molecular events termed 'vascular remodelling'. The remodelling process, which can involve the entirety of pulmonary arterial vasculature, almost universally involves medial thickening, driven by increased numbers and hypertrophy of its principal cellular constituent, smooth muscle cells (SMCs). It is noted, however that SMCs comprise heterogeneous populations of cells, which can exhibit markedly different proliferative, inflammatory, and extracellular matrix production changes during remodelling. We further consider that these functional changes in SMCs of different phenotype and their role in PH are dynamic and may undergo significant changes over time (which we will refer to as cellular plasticity); no single property can account for the complexity of the contribution of SMC to pulmonary vascular remodelling. Thus, the approaches used to pharmacologically manipulate PH by targeting the SMC phenotype(s) must take into account processes that underlie dominant phenotypes that drive the disease. We present evidence for time- and location-specific changes in SMC proliferation in various animal models of PH; we highlight the transient nature (rather than continuous) of SMC proliferation, emphasizing that the heterogenic SMC populations that reside in different locations along the pulmonary vascular tree exhibit distinct responses to the stresses associated with the development of PH. We also consider that cells that have often been termed 'SMCs' may arise from many origins, including endothelial cells, fibroblasts and resident or circulating progenitors, and thus may contribute via distinct signalling pathways to the remodelling process. Ultimately, PH is characterized by long-lived, apoptosis-resistant SMC. In line with this key pathogenic characteristic, we address the acquisition of a pro-inflammatory phenotype by SMC that is essential

  8. Effects of ouabain on vascular reactivity

    Vassallo D.V.

    1997-04-01

    Full Text Available Ouabain is an endogenous substance occurring in the plasma in the nanomolar range, that has been proposed to increase vascular resistance and induce hypertension. This substance acts on the a-subunit of Na+,K+-ATPase inhibiting the Na+-pump activity. In the vascular smooth muscle this effect leads to intracellular Na+ accumulation that reduces the activity of the Na+/Ca2+ exchanger and to an increased vascular tone. It was also suggested that circulating ouabain, even in the nanomolar range, sensitizes the vascular smooth muscle to vasopressor substances. We tested the latter hypothesis by studying the effects of ouabain in the micromolar and nanomolar range on phenylephrine (PE-evoked pressor responses. The experiments were performed in normotensive and hypertensive rats in vivo, under anesthesia, and in perfused rat tail vascular beds. The results showed that ouabain pretreatment increased the vasopressor responses to PE in vitro and in vivo. This sensitization after ouabain treatment was also observed in hypertensive animals which presented an enhanced vasopressor response to PE in comparison to normotensive animals. It is suggested that ouabain at nanomolar concentrations can sensitize vascular smooth muscle to vasopressor stimuli possibly contributing to increased tone in hypertension

  9. Depletion of NAD pool contributes to impairment of endothelial progenitor cell mobilization in diabetes.

    Wang, Pei; Yang, Xi; Zhang, Zheng; Song, Jie; Guan, Yun-Feng; Zou, Da-Jin; Miao, Chao-Yu

    2016-06-01

    The impaired mobilization of endothelial progenitor cells (EPCs) from bone marrow (BM) critically contributes to the diabetes-associated vascular complications. Here, we investigated the relationship between the nicotinamide phosphoribosyltransferase (NAMPT)-controlled nicotinamide adenine dinucleotide (NAD) metabolism and the impaired mobilization of BM-derived EPCs in diabetic condition. The NAMPT-NAD pool in BM and BM-derived EPCs in wild-type (WT) and diabetic db/db mice was determined. Nicotinamide, a natural substrate for NAD biosynthesis, was administrated for 2weeks in db/db mice to examine the influence of enhancing NAD pool on BM and blood EPCs number. The modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein in BM were measured using immunoblotting. The EPCs intracellular NAMPT level and NAD concentration, as well as the blood EPCs number, were compared between 9 healthy people and 16 patients with type 2 diabetes mellitus (T2DM). The T2DM patients were treated with nicotinamide for two weeks and then the blood EPCs number was determined. Moreover, the association between blood EPCs numbers and EPCs intracellular NAD(+)/NAMPT protein levels in 21 healthy individuals was determined. We found that NAD concentration and NAMPT expression in BM and BM-derived EPCs of db/db mice were significantly lower than those in WT mice BM. Enhancing NAD pool not only increased the EPCs intracellular NAD concentration and blood EPCs number, but also improved post-ischemic wound healing and blood reperfusion in db/db mice with hind-limb ischemia model. Enhancing NAD pool rescued the impaired modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein levels in db/db mice BM upon hind-limb ischemia. In addition, enhancing NAD pool significantly inhibited PARP and caspase-3 activates in db/db mice BM. The intracellular NAMPT-NAD pool was positively associated with blood

  10. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling

    Qishan Chen

    2013-01-01

    Full Text Available Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs, and vascular smooth muscle cells (VSMCs and its interaction with extracellular matrix (ECM play a critical role in the processes. Matrix metalloproteinases (MMPs, well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential.

  11. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1

    Zhou, Bo O; Ding, Lei; Morrison, Sean J

    2015-01-01

    Hematopoietic stem cells (HSCs) are maintained by a perivascular niche in bone marrow but it is unclear whether the niche is reciprocally regulated by HSCs. Here, we systematically assessed the expression and function of Angiopoietin-1 (Angpt1) in bone marrow. Angpt1 was not expressed by osteoblasts. Angpt1 was most highly expressed by HSCs, and at lower levels by c-kit+ hematopoietic progenitors, megakaryocytes, and Leptin Receptor+ (LepR+) stromal cells. Global conditional deletion of Angpt1, or deletion from osteoblasts, LepR+ cells, Nes-cre-expressing cells, megakaryocytes, endothelial cells or hematopoietic cells in normal mice did not affect hematopoiesis, HSC maintenance, or HSC quiescence. Deletion of Angpt1 from hematopoietic cells and LepR+ cells had little effect on vasculature or HSC frequency under steady-state conditions but accelerated vascular and hematopoietic recovery after irradiation while increasing vascular leakiness. Hematopoietic stem/progenitor cells and LepR+ stromal cells regulate niche regeneration by secreting Angpt1, reducing vascular leakiness but slowing niche recovery. DOI: http://dx.doi.org/10.7554/eLife.05521.001 PMID:25821987

  12. Deleterious effects of tributyltin on porcine vascular stem cells physiology.

    Bernardini, Chiara; Zannoni, Augusta; Bertocchi, Martina; Bianchi, Francesca; Salaroli, Roberta; Botelho, Giuliana; Bacci, Maria Laura; Ventrella, Vittoria; Forni, Monica

    2016-01-01

    The vascular functional and structural integrity is essential for the maintenance of the whole organism and it has been demonstrated that different types of vascular progenitor cells resident in the vessel wall play an important role in this process. The purpose of the present research was to observe the effect of tributyltin (TBT), a risk factor for vascular disorders, on porcine Aortic Vascular Precursor Cells (pAVPCs) in term of cytotoxicity, gene expression profile, functionality and differentiation potential. We have demonstrated that pAVPCs morphology deeply changed following TBT treatment. After 48h a cytotoxic effect has been detected and Annexin binding assay demonstrated that TBT induced apoptosis. The transcriptional profile of characteristic pericyte markers has been altered: TBT 10nM substantially induced alpha-SMA, while, TBT 500nM determined a significant reduction of all pericyte markers. IL-6 protein detected in the medium of pAVPCs treated with TBT at both doses studied and with a dose response. TBT has interfered with normal pAVPC functionality preventing their ability to support a capillary-like network. In addition TBT has determined an increase of pAVPC adipogenic differentiation. In conclusion in the present paper we have demonstrated that TBT alters the vascular stem cells in terms of structure, functionality and differentiating capability, therefore effects of TBT in blood should be deeply explored to understand the potential vascular risk associated with the alteration of vascular stem cell physiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Arterial vascularization of the pineal gland.

    Kahilogullari, Gokmen; Ugur, Hasan Caglar; Comert, Ayhan; Brohi, Recep Ali; Ozgural, Onur; Ozdemir, Mevci; Karahan, Suleyman Tuna

    2013-10-01

    The arterial vascularization of the pineal gland (PG) remains a debatable subject. This study aims to provide detailed information about the arterial vascularization of the PG. Thirty adult human brains were obtained from routine autopsies. Cerebral arteries were separately cannulated and injected with colored latex. The dissections were carried out using a surgical microscope. The diameters of the branches supplying the PG at their origin and vascularization areas of the branches of the arteries were investigated. The main artery of the PG was the lateral pineal artery, and it originated from the posterior circulation. The other arteries included the medial pineal artery from the posterior circulation and the rostral pineal artery mainly from the anterior circulation. Posteromedial choroidal artery was an important artery that branched to the PG. The arterial supply to the PG was studied comprehensively considering the debate and inadequacy of previously published studies on this issue available in the literature. This anatomical knowledge may be helpful for surgical treatment of pathologies of the PG, especially in children who develop more pathology in this region than adults.

  14. Heterogeneity of limbal basal epithelial progenitor cells.

    Hayashida, Yasutaka; Li, Wei; Chen, Ying-Ting; He, Hua; Chen, Szu-yu; Kheirkah, Ahmad; Zhu, Ying-Tien; Matsumoto, Yukihiro; Tseng, Scheffer C G

    2010-11-01

    Although corneal epithelial stem cells (SCs) are located at the limbus between the cornea and the conjunctiva, not all limbal basal epithelial cells are SCs. Using 2 dispase digestions to remove different amounts of limbal basal epithelial cells for cross-sections, flat mounts, and cytospin preparations, double immunostaining to pancytokeratins (PCK) and vimentin (Vim) identified 3 p63+ epithelial progenitors such as PCK-/Vim+, PCK/Vim, and PCK-/Vim+ and 1 p63+ mesenchymal cell, PCK-/Vim+. PCK-/Vim- progenitors had the smallest cell size were 10-20 times more enriched on collagen I-coated dishes in the 5-minute rapid adherent fraction that contained the highest percentage of p63+ cells but the lowest percentage of cytokeratin12+ cells, and gave rise to high Ki67 labeling and vivid clonal growth. In contrast, PCK+/Vim+ and PCK+/Vim- progenitors were found more in the slow-adherent fraction and yielded poor clonal growth. PCK/Vim progenitors and clusters of PCK-/Vim+ mesenchymal cells, which were neither melanocytes nor Langerhans cells, were located in the limbal basal region. Therefore, differential expression of PCK and Vim helps identify small PCK-/Vim- cells as the most likely candidate for SCs among a hierarchy of heterogeneous limbal basal progenitors, and their close association with PCK-/Vim+ presumed "niche" cells.

  15. Rosuvastatin reduces atherosclerotic lesions and promotes progenitor cell mobilisation and recruitment in apolipoprotein E knockout mice.

    Schroeter, Marco R; Humboldt, Tim; Schäfer, Katrin; Konstantinides, Stavros

    2009-07-01

    Statins enhance incorporation of bone marrow-derived cells into experimental neointimal lesions. However, the contribution of progenitor cells to progression of spontaneous atherosclerotic plaques, and the possible modulatory role of statins in this process, remain poorly understood. We compared the effects of rosuvastatin (1 and 10mg/kg BW) and pravastatin (10mg/kg) on progenitor cell mobilisation, recruitment into atherosclerotic plaques, and lesion growth. Statins were administered over 8 weeks to apolipoprotein E knockout mice on atherogenic diet. In addition, mice were lethally irradiated, followed by transplantation of bone marrow from LacZ transgenic mice. Rosuvastatin reduced lesion area and intima-to-media ratio at the brachiocephalic artery compared to vehicle, while both parameters were not significantly altered by pravastatin. Rosuvastatin also augmented endothelialisation (P<0.05) and reduced the smooth muscle cells (SMC) content (P=0.042) of lesions. Numbers of c-kit, sca-1 and flk-1, sca-1 double-positive progenitor cells were significantly increased in rosuvastatin compared to control-treated mice, both in the bone marrow and the peripheral blood. Similarly, the number of spleen-derived acLDL, lectin double-positive progenitor cells (P=0.001) and colony-forming units (P=0.0104) was significantly increased in mice treated with rosuvastatin compared to vehicle alone. In the bone marrow, increased Akt and p42/44 MAP kinase phosphorylation and upregulated SDF1alpha mRNA expression were observed. Importantly, rosuvastatin treatment also increased the plasma levels of c-kit ligand (P=0.003), and the number of c-kit-positive cells within atherosclerotic lesions (P=0.041). Our findings suggest that rosuvastatin reduces the size of atherosclerotic plaques, and this effect appears to involve progenitor cell mobilisation and recruitment into vascular lesions.

  16. The relation of near-infrared spectroscopy with changes in peripheral circulation in critically ill patients

    Lima, Alexandre; van Bommel, Jasper; Sikorska, Karolina; van Genderen, Michel; Klijn, Eva; Lesaffre, Emmanuel; Ince, Can; Bakker, Jan

    2011-01-01

    We conducted this observational study to investigate tissue oxygen saturation during a vascular occlusion test in relationship with the condition of peripheral circulation and outcome in critically ill patients. Prospective observational study. Multidisciplinary intensive care unit in a university

  17. Revascularization of diaphyseal bone segments by vascular bundle implantation.

    Nagi, O N

    2005-11-01

    Vascularized bone transfer is an effective, established treatment for avascular necrosis and atrophic or infected nonunions. However, limited donor sites and technical difficulty limit its application. Vascular bundle transplantation may provide an alternative. However, even if vascular ingrowth is presumed to occur in such situations, its extent in aiding revascularization for ultimate graft incorporation is not well understood. A rabbit tibia model was used to study and compare vascularized, segmental, diaphyseal, nonvascularized conventional, and vascular bundle-implanted grafts with a combination of angiographic, radiographic, histopathologic, and bone scanning techniques. Complete graft incorporation in conventional grafts was observed at 6 months, whereas it was 8 to 12 weeks with either of the vascularized grafts. The pattern of radionuclide uptake and the duration of graft incorporation between vascular segmental bone grafts (with intact endosteal blood supply) and vascular bundle-implanted segmental grafts were similar. A vascular bundle implanted in the recipient bone was found to anastomose extensively with the intraosseous circulation at 6 weeks. Effective revascularization of bone could be seen when a simple vascular bundle was introduced into a segment of bone deprived of its normal blood supply. This simple technique offers promise for improvement of bone graft survival in clinical circumstances.

  18. Haemopoietic progenitor cells in human peripheral blood

    Zwaan, F.E.

    1980-01-01

    The purpose of the investigation reported is to purify haemopoietic progenitor cells from human peripheral blood using density gradient centrifugation in order to isolate a progenitor cell fraction without immunocompetent cells. The purification technique of peripheral blood flow colony forming unit culture (CFU-c) by means of density gradient centrifugation and a combined depletion of various rosettes is described. The results of several 'in vitro' characteristics of purified CFU-c suspensions and of the plasma clot diffusion chamber culture technique are presented. Irradiation studies revealed that for both human bone marrow and peripheral blood the CFU-c were less radioresistant than clusters. Elimination of monocytes (and granulocytes) from the test suspensions induced an alteration in radiosensitivity pararmeters. The results obtained with the different techniques are described by analysing peripheral progenitor cell activity in myeloproliferative disorders. (Auth.)

  19. X Inactivation and Progenitor Cancer Cells

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  20. Specialized mouse embryonic stem cells for studying vascular development.

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  1. Microwave circulator design

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  2. Nanomedicine approaches in vascular disease: a review.

    Gupta, Anirban Sen

    2011-12-01

    Nanomedicine approaches have revolutionized the treatment of cancer and vascular diseases, where the limitations of rapid nonspecific clearance, poor biodistribution and harmful side effects associated with direct systemic drug administration can be overcome by packaging the agents within sterically stabilized, long-circulating nanovehicles that can be further surface-modified with ligands to actively target cellular/molecular components of the disease. With significant advancements in genetics, proteomics, cellular and molecular biology and biomaterials engineering, the nanomedicine strategies have become progressively refined regarding the modulation of surface and bulk chemistry of the nanovehicles, control of drug release kinetics, manipulation of nanoconstruct geometry and integration of multiple functionalities on single nanoplatforms. The current review aims to capture the various nanomedicine approaches directed specifically toward vascular diseases during the past two decades. Analysis of the promises and limitations of these approaches will help identify and optimize vascular nanomedicine systems to enhance their efficacy and clinical translation in the future. Nanomedicine-based approaches have had a major impact on the treatment and diagnosis of malignancies and vascular diseases. This review discusses various nanomedicine approaches directed specifically toward vascular diseases during the past two decades, highlighting their advantages, limitations and offering new perspectives on future applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Cataclysmic Variables as Supernova Ia Progenitors

    Stella Kafka

    2012-06-01

    Full Text Available Although the identification of the progenitors of type Ia supernovae (SNeIa remains controversial, it is generally accepted that they originate from binary star systems in which at least one component is a carbon-oxygen white dwarf (WD; those systems are grouped under the wide umbrella of cataclysmic variables. Current theories for SNeIa progenitors hold that, either via Roche lobe overflow of the companion or via a wind, the WD accumulates hydrogen or helium rich material which is then burned to C and O onto the WD’s surface. However, the specifics of this scenario are far from being understood or defined, allowing for a wealth of theories fighting for attention and a dearth of observations to support them. I discuss the latest attempts to identify and study those controversial SNeIa progenitors. I also introduce the most promising progenitor in hand and I present observational diagnostics that can reveal more members of the category.

  4. Cardiac Progenitor Cell Extraction from Human Auricles

    Di Nardo, Paolo; Pagliari, Francesca

    2017-01-01

    by precursor cells mostly embedded into the heart apex and in the atria. We have shown that an elective region of progenitor cell embedding is represented by the auricles, non-contractile atria appendages that can be easily sampled without harming the patient

  5. SUPERNOVA REMNANT PROGENITOR MASSES IN M31

    Jennings, Zachary G.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Weisz, Daniel R. [Department of Astronomy, University of Washington Seattle, Box 351580, WA 98195 (United States); Murphy, Jeremiah W. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Dolphin, Andrew E., E-mail: zachjenn@uw.edu, E-mail: adolphin@raytheon.com [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States)

    2012-12-10

    Using Hubble Space Telescope photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main-sequence masses (M{sub ZAMS}) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and employ CMD fitting to measure the recent star formation history of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star, then assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the M{sub ZAMS} from this age. Because our technique is not contingent on identification or precise location of the progenitor star, it can be applied to the location of any known SNRs. We identify significant young star formation around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of {approx}2 increase over currently measured progenitor masses. We consider the remaining six SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. In general, the distribution of recovered progenitor masses is bottom-heavy, showing a paucity of the most massive stars. If we assume a single power-law distribution, dN/dM{proportional_to}M{sup {alpha}}, then we find a distribution that is steeper than a Salpeter initial mass function (IMF) ({alpha} = -2.35). In particular, we find values of {alpha} outside the range -2.7 {>=} {alpha} {>=} -4.4 to be inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, then we find that values of M{sub Max} > 26 are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a

  6. Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins

    Suzanne R. Kalb

    2017-06-01

    Full Text Available Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs, toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC, alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH, and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC, but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.

  7. Regulatory Systems in Bone Marrow for Hematopoietic Stem/Progenitor Cells Mobilization and Homing

    P. Alvarez

    2013-01-01

    Full Text Available Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a the role of different factors, such as stromal cell derived factor-1 (SDF-1, granulocyte colony-stimulating factor (G-CSF, and vascular cell adhesion molecule-1 (VCAM-1, among other ligands; (b the stem cell count in peripheral blood and BM and influential factors; (c the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases.

  8. Folic acid supplementation normalizes the endothelial progenitor cell transcriptome of patients with type 1 diabetes: a case-control pilot study

    Stubbs Andrew

    2009-08-01

    Full Text Available Abstract Background Endothelial progenitor cells play an important role in vascular wall repair. Patients with type 1 diabetes have reduced levels of endothelial progenitor cells of which their functional capacity is impaired. Reduced nitric oxide bioavailability and increased oxidative stress play a role in endothelial progenitor cell dysfunction in these patients. Folic acid, a B-vitamin with anti-oxidant properties, may be able to improve endothelial progenitor cell function. In this study, we investigated the gene expression profiles of endothelial progenitor cells from patients with type 1 diabetes compared to endothelial progenitor cells from healthy subjects. Furthermore, we studied the effect of folic acid on gene expression profiles of endothelial progenitor cells from patients with type 1 diabetes. Methods We used microarray analysis to investigate the gene expression profiles of endothelial progenitor cells from type 1 diabetes patients before (n = 11 and after a four week period of folic acid supplementation (n = 10 compared to the gene expression profiles of endothelial progenitor cells from healthy subjects (n = 11. The probability of genes being differentially expressed among the classes was computed using a random-variance t-test. A multivariate permutation test was used to identify genes that were differentially expressed among the two classes. Functional classification of differentially expressed genes was performed using the biological process ontology in the Gene Ontology database. Results Type 1 diabetes significantly modulated the expression of 1591 genes compared to healthy controls. These genes were found to be involved in processes regulating development, cell communication, cell adhesion and localization. After folic acid treatment, endothelial progenitor cell gene expression profiles from diabetic patients were similar to those from healthy controls. Genes that were normalized by folic acid played a prominent role in

  9. Circulation pump mounting

    Skalicky, A.

    1976-01-01

    The suspension is described of nuclear reactor circulating pumps enabling their dilatation with a minimum reverse force consisting of spacing rods supported with one end in the anchor joints and provided with springs and screw joints engaging the circulating pump shoes. The spacing rods are equipped with side vibration dampers anchored in the shaft side wall and on the body of the circulating pump drive body. The negative reverse force F of the spacing rods is given by the relation F=Q/l.y, where Q is the weight of the circulating pump, l is the spatial distance between the shoe joints and anchor joints, and y is the deflection of the circulating pump vertical axis from the mean equilibrium position. The described suspension is advantageous in that that the reverse force for the deflection from the mean equilibrium position is minimal, dynamic behaviour is better, and construction costs are lower compared to suspension design used so far. (J.B.)

  10. [Circulating endothelial cells: biomarkers for monitoring activity of antiangiogenic therapy].

    Farace, Françoise; Bidart, Jean-Michel

    2007-07-01

    Tumor vessel formation is largely dependent on the recruitment of endothelial cells. Rare in healthy individuals, circulating endothelial cells (CEC) are shed from vessel walls and enter the circulation reflecting endothelial damage or dysfunction. Increased numbers of CEC have been documented in different types of cancer. Recent studies have suggested the role for CEC in tumor angiogenesis, but whose presence could also reflect normal endothelium perturbation in cancer. Originating from the bone marrow rather than from vessel walls, endothelial progenitor cells (EPC) are mobilized following tissue ischemia and may be recruited to complement local angiogenesis supplied by existing endothelium. Recently, studies in mouse models suggest that the circulating fraction of endothelial progenitors (CEP) is involved in tumor angiogenesis but their contribution is less clear in humans. The detection of CEC and CEP is difficult and impeded by the rarity of these cells. They may have important clinical implication as novel biomarkers susceptible to predict more efficiently and rapidly the therapeutic response to anti-angiogenic treatments. However, a methodological consensus would be necessary in order to correctly evaluate the clinical interest of CEC and CEP in patients.

  11. Panax Notoginseng Saponins Promote Endothelial Progenitor Cell Mobilization and Attenuate Atherosclerotic Lesions in Apolipoprotein E Knockout Mice

    Ya Liu

    2013-09-01

    Full Text Available Background: Endothelial progenitor cells (EPCs derived from the bone marrow (BM play a key role in the homeostasis of vascular repair by enhanced reendothelialization. Panax notoginseng saponins (PNS, a highly valued traditional Chinese medicine, has been shown to reduce morbidity and mortality from coronary artery disease. The present research was designed to explore the contribution of progenitor cells to the progression of atherosclerotic plaques and the possible modulatory role of PNS in this process. Methods: PNS (60 or 120 mg/kg via intraperitoneal injection was administered over 8 weeks in apolipoprotein E knockout mice on an atherogenic diet. The sizes and histochemical alteration of atherosclerotic lesions and numbers of EPCs in BM and peripheral blood were analyzed. The expression of chemokine stromal cell-derived factor 1α (SDF-1α and its receptor, CXCR4, was monitored as well. Results: PNS significantly reduced the lesion area and intima-to-media ratio compared to vehicle treatment. PNS also augmented endothelialization and reduced the smooth muscle cell (SMCs content of the lesions. The number of c-kit and sca-1 double-positive progenitor cells and flk-1 and sca-1 double-positive progenitor cells were significantly increased in the BM and the peripheral blood of the PNS-treated groups. PNS treatment increased the plasma levels of SDF-1α and SCF as well as the BM levels of matrix metalloproteinase-9 (MMP-9. Moreover, the mRNA levels of SDF-1α and protein levels of CXCR4 were both increased in the BM of mice treated with PNS, while SDF-1α expression decreased. Conclusion: PNS reduce the size of atherosclerotic plaques, and this effect appears to involve progenitor cell mobilization. SDF-1α-CXCR4 interactions and the possible modulatory role of PNS in this process may contribute to the increased progenitor cell mobilization.

  12. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    Yu, Cai-Guo; Zhang, Ning; Yuan, Sha-Sha; Ma, Yan; Yang, Long-Yan; Feng, Ying-Mei; Zhao, Dong

    2016-01-01

    Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs) in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF) treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on "VEGF uncoupling with nitric oxide" and "competitive angiopoietin 1/angiopoietin 2" mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics.

  13. Origin of hemopoietic stromal progenitor cells in chimeras

    Chertkov, J.L.; Drize, N.J.; Gurevitch, O.A.; Samoylova, R.S.

    1985-01-01

    Intravenously injected bone marrow cells do not participate in the regeneration of hemopoietic stromal progenitors in irradiated mice, nor in the curetted parts of the recipient's marrow. The hemopoietic stromal progenitors in allogeneic chimeras are of recipient origin. The adherent cell layer (ACL) of long-term cultures of allogeneic chimera bone marrow contains only recipient hemopoietic stromal progenitors. However, in ectopic hemopoietic foci produced by marrow implantation under the renal capsule and repopulated by the recipient hemopoietic cells after irradiation and reconstitution by syngeneic hemopoietic cells, the stromal progenitors were of implant donor origin, as were stromal progenitors of the ACL in long-term cultures of hemopoietic cells from ectopic foci. Our results confirm that the stromal and hemopoietic progenitors differ in origin and that hemopoietic stromal progenitors are not transplantable by the intravenous route in mice

  14. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Lawrence J.; Bower, Amy S.; Kö hl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-01-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented

  15. Portal pressure correlated to visceral circulation times

    Friman, L [Serafimerlasarettet, Stockholm (Sweden)

    1979-01-01

    Visceral angiography was performed in 7 patients with normal portal pressure and in 10 with portal hypertension. Circulation times, size of vessels and portal pressure were determined. At celiac angiography, a direct correlation was found between time for maximum filling of portal vein and portal pressure, provided no vascular abnormalities existed. At superior mesenteric angiography such a correlation was not found; loss of flow by shunts in portal hypertension being one explanation. Portocaval shunts are common in the celiac system, but uncommon in the superior mesenteric system.

  16. Portal pressure correlated to visceral circulation times

    Friman, L.

    1979-01-01

    Visceral angiography was performed in 7 patients with normal portal pressure and in 10 with portal hypertension. Circulation times, size of vessels and portal pressure were determined. At celiac angiography, a direct correlation was found between time for maximum filling of portal vein and portal pressure, provided no vascular abnormalities existed. At superior mesenteric angiography such a correlation was not found; loss of flow by shunts in portal hypertension being one explanation. Portocaval shunts are common in the celiac system, but uncommon in the superior mesenteric system. (Auth.)

  17. Remodeling the Vascular Microenvironment of Glioblastoma with α-Particles.

    Behling, Katja; Maguire, William F; Di Gialleonardo, Valentina; Heeb, Lukas E M; Hassan, Iman F; Veach, Darren R; Keshari, Kayvan R; Gutin, Philip H; Scheinberg, David A; McDevitt, Michael R

    2016-11-01

    Tumors escape antiangiogenic therapy by activation of proangiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We previously investigated targeted α-particle therapy with 225 Ac-E4G10 as an antivascular approach and showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here, we investigated changes in tumor vascular morphology and functionality caused by 225 Ac-E4G10. We investigated remodeling of the tumor microenvironment in transgenic Ntva glioblastoma mice using a therapeutic 7.4-kBq dose of 225 Ac-E4G10. Immunofluorescence and immunohistochemical analyses imaged morphologic changes in the tumor blood-brain barrier microenvironment. Multicolor flow cytometry quantified the endothelial progenitor cell population in the bone marrow. Diffusion-weighted MR imaged functional changes in the tumor vascular network. The mechanism of drug action is a combination of remodeling of the glioblastoma vascular microenvironment, relief of edema, and depletion of regulatory T and endothelial progenitor cells. The primary remodeling event is the reduction of both endothelial and perivascular cell populations. Tumor-associated edema and necrosis were lessened, resulting in increased perfusion and reduced diffusion. Pharmacologic uptake of dasatinib into tumor was enhanced after α-particle therapy. Targeted antivascular α-particle radiation remodels the glioblastoma vascular microenvironment via a multimodal mechanism of action and provides insight into the vascular architecture of platelet-derived growth factor-driven glioblastoma. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. Prognostic Value of CD109+ Circulating Endothelial Cells in Recurrent Glioblastomas Treated with Bevacizumab and Irinotecan

    Cuppini, Lucia; Calleri, Angelica; Bruzzone, Maria Grazia; Prodi, Elena; Anghileri, Elena; Pellegatta, Serena; Mancuso, Patrizia; Porrati, Paola; Di Stefano, Anna Luisa; Ceroni, Mauro; Bertolini, Francesco; Finocchiaro, Gaetano; Eoli, Marica

    2013-01-01

    Background Recent data suggest that circulating endothelial and progenitor cells (CECs and CEPs, respectively) may have predictive potential in cancer patients treated with bevacizumab, the antibody recognizing vascular endothelial growth factor (VEGF). Here we report on CECs and CEPs investigated in 68 patients affected by recurrent glioblastoma (rGBM) treated with bevacizumab and irinotecan and two Independent Datasets of rGBM patients respectively treated with bevacizumab alone (n=32, independent dataset A: IDA) and classical antiblastic chemotherapy (n=14, independent dataset B: IDB). Methods rGBM patients with KPS ≥50 were treated until progression, as defined by MRI with RANO criteria. CECs expressing CD109, a marker of tumor endothelial cells, as well as other CEC and CEP subtypes, were investigated by six-color flow cytometry. Results A baseline count of CD109+ CEC higher than 41.1/ml (1st quartile) was associated with increased progression free survival (PFS; 20 versus 9 weeks, P=0.008) and overall survival (OS; 32 versus 23 weeks, P=0.03). Longer PFS (25 versus 8 weeks, P=0.02) and OS (27 versus 17 weeks, P=0.03) were also confirmed in IDA with CD109+ CECs higher than 41.1/ml but not in IDB. Patients treated with bevacizumab with or without irinotecan that were free from MRI progression after two months of treatment had significant decrease of CD109+ CECs: median PFS was 19 weeks; median OS 29 weeks. The presence of two non-contiguous lesions (distant disease) at baseline was an independent predictor of shorter PFS and OS (P<0.001). Conclusions Data encourage further studies on the predictive potential of CD109+ CECs in GBM patients treated with bevacizumab. PMID:24069296

  19. Effects of extracellular matrix proteins on the growth of haematopoietic progenitor cells

    Celebi, Betuel; Pineault, Nicolas; Mantovani, Diego

    2011-01-01

    Umbilical cord blood (UCB) transplantation and haematological recovery are currently limited by the amount of haematopoietic progenitor cells (HPCs) present in each unit. HPCs and haematopoietic stem cells (HSCs) normally interact with cells and extracellular matrix (ECM) proteins present within the endosteal and vascular niches. Hence, we investigated whether coating of culture surfaces with ECM proteins normally present in the marrow microenvironment could benefit the ex vivo expansion of HPCs. Towards this, collagen types I and IV (COL I and IV), laminin (LN) and fibronectin (FN) were tested individually or as component of two ECM-mix complexes. Individually, ECM proteins had both common and unique properties on the growth and differentiation of UCB CD34+ cells; some ECM proteins favoured the differentiation of some lineages over that of others (e.g. FN for erythroids), some the expansion of HPCs (e.g. LN and megakaryocyte (MK) progenitor) while others had less effects. Next, two ECM-mix complexes were tested; the first one contained all four ECM proteins (4ECMp), while the second 'basement membrane-like structure' was without COL I (3ECMp). Removal of COL I led to strong reductions in cell growth and HPCs expansion. Interestingly, the 4ECMp-mix complex reproducibly increased CD34+ (1.3-fold) and CD41+ (1.2-fold) cell expansions at day 6 (P < 0.05) versus control, and induced greater myeloid progenitor expansion (P < 0.05) than 3ECMp. In conclusion, these results suggest that optimization of BM ECM protein complexes could provide a better environment for the ex vivo expansion of haematopoietic progenitors than individual ECM protein.

  20. Effects of extracellular matrix proteins on the growth of haematopoietic progenitor cells

    Celebi, Betuel; Pineault, Nicolas [Hema-Quebec, Research and Development Department, Quebec City, G1V 5C3, PQ (Canada); Mantovani, Diego, E-mail: nicolas.pineault@hema-quebec.qc.ca [Laboratory for Biomaterials and Bioengineering, Department of Materials Engineering and University Hospital Research Center, Laval University, Quebec City, G1V 0A6, PQ (Canada)

    2011-10-15

    Umbilical cord blood (UCB) transplantation and haematological recovery are currently limited by the amount of haematopoietic progenitor cells (HPCs) present in each unit. HPCs and haematopoietic stem cells (HSCs) normally interact with cells and extracellular matrix (ECM) proteins present within the endosteal and vascular niches. Hence, we investigated whether coating of culture surfaces with ECM proteins normally present in the marrow microenvironment could benefit the ex vivo expansion of HPCs. Towards this, collagen types I and IV (COL I and IV), laminin (LN) and fibronectin (FN) were tested individually or as component of two ECM-mix complexes. Individually, ECM proteins had both common and unique properties on the growth and differentiation of UCB CD34+ cells; some ECM proteins favoured the differentiation of some lineages over that of others (e.g. FN for erythroids), some the expansion of HPCs (e.g. LN and megakaryocyte (MK) progenitor) while others had less effects. Next, two ECM-mix complexes were tested; the first one contained all four ECM proteins (4ECMp), while the second 'basement membrane-like structure' was without COL I (3ECMp). Removal of COL I led to strong reductions in cell growth and HPCs expansion. Interestingly, the 4ECMp-mix complex reproducibly increased CD34+ (1.3-fold) and CD41+ (1.2-fold) cell expansions at day 6 (P < 0.05) versus control, and induced greater myeloid progenitor expansion (P < 0.05) than 3ECMp. In conclusion, these results suggest that optimization of BM ECM protein complexes could provide a better environment for the ex vivo expansion of haematopoietic progenitors than individual ECM protein.

  1. Hematopoietic Stem and Progenitor Cells as Effectors in Innate Immunity

    Jennifer L. Granick

    2012-01-01

    Full Text Available Recent research has shed light on novel functions of hematopoietic stem and progenitor cells (HSPC. While they are critical for maintenance and replenishment of blood cells in the bone marrow, these cells are not limited to the bone marrow compartment and function beyond their role in hematopoiesis. HSPC can leave bone marrow and circulate in peripheral blood and lymph, a process often manipulated therapeutically for the purpose of transplantation. Additionally, these cells preferentially home to extramedullary sites of inflammation where they can differentiate to more mature effector cells. HSPC are susceptible to various pathogens, though they may participate in the innate immune response without being directly infected. They express pattern recognition receptors for detection of endogenous and exogenous danger-associated molecular patterns and respond not only by the formation of daughter cells but can themselves secrete powerful cytokines. This paper summarizes the functional and phenotypic characterization of HSPC, their niche within and outside of the bone marrow, and what is known regarding their role in the innate immune response.

  2. Assembly and function of the botulinum neurotoxin progenitor complex.

    Gu, Shenyan; Jin, Rongsheng

    2013-01-01

    Botulinum neurotoxins (BoNTs) are among the most poisonous substances known to man, but paradoxically, BoNT-containing medicines and cosmetics have been used with great success in the clinic. Accidental BoNT poisoning mainly occurs through oral ingestion of food contaminated with Clostridium botulinum. BoNTs are naturally produced in the form of progenitor toxin complexes (PTCs), which are high molecular weight (up to ~900 kDa) multiprotein complexes composed of BoNT and several non-toxic neurotoxin-associated proteins (NAPs). NAPs protect the inherently fragile BoNTs against the hostile environment of the gastrointestinal (GI) tract and help BoNTs pass through the intestinal epithelial barrier before they are released into the general circulation. These events are essential for ingested BoNTs to gain access to motoneurons, where they inhibit neurotransmitter release and cause muscle paralysis. In this review, we discuss the structural basis for assembly of NAPs and BoNT into the PTC that protects BoNT and facilitate its delivery into the bloodstream.

  3. SH2-inositol phosphatase 1 negatively influences early megakaryocyte progenitors.

    Lia E Perez

    Full Text Available The SH2-containing-5'inositol phosphatase-1 (SHIP influences signals downstream of cytokine/chemokine receptors that play a role in megakaryocytopoiesis, including thrombopoietin, stromal-cell-derived-Factor-1/CXCL-12 and interleukin-3. We hypothesize that SHIP might control megakaryocytopoiesis through effects on proliferation of megakaryocyte progenitors (MKP and megakaryocytes (MK.Herein, we report the megakaryocytic phenotype and MK functional assays of hematopoietic organs of two strains of SHIP deficient mice with deletion of the SHIP promoter/first exon or the inositol phosphatase domain. Both SHIP deficient strains exhibit a profound increase in MKP numbers in bone marrow (BM, spleen and blood as analyzed by flow cytometry (Lin(-c-Kit+CD41+ and functional assays (CFU-MK. SHIP deficient MKP display increased phosphorylation of Signal Transducers and Activators of Transcription 3 (STAT-3, protein kinase B (PKB/AKT and extracellular signal-regulated kinases (ERKs. Despite increased MKP content, total body number of mature MK (Lin(-c-kit(-CD41+ are not significantly changed as SHIP deficient BM contains reduced MK while spleen MK numbers are increased. Reduction of CXCR-4 expression in SHIP deficient MK may influence MK localization to the spleen instead of the BM. Endomitosis, process involved in MK maturation, was preserved in SHIP deficient MK. Circulating platelets and red blood cells are also reduced in SHIP deficient mice.SHIP may play an important role in regulation of essential signaling pathways that control early megakaryocytopoiesis in vivo.

  4. Vascular grading of angiogenesis

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  5. Vascular grading of angiogenesis

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  6. Role of the Vasa Vasorum and Vascular Resident Stem Cells in Atherosclerosis

    Jun-ichi Kawabe

    2014-01-01

    Full Text Available Atherosclerosis is considered an “inside-out” response, that begins with the dysfunction of intimal endothelial cells and leads to neointimal plaque formation. The adventitia of large blood vessels has been recognized as an active part of the vessel wall that is involved in the process of atherosclerosis. There are characteristic changes in the adventitial vasa vasorum that are associated with the development of atheromatous plaques. However, whether vasa vasorum plays a causative or merely reactive role in the atherosclerotic process is not completely clear. Recent studies report that the vascular wall contains a number of stem/progenitor cells that may contribute to vascular remodeling. Microvessels serve as the vascular niche that maintains the resident stem/progenitor cells of the tissue. Therefore, the vasa vasorum may contribute to vascular remodeling through not only its conventional function as a blood conducting tube, but also its new conceptual function as a stem cell reservoir. This brief review highlights the recent advances contributing to our understanding of the role of the adventitial vasa vasorum in the atherosclerosis and discusses new concept that involves vascular-resident factors, the vasa vasorum and its associated vascular-resident stem cells, in the atherosclerotic process.

  7. Atherosclerosis is a vascular stem cell disease caused by insulin.

    Traunmüller, Friederike

    2018-07-01

    The present article proposes the hypothesis that when multipotent vascular stem cells are exposed to excessive insulin in a rhythmic pattern of sharply rising and falling concentrations, their differentiation is misdirected toward adipogenic and osteogenic cell lineages. This results in plaque-like accumulation of adipocytes with fat and cholesterol deposition from adipocyte debris, and osteogenic (progenitor) cells with a calcified matrix in advanced lesions. The ingrowth of capillaries and infiltration with macrophages, which upon uptake of lipids turn into foam cells, are unspecific pro-resolving reactions. Epidemiological, histopathological, pharmacological, and experimental evidence in favour of this hypothesis is summarised. Copyright © 2018. Published by Elsevier Ltd.

  8. THE AGES OF TYPE Ia SUPERNOVA PROGENITORS

    Brandt, Timothy D.; Aubourg, Eric; Strauss, Michael A.; Tojeiro, Rita; Heavens, Alan; Jimenez, Raul

    2010-01-01

    Using light curves and host galaxy spectra of 101 Type Ia supernovae (SNe Ia) with redshift z ∼ 2.4 Gyr. We find that each channel contributes roughly half of the Type Ia rate in our reference sample. We also construct the average spectra of high-stretch and low-stretch SN Ia host galaxies, and find that the difference of these spectra looks like a main-sequence B star with nebular emission lines indicative of star formation. This supports our finding that there are two populations of SNe Ia, and indicates that the progenitors of high-stretch supernovae are at the least associated with very recent star formation in the last few tens of Myr. Our results provide valuable constraints for models of Type Ia progenitors and may help improve the calibration of SNe Ia as standard candles.

  9. Interneuron progenitor transplantation to treat CNS dysfunction

    Muhammad O Chohan

    2016-08-01

    Full Text Available Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field.

  10. Arterial vascularization patterns of the splenium: An anatomical study.

    Kahilogullari, G; Comert, A; Ozdemir, M; Brohi, R A; Ozgural, O; Esmer, A F; Egemen, N; Karahan, S T

    2013-09-01

    The aim of this study was to provide detailed information about the arterial vascularization of the splenium of the corpus callosum (CC). The splenium is unique in that it is part of the largest commissural tract in the brain and a region in which pathologies are seen frequently. An exact description of the arterial vascularization of this part of the CC remains under debate. Thirty adult human brains (60 hemispheres) were obtained from routine autopsies. Cerebral arteries were separately cannulated and injected with colored latex. Then, the brains were fixed in formaldehyde, and dissections were performed using a surgical microscope. The diameter of the arterial branches supplying the splenium of the CC at their origin was investigated, and the vascularization patterns of these branches were observed. Vascular supply to the splenium was provided by the anterior pericallosal artery (40%) from the anterior circulation and by the posterior pericallosal artery (88%) and posterior accessory pericallosal artery (50%) from the posterior circulation. The vascularization pattern of the splenium differs in each hemisphere and is usually supplied by multiple branches. The arterial vascularization of the splenium of the CC was studied comprehensively considering the ongoing debate and the inadequacy of the studies on this issue currently available in the literature. This anatomical knowledge is essential during the treatment of pathologies in this region and especially for splenial arteriovenous malformations.

  11. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Observational Investigations of the Progenitors of Supernovae

    Lyman, J. D.

    2014-03-01

    Supernovae (SNe) are the spectacular deaths of stars and have shaped the universe we see today. Their far-reaching influence affects the chemical and dynamical evolution of galaxies, star formation, neutron star and black hole formation, and they are largely responsible for most of the heavy elements that make up the universe, including around 90 per cent of the reader. They also provide laboratories of nuclear and particle physics far beyond what we can construct on Earth and act as probes of extreme density and energy. This thesis presents new research into understanding the nature of the progenitor systems of various types of SNe, as well as presenting results that will allow their study to be more productive in the future, through use of automated pipelines and methods to increase the science value of discovered SNe. An environmental study of two peculiar types of transients ('Calcium-rich' and '2002cx-like'), which may not be true SNe, reveals extremely different ages of the exploding systems that will constrain the current theoretical effort into discovering the progenitor systems. The GRB-SN 120422A/2012bz is investigated and found to be an extremely luminous and energetic SN, even amongst the infamously bright GRB-SNe. A method is presented that allows an accurate reconstruction of the bolometric light curve of a core-collapse SN, which relies on only two optical filter observations - this will hugely reduce the observational cost of constructing bolometric light curves, a tool of great importance when hoping to constrain the nature of a SN explosion and hence its progenitor. Finally, this method is utilised to construct the largest bolometric CCSN bolometric light curve sample to date, and these are analytically modelled to reveal population statistics of the explosions, thus informing on the nature of the progenitors.

  13. Design of biomimetic vascular grafts with magnetic endothelial patterning.

    Fayol, Delphine; Le Visage, Catherine; Ino, Julia; Gazeau, Florence; Letourneur, Didier; Wilhelm, Claire

    2013-01-01

    The development of small diameter vascular grafts with a controlled pluricellular organization is still needed for effective vascular tissue engineering. Here, we describe a technological approach combining a tubular scaffold and magnetically labeled cells to create a pluricellular and organized vascular graft, the endothelialization of which could be monitored by MRI prior to transplantation. A novel type of scaffold was developed with a tubular geometry and a porous bulk structure enabling the seeding of cells in the scaffold pores. A homogeneous distribution of human mesenchymal stem cells in the macroporous structure was obtained by seeding the freeze-dried scaffold with the cell suspension. The efficient covering of the luminal surface of the tube was then made possible thanks to the implementation of a magnetic-based patterning technique. Human endothelial cells or endothelial progenitors were magnetically labeled with iron oxide nanoparticles and successfully attracted to the 2-mm lumen where they attached and formed a continuous endothelium. The combination of imaging modalities [fluorescence imaging, histology, and 3D magnetic resonance imaging (MRI)] evidenced the integrity of the vascular construct. In particular, the observation of different cell organizations in a vascular scaffold within the range of resolution of single cells by 4.7 T MRI is reported.

  14. EVOLUTION OF PROGENITORS FOR ELECTRON CAPTURE SUPERNOVAE

    Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi

    2013-01-01

    We provide progenitor models for electron capture supernovae (ECSNe) with detailed evolutionary calculation. We include minor electron capture nuclei using a large nuclear reaction network with updated reaction rates. For electron capture, the Coulomb correction of rates is treated and the contribution from neutron-rich isotopes is taken into account in each nuclear statistical equilibrium (NSE) composition. We calculate the evolution of the most massive super asymptotic giant branch stars and show that these stars undergo off-center carbon burning and form ONe cores at the center. These cores become heavier up to the critical mass of 1.367 M ☉ and keep contracting even after the initiation of O+Ne deflagration. Inclusion of minor electron capture nuclei causes convective URCA cooling during the contraction phase, but the effect on the progenitor evolution is small. On the other hand, electron capture by neutron-rich isotopes in the NSE region has a more significant effect. We discuss the uniqueness of the critical core mass for ECSNe and the effect of wind mass loss on the plausibility of our models for ECSN progenitors.

  15. Shexiang Baoxin pills promotes angiogenesis in myocardial infarction rats via up-regulation of 20-HETE-mediated endothelial progenitor cells mobilization.

    Huang, Feifei; Liu, Yang; Yang, Xia; Che, Di; Qiu, Kaifeng; Hammock, Bruce D; Wang, Jingfeng; Wang, Mong-Heng; Chen, Jie; Huang, Hui

    2017-08-01

    Therapeutic angiogenesis is a pivotal strategy for ischemic heart disease. The aim of the present study was to determine the effect and molecular mechanism of Shexiang Baoxin pills, a widely-used traditional Chinese medicine for ischemic heart disease, on angiogenesis in a rat model of myocardial infarction (MI). We used the occlusion of left anterior descending coronary artery of Sprague-Dawley rats as a model of MI. The MI rats were treated with distilled water, Shexiang Baoxin pills, or Shexiang Baoxin pills + HET0016 (a selective blocker of the biosynthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) at 10 mg/kg/day), respectively. Sham-operated rats were used as controls. Treatment with Shexiang Baoxin pills increases the level of serum 20-HETE in MI rats, which can be suppressed by HET0016 treatment. Shexiang Baoxin pills shows cardio-protective effects on MI rats, including improving cardiac function, decreasing infarction area, and promoting angiogenesis in peri-infarct area. The protective effects of Shexiang Baoxin pills are partly inhibited by HET0016. Furthermore, Shexiang Baoxin pills enhances the number of circulating endothelial progenitor cells (EPCs) and the expression of the vascular endothelial growth factor (VEGF), based on immunohistochemical analysis, in peri-infarct area of MI rats, which is partly suppressed by HET0016. Shexiang Baoxin pills may partially participate in angiogenesis in MI rats. The protective mechanism of Shexiang Baoxin pills may be mediated via up-regulation of 20-HETE, which promotes EPCs mobilization and VEGF expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Chemokine receptors CXCR2 and CX3CR1 differentially regulate functional responses of bone-marrow endothelial progenitors during atherosclerotic plaque regression

    Herlea-Pana, Oana; Yao, Longbiao; Heuser-Baker, Janet; Wang, Qiongxin; Wang, Qilong; Georgescu, Constantin; Zou, Ming-Hui; Barlic-Dicen, Jana

    2015-01-01

    Aims Atherosclerosis manifests itself as arterial plaques, which lead to heart attacks or stroke. Treatments supporting plaque regression are therefore aggressively pursued. Studies conducted in models in which hypercholesterolaemia is reversible, such as the Reversa mouse model we have employed in the current studies, will be instrumental for the development of such interventions. Using this model, we have shown that advanced atherosclerosis regression occurs when lipid lowering is used in combination with bone-marrow endothelial progenitor cell (EPC) treatment. However, it remains unclear how EPCs home to regressing plaques and how they augment atherosclerosis reversal. Here we identify molecules that support functional responses of EPCs during plaque resolution. Methods and results Chemokines CXCL1 and CX3CL1 were detected in the vascular wall of atheroregressing Reversa mice, and their cognate receptors CXCR2 and CX3CR1 were observed on adoptively transferred EPCs in circulation. We tested whether CXCL1–CXCR2 and CX3CL1–CX3CR1 axes regulate functional responses of EPCs during plaque reversal. We show that pharmacological inhibition of CXCR2 or CX3CR1, or genetic inactivation of these two chemokine receptors interfered with EPC-mediated advanced atherosclerosis regression. We also demonstrate that CXCR2 directs EPCs to regressing plaques while CX3CR1 controls a paracrine function(s) of these cells. Conclusion CXCR2 and CX3CR1 differentially regulate EPC functional responses during atheroregression. Our study improves understanding of how chemokines and chemokine receptors regulate plaque resolution, which could determine the effectiveness of interventions reducing complications of atherosclerosis. PMID:25765938

  17. Complications impaired endothelial progenitor cell function in Type 2 diabetic patients with or without critical leg ischaemia: implication for impaired neovascularization in diabetes.

    Chen, M-C; Sheu, J-J; Wang, P-W; Chen, C-Y; Kuo, M-C; Hsieh, C-J; Chen, J-F; Chang, H-W

    2009-02-01

    This study tested the hypothesis that migratory function of endothelial progenitor cells (EPCs) is impaired in Type 2 diabetic patients with or without critical leg ischaemia. Seventy-four patients were classified into four groups: Type 2 diabetic (n = 21) and non-diabetic patients (n = 10) with critical leg ischaemia and Type 2 diabetic patients without lower extremity vascular disease (n = 30) and healthy subjects (n = 13). The number and functional activity of circulating and cultured EPCs were determined. The migratory function of cultured EPCs was significantly impaired in diabetic patients without (median, 48, interquartile range, 46, 49 count/view/well) and with (median, 51, interquartile range, 46, 60 count/view/well) critical leg ischaemia and non-diabetic patients with critical leg ischaemia (median, 49, interquartile range, 47, 55 count/view/well) compared with healthy subjects (median, 63, interquartile range, 57, 65 count/view/well) (P interquartile range, 1600, 6600/10(6) cytometric events) than Type 2 diabetic patients with critical leg ischaemia (median, 5300, interquartile range, 2400, 11,100/10(6) cytometric events), non-diabetic patients with critical leg ischaemia (median, 5550, interquartile range, 2000, 32,100/10(6) cytometric events) and healthy subjects (median, 5400, interquartile range, 2700, 8700/10(6) cytometric events) (P = 0.413). The migratory function of EPCs is impaired in patients with Type 2 diabetes, even in those without critical leg ischaemia. These findings present an important new insight into the pathogenesis of impaired neovascularization and critical limb ischaemia in diabetic patients and provide avenues of future clinical study.

  18. Vascular Access in Children

    Krishnamurthy, Ganesh; Keller, Marc S.

    2011-01-01

    Establishment of stable vascular access is one of the essential and most challenging procedures in a pediatric hospital. Many clinical specialties provide vascular service in a pediatric hospital. At the top of the “expert procedural pyramid” is the pediatric interventional radiologist, who is best suited and trained to deliver this service. Growing awareness regarding the safety and high success rate of vascular access using image guidance has led to increased demand from clinicians to provide around-the-clock vascular access service by pediatric interventional radiologists. Hence, the success of a vascular access program, with the pediatric interventional radiologist as the key provider, is challenging, and a coordinated multidisciplinary team effort is essential for success. However, there are few dedicated pediatric interventional radiologists across the globe, and also only a couple of training programs exist for pediatric interventions. This article gives an overview of the technical aspects of pediatric vascular access and provides useful tips for obtaining vascular access in children safely and successfully using image guidance.

  19. Pediatric vascular access

    Donaldson, James S.

    2006-01-01

    Pediatric interventional radiologists are ideally suited to provide vascular access services to children because of inherent safety advantages and higher success from using image-guided techniques. The performance of vascular access procedures has become routine at many adult interventional radiology practices, but this service is not as widely developed at pediatric institutions. Although interventional radiologists at some children's hospitals offer full-service vascular access, there is little or none at others. Developing and maintaining a pediatric vascular access service is a challenge. Interventionalists skilled in performing such procedures are limited at pediatric institutions, and institutional support from clerical staff, nursing staff, and technologists might not be sufficiently available to fulfill the needs of such a service. There must also be a strong commitment by all members of the team to support such a demanding service. There is a slippery slope of expected services that becomes steeper and steeper as the vascular access service grows. This review is intended primarily as general education for pediatric radiologists learning vascular access techniques. Additionally, the pediatric or adult interventional radiologist seeking to expand services might find helpful tips. The article also provides education for the diagnostic radiologist who routinely interprets radiographs containing vascular access devices. (orig.)

  20. Vascular malformations in pediatrics

    Reith, W.; Shamdeen, M.G.

    2003-01-01

    Vascular malformations are the cause of nearly all non-traumatic intracranial hemorrhage in children beyond the neonatal stage. Therefore, any child presenting with spontaneous intracranial hemorrhage should be evaluated for child abuse and for vascular malformations. Intracerebral malformations of the cerebral vasculature include vein of Galen malformations, arteriovenous malformation (AVM), cavernomas, dural arteriovenous fistulas, venous anomalies (DVA), and capillary teleangiectasies. Although a few familial vascular malformation have been reported, the majority are sporadic. Clinical symptoms, diagnostic and therapeutic options are discussed. (orig.) [de

  1. Molecular mechanisms of maternal vascular dysfunction in preeclampsia.

    Goulopoulou, Styliani; Davidge, Sandra T

    2015-02-01

    In preeclampsia, as a heterogeneous syndrome, multiple pathways have been proposed for both the causal as well as the perpetuating factors leading to maternal vascular dysfunction. Postulated mechanisms include imbalance in the bioavailability and activity of endothelium-derived contracting and relaxing factors and oxidative stress. Studies have shown that placenta-derived factors [antiangiogenic factors, microparticles (MPs), cell-free nucleic acids] are released into the maternal circulation and act on the vascular wall to modify the secretory capacity of endothelial cells and alter the responsiveness of vascular smooth muscle cells to constricting and relaxing stimuli. These molecules signal their deleterious effects on the maternal vascular wall via pathways that provide the molecular basis for novel and effective therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Diffuse corpus callosum infarction - Rare vascular entity with differing etiology.

    Mahale, Rohan; Mehta, Anish; Buddaraju, Kiran; John, Aju Abraham; Javali, Mahendra; Srinivasa, Rangasetty

    2016-01-15

    Infarctions of the corpus callosum are rare vascular events. It is relatively immune to vascular insult because of its rich vascular supply from anterior and posterior circulations of brain. Report of 3 patients with largely diffuse acute corpus callosum infarction. 3 patients with largely diffuse acute corpus callosum infarction were studied and each of these 3 patients had 3 different aetiologies. The 3 different aetiologies of largely diffuse acute corpus callosum infarction were cardioembolism, tuberculous arteritis and takayasu arteritis. Diffuse corpus callosum infarcts are rare events. This case series narrates the three different aetiologies of diffuse acute corpus callosum infarction which is a rare vascular event. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Biomaterial-mediated strategies targeting vascularization for bone repair.

    García, José R; García, Andrés J

    2016-04-01

    Repair of non-healing bone defects through tissue engineering strategies remains a challenging feat in the clinic due to the aversive microenvironment surrounding the injured tissue. The vascular damage that occurs following a bone injury causes extreme ischemia and a loss of circulating cells that contribute to regeneration. Tissue-engineered constructs aimed at regenerating the injured bone suffer from complications based on the slow progression of endogenous vascular repair and often fail at bridging the bone defect. To that end, various strategies have been explored to increase blood vessel regeneration within defects to facilitate both tissue-engineered and natural repair processes. Developments that induce robust vascularization will need to consolidate various parameters including optimization of embedded therapeutics, scaffold characteristics, and successful integration between the construct and the biological tissue. This review provides an overview of current strategies as well as new developments in engineering biomaterials to induce reparation of a functional vascular supply in the context of bone repair.

  4. Vascularized bone transplant chimerism mediated by vascular endothelial growth factor.

    Willems, Wouter F; Larsen, Mikko; Friedrich, Patricia F; Bishop, Allen T

    2015-01-01

    Vascular endothelial growth factor (VEGF) induces angiogenesis and osteogenesis in bone allotransplants. We aim to determine whether bone remodeling in VEGF-treated bone allotransplants results from repopulation with circulation-derived autogenous cells or survival of allogenic transplant-derived cells. Vascularized femoral bone transplants were transplanted from female Dark Agouti rats (DA;RT1(a) ) to male Piebald Viral Glaxo (PVG;RT1(c) ). Arteriovenous bundle implantation and short-term immunosuppression were used to maintain cellular viability. VEGF was encapsulated in biodegradable microspheres and delivered intramedullary in the experimental group (n = 22). In the control group (n = 22), no VEGF was delivered. Rats were sacrificed at 4 or 18 weeks. Laser capture microdissection of bone remodeling areas was performed at the inner and outer cortex. Sex-mismatched genes were quantified with reverse transcription-polymerase chain reaction to determine the amount of male cells to total cells, defined as the relative expression ratio (rER). At 4 weeks, rER was significantly higher at the inner cortex in VEGF-treated transplants as compared to untreated transplants (0.622 ± 0.225 vs. 0.362 ± 0.081, P = 0.043). At 4 weeks, the outer cortex in the control group had a significantly higher rER (P = 0.038), whereas in the VEGF group, the inner cortex had a higher rER (P = 0.015). Over time, in the outer cortex the rER significantly increased to 0.634 ± 0.106 at 18 weeks in VEGF-treated rats (P = 0.049). At 18 weeks, the rER was >0.5 at all cortical areas in both groups. These in vivo findings suggest a chemotactic effect of intramedullary applied VEGF on recipient-derived bone and could imply that more rapid angiogenesis of vascularized allotransplants can be established with microencapsulated VEGF. © 2014 Wiley Periodicals, Inc.

  5. Uterine Vascular Lesions

    Vijayakumar, Abhishek; Srinivas, Amruthashree; Chandrashekar, Babitha Moogali; Vijayakumar, Avinash

    2013-01-01

    Vascular lesions of the uterus are rare; most reported in the literature are arteriovenous malformations (AVMs). Uterine AVMs can be congenital or acquired. In recent years, there has been an increasing number of reports of acquired vascular lesions of the uterus following pregnancy, abortion, cesarean delivery, and curettage. It can be seen from these reports that there is confusion concerning the terminology of uterine vascular lesions. There is also a lack of diagnostic criteria and management guidelines, which has led to an increased number of unnecessary invasive procedures (eg, angiography, uterine artery embolization, hysterectomy for abnormal vaginal bleeding). This article familiarizes readers with various vascular lesions of the uterus and their management. PMID:24340126

  6. Magnetic resonance vascular imaging

    Axel, L

    1989-01-01

    The basis principles of MRI are reviewed in order to understand how blood flow effects arise in conventional imaging. Then some of the ways these effects have ben used in MRI techniques specifically designed for vascular imaging, are considered. (author)

  7. Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development.

    Hilton, Matthew J; Tu, Xiaolin; Cook, Julie; Hu, Hongliang; Long, Fanxin

    2005-10-01

    Indian hedgehog (Ihh) controls multiple aspects of endochondral skeletal development, including proliferation and maturation of chondrocytes, osteoblast development and cartilage vascularization. Although it is known that Gli transcription factors are key effectors of hedgehog signaling, it has not been established which Gli protein mediates Ihh activity in skeletal development. Here, we show that removal of Gli3 in Ihh-null mouse embryos restored normal proliferation and maturation of chondrocytes, but only partially rescued the defects in osteoblast development and cartilage vascularization. Remarkably, in both Ihh-/- and Ihh-/-; Gli3-/- embryos, vascularization promoted osteoblast development in perichondrial progenitor cells. Our results not only establish Gli3 as a critical effector for Ihh activity in the developing skeleton, but also identify an osteogenic role for a vasculature-derived signal, which integrates with Ihh and Wnt signals to determine the osteoblast versus chondrocyte fate in the mesenchymal progenitors.

  8. The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration

    Rivera, Francisco J.; Silva, Maria Elena; Aigner, Ludwig

    2017-01-01

    Editorial on the Research Topic The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration In mammals, although regeneration is quite restricted to a number of tissues and organs, this particular healing process is possible through the existence of tissue-resident stem/progenitor cells. Upon injury, these cells are activated, they proliferate, migrate, and differentiate into tissue-specific cells and functionally replace the damaged or lost cells. Besides this, angio...

  9. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors.

    Butler, Jason M; Kobayashi, Hideki; Rafii, Shahin

    2010-02-01

    The precise mechanisms whereby anti-angiogenesis therapy blocks tumour growth or causes vascular toxicity are unknown. We propose that endothelial cells establish a vascular niche that promotes tumour growth and tissue repair not only by delivering nutrients and O2 but also through an 'angiocrine' mechanism by producing stem and progenitor cell-active trophogens. Identification of endothelial-derived instructive angiocrine factors will allow direct tumour targeting, while diminishing the unwanted side effects associated with the use of anti-angiogenic agents.

  10. Improving the characterization of endothelial progenitor cell subsets by an optimized FACS protocol.

    Karin Huizer

    Full Text Available The characterization of circulating endothelial progenitor cells (EPCs is fundamental to any study related to angiogenesis. Unfortunately, current literature lacks consistency in the definition of EPC subsets due to variations in isolation strategies and inconsistencies in the use of lineage markers. Here we address critical points in the identification of hematopoietic progenitor cells (HPCs, circulating endothelial cells (CECs, and culture-generated outgrowth endothelial cells (OECs from blood samples of healthy adults (AB and umbilical cord (UCB. Peripheral blood mononuclear cells (PBMCs were enriched using a Ficoll-based gradient followed by an optimized staining and gating strategy to enrich for the target cells. Sorted EPC populations were subjected to RT-PCR for tracing the expression of markers beyond the limits of cell surface-based immunophenotyping. Using CD34, CD133 and c-kit staining, combined with FSC and SSC, we succeeded in the accurate and reproducible identification of four HPC subgroups and found significant differences in the respective populations in AB vs. UCB. Co-expression analysis of endothelial markers on HPCs revealed a complex pattern characterized by various subpopulations. CECs were identified by using CD34, KDR, CD45, and additional endothelial markers, and were subdivided according to their apoptotic state and expression of c-kit. Comparison of UCB-CECs vs. AB-CECs revealed significant differences in CD34 and KDR levels. OECs were grown from PBMC-fractions We found that viable c-kit+ CECs are a candidate circulating precursor for CECs. RT-PCR to angiogenic factors and receptors revealed that all EPC subsets expressed angiogenesis-related molecules. Taken together, the improvements in immunophenotyping and gating strategies resulted in accurate identification and comparison of better defined cell populations in a single procedure.

  11. EMMPRIN-Mediated Induction of Uterine and Vascular Matrix Metalloproteinases during Pregnancy and in Response to Estrogen and Progesterone

    Dang, Yiping; Li, Wei; Tran, Victoria; Khalil, Raouf A.

    2013-01-01

    Pregnancy is associated with uteroplacental and vascular remodeling in order to adapt for the growing fetus and the hemodynamic changes in the maternal circulation. We have previously shown upregulation of uterine matrix metalloproteinases (MMPs) during pregnancy. Whether pregnancy-associated changes in MMPs are localized to the uterus or are generalized in feto-placental and maternal circulation is unclear. Also, the mechanisms causing the changes in uteroplacental and vascular MMPs during p...

  12. Cell Therapy Applications for Retinal Vascular Diseases: Diabetic Retinopathy and Retinal Vein Occlusion.

    Park, Susanna S

    2016-04-01

    Retinal vascular conditions, such as diabetic retinopathy and retinal vein occlusion, remain leading causes of vision loss. No therapy exists to restore vision loss resulting from retinal ischemia and associated retinal degeneration. Tissue regeneration is possible with cell therapy. The goal would be to restore or replace the damaged retinal vasculature and the retinal neurons that are damaged and/or degenerating from the hypoxic insult. Currently, various adult cell therapies have been explored as potential treatment. They include mesenchymal stem cells, vascular precursor cells (i.e., CD34+ cells, hematopoietic cells or endothelial progenitor cells), and adipose stromal cells. Preclinical studies show that all these cells have a paracrine trophic effect on damaged ischemic tissue, leading to tissue preservation. Endothelial progenitor cells and adipose stromal cells integrate into the damaged retinal vascular wall in preclinical models of diabetic retinopathy and ischemia-reperfusion injury. Mesenchymal stem cells do not integrate as readily but appear to have a primary paracrine trophic effect. Early phase clinical trials have been initiated and ongoing using mesenchymal stem cells or autologous bone marrow CD34+ cells injected intravitreally as potential therapy for diabetic retinopathy or retinal vein occlusion. Adipose stromal cells or pluripotent stem cells differentiated into endothelial colony-forming cells have been explored in preclinical studies and show promise as possible therapies for retinal vascular disorders. The relative safety or efficacy of these various cell therapies for treating retinal vascular disorders have yet to be determined.

  13. Effect of prepro-calcitonin gene-related peptide-expressing endothelial progenitor cells on pulmonary hypertension.

    Zhao, Qiang; Liu, Zixiong; Wang, Zhe; Yang, Cheng; Liu, Jun; Lu, Jun

    2007-08-01

    Calcitonin gene-related peptide (CGRP) is a potent smooth muscle cell proliferation inhibitor and vasodilator. It is now believed that CGRP plays an important role in maintaining a low pulmonary vascular resistance. We evaluated the therapeutic effect of intravenously administered CGRP-expressing endothelial progenitor cells (EPCs) on left-to-right shunt-induced pulmonary hypertension in rats. Endothelial progenitor cells were obtained from cultured human peripheral blood mononuclear cells. The genetic sequence for CGRP was subcloned into cultured EPCs by human expression plasmid. Pulmonary hypertension was established in immunodeficient rats with an abdominal aorta to inferior vena cava shunt operation. The transfected EPCs were injected through the left jugular vein at 10 weeks after the shunt operation. Mean pulmonary artery pressure and total pulmonary vascular resistance were detected with right cardiac catheterization at 4 weeks. The distribution of EPCs in the lung tissue was examined with immunofluorescence technique. Histopathologic changes in the structure of the pulmonary arteries was observed with electron microscopy and subjected to computerized image analysis. The lungs of rats transplanted with CGRP-expressing EPCs demonstrated a decrease in both mean pulmonary artery pressure (17.64 +/- 0.79 versus 22.08 +/- 0.95 mm Hg; p = 0.018) and total pulmonary vascular resistance (1.26 +/- 0.07 versus 2.45 +/- 0.18 mm Hg x min/mL; p = 0.037) at 4 weeks. Immunofluorescence revealed that intravenously administered cells were incorporated into the pulmonary vasculature. Pulmonary vascular remodeling was remarkably attenuated with the administration of CGRP-expressing EPCs. The transplantation of CGRP-expressing EPCs may effectively attenuate established pulmonary hypertension and exert reversal effects on pulmonary vascular remodeling. Our findings suggest that the therapy based on the combination of both CGRP transfection and EPCs may be a potentially useful

  14. Cilostazol activates function of bone marrow-derived endothelial progenitor cell for re-endothelialization in a carotid balloon injury model.

    Rie Kawabe-Yako

    Full Text Available BACKGROUND: Cilostazol(CLZ has been used as a vasodilating anti-platelet drug clinically and demonstrated to inhibit proliferation of smooth muscle cells and effect on endothelial cells. However, the effect of CLZ on re-endothelialization including bone marrow (BM-derived endothelial progenitor cell (EPC contribution is unclear. We have investigated the hypothesis that CLZ might accelerate re-endothelialization with EPCs. METHODOLOGY/PRINCIPAL FINDINGS: Balloon carotid denudation was performed in male Sprague-Dawley rats. CLZ group was given CLZ mixed feed from 2 weeks before carotid injury. Control group was fed normal diet. CLZ accelerated re-endothelialization at 2 weeks after surgery and resulted in a significant reduction of neointima formation 4 weeks after surgery compared with that in control group. CLZ also increased the number of circulating EPCs throughout the time course. We examined the contribution of BM-derived EPCs to re-endothelialization by BM transplantation from Tie2/lacZ mice to nude rats. The number of Tie2-regulated X-gal positive cells on injured arterial luminal surface was increased at 2 weeks after surgery in CLZ group compared with that in control group. In vitro, CLZ enhanced proliferation, adhesion and migration activity, and differentiation with mRNA upregulation of adhesion molecule integrin αvβ3, chemokine receptor CXCR4 and growth factor VEGF assessed by real-time RT-PCR in rat BM-derived cultured EPCs. In addition, CLZ markedly increased the expression of SDF-1α that is a ligand of CXCR4 receptor in EPCs, in the media following vascular injury. CONCLUSIONS/SIGNIFICANCE: CLZ promotes EPC mobilization from BM and EPC recruitment to sites of arterial injury, and thereby inhibited neointima formation with acceleration of re-endothelialization with EPCs as well as pre-existing endothelial cells in a rat carotid balloon injury model. CLZ could be not only an anti-platelet agent but also a promising tool for

  15. Arctic circulation regimes.

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  16. Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression.

    Guo, Peipei; Poulos, Michael G; Palikuqi, Brisa; Badwe, Chaitanya R; Lis, Raphael; Kunar, Balvir; Ding, Bi-Sen; Rabbany, Sina Y; Shido, Koji; Butler, Jason M; Rafii, Shahin

    2017-12-01

    Angiocrine factors, such as Notch ligands, supplied by the specialized endothelial cells (ECs) within the bone marrow and splenic vascular niche play an essential role in modulating the physiology of adult hematopoietic stem and progenitor cells (HSPCs). However, the relative contribution of various Notch ligands, specifically jagged-2, to the homeostasis of HSPCs is unknown. Here, we show that under steady state, jagged-2 is differentially expressed in tissue-specific vascular beds, but its expression is induced in hematopoietic vascular niches after myelosuppressive injury. We used mice with EC-specific deletion of the gene encoding jagged-2 (Jag2) to demonstrate that while EC-derived jagged-2 was dispensable for maintaining the capacity of HSPCs to repopulate under steady-state conditions, by activating Notch2 it did contribute to the recovery of HSPCs in response to myelosuppressive conditions. Engraftment and/or expansion of HSPCs was dependent on the expression of endothelial-derived jagged-2 following myeloablation. Additionally, jagged-2 expressed in bone marrow ECs regulated HSPC cell cycle and quiescence during regeneration. Endothelial-deployed jagged-2 triggered Notch2/Hey1, while tempering Notch2/Hes1 signaling in HSPCs. Collectively, these data demonstrate that EC-derived jagged-2 activates Notch2 signaling in HSPCs to promote hematopoietic recovery and has potential as a therapeutic target to accelerate balanced hematopoietic reconstitution after myelosuppression.

  17. The skeletal vascular system - Breathing life into bone tissue.

    Stegen, Steve; Carmeliet, Geert

    2017-08-26

    During bone development, homeostasis and repair, a dense vascular system provides oxygen and nutrients to highly anabolic skeletal cells. Characteristic for the vascular system in bone is the serial organization of two capillary systems, each typified by specific morphological and physiological features. Especially the arterial capillaries mediate the growth of the bone vascular system, serve as a niche for skeletal and hematopoietic progenitors and couple angiogenesis to osteogenesis. Endothelial cells and osteoprogenitor cells interact not only physically, but also communicate to each other by secretion of growth factors. A vital angiogenic growth factor is vascular endothelial growth factor and its expression in skeletal cells is controlled by osteogenic transcription factors and hypoxia signaling, whereas the secretion of angiocrine factors by endothelial cells is regulated by Notch signaling, blood flow and possibly hypoxia. Bone loss and impaired fracture repair are often associated with reduced and disorganized blood vessel network and therapeutic targeting of the angiogenic response may contribute to enhanced bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. NAMPT and NAMPT-controlled NAD Metabolism in Vascular Repair.

    Wang, Pei; Li, Wen-Lin; Liu, Jian-Min; Miao, Chao-Yu

    2016-06-01

    Vascular repair plays important roles in postischemic remodeling and rehabilitation in cardiovascular and cerebrovascular disease, such as stroke and myocardial infarction. Nicotinamide adenine dinucleotide (NAD), a well-known coenzyme involved in electron transport chain for generation of adenosine triphosphate, has emerged as an important controller regulating various biological signaling pathways. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for NAD biosynthesis in mammals. NAMPT may also act in a nonenzymatic manner, presumably mediated by unknown receptor(s). Rapidly accumulating data in the past decade show that NAMPT and NAMPT-controlled NAD metabolism regulate fundamental biological functions in endothelial cells, vascular smooth muscle cells, and endothelial progenitor cells. The NAD-consuming proteins, including sirtuins, poly-ADP-ribose polymerases (PARPs), and CD38, may contribute to the regulatory effects of NAMPT-NAD axis in these cells and vascular repair. This review discusses the current data regarding NAMPT and NAMPT-controlled NAD metabolism in vascular repair and the clinical potential translational application of NAMPT-related products in treatment of cardiovascular and cerebrovascular disease.

  19. Retinal progenitor cell xenografts to the pig retina

    Warfvinge, Karin; Kiilgaard, Jens Folke; Lavik, Erin B

    2005-01-01

    To investigate the survival, integration, and differentiation of mouse retinal progenitor cells after transplantation to the subretinal space of adult pigs.......To investigate the survival, integration, and differentiation of mouse retinal progenitor cells after transplantation to the subretinal space of adult pigs....

  20. Overview of vascular disease

    Bisset, G.S. III

    1998-01-01

    Vascular disease in the pediatric population is a poorly understood process which is often underestimated in its incidence. The common beginnings of such ubiquitous diseases as atherosclerosis manifest themselves at a cellular level shortly after birth. Other common systemic disorders, including congestive heart failure and sepsis, are also intricately associated with dysfunctional vasculature. Progress in the understanding of normal and pathophysiologic processes within the vascular system begins with the 'control center' - the endothelial cell. The purpose of this review is to consolidate a body of knowledge on the processes that occur at the cellular level within the blood vessel wall, and to simplify the understanding of how imbalances in these physiologic parameters result in vascular disease. (orig.)

  1. Selective uptake of boronophenylalanine by glioma stem/progenitor cells

    Sun, Ting; Zhou, Youxin; Xie, Xueshun; Chen, Guilin; Li, Bin; Wei, Yongxin; Chen, Jinming; Huang, Qiang; Du, Ziwei

    2012-01-01

    The success of boron neutron capture therapy (BNCT) depends on the amount of boron in cells and the tumor/blood and tumor/(normal tissue) boron concentration ratios. For the first time, measurements of boron uptake in both stem/progenitor and differentiated glioma cells were performed along with measurements of boron biodistribution in suitable animal models. In glioma stem/progenitor cells, the selective accumulation of boronophenylalanine (BPA) was lower, and retention of boron after BPA removal was longer than in differentiated glioma cells in vitro. However, boron biodistribution was not statistically significantly different in mice with xenografts. - Highlights: ► Uptake of BPA was analyzed in stem/progenitor and differentiated glioma cells. ► Selective accumulation of BPA was lower in glioma stem/progenitor cells. ► Retention of boron after BPA removal was longer in glioma stem/progenitor cells. ► Boron biodistribution was not statistically different in mice with xenografts.

  2. Effect of increased exercise in school children on physical fitness and endothelial progenitor cells: a prospective randomized trial.

    Walther, Claudia; Gaede, Luise; Adams, Volker; Gelbrich, Götz; Leichtle, Alexander; Erbs, Sandra; Sonnabend, Melanie; Fikenzer, Kati; Körner, Antje; Kiess, Wieland; Bruegel, Mathias; Thiery, Joachim; Schuler, Gerhard

    2009-12-01

    The aim of this prospective, randomized study was to examine whether additional school exercise lessons would result in improved peak oxygen uptake (primary end point) and body mass index-standard deviation score, motor and coordinative abilities, circulating progenitor cells, and high-density lipoprotein cholesterol (major secondary end points). Seven sixth-grade classes (182 children, aged 11.1+/-0.7 years) were randomized to an intervention group (4 classes with 109 students) with daily school exercise lessons for 1 year and a control group (3 classes with 73 students) with regular school sports twice weekly. The significant effects of intervention estimated from ANCOVA adjusted for intraclass correlation were the following: increase of peak o(2) (3.7 mL/kg per minute; 95% confidence interval, 0.3 to 7.2) and increase of circulating progenitor cells evaluated by flow cytometry (97 cells per 1 x 10(6) leukocytes; 95% confidence interval, 13 to 181). No significant difference was seen for body mass index-standard deviation score (-0.08; 95% confidence interval, -0.28 to 0.13); however, there was a trend to reduction of the prevalence of overweight and obese children in the intervention group (from 12.8% to 7.3%). No treatment effect was seen for motor and coordinative abilities (4; 95% confidence interval, -1 to 8) and high-density lipoprotein cholesterol (0.03 mmol/L; 95% confidence interval, -0.08 to 0.14). Regular physical activity by means of daily school exercise lessons has a significant positive effect on physical fitness (o(2)max). Furthermore, the number of circulating progenitor cells can be increased, and there is a positive trend in body mass index-standard deviation score reduction and motor ability improvement. Therefore, we conclude that primary prevention by means of increasing physical activity should start in childhood. URL: http://www.clinicaltrials.gov. Identifier: NCT00176371.

  3. Diabetes Impairs the Vascular Recruitment of Normal Stem Cells by Oxidant Damage, Reversed by Increases in pAMPK, Heme Oxygenase-1, and Adiponectin

    Sambuceti, Gianmario; Morbelli, Silvia; Vanella, Luca; Kusmic, Claudia; Marini, Cecilia; Massollo, Michela; Augeri, Carla; Corselli, Mirko; Ghersi, Chiara; Chiavarina, Barbara; Rodella, Luigi F; L'Abbate, Antonio; Drummond, George; Abraham, Nader G; Frassoni, Francesco

    2009-01-01

    Background Atherosclerosis progression is accelerated in diabetes mellitus (DM) by either direct endothelial damage or reduced availability and function of endothelial progenitor cells (EPCs). Both alterations are related to increased oxidant damage. Aim We examined if DM specifically impairs vascular signaling, thereby reducing the recruitment of normal EPCs, and if increases in antioxidant levels by induction of heme oxygenase-1 (HO-1) can reverse this condition. Methods Control and diabetic rats were treated with the HO-1 inducer cobalt protoporphyrin (CoPP) once a week for 3 weeks. Eight weeks after the development of diabetes, EPCs harvested from the aorta of syngenic inbred normal rats and labeled with technetium-99m-exametazime were infused via the femoral vein to estimate their blood clearance and aortic recruitment. Circulating endothelial cells (CECs) and the aortic expression of thrombomodulin (TM), CD31, and endothelial nitric oxide synthase (eNOS) were used to measure endothelial damage. Results DM reduced blood clearance and aortic recruitment of EPCs. Both parameters were returned to control levels by CoPP treatment without affecting EPC kinetics in normal animals. These abnormalities of EPCs in DM were paralleled by reduced serum adiponectin levels, increased numbers of CECs, reduced endothelial expression of phosphorylated eNOS, and reduced levels of TM, CD31, and phosphorylated AMP-activated protein kinase (pAMPK). CoPP treatment restored all of these parameters to normal levels. Conclusion Type II DM and its related oxidant damage hamper the interaction between the vascular wall and normal EPCs by mechanisms that are, at least partially, reversed by the induction of HO-1 gene expression, adiponectin, and pAMPK levels. PMID:19038792

  4. Late Posthemorrhagic Structural and Functional Changes in Pulmonary Circulation Arteries

    S. A. Andreyeva

    2008-01-01

    Full Text Available Objective: to reveal the major regularities and mechanisms of morphological changes in the rat pulmonary circulation arteries in the late posthemorrhagic period and to compare them with age-related features of the vessels. Materials and methods: experiments to generate graduated hemorrhagic hypotension with the blood pressure being maintained at 40 mm Hg were carried out on young (5—6-month albino male Wistar rats. Throughout hypotension and 60 days after blood loss, the blood was tested to determine low and average molecular-weight substances by spectrophotometry and the pro- and antioxidative systems by chemiluminescence. Pulmonary circulation arteries were morphologically studied in young animals, rats in the late posthemorrhagic period and old (24—25-month rats. Results. Sixty-minute hemorrhagic hypotension leads to the development of endotoxemia and imbalance of the pro- and antioxidative systems, the signs of which are observed in the late periods (2 months after hypotension. At the same time, the posthemorrhagic period is marked by the significant pulmonary circulation arterial morphological changes comparable with their age-related alterations in old rat. This shows up mainly in the reorganization of a connective tissue component in the vascular wall: the elevated levels of individual collagen fibers, their structural changes, elastic medial membrane destruction and deformity. At the same time, there is a change in the morphometric parameters of vessels at all study stages while their lowered flow capacity is only characteristic for intraorgan arteries. Conclusion: The increased activity of free radical oxidation and endotoxemia may be believed to be one of the causes of morphological changes in pulmonary circulation arteries in the late posthemorrhagic period, which is similar to age-related vascular alterations. Key words: hemorrhagic hypotension, pulmonary circulation arteries, free radical oxidation, endotoxemia, remodeling, late

  5. Vascular dysfunction in women with a history of preeclampsia and intrauterine growth restriction: insights into future vascular risk.

    Yinon, Yoav; Kingdom, John C P; Odutayo, Ayodele; Moineddin, Rahim; Drewlo, Sascha; Lai, Vesta; Cherney, David Z I; Hladunewich, Michelle A

    2010-11-02

    Women with a history of placental disease are at increased risk for the future development of vascular disease. It is unknown whether preexisting endothelial dysfunction underlies both the predisposition to placental disease and the later development of vascular disease. The aim of this study was to assess vascular function in postpartum women and to determine whether differences emerged depending on the presentation of placental disease. Women with a history of early-onset preeclampsia (n=15), late-onset preeclampsia (n=9), intrauterine growth restriction without preeclampsia (n=9), and prior normal pregnancy (n=16) were studied 6 to 24 months postpartum. Flow-mediated vasodilatation and flow-independent (glyceryl trinitrate-induced) vasodilatation were studied through the use of high-resolution vascular ultrasound examination of the brachial artery. Arterial stiffness was assessed by pulse-wave analysis (augmentation index). Laboratory assessment included circulating angiogenic factors (vascular endothelial growth factor, soluble fms-like tyrosine kinase 1, placental growth factor, and soluble endoglin). Flow-mediated vasodilatation was significantly reduced in women with previous early-onset preeclampsia and intrauterine growth restriction compared with women with previous late-onset preeclampsia and control subjects (3.2±2.7% and 2.1±1.2% versus 7.9±3.8% and 9.1±3.5%, respectively; Pwomen with previous early-onset preeclampsia and intrauterine growth restriction, but not among late preeclamptic women and control subjects (P=0.0105). Circulating angiogenic factors were similar in all groups. Only women with a history of early-onset preeclampsia or intrauterine growth restriction without preeclampsia exhibit impaired vascular function, which might explain their predisposition to placental disease and their higher risk of future vascular disease.

  6. [The Carboclip, a new, atraumatic vascular access for hemodialysis].

    Bonnaud, P; Jehenne, G; Man, N K

    1994-01-01

    The Carboclip is a no-needle vascular access device made of an inverted Titanium body. The horizontal bar of 6 mm inner diameter is connected with artery and vein via a vascular graft. The vertical body houses an elastic plug in which is inserted a double canula diving in the blood stream for extracorporeal blood circulation (EBC). The body is wrapped by a flange made of microporous biocarbon in which the subcutaneous fibroblast will growth, forming an antimicrobial barrier and fixing the port to the skin. We report our experience on 30 devices implanted in 30 sheep with 26 extracorporeal circulation simulating hemodialysis. The results demonstrate good tightness of the plug as well at rest as during EBC procedure, sufficient blood flow rate of about 400 ml/min, and benefits of the microporous carbon flange.

  7. Controlled humidity gas circulators

    Gruner, S.M.

    1981-01-01

    A programmable circulator capable of regulating the humidity of a gas stream over a wide range of humidity is described. An optical dew-point hygrometer is used as a feedback element to control the addition or removal of water vapor. Typical regulation of the gas is to a dew-point temperature of +- 0.2 0 C and to an accuracy limited by the dew-point hygrometer

  8. Fluid circulation control device

    Benard, Henri; Henocque, Jean.

    1982-01-01

    Horizontal fluid circulation control device, of the type having a pivoting flap. This device is intended for being fitted in the pipes of hydraulic installation, particularly in a bleed and venting system of a nuclear power station shifting radioactive or contaminated liquids. The characteristic of this device is the cut-out at the top of the flap to allow the air contained in the pipes to flow freely [fr

  9. Tissue engineering and the use of stem/progenitor cells for airway epithelium repair

    GM Roomans

    2010-06-01

    Full Text Available Stem/progenitor cells can be used to repair defects in the airway wall, resulting from e.g., tumors, trauma, tissue reactions following long-time intubations, or diseases that are associated with epithelial damage. Several potential sources of cells for airway epithelium have been identified. These can be divided into two groups. The first group consists of endogenous progenitor cells present in the respiratory tract. This group can be subdivided according to location into (a a ductal cell type in the submucosal glands of the proximal trachea, (b basal cells in the intercartilaginous zones of the lower trachea and bronchi, (c variant Clara cells (Clarav-cells in the bronchioles and (d at the junctions between the bronchioles and the alveolar ducts, and (e alveolar type II cells. This classification of progenitor cell niches is, however, controversial. The second group consists of exogenous stem cells derived from other tissues in the body. This second group can be subdivided into: (a embryonic stem (ES cells, induced pluripotent stem (iPS cells, or amniotic fluid stem cells, (b side-population cells from bone marrow or epithelial stem cells present in bone marrow or circulation and (c fat-derived mesenchymal cells. Airway epithelial cells can be co-cultured in a system that includes a basal lamina equivalent, extracellular factors from mesenchymal fibroblasts, and in an air-liquid interface system. Recently, spheroid-based culture systems have been developed. Several clinical applications have been suggested: cystic fibrosis, acute respiratory distress syndrome, chronic obstructive lung disease, pulmonary fibrosis, pulmonary edema, and pulmonary hypertension. Clinical applications so far are few, but include subglottic stenosis, tracheomalacia, bronchiomalacia, and emphysema.

  10. Human endothelial progenitor cells rescue cortical neurons from oxygen-glucose deprivation induced death.

    Bacigaluppi, Susanna; Donzelli, Elisabetta; De Cristofaro, Valentina; Bragazzi, Nicola Luigi; D'Amico, Giovanna; Scuteri, Arianna; Tredici, Giovanni

    2016-09-19

    Cerebral ischemia is characterized by both acute and delayed neuronal injuries. Neuro-protection is a major issue that should be properly addressed from a pharmacological point of view, and cell-based treatment approaches are of interest due to their potential pleiotropic effects. Endothelial progenitor cells have the advantage of being mobilized from the bone marrow into the circulation, but have been less studied than other stem cells, such as mesenchymal stem cells. Therefore, the comparison between human endothelial progenitor cells (hEPC) and human mesenchymal progenitor cells (hMSC) in terms of efficacy in rescuing neurons from cell death after transitory ischemia is the aim of the current study, in the effort to address further directions. In vitro model of oxygen-glucose deprivation (OGD) on a primary culture of rodent cortical neurons was set up with different durations of exposure: 1, 2 and 3hrs with assessment of neuron survival. The 2hrs OGD was chosen for the subsequent experiments. After 2hrs OGD neurons were either placed in indirect co-culture with hMSC or hEPC or cultured in hMSC or hEPC conditioned medium and cell viability was evaluated by MTT assay. At day 2 after 2hrs OGD exposure, mean neuronal survival was 47.9±24.2%. In contrast, after treatment with hEPC and hMSC indirect co-culture was 74.1±27.3%; and 69.4±18.8%, respectively. In contrast, treatment with conditioned medium did not provide any advantage in terms of survival to OGD neurons The study shows the efficacy of hEPC in indirect co-culture to rescue neurons from cell death after OGD, comparable to that of hMSC. hEPC deserve further studies given their potential interest for ischemia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Double-chimera proteins to enhance recruitment of endothelial cells and their progenitor cells.

    Behjati, M; Kazemi, M; Hashemi, M; Zarkesh-Esfahanai, S H; Bahrami, E; Hashemi-Beni, B; Ahmadi, R

    2013-08-20

    Enhanced attraction of selective vascular reparative cells is of great importance in order to increase vascular patency after endovascular treatments. We aimed to evaluate efficient attachment of endothelial cells and their progenitors on surfaces coated with mixture of specific antibodies, L-selectin and VE-cadherin, with prohibited platelet attachment. The most efficient conditions for coating of L-selectin-Fc chimera and VE-cadherin-Fc chimera proteins were first determined by protein coating on ELISA plates. The whole processes were repeated on titanium substrates, which are commonly used to coat stents. Endothelial progenitor cells (EPCs) and human umbilical vein endothelial cells (HUVECs) were isolated and characterized by flow cytometry. Cell attachment, growth, proliferation, viability and surface cytotoxicity were evaluated using nuclear staining and MTT assay. Platelet and cell attachment were evaluated using scanning electron microscopy. Optimal concentration of each protein for surface coating was 50 ng/ml. The efficacy of protein coating was both heat and pH independent. Calcium ions had significant impact on simultaneous dual-protein coating (P<0.05). Coating stability data revealed more than one year stability for these coated proteins at 4°C. L-selectin and VE-cadherin (ratio of 50:50) coated surface showed highest EPC and HUVEC attachment, viability and proliferation compared to single protein coated and non-coated titanium surfaces (P<0.05). This double coated surface did not show any cytotoxic effect. Surfaces coated with L-selectin and VE-cadherin are friendly surface for EPC and endothelial cell attachment with less platelet attachment. These desirable factors make the L-selectin and VE-cadherin coated surfaces perfect candidate endovascular device. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Renal posttransplant's vascular complications

    Bašić Dragoslav

    2003-01-01

    Full Text Available INTRODUCTION Despite high graft and recipient survival figures worldwide today, a variety of technical complications can threaten the transplant in the postoperative period. Vascular complications are commonly related to technical problems in establishing vascular continuity or to damage that occurs during donor nephrectomy or preservation [13]. AIM The aim of the presenting study is to evaluate counts and rates of vascular complications after renal transplantation and to compare the outcome by donor type. MATERIAL AND METHODS A total of 463 kidneys (319 from living related donor LD and 144 from cadaveric donor - CD were transplanted during the period between June 1975 and December 1998 at the Urology & Nephrology Institute of Clinical Centre of Serbia in Belgrade. Average recipients' age was 33.7 years (15-54 in LD group and 39.8 (19-62 in CD group. Retrospectively, we analyzed medical records of all recipients. Statistical analysis is estimated using Hi-squared test and Fischer's test of exact probability. RESULTS Major vascular complications including vascular anastomosis thrombosis, internal iliac artery stenosis, internal iliac artery rupture obliterant vasculitis and external iliac vein rupture were analyzed. In 25 recipients (5.4% some of major vascular complications were detected. Among these cases, 22 of them were from CD group vs. three from LD group. Relative rate of these complications was higher in CD group vs. LD group (p<0.0001. Among these complications dominant one was vascular anastomosis thrombosis which occurred in 18 recipients (17 from CD vs. one from LD. Of these recipients 16 from CD lost the graft, while the rest of two (one from each group had lethal outcome. DISCUSSION Thrombosis of renal allograft vascular anastomosis site is the most severe complication following renal transplantation. In the literature, renal allograft thrombosis is reported with different incidence rates, from 0.5-4% [14, 15, 16]. Data from the

  13. PET imaging of adoptive progenitor cell therapies

    Gelovani, Juri G.

    2008-01-01

    The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive 'tracking' of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to stem cell imaging

  14. Cardiac Progenitor Cell Extraction from Human Auricles

    Di Nardo, Paolo

    2017-02-22

    For many years, myocardial tissue has been considered terminally differentiated and, thus, incapable of regenerating. Recent studies have shown, instead, that cardiomyocytes, at least in part, are slowly substituted by new cells originating by precursor cells mostly embedded into the heart apex and in the atria. We have shown that an elective region of progenitor cell embedding is represented by the auricles, non-contractile atria appendages that can be easily sampled without harming the patient. The protocol here reported describes how from auricles a population of multipotent, cardiogenic cells can be isolated, cultured, and differentiated. Further studies are needed to fully exploit this cell population, but, sampling auricles, it could be possible to treat cardiac patients using their own cells circumventing rejection or organ shortage limitations.

  15. PET imaging of adoptive progenitor cell therapies.

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  16. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra; Sasaki, Ken-ichiro; Bruhl, Thomas; Hofmann, Wolf K.; Peters, Christoph; Reinheckel, Thomas; Pennacchio, Len A.; Abolmaali, Nasreddin D.; Chavakis, Emmanouil; Zeiher, Andreas M.; Dimmeler, Stefanie

    2004-01-15

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sites of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.

  17. Characterization of two distinct liver progenitor cell subpopulations of hematopoietic and hepatic origins

    Corcelle, V.; Stieger, B.; Gjinovci, A.; Wollheim, C.B.; Gauthier, B.R.

    2006-01-01

    Despite extensive studies, the hematopoietic versus hepatic origin of liver progenitor oval cells remains controversial. The aim of this study was to determine the origin of such cells after liver injury and to establish an oval cell line. Rat liver injury was induced by subcutaneous insertion of 2-AAF pellets for 7 days with subsequent injection of CCl 4 . Livers were removed 9 to 13 days post-CCl 4 treatment. Immunohistochemistry was performed using anti-c-kit, OV6, Thy1, CK19, AFP, vWF and Rab3b. Isolated non-parenchymal cells were grown on mouse embryonic fibroblast, and their gene expression profile was characterized by RT-PCR. We identified a subpopulation of OV6/CK19/Rab3b-expressing cells that was activated in the periportal region of traumatized livers. We also characterized a second subpopulation that expressed the HSCs marker c-kit but not Thy1. Although we successfully isolated both cell types, OV6/CK19/Rab3b + cells fail to propagate while c-kit + -HSCs appeared to proliferate for up to 7 weeks. Cells formed clusters which expressed c-kit, Thy1 and albumin. Our results indicate that a bona fide oval progenitor cell population resides within the liver and is distinct from c-kit + -HSCs. Oval cells require the hepatic niche to proliferate, while cells mobilized from the circulation proliferate and transdifferentiate into hepatocytes without evidence of cell fusion

  18. Cytokinetics and Regulation of Progenitor Cells

    Lajtha, L. G. [Paterson Laboratories, Christie Hospital and Holt Radium Institute, Manchester (United Kingdom)

    1967-07-15

    Full text: In spite of great differences in the life-span of fully differentiated haemic cells, the cellular kinetics of their production appears to be similar. Recent evidence indicates a common ultimate stem cell for most of the cells in the peripheral blood. The various pathways of differentiation, however, result in transient dividing and differentiating cell populations which differ from each other not only in their specific biochemical processes but also in the manner of control and kinetic pattern of their proliferation. The population best understood is the erythroid progenitor series of cells, primarily because it has the greatest number of experimentally measurable parameters at the present. This will be discussed in detail and comparisons will be made with the myeloid and lymphoid progenitor populations. The fine structure of the bone-marrow stem cell population will be examined in particular, with regard to the suitability or otherwise of the current stem cell models to explain the kinetic pattern of all the peripheral blood elements after perturbations of their steady-state values. Four different assay methods of bone-marrow stem cells have been examined with regard to the kinetic pattern following perturbation of the steady-state system, e.g. by irradiation. Basically, the stem cell assays fall into two categories: those depending on grafting haemopoietic cells into suitably treated recipients, and those in which recovery of the population is allowed in the animal in which the perturbation was produced, without handling the cells. Evidence is accumulating which indicates that in the grafting techniques, a selective loss of stem cells may occur, . especially stem cells in cell cycle, hence in early stages of recovery of the population unduly low numerical values might be noted. In view of this observation, the concept of the colony-forming cell may have to be revised and instead the colony-forming property of the stem cell introduced. (author)

  19. A COMPREHENSIVE PROGENITOR MODEL FOR SNe Ia

    Meng, X.; Yang, W.

    2010-01-01

    Although the nature of the progenitor of Type Ia supernovae (SNe Ia) is still unclear, the single-degenerate (SD) channel for the progenitor is currently accepted, in which a carbon-oxygen white dwarf (CO WD) accretes hydrogen-rich material from its companion, increases its mass to the Chandrasekhar mass limit, and then explodes as an SN Ia. The companion may be a main sequence or a slightly evolved star (WD + MS), or a red giant star (WD + RG). Incorporating the effect of mass stripping and accretion-disk instability on the evolution of the WD binary, we carried out binary stellar evolution calculations for more than 1600 close WD binaries. As a result, the initial parameter spaces for SNe Ia are presented in an orbital period-secondary mass (log P i , M i 2 ) plane. We confirmed that in a WD + MS system, the initial companion leading to SNe Ia may have mass from 1 M sun to 5 M sun . The initial WD mass for SNe Ia from WD + MS channel is as low as 0.565 M sun , while the lowest WD mass from the WD + RG channel is 1.0 M sun . Adopting the above results, we studied the birth rate of SNe Ia via a binary population synthesis approach. We found that the Galactic SNe Ia birth rate from SD model is (2.55-2.9) x 10 -3 yr -1 (including WD + He star channel), which is slightly smaller than that from observation. If a single starburst is assumed, the distribution of the delay time of SNe Ia from the SD model may be a weak bimodality, where WD + He channel contributes to SNe Ia with delay time shorter than 10 8 yr and WD + RG channel to those with age longer than 6 Gyr.

  20. Cytokinetics and Regulation of Progenitor Cells

    Lajtha, L.G.

    1967-01-01

    Full text: In spite of great differences in the life-span of fully differentiated haemic cells, the cellular kinetics of their production appears to be similar. Recent evidence indicates a common ultimate stem cell for most of the cells in the peripheral blood. The various pathways of differentiation, however, result in transient dividing and differentiating cell populations which differ from each other not only in their specific biochemical processes but also in the manner of control and kinetic pattern of their proliferation. The population best understood is the erythroid progenitor series of cells, primarily because it has the greatest number of experimentally measurable parameters at the present. This will be discussed in detail and comparisons will be made with the myeloid and lymphoid progenitor populations. The fine structure of the bone-marrow stem cell population will be examined in particular, with regard to the suitability or otherwise of the current stem cell models to explain the kinetic pattern of all the peripheral blood elements after perturbations of their steady-state values. Four different assay methods of bone-marrow stem cells have been examined with regard to the kinetic pattern following perturbation of the steady-state system, e.g. by irradiation. Basically, the stem cell assays fall into two categories: those depending on grafting haemopoietic cells into suitably treated recipients, and those in which recovery of the population is allowed in the animal in which the perturbation was produced, without handling the cells. Evidence is accumulating which indicates that in the grafting techniques, a selective loss of stem cells may occur, . especially stem cells in cell cycle, hence in early stages of recovery of the population unduly low numerical values might be noted. In view of this observation, the concept of the colony-forming cell may have to be revised and instead the colony-forming property of the stem cell introduced. (author)

  1. THE PROGENITOR OF THE TYPE IIb SN 2008ax REVISITED

    Folatelli, Gastón; Bersten, Melina C.; Benvenuto, Omar G. [Instituto de Astrofísica de La Plata (Argentina); Kuncarayakti, Hanindyo [Millennium Institute of Astrophysics (MAS), Casilla 36-D, Santiago (Chile); Maeda, Keiichi; Nomoto, Ken’ichi, E-mail: gaston@fcaglp.unlp.edu.ar [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan)

    2015-10-01

    Hubble Space Telescope observations of the site of the supernova (SN) SN 2008ax obtained in 2011 and 2013 reveal that the possible progenitor object detected in pre-explosion images was in fact multiple. Four point sources are resolved in the new, higher-resolution images. We identify one of the sources with the fading SN. The other three objects are consistent with single supergiant stars. We conclude that their light contaminated the previously identified progenitor candidate. After subtraction of these stars, the progenitor appears to be significantly fainter and bluer than previously measured. Post-explosion photometry at the SN location indicates that the progenitor object has disappeared. If single, the progenitor is compatible with a supergiant star of B to mid-A spectral type, while a Wolf–Rayet (W-R) star would be too luminous in the ultraviolet to account for the observations. Moreover, our hydrodynamical modeling shows that the pre-explosion mass was 4–5 M{sub ⊙} and the radius was 30–50 R{sub ⊙}, which is incompatible with a W-R progenitor. We present a possible interacting binary progenitor computed with our evolutionary models that reproduces all the observational evidence. A companion star as luminous as an O9–B0 main-sequence star may have remained after the explosion.

  2. Ionizing radiation induces apoptosis in hematopoietic stem and progenitor cells

    Meng, A.; Zhou, D.; Geiger, H.; Zant, G.V.

    2003-01-01

    The aims of this study was to determine if ionizing radiation (IR) induces apoptosis in hematopoietic stem (HSC) and progenitor cells. Lin-cells were isolated from mouse bone marrow (BM) and pretreated with vehicle or 100 μM z-VAD 1 h prior to exposure to 4 Gy IR. The apoptotic and/or necrotic responses of these cells to IR were analyzed by measuring the annexin V and/or 7-AAD staining in HSC and progenitor populations using flow cytometry, and hematopoietic function of these cells was determined by CAFC assay. Exposure of Lin-cells to IR selectively decreased the numbers of HSC and progenitors in association with an increase in apoptosis in a time-dependent manner. Pretreatment of Lin- cells with z-VAD significantly inhibited IR-induced apoptosis and the decrease in the numbers of HSC and progenitors. However, IR alone or in combination with z-VAD did not lead to a significant increase in necrotic cell death in either HSC or progenitors. In addition, pretreatment of BM cells with z-VAD significantly attenuated IR-induced reduction in the frequencies of day-7, -28 and -35 CAFC. Exposure of HSC and progenitors to IR induces apoptosis. The induction of HSC and progenitor apoptosis contributes to IR-induced suppression of their hematopoietic function

  3. THE PROGENITOR OF THE TYPE IIb SN 2008ax REVISITED

    Folatelli, Gastón; Bersten, Melina C.; Benvenuto, Omar G.; Kuncarayakti, Hanindyo; Maeda, Keiichi; Nomoto, Ken’ichi

    2015-01-01

    Hubble Space Telescope observations of the site of the supernova (SN) SN 2008ax obtained in 2011 and 2013 reveal that the possible progenitor object detected in pre-explosion images was in fact multiple. Four point sources are resolved in the new, higher-resolution images. We identify one of the sources with the fading SN. The other three objects are consistent with single supergiant stars. We conclude that their light contaminated the previously identified progenitor candidate. After subtraction of these stars, the progenitor appears to be significantly fainter and bluer than previously measured. Post-explosion photometry at the SN location indicates that the progenitor object has disappeared. If single, the progenitor is compatible with a supergiant star of B to mid-A spectral type, while a Wolf–Rayet (W-R) star would be too luminous in the ultraviolet to account for the observations. Moreover, our hydrodynamical modeling shows that the pre-explosion mass was 4–5 M ⊙ and the radius was 30–50 R ⊙ , which is incompatible with a W-R progenitor. We present a possible interacting binary progenitor computed with our evolutionary models that reproduces all the observational evidence. A companion star as luminous as an O9–B0 main-sequence star may have remained after the explosion

  4. Modeling Stem/Progenitor Cell-Induced Neovascularization and Oxygenation Around Solid Implants

    Jain, Harsh Vardhan

    2012-07-01

    Tissue engineering constructs and other solid implants with biomedical applications, such as drug delivery devices or bioartificial organs, need oxygen (O(2)) to function properly. To understand better the vascular integration of such devices, we recently developed a novel model sensor containing O(2)-sensitive crystals, consisting of a polymeric capsule limited by a nanoporous filter. The sensor was implanted in mice with hydrogel alone (control) or hydrogel embedded with mouse CD117/c-kit+ bone marrow progenitor cells in order to stimulate peri-implant neovascularization. The sensor provided local partial O(2) pressure (pO(2)) using noninvasive electron paramagnetic resonance signal measurements. A consistently higher level of peri-implant oxygenation was observed in the cell-treatment case than in the control over a 10-week period. To provide a mechanistic explanation of these experimental observations, we present in this article a mathematical model, formulated as a system of coupled partial differential equations, that simulates peri-implant vascularization. In the control case, vascularization is considered to be the result of a foreign body reaction, while in the cell-treatment case, adipogenesis in response to paracrine stimuli produced by the stem cells is assumed to induce neovascularization. The model is validated by fitting numerical predictions of local pO(2) to measurements from the implanted sensor. The model is then used to investigate further the potential for using stem cell treatment to enhance the vascular integration of biomedical implants. We thus demonstrate how mathematical modeling combined with experimentation can be used to infer how vasculature develops around biomedical implants in control and stem cell-treated cases.

  5. Modeling Stem/Progenitor Cell-Induced Neovascularization and Oxygenation Around Solid Implants

    Jain, Harsh Vardhan; Moldovan, Nicanor I.; Byrne, Helen M.

    2012-01-01

    Tissue engineering constructs and other solid implants with biomedical applications, such as drug delivery devices or bioartificial organs, need oxygen (O(2)) to function properly. To understand better the vascular integration of such devices, we recently developed a novel model sensor containing O(2)-sensitive crystals, consisting of a polymeric capsule limited by a nanoporous filter. The sensor was implanted in mice with hydrogel alone (control) or hydrogel embedded with mouse CD117/c-kit+ bone marrow progenitor cells in order to stimulate peri-implant neovascularization. The sensor provided local partial O(2) pressure (pO(2)) using noninvasive electron paramagnetic resonance signal measurements. A consistently higher level of peri-implant oxygenation was observed in the cell-treatment case than in the control over a 10-week period. To provide a mechanistic explanation of these experimental observations, we present in this article a mathematical model, formulated as a system of coupled partial differential equations, that simulates peri-implant vascularization. In the control case, vascularization is considered to be the result of a foreign body reaction, while in the cell-treatment case, adipogenesis in response to paracrine stimuli produced by the stem cells is assumed to induce neovascularization. The model is validated by fitting numerical predictions of local pO(2) to measurements from the implanted sensor. The model is then used to investigate further the potential for using stem cell treatment to enhance the vascular integration of biomedical implants. We thus demonstrate how mathematical modeling combined with experimentation can be used to infer how vasculature develops around biomedical implants in control and stem cell-treated cases.

  6. Modeling Stem/Progenitor Cell-Induced Neovascularization and Oxygenation Around Solid Implants

    Moldovan, Nicanor I.; Byrne, Helen M.

    2012-01-01

    Tissue engineering constructs and other solid implants with biomedical applications, such as drug delivery devices or bioartificial organs, need oxygen (O2) to function properly. To understand better the vascular integration of such devices, we recently developed a novel model sensor containing O2-sensitive crystals, consisting of a polymeric capsule limited by a nanoporous filter. The sensor was implanted in mice with hydrogel alone (control) or hydrogel embedded with mouse CD117/c-kit+ bone marrow progenitor cells in order to stimulate peri-implant neovascularization. The sensor provided local partial O2 pressure (pO2) using noninvasive electron paramagnetic resonance signal measurements. A consistently higher level of peri-implant oxygenation was observed in the cell-treatment case than in the control over a 10-week period. To provide a mechanistic explanation of these experimental observations, we present in this article a mathematical model, formulated as a system of coupled partial differential equations, that simulates peri-implant vascularization. In the control case, vascularization is considered to be the result of a foreign body reaction, while in the cell-treatment case, adipogenesis in response to paracrine stimuli produced by the stem cells is assumed to induce neovascularization. The model is validated by fitting numerical predictions of local pO2 to measurements from the implanted sensor. The model is then used to investigate further the potential for using stem cell treatment to enhance the vascular integration of biomedical implants. We thus demonstrate how mathematical modeling combined with experimentation can be used to infer how vasculature develops around biomedical implants in control and stem cell-treated cases. PMID:22224628

  7. Major Vascular Neurocognitive Disorder: A Reappraisal to Vascular Dementia

    Emre Kumral

    2017-03-01

    Full Text Available Major vascular neurocognitive disorder (NCD is the second leading form of dementia after Alzheimer’s disease, accounting for 17-20% of all dementias. Vascular NCD is a progressive disease caused by reduced cerebral blood flow related to multiple large volume or lacunar infarcts that induce a sudden onset and stepwise decline in cognitive abilities. Despite its prevalence and clinical importance, there is still controversy in the terminology of vascular NCD. Only after the release of Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5 (2013 did the American Psychiatric Association define vascular dementia as “major vascular NCD”. This review includes an overview of risk factors, pathophysiology, types, diagnostic and clinical features of major vascular NCD, and current treatment options of vascular NCD regarding to DSM-5 criteria

  8. Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration.

    Zordan, P; Rigamonti, E; Freudenberg, K; Conti, V; Azzoni, E; Rovere-Querini, P; Brunelli, S

    2014-01-30

    The damage of the skeletal muscle prompts a complex and coordinated response that involves the interactions of many different cell populations and promotes inflammation, vascular remodeling and finally muscle regeneration. Muscle disorders exist in which the irreversible loss of tissue integrity and function is linked to defective neo-angiogenesis with persistence of tissue necrosis and inflammation. Here we show that macrophages (MPs) are necessary for efficient vascular remodeling in the injured muscle. In particular, MPs sustain the differentiation of endothelial-derived progenitors to contribute to neo-capillary formation, by secreting pro-angiogenic growth factors. When phagocyte infiltration is compromised endothelial-derived progenitors undergo a significant endothelial to mesenchymal transition (EndoMT), possibly triggered by the activation of transforming growth factor-β/bone morphogenetic protein signaling, collagen accumulates and the muscle is replaced by fibrotic tissue. Our findings provide new insights in EndoMT in the adult skeletal muscle, and suggest that endothelial cells in the skeletal muscle may represent a new target for therapeutic intervention in fibrotic diseases.

  9. [Effects of combined action of radon baths and transcranial magnetotherapy on cerebral circulation in patients in an intermediate period of a mild craniocerebral trauma].

    Moliavchikova, O V; Cherevashchenko, L A; Grinzaĭd, Iu M; Aĭvazov, V N; Zhuravlev, M E

    2007-01-01

    The authors propose combined therapy improving cerebral circulation in patients in an intermediate period of a mild craniocerebral trauma. The combination consists of radon baths and transcranial magnetotherapy which raise blood volume filling, relieve vascular resistance, improve venous outflow.

  10. Plant Vascular Biology 2010

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  11. Vascular cognitive impairment

    N.V. Vakhnina

    2014-01-01

    Full Text Available Vascular pathology of the brain is the second most common cause of cognitive impairment after Alzheimer's disease. The article describes the modern concepts of etiology, pathogenetic mechanisms, clinical features and approaches to diagnosis and therapy of vascular cognitive impairment (VCI. Cerebrovascular accident, chronic cerebral circulatory insufficiency and their combination, sometimes in combination with a concomitant neurodegenerative process, are shown to be the major types of brain lesions leading to VCI. The clinical presentation of VCI is characterized by the neuropsychological status dominated by impairment of the executive frontal functions (planning, control, attention in combination with focal neurological symptoms. The diagnosis is based on comparing of the revealed neuropsychological and neurological features with neuroimaging data. Neurometabolic, acetylcholinergic, glutamatergic, and other vasoactive drugs and non-pharmacological methods are widely used to treat VCI. 

  12. Vascular Surgery and Robotics

    Indrani Sen

    2016-01-01

    Full Text Available The application of robotics to Vascular surgery has not progressed as rapidly as of endovascular technology, but this is changing with the amalgamation of these two fields. The advent of Endovascular robotics is an exciting field which overcomes many of the limitations of endovascular therapy like vessel tortuosity and operator fatigue. This has much clinical appeal for the surgeon and hold significant promise of better patient outcomes. As with most newer technological advances, it is still limited by cost and availability. However, this field has seen some rapid progress in the last decade with the technology moving into the clinical realm. This review details the development of robotics, applications, outcomes, advantages, disadvantages and current advances focussing on Vascular and Endovascular robotics

  13. Lifestyle and metabolic approaches to maximizing erectile and vascular health.

    Meldrum, D R; Gambone, J C; Morris, M A; Esposito, K; Giugliano, D; Ignarro, L J

    2012-01-01

    Oxidative stress and inflammation, which disrupt nitric oxide (NO) production directly or by causing resistance to insulin, are central determinants of vascular diseases including ED. Decreased vascular NO has been linked to abdominal obesity, smoking and high intakes of fat and sugar, which all cause oxidative stress. Men with ED have decreased vascular NO and circulating and cellular antioxidants. Oxidative stress and inflammatory markers are increased in men with ED, and all increase with age. Exercise increases vascular NO, and more frequent erections are correlated with decreased ED, both in part due to stimulation of endothelial NO production by shear stress. Exercise and weight loss increase insulin sensitivity and endothelial NO production. Potent antioxidants or high doses of weaker antioxidants increase vascular NO and improve vascular and erectile function. Antioxidants may be particularly important in men with ED who smoke, are obese or have diabetes. Omega-3 fatty acids reduce inflammatory markers, decrease cardiac death and increase endothelial NO production, and are therefore critical for men with ED who are under age 60 years, and/or have diabetes, hypertension or coronary artery disease, who are at increased risk of serious or even fatal cardiac events. Phosphodiesterase inhibitors have recently been shown to improve antioxidant status and NO production and allow more frequent and sustained penile exercise. Some angiotensin II receptor blockers decrease oxidative stress and improve vascular and erectile function and are therefore preferred choices for lowering blood pressure in men with ED. Lifestyle modifications, including physical and penile-specific exercise, weight loss, omega-3 and folic acid supplements, reduced intakes of fat and sugar, and improved antioxidant status through diet and/or supplements should be integrated into any comprehensive approach to maximizing erectile function, resulting in greater overall success and patient

  14. Vascular lesions following radiation

    Fajardo, L.F.; Berthrong, M.

    1988-01-01

    The special radiation sensitivity of the vascular system is mainly linked to that of endothelial cells, which are perhaps the most radiation-vulnerable elements of mesenchymal tissues. Within the vascular tree, radiation injures most often capillaries, sinusoids, and small arteries, in that order. Lesions of veins are observed less often, but in certain tissues the veins are regularly damaged (e.g., intestine) or are the most affected structures (i.e., liver). Large arteries do suffer the least; however, when significant damage does occur in an elastic artery (e.g., thrombosis or rupture), it tends to be clinically significant and even fatal. Although not always demonstrable in human tissues, radiation vasculopathy generally is dose and time dependent. Like other radiation-induced lesions, the morphology in the vessels is not specific, but it is characteristic enough to be often recognizable. Vascular injury, especially by therapeutic radiation is not just a morphologic marker. It is a mediator of tissue damage; perhaps the most consistent pathogenetic mechanism in delayed radiation injury

  15. Vascular lumen formation.

    Lammert, Eckhard; Axnick, Jennifer

    2012-04-01

    The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.

  16. Pulmonary vascular imaging

    Fedullo, P.F.; Shure, D.

    1987-01-01

    A wide range of pulmonary vascular imaging techniques are available for the diagnostic evaluation of patients with suspected pulmonary vascular disease. The characteristics of any ideal technique would include high sensitivity and specificity, safety, simplicity, and sequential applicability. To date, no single technique meets these ideal characteristics. Conventional pulmonary angiography remains the gold standard for the diagnosis of acute thromboembolic disease despite the introduction of newer techniques such as digital subtraction angiography and magnetic resonance imaging. Improved noninvasive lower extremity venous testing methods, particularly impedance plethysmography, and ventilation-perfusion scanning can play significant roles in the noninvasive diagnosis of acute pulmonary emboli when properly applied. Ventilation-perfusion scanning may also be useful as a screening test to differentiate possible primary pulmonary hypertension from chronic thromboembolic pulmonary hypertension. And, finally, angioscopy may be a useful adjunctive technique to detect chronic thromboembolic disease and determine operability. Optimal clinical decision-making, however, will continue to require the proper interpretation of adjunctive information obtained from the less-invasive techniques, applied with an understanding of the natural history of the various forms of pulmonary vascular disease and with a knowledge of the capabilities and shortcomings of the individual techniques

  17. Luminal progenitors restrict their lineage potential during mammary gland development.

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  18. Reporter-Based Isolation of Developmental Myogenic Progenitors

    Eyemen Kheir

    2018-04-01

    Full Text Available The formation and activity of mammalian tissues entail finely regulated processes, involving the concerted organization and interaction of multiple cell types. In recent years the prospective isolation of distinct progenitor and stem cell populations has become a powerful tool in the hands of developmental biologists and has rendered the investigation of their intrinsic properties possible. In this protocol, we describe how to purify progenitors with different lineage history and degree of differentiation from embryonic and fetal skeletal muscle by fluorescence-activated cell sorting (FACS. The approach takes advantage of a panel of murine strains expressing fluorescent reporter genes specifically in the myogenic progenitors. We provide a detailed description of the dissection procedures and of the enzymatic dissociation required to maximize the yield of mononucleated cells for subsequent FACS-based purification. The procedure takes ~6–7 h to complete and allows for the isolation and the subsequent molecular and phenotypic characterization of developmental myogenic progenitors.

  19. Radiology of liver circulation

    Hermine, C.L.

    1985-01-01

    This book proposes that careful evaluation of the arterioportogram is the cornerstone in assessing portal flow obstruction, being the most consistent of all observations including liver histology, portal venous pressure, size and number of portosystemic collaterals, and wedged hepatic venous pressure. Very brief chapters cover normal hepatic circulation and angiographic methods. Contrast volumes and flow rates for celiac, hepatic, and superior mesenteric injection are given, with the timing for venous phase radiographs. In the main body of the text, portal obstruction is divided very simply into presinusoidal (all proximal causes) and postsinusoidal (all distal causes, including Budd-Chiari). Changes are discussed regarding the splenic artery and spleen; hepatic artery and its branches; portal flow rate and direction; and arterioportal shunting and portosystemic collateral circulation in minimal, moderate, severe, and very severe portal obstruction and in recognizable entities such as prehepatic portal and hepatic venous obstructions. The major emphasis in this section is the recognition and understanding of flow changes by which level and severity of obstruction are assessed (not simply the anatomy of portosystemic collateral venous flow). Excellent final chapters discuss the question of portal hypertension without obstruction, and the contribution of arterioportography to the treatment of portal hypertension, again with an emphasis on hemodynamics before and after shunt surgery. There is a fascinating final chapter on segmental intrahepatic obstruction without portal hypertension that explains much of the unusual contrast enhancement sometimes seen in CT scanning of hepatic mass lesions

  20. Circulation of Stars

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  1. Effect of vitamin D on endothelial progenitor cells function.

    Yoav Hammer

    Full Text Available Endothelial progenitor cells (EPCs are a population of bone marrow-derived cells, which have an important role in the process of endothelialization and vascular repair following injury. Impairment of EPCs, which occurs in patients with diabetes, was shown to be related to endothelial dysfunction, coronary artery disease (CAD and adverse clinical outcomes. Recent evidence has shown that calcitriol, the active hormone of vitamin D, has a favorable impact on the endothelium and cardiovascular system. There is limited data on the effect of vitamin D on EPCs function.To examine the in vitro effects of Calcitriol on EPCs from healthy subjects and patients with diabetes.Fifty-one patients with type 2 diabetes (60±11 years, 40% women, HbA1C: 9.1±0.8% and 23 healthy volunteers were recruited. EPCs were isolated and cultured with and without calcitriol. The capacity of the cells to form colony-forming units (CFUs, their viability (measured by MTT assay, KLF-10 levels and angiogenic markers were evaluated after 1 week of culture.In diabetic patients, EPC CFUs and cell viability were higher in EPCs exposed to calcitriol vs. EPCs not exposed to calcitriol [EPC CFUs: 1.25 (IQR 1.0-2.0 vs. 0.5 (IQR 0.5-1.9, p < 0.001; MTT:0.62 (IQR 0.44-0.93 vs. 0.52 (IQR 0.31-0.62, p = 0.001]. KLF-10 levels tended to be higher in EPCs exposed to vitamin D, with no differences in angiopoietic markers. In healthy subjects, calcitriol supplementation also resulted in higher cell viability [MTT: 0.23 (IQR 0.11-0.46 vs. 0.19 (0.09-0.39, p = 0.04], but without differences in CFU count or angiopoietic markers.In patients with diabetes mellitus, in vitro vitamin D supplementation improved EPCs capacity to form colonies and viability. Further studies regarding the mechanisms by which vitamin D exerts its effect are required.

  2. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces.

    Ziebart, Thomas; Schnell, Anne; Walter, Christian; Kämmerer, Peer W; Pabst, Andreas; Lehmann, Karl M; Ziebart, Johanna; Klein, Marc O; Al-Nawas, Bilal

    2013-01-01

    Endothelial cells play an important role in peri-implant angiogenesis during early bone formation. Therefore, interactions between endothelial progenitor cells (EPCs) and titanium dental implant surfaces are of crucial interest. The aim of our in vitro study was to investigate the reactions of EPCs in contact with different commercially available implant surfaces. EPCs from buffy coats were isolated by Ficoll density gradient separation. After cell differentiation, EPC were cultured for a period of 7 days on different titanium surfaces. The test surfaces varied in roughness and hydrophilicity: acid-etched (A), sand-blasted-blasted and acid-etched (SLA), hydrophilic A (modA), and hydrophilic SLA (modSLA). Plastic and fibronectin-coated plastic surfaces served as controls. Cell numbers and morphology were analyzed by confocal laser scanning microscopy. Secretion of vascular endothelial growth factor (VEGF)-A was measured by enzyme-linked immunosorbent assay and expressions of iNOS and eNOS were investigated by real-time polymerase chain reaction. Cell numbers were higher in the control groups compared to the cells of titanium surfaces. Initially, hydrophilic titanium surfaces (modA and modSLA) showed lower cell numbers than hydrophobic surfaces (A and SLA). After 7 days smoother surfaces (A and modA) showed increased cell numbers compared to rougher surfaces (SLA and modSLA). Cell morphology of A, modA, and control surfaces was characterized by a multitude of pseudopodia and planar cell soma architecture. SLA and modSLA promoted small and plump cell soma with little quantity of pseudopodia. The lowest VEGF level was measured on A, the highest on modSLA. The highest eNOS and iNOS expressions were found on modA surfaces. The results of this study demonstrate that biological behaviors of EPCs can be influenced by different surfaces. The modSLA surface promotes an undifferentiated phenotype of EPCs that has the ability to secrete growth factors in great quantities. In

  3. Peripheral vascular imaging

    Wilson, G.A.; O'Mara, R.E.

    1988-01-01

    Techniques for the evaluation of the cardiovascular system are among the oldest in nuclear medicine. Arm-to-arm circulation times were determined in humans using the naturally occurring radioactivity of radium. In 1948 artificially produced radioactive sodium was used to evaluate the circulation time through the heart in both normal subjects and patients with heart disease. This technique utilized an intravenous injection of sodium-24 into the antecubital vein of one arm and the generation of a graph of the count rate with a Geiger-Muller tube placed over the percordium as the radiolabeled blood passed through the chambers of the heart. This simple measurement had many components to it: a venous phase, a pulmonary circulation phase, and a phase for the cardiac chambers. Since this early work, the development of short-lived radiopharmaceuticals, advances in detection devices, and the introduction of computers into clinical nuclear medicine have permitted separation of these various components, allowing the study of venous, pulmonary, intracardiac, arterial, and capillary phases

  4. LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS

    Foley, Ryan J.; Kirshner, Robert P.; Simon, Joshua D.; Burns, Christopher R.; Gal-Yam, Avishay; Hamuy, Mario; Morrell, Nidia I.; Phillips, Mark M.; Shields, Gregory A.; Sternberg, Assaf

    2012-01-01

    Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.

  5. Clues on Type Ia Supernovae Progenitors

    Piersanti, Luciano; Tornambe, Amedeo

    2005-01-01

    We show that in the framework of canonical stellar evolution it is hard, if not impossible, to determine the growth in mass of a CO White Dwarf, up to the Chandrasekhar limit by means of mass transfer from its companion in a binary system. This is the case either if matter is accreted from a normal companion with an H-rich envelope or if direct CO accretion occurs from a CO WD companion. At variance, we show that if the effects of rotation are taken into account in modeling the accretion process, a CO WD can increase its mass at the expenses of the degenerate CO companion up and beyond 1.4 M· , so that an explosive event of the type Ia class is naturally produced. This theoretical finding revives the Double Degenerate scenario for type Ia SNe progenitors. In such a case the internal spread in the observational properties of type Ia SNe may be interpreted as a consequence of different total masses; hence differences between SNe Ia in nearby elliptical galaxies and the majority of those in spirals should be expected and the current use of type Ia SNe as cosmological distance indicators should be justified

  6. TWEAK induces liver progenitor cell proliferation

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.

    2005-01-01

    Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  7. Harmine stimulates proliferation of human neural progenitors

    Vanja Dakic

    2016-12-01

    Full Text Available Harmine is the β-carboline alkaloid with the highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 71.5%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A, which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY, and an irreversible selective inhibitor of monoamine oxidase (MAO but not DYRK1A (pargyline. INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of DYRK1A is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Our findings show that harmine enhances proliferation of hNPCs and suggest that inhibition of DYRK1A may explain its effects upon proliferation in vitro and antidepressant effects in vivo.

  8. Role of liver progenitors in liver regeneration.

    Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A; Canbay, Ali

    2015-02-01

    During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.

  9. Hepatic progenitors for liver disease: current position

    Alice Conigliaro

    2010-02-01

    Full Text Available Alice Conigliaro1, David A Brenner2, Tatiana Kisseleva21University “La Sapienza”, Dipartimento di Biotecnologie Cellulari ed Ematologia Policlinico Umberto I, V Clinica Medica, Rome, Italy; 2Department of Medicine, University of California, San Diego, La Jolla, CA, USAAbstract: Liver regeneration restores the original functionality of hepatocytes and cholangiocytes in response to injury. It is regulated on several levels, with different cellular populations contributing to this process, eg, hepatocytes, liver precursor cells, intrahepatic stem cells. In response to injury, mature hepatocytes have the capability to proliferate and give rise to new hepatocytes and cholangiocytes. Meanwhile, liver precursor cells (oval cells have become the most recognized bipotential precursor cells in the damaged liver. They rapidly proliferate, change their cellular composition, and differentiate into hepatocytes and cholangiocytes to compensate for the cellular loss and maintain liver homeostasis. There is a growing body of evidence that oval cells originate from the intrahepatic stem cell(s, which in turn give(s rise to epithelial, including oval cells, and/or other hepatic cells of nonepithelial origin. Since there is a close relationship between the liver and hematopoiesis, bone marrow derived cells can also contribute to liver regeneration by the fusion of myeloid cells with damaged hepatocytes, or differentiation of mesenchymal stem cells into hepatocyte-like cells. The current review discusses the contribution of different cells to liver regeneration and their characteristics.Keywords: hepatic progenitor, liver disease, liver precursor cells, oval cells, hepatocytes, intrahepatic stem cells, cholangiocytes

  10. [Thrombosis in vascular accesses for haemodialysis: rescue treatment using invasive vascular radiological techniques].

    García Medina, J; Lacasa Pérez, N; Muray Cases, S; Pérez Garrido, I; García Medina, V

    2009-01-01

    The purpose of this paper is to communicate our experience in the salvage of thrombosed haemodialysis vascular accesses using interventional radiology techniques. In the last four years, we have treated, by radiological means, 101 thrombosed haemodialysis vascular accesses. There were 44 autologous arteriovenous fistulas (43.56%) and 57 PTFE grafts (56.44%). There were 69 men (68.3%) and 32 women (31.7%). The mean age was 67.73 years (range 33-84). The mean vascular access age was 23.79 months (range 1-132). Manual catheter-directed aspiration was used. Fragmented, triturated or pushed the thrombus against the pulmonary circulation was avoided in all cases. 78 accesses were salvaged (77.2%). Autologous fistulas average and PTFE grafts success rate were 84.44% and 71.42% respectively. Angioplasty in one or more lesions after thromboaspiration was performed in all accesses, except six (5.9%). Metallic endoprostheses were implanted in 14 accesses (13.9%). Mean follow-up was 9 months (range 0-44). Primary patency was 42.3% +/- 5 at 6 months and 32% +/- 4 at one year. Autologous fistulas patency was better than PTFE grafts patency (p better than PTFE grafts. This justifies interventional radiology techniques in these situations.

  11. Circulation Systems Past and Present

    Maurice J. Freedman

    1981-01-01

    Full Text Available A review of the development of circulation systems shows two areas of change. The librarian's perception of circulation control has shifted from a broad service orientation to a narrow record-keeping approach and recently back again. The technological development of circulation sys-tems has evolved from manual systems to the online systems of today. The trade-offs and deficiencies of earlier systems in relation to the comprehensive services made possible by the online computer are detailed.

  12. Manipulating Endothelial Progenitor Cell Homing with Sphingosine-1-Phosphate for Terapeutic Angiogenesis

    Williams, Priscilla Anne

    Ischemic vascular diseases are the main cause of mortality worldwide and yet current therapies only delay disease progression and improve quality of life without addressing the fundamental problem of tissue loss. Within the field of tissue engineering, therapeutic angiogenesis provides a promising approach to alternatively provide new blood vessel formation via spatiotemporally controlled delivery of proangiogenic agents. Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid that is upregulated under ischemic conditions, has recently gained great enthusiasm as a potential mediator in neovascularization strategies given its essential roles in promoting both neovessel formation and stabilization, and cellular trafficking along highly regulated endogenous gradients. Herein, the governing hypothesis guiding this dissertation is that local biomaterial-controlled delivery of S1P may be used to enhance migration and recruitment of vascular progenitor cells for enhanced therapeutic angiogenesis within ischemic tissue. The initial work in this dissertation investigated the effect of hypoxia on the angiogenic response of both mature and progenitor endothelial cells to S1P stimulation in vitro. Outgrowth endothelial cells (OECs) were isolated from human umbilical cord blood to provide a clinically relevant source of vascular progenitor cells for the studies conducted within this dissertation. S1P stimulation promoted angiogenic activity of both ECs and OECs under both ambient and hypoxic (1%) oxygen tensions. Furthermore, dual therapy with the combination of S1P and vascular endothelial growth factor (VEGF) further enhanced cellular responses. Interestingly, hypoxia substantially augmented the functional response of OECs to S1P, resulting in 25-fold and 6.5-fold increases in directed migration and sprouting, respectively. Thus, these studies highlighted the potential for S1P as a therapeutic agent for treatment of ischemic diseases. An injectable biomaterial system

  13. The ocean circulation inverse problem

    Wunsch, C

    1996-01-01

    .... This book addresses the problem of inferring the state of the ocean circulation, understanding it dynamically, and even forecasting it through a quantitative combination of theory and observation...

  14. Dynamic release and clearance of circulating microparticles during cardiac stress.

    Augustine, Daniel; Ayers, Lisa V; Lima, Eduardo; Newton, Laura; Lewandowski, Adam J; Davis, Esther F; Ferry, Berne; Leeson, Paul

    2014-01-03

    Microparticles are cell-derived membrane vesicles, relevant to a range of biological responses and known to be elevated in cardiovascular disease. To investigate microparticle release during cardiac stress and how this response differs in those with vascular disease. We measured a comprehensive panel of circulating cell-derived microparticles by a standardized flow cytometric protocol in 119 patients referred for stress echocardiography. Procoagulant, platelet, erythrocyte, and endothelial but not leukocyte, granulocyte, or monocyte-derived microparticles were elevated immediately after a standardized dobutamine stress echocardiogram and decreased after 1 hour. Twenty-five patients developed stress-induced wall motion abnormalities suggestive of myocardial ischemia. They had similar baseline microparticle levels to those who did not develop ischemia, but, interestingly, their microparticle levels did not change during stress. Furthermore, no stress-induced increase was observed in those without inducible ischemia but with a history of vascular disease. Fourteen patients subsequently underwent coronary angiography. A microparticle rise during stress echocardiography had occurred only in those with normal coronary arteries. Procoagulant, platelet, erythrocyte, and endothelial microparticles are released during cardiac stress and then clear from the circulation during the next hour. This stress-induced rise seems to be a normal physiological response that is diminished in those with vascular disease.

  15. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    Xu, Jiajun; Yang, Ming [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Kosterin, Paul [Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Salzberg, Brian M. [Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Milovanova, Tatyana N.; Bhopale, Veena M. [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Thom, Stephen R., E-mail: sthom@smail.umaryland.edu [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2013-12-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice.

  16. VIP and its homologous increase vascular conductance in certain endocrine and exocrine glands

    Huffman, L.J.; Connors, J.M.; Hedge, G.A.

    1988-01-01

    The effects of vasoactive intestinal peptide (VIP) and related structural homologues on tissue vascular conductances were investigated in anesthetized male rats. VIP, peptide histidine isoleucine (PHI), secretin, growth hormone-releasing factor (GHRF), gastric inhibitory peptide (GIP), or saline was infused intravenously over 4 min. Tissue blood flows were measured during this time by use of 141 Ce-labeled microspheres. Circulating thyrotropin (TSH), triiodothyronine (T 3 ), and thyroxine (T 4 ) levels were determined before and at 20 min and 2 h after treatment. Marked increases in thyroid, pancreatic, and salivary gland vascular Cs occurred during peptide infusion with the order of potency correlating with the degree of structural homology to VIP. PHI and secretin produced maximal increases in vascular Cs, which were the same as those obtained with VIP. Circulating TSH, T 3 , and T 4 levels were not different from values in saline-infused rats after peptide treatments that caused striking increases in thyroid vascular C. These observations indicate that the vascular beds of certain endocrine and exocrine glands are responsive to the vasodilatory action of VIP and related homologues with the order of potency corresponding to the degree of structural homology to VIP. These results are also consistent with the proposal that structural homologues of VIP act at the same vascular receptor as VIP. Alternative, the involvement of different vascular receptors, acting through the same mechanism at a level beyond the receptor site, cannot be excluded

  17. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance

    Bruinsma, P.; Arts, T.; Dankelman, J.; Spaan, J. A.

    1988-01-01

    The effect of pressure-dependent changes in vascular volume, resistance and capacitance in the coronary micro-circulation, has been studied by a distributed mathematical model of the coronary micro-vasculature in the left ventricular wall. The model does not include regulation of coronary blood flow

  18. Circulating endothelial cells: a potential parameter of organ damage in sickle cell anemia?

    Strijbos, Michiel H.; Landburg, Precious P.; Nur, Erfan; Teerlink, Tom; Leebeek, Frank W. G.; Rijneveld, Anita W.; Biemond, Bart J.; Sleijfer, Stefan; Gratama, Jan W.; Duits, Ashley J.; Schnog, John-John B.

    2009-01-01

    Objective laboratory tools are needed to monitor developing organ damage in sickle cell disease (SCD). Circulating endothelial cells (CECs) are indicative of vascular injury. We determined whether elevated CEC can be detected in asymptomatic SCD with the CellSearch system and whether the CEC count

  19. Use of Hypertonic Sodium Chloride Solution at Surgery under Extracorporeal Circulation

    V. V. Lomivorotov

    2012-01-01

    Full Text Available The paper analyzes the data available in the references on different aspects of using hypertonic sodium chloride solution during surgery under extracorporeal circulation in cardiosurgical care. The hypertonic solution is shown to lower positive fluid balance in the perioperative period, to increase cardiac output with simultaneously decreased vascular resistance, to improve lung oxygenating function, and to normalize tissue blood circulation and neurological status in patients exposed to artificial perfusion. There is evidence for its effect on the immune system and capillary endothelium. It is suggested that it is necessary to study the effect of the hypertonic solution on the incidence of complications and death rates during surgery under extracorporeal circulation and it is proposed to use the solution under long-term extracorporeal circulation. Key words: hypertonic saline, sodium chloride, extracorporeal circulation.

  20. Transcytosis Involvement in Transport System and Endothelial Permeability of Vascular Leakage during Dengue Virus Infection

    Chanettee Chanthick

    2018-02-01

    Full Text Available The major role of endothelial cells is to maintain homeostasis of vascular permeability and to preserve the integrity of vascular vessels to prevent fluid leakage. Properly functioning endothelial cells promote physiological balance and stability for blood circulation and fluid components. A monolayer of endothelial cells has the ability to regulate paracellular and transcellular pathways for transport proteins, solutes, and fluid. In addition to the paracellular pathway, the transcellular pathway is another route of endothelial permeability that mediates vascular permeability under physiologic conditions. The transcellular pathway was found to be associated with an assortment of disease pathogeneses. The clinical manifestation of severe dengue infection in humans is vascular leakage and hemorrhagic diatheses. This review explores and describes the transcellular pathway, which is an alternate route of vascular permeability during dengue infection that corresponds with the pathologic finding of intact tight junction. This pathway may be the route of albumin transport that causes endothelial dysfunction during dengue virus infection.

  1. A PEDF-Derived Peptide Inhibits Retinal Neovascularization and Blocks Mobilization of Bone Marrow-Derived Endothelial Progenitor Cells

    Richard Longeras

    2012-01-01

    Full Text Available Proliferative diabetic retinopathy is characterized by pathological retinal neovascularization, mediated by both angiogenesis (involving mature endothelial cells and vasculogenesis (involving bone marrow-derived circulating endothelial progenitor cells (EPCs. Pigment epithelium-derived factor (PEDF contains an N-terminal 34-amino acid peptide (PEDF-34 that has antiangiogenic properties. Herein, we present a novel finding that PEDF-34 also possesses antivasculogenic activity. In the oxygen-induced retinopathy (OIR model using transgenic mice that have Tie2 promoter-driven GFP expression, we quantified Tie2GFP+ cells in bone marrow and peripheral blood by fluorescence-activated cell sorting (FACS. OIR significantly increased the number of circulating Tie2-GFP+ at P16, correlating with the peak progression of neovascularization. Daily intraperitoneal injections of PEDF-34 into OIR mice decreased the number of Tie2-GFP+ cells in the circulation at P16 by 65% but did not affect the number of Tie2-GFP+ cells in the bone marrow. These studies suggest that PEDF-34 attenuates EPC mobilization from the bone marrow into the blood circulation during retinal neovascularization.

  2. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  3. Amlodipine Ameliorates Ischemia-Induced Neovascularization in Diabetic Rats through Endothelial Progenitor Cell Mobilization

    Jiayin Sun

    2016-01-01

    Full Text Available Objectives. We investigated whether amlodipine could improve angiogenic responses in a diabetic rat model of acute myocardial infarction (AMI through improving bone marrow endothelial progenitor cell (EPC mobilization, in the same way as angiotensin converting enzyme inhibitors. Methods. After induction of AMI by coronary artery ligation, diabetic rats were randomly assigned to receive perindopril (2 mgkg−1 day−1, amlodipine (2.5 mgkg−1 day−1, or vehicle by gavage (n=20 per group. Circulating EPC counts before ligation and on days 1, 3, 5, 7, 14, and 28 after AMI were measured in each group. Microvessel density, cardiac function, and cardiac remodeling were assessed 4 weeks after treatment. The signaling pathway related to EPC mobilization was also measured. Results. Circulating EPC count in amlodipine- and perindopril-treated rats peaked at day 7, to an obvious higher level than the control group peak which was reached earlier (at day 5. Rats treated with amlodipine showed improved postischemia neovascularization and cardiac function, together with reduced cardiac remodeling, decreased interstitial fibrosis, and cardiomyocyte apoptosis. Amlodipine treatment also increased cardiac SDF-1/CXCR4 expression and gave rise to activation of VEGF/Akt/eNOS signaling in bone marrow. Conclusions. Amlodipine promotes neovascularization by improving EPC mobilization from bone marrow in diabetic rats after AMI, and activation of VEGF/Akt/eNOS signaling may in part contribute to this.

  4. Red wine consumption improves in vitro migration of endothelial progenitor cells in young, healthy individuals.

    Hamed, Saher; Alshiek, Jonia; Aharon, Anat; Brenner, Benjamin; Roguin, Ariel

    2010-07-01

    Endothelial progenitor cells (EPCs) contribute to the maintenance of vascular endothelial function. The moderate consumption of red wine provides cardiovascular protection. We investigated the underlying molecular mechanism of EPC migration in young, healthy individuals who drank red wine. Fourteen healthy volunteers consumed 250 mL red wine daily for 21 consecutive days. Vascular endothelial function, plasma stromal cell-derived factor 1alpha (SDF1alpha) concentrations, and the number, migration, and nitric oxide production of EPCs were determined before and after the daily consumption of red wine. EPCs were glucose stressed to study the effect of red wine on EPC migration, proliferation, and senescence and to study the expressions of CXC chemokine receptor 4 (CXCR4) and members of the Pi3K/Akt/eNOS (phosphatidylinositol 3-kinase/protein kinase B/endothelial nitric oxide synthase) signaling pathway by Western blotting. Daily red wine consumption for 21 consecutive days significantly enhanced vascular endothelial function. Although plasma SDF1alpha concentrations were unchanged, EPC count and migration were significantly increased after this 21-d consumption period. Red wine increased the migration, proliferation, CXCR4 expression, and activity of the Pi3K/Akt/eNOS signaling pathway and decreased the extent of apoptosis in glucose-stressed EPCs. The results of the present study indicate that red wine exerts its effect through the up-regulation of CXCR4 expression and activation of the SDF1alpha/CXCR4/Pi3K/Akt/eNOS signaling pathway, which results in increased EPC migration and proliferation and decreased extent of apoptosis. Our findings suggest that these effects could be linked to the mechanism of cardiovascular protection that is associated with the regular consumption of red wine.

  5. Interventional vascular radiology

    Yune, H.Y.

    1984-01-01

    The papers published during this past year in the area of interventional vascular radiology presented some useful modifications and further experiences both in the area of thromboembolic therapy and in dilation and thrombolysis, but no new techniques. As an introductory subject, an excellent monograph reviewing the current spectrum of pharmacoangiography was presented in Radiographics. Although the presented material is primarily in diagnostic application of various pharmacologic agents used today to facilitate demonstration of certain diagnostic criteria of various disease processes, both vasodilatory and vasoconstrictive reaction to these agents are widely used in various therapeutic vascular procedures. This monograph should be reviewed by every angiographer whether or not he or she performs interventional procedures, and it would be very convenient to have this table available in the angiography suite. In a related subject, Bookstein and co-workers have written an excellent review concerning pharmacologic manipulations of various blood coagulative parameters during angiography. Understanding the proper method of manipulation of the bloodclotting factors during angiography, and especially during interventional angiography, is extremely important. Particularly, the method of manipulating the coagulation with the use of heparin and protamine and modification of the platelet activity by using aspirin and dipyridamole are succinctly reviewed. The systemic and selective thrombolytic activities of streptokianse are also discussed

  6. Vascular Remodeling in Experimental Hypertension

    Norma R. Risler

    2005-01-01

    Full Text Available The basic hemodynamic abnormality in hypertension is an increased peripheral resistance that is due mainly to a decreased vascular lumen derived from structural changes in the small arteries wall, named (as a whole vascular remodeling. The vascular wall is an active, flexible, and integrated organ made up of cellular (endothelial cells, smooth muscle cells, adventitia cells, and fibroblasts and noncellular (extracellular matrix components, which in a dynamic way change shape or number, or reorganize in response to physiological and pathological stimuli, maintaining the integrity of the vessel wall in physiological conditions or participating in the vascular changes in cardiovascular diseases such as hypertension. Research focused on new signaling pathways and molecules that can participate in the mechanisms of vascular remodeling has provided evidence showing that vascular structure is not only affected by blood pressure, but also by mechanisms that are independent of the increased pressure. This review will provide an overview of the evidence, explaining some of the pathophysiologic mechanisms participating in the development of the vascular remodeling, in experimental models of hypertension, with special reference to the findings in spontaneously hypertensive rats as a model of essential hypertension, and in fructose-fed rats as a model of secondary hypertension, in the context of the metabolic syndrome. The understanding of the mechanisms producing the vascular alterations will allow the development of novel pharmacological tools for vascular protection in hypertensive disease.

  7. Vascular pattern formation in plants.

    Scarpella, Enrico; Helariutta, Ykä

    2010-01-01

    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.

  8. A continuum model for pressure-flow relationship in human pulmonary circulation.

    Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T

    2011-06-01

    A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.

  9. Sino-Danish Brain Circulation

    Bertelsen, Rasmus Gjedssø; Du, Xiangyun; Søndergaard, Morten Karnøe

    2014-01-01

    China is faced with urgent needs to develop an economically and environmentally sustainable economy based on innovation and knowledge. Brain circulation and research and business investments from the outside are central for this development. Sino-American brain circulation and research...... and investment by overseas researchers and entrepreneurs are well described. In that case, the US is the center of global R&D and S&T. However, the brain circulation and research and investments between a small open Scandinavian economy, such as Denmark, and the huge developing economy of China are not well...... understood. In this case, Denmark is very highly developed, but a satellite in the global R&D and S&T system. With time and the growth of China as a R&D and S&T power house, both Denmark and China will benefit from brain circulation between them. Such brain circulation is likely to play a key role in flows...

  10. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-10-01

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  11. No effect of melatonin to modify surgical-stress response after major vascular surgery

    Kücükakin, B.; Wilhelmsen, M.; Lykkesfeldt, Jens

    2010-01-01

    A possible mechanism underlying cardiovascular morbidity after major vascular surgery may be the perioperative ischaemia-reperfusion with excessive oxygen-derived free-radical production and increased levels of circulating inflammatory mediators. We examined the effect of melatonin infusion during...... surgery and oral melatonin treatment for 3 days after surgery on biochemical markers of oxidative and inflammatory stress....

  12. Natural Circulation with Boiling

    Mathisen, R P

    1967-09-15

    A number of parameters with dominant influence on the power level at hydrodynamic instability in natural circulation, two-phase flow, have been studied experimentally. The geometrical dependent quantities were: the system driving head, the boiling channel and riser dimensions, the single-phase as well as the two phase flow restrictions. The parameters influencing the liquid properties were the system pressure and the test section inlet subcooling. The threshold of instability was determined by plotting the noise characteristics in the mass flow records against power. The flow responses to artificially obtained power disturbances at instability conditions were also measured in order to study the nature of hydrodynamic instability. The results presented give a review over relatively wide ranges of the main parameters, mainly concerning the coolant performance in both single and parallel boiling channel flow. With regard to the power limits the experimental results verified that the single boiling channel performance was intimately related to that of the parallel channels. In the latter case the additional inter-channel factors with attenuating effects were studied. Some optimum values of the parameters were observed.

  13. THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR

    Bersten, Melina C.; Nomoto, Ken'ichi; Folatelli, Gastón; Maeda, Keiichi; Benvenuto, Omar G.; Ergon, Mattias; Sollerman, Jesper; Benetti, Stefano; Ochner, Paolo; Tomasella, Lina; Botticella, Maria Teresa; Fraser, Morgan; Kotak, Rubina

    2012-01-01

    A set of hydrodynamical models based on stellar evolutionary progenitors is used to study the nature of SN 2011dh. Our modeling suggests that a large progenitor star—with R ∼ 200 R ☉ —is needed to reproduce the early light curve (LC) of SN 2011dh. This is consistent with the suggestion that the yellow super-giant star detected at the location of the supernova (SN) in deep pre-explosion images is the progenitor star. From the main peak of the bolometric LC and expansion velocities, we constrain the mass of the ejecta to be ≈2 M ☉ , the explosion energy to be E = (6-10) × 10 50 erg, and the 56 Ni mass to be approximately 0.06 M ☉ . The progenitor star was composed of a helium core of 3-4 M ☉ and a thin hydrogen-rich envelope of ≈0.1M ☉ with a main-sequence mass estimated to be in the range of 12-15 M ☉ . Our models rule out progenitors with helium-core masses larger than 8 M ☉ , which correspond to M ZAMS ∼> 25M ☉ . This suggests that a single star evolutionary scenario for SN 2011dh is unlikely.

  14. NFIX Regulates Neural Progenitor Cell Differentiation During Hippocampal Morphogenesis

    Heng, Yee Hsieh Evelyn; McLeay, Robert C.; Harvey, Tracey J.; Smith, Aaron G.; Barry, Guy; Cato, Kathleen; Plachez, Céline; Little, Erica; Mason, Sharon; Dixon, Chantelle; Gronostajski, Richard M.; Bailey, Timothy L.; Richards, Linda J.; Piper, Michael

    2014-01-01

    Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of the molecular regulation of these fundamental events remains limited. Moreover, processes underpinning development of the postnatal neurogenic niches within the cortex remain poorly defined. Here, we demonstrate that Nuclear factor one X (NFIX) is expressed by neural progenitor cells within the embryonic hippocampus, and that progenitor cell differentiation is delayed within Nfix−/− mice. Moreover, we reveal that the morphology of the dentate gyrus in postnatal Nfix−/− mice is abnormal, with fewer subgranular zone neural progenitor cells being generated in the absence of this transcription factor. Mechanistically, we demonstrate that the progenitor cell maintenance factor Sry-related HMG box 9 (SOX9) is upregulated in the hippocampus of Nfix−/− mice and demonstrate that NFIX can repress Sox9 promoter-driven transcription. Collectively, our findings demonstrate that NFIX plays a central role in hippocampal morphogenesis, regulating the formation of neuronal and glial populations within this structure. PMID:23042739

  15. Cardiac and vascular malformations

    Ley, S.; Ley-Zaporozhan, J.

    2015-01-01

    Malformations of the heart and great vessels show a high degree of variation. There are numerous variants and defects with only few clinical manifestations and are only detected by chance, such as a persistent left superior vena cava or a partial anomalous pulmonary venous connection. Other cardiovascular malformations are manifested directly after birth and need prompt mostly surgical interventions. At this point in time echocardiography is the diagnostic modality of choice for morphological and functional characterization of malformations. Additional imaging using computed tomography (CT) or magnetic resonance imaging (MRI) is only required in a minority of cases. If so, the small anatomical structures, the physiological tachycardia and tachypnea are a challenge for imaging modalities and strategies. This review article presents the most frequent vascular, cardiac and complex cardiovascular malformations independent of the first line diagnostic imaging modality. (orig.) [de

  16. Development and molecular composition of the hepatic progenitor cell niche.

    Vestentoft, Peter Siig

    2013-05-01

    End-stage liver diseases represent major health problems that are currently treated by liver transplantation. However, given the world-wide shortage of donor livers novel strategies are needed for therapeutic treatment. Adult stem cells have the ability to self-renew and differentiate into the more specialized cell types of a given organ and are found in tissues throughout the body. These cells, whose progeny are termed progenitor cells in human liver and oval cells in rodents, have the potential to treat patients through the generation of hepatic parenchymal cells, even from the patient's own tissue. Little is known regarding the nature of the hepatic progenitor cells. Though they are suggested to reside in the most distal part of the biliary tree, the canal of Hering, the lack of unique surface markers for these cells has hindered their isolation and characterization. Upon activation, they proliferate and form ductular structures, termed "ductular reactions", which radiate into the hepatic parenchyma. The ductular reactions contain activated progenitor cells that not only acquire a phenotype resembling that observed in developing liver but also display markers of differentiation shared with the cholangiocytic or hepatocytic lineages, the two parenchymal hepatic cell types. Interactions between the putative progenitor cells, the surrounding support cells and the extracellular matrix scaffold, all constituting the progenitor cell niche, are likely to be important for regulating progenitor cell activity and differentiation. Therefore, identifying novel progenitor cell markers and deciphering their microenvironment could facilitate clinical use. The aims of the present PhD thesis were to expand knowledge of the hepatic progenitor cell niche and characterize it both during development and in disease. Several animal models of hepatic injury are known to induce activation of the progenitor cells. In order to identify possible progenitor cell markers and niche components

  17. CIRSE Vascular Closure Device Registry

    Reekers, Jim A.; Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2011-01-01

    Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. The CIRSE registry of closure devices

  18. Dynamic adaption of vascular morphology

    Okkels, Fridolin; Jacobsen, Jens Christian Brings

    2012-01-01

    The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here ...

  19. Diagnostic criteria for vascular dementia

    Scheltens, P.; Hijdra, A. H.

    1998-01-01

    The term vascular dementia implies the presence of a clinical syndrome (dementia) caused by, or at least assumed to be caused by, a specific disorder (cerebrovascular disease). In this review, the various sets of criteria used to define vascular dementia are outlined. The various sets of criteria

  20. The vascular secret of Klotho

    Lewin, Ewa; Olgaard, Klaus

    2015-01-01

    Klotho is an evolutionarily highly conserved protein related to longevity. Increasing evidence of a vascular protecting effect of the Klotho protein has emerged and might be important for future treatments of uremic vascular calcification. It is still disputed whether Klotho is locally expressed ...

  1. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  2. Establishment of bipotent progenitor cell clone from rat skeletal muscle.

    Murakami, Yousuke; Yada, Erica; Nakano, Shin-ichi; Miyagoe-Suzuki, Yuko; Hosoyama, Tohru; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2011-12-01

    The present study describes the isolation, cloning and characterization of adipogenic progenitor cells from rat skeletal muscle. Among the obtained 10 clones, the most highly adipogenic progenitor, 2G11 cells, were further characterized. In addition to their adipogenicity, 2G11 cells retain myogenic potential as revealed by formation of multinucleated myotubes when co-cultured with myoblasts. 2G11 cells were resistant to an inhibitory effect of basic fibroblast growth factor on adipogenesis, while adipogenesis of widely used preadipogenic cell line, 3T3-L1 cells, was suppressed almost completely by the same treatment. In vivo transplantation experiments revealed that 2G11 cells are able to possess both adipogenicity and myogenicity in vivo. These results indicate the presence of bipotent progenitor cells in rat skeletal muscle, and suggest that such cells may contribute to ectopic fat formation in skeletal muscle. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  3. Rates and progenitors of type Ia supernovae

    Wood-Vasey, William Michael [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    analyzing the true sensitivity of a multi-epoch supernova search and finds a Type Ia supernova rate from z ~ 0.01-0.1 of rV = 4.26$+1.39 +0.10\\atop{-1.93 -0.10}$h3 x 10-4 SNe Ia/yr/Mpc3 from a preliminary analysis of a subsample of the SNfactory prototype search. Several unusual supernovae were found in the course of the SNfactory prototype search. One in particular, SN 2002ic, was the first SN Ia to exhibit convincing evidence for a circumstellar medium and offers valuable insight into the progenitors of Type Ia supernovae.

  4. Rates and progenitors of type Ia supernovae

    Wood-Vasey, William Michael

    2004-01-01

    analyzing the true sensitivity of a multi-epoch supernova search and finds a Type Ia supernova rate from z ∼ 0.01-0.1 of r V = 4.26 -1.93 -0.10 +1.39 +0.10 h 3 x 10 -4 SNe Ia/yr/Mpc 3 from a preliminary analysis of a subsample of the SNfactory prototype search. Several unusual supernovae were found in the course of the SNfactory prototype search. One in particular, SN 2002ic, was the first SN Ia to exhibit convincing evidence for a circumstellar medium and offers valuable insight into the progenitors of Type Ia supernovae

  5. Social media in vascular surgery.

    Indes, Jeffrey E; Gates, Lindsay; Mitchell, Erica L; Muhs, Bart E

    2013-04-01

    There has been a tremendous growth in the use of social media to expand the visibility of various specialties in medicine. The purpose of this paper is to describe the latest updates on some current applications of social media in the practice of vascular surgery as well as existing limitations of use. This investigation demonstrates that the use of social networking sites appears to have a positive impact on vascular practice, as is evident through the incorporation of this technology at the Cleveland Clinic and by the Society for Vascular Surgery into their approach to patient care and physician communication. Overall, integration of social networking technology has current and future potential to be used to promote goals, patient awareness, recruitment for clinical trials, and professionalism within the specialty of vascular surgery. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  6. Topical application of ex vivo expanded endothelial progenitor cells promotes vascularisation and wound healing in diabetic mice.

    Asai, Jun; Takenaka, Hideya; Ii, Masaaki; Asahi, Michio; Kishimoto, Saburo; Katoh, Norito; Losordo, Douglas W

    2013-10-01

    Impaired wound healing leading to skin ulceration is a serious complication of diabetes and may be caused by defective angiogenesis. Endothelial progenitor cells (EPCs) can augment neovascularisation in the ischaemic tissue. Experiments were performed to test the hypothesis that locally administered EPCs can promote wound healing in diabetes. Full-thickness skin wounds were created on the dorsum of diabetic mice. EPCs were obtained from bone marrow mononuclear cells (BMMNCs) and applied topically to the wound immediately after surgery. Vehicle and non-selective BMMNCs were used as controls. Wound size was measured on days 5, 10 and 14 after treatment, followed by resection, histological analysis and quantification of vascularity. Topical application of EPCs significantly promoted wound healing, as assessed by closure rate and wound vascularity. Immunostaining revealed that transplanted EPCs induced increased expression of vascular endothelial growth factor and basic fibroblast growth factor. Few EPCs were observed in the neovasculature based on in vivo staining of the functional vasculature. Ex vivo expanded EPCs promote wound healing in diabetic mice via mechanisms involving increased local cytokine expression and enhanced neovascularisation of the wound. This strategy exploiting the therapeutic capacity of autologously derived EPCs may be a novel approach to skin repair in diabetes. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  7. Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart

    Dinender Singla

    2016-01-01

    Full Text Available We hypothesized that fibroblast growth factor-9 (FGF-9 would enhance angiogenesis via activating c-kit positive stem cells in the infarcted nondiabetic and diabetic heart. In brief, animals were divided into three groups: Sham, MI, and MI+FGF-9. Two weeks following MI or sham surgery, our data suggest that treatment with FGF-9 significantly diminished vascular apoptosis compared to the MI group in both C57BL/6 and db/db mice (p<0.05. Additionally, the number of c-kit+ve/SM α-actin+ve cells and c-kit+ve/CD31+ve cells were greatly enhanced in the MI+FGF-9 groups relative to the MI suggesting FGF-9 enhances c-Kit cell activation and their differentiation into vascular smooth muscle cells and endothelial cells, respectively (p<0.05. Histology shows that the total number of vessels were quantified for all groups and our data suggest that the FGF-9 treated groups had significantly more vessels than their MI counterparts (p<0.05. Finally, echocardiographic data suggests a significant improvement in left ventricular output, as indicated by fractional shortening and ejection fraction in both nondiabetic and diabetic animals treated with FGF-9 (p<0.05. Overall, our data suggests FGF-9 has the potential to attenuate vascular cell apoptosis, activate c-Kit progenitor cells, and enhance angiogenesis and neovascularization in C57BL/6 and db/db mice leading to improved cardiac function.

  8. Circulating Immune Complexes among Diabetic Children

    George Nicoloff

    2004-01-01

    Full Text Available Insulin dependent diabetes mellitus (IDDM is an autoimmune disease associated with the presence of different types of autoantibodies. The presence of these antibodies and the corresponding antigens in the circulation leads to the formation of circulating immune complexes (CIC. CIC are known to persist in the blood for long periods of time. Such CIC following deposition in the small blood vessels have the potential to lead to microangiopathy with debilitating clinical consequences. The aim of our pilot study was to investigate whether a correlation exists between CIC and the development of microvascular complications in diabetic children. Isolation of a new glycoprotein complement inhibition factor (CIF from the parasitic plant Cuscuta europea seed, which appears to bind specifically to complement component C3 has provided an unique tool for the measurement of immune complexes by means of ELISA-type techniques (CIF-ELISA. We studied the levels of CIC (IgG, IgM and IgA in 58 diabetic children (mean age 12.28±4.04 years, diabetes duration 5.3±3.7 years, 29 of them had vascular complications (group 1 and the other 29 were without vascular complications (group 2. As controls, we studied sera samples from 21 healthy children (mean age 13.54±4.03 years. Sera from the diabetic patients showed statistically significant higher levels of CIC IgG ( p=0.03 than sera from the control group. In sera from group 1 values of CIC IgG showed statistically significant higher levels than controls (0.720±0.31 vs. 0.46±0.045; p=0.011 Sera from 59% of the patients were positive for CIC IgG, 36% for CIC IgM and 9% for CIC IgA. Among 26 patients with microalbuminuria, sera from 17/26 (65% were positive for CIC IgG, 8/26 (31% for CIC IgM and 2/26 (8% for CIC IgA. CIC IgG correlated with HbA1c (r=0.51; p=0.005 and microalbuminuria (r=0.42, p=0.033. CIC IgA correlated with age (r=0.44, p=0.03. CIC IgM correlated with the duration of diabetes (r=0.63, p=0.02. These

  9. Endothelial progenitor cell mobilization and increased intravascular nitric oxide in patients undergoing cardiac rehabilitation.

    Paul, Jonathan D; Powell, Tiffany M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; Carlow, Andrea; Annavajjhala, Vidhya; Shiva, Sruti; Dejam, Andre; Gladwin, Mark T; McCoy, J Philip; Zalos, Gloria; Press, Beverly; Murphy, Mandy; Hill, Jonathan M; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2007-01-01

    We investigated whether cardiac rehabilitation participation increases circulating endothelial progenitor cells (EPCs) and benefits vasculature in patients already on stable therapy previously shown to augment EPCs and improve endothelial function. Forty-six of 50 patients with coronary artery disease completed a 36-session cardiac rehabilitation program: 45 were treated with HMG-CoA reductase inhibitor (statin) therapy > or = 1 month (average baseline low-density lipoprotein cholesterol = 81 mg/dL). Mononuclear cells isolated from blood were quantified for EPCs by flow cytometry (CD133/VEGFR-2 cells) and assayed in culture for EPC colony-forming units (CFUs). In 23 patients, EPCs were stained for annexin-V as a marker of apoptosis, and nitrite was measured in blood as an indicator of intravascular nitric oxide. Endothelial progenitor cells increased from 35 +/- 5 to 63 +/- 10 cells/mL, and EPC-CFUs increased from 0.9 +/- 0.2 to 3.1 +/- 0.6 per well (both P < .01), but 11 patients had no increase in either measure. Those patients whose EPCs increased from baseline showed significant increases in nitrite and reduction in annexin-V staining (both P < .01) versus no change in patients without increase in EPCs. Over the course of the program, EPCs increased prior to increase in nitrite in the blood. Cardiac rehabilitation in patients receiving stable statin therapy and with low-density lipoprotein cholesterol at goal increases EPC number, EPC survival, and endothelial differentiation potential, associated with increased nitric oxide in the blood. Although this response was observed in most patients, a significant minority showed neither EPC mobilization nor increased nitric oxide in the blood.

  10. The relative role of neutrophils and platelets in the local accumulation of circulating lymphocytes at sites of ionophore A23187 inoculation

    Hayes, J.M.; Simmons, R.L. (Univ. of Pittsburgh, PA (USA))

    1991-03-01

    The early cellular infiltrate at inflammatory sites consists predominantly of neutrophils and cells of the monocyte/macrophage lineage. The mechanism by which circulating, unsensitized lymphocytes accumulate at sites of inflammation is unknown. The pattern of accumulation of 111indium-labeled circulating thymocytes in response to local injections of the ionophore A23187 was studied and compared with the pattern of (125)iodinated albumin accumulation as a measure of vascular permeability. The kinetics of thymocyte accumulation differed from those of vascular permeability. Sublethal total-body irradiation (750 rads) markedly decreased thymocyte accumulation but had little effect on vascular permeability. Irradiation of the local site alone had no effect. T lymphocyte, T lymphoblast, and platelet accumulation generally followed the same pattern as thymocytes. Intravenous injection of neutrophils, but not platelets, partially restored lymphocyte accumulation in vivo in irradiated mice via a pathway involving the circulating neutrophil, and seemed to be independent of changes in vascular permeability.

  11. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Köhl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.

  12. File list: ALL.Oth.50.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Full Text Available ALL.Oth.50.AllAg.Multipotent_otic_progenitor mm9 All antigens Others Multipotent otic progeni...ncedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.50.AllAg.Multipotent_otic_progenitor.bed ...

  13. File list: ALL.Neu.05.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available ALL.Neu.05.AllAg.Induced_neural_progenitors mm9 All antigens Neural Induced neural progeni....biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Induced_neural_progenitors.bed ...

  14. File list: ALL.Neu.10.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available ALL.Neu.10.AllAg.Induced_neural_progenitors mm9 All antigens Neural Induced neural progeni....biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Induced_neural_progenitors.bed ...

  15. Regulation of Mammary Progenitor Cells by p53 and Parity

    2011-01-01

    quantitative PCR system (Stratagene). To knockdown Notch1 in TM40A cells, siRNA (s70698 and s70700) were purchased from Ambion. s70698 siRNA sense sequence: 5...hours after transfect ion and real-tim e quantitative P CR was used to confirm the knockdown efficiency. Results Label and chase progenitor cells...cells contained 0.8% o f DsRed positiv e (DsR +) progenitor cells (Fig. 1B). The mammosphere-forming capacity of DsR+ cells is 3.8-fold greater

  16. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    Baer, Caroline; Squadrito, Mario Leonardo [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Iruela-Arispe, M. Luisa, E-mail: arispe@mcdb.ucla.edu [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles 90095, CA (United States); De Palma, Michele, E-mail: michele.depalma@epfl.ch [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2013-07-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.

  17. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    Baer, Caroline; Squadrito, Mario Leonardo; Iruela-Arispe, M. Luisa; De Palma, Michele

    2013-01-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches

  18. [Research progress of co-culture system for constructing vascularized tissue engineered bone].

    Fu, Weili; Xiang, Zhou

    2014-02-01

    To review the research progress of the co-culture system for constructing vascularized tissue engineered bone. The recent literature concerning the co-culture system for constructing vascularized tissue engineered bone was reviewed, including the selection of osteogenic and endothelial lineages, the design and surface modification of scaffolds, the models and dimensions of the co-culture system, the mechanism, the culture conditions, and their application progress. The construction of vascularized tissue engineered bone is the prerequisite for their survival and further clinical application in vivo. Mesenchymal stem cells (owning the excellent osteogenic potential) and endothelial progenitor cells (capable of directional differentiation into endothelial cell) are considered as attractive cell types for the co-culture system to construct vascularized tissue engineered bone. The culture conditions need to be further optimized. Furthermore, how to achieve the clinical goals of minimal invasion and autologous transplantation also need to be further studied. The strategy of the co-culture system for constructing vascularized tissue engineered bone would have a very broad prospects for clinical application in future.

  19. Mitochondrial damage-associated molecular patterns and vascular function†

    Wenceslau, Camilla Ferreira; McCarthy, Cameron G.; Szasz, Theodora; Spitler, Kathryn; Goulopoulou, Styliani; Webb, R. Clinton

    2014-01-01

    Immune system activation occurs not only due to foreign stimuli, but also due to endogenous molecules. As such, endogenous molecules that are released into the circulation due to cell death and/or injury alarm the immune system that something has disturbed homeostasis and a response is needed. Collectively, these molecules are known as damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs (mtDAMPs) are potent immunological activators due to the bacterial ancestry of mitochondria. Mitochondrial DAMPs are recognized by specific pattern recognition receptors of the innate immune system, some of which are expressed in the cardiovascular system. Cell death leads to release of mtDAMPs that may induce vascular changes by mechanisms that are currently not well understood. This review will focus on recently published evidence linking mtDAMPs and immune system activation to vascular dysfunction and cardiovascular disease. PMID:24569027

  20. Magnesium Counteracts Vascular Calcification: Passive Interference or Active Modulation?

    Ter Braake, Anique D; Shanahan, Catherine M; de Baaij, Jeroen H F

    2017-08-01

    Over the last decade, an increasing number of studies report a close relationship between serum magnesium concentration and cardiovascular disease risk in the general population. In end-stage renal disease, an association was found between serum magnesium and survival. Hypomagnesemia was identified as a strong predictor for cardiovascular disease in these patients. A substantial body of in vitro and in vivo studies has identified a protective role for magnesium in vascular calcification. However, the precise mechanisms and its contribution to cardiovascular protection remain unclear. There are currently 2 leading hypotheses: first, magnesium may bind phosphate and delay calcium phosphate crystal growth in the circulation, thereby passively interfering with calcium phosphate deposition in the vessel wall. Second, magnesium may regulate vascular smooth muscle cell transdifferentiation toward an osteogenic phenotype by active cellular modulation of factors associated with calcification. Here, the data supporting these major hypotheses are reviewed. The literature supports both a passive inorganic phosphate-buffering role reducing hydroxyapatite formation and an active cell-mediated role, directly targeting vascular smooth muscle transdifferentiation. However, current evidence relies on basic experimental designs that are often insufficient to delineate the underlying mechanisms. The field requires more advanced experimental design, including determination of intracellular magnesium concentrations and the identification of the molecular players that regulate magnesium concentrations in vascular smooth muscle cells. © 2017 American Heart Association, Inc.

  1. Vascular disease in cocaine addiction.

    Bachi, Keren; Mani, Venkatesh; Jeyachandran, Devi; Fayad, Zahi A; Goldstein, Rita Z; Alia-Klein, Nelly

    2017-07-01

    Cocaine, a powerful vasoconstrictor, induces immune responses including cytokine elevations. Chronic cocaine use is associated with functional brain impairments potentially mediated by vascular pathology. Although the Crack-Cocaine epidemic has declined, its vascular consequences are increasingly becoming evident among individuals with cocaine use disorder of that period, now aging. Paradoxically, during the period when prevention efforts could make a difference, this population receives psychosocial treatment at best. We review major postmortem and in vitro studies documenting cocaine-induced vascular toxicity. PubMed and Academic Search Complete were used with relevant terms. Findings consist of the major mechanisms of cocaine-induced vasoconstriction, endothelial dysfunction, and accelerated atherosclerosis, emphasizing acute, chronic, and secondary effects of cocaine. The etiology underlying cocaine's acute and chronic vascular effects is multifactorial, spanning hypertension, impaired homeostasis and platelet function, thrombosis, thromboembolism, and alterations in blood flow. Early detection of vascular disease in cocaine addiction by multimodality imaging is discussed. Treatment may be similar to indications in patients with traditional risk-factors, with few exceptions such as enhanced supportive care and use of benzodiazepines and phentolamine for sedation, and avoiding β-blockers. Given the vascular toxicity cocaine induces, further compounded by smoking and alcohol comorbidity, and interacting with aging of the crack generation, there is a public health imperative to identify pre-symptomatic markers of vascular impairments in cocaine addiction and employ preventive treatment to reduce silent disease progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [The future of vascular medicine].

    Kroeger, K; Luther, B

    2014-10-01

    In the future vascular medicine will still have a great impact on health of people. It should be noted that the aging of the population does not lead to a dramatic increase in patient numbers, but will be associated with a changing spectrum of co-morbidities. In addition, vascular medical research has to include the intensive care special features of vascular patients, the involvement of vascular medicine in a holistic concept of fast-track surgery, a geriatric-oriented intensive monitoring and early geriatric rehabilitation. For the future acceptance of vascular medicine as a separate subject area under delimitation of cardiology and radiology is important. On the other hand, the subject is so complex and will become more complex in future specialisations that mixing of surgery and angiology is desirable, with the aim to preserve the vascular surgical knowledge and skills on par with the medical and interventional measures and further develop them. Only large, interdisciplinary guided vascular centres will be able to provide timely diagnosis and therapy, to deal with the growing multi-morbidity of the patient, to perform complex therapies even in an acute emergency and due to sufficient number of cases to present with well-trained and experienced teams. These requirements are mandatory to decrease patients' mortality step by step. Georg Thieme Verlag KG Stuttgart · New York.

  3. Contemporary vascular smartphone medical applications.

    Carter, Thomas; O'Neill, Stephen; Johns, Neil; Brady, Richard R W

    2013-08-01

    Use of smartphones and medical mHealth applications (apps) within the clinical environment provides a potential means for delivering elements of vascular care. This article reviews the contemporary availability of apps specifically themed to major vascular diseases and the opportunities and concerns regarding their integration into practice. Smartphone apps relating to major vascular diseases were identified from the app stores for the 6 most popular smartphone platforms, including iPhone, Android, Blackberry, Nokia, Windows, and Samsung. Search terms included peripheral artery (arterial) disease, varicose veins, aortic aneurysm, carotid artery disease, amputation, ulcers, hyperhydrosis, thoracic outlet syndrome, vascular malformation, and lymphatic disorders. Forty-nine vascular-themed apps were identified. Sixteen (33%) were free of charge. Fifteen apps (31%) had customer satisfaction ratings, but only 3 (6%) had greater than 100. Only 13 apps (27%) had documented medical professional involvement in their design or content. The integration of apps into the delivery of care has the potential to benefit vascular health care workers and patients. However, high-quality apps designed by clinicians with vascular expertise are currently lacking and represent an area of concern in the mHealth market. Improvement in the quality and reliability of these apps will require the development of robust regulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region.

    Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter

    2015-02-01

    Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously had been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed that it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. File list: Oth.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Full Text Available Oth.Oth.05.AllAg.Multipotent_otic_progenitor mm9 TFs and others Others Multipotent otic progeni...tor SRX736459,SRX736458,SRX736460,SRX736461 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  6. File list: His.Neu.20.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available His.Neu.20.AllAg.Induced_neural_progenitors mm9 Histone Neural Induced neural progeni...tors SRX667381,SRX668240 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Induced_neural_progenitors.bed ...

  7. File list: DNS.Neu.10.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available DNS.Neu.10.AllAg.Induced_neural_progenitors mm9 DNase-seq Neural Induced neural progeni...tors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Induced_neural_progenitors.bed ...

  8. File list: Unc.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available Unc.Adp.10.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  9. File list: Oth.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available Oth.Adp.20.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  10. File list: DNS.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available DNS.Adp.20.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  11. File list: DNS.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available DNS.Adp.10.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  12. File list: Unc.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Full Text Available Unc.Neu.05.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  13. File list: Unc.Neu.20.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available Unc.Neu.20.AllAg.Induced_neural_progenitors mm9 Unclassified Neural Induced neural progeni...tors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Induced_neural_progenitors.bed ...

  14. File list: His.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available His.Adp.10.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127394,SRX127396,SRX127407,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  15. File list: DNS.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Full Text Available DNS.Neu.50.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  16. File list: Oth.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available Oth.Adp.50.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  17. File list: DNS.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Full Text Available DNS.Oth.05.AllAg.Multipotent_otic_progenitor mm9 DNase-seq Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  18. File list: DNS.Neu.50.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available DNS.Neu.50.AllAg.Induced_neural_progenitors mm9 DNase-seq Neural Induced neural progeni...tors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Induced_neural_progenitors.bed ...

  19. File list: His.Neu.50.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available His.Neu.50.AllAg.Induced_neural_progenitors mm9 Histone Neural Induced neural progeni...tors SRX667381,SRX668240 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Induced_neural_progenitors.bed ...

  20. File list: His.Oth.50.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Full Text Available His.Oth.50.AllAg.Multipotent_otic_progenitor mm9 Histone Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.AllAg.Multipotent_otic_progenitor.bed ...

  1. File list: His.Oth.10.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Full Text Available His.Oth.10.AllAg.Multipotent_otic_progenitor mm9 Histone Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.10.AllAg.Multipotent_otic_progenitor.bed ...

  2. File list: His.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Full Text Available His.Oth.05.AllAg.Multipotent_otic_progenitor mm9 Histone Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  3. File list: Oth.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Full Text Available Oth.Neu.05.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX109471,SRX802060 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  4. File list: DNS.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Full Text Available DNS.Neu.05.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  5. File list: Pol.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Full Text Available Pol.Neu.10.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  6. File list: Oth.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available Oth.Adp.10.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  7. File list: Pol.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available Pol.Adp.05.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  8. File list: Pol.Oth.50.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Full Text Available Pol.Oth.50.AllAg.Multipotent_otic_progenitor mm9 RNA polymerase Others Multipotent otic progeni...tor SRX736457,SRX736456 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.50.AllAg.Multipotent_otic_progenitor.bed ...

  9. File list: Oth.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Full Text Available Oth.Neu.20.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX802060,SRX109471 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  10. File list: His.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Full Text Available His.Neu.20.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315278,SRX667383,SRX668241,SRX315277,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  11. File list: Pol.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available Pol.Adp.20.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  12. File list: DNS.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Full Text Available DNS.Neu.10.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238868,SRX238870 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  13. File list: Unc.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available Unc.Adp.05.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  14. File list: Unc.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Full Text Available Unc.Neu.20.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  15. File list: Oth.Oth.10.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Full Text Available Oth.Oth.10.AllAg.Multipotent_otic_progenitor mm9 TFs and others Others Multipotent otic progeni...tor SRX736459,SRX736458,SRX736460,SRX736461 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.AllAg.Multipotent_otic_progenitor.bed ...

  16. File list: DNS.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available DNS.Adp.50.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  17. File list: His.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Full Text Available His.Neu.05.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315277,SRX667383,SRX668241,SRX315278,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  18. File list: Unc.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available Unc.Adp.20.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  19. File list: Unc.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Full Text Available Unc.Oth.05.AllAg.Multipotent_otic_progenitor mm9 Unclassified Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  20. File list: Unc.Oth.10.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Full Text Available Unc.Oth.10.AllAg.Multipotent_otic_progenitor mm9 Unclassified Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Multipotent_otic_progenitor.bed ...

  1. File list: Unc.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available Unc.Adp.50.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  2. File list: Pol.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Full Text Available Pol.Oth.05.AllAg.Multipotent_otic_progenitor mm9 RNA polymerase Others Multipotent otic progeni...tor SRX736456,SRX736457 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  3. File list: His.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available His.Adp.05.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127407,SRX127394,SRX127396,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  4. File list: Pol.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Full Text Available Pol.Adp.50.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  5. File list: Pol.Neu.50.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available Pol.Neu.50.AllAg.Induced_neural_progenitors mm9 RNA polymerase Neural Induced neural... progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Induced_neural_progenitors.bed ...

  6. File list: Pol.Neu.20.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available Pol.Neu.20.AllAg.Induced_neural_progenitors mm9 RNA polymerase Neural Induced neural... progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Induced_neural_progenitors.bed ...

  7. File list: Pol.Neu.05.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available Pol.Neu.05.AllAg.Induced_neural_progenitors mm9 RNA polymerase Neural Induced neural... progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Induced_neural_progenitors.bed ...

  8. File list: Oth.Neu.50.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available Oth.Neu.50.AllAg.Induced_neural_progenitors mm9 TFs and others Neural Induced neural... progenitors SRX323564,SRX323573 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Induced_neural_progenitors.bed ...

  9. File list: Unc.Neu.50.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available Unc.Neu.50.AllAg.Induced_neural_progenitors mm9 Unclassified Neural Induced neural ...progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Induced_neural_progenitors.bed ...

  10. File list: Unc.Neu.10.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available Unc.Neu.10.AllAg.Induced_neural_progenitors mm9 Unclassified Neural Induced neural ...progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Induced_neural_progenitors.bed ...

  11. File list: His.Neu.05.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available His.Neu.05.AllAg.Induced_neural_progenitors mm9 Histone Neural Induced neural proge...nitors SRX667381,SRX668240 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Induced_neural_progenitors.bed ...

  12. File list: Oth.Neu.05.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available Oth.Neu.05.AllAg.Induced_neural_progenitors mm9 TFs and others Neural Induced neural... progenitors SRX323573,SRX323564 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Induced_neural_progenitors.bed ...

  13. File list: Oth.Neu.20.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available Oth.Neu.20.AllAg.Induced_neural_progenitors mm9 TFs and others Neural Induced neural... progenitors SRX323564,SRX323573 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Induced_neural_progenitors.bed ...

  14. File list: Pol.Neu.10.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available Pol.Neu.10.AllAg.Induced_neural_progenitors mm9 RNA polymerase Neural Induced neural... progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Induced_neural_progenitors.bed ...

  15. File list: His.Neu.10.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available His.Neu.10.AllAg.Induced_neural_progenitors mm9 Histone Neural Induced neural proge...nitors SRX667381,SRX668240 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Induced_neural_progenitors.bed ...

  16. File list: Unc.Neu.05.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available Unc.Neu.05.AllAg.Induced_neural_progenitors mm9 Unclassified Neural Induced neural ...progenitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Induced_neural_progenitors.bed ...

  17. File list: DNS.Neu.05.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Full Text Available DNS.Neu.05.AllAg.Induced_neural_progenitors mm9 DNase-seq Neural Induced neural pro...genitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Induced_neural_progenitors.bed ...

  18. Constructal vascularized structures

    Cetkin, Erdal

    2015-06-01

    Smart features such as self-healing and selfcooling require bathing the entire volume with a coolant or/and healing agent. Bathing the entire volume is an example of point to area (or volume) flows. Point to area flows cover all the distributing and collecting kinds of flows, i.e. inhaling and exhaling, mining, river deltas, energy distribution, distribution of products on the landscape and so on. The flow resistances of a point to area flow can be decreased by changing the design with the guidance of the constructal law, which is the law of the design evolution in time. In this paper, how the flow resistances (heat, fluid and stress) can be decreased by using the constructal law is shown with examples. First, the validity of two assumptions is surveyed: using temperature independent Hess-Murray rule and using constant diameter ducts where the duct discharges fluid along its edge. Then, point to area types of flows are explained by illustrating the results of two examples: fluid networks and heating an area. Last, how the structures should be vascularized for cooling and mechanical strength is documented. This paper shows that flow resistances can be decreased by morphing the shape freely without any restrictions or generic algorithms.

  19. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Sawada, Keigo [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Lee, Chun Man [Medical Center for Translational Research, Osaka University Hospital, Osaka (Japan); Okura, Hanayuki; Matsuyama, Akifumi [Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka (Japan); Kitamura, Masahiro; Murakami, Shinya [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan)

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  20. Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1.

    Hübner, Kathleen; Grassme, Kathrin S; Rao, Jyoti; Wenke, Nina K; Zimmer, Cordula L; Korte, Laura; Mu Ller, Katja; Sumanas, Saulius; Greber, Boris; Herzog, Wiebke

    2017-10-01

    During vertebrate embryogenesis, vascular endothelial cells (ECs) and primitive erythrocytes become specified within close proximity in the posterior lateral plate mesoderm (LPM) from a common progenitor. However, the signaling cascades regulating the specification into either lineage remain largely elusive. Here, we analyze the contribution of β-catenin dependent Wnt signaling to EC and erythrocyte specification during zebrafish embryogenesis. We generated novel β-catenin dependent Wnt signaling reporters which, by using destabilized fluorophores (Venus-Pest, dGFP), specifically allow us to detect Wnt signaling responses in narrow time windows as well as in spatially restricted domains, defined by Cre recombinase expression (Tg(axin2 BAC :Venus-Pest) mu288 ; Tg(14TCF:loxP-STOP-loxP-dGFP) mu202 ). We therefore can detect β-catenin dependent Wnt signaling activity in a subset of the Fli1a-positive progenitor population. Additionally, we show that mesodermal Wnt3a-mediated signaling via the transcription factor Lef1 positively regulates EC specification (defined by kdrl expression) at the expense of primitive erythrocyte specification (defined by gata1 expression) in zebrafish embryos. Using mesoderm derived from human embryonic stem cells, we identified the same principle of Wnt signaling dependent EC specification in conjunction with auto-upregulation of LEF1. Our data indicate a novel role of β-catenin dependent Wnt signaling in regulating EC specification during vasculogenesis. Copyright © 2017. Published by Elsevier Inc.

  1. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-01-01

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation

  2. Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells

    Juan Antonio Guadix

    2017-12-01

    Full Text Available Summary: Human pluripotent stem cells (hPSCs are widely used to study cardiovascular cell differentiation and function. Here, we induced differentiation of hPSCs (both embryonic and induced to proepicardial/epicardial progenitor cells that cover the heart during development. Addition of retinoic acid (RA and bone morphogenetic protein 4 (BMP4 promoted expression of the mesodermal marker PDGFRα, upregulated characteristic (proepicardial progenitor cell genes, and downregulated transcription of myocardial genes. We confirmed the (proepicardial-like properties of these cells using in vitro co-culture assays and in ovo grafting of hPSC-epicardial cells into chick embryos. Our data show that RA + BMP4-treated hPSCs differentiate into (proepicardial-like cells displaying functional properties (adhesion and spreading over the myocardium of their in vivo counterpart. The results extend evidence that hPSCs are an excellent model to study (proepicardial differentiation into cardiovascular cells in human development and evaluate their potential for cardiac regeneration. : The authors have shown that hPSCs can be instructed in vitro to differentiate into a specific cardiac embryonic progenitor cell population called the proepicardium. Proepicardial cells are required for normal formation of the heart during development and might contribute to the development of cell-based therapies for heart repair. Keywords: human pluripotent stem cells, proepicardium, progenitor cells, cardiovascular, differentiation

  3. Cellular therapy after spinal cord injury using neural progenitor cells

    Vroemen, Maurice

    2006-01-01

    In this thesis, the possibilities and limitations of cell-based therapies after spinal cord injury are explored. Particularly, the potential of adult derived neural progenitor cell (NPC) grafts to function as a permissive substrate for axonal regeneration was investigated. It was found that syngenic

  4. Progenitor cells in the kidney: biology and therapeutic perspectives

    Rookmaaker, M.B.; Verhaar, M.C.; Zonneveld, A.J. van; Rabelink, T.J.

    2004-01-01

    Progenitor cells in the kidney: Biology and therapeutic perspectives. The stem cell may be viewed as an engineer who can read the blue print and become the building. The role of this fascinating cell in physiology and pathophysiology has recently attracted a great deal of interest. The archetype of

  5. Long GRBs from binary stars: runaway, Wolf-Rayet progenitors

    Cantiello, M.; Yoon, S.C.; Langer, N.; Livio, M.

    2007-01-01

    The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution — the latter had previously

  6. Long GRBs from Binary Stars: Runaway, Wolf-Rayet Progenitors

    Cantiello, M.; Yoon, S.C.; Langer, N.; Livio, M.

    2007-01-01

    The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution - the latter had previously

  7. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors

    Paul, Franziska; Arkin, Ya'ara; Giladi, Amir

    2015-01-01

    Within the bone marrow, stem cells differentiate and give rise to diverse blood cell types and functions. Currently, hematopoietic progenitors are defined using surface markers combined with functional assays that are not directly linked with in vivo differentiation potential or gene regulatory m...

  8. Intersections of lung progenitor cells, lung disease and lung cancer.

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  9. Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells

    Guadix, Juan Antonio; Orlova, Valeria V.; Giacomelli, Elisa; Bellin, Milena; Ribeiro, Marcelo C.; Mummery, Christine L.; Pérez-Pomares, José M.; Passier, Robert

    2017-01-01

    Human pluripotent stem cells (hPSCs) are widely used to study cardiovascular cell differentiation and function. Here, we induced differentiation of hPSCs (both embryonic and induced) to proepicardial/epicardial progenitor cells that cover the heart during development. Addition of retinoic acid (RA)

  10. Mobilization of hematopoietic stem and progenitor cells in mice

    Robinson, Simon N; van Os, Ronald P; Bunting, Kevin

    2008-01-01

    Animal models have added significantly to our understanding of the mechanism(s) of hematopoietic stem and progenitor cell (HSPC) mobilization. Such models suggest that changes in the interaction between the HSPC and the hematopoietic microenvironmental 'niche' (cellular and extracellular components)

  11. The progenitor of Nova Cygni 2006 (=V2362 Cyg)

    Steeghs, D.; Greimel, R.; Drew, J.; Irwin, M.; Gaensicke, B.; Groot, P.J.; Knigge, C.

    2006-01-01

    We report on the detection of the likely progenitor to Nova Cygni 2006 = V2362 Cyg (IAUC #8697, #8698, ATel #792) using images from the INT Photometric H-Alpha Survey (IPHAS; http://www.iphas.org). The field containing the classical nova was observed as part of our galactic plane survey on Aug. 3rd

  12. Retinal progenitor cell xenografts to the pig retina

    Warfvinge, Karin; Kiilgaard, Jens Folke; Klassen, Henry

    2006-01-01

    We evaluated the host response to murine retinal progenitor cells (RPCs) following transplantation to the subretinal space (SRS) of the pig. RPCs from GFP mice were transplanted subretinally in 18 nonimmunosuppressed normal or laser-treated pigs. Evaluation of the SRS was performed on hematoxylin-eosin...

  13. Mass ejection in failed supernovae: variation with stellar progenitor

    Fernández, Rodrigo; Quataert, Eliot; Kashiyama, Kazumi; Coughlin, Eric R.

    2018-05-01

    We study the ejection of mass during stellar core-collapse when the stalled shock does not revive and a black hole forms. Neutrino emission during the protoneutron star phase causes a decrease in the gravitational mass of the core, resulting in an outward going sound pulse that steepens into a shock as it travels out through the star. We explore the properties of this mass ejection mechanism over a range of stellar progenitors using spherically symmetric, time-dependent hydrodynamic simulations that treat neutrino mass-loss parametrically and follow the shock propagation over the entire star. We find that all types of stellar progenitor can eject mass through this mechanism. The ejected mass is a decreasing function of the surface gravity of the star, ranging from several M⊙ for red supergiants to ˜0.1 M⊙ for blue supergiants and ˜10-3 M⊙ for Wolf-Rayet stars. We find that the final shock energy at the surface is a decreasing function of the core-compactness, and is ≲ 1047-1048 erg in all cases. In progenitors with a sufficiently large envelope, high core-compactness, or a combination of both, the sound pulse fails to unbind mass. Successful mass ejection is accompanied by significant fallback accretion that can last from hours to years. We predict the properties of shock breakout and thermal plateau emission produced by the ejection of the outer envelope of blue supergiant and Wolf-Rayet progenitors in otherwise failed supernovae.

  14. Hmga2 regulates self-renewal of retinal progenitors.

    Parameswaran, Sowmya; Xia, Xiaohuan; Hegde, Ganapati; Ahmad, Iqbal

    2014-11-01

    In vertebrate retina, histogenesis occurs over an extended period. To sustain the temporal generation of diverse cell types, retinal progenitor cells (RPCs) must self-renew. However, self-renewal and regulation of RPCs remain poorly understood. Here, we demonstrate that cell-extrinsic factors coordinate with the epigenetic regulator high-mobility group AT-hook 2 (Hmga2) to regulate self-renewal of late retinal progenitor cells (RPCs). We observed that a small subset of RPCs was capable of clonal propagation and retained multipotentiality of parents in the presence of endothelial cells (ECs), known self-renewal regulators in various stem cell niches. The self-renewing effects, also observed in vivo, involve multiple intercellular signaling pathways, engaging Hmga2. As progenitors exhaust during retinal development, expression of Hmga2 progressively decreases. Analyses of Hmga2-expression perturbation, in vitro and in vivo, revealed that Hmga2 functionally helps to mediate cell-extrinsic influences on late-retinal progenitor self-renewal. Our results provide a framework for integrating the diverse intercellular influences elicited by epigenetic regulators for self-renewal in a dynamic stem cell niche: the developing vertebrate retina. © 2014. Published by The Company of Biologists Ltd.

  15. Intersections of lung progenitor cells, lung disease and lung cancer

    Carla F. Kim

    2017-06-01

    Full Text Available The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials.

  16. Characteristics of meniscus progenitor cells migrated from injured meniscus.

    Seol, Dongrim; Zhou, Cheng; Brouillette, Marc J; Song, Ino; Yu, Yin; Choe, Hyeong Hun; Lehman, Abigail D; Jang, Kee W; Fredericks, Douglas C; Laughlin, Barbara J; Martin, James A

    2017-09-01

    Serious meniscus injuries seldom heal and increase the risk for knee osteoarthritis; thus, there is a need to develop new reparative therapies. In that regard, stimulating tissue regeneration by autologous stem/progenitor cells has emerged as a promising new strategy. We showed previously that migratory chondrogenic progenitor cells (CPCs) were recruited to injured cartilage, where they showed a capability in situ tissue repair. Here, we tested the hypothesis that the meniscus contains a similar population of regenerative cells. Explant studies revealed that migrating cells were mainly confined to the red zone in normal menisci: However, these cells were capable of repopulating defects made in the white zone. In vivo, migrating cell numbers increased dramatically in damaged meniscus. Relative to non-migrating meniscus cells, migrating cells were more clonogenic, overexpressed progenitor cell markers, and included a larger side population. Gene expression profiling showed that the migrating population was more similar to CPCs than other meniscus cells. Finally, migrating cells equaled CPCs in chondrogenic potential, indicating a capacity for repair of the cartilaginous white zone of the meniscus. These findings demonstrate that, much as in articular cartilage, injuries to the meniscus mobilize an intrinsic progenitor cell population with strong reparative potential. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1966-1972, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. TYPE IIb SUPERNOVAE WITH COMPACT AND EXTENDED PROGENITORS

    Chevalier, Roger A.; Soderberg, Alicia M.

    2010-01-01

    The classic example of a Type IIb supernova is SN 1993J, which had a cool extended progenitor surrounded by a dense wind. There is evidence for another category of Type IIb supernova that has a more compact progenitor with a lower density, probably fast, wind. Distinguishing features of the compact category are weak optical emission from the shock heated envelope at early times, nonexistent or very weak H emission in the late nebular phase, rapidly evolving radio emission, rapid expansion of the radio shell, and expected nonthermal as opposed to thermal X-ray emission. Type IIb supernovae that have one or more of these features include SNe 1996cb, 2001ig, 2003bg, 2008ax, and 2008bo. All of these with sufficient radio data (the last four) show evidence for presupernova wind variability. We estimate a progenitor envelope radius ∼1 x 10 11 cm for SN 2008ax, a value consistent with a compact Wolf-Rayet progenitor. Supernovae in the SN 1993J extended category include SN 2001gd and probably the Cas A supernova. We suggest that the compact Type IIb events be designated Type cIIb and the extended ones Type eIIb. The H envelope mass dividing these categories is ∼0.1 M sun .

  18. Cardiac stem/progenitor cells, secreted proteins, and proteomics

    Šťastná, Miroslava; Abraham, M.R.; Van Eyk, J.E.

    2009-01-01

    Roč. 583, č. 11 (2009), s. 1800-1807 ISSN 0014-5793 Institutional research plan: CEZ:AV0Z40310501 Keywords : Cardiac stem/progenitor cell * paracrine factor * secretome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.541, year: 2009

  19. Regulation of leucocyte homeostasis in the circulation.

    Scheiermann, Christoph; Frenette, Paul S; Hidalgo, Andrés

    2015-08-01

    The functions of blood cells extend well beyond the immune functions of leucocytes or the respiratory and hemostatic functions of erythrocytes and platelets. Seen as a whole, the bloodstream is in charge of nurturing and protecting all organs by carrying a mixture of cell populations in transit from one organ to another. To optimize these functions, evolution has provided blood and the vascular system that carries it with various mechanisms that ensure the appropriate influx and egress of cells into and from the circulation where and when needed. How this homeostatic control of blood is achieved has been the object of study for over a century, and although the major mechanisms that govern it are now fairly well understood, several new concepts and mediators have recently emerged that emphasize the dynamism of this liquid tissue. Here we review old and new concepts that relate to the maintenance and regulation of leucocyte homeostasis in blood and briefly discuss the mechanisms for platelets and red blood cells. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  20. Circulating CXCL16 in Diabetic Kidney Disease

    Usama Elewa

    2016-09-01

    Full Text Available Background/Aims: Chronic kidney disease and, specifically, diabetic kidney disease, is among the fastest increasing causes of death worldwide. A better understanding of the factors contributing to the high mortality may help design novel monitoring and therapeutic approaches. CXCL16 is both a cholesterol receptor and a chemokine with a potential role in vascular injury and inflammation. We aimed at identifying predictors of circulating CXCL16 levels in diabetic patients with chronic kidney disease. Methods: We have now studied plasma CXCL16 in 134 European patients with diabetic kidney disease with estimated glomerular filtration rate (eGFR categories G1-G4 and albuminuria categories A1-A3, in order to identify factors influencing plasma CXCL16 in this population. Results: Plasma CXCL16 levels were 4.0±0.9 ng/ml. Plasma CXCL16 increased with increasing eGFR category from G1 to G4 (that is, with decreasing eGFR values and with increasing albuminuria category. Plasma CXCL16 was higher in patients with prior cardiovascular disease (4.33±1.03 vs 3.88±0.86 ng/ml; p=0.013. In multivariate analysis, eGFR and serum albumin had an independent and significant negative correlation with plasma CXCL16. Conclusion: In diabetic kidney disease patients, GFR and serum albumin independently predicted plasma CXCL16 levels.

  1. PI3 kinase is important for Ras, MEK and Erk activation of Epo-stimulated human erythroid progenitors

    Schmidt Enrico K

    2004-05-01

    Full Text Available Abstract Background Erythropoietin is a multifunctional cytokine which regulates the number of erythrocytes circulating in mammalian blood. This is crucial in order to maintain an appropriate oxygen supply throughout the body. Stimulation of primary human erythroid progenitors (PEPs with erythropoietin (Epo leads to the activation of the mitogenic kinases (MEKs and Erks. How this is accomplished mechanistically remained unclear. Results Biochemical studies with human cord blood-derived PEPs now show that Ras and the class Ib enzyme of the phosphatidylinositol-3 kinase (PI3K family, PI3K gamma, are activated in response to minimal Epo concentrations. Surprisingly, three structurally different PI3K inhibitors block Ras, MEK and Erk activation in PEPs by Epo. Furthermore, Erk activation in PEPs is insensitive to the inhibition of Raf kinases but suppressed upon PKC inhibition. In contrast, Erk activation induced by stem cell factor, which activates c-Kit in the same cells, is sensitive to Raf inhibition and insensitive to PI3K and PKC inhibitors. Conclusions These unexpected findings contrast with previous results in human primary cells using Epo at supraphysiological concentrations and open new doors to eventually understanding how low Epo concentrations mediate the moderate proliferation of erythroid progenitors under homeostatic blood oxygen levels. They indicate that the basal activation of MEKs and Erks in PEPs by minimal concentrations of Epo does not occur through the classical cascade Shc/Grb2/Sos/Ras/Raf/MEK/Erk. Instead, MEKs and Erks are signal mediators of PI3K, probably the recently described PI3K gamma, through a Raf-independent signaling pathway which requires PKC activity. It is likely that higher concentrations of Epo that are induced by hypoxia, for example, following blood loss, lead to additional mitogenic signals which greatly accelerate erythroid progenitor proliferation.

  2. Revascularization of femoral head ischemic necrosis with vascularized bone graft: A CT scan experimental study

    Gonzalez del Pino, J.; Knapp, K.; Gomez Castresana, F.; Benito, M.

    1990-01-01

    An ischemic necrosis of the femoral head was induced in 15 mongrel adult dogs using the technique described by Gartsman et al. Five weeks later, a free vascularized rib graft was transferred into the previously induced ischemic femoral head. High resolution computed tomographic scanning was used to evaluate revascularization 4, 8 and 12 weeks after grafting. The femoral head exhibited new vessel formation throughout the study. Arterial terminal branches arising from the rib graft medullary and periosteal circulations extended beyond the rib graft, entered the head, and reached the subchondral plate. Even where the rib graft did not replenish the central core of the head, there was vascular supply from the grafted bone's vascular tree. These results suggest that a free vascularized bone graft is able to revascularize an experimentally induced ischemic femoral head necrosis. (orig.)

  3. Pulmonary vascular complications in portal hypertension and liver disease: A concise review

    M. Porres-Aguilar

    2013-01-01

    Full Text Available Chronic liver disease and/or portal hypertension may be associated with one of the two pulmonary vascular complications: portopulmonary hypertension and hepatopulmonary syndrome. These pulmonary vascular disorders are notoriously underdiagnosed; however, they have a substantial negative impact on survival and require special attention in order to understand their diagnostic approach and to select the best therapeutic options. Portopulmonary hypertension results from excessive vasoconstriction, vascular remodeling, and proliferative and thrombotic events within the pulmonary circulation that lead to progressive right ventricular failure and ultimately to death. On the other hand, abnormal intrapulmonary vascular dilations, profound hypoxemia, and a wide alveolar-arterial gradient are the hallmarks of the hepatopulmonary syndrome, resulting in difficult-to-treat hypoxemia. The aim of this review is to summarize the latest pathophysiologic concepts, diagnostic approach, therapy, and prognosis of portopulmonary hypertension and hepatopulmonary syndrome, as well as to discuss the role of liver transplantation as a definitive therapy in selected patients with these conditions.

  4. α-Ketoglutarate Promotes Pancreatic Progenitor-Like Cell Proliferation

    Jing Song

    2018-03-01

    Full Text Available A major source of β cell generation is pancreatic progenitor-like cell differentiation. Multiple studies have confirmed that stem cell metabolism plays important roles in self-renewal and proliferation. In the absence of glucose, glutamine provides the energy for cell division and growth. Furthermore, α-ketoglutarate (αKG, a precursor for glutamine synthesis, is sufficient for enabling glutamine-independent cell proliferation. We have demonstrated that αKG contributes to the large-scale proliferation of pancreatic progenitor-like cells that can provide an ample amount of clinically relevant β cells. We compared the mRNA expression of a subset of genes, the abundance of ATP, reactive oxide species, mitochondrial number, and the colony-forming frequency between mouse pancreatic CD133+ and CD133− cells. We employed Real-Time PCR, immunostaining and passage assays to investigate self-renewal and proliferation of pancreatic progenitor-like cells in a 3D culture system in the presence and absence of αKG. The energy metabolism of CD133+ cells was more prone to oxidative phosphorylation. However, in the 3D culture system, when αKG was supplemented to the culture medium, the proliferation of the pancreatic progenitor-like cells was significantly elevated. We confirmed that the presence of αKG correlated with the up-regulation of Ten-Eleven Translocation (Tet. αKG can promote the proliferation of pancreatic progenitor-like cells via the up-regulation of Tet.

  5. α-Ketoglutarate Promotes Pancreatic Progenitor-Like Cell Proliferation.

    Song, Jing; Ma, Dongshen; Xing, Yun; Tang, Shanshan; Alahdal, Murad; Guo, Jiamin; Pan, Yi; Zhang, Yanfeng; Shen, Yumeng; Wu, Qiong; Lu, Zhou; Jin, Liang

    2018-03-22

    A major source of β cell generation is pancreatic progenitor-like cell differentiation. Multiple studies have confirmed that stem cell metabolism plays important roles in self-renewal and proliferation. In the absence of glucose, glutamine provides the energy for cell division and growth. Furthermore, α-ketoglutarate (αKG), a precursor for glutamine synthesis, is sufficient for enabling glutamine-independent cell proliferation. We have demonstrated that αKG contributes to the large-scale proliferation of pancreatic progenitor-like cells that can provide an ample amount of clinically relevant β cells. We compared the mRNA expression of a subset of genes, the abundance of ATP, reactive oxide species, mitochondrial number, and the colony-forming frequency between mouse pancreatic CD133⁺ and CD133 - cells. We employed Real-Time PCR, immunostaining and passage assays to investigate self-renewal and proliferation of pancreatic progenitor-like cells in a 3D culture system in the presence and absence of αKG. The energy metabolism of CD133⁺ cells was more prone to oxidative phosphorylation. However, in the 3D culture system, when αKG was supplemented to the culture medium, the proliferation of the pancreatic progenitor-like cells was significantly elevated. We confirmed that the presence of αKG correlated with the up-regulation of Ten-Eleven Translocation (Tet). αKG can promote the proliferation of pancreatic progenitor-like cells via the up-regulation of Tet.

  6. Effect of ambient temperature on the proliferation of brown adipocyte progenitors and endothelial cells during postnatal BAT development in Syrian hamsters.

    Nagaya, Kazuki; Okamatsu-Ogura, Yuko; Nio-Kobayashi, Junko; Nakagiri, Shohei; Tsubota, Ayumi; Kimura, Kazuhiro

    2018-04-02

    In Syrian hamsters, brown adipose tissue (BAT) develops postnatally through the proliferation and differentiation of brown adipocyte progenitors. In the study reported here, we investigated how ambient temperature influenced BAT formation in neonatal hamsters. In both hamsters raised at 23 or 30 °C, the interscapular fat changed from white to brown coloration in an age-dependent manner and acquired the typical morphological features of BAT by day 16. However, the expression of uncoupling protein 1, a brown adipocyte marker, and of vascular endothelial growth factor α were lower in the group raised at 30 °C than in that raised at 23 °C. Immunofluorescent staining revealed that the proportion of Ki67-expressing progenitors and endothelial cells was lower in the 30 °C group than in the 23 °C group. These results indicate that warm ambient temperature suppresses the proliferation of brown adipocyte progenitors and endothelial cells and negatively affects the postnatal development of BAT in Syrian hamsters.

  7. Vascular graft infections with Mycoplasma

    Levi-Mazloum, Niels Donald; Skov Jensen, J; Prag, J

    1995-01-01

    laboratory techniques, the percentage of culture-negative yet grossly infected vascular grafts seems to be increasing and is not adequately explained by the prior use of antibiotics. We have recently reported the first case of aortic graft infection with Mycoplasma. We therefore suggest the hypothesis...... that the large number of culture-negative yet grossly infected vascular grafts may be due to Mycoplasma infection not detected with conventional laboratory technique....

  8. Limb vascular function in women

    Hellsten, Ylva; Gliemann, Lasse

    2018-01-01

    Throughout life, women are subjected to both acute fluctuations in sex hormones, associated with the menstrual cycle, and chronic changes following the onset of menopause. Female sex hormones, and in particular estrogen, strongly influence cardiovascular function such as the regulation of vascular...... studies. Physical activity should be recommended for women of all ages, but the most essential timing for maintenance of vascular health may be from menopause and onwards....

  9. Facial vascular malformations in children

    Brunelle, F.O.; Lallemand, D.; Chaumont, P.; Teillac, D.; Manach, Y.

    1988-01-01

    The authors present their experience with conventional and digital angiography of vascular malformations of the head and neck in children. 22 hemangioendotheliomas, 8 venous angiomas, and 3 arteriovenous fistula were studied. 22 patients were embolised. DSA offers many advantages during the diagnostic as well as during the therapeutic phase of angiography. Embolization appears to have a major role in treatment of such vascular malformations. (orig.)

  10. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    Yao, Fengchao

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow. Key Points Sinking occurs in a narrow boundary layer along the eastern boundary Surface western boundary current switches into an eastern boundary current Water exchange in the Strait of Bab el Mandeb is not hydraulically controlled © 2014. American Geophysical Union. All Rights Reserved.

  11. Angiogenesis, Cancer, and Vascular Aging

    Junji Moriya

    2017-10-01

    Full Text Available Several lines of evidence have revealed that the angiogenic response to ischemic injury declines with age, which might account for the increased morbidity and mortality of cardiovascular disease (CVD among the elderly. While impairment of angiogenesis with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis have been considered to at least partly result from vascular aging or endothelial cell senescence. There is considerable evidence supporting the hypothesis that vascular cell senescence contributes to the pathogenesis of age-related CVD, suggesting that vascular aging could be an important therapeutic target. Since therapeutic angiogenesis is now regarded as a promising concept for patients with ischemic CVD, it has become even more important to understand the detailed molecular mechanisms underlying impairment of angiogenesis in older patients. To improve the usefulness of therapeutic angiogenesis, approaches are needed that can compensate for impaired angiogenic capacity in the elderly while not promoting the development or progression of malignancy. In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, followed by a description of how vascular aging leads to impairment of angiogenesis. We also examine potential therapeutic approaches that could enhance angiogenesis and/or vascular function in the elderly, as well as discussing the possibility of anti-senescence therapy or reversal of endothelial cell senescence.

  12. The Invertibility, Explicit Determinants, and Inverses of Circulant and Left Circulant and g-Circulant Matrices Involving Any Continuous Fibonacci and Lucas Numbers

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices play an important role in solving delay differential equations. In this paper, circulant type matrices including the circulant and left circulant and g-circulant matrices with any continuous Fibonacci and Lucas numbers are considered. Firstly, the invertibility of the circulant matrix is discussed and the explicit determinant and the inverse matrices by constructing the transformation matrices are presented. Furthermore, the invertibility of the left circulant and g-circulant matrices is also studied. We obtain the explicit determinants and the inverse matrices of the left circulant and g-circulant matrices by utilizing the relationship between left circulant, g-circulant matrices and circulant matrix, respectively.

  13. The Use of Endothelial Progenitor Cells for the Regeneration of Musculoskeletal and Neural Tissues

    Naosuke Kamei

    2017-01-01

    Full Text Available Endothelial progenitor cells (EPCs derived from bone marrow and blood can differentiate into endothelial cells and promote neovascularization. In addition, EPCs are a promising cell source for the repair of various types of vascularized tissues and have been used in animal experiments and clinical trials for tissue repair. In this review, we focused on the kinetics of endogenous EPCs during tissue repair and the application of EPCs or stem cell populations containing EPCs for tissue regeneration in musculoskeletal and neural tissues including the bone, skeletal muscle, ligaments, spinal cord, and peripheral nerves. EPCs can be mobilized from bone marrow and recruited to injured tissue to contribute to neovascularization and tissue repair. In addition, EPCs or stem cell populations containing EPCs promote neovascularization and tissue repair through their differentiation to endothelial cells or tissue-specific cells, the upregulation of growth factors, and the induction and activation of endogenous stem cells. Human peripheral blood CD34(+ cells containing EPCs have been used in clinical trials of bone repair. Thus, EPCs are a promising cell source for the treatment of musculoskeletal and neural tissue injury.

  14. miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction

    Alberto Izarra

    2014-12-01

    Full Text Available miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs, but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue.

  15. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells.

    Ross, Jeffrey J; Hong, Zhigang; Willenbring, Ben; Zeng, Lepeng; Isenberg, Brett; Lee, Eu Han; Reyes, Morayma; Keirstead, Susan A; Weir, E Kenneth; Tranquillo, Robert T; Verfaillie, Catherine M

    2006-12-01

    Smooth muscle formation and function are critical in development and postnatal life. Hence, studies aimed at better understanding SMC differentiation are of great importance. Here, we report that multipotent adult progenitor cells (MAPCs) isolated from rat, murine, porcine, and human bone marrow demonstrate the potential to differentiate into cells with an SMC-like phenotype and function. TGF-beta1 alone or combined with PDGF-BB in serum-free medium induces a temporally correct expression of transcripts and proteins consistent with smooth muscle development. Furthermore, SMCs derived from MAPCs (MAPC-SMCs) demonstrated functional L-type calcium channels. MAPC-SMCs entrapped in fibrin vascular molds became circumferentially aligned and generated force in response to KCl, the L-type channel opener FPL64176, or the SMC agonists 5-HT and ET-1, and exhibited complete relaxation in response to the Rho-kinase inhibitor Y-27632. Cyclic distention (5% circumferential strain) for 3 weeks increased responses by 2- to 3-fold, consistent with what occurred in neonatal SMCs. These results provide evidence that MAPC-SMCs are phenotypically and functionally similar to neonatal SMCs and that the in vitro MAPC-SMC differentiation system may be an ideal model for the study of SMC development. Moreover, MAPC-SMCs may lend themselves to tissue engineering applications.

  16. Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling.

    Marchetti, Valentina; Menghini, Rossella; Rizza, Stefano; Vivanti, Alessia; Feccia, Tiziana; Lauro, Davide; Fukamizu, Akiyoshi; Lauro, Renato; Federici, Massimo

    2006-08-01

    Dysfunction of mature endothelial cells is thought to play a major role in both micro- and macrovascular complications of diabetes. However, recent advances in biology of endothelial progenitor cells (EPCs) have highlighted their involvement in diabetes complications. To determine the effect of glucotoxicity on EPCs, human EPCs have been isolated from peripheral blood mononuclear cells of healthy donors and cultured in the presence or absence of high glucose (33 mmol/l) or high glucose plus benfotiamine to scavenge glucotoxicity. Morphological analysis revealed that high glucose significantly affected the number of endothelial cell colony forming units, uptake and binding of acLDL and Lectin-1, and the ability to differentiate into CD31- and vascular endothelial growth factor receptor 2-positive cells. Functional analysis outlined a reduced EPC involvement in de novo tube formation, when cocultured with mature endothelial cells (human umbilical vein endothelial cells) on matrigel. To explain the observed phenotypes, we have investigated the signal transduction pathways known to be involved in EPC growth and differentiation. Our results indicate that hyperglycemia impairs EPC differentiation and that the process can be restored by benfotiamine administration, via the modulation of Akt/FoxO1 activity.

  17. Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway

    Ching-Hu Chung

    2013-01-01

    Full Text Available Compelling evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs can contribute to postnatal neovascularization and tumor angiogenesis. EPCs have been shown to play a “catalytic” role in metastatic progression by mediating the angiogenic switch. Understanding the pharmacological functions and molecular targets of natural products is critical for drug development. Butein, a natural chalcone derivative, has been reported to exert potent anticancer activity. However, the antiangiogenic activity of butein has not been addressed. In this study, we found that butein inhibited serum- and vascular endothelial growth factor- (VEGF- induced cell proliferation, migration, and tube formation of human EPCs in a concentration dependent manner without cytotoxic effect. Furthermore, butein markedly abrogated VEGF-induced vessels sprouting from aortic rings and suppressed microvessel formation in the Matrigel implant assay in vivo. In addition, butein concentration-dependently repressed the phosphorylation of Akt, mTOR, and the major downstream effectors, p70S6K, 4E-BP1, and eIF4E in EPCs. Taken together, our results demonstrate for the first time that butein exhibits the antiangiogenic effect both in vitro and in vivo by targeting the translational machinery. Butein is a promising angiogenesis inhibitor with the potential for treatment of cancer and other angiogenesis-related diseases.

  18. Effects of angiopoietin-1 on inflammatory injury in endothelial progenitor cells and blood vessels.

    Wang, Yi-Qing; Song, Jing-Jin; Han, Xiao; Liu, Yi-Ye; Wang, Xi-Huang; Li, Zhi-Ming; Tzeng, Chi-Meng

    2014-01-01

    Endothelial progenitor cells (EPCs) and angiopoietin-1 (Ang-1) play important roles in vasculogenesis and angiogenesis, respectively. Thus, targeting both aspects of cardiovascular tissue regeneration may offer promising therapeutic options for cardiovascular disorders. To this end, we constructed a lentiviral vector (pNL) with the Ang-1 gene and transfected EPCs with it (Ang-1-EPCs) to investigate vasculogenesis in both cellular and animal models. Compared to controls, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) increased significantly in both untreated EPCs and in the pNL vector group. After Ang-1 transcription, ICAM-1 and VCAM-1 decreased considerably in those treatment groups. Ang-1-modified EPCs alleviated inflammatory responses induced by tumor-necrosis factor-α (TNF-α) in vitro. Moreover, Ang-1-EPC implantation inhibited neointimal hyperplasia after balloon catheter injury in rats, dramatically diminishing the intimal-media (I/M) ratio and decreasing the neointimal area. Proliferating cell nuclear antigen expression in the Ang-1-EPC group was lower than the EPC non-treatment group as well, suggesting that Ang-1-EPC improved cell survival during inflammation and promoted endothelialization in damaged blood vessels.

  19. Uncovering the Number and Clonal Dynamics of Mesp1 Progenitors during Heart Morphogenesis

    Samira Chabab

    2016-01-01

    Full Text Available The heart arises from distinct sources of cardiac progenitors that independently express Mesp1 during gastrulation. The precise number of Mesp1 progenitors that are specified during the early stage of gastrulation, and their clonal behavior during heart morphogenesis, is currently unknown. Here, we used clonal and mosaic tracing of Mesp1-expressing cells combined with quantitative biophysical analysis of the clonal data to define the number of cardiac progenitors and their mode of growth during heart development. Our data indicate that the myocardial layer of the heart derive from ∼250 Mesp1-expressing cardiac progenitors born during gastrulation. Despite arising at different time points and contributing to different heart regions, the temporally distinct cardiac progenitors present very similar clonal dynamics. These results provide insights into the number of cardiac progenitors and their mode of growth and open up avenues to decipher the clonal dynamics of progenitors in other organs and tissues.

  20. Calcium dynamics in vascular smooth muscle

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....