WorldWideScience

Sample records for circadian gene cryptochrome

  1. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.

    OpenAIRE

    Haisun Zhu; Ivo Sauman; Quan Yuan; Amy Casselman; Myai Emery-Le; Patrick Emery; Reppert, Steven M.

    2008-01-01

    The circadian clock plays a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of a Drosophila-like cryptochrome (cry), designated cry1, and a vertebrate-like cry, designated cry2, that are both expressed in the butterfly and by placing these genes in the context of other releva...

  2. The Potorous CPD photolyase rescues a cryptochrome-deficient mammalian circadian clock.

    Directory of Open Access Journals (Sweden)

    Inês Chaves

    Full Text Available Despite the sequence and structural conservation between cryptochromes and photolyases, members of the cryptochrome/photolyase (flavoprotein family, their functions are divergent. Whereas photolyases are DNA repair enzymes that use visible light to lesion-specifically remove UV-induced DNA damage, cryptochromes act as photoreceptors and circadian clock proteins. To address the functional diversity of cryptochromes and photolyases, we investigated the effect of ectopically expressed Arabidopsis thaliana (6-4PP photolyase and Potorous tridactylus CPD-photolyase (close and distant relatives of mammalian cryptochromes, respectively, on the performance of the mammalian cryptochromes in the mammalian circadian clock. Using photolyase transgenic mice, we show that Potorous CPD-photolyase affects the clock by shortening the period of behavioral rhythms. Furthermore, constitutively expressed CPD-photolyase is shown to reduce the amplitude of circadian oscillations in cultured cells and to inhibit CLOCK/BMAL1 driven transcription by interacting with CLOCK. Importantly, we show that Potorous CPD-photolyase can restore the molecular oscillator in the liver of (clock-deficient Cry1/Cry2 double knockout mice. These data demonstrate that a photolyase can act as a true cryptochrome. These findings shed new light on the importance of the core structure of mammalian cryptochromes in relation to its function in the circadian clock and contribute to our further understanding of the evolution of the cryptochrome/photolyase protein family.

  3. Cognitive dysfunction, elevated anxiety and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice

    Directory of Open Access Journals (Sweden)

    Emmanuel Valjent

    2013-10-01

    Full Text Available The circadian clock comprises a set of genes involved in cell-autonomous transcriptional feedback loops that orchestrate the expression of a range of downstream genes, driving circadian patterns of behavior. Cognitive dysfunction, mood disorders, anxiety disorders and substance abuse disorders have been associated with disruptions in circadian rhythm and circadian clock genes, but the causal relationship of these associations is still poorly understood. In the present study, we investigate the effect of genetic disruption of the circadian clock, through deletion of both paralogs of the core gene cryptochrome (Cry1 and Cry2. Mice lacking Cry1 and Cry2 (Cry1-/-Cry2-/- displayed attenuated dark phase and novelty-induced locomotor activity. Moreover, they showed impaired recognition memory but intact fear memory. Depression-related behaviors in the forced swim test or sucrose preference tests were unaffected but Cry1-/-Cry2-/- mice displayed increased anxiety in the open field and elevated plus maze tests. Finally, hyperlocomotion and striatal phosphorylation of extracellular signal-regulated kinase (ERK induced by a single cocaine administration are strongly reduced in Cry1-/-Cry2-/- mice. Interestingly, only some behavioral measures were affected in mice lacking either Cry1 or Cry2. Notably, recognition memory was impaired in both Cry1-/-Cry2+/+ and Cry1+/+Cry2-/- mice. Moreover, we further observed elevated anxiety in Cry1-/-Cry2+/+ and Cry1+/+Cry2-/- mice. Our data indicate that beyond their role in the control of circadian rhythm, cryptochrome genes have a direct influence in cognitive function, anxiety-related behaviors and sensitivity to psychostimulant drugs.

  4. Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice.

    Science.gov (United States)

    De Bundel, Dimitri; Gangarossa, Giuseppe; Biever, Anne; Bonnefont, Xavier; Valjent, Emmanuel

    2013-01-01

    The circadian clock comprises a set of genes involved in cell-autonomous transcriptional feedback loops that orchestrate the expression of a range of downstream genes, driving circadian patterns of behavior. Cognitive dysfunction, mood disorders, anxiety disorders, and substance abuse disorders have been associated with disruptions in circadian rhythm and circadian clock genes, but the causal relationship of these associations is still poorly understood. In the present study, we investigate the effect of genetic disruption of the circadian clock, through deletion of both paralogs of the core gene cryptochrome (Cry1 and Cry2). Mice lacking Cry1 and Cry2 (Cry1(-/-)Cry2(-/-) ) displayed attenuated dark phase and novelty-induced locomotor activity. Moreover, they showed impaired recognition memory but intact fear memory. Depression-related behaviors in the forced swim test or sucrose preference tests were unaffected but Cry1(-/-)Cry2(-/-) mice displayed increased anxiety in the open field and elevated plus maze tests. Finally, hyperlocomotion and striatal phosphorylation of extracellular signal-regulated kinase (ERK) induced by a single cocaine administration are strongly reduced in Cry1(-/-)Cry2(-/-) mice. Interestingly, only some behavioral measures were affected in mice lacking either Cry1 or Cry2. Notably, recognition memory was impaired in both Cry1(-/-)Cry2(+/+) and Cry1(+/+)Cry2(-/-) mice. Moreover, we further observed elevated anxiety in Cry1(-/-)Cry2(+/+) and Cry1(+/+)Cry2(-/-) mice. Our data indicate that beyond their role in the control of circadian rhythm, cryptochrome genes have a direct influence in cognitive function, anxiety-related behaviors and sensitivity to psychostimulant drugs. PMID:24187535

  5. High-fat medium and circadian transcription factors (cryptochrome and clock) contribute to the regulation of cholesterogenic Cyp51 and Hmgcr genes in mouse embryonic fibroblasts

    OpenAIRE

    Rozman, Damjana; Španinger, Klemen; Fink, Martina; Prosenc, Uršula

    2015-01-01

    The aim of our research was to investigate how cholesterol, unsaturated fatty acids and circadian genes affect the expression of cholesterogenic genes, Cyp51 and Hmgcr, in somatic and in embryonic fibroblast cell lines. We found that in immortal Hepa1-6 cells cholesterol represses the transcription of Hmgcr and Cyp51 for 80%, while unsaturated fatty acids have different effects: Hmgcr was repressed for 50%, but Cyp51 was unaffected by the presence of linoloeic acid. In embryonic fibroblasts t...

  6. Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock

    OpenAIRE

    Ye, Rui; Selby, Cristopher P.; Chiou, Yi-Ying; Ozkan-Dagliyan, Irem; Gaddameedhi, Shobhan; Sancar, Aziz

    2014-01-01

    The mammalian circadian clock is based on a transcription–translation feedback loop in which CLOCK and BMAL1 proteins act as transcriptional activators of Cryptochrome and Period genes, which encode proteins that repress CLOCK–BMAL1 with a periodicity of ∼ 24 h. Ye et al. show that CRY binds to CLOCK–BMAL1 at the promoter and inhibits CLOCK–BMAL1-dependent transcription without dissociating the complex. PER alone has no effect on CLOCK–BMAL1-activated transcription, but in the presence of CRY...

  7. USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock.

    Directory of Open Access Journals (Sweden)

    Arisa Hirano

    Full Text Available Mammalian Cryptochromes, CRY1 and CRY2, function as principal regulators of a transcription-translation-based negative feedback loop underlying the mammalian circadian clockwork. An F-box protein, FBXL3, promotes ubiquitination and degradation of CRYs, while FBXL21, the closest paralog of FBXL3, ubiquitinates CRYs but leads to stabilization of CRYs. Fbxl3 knockout extremely lengthened the circadian period, and deletion of Fbxl21 gene in Fbxl3-deficient mice partially rescued the period-lengthening phenotype, suggesting a key role of CRY protein stability for maintenance of the circadian periodicity. Here, we employed a proteomics strategy to explore regulators for the protein stability of CRYs. We found that ubiquitin-specific protease 7 (USP7 also known as HAUSP associates with CRY1 and CRY2 and stabilizes CRYs through deubiquitination. Treatment with USP7-specific inhibitor or Usp7 knockdown shortened the circadian period of the cellular rhythm. We identified another CRYs-interacting protein, TAR DNA binding protein 43 (TDP-43, an RNA-binding protein. TDP-43 stabilized CRY1 and CRY2, and its knockdown also shortened the circadian period in cultured cells. The present study identified USP7 and TDP-43 as the regulators of CRY1 and CRY2, underscoring the significance of the stability control process of CRY proteins for period determination in the mammalian circadian clockwork.

  8. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.

    Science.gov (United States)

    Zhu, Haisun; Sauman, Ivo; Yuan, Quan; Casselman, Amy; Emery-Le, Myai; Emery, Patrick; Reppert, Steven M

    2008-01-01

    The circadian clock plays a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of a Drosophila-like cryptochrome (cry), designated cry1, and a vertebrate-like cry, designated cry2, that are both expressed in the butterfly and by placing these genes in the context of other relevant clock genes in vivo. We found that similar temporal patterns of clock gene expression and protein levels occur in the heads, as occur in DpN1 cells, of a monarch cell line that contains a light-driven clock. CRY1 mediates TIMELESS degradation by light in DpN1 cells, and a light-induced TIMELESS decrease occurs in putative clock cells in the pars lateralis (PL) in the brain. Moreover, monarch cry1 transgenes partially rescue both biochemical and behavioral light-input defects in cry(b) mutant Drosophila. CRY2 is the major transcriptional repressor of CLOCK:CYCLE-mediated transcription in DpN1 cells, and endogenous CRY2 potently inhibits transcription without involvement of PERIOD. CRY2 is co-localized with clock proteins in the PL, and there it translocates to the nucleus at the appropriate time for transcriptional repression. We also discovered CRY2-positive neural projections that oscillate in the central complex. The results define a novel, CRY-centric clock mechanism in the monarch in which CRY1 likely functions as a blue-light photoreceptor for entrainment, whereas CRY2 functions within the clockwork as the transcriptional repressor of a negative transcriptional feedback loop. Our data further suggest that CRY2 may have a dual role in the monarch butterfly's brain-as a core clock element and as an output that regulates circadian activity in the central complex, the likely site of the sun compass. PMID:18184036

  9. Anhedonic behavior in cryptochrome 2-deficient mice is paralleled by altered diurnal patterns of amygdala gene expression

    OpenAIRE

    Savalli, Giorgia; Diao, Weifei; Berger, Stefanie; Ronovsky, Marianne; Partonen, Timo; Pollak, Daniela D.

    2015-01-01

    Mood disorders are frequently paralleled by disturbances in circadian rhythm-related physiological and behavioral states and genetic variants of clock genes have been associated with depression. Cryptochrome 2 (Cry2) is one of the core components of the molecular circadian machinery which has been linked to depression, both, in patients suffering from the disease and animal models of the disorder. Despite this circumstantial evidence, a direct causal relationship between Cry2 expression and d...

  10. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.

    Directory of Open Access Journals (Sweden)

    Haisun Zhu

    2008-01-01

    Full Text Available The circadian clock plays a vital role in monarch butterfly (Danaus plexippus migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of a Drosophila-like cryptochrome (cry, designated cry1, and a vertebrate-like cry, designated cry2, that are both expressed in the butterfly and by placing these genes in the context of other relevant clock genes in vivo. We found that similar temporal patterns of clock gene expression and protein levels occur in the heads, as occur in DpN1 cells, of a monarch cell line that contains a light-driven clock. CRY1 mediates TIMELESS degradation by light in DpN1 cells, and a light-induced TIMELESS decrease occurs in putative clock cells in the pars lateralis (PL in the brain. Moreover, monarch cry1 transgenes partially rescue both biochemical and behavioral light-input defects in cry(b mutant Drosophila. CRY2 is the major transcriptional repressor of CLOCK:CYCLE-mediated transcription in DpN1 cells, and endogenous CRY2 potently inhibits transcription without involvement of PERIOD. CRY2 is co-localized with clock proteins in the PL, and there it translocates to the nucleus at the appropriate time for transcriptional repression. We also discovered CRY2-positive neural projections that oscillate in the central complex. The results define a novel, CRY-centric clock mechanism in the monarch in which CRY1 likely functions as a blue-light photoreceptor for entrainment, whereas CRY2 functions within the clockwork as the transcriptional repressor of a negative transcriptional feedback loop. Our data further suggest that CRY2 may have a dual role in the monarch butterfly's brain-as a core clock element and as an output that regulates circadian activity in the central complex, the likely site of the sun compass.

  11. Postnatal constant light compensates Cryptochrome1 and 2 double deficiency for disruption of circadian behavioral rhythms in mice under constant dark.

    Directory of Open Access Journals (Sweden)

    Daisuke Ono

    Full Text Available Clock genes Cryptochrome (Cry1 and Cry2 are essential for expression of circadian rhythms in mice under constant darkness (DD. However, circadian rhythms in clock gene Per1 expression or clock protein PER2 are detected in the cultured suprachiasmatic nucleus (SCN of neonatal Cry1 and Cry2 double deficient (Cry1 (-/-/Cry2 (-/- mice. A lack of circadian rhythms in adult Cry1 (-/-/Cry2 (-/- mice is most likely due to developmentally disorganized cellular coupling of oscillating neurons in the SCN. On the other hand, neonatal rats exposed to constant light (LL developed a tenable circadian system under prolonged LL which was known to fragment circadian behavioral rhythms. In the present study, Cry1 (-/-/Cry2 (-/- mice were raised under LL from postnatal day 1 for 7 weeks and subsequently exposed to DD for 3 weeks. Spontaneous movement was monitored continuously after weaning and PER2::LUC was measured in the cultured SCN obtained from mice under prolonged DD. Surprisingly, Chi square periodogram analysis revealed significant circadian rhythms of spontaneous movement in the LL-raised Cry1 (-/-/Cry2 (-/- mice, but failed to detect the rhythms in Cry1 (-/-/Cry2 (-/- mice raised under light-dark cycles (LD. By contrast, prolonged LL in adulthood did not rescue the circadian behavioral rhythms in the LD raised Cry1 (-/-/Cry2 (-/- mice. Visual inspection disclosed two distinct activity components with different periods in behavioral rhythms of the LL-raised Cry1(-/-/Cry2(-/- mice under DD: one was shorter and the other was longer than 24 hours. The two components repeatedly merged and separated. The patterns resembled the split behavioral rhythms of wild type mice under prolonged LL. In addition, circadian rhythms in PER2::LUC were detected in some of the LL-raised Cry1(-/-/Cry2(-/- mice under DD. These results indicate that neonatal exposure to LL compensates the CRY double deficiency for the disruption of circadian behavioral rhythms under DD in

  12. Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression

    OpenAIRE

    Fankhauser, Christian; Ulm, Roman

    2011-01-01

    Cryptochromes are a class of photosensory receptors that control important processes in animals and plants primarily by regulating gene expression. How photon absorption by cryptochromes leads to changes in gene expression has remained largely elusive. Three recent studies, including Lian and colleagues (pp. 1023–1028) and Liu and colleagues (pp. 1029–1034) in this issue of Genes & Development, demonstrate that the interaction of light-activated Arabidopsis cryptochromes with a class of regul...

  13. The potorous cpd photolyase rescues a cryptochrome-deficient mammalian circadian clock

    NARCIS (Netherlands)

    I. Chaves (Ines); R.M. Nijman (Romana); M.A. Biernat (Magdalena A.); M.I. Bajek (Monika); K. Brand (Karl); A.C. da Silva (António Carvalho); S. Saito (Shuichi); K. Yagita (Kazuhiro); A.P.M. Eker (André); G.T.J. van der Horst (Gijsbertus)

    2011-01-01

    textabstractDespite the sequence and structural conservation between cryptochromes and photolyases, members of the cryptochrome/photolyase (flavo)protein family, their functions are divergent. Whereas photolyases are DNA repair enzymes that use visible light to lesion-specifically remove UV-induced

  14. The Potorous CPD Photolyase Rescues a Cryptochrome-Deficient Mammalian Circadian Clock

    NARCIS (Netherlands)

    Chaves, I.; Nijman, R.M.; Biernat, M.A.; Bajek, M.I.; Brand, K.; Carvalho da Silva, A.; Saito, S.; Yagita, K.; Eker, A.P.M.; Horst, van der G.T.J.

    2011-01-01

    Despite the sequence and structural conservation between cryptochromes and photolyases, members of the cryptochrome/photolyase (flavo)protein family, their functions are divergent. Whereas photolyases are DNA repair enzymes that use visible light to lesion-specifically remove UV-induced DNA damage,

  15. Cloning and Expression Profile Analysis of Cryptochrome1 and Cryptochrome2 Genes in Chilo suppressalis%二化螟隐花色素基因 cryptochrome1和 cryptochrome2的克隆与表达谱分析

    Institute of Scientific and Technical Information of China (English)

    刘苏; 张胜利

    2014-01-01

    隐花色素基因(cryptochrome,简称 cry)是一类生物钟基因,参与生物体昼夜节律调控。本实验克隆了二化螟2个隐花色素基因,分别命名为 Cs - cry1和 Cs - cry2(Genbank 登录号分别为 HG780135和KF977409),其分别包含1605 bp 和2289 bp 的开放阅读框,分别编码由534和762个氨基酸组成的蛋白;Cs - cry1与其它鳞翅目昆虫 cry1的相似性较高,而 Cs - cry2与其它鳞翅目昆虫 cry2的相似性较高,这与系统进化分析结果相一致;半定量 RT - PCR 研究表明 Cs - cry1和 Cs - cry2基因在二化螟成虫触角、头、雄、腹、足和翅等不同组织中均有表达。实验结果为二化螟昼夜节律分子机制研究提供了理论依据。%Cryptochrome(cry)is clock gene involved in the regulation of circadian rhythms in most organisms. In the present study,two cry genes(named as Cs - cry1 and Cs - cry2,Genbank ID:HG780135 and KF977409, respectively)were cloned from Chilo suppressalis. Cs - cry1 and Cs - cry2 contained open reading frames (ORFs)of 1605 and 2289 bp,encoding proteins of 534 and 762 amino acid residues,respectively. Cs - cry1 shared a high degree of identity with cry1s from other moth species whilst Cs - cry2 are more similar to moth cry2s,which is consistent with the phylogenetic analysis. Semi - quantitative RT - PCR analysis showed that both Cs - cry1 and Cs - cry2 genes are expressed in various tissues of C. suppressalis adults,including antennae, head,thorax,abdomen,legs and wings. The results will provide theoretical foundation for revealing the molecu-lar mechanisms of circadian rhythms in C. suppressalis.

  16. Association between circadian clock genes and diapause incidence in Drosophila triauraria.

    Directory of Open Access Journals (Sweden)

    Hirokazu Yamada

    Full Text Available Diapause is an adaptive response triggered by seasonal photoperiodicity to overcome unfavorable seasons. The photoperiodic clock is a system that controls seasonal physiological processes, but our knowledge about its physiological mechanisms and genetic architecture remains incomplete. The circadian clock is another system that controls daily rhythmic physiological phenomena. It has been argued that there is a connection between the two clocks. To examine the genetic connection between them, we analyzed the associations of five circadian clock genes (period, timeless, Clock, cycle and cryptochrome with the occurrence of diapause in Drosophila triauraria, which shows a robust reproductive diapause with clear photoperiodicity. Non-diapause strains found in low latitudes were compared in genetic crosses with the diapause strain, in which the diapause trait is clearly dominant. Single nucleotide polymorphism and deletion analyses of the five circadian clock genes in backcross progeny revealed that allelic differences in timeless and cryptochrome between the strains were additively associated with the differences in the incidence of diapause. This suggests that there is a molecular link between certain circadian clock genes and the occurrence of diapause.

  17. Expression of circadian clock gene cryptochrome-1 in gasrointestinal adeno carcinoma and its relationship with clinicopathologic characteristics%生物钟基因Cry1在消化道腺癌中的表达及其与临床病理特征的关系

    Institute of Scientific and Technical Information of China (English)

    刘海军; 徐蕾; 凌烈峰; 王文军; 何雷; 冯遵永; 章尧

    2015-01-01

    Objective:To investigate the expression of circadian clock gene cryptochrome-1(Cry1) in gastrointestinal adenocarcinoma and its relationship with clinicopathologic characteristics.Methods:Immunohistochemistry was used to detect the expression of Cry1 in 63 clinical specimens from tumor and its adjacent tissues.Statistical analysis was performed to evaluate the relationship between tumor tissue and its adjacent tissues as well as association of Cry 1 expression with clinicopathologic paramenters.Results:Cr1y expression was not significant in cancerous and noncancerous tissues from 63 patients of gas-trointestinal adenocarcinoma(P>0.05),yet upregulated Cry1 expression indicated poorly differentiated gastrointestinal adenocarcinoma (P<0.05).Cry1 was stained in the cytoplasm and nuclear regions,which suggested statistical difference of subcellular distribution between carcinoma and adjacent mucosa. (P<0.01).Conclusion:Upregulated expression of Cry1 in poorly differentiated adenocarcinoma and the change of subcellular distribution in cancer tis-sues indicate that subcellular localization of Cry1 may play a role in the development of gastrointestinal adenocarcinoma,and the expression level of this protein may affect the malignancy of tumor.%目的:探讨生物钟基因Cry1在消化道腺癌中的表达及其与临床病理特征之间的关系。方法:采用免疫组织化学法检测生物钟基因Cry1在63例消化道腺癌组织和对应癌旁组织中的表达,分析两者之间的关系以及Cry1的表达与临床病理特征之间的关系。结果:生物钟基因Cry1在63例消化道腺癌组织和对应癌旁组织中表达强度无显著相关性(P>0.05),Cry1的高表达与肿瘤的低分化相关(P<0.05);Cry1的表达定位在细胞核和细胞质中,癌组织和癌旁组织之间的亚细胞分布差异具有显著统计学意义( P<0.01)。结论:生物钟基因Cry1在低分化腺癌中的表达增高以及在癌组

  18. The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation

    NARCIS (Netherlands)

    E. Maronde (Erik); A.F. Schilling (Arndt); S. Seitz (Sebastian); T. Schinke (Thorsten); I. Schmutz (Isabelle); G.T.J. van der Horst (Gijsbertus); M. Amling (Michael); U. Albrecht (Urs)

    2010-01-01

    textabstractBackground: Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts degrade it thereby balancing bone formation. To

  19. Circadian Gene Networks In Bone Regeneration

    OpenAIRE

    Hassan, Nathaniel

    2012-01-01

    BACKGROUND: Previous studies suggested that vitamin D played a significant role in bone regeneration, facilitating the establishment of implant osseointegration. A whole genome microarray study further suggested that the vitamin D axis might involve circadian rhythm gene expression in the bone peripheral tissue.OBJECTIVES: To identify key gene networks involved with vitamin D receptor in the bone regeneration process and to explore any correlation with circadian rhythm gene expression in bone...

  20. Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators.

    Directory of Open Access Journals (Sweden)

    Guo-Xiang Ruan

    Full Text Available The retina is both a sensory organ and a self-sustained circadian clock. Gene targeting studies have revealed that mammalian circadian clocks generate molecular circadian rhythms through coupled transcription/translation feedback loops which involve 6 core clock genes, namely Period (Per 1 and 2, Cryptochrome (Cry 1 and 2, Clock, and Bmal1 and that the roles of individual clock genes in rhythms generation are tissue-specific. However, the mechanisms of molecular circadian rhythms in the mammalian retina are incompletely understood and the extent to which retinal neural clocks share mechanisms with the suprachiasmatic nucleus (SCN, the central neural clock, is unclear. In the present study, we examined the rhythmic amplitude and period of real-time bioluminescence rhythms in explants of retina from Per1-, Per2-, Per3-, Cry1-, Cry2-, and Clock-deficient mice that carried transgenic PERIOD2::LUCIFERASE (PER2::LUC or Period1::luciferase (Per1::luc circadian reporters. Per1-, Cry1- and Clock-deficient retinal and SCN explants showed weakened or disrupted rhythms, with stronger effects in retina compared to SCN. Per2, Per3, and Cry2 were individually dispensable for sustained rhythms in both tissues. Retinal and SCN explants from double knockouts of Cry1 and Cry2 were arrhythmic. Gene effects on period were divergent with reduction in the number of Per1 alleles shortening circadian period in retina, but lengthening it in SCN, and knockout of Per3 substantially shortening retinal clock period, but leaving SCN unaffected. Thus, the retinal neural clock has a unique pattern of clock gene dependence at the tissue level that it is similar in pattern, but more severe in degree, than the SCN neural clock, with divergent clock gene regulation of rhythmic period.

  1. Explaining the sawtooth: latitudinal periodicity in a circadian gene correlates with shifts in generation number.

    Science.gov (United States)

    Levy, R C; Kozak, G M; Wadsworth, C B; Coates, B S; Dopman, E B

    2015-01-01

    Many temperate insects take advantage of longer growing seasons at lower latitudes by increasing their generation number or voltinism. In some insects, development time abruptly decreases when additional generations are fit into the season. Consequently, latitudinal 'sawtooth' clines associated with shifts in voltinism are seen for phenotypes correlated with development time, like body size. However, latitudinal variation in voltinism has not been linked to genetic variation at specific loci. Here, we show a pattern in allele frequency among voltinism ecotypes of the European corn borer moth (Ostrinia nubilalis) that is reminiscent of a sawtooth cline. We characterized 145 autosomal and sex-linked SNPs and found that period, a circadian gene that is genetically linked to a major QTL determining variation in post-diapause development time, shows cyclical variation between voltinism ecotypes. Allele frequencies at an unlinked circadian clock gene cryptochrome1 were correlated with period. These results suggest that selection on development time to 'fit' complete life cycles into a latitudinally varying growing season produces oscillations in alleles associated with voltinism, primarily through changes at loci underlying the duration of transitions between diapause and other life history phases. Correlations among clock loci suggest possible coupling between the circadian clock and the circannual rhythms for synchronizing seasonal life history. We anticipate that latitudinal oscillations in allele frequency will represent signatures of adaptation to seasonal environments in other insects and may be critical to understanding the ecological and evolutionary consequences of variable environments, including response to global climate change. PMID:25430782

  2. Mammalian TIMELESS Is Involved in Period Determination and DNA Damage-Dependent Phase Advancing of the Circadian Clock

    NARCIS (Netherlands)

    M.P. Engelen (Erik); R. Janssens (Roel); K. Yagita (Kazuhiro); V.A.J. Smits (Veronique); G.T.J. van der Horst (Gijsbertus); F. Tamanini (Filippo)

    2013-01-01

    textabstractThe transcription/translation feedback loop-based molecular oscillator underlying the generation of circadian gene expression is preserved in almost all organisms. Interestingly, the animal circadian clock proteins CRYPTOCHROME (CRY), PERIOD (PER) and TIMELESS (TIM) are strongly conserve

  3. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    Directory of Open Access Journals (Sweden)

    Juliana Marcolino-Gomes

    Full Text Available Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i drought stress affects gene expression of circadian clock components and (ii several stress responsive genes display diurnal oscillation in soybeans.

  4. Blue-Light-Independent Activity of Arabidopsis Cryptochromes in the Regulation of Steady-State Levels of Protein and mRNA Expression

    Institute of Scientific and Technical Information of China (English)

    Yue-Jun Yang; Xuan-Ming Liu; Chen-Tao Lin; Ze-Cheng Zuo; Xiao-Ying Zhao; Xu Li; John Klejnot; Yan Li; Ping Chen; Song-Ping Liang; Xu-Hong Yu

    2008-01-01

    Cryptochromes are blue-light receptors that mediate blue-light inhibition of hypocotyl elongation and bluelight stimulation of floral initiation in Arabidopsis. In addition to their blue-light-dependent functions, cryptochromes are also involved in blue-light-independent regulation of the circadian clock, cotyledon unfolding, and hypocotyl inhibition.However, the molecular mechanism associated with the blue-light-independent function of cryptochromes remains unclear. We reported here a comparative proteomics study of the light regulation of protein expression. We showed that, as expected, the protein expression of many metabolic enzymes changed in response to both blue light and red light. Surprisingly, some light-regulated protein expression changes are impaired in the cry1cry2 mutant in both blue light and red light. This result suggests that, in addition to mediating blue-light-dependent regulation of protein expression, cryptochromes are also involved in the blue-light-independent regulation of gene expression. Consistent with this hypothesis,the cry1cry2 mutant exhibited reduced changes of mRNA expression in response to not only blue light, but also red light,although the cryptochrome effects on the red-light-dependent gene expression changes are generally less pronounced.These results support a hypothesis that, in addition to their blue-light-specific functions, cryptochromes also play roles in the control of gene expression mediated by the red/far-red-light receptor phytochromes.

  5. Circadian genes differentially affect tolerance to ethanol in Drosophila

    Science.gov (United States)

    Pohl, Jascha B.; Ghezzi, Alfredo; Lew, Linda K.; Robles, Roseanna B.; Cormack, Lawrence; Atkinson, Nigel S.

    2016-01-01

    Background There is a strong relationship between circadian rhythms and ethanol responses. Ethanol consumption has been shown to disrupt physiological and behavioral circadian rhythms in mammals (Spanagel et al., 2005b). The Drosophila central circadian pacemaker is composed of proteins encoded by the per, tim, cyc, and Clk genes. Using Drosophila mutant analysis we asked whether these central components of the circadian clock make the equivalent contribution towards ethanol tolerance and whether rhythmicity itself is necessary for tolerance. Methods We tested flies carrying mutations in core clock genes for the capacity to acquire ethanol tolerance. Tolerance was assayed by comparing the sedation curves of populations during their first and second sedation. Animals that had acquired tolerance sedated more slowly. Movement was also monitored as the flies breathe the ethanol vapor to determine if other facets of the ethanol response were affected by the mutations. Gas chromatography was used to measure internal ethanol concentration. Constant light was used to non-genetically destabilize the PER and TIM proteins. Results A group of circadian mutations, all of which eliminate circadian rhythms, do not disrupt tolerance identically. Mutations in per, tim, and cyc completely block tolerance. However, a mutation in Clk does not interfere with tolerance. Constant light also disrupts the capacity to acquire tolerance. These lines did not differ in ethanol absorption. Conclusions Mutations affecting different parts of the intracellular circadian clock can block the capacity to acquire rapid ethanol tolerance. However, the role of circadian genes in ethanol tolerance is independent of their role in producing circadian rhythmicity. The interference in the capacity to acquire ethanol tolerance by some circadian mutations is not merely a downstream effect of a nonfunctional circadian clock, instead these circadian genes play an independent role in ethanol tolerance. PMID

  6. A role for the circadian genes in drug addiction

    OpenAIRE

    Falcón, Edgardo; McClung, Colleen A.

    2008-01-01

    Diurnal and circadian rhythms are prominent in nearly all bodily functions. Chronic disruptions in normal sleep wake and social schedules can lead to serious health problems such as those seen in shift worker’s syndrome. Moreover, genetic disruptions in normal circadian gene functions have recently been linked to a variety of psychiatric conditions including depression, bipolar disorder, seasonal affective disorder and alcoholism. Recent studies are beginning to determine how these circadian ...

  7. Circadian Clock Genes: Effects on Dopamine, Reward and Addiction

    OpenAIRE

    Parekh, Puja K.; Ozburn, Angela R; McClung, Colleen A.

    2015-01-01

    Addiction is a widespread public health issue with social and economic ramifications. Substance abuse disorders are often accompanied by disruptions in circadian rhythms including sleep/wake cycles, which can exacerbate symptoms of addiction and dependence. Additionally, genetic disturbance of circadian molecular mechanisms can predispose some individuals to substance abuse disorders. In this review, we will discuss how circadian genes can regulate midbrain dopaminergic activity and subsequen...

  8. The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation.

    Directory of Open Access Journals (Sweden)

    Erik Maronde

    Full Text Available BACKGROUND: Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts degrade it thereby balancing bone formation. To evaluate the contribution of clock components in this process, we investigated mice mutant in clock genes for a bone volume phenotype. METHODOLOGY/PRINCIPAL FINDINGS: We found that Per2(Brdm1 mutant mice as well as mice lacking Cry2(-/- displayed significantly increased bone volume at 12 weeks of age, when bone turnover is high. Per2(Brdm1 mutant mice showed alterations in parameters specific for osteoblasts whereas mice lacking Cry2(-/- displayed changes in osteoclast specific parameters. Interestingly, inactivation of both Per2 and Cry2 genes leads to normal bone volume as observed in wild type animals. Importantly, osteoclast parameters affected due to the lack of Cry2, remained at the level seen in the Cry2(-/- mutants despite the simultaneous inactivation of Per2. CONCLUSIONS/SIGNIFICANCE: This indicates that Cry2 and Per2 affect distinct pathways in the regulation of bone volume with Cry2 influencing mostly the osteoclastic cellular component of bone and Per2 acting on osteoblast parameters.

  9. CIRCADIAN GENES AND REGULATION OF DIAPAUSE IN INSECT

    OpenAIRE

    Bajgar, Adam

    2013-01-01

    This thesis considers various roles of circadian clock genes in insect physiology. Application of molecular-biology methods in Pyrrhocoris apterus, non-model insect species, enable us to investigate involvement of circadian clock genes in photoperiod induced physiological responses. We discover involvement of neuroendocrine cells, and a role of Juvenile hormone (JH) signalization in transduction of photoperiodic signalization to peripheral tissues. We found new principles of JH signal diversi...

  10. Exquisite light sensitivity of Drosophila melanogaster cryptochrome.

    Directory of Open Access Journals (Sweden)

    Pooja Vinayak

    Full Text Available Drosophila melanogaster shows exquisite light sensitivity for modulation of circadian functions in vivo, yet the activities of the Drosophila circadian photopigment cryptochrome (CRY have only been observed at high light levels. We studied intensity/duration parameters for light pulse induced circadian phase shifts under dim light conditions in vivo. Flies show far greater light sensitivity than previously appreciated, and show a surprising sensitivity increase with pulse duration, implying a process of photic integration active up to at least 6 hours. The CRY target timeless (TIM shows dim light dependent degradation in circadian pacemaker neurons that parallels phase shift amplitude, indicating that integration occurs at this step, with the strongest effect in a single identified pacemaker neuron. Our findings indicate that CRY compensates for limited light sensitivity in vivo by photon integration over extraordinarily long times, and point to select circadian pacemaker neurons as having important roles.

  11. A baculovirus photolyase with DNA repair activity and circadian clock regulatory function

    NARCIS (Netherlands)

    Biernat, M.A.; Eker, A.P.M.; Oers, van M.M.; Vlak, J.M.; Horst, van der G.T.J.; Chaves, I.

    2012-01-01

    Cryptochromes and photolyases belong to the same family of flavoproteins but, despite being structurally conserved, display distinct functions. Photolyases use visible light to repair ultraviolet-induced DNA damage. Cryptochromes, however, function as blue-light receptors, circadian photoreceptors,

  12. Lunar Phase-Dependent Expression of Cryptochrome and a Photoperiodic Mechanism for Lunar Phase-Recognition in a Reef Fish, Goldlined Spinefoot

    OpenAIRE

    Fukushiro, Masato; Takeuchi, Takahiro; Takeuchi, Yuki; Hur, Sung-Pyo; Sugama, Nozomi; Takemura, Akihiro; Kubo, Yoko; Okano, Keiko; Okano, Toshiyuki

    2011-01-01

    Lunar cycle-associated physiology has been found in a wide variety of organisms. Recent study has revealed that mRNA levels of Cryptochrome (Cry), one of the circadian clock genes, were significantly higher on a full moon night than on a new moon night in coral, implying the involvement of a photoreception system in the lunar-synchronized spawning. To better establish the generalities surrounding such a mechanism and explore the underlying molecular mechanism, we focused on the relationship b...

  13. Phase analysis of circadian-related genes in two tissues

    Directory of Open Access Journals (Sweden)

    Li Leping

    2006-02-01

    Full Text Available Abstract Background Recent circadian clock studies using gene expression microarray in two different tissues of mouse have revealed not all circadian-related genes are synchronized in phase or peak expression times across tissues in vivo. Instead, some circadian-related genes may be delayed by 4–8 hrs in peak expression in one tissue relative to the other. These interesting biological observations prompt a statistical question regarding how to distinguish the synchronized genes from genes that are systematically lagged in phase/peak expression time across two tissues. Results We propose a set of techniques from circular statistics to analyze phase angles of circadian-related genes in two tissues. We first estimate the phases of a cycling gene separately in each tissue, which are then used to estimate the paired angular difference of the phase angles of the gene in the two tissues. These differences are modeled as a mixture of two von Mises distributions which enables us to cluster genes into two groups; one group having synchronized transcripts with the same phase in the two tissues, the other containing transcripts with a discrepancy in phase between the two tissues. For each cluster of genes we assess the association of phases across the tissue types using circular-circular regression. We also develop a bootstrap methodology based on a circular-circular regression model to evaluate the improvement in fit provided by allowing two components versus a one-component von-Mises model. Conclusion We applied our proposed methodologies to the circadian-related genes common to heart and liver tissues in Storch et al. 2, and found that an estimated 80% of circadian-related transcripts common to heart and liver tissues were synchronized in phase, and the other 20% of transcripts were lagged about 8 hours in liver relative to heart. The bootstrap p-value for being one cluster is 0.063, which suggests the possibility of two clusters. Our methodologies can

  14. Paternal irradiation perturbs the expression of circadian genes in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Andre M.G.F.; Barber, Ruth C.; Dubrova, Yuri E., E-mail: yed2@le.ac.uk

    2015-05-15

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies.

  15. Paternal irradiation perturbs the expression of circadian genes in offspring

    International Nuclear Information System (INIS)

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies

  16. Integration of light and temperature in the regulation of circadian gene expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Catharine E Boothroyd

    2007-04-01

    Full Text Available Circadian clocks are aligned to the environment via synchronizing signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we found that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcript levels appear to be modified broadly by changes in temperature, there is a specific set of temperature-entrained circadian mRNA profiles that continue to oscillate in constant conditions. There are marked differences in the biological functions represented by temperature-driven or circadian regulation. The set of temperature-entrained circadian transcripts overlaps significantly with a previously defined set of transcripts oscillating in response to a photocycle. In follow-up studies, all thermocycle-entrained circadian transcript rhythms also responded to light/dark entrainment, whereas some photocycle-entrained rhythms did not respond to temperature entrainment. Transcripts encoding the clock components Period, Timeless, Clock, Vrille, PAR-domain protein 1, and Cryptochrome were all confirmed to be rhythmic after entrainment to a daily thermocycle, although the presence of a thermocycle resulted in an unexpected phase difference between period and timeless expression rhythms at the transcript but not the protein level. Generally, transcripts that exhibit circadian rhythms both in response to thermocycles and photocycles maintained the same mutual phase relationships after entrainment by temperature or light. Comparison of the collective temperature- and light-entrained circadian phases of these transcripts indicates that natural environmental light and temperature cycles cooperatively entrain the circadian clock. This interpretation is further supported by comparative analysis of the circadian phases observed for temperature-entrained and light-entrained circadian locomotor behavior. Taken

  17. The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle

    OpenAIRE

    Dyar, Kenneth A.; Stefano Ciciliot; Guidantonio Malagoli Tagliazucchi; Giorgia Pallafacchina; Jana Tothova; Carla Argentini; Lisa Agatea; Reimar Abraham; Miika Ahdesmäki; Mattia Forcato; Silvio Bicciato; Stefano Schiaffino; Bert Blaauw

    2015-01-01

    Objective: Physical activity and circadian rhythms are well-established determinants of human health and disease, but the relationship between muscle activity and the circadian regulation of muscle genes is a relatively new area of research. It is unknown whether muscle activity and muscle clock rhythms are coupled together, nor whether activity rhythms can drive circadian gene expression in skeletal muscle. Methods: We compared the circadian transcriptomes of two mouse hindlimb muscles wi...

  18. Light-activated Cryptochrome Reacts with Molecular Oxygen to Form a Flavin–Superoxide Radical Pair Consistent with Magnetoreception*

    OpenAIRE

    Müller, Pavel; Ahmad, Margaret

    2011-01-01

    Cryptochromes are flavin-based photoreceptors occurring throughout the biological kingdom, which regulate growth and development in plants and are involved in the entrainment of circadian rhythms of both plants and animals. A number of recent theoretical works suggest that cryptochromes might also be the receptors responsible for the sensing of the magnetic field of the earth (e.g. in insects, migratory birds, or migratory fish). Cryptochromes undergo forward light-induced reactions involving...

  19. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula

    Science.gov (United States)

    Gao, Yanxia

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis. PMID:27413249

  20. Timing Matters: Circadian Rhythm in Sepsis, Obstructive Lung Disease, Obstructive Sleep Apnea, and Cancer.

    Science.gov (United States)

    Truong, Kimberly K; Lam, Michael T; Grandner, Michael A; Sassoon, Catherine S; Malhotra, Atul

    2016-07-01

    Physiological and cellular functions operate in a 24-hour cyclical pattern orchestrated by an endogenous process known as the circadian rhythm. Circadian rhythms represent intrinsic oscillations of biological functions that allow for adaptation to cyclic environmental changes. Key clock genes that affect the persistence and periodicity of circadian rhythms include BMAL1/CLOCK, Period 1, Period 2, and Cryptochrome. Remarkable progress has been made in our understanding of circadian rhythms and their role in common medical conditions. A critical review of the literature supports the association between circadian misalignment and adverse health consequences in sepsis, obstructive lung disease, obstructive sleep apnea, and malignancy. Circadian misalignment plays an important role in these disease processes and can affect disease severity, treatment response, and survivorship. Normal inflammatory response to acute infections, airway resistance, upper airway collapsibility, and mitosis regulation follows a robust circadian pattern. Disruption of normal circadian rhythm at the molecular level affects severity of inflammation in sepsis, contributes to inflammatory responses in obstructive lung diseases, affects apnea length in obstructive sleep apnea, and increases risk for cancer. Chronotherapy is an underused practice of delivering therapy at optimal times to maximize efficacy and minimize toxicity. This approach has been shown to be advantageous in asthma and cancer management. In asthma, appropriate timing of medication administration improves treatment effectiveness. Properly timed chemotherapy may reduce treatment toxicities and maximize efficacy. Future research should focus on circadian rhythm disorders, role of circadian rhythm in other diseases, and modalities to restore and prevent circadian disruption. PMID:27104378

  1. Genes influencing circadian differences in blood pressure in hypertensive mice.

    Science.gov (United States)

    Marques, Francine Z; Campain, Anna E; Davern, Pamela J; Yang, Yee Hwa J; Head, Geoffrey A; Morris, Brian J

    2011-01-01

    Essential hypertension is a common multifactorial heritable condition in which increased sympathetic outflow from the central nervous system is involved in the elevation in blood pressure (BP), as well as the exaggerated morning surge in BP that is a risk factor for myocardial infarction and stroke in hypertensive patients. The Schlager BPH/2J mouse is a genetic model of hypertension in which increased sympathetic outflow from the hypothalamus has an important etiological role in the elevation of BP. Schlager hypertensive mice exhibit a large variation in BP between the active and inactive periods of the day, and also show a morning surge in BP. To investigate the genes responsible for the circadian variation in BP in hypertension, hypothalamic tissue was collected from BPH/2J and normotensive BPN/3J mice at the 'peak' (n = 12) and 'trough' (n = 6) of diurnal BP. Using Affymetrix GeneChip® Mouse Gene 1.0 ST Arrays, validation by quantitative real-time PCR and a statistical method that adjusted for clock genes, we identified 212 hypothalamic genes whose expression differed between 'peak' and 'trough' BP in the hypertensive strain. These included genes with known roles in BP regulation, such as vasopressin, oxytocin and thyrotropin releasing hormone, as well as genes not recognized previously as regulators of BP, including chemokine (C-C motif) ligand 19, hypocretin and zinc finger and BTB domain containing 16. Gene ontology analysis showed an enrichment of terms for inflammatory response, mitochondrial proton-transporting ATP synthase complex, structural constituent of ribosome, amongst others. In conclusion, we have identified genes whose expression differs between the peak and trough of 24-hour circadian BP in BPH/2J mice, pointing to mechanisms responsible for diurnal variation in BP. The findings may assist in the elucidation of the mechanism for the morning surge in BP in essential hypertension. PMID:21541337

  2. Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability.

    Directory of Open Access Journals (Sweden)

    Jacqueline Vieira

    Full Text Available Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II cryptochromes regulate the circadian clock independently of light, raising the fundamental question of whether mammalian cryptochromes have evolved entirely distinct signaling mechanisms. Here we show by developmental and transcriptome analysis that Homo sapiens cryptochrome--1 (HsCRY1 confers biological activity in transgenic expressing Drosophila in darkness, that can in some cases be further stimulated by light. In contrast to all other cryptochromes, purified recombinant HsCRY1 protein was stably isolated in the anionic radical flavin state, containing only a small proportion of oxidized flavin which could be reduced by illumination. We conclude that animal Type I and Type II cryptochromes may both have signaling mechanisms involving formation of a flavin radical signaling state, and that light independent activity of Type II cryptochromes is a consequence of dark accumulation of this redox form in vivo rather than of a fundamental difference in signaling mechanism.

  3. Endocrine regulation of non-circadian behavior of circadian genes in insect gut

    Czech Academy of Sciences Publication Activity Database

    Bajgar, Adam; Doležel, David; Hodková, Magdalena

    2013-01-01

    Roč. 59, č. 9 (2013), s. 881-886. ISSN 0022-1910 R&D Projects: GA ČR GAP502/10/1612 Grant ostatní: EU Seventh Framework Programme(CZ) FP7/2007-2013, No. 316304 Institutional support: RVO:60077344 Keywords : cryptochrome * par domain protein 1 * photoperiod Subject RIV: ED - Physiology Impact factor: 2.500, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022191013001364

  4. Nursing frequency alters circadian patterns of mammary gene expression in lactating mice

    Science.gov (United States)

    Milking frequency impacts lactation in dairy cattle and in rodent models of lactation. The role of circadian gene expression in this process is unknown. The hypothesis tested was that changing nursing frequency alters the circadian patterns of mammary gene expression. Mid-lactation CD1 mice were stu...

  5. The circadian clock-associated gene zea mays gigantea1 affects maize developmental transitions

    Science.gov (United States)

    The circadian clock is the internal timing mechanism that allows plants to make developmental decisions in accordance with environmental conditions. The genes of the maize circadian clock are not well defined. Gigantea (gi) genes are conserved across flowering plants, including maize. In model plant...

  6. Caenorhabditis elegans opens up new insights into circadian clock mechanisms.

    Science.gov (United States)

    Hasegawa, Kenji; Saigusa, Tetsu; Tamai, Yoichi

    2005-01-01

    The roundworm, Caenorhabditis elegans, is known to carry homologues of clock genes such as per (=period) and tim (=timeless), which constitute the core of the circadian clock in Drosophila and mammals: lin-42 and tim-1. Analyses using WormBase (C. elegans gene database) have identified with relatively high identity analogous of the clock genes recognized in Drosophila and mammals, with the notable exception of cry (=cryptochrome), which is lacking in C. elegans. All of these C. elegans cognates of the clock genes appear to belong to members of the PAS-superfamily and to participate in development or responsiveness to the environment but apparently are not involved in the C. elegans circadian clock. Nevertheless, C. elegans exhibits convincing circadian rhythms in locomotor behavior in the adult stage and in resistance to hyperosmotic stress in starved larvae (L1) after hatching, indicating that it has a circadian clock with a core design entirely different from that of Drosophila and mammals. Here two possibilities are considered. First, the core of the C. elegans circadian clock includes transcriptional/translational feedback loops between genes and their protein products that are entirely different from those of Drosophila and mammals. Second, a more basic principle such as homeostasis governs the circadian cellular physiology, and was established primarily to minimize the accumulation of DNA damage in response to an environment cycling at 24 h intervals. PMID:15865318

  7. Circadian organization of the mammalian retina: from gene regulation to physiology and diseases.

    Science.gov (United States)

    McMahon, Douglas G; Iuvone, P Michael; Tosini, Gianluca

    2014-03-01

    The retinal circadian system represents a unique structure. It contains a complete circadian system and thus the retina represents an ideal model to study fundamental questions of how neural circadian systems are organized and what signaling pathways are used to maintain synchrony of the different structures in the system. In addition, several studies have shown that multiple sites within the retina are capable of generating circadian oscillations. The strength of circadian clock gene expression and the emphasis of rhythmic expression are divergent across vertebrate retinas, with photoreceptors as the primary locus of rhythm generation in amphibians, while in mammals clock activity is most robust in the inner nuclear layer. Melatonin and dopamine serve as signaling molecules to entrain circadian rhythms in the retina and also in other ocular structures. Recent studies have also suggested GABA as an important component of the system that regulates retinal circadian rhythms. These transmitter-driven influences on clock molecules apparently reinforce the autonomous transcription-translation cycling of clock genes. The molecular organization of the retinal clock is similar to what has been reported for the SCN although inter-neural communication among retinal neurons that form the circadian network is apparently weaker than those present in the SCN, and it is more sensitive to genetic disruption than the central brain clock. The melatonin-dopamine system is the signaling pathway that allows the retinal circadian clock to reconfigure retinal circuits to enhance light-adapted cone-mediated visual function during the day and dark-adapted rod-mediated visual signaling at night. Additionally, the retinal circadian clock also controls circadian rhythms in disk shedding and phagocytosis, and possibly intraocular pressure. Emerging experimental data also indicate that circadian clock is also implicated in the pathogenesis of eye disease and compelling experimental data

  8. Natural selection against a circadian clock gene mutation in mice

    NARCIS (Netherlands)

    Spoelstra, K.; Wikelski, Martin; Daan, Serge; Loudon, Andrew; Hau, Michaela

    2015-01-01

    Circadian rhythms with an endogenous period close or equal to the natural light-dark cycle are considered evolutionarily adaptive (‘circadian resonance hypothesis’). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural c

  9. Altered circadian clock gene expression in patients with schizophrenia.

    Science.gov (United States)

    Johansson, Anne-Sofie; Owe-Larsson, Björn; Hetta, Jerker; Lundkvist, Gabriella B

    2016-07-01

    Impaired circadian rhythmicity has been reported in several psychiatric disorders. Schizophrenia is commonly associated with aberrant sleep-wake cycles and insomnia. It is not known if schizophrenia is associated with disturbances in molecular rhythmicity. We cultured fibroblasts from skin samples obtained from patients with chronic schizophrenia and from healthy controls, respectively, and analyzed the circadian expression during 48h of the clock genes CLOCK, BMAL1, PER1, PER2, CRY1, CRY2, REV-ERBα and DBP. In fibroblasts obtained from patients with chronic schizophrenia, we found a loss of rhythmic expression of CRY1 and PER2 compared to cells from healthy controls. We also estimated the sleep quality in these patients and found that most of them suffered from poor sleep in comparison with the healthy controls. In another patient sample, we analyzed mononuclear blood cells from patients with schizophrenia experiencing their first episode of psychosis, and found decreased expression of CLOCK, PER2 and CRY1 compared to blood cells from healthy controls. These novel findings show disturbances in the molecular clock in schizophrenia and have important implications in our understanding of the aberrant rhythms reported in this disease. PMID:27132483

  10. Identification of the molecular components of a Tigriopus californicus (Crustacea, Copepoda) circadian clock.

    Science.gov (United States)

    Nesbit, Katherine T; Christie, Andrew E

    2014-12-01

    Copepods of the genus Tigriopus have been proposed as marine models for investigations of environmental perturbation. One rapidly increasing anthropogenic stressor for intertidal organisms is light pollution. Given the sensitivity of circadian rhythms to exogenous light, the genes/proteins of a Tigriopus circadian pacemaker represent a potential system for investigating the influences of artificial light sources on circadian behavior in an intertidal species. Here, the molecular components of a putative Tigriopus californicus circadian clock were identified using publicly accessible transcriptome data; the recently deduced circadian proteins of the copepod Calanus finmarchicus were used as a reference. Transcripts encoding homologs of all commonly recognized ancestral arthropod core clock proteins were identified (i.e. CLOCK, CRYPTOCHROME 2, CYCLE, PERIOD and TIMELESS), as were ones encoding proteins likely to modulate the core clock (i.e. CASEIN KINASE II, CLOCKWORK ORANGE, DOUBLETIME, PROTEIN PHOSPHATASE 1, PROTEIN PHOSPHATASE 2A, SHAGGY, SUPERNUMERARY LIMBS and VRILLE) or to act as inputs to it (i.e. CRYPTOCHROME 1). PAR DOMAIN PROTEIN 1 was the only circadian-associated protein not identified in Tigriopus; it appears absent in Calanus too. These data represent just the third full set of molecular components for a crustacean circadian pacemaker (Daphnia pulex and C. finmarchicus previously), and only the second obtained from transcribed sequences (C. finmarchicus previously). Given Tigriopus' proposed status as a model for investigating the influences of anthropogenic stressors in the marine environment, these data provide the first suite of gene/protein targets for understanding how light pollution may influence circadian physiology and behavior in an intertidal organism. PMID:25310881

  11. Circadian clock genes universally control key agricultural traits

    Science.gov (United States)

    Circadian clocks are endogenous timers that enable plants to synchronize biological processes with daily and seasonal environmental conditions in order to allocate resources during the most beneficial times of day and year. The circadian clock regulates a number of central plant activities, includin...

  12. Digital signal processing reveals circadian baseline oscillation in majority of mammalian genes.

    Directory of Open Access Journals (Sweden)

    Andrey A Ptitsyn

    2007-06-01

    Full Text Available In mammals, circadian periodicity has been described for gene expression in the hypothalamus and multiple peripheral tissues. It is accepted that 10%-15% of all genes oscillate in a daily rhythm, regulated by an intrinsic molecular clock. Statistical analyses of periodicity are limited by the small size of datasets and high levels of stochastic noise. Here, we propose a new approach applying digital signal processing algorithms separately to each group of genes oscillating in the same phase. Combined with the statistical tests for periodicity, this method identifies circadian baseline oscillation in almost 100% of all expressed genes. Consequently, circadian oscillation in gene expression should be evaluated in any study related to biological pathways. Changes in gene expression caused by mutations or regulation of environmental factors (such as photic stimuli or feeding should be considered in the context of changes in the amplitude and phase of genetic oscillations.

  13. Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters

    Indian Academy of Sciences (India)

    Malcolm Von Schantz

    2008-12-01

    Circadian rhythms and sleep are two separate but intimately related processes. Circadian rhythms are generated through the precisely controlled, cyclic expression of a number of genes designated clock genes. Genetic variability in these genes has been associated with a number of phenotypic differences in circadian as well as sleep parameters, both in mouse models and in humans. Diurnal preferences as determined by the selfreported Horne–Östberg (HÖ) questionnaire, has been associated with polymorphisms in the human genes CLOCK, PER1, PER2 and PER3. Circadian rhythm-related sleep disorders have also been associated with mutations and polymorphisms in clock genes, with the advanced type cosegrating in an autosomal dominant inheritance pattern with mutations in the genes PER2 and CSNK1D, and the delayed type associating without discernible Mendelian inheritance with polymorphisms in CLOCK and PER3. Several mouse models of clock gene null alleles have been demonstrated to have affected sleep homeostasis. Recent findings have shown that the variable number tandem polymorphism in PER3, previously linked to diurnal preference, has profound effects on sleep homeostasis and cognitive performance following sleep loss, confirming the close association between the processes of circadian rhythms and sleep at the genetic level.

  14. The circadian cycle: daily rhythms from behaviour to genes: First in the Cycles Review Series

    OpenAIRE

    Merrow, M; Spoelstra, K; T. Roenneberg

    2005-01-01

    The daily recurrence of activity and rest are so common as to seem trivial. However, they reflect a ubiquitous temporal programme called the circadian clock. In the absence of either anatomical clock structures or clock genes, the timing of sleep and wakefulness is disrupted. The complex nature of circadian behaviour is evident in the fact that phasing of the cycle during the day varies widely for individuals, resulting in extremes colloquially called 'larks' and 'owls'. These behavioural osc...

  15. Different circadian oscillators control Ca2+ fluxes and Lhcb gene expression

    OpenAIRE

    Sai, Jiqing; Johnson, Carl Hirschie

    1999-01-01

    Circadian biological clocks control many biological events, but the pathways by which these events are controlled are largely unknown. Based on a model suggesting that cytosolic-free calcium levels control the expression of the Lhcb gene in plants, we tested whether the circadian oscillation of free calcium is responsible for driving the rhythm of Lhcb expression. We found that these rhythms free-run with different periods in tobacco seedlings in constant conditions. Moreover, robust oscillat...

  16. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination.

    Directory of Open Access Journals (Sweden)

    Astha Malik

    Full Text Available Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG of the hippocampus and the subventricular zone (SVZ. Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte

  17. Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Beaulé

    Full Text Available BACKGROUND: Circadian clocks control daily rhythms including sleep-wake, hormone secretion, and metabolism. These clocks are based on intracellular transcription-translation feedback loops that sustain daily oscillations of gene expression in many cell types. Mammalian astrocytes display circadian rhythms in the expression of the clock genes Period1 (Per1 and Period2 (Per2. However, a functional role for circadian oscillations in astrocytes is unknown. Because uptake of extrasynaptic glutamate depends on the presence of Per2 in astrocytes, we asked whether glutamate uptake by glia is circadian. METHODOLOGY/PRINCIPAL FINDINGS: We measured glutamate uptake, transcript and protein levels of the astrocyte-specific glutamate transporter, Glast, and the expression of Per1 and Per2 from cultured cortical astrocytes and from explants of somatosensory cortex. We found that glutamate uptake and Glast mRNA and protein expression were significantly reduced in Clock/Clock, Per2- or NPAS2-deficient glia. Uptake was augmented when the medium was supplemented with dibutyryl-cAMP or B27. Critically, glutamate uptake was not circadian in cortical astrocytes cultured from rats or mice or in cortical slices from mice. CONCLUSION/SIGNIFICANCE: We conclude that glutamate uptake levels are modulated by CLOCK, PER2, NPAS2, and the composition of the culture medium, and that uptake does not show circadian variations.

  18. Interactions of polymorphisms in different clock genes associated with circadian phenotypes in humans

    Directory of Open Access Journals (Sweden)

    Mario Pedrazzoli

    2010-01-01

    Full Text Available Several studies have shown that mutations and polymorphisms in clock genes are associated with abnormal circadian parameters in humans and also with more subtle non-pathological phenotypes like chronotypes. However, there have been conflicting results, and none of these studies analyzed the combined effects of more than one clock gene. Up to date, association studies in humans have focused on the analysis of only one clock gene per study. Since these genes encode proteins that physically interact with each other, combinations of polymorphisms in different clock genes could have a synergistic or an inhibitory effect upon circadian phenotypes. In the present study, we analyzed the combined effects of four polymorphisms in four clock genes (Per2, Per3, Clock and Bmal1 in people with extreme diurnal preferences (morning or evening. We found that a specific combination of polymorphisms in these genes is more frequent in people who have a morning preference for activity and there is a different combination in individuals with an evening preference for activity. Taken together, these results show that it is possible to detect clock gene interactions associated with human circadian phenotypes and bring an innovative idea of building a clock gene variation map that may be applied to human circadian biology.

  19. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Susie Lee

    Full Text Available BACKGROUND: Cell proliferation in all rapidly renewing mammalian tissues follows a circadian rhythm that is often disrupted in advanced-stage tumors. Epidemiologic studies have revealed a clear link between disruption of circadian rhythms and cancer development in humans. Mice lacking the circadian genes Period1 and 2 (Per or Cryptochrome1 and 2 (Cry are deficient in cell cycle regulation and Per2 mutant mice are cancer-prone. However, it remains unclear how circadian rhythm in cell proliferation is generated in vivo and why disruption of circadian rhythm may lead to tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: Mice lacking Per1 and 2, Cry1 and 2, or one copy of Bmal1, all show increased spontaneous and radiation-induced tumor development. The neoplastic growth of Per-mutant somatic cells is not controlled cell-autonomously but is dependent upon extracellular mitogenic signals. Among the circadian output pathways, the rhythmic sympathetic signaling plays a key role in the central-peripheral timing mechanism that simultaneously activates the cell cycle clock via AP1-controlled Myc induction and p53 via peripheral clock-controlled ATM activation. Jet-lag promptly desynchronizes the central clock-SNS-peripheral clock axis, abolishes the peripheral clock-dependent ATM activation, and activates myc oncogenic potential, leading to tumor development in the same organ systems in wild-type and circadian gene-mutant mice. CONCLUSIONS/SIGNIFICANCE: Tumor suppression in vivo is a clock-controlled physiological function. The central circadian clock paces extracellular mitogenic signals that drive peripheral clock-controlled expression of key cell cycle and tumor suppressor genes to generate a circadian rhythm in cell proliferation. Frequent disruption of circadian rhythm is an important tumor promoting factor.

  20. Sleep disturbances and circadian CLOCK genes in borderline personality disorder.

    Science.gov (United States)

    Fleischer, Monika; Schäfer, Michael; Coogan, Andrew; Häßler, Frank; Thome, Johannes

    2012-10-01

    Borderline personality disorder (BPD) is characterised by a deep-reaching pattern of affective instability, incoherent identity, self-injury, suicide attempts, and disturbed interpersonal relations and lifestyle. The daily activities of BPD patients are often chaotic and disorganized, with patients often staying up late while sleeping during the day. These behavioural patterns suggest that altered circadian rhythms may be associated with BPD. Furthermore, BPD patients frequently report suffering from sleep disturbances. In this review, we overview the evidence that circadian rhythms and sleep are disturbed in BPD, and we explore the possibility that personality traits that are pertinent for BPD may be associated with circadian typology, and perhaps to circadian genotypes. With regards to sleep architecture, we review the evidence that BPD patients display altered non-REM and REM sleep. A possible cue to a deeper understanding of this temporal dysregulation might be an analysis of the circadian clock at the molecular and cellular level, as well as behavioural studies using actigraphy and we suggest avenues for further exploration of these factors. PMID:22806005

  1. Natural selection against a circadian clock gene mutation in mice.

    Science.gov (United States)

    Spoelstra, Kamiel; Wikelski, Martin; Daan, Serge; Loudon, Andrew S I; Hau, Michaela

    2016-01-19

    Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness. PMID:26715747

  2. Structure of full-length Drosophila cryptochrome

    Energy Technology Data Exchange (ETDEWEB)

    Zoltowski, Brian D.; Vaidya, Anand T.; Top, Deniz; Widom, Joanne; Young, Michael W.; Crane, Brian R. (Cornell); (Rockefeller)

    2011-12-15

    The cryptochrome/photolyase (CRY/PL) family of photoreceptors mediates adaptive responses to ultraviolet and blue light exposure in all kingdoms of life. Whereas PLs function predominantly in DNA repair of cyclobutane pyrimidine dimers (CPDs) and 6-4 photolesions caused by ultraviolet radiation, CRYs transduce signals important for growth, development, magnetosensitivity and circadian clocks. Despite these diverse functions, PLs/CRYs preserve a common structural fold, a dependence on flavin adenine dinucleotide (FAD) and an internal photoactivation mechanism. However, members of the CRY/PL family differ in the substrates recognized (protein or DNA), photochemical reactions catalysed and involvement of an antenna cofactor. It is largely unknown how the animal CRYs that regulate circadian rhythms act on their substrates. CRYs contain a variable carboxy-terminal tail that appends the conserved PL homology domain (PHD) and is important for function. Here, we report a 2.3-{angstrom} resolution crystal structure of Drosophila CRY with an intact C terminus. The C-terminal helix docks in the analogous groove that binds DNA substrates in PLs. Conserved Trp536 juts into the CRY catalytic centre to mimic PL recognition of DNA photolesions. The FAD anionic semiquinone found in the crystals assumes a conformation to facilitate restructuring of the tail helix. These results help reconcile the diverse functions of the CRY/PL family by demonstrating how conserved protein architecture and photochemistry can be elaborated into a range of light-driven functions.

  3. The cry-DASH cryptochrome encoded by the sll1629 gene in the cyanobacterium Synechocystis PCC 6803 is required for Photosystem II repair.

    Science.gov (United States)

    Vass, István-Zoltán; Kós, Péter B; Knoppová, Jana; Komenda, Josef; Vass, Imre

    2014-01-01

    The role of the Syn-CRY cryptochrome from the cyanobacterium Synechocystis sp. PCC 6803 has been a subject of research for more than a decade. Recently we have shown that photolyase, showing strong homology with Syn-CRY is required for Photosystem II repair by preventing accumulation of DNA lesions under UV-B (Vass et al. 2013). Here we investigated if Syn-CRY is also involved in PSII repair, either via removal of DNA lesions or other mechanism? The Δsll1629 mutant lacking Syn-CRY lost faster the PSII activity and D1 protein during UV-B or PAR than the WT. However, no detectable damages in the genomic DNA were observed. The transcript levels of the UV-B and light stress indicator gene psbA3, encoding D1, are comparable in the two strains showing that Δsll1629 cells are not defective at the transcriptional level. Nevertheless 2D protein analysis in combination with mass spectrometry showed a decreased accumulation of several, mostly cytoplasmic, proteins including PilA1 and bicarbonate transporter SbtA. Δsll1629 cells exposed to high light also showed a limitation in de novo assembly of PSII. It is concluded that Syn-CRY is required for efficient restoration of Photosystem II activity following UV-B and PAR induced photodamage. This effect is not caused by retardation of DNA repair, instead the synthesis of new D1 (and D2) subunit(s) and/or the assembly of the Photosystem II reaction center complex is likely affected due to the lack of intracellular CO2, or via a so far unidentified pathway that possibly includes the PilA1 protein. PMID:24389045

  4. The ancestral circadian clock of monarch butterflies: role in time-compensated sun compass orientation.

    Science.gov (United States)

    Reppert, S M

    2007-01-01

    The circadian clock has a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, which contributes to navigation to the overwintering grounds. The location of circadian clock cells in monarch brain has been identified in the dorsolateral protocerebrum (pars lateralis); these cells express PERIOD, TIMELESS, and a Drosophila-like cryptochrome designated CRY1. Monarch butterflies, like all other nondrosophilid insects examined so far, express a second cry gene (designated insect CRY2) that encodes a vertebrate-like CRY that is also expressed in pars lateralis. An ancestral circadian clock mechanism has been defined in monarchs, in which CRY1 functions as a blue light photoreceptor for photic entrainment, whereas CRY2 functionswithin the clockwork as themajor transcriptional repressor of an intracellular negative transcriptional feedback loop. A CRY1-staining neural pathway has been identified that may connect the circadian (navigational) clock to polarized light input important for sun compass navigation, and a CRY2-positive neural pathway has been discovered that may communicate circadian information directly from the circadian clock to the central complex, the likely site of the sun compass. The monarch butterfly may thus use the CRY proteins as components of the circadian mechanism and also as output molecules that connect the clock to various aspects of the sun compass apparatus. PMID:18419268

  5. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs

    Directory of Open Access Journals (Sweden)

    Campoli Chiara

    2012-06-01

    Full Text Available Abstract Background The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Results Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1, HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. Conclusion We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in

  6. Pinealectomy abolishes circadian behavior and interferes with circadian clock gene oscillations in brain and liver but not retina in a migratory songbird.

    Science.gov (United States)

    Trivedi, Amit Kumar; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod

    2016-03-15

    In songbirds, the pineal gland is part of the multi-oscillatory circadian timing system, with participating component oscillators in the eyes and hypothalamus. This study investigated the role of the pineal gland in development of the nighttime migratory restlessness (Zugunruhe) and generation of circadian gene oscillations in the retina, brain and liver tissues in migratory redheaded buntings (Emberiza bruniceps). Pinealectomized (pinx) and sham-operated buntings entrained to short days (8h light: 16h darkness, 8L:16D) were sequentially exposed for 10days each to stimulatory long days (13L: 11D) and constant dim light (LLdim; a condition that tested circadian rhythm persistence). Whereas activity-rest pattern was monitored continuously, the mRNA expressions of clock genes (bmal1, clock, npas2, per2, cry1, rorα, reverα) were measured in the retina, hypothalamus, telencephalon, optic tectum and liver tissues at circadian times, CT, 1, 6, 13, 17 and 21 (CT 0, activity onset) on day 11 of the LLdim. The absence of the pineal gland did not affect the development of long-day induced Zugunruhe but caused decay of the circadian rhythm in Zugunruhe as well as the clock gene oscillations in the hypothalamus, but not in the retina. Further, there were variable effects of pinealectomy in the peripheral brain and liver tissue circadian gene oscillations, notably the persistence of per 2 and cry1 (optic tectum), rorα (telencephalon) and npas2 (liver) mRNA oscillations in pinx birds. We suggest the pineal gland dependence of the generation of circadian gene oscillations in the hypothalamus, not retina, and peripheral brain and liver tissues in migratory redheaded buntings. PMID:26801391

  7. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    Science.gov (United States)

    Jim, Heather S.L.; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Sieh, Weiva; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis N.; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kellar, Melissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Vierkant, Robert A.; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Ian; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Thomsen, Lotte; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Palmieri Weber, Rachel; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malcolm C.; Poole, Elizabeth M.; Schernhammer, Eva; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Amankwah, Ernest; Berchuck, Andrew; Schildkraut, Joellen M.; Kelemen, Linda E.; Ramus, Susan J.; Monteiro, Alvaro N.A.; Goode, Ellen L.; Narod, Steven A.; Gayther, Simon A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2016-01-01

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68–0.90, p = 5.59 × 10−4]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways. PMID:26807442

  8. Molecular evolution of a pervasive natural amino-acid substitution in Drosophila cryptochrome.

    Directory of Open Access Journals (Sweden)

    Mirko Pegoraro

    Full Text Available Genetic variations in circadian clock genes may serve as molecular adaptations, allowing populations to adapt to local environments. Here, we carried out a survey of genetic variation in Drosophila cryptochrome (cry, the fly's dedicated circadian photoreceptor. An initial screen of 10 European cry alleles revealed substantial variation, including seven non-synonymous changes. The SNP frequency spectra and the excessive linkage disequilibrium in this locus suggested that this variation is maintained by natural selection. We focused on a non-conservative SNP involving a leucine-histidine replacement (L232H and found that this polymorphism is common, with both alleles at intermediate frequencies across 27 populations surveyed in Europe, irrespective of latitude. Remarkably, we were able to reproduce this natural observation in the laboratory using replicate population cages where the minor allele frequency was initially set to 10%. Within 20 generations, the two allelic variants converged to approximately equal frequencies. Further experiments using congenic strains, showed that this SNP has a phenotypic impact, with variants showing significantly different eclosion profiles. At the long term, these phase differences in eclosion may contribute to genetic differentiation among individuals, and shape the evolution of wild populations.

  9. Feeding Period Restriction Alters the Expression of Peripheral Circadian Rhythm Genes without Changing Body Weight in Mice

    OpenAIRE

    Jang, Hagoon; Lee, Gung; Kong, Jinuk; Choi, Goun; Park, Yoon Jeong; Kim, Jae Bum

    2012-01-01

    Accumulating evidence suggests that the circadian clock is closely associated with metabolic regulation. However, whether an impaired circadian clock is a direct cause of metabolic dysregulation such as body weight gain is not clearly understood. In this study, we demonstrate that body weight gain in mice is not significantly changed by restricting feeding period to daytime or nighttime. The expression of peripheral circadian clock genes was altered by feeding period restriction, while the ex...

  10. Effects of the circadian rhythm gene period 1 (per1) on psychosocial stress-induced alcohol drinking

    OpenAIRE

    Soyka, Michael; Henriksson, Richard; Albrecht, Urs; Spanagel, Rainer; Michael N Smolka; Rietschel, Marcella; Bilbao, Ainhoa; Treutlein, Jens; Schumann, Gunter; Ridinger, Monika; Wodarz, Norbert; Blomeyer, Dorothea; Witt, Stephanie,; Lathrop, Mark; Dong, Li

    2011-01-01

    Objective: Circadian and stress-response systems mediate environmental changes that affect alcohol drinking. Psychosocial stress is an environmental risk factor for alcohol abuse. Circadian rhythm gene period 1 (Per1) is targeted by stress hormones and is transcriptionally activated in corticotropin releasing factor-expressing cells. The authors hypothesized that Per1 is involved in integrating stress response and circadian rhythmicity and explored its relevance to alcohol drinking.Method: In...

  11. Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression.

    Directory of Open Access Journals (Sweden)

    Marina M Bellet

    Full Text Available Major mood disorders have been linked to abnormalities in circadian rhythms, leading to disturbances in sleep, mood, temperature, and hormonal levels. We provide evidence that ketamine, a drug with rapid antidepressant effects, influences the function of the circadian molecular machinery. Ketamine modulates CLOCK:BMAL1-mediated transcriptional activation when these regulators are ectopically expressed in NG108-15 neuronal cells. Inhibition occurs in a dose-dependent manner and is attenuated after treatment with the GSK3β antagonist SB21673. We analyzed the effect of ketamine on circadian gene expression and observed a dose-dependent reduction in the amplitude of circadian transcription of the Bmal1, Per2, and Cry1 genes. Finally, chromatin-immunoprecipitation analyses revealed that ketamine altered the recruitment of the CLOCK:BMAL1 complex on circadian promoters in a time-dependent manner. Our results reveal a yet unsuspected molecular mode of action of ketamine and thereby may suggest possible pharmacological antidepressant strategies.

  12. Sleep disturbances and circadian CLOCK genes in borderline personality disorder

    OpenAIRE

    Fleischer, Monika; Schafer, Michael; Coogan, Andrew; Hassler, Frank; Thome, Johannes

    2012-01-01

    Borderline personality disorder (BPD) is characterised by a deep-reaching pattern of affective instability, incoherent identity, self-injury, suicide attempts, and disturbed interpersonal relations and lifestyle. The daily activities of BPD patients are often chaotic and disorganized, with patients often staying up late while sleeping during the day. These behavioural patterns suggest that altered circadian rhythms may be associated with BPD. Furthermore, BPD patients ...

  13. A Long Noncoding RNA Perturbs the Circadian Rhythm of Hepatoma Cells to Facilitate Hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Ming Cui

    2015-01-01

    Full Text Available Clock circadian regulator (CLOCK/brain and muscle arnt-like protein-1 (BMAL1 complex governs the regulation of circadian rhythm through triggering periodic alterations of gene expression. However, the underlying mechanism of circadian clock disruption in hepatocellular carcinoma (HCC remains unclear. Here, we report that a long noncoding RNA (lncRNA, highly upregulated in liver cancer (HULC, contributes to the perturbations in circadian rhythm of hepatoma cells. Our observations showed that HULC was able to heighten the expression levels of CLOCK and its downstream circadian oscillators, such as period circadian clock 1 and cryptochrome circadian clock 1, in hepatoma cells. Strikingly, HULC altered the expression pattern and prolonged the periodic expression of CLOCK in hepatoma cells. Mechanistically, the complementary base pairing between HULC and the 5' untranslated region of CLOCK mRNA underlay the HULC-modulated expression of CLOCK, and the mutants in the complementary region failed to achieve the event. Moreover, immunohistochemistry staining and quantitative real-time polymerase chain reaction validated that the levels of CLOCK were elevated in HCC tissues, and the expression levels of HULC were positively associated with those of CLOCK in clinical HCC samples. In functional experiments, our data exhibited that CLOCK was implicated in the HULC-accelerated proliferation of hepatoma cells in vitro and in vivo. Taken together, our data show that an lncRNA, HULC, is responsible for the perturbations in circadian rhythm through upregulating circadian oscillator CLOCK in hepatoma cells, resulting in the promotion of hepatocarcinogenesis. Thus, our finding provides new insights into the mechanism by which lncRNA accelerates hepatocarcinogenesis through disturbing circadian rhythm of HCC.

  14. Role of type II protein arginine methyltransferase 5 in the regulation of Circadian Per1 gene.

    Directory of Open Access Journals (Sweden)

    Jungtae Na

    Full Text Available Circadian clocks are the endogenous oscillators that regulate rhythmic physiological and behavioral changes to correspond to daily light-dark cycles. Molecular dissections have revealed that transcriptional feedback loops of the circadian clock genes drive the molecular oscillation, in which PER/CRY complexes inhibit the transcriptional activity of the CLOCK/BMAL1 heterodimer to constitute a negative feedback loop. In this study, we identified the type II protein arginine methyltransferase 5 (PRMT5 as an interacting molecule of CRY1. Although the Prmt5 gene was constitutively expressed, increased interaction of PRMT5 with CRY1 was observed when the Per1 gene was repressed both in synchronized mouse liver and NIH3T3 cells. Moreover, rhythmic recruitment of PRMT5 and CRY1 to the Per1 gene promoter was found to be associated with an increased level of histone H4R3 dimethylation and Per1 gene repression. Consistently, decreased histone H4R3 dimethylation and altered rhythmic Per1 gene expression were observed in Prmt5-depleted cells. Taken together, these findings provide an insight into the link between histone arginine methylation by PRMT5 and transcriptional regulation of the circadian Per1 gene.

  15. Integrating Circadian Activity and Gene Expression Profiles to Predict Chronotoxicity of Drosophila suzukii Response to Insecticides

    OpenAIRE

    Hamby, Kelly A.; Kwok, Rosanna S.; Frank G. Zalom; Chiu, Joanna C.

    2013-01-01

    Native to Southeast Asia, Drosophila suzukii (Matsumura) is a recent invader that infests intact ripe and ripening fruit, leading to significant crop losses in the U.S., Canada, and Europe. Since current D. suzukii management strategies rely heavily on insecticide usage and insecticide detoxification gene expression is under circadian regulation in the closely related Drosophila melanogaster, we set out to determine if integrative analysis of daily activity patterns and detoxification gene ex...

  16. Melanopsin resets circadian rhythms in cells by inducing clock gene Period1

    Science.gov (United States)

    Yamashita, Shuhei; Uehara, Tomoe; Matsuo, Minako; Kikuchi, Yo; Numano, Rika

    2014-02-01

    The biochemical, physiological and behavioral processes are under the control of internal clocks with the period of approximately 24 hr, circadian rhythms. The expression of clock gene Period1 (Per1) oscillates autonomously in cells and is induced immediately after a light pulse. Per1 is an indispensable member of the central clock system to maintain the autonomous oscillator and synchronize environmental light cycle. Per1 expression could be detected by Per1∷luc and Per1∷GFP plasmid DNA in which firefly luciferase and Green Fluorescence Protein were rhythmically expressed under the control of the mouse Per1 promoter in order to monitor mammalian circadian rhythms. Membrane protein, MELANOPSIN is activated by blue light in the morning on the retina and lead to signals transduction to induce Per1 expression and to reset the phase of circadian rhythms. In this report Per1 induction was measured by reporter signal assay in Per1∷luc and Per1∷GFP fibroblast cell at the input process of circadian rhythms. To the result all process to reset the rhythms by Melanopsin is completed in single cell like in the retina projected to the central clock in the brain. Moreover, the phase of circadian rhythm in Per1∷luc cells is synchronized by photo-activated Melanopsin, because the definite peak of luciferase activity in one dish was found one day after light illumination. That is an available means that physiological circadian rhythms could be real-time monitor as calculable reporter (bioluminescent and fluorescent) chronological signal in both single and groups of cells.

  17. Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder.

    Science.gov (United States)

    Bunney, B G; Li, J Z; Walsh, D M; Stein, R; Vawter, M P; Cartagena, P; Barchas, J D; Schatzberg, A F; Myers, R M; Watson, S J; Akil, H; Bunney, W E

    2015-02-01

    Conventional antidepressants require 2-8 weeks for a full clinical response. In contrast, two rapidly acting antidepressant interventions, low-dose ketamine and sleep deprivation (SD) therapy, act within hours to robustly decrease depressive symptoms in a subgroup of major depressive disorder (MDD) patients. Evidence that MDD may be a circadian-related illness is based, in part, on a large set of clinical data showing that diurnal rhythmicity (sleep, temperature, mood and hormone secretion) is altered during depressive episodes. In a microarray study, we observed widespread changes in cyclic gene expression in six regions of postmortem brain tissue of depressed patients matched with controls for time-of-death (TOD). We screened 12 000 transcripts and observed that the core clock genes, essential for controlling virtually all rhythms in the body, showed robust 24-h sinusoidal expression patterns in six brain regions in control subjects. In MDD patients matched for TOD with controls, the expression patterns of the clock genes in brain were significantly dysregulated. Some of the most robust changes were seen in anterior cingulate (ACC). These findings suggest that in addition to structural abnormalities, lesion studies, and the large body of functional brain imaging studies reporting increased activation in the ACC of depressed patients who respond to a wide range of therapies, there may be a circadian dysregulation in clock gene expression in a subgroup of MDDs. Here, we review human, animal and neuronal cell culture data suggesting that both low-dose ketamine and SD can modulate circadian rhythms. We hypothesize that the rapid antidepressant actions of ketamine and SD may act, in part, to reset abnormal clock genes in MDD to restore and stabilize circadian rhythmicity. Conversely, clinical relapse may reflect a desynchronization of the clock, indicative of a reactivation of abnormal clock gene function. Future work could involve identifying specific small

  18. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice

    International Nuclear Information System (INIS)

    The severity of ethanol-induced liver injury is associated with oxidative stress and lipid accumulation in the liver. Core circadian clock is known to mediate antioxidative enzyme activity and lipid metabolism. However, the link between circadian clock and ethanol-induced hepatotoxicity remains unclear. Here we showed that extents of acute ethanol-induced liver injury and steatosis in mice exhibit circadian variations consistent with hepatic expression of Period (Per) genes. Mice lacking clock gene Per1 displayed less susceptible to ethanol-induced liver injury, as evidenced by lower serum transaminase activity and less severe histopathological changes. Ethanol-induced lipid peroxidation was alleviated in Per1−/− mice. However, Per1 deletion had no effect on antioxidants depletion caused by ethanol administration. Ethanol-induced triglycerides (TG) accumulation in the serum and liver was significantly decreased in Per1−/− mice compared with that in wild-type (WT) mice. Analysis of gene expression in the liver revealed peroxisome proliferators activated receptor-gamma (PPARγ) and its target genes related to TG synthesis are remarkably down-regulated in Per1−/− mice. HepG2 cells were treated with ethanol at 150 mM for 3 days. Per1 overexpression augmented lipid accumulation after treatment with ethanol in HepG2 cells, but had no effect on ethanol-induced oxidative stress. Expression of genes related to lipogenesis, including PPARγ and its target genes, was up-regulated in cells overexpressing Per1. In conclusion, these results indicated that circadian rhythms of ethanol-induced hepatotoxicity are controlled by clock gene Per1, and deletion of Per1 protected mice from ethanol-induced liver injury by decreasing hepatic lipid accumulation

  19. Chemically Induced and Light-Independent Cryptochrome Photoreceptor Activation

    Institute of Scientific and Technical Information of China (English)

    Gesa Rosenfeldt; Rafael Mu(n)oz Viana; Henning D.Mootz; Albrecht G.Von Arnim; Alfred Batschauer

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  20. Circadian Gene Circuitry Predicts Hyperactive Behavior in a Mood Disorder Mouse Model

    Directory of Open Access Journals (Sweden)

    Hideo Hagihara

    2016-03-01

    Full Text Available Bipolar disorder, also known as manic-depressive illness, causes swings in mood and activity levels at irregular intervals. Such changes are difficult to predict, and their molecular basis remains unknown. Here, we use infradian (longer than a day cyclic activity levels in αCaMKII (Camk2a mutant mice as a proxy for such mood-associated changes. We report that gene-expression patterns in the hippocampal dentate gyrus could retrospectively predict whether the mice were in a state of high or low locomotor activity (LA. Expression of a subset of circadian genes, as well as levels of cAMP and pCREB, possible upstream regulators of circadian genes, were correlated with LA states, suggesting that the intrinsic molecular circuitry changes concomitant with infradian oscillatory LA. Taken together, these findings shed light onto the molecular basis of how irregular biological rhythms and behavior are controlled by the brain.

  1. Circadian Gene Circuitry Predicts Hyperactive Behavior in a Mood Disorder Mouse Model.

    Science.gov (United States)

    Hagihara, Hideo; Horikawa, Tomoyasu; Nakamura, Hironori K; Umemori, Juzoh; Shoji, Hirotaka; Kamitani, Yukiyasu; Miyakawa, Tsuyoshi

    2016-03-29

    Bipolar disorder, also known as manic-depressive illness, causes swings in mood and activity levels at irregular intervals. Such changes are difficult to predict, and their molecular basis remains unknown. Here, we use infradian (longer than a day) cyclic activity levels in αCaMKII (Camk2a) mutant mice as a proxy for such mood-associated changes. We report that gene-expression patterns in the hippocampal dentate gyrus could retrospectively predict whether the mice were in a state of high or low locomotor activity (LA). Expression of a subset of circadian genes, as well as levels of cAMP and pCREB, possible upstream regulators of circadian genes, were correlated with LA states, suggesting that the intrinsic molecular circuitry changes concomitant with infradian oscillatory LA. Taken together, these findings shed light onto the molecular basis of how irregular biological rhythms and behavior are controlled by the brain. PMID:27028761

  2. Mice deficient in cryptochrome 1 (Cry1-/- exhibit resistance to obesity induced by a high fat diet

    Directory of Open Access Journals (Sweden)

    Guy eGriebel

    2014-04-01

    Full Text Available Disruption of circadian clock enhances the risk of metabolic syndrome, obesity, and type 2 diabetes. Circadian clocks rely on a highly regulated network of transcriptional and translational loops that drive clock-controlled gene expression. Among these transcribed clock genes are cryptochrome (CRY family members, which comprise Cry1 and Cry2. While the metabolic effects of deletion of several core components of the clock gene machinery have been well characterized, those of selective inactivation of Cry1 or Cry2 genes have not been described. In this study we demonstrate that ablation of Cry1, but not Cry2, prevents high-fat diet (HFD-induced obesity in mice. Despite similar caloric intake, Cry1-/- mice on HFD gained markedly less weight (-18 % at the end of the 16-week experiment and displayed reduced fat accumulation compared to wild-type (WT littermates (-61 %, suggesting increased energy expenditure. Analysis of serum lipid and glucose profiles showed no difference between Cry1-/- and WT mice. Both Cry1-/- and Cry2-/- mice are indistinguishable from WT controls in body weight, fat and protein contents, and food consumption when they are allowed unlimited access to a standard rodent diet. We conclude that although CRY signaling may not be essential for the maintenance of energy homeostasis under steady-state nutritional conditions, Cry1 may play a role in readjusting energy balance under changing nutritional circumstances. These studies reinforce the important role of circadian clock genes in energy homeostasis and suggest that Cry1 is a plausible target for antiobesity therapy.

  3. Visualizing and Quantifying Intracellular Behavior and Abundance of the Core Circadian Clock Protein PERIOD2.

    Science.gov (United States)

    Smyllie, Nicola J; Pilorz, Violetta; Boyd, James; Meng, Qing-Jun; Saer, Ben; Chesham, Johanna E; Maywood, Elizabeth S; Krogager, Toke P; Spiller, David G; Boot-Handford, Raymond; White, Michael R H; Hastings, Michael H; Loudon, Andrew S I

    2016-07-25

    Transcriptional-translational feedback loops (TTFLs) are a conserved molecular motif of circadian clocks. The principal clock in mammals is the suprachiasmatic nucleus (SCN) of the hypothalamus. In SCN neurons, auto-regulatory feedback on core clock genes Period (Per) and Cryptochrome (Cry) following nuclear entry of their protein products is the basis of circadian oscillation [1, 2]. In Drosophila clock neurons, the movement of dPer into the nucleus is subject to a circadian gate that generates a delay in the TTFL, and this delay is thought to be critical for oscillation [3, 4]. Analysis of the Drosophila clock has strongly influenced models of the mammalian clock, and such models typically infer complex spatiotemporal, intracellular behaviors of mammalian clock proteins. There are, however, no direct measures of the intracellular behavior of endogenous circadian proteins to support this: dynamic analyses have been limited and often have no circadian dimension [5-7]. We therefore generated a knockin mouse expressing a fluorescent fusion of native PER2 protein (PER2::VENUS) for live imaging. PER2::VENUS recapitulates the circadian functions of wild-type PER2 and, importantly, the behavior of PER2::VENUS runs counter to the Drosophila model: it does not exhibit circadian gating of nuclear entry. Using fluorescent imaging of PER2::VENUS, we acquired the first measures of mobility, molecular concentration, and localization of an endogenous circadian protein in individual mammalian cells, and we showed how the mobility and nuclear translocation of PER2 are regulated by casein kinase. These results provide new qualitative and quantitative insights into the cellular mechanism of the mammalian circadian clock. PMID:27374340

  4. Inferring bi-directional interactions between circadian clock genes and metabolism with model ensembles.

    Science.gov (United States)

    Grzegorczyk, Marco; Aderhold, Andrej; Husmeier, Dirk

    2015-04-01

    There has been much interest in reconstructing bi-directional regulatory networks linking the circadian clock to metabolism in plants. A variety of reverse engineering methods from machine learning and computational statistics have been proposed and evaluated. The emphasis of the present paper is on combining models in a model ensemble to boost the network reconstruction accuracy, and to explore various model combination strategies to maximize the improvement. Our results demonstrate that a rich ensemble of predictors outperforms the best individual model, even if the ensemble includes poor predictors with inferior individual reconstruction accuracy. For our application to metabolomic and transcriptomic time series from various mutagenesis plants grown in different light-dark cycles we also show how to determine the optimal time lag between interactions, and we identify significant interactions with a randomization test. Our study predicts new statistically significant interactions between circadian clock genes and metabolites in Arabidopsis thaliana, and thus provides independent statistical evidence that the regulation of metabolism by the circadian clock is not uni-directional, but that there is a statistically significant feedback mechanism aiming from metabolism back to the circadian clock. PMID:25719342

  5. Osmotic stress at the barley root affects expression of circadian clock genes in the shoot.

    Science.gov (United States)

    Habte, Ermias; Müller, Lukas M; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2014-06-01

    The circadian clock is an important timing system that controls physiological responses to abiotic stresses in plants. However, there is little information on the effects of the clock on stress adaptation in important crops, like barley. In addition, we do not know how osmotic stress perceived at the roots affect the shoot circadian clock. Barley genotypes, carrying natural variation at the photoperiod response and clock genes Ppd-H1 and HvELF3, were grown under control and osmotic stress conditions to record changes in the diurnal expression of clock and stress-response genes and in physiological traits. Variation at HvELF3 affected the expression phase and shape of clock and stress-response genes, while variation at Ppd-H1 only affected the expression levels of stress genes. Osmotic stress up-regulated expression of clock and stress-response genes and advanced their expression peaks. Clock genes controlled the expression of stress-response genes, but had minor effects on gas exchange and leaf transpiration. This study demonstrated that osmotic stress at the barley root altered clock gene expression in the shoot and acted as a spatial input signal into the clock. Unlike in Arabidopsis, barley primary assimilation was less controlled by the clock and more responsive to environmental perturbations, such as osmotic stress. PMID:24895755

  6. Extended Electron-Transfer in Animal Cryptochromes Mediated by a Tetrad of Aromatic Amino Acids.

    Science.gov (United States)

    Nohr, Daniel; Franz, Sophie; Rodriguez, Ryan; Paulus, Bernd; Essen, Lars-Oliver; Weber, Stefan; Schleicher, Erik

    2016-07-26

    The cryptochrome/photolyase protein family possesses a conserved triad of tryptophans that may act as a molecular wire to transport electrons from the protein surface to the FAD cofactor for activation and/or signaling-state formation. Members from the animal (and animal-like) cryptochrome subclade use this process in a light-induced fashion in a number of exciting responses, such as the (re-)setting of circadian rhythms or magnetoreception; however, electron-transfer pathways have not been explored in detail yet. Therefore, we present an in-depth time-resolved optical and electron-paramagnetic resonance spectroscopic study of two cryptochromes from Chlamydomonas reinhardtii and Drosophila melanogaster. The results do not only reveal the existence of a fourth, more distant aromatic amino acid that serves as a terminal electron donor in both proteins, but also show that a tyrosine is able to fulfill this very role in Chlamydomonas reinhardtii cryptochrome. Additionally, exchange of the respective fourth aromatic amino acid to redox-inactive phenylalanines still leads to light-induced radical pair formation; however, the lifetimes of these species are drastically reduced from the ms- to the μs-range. The results presented in this study open up a new chapter, to our knowledge, in the diversity of electron-transfer pathways in cryptochromes. Moreover, they could explain unique functions of animal cryptochromes, in particular their potential roles in magnetoreception because magnetic-field effects of light-induced radical pairs strongly depend on distance and orientation parameters. PMID:27463133

  7. Unproductive alternative splicing and nonsense mRNAs: A widespread phenomenon among plant circadian clock genes

    Directory of Open Access Journals (Sweden)

    Filichkin Sergei A

    2012-07-01

    Full Text Available Abstract Background Recent mapping of eukaryotic transcriptomes and spliceomes using massively parallel RNA sequencing (RNA-seq has revealed that the extent of alternative splicing has been considerably underestimated. Evidence also suggests that many pre-mRNAs undergo unproductive alternative splicing resulting in incorporation of in-frame premature termination codons (PTCs. The destinies and potential functions of the PTC-harboring mRNAs remain poorly understood. Unproductive alternative splicing in circadian clock genes presents a special case study because the daily oscillations of protein expression levels require rapid and steep adjustments in mRNA levels. Results We conducted a systematic survey of alternative splicing of plant circadian clock genes using RNA-seq and found that many Arabidopsis thaliana circadian clock-associated genes are alternatively spliced. Results were confirmed using reverse transcription polymerase chain reaction (RT-PCR, quantitative RT-PCR (qRT-PCR, and/or Sanger sequencing. Intron retention events were frequently observed in mRNAs of the CCA1/LHY-like subfamily of MYB transcription factors. In contrast, the REVEILLE2 (RVE2 transcript was alternatively spliced via inclusion of a "poison cassette exon" (PCE. The PCE type events introducing in-frame PTCs are conserved in some mammalian and plant serine/arginine-rich splicing factors. For some circadian genes such as CCA1 the ratio of the productive isoform (i.e., a representative splice variant encoding the full-length protein to its PTC counterpart shifted sharply under specific environmental stress conditions. Conclusions Our results demonstrate that unproductive alternative splicing is a widespread phenomenon among plant circadian clock genes that frequently generates mRNA isoforms harboring in-frame PTCs. Because LHY and CCA1 are core components of the plant central circadian oscillator, the conservation of alternatively spliced variants between CCA1 and LHY

  8. Circadian rhythms of Per2::Luc in individual primary mouse hepatocytes and cultures.

    Directory of Open Access Journals (Sweden)

    Casey J Guenthner

    Full Text Available BACKGROUND: Hepatocytes, the parenchymal cells of the liver, express core clock genes, such as Period2 and Cryptochrome2, which are involved in the transcriptional/translational feedback loop of the circadian clock. Whether or not the liver is capable of sustaining rhythms independent of a central pacemaker is controversial. Whether and how circadian information may be shared among cells in the liver in order to sustain oscillations is currently unknown. RESULTS: In this study we isolated primary hepatocytes from transgenic Per2(Luc mice and used bioluminescence as a read-out of the state of the circadian clock. Hepatocytes cultured in a collagen gel sandwich configuration exhibited persistent circadian rhythms for several weeks. The amplitude of the rhythms damped, but medium changes consistently reset the phase and amplitude of the cultures. Cry2(-/- Per2(Luc cells oscillated robustly and expressed a longer period. Co-culturing with wildtype cells did not significantly shorten the period, indicating that coupling among hepatocytes is insufficient to synchronize cells with significantly differing periods. However, spatial patterns revealed by cellular imaging of wildtype cultures provided evidence of weak local coupling among the hepatocytes. CONCLUSIONS: Our results with primary hepatocyte cultures demonstrate that cultured hepatocytes are weakly coupled. While this coupling is not sufficient to sustain global synchrony, it does increase local synchrony, which may stabilize the circadian rhythms of peripheral oscillators, such as the liver, against noise in the entraining signals.

  9. Role for circadian clock genes in seasonal timing: testing the Bunning hypothesis.

    Directory of Open Access Journals (Sweden)

    Mirko Pegoraro

    2014-09-01

    Full Text Available A major question in chronobiology focuses around the "Bünning hypothesis" which implicates the circadian clock in photoperiodic (day-length measurement and is supported in some systems (e.g. plants but disputed in others. Here, we used the seasonally-regulated thermotolerance of Drosophila melanogaster to test the role of various clock genes in day-length measurement. In Drosophila, freezing temperatures induce reversible chill coma, a narcosis-like state. We have corroborated previous observations that wild-type flies developing under short photoperiods (winter-like exhibit significantly shorter chill-coma recovery times (CCRt than flies that were raised under long (summer-like photoperiods. Here, we show that arrhythmic mutant strains, per01, tim01 and ClkJrk, as well as variants that speed up or slow down the circadian period, disrupt the photoperiodic component of CCRt. Our results support an underlying circadian function mediating seasonal daylength measurement and indicate that clock genes are tightly involved in photo- and thermo-periodic measurements.

  10. Endocrine-dependent expression of circadian clock genes in insects

    Czech Academy of Sciences Publication Activity Database

    Doležel, David; Zdechovanová, L.; Šauman, Ivo; Hodková, Magdalena

    2008-01-01

    Roč. 65, č. 6 (2008), s. 964-969. ISSN 1420-682X R&D Projects: GA ČR GA206/05/2222; GA MŠk LC07032 Institutional research plan: CEZ:AV0Z50070508 Keywords : period gene * Pdp1 gene * photoperiodism Subject RIV: ED - Physiology Impact factor: 5.511, year: 2008

  11. Cocaine sensitization and reward are under the influence of circadian genes and rhythm

    OpenAIRE

    Abarca, Carolina; Albrecht, Urs; Spanagel, Rainer

    2002-01-01

    Investigations using the fruit fly Drosophila melanogaster have shown that the circadian clock gene period (Per) can influence behavioral responses to cocaine. Here we show that the mouse homologues of the Drosophila Per gene, mPer1 and mPer2, modulate cocaine sensitization and reward, two phenomena extensively studied in humans and animals because of their importance for drug abuse. In response to an acute cocaine injection mPer1 and mPer2 mutant mice as well as wild-type mice exhibited an a...

  12. Effect of hyperlipidemia on the expression of circadian genes in apolipoprotein E knock-out atherosclerotic mice

    Directory of Open Access Journals (Sweden)

    Chen Sifeng

    2009-12-01

    Full Text Available Abstract Background Circadian patterns of cardiovascular vulnerability were well characterized, with a peak incidence of acute myocardial infarction and stroke secondary to atherosclerosis in the morning, which showed the circadian clock may take part in the pathological process of atherosclerosis induced by hyperlipidemia. Hence, the effect of hyperlipidemia on the expression of circadian genes was investigated in atherosclerotic mouse model. Results In apoE-/-mice on regular chow or high-fat diet, an atherosclerotic mouse model induced by heperlipidemia, we found that the peak concentration of serum lipids was showed four or eight hours later in apoE-/- mice, compared to C57BL/6J mice. During the artificial light period, a reduce in circulating level of serum lipids corresponded with the observed increase of the expression levels of some the transcription factors involved in lipid metabolism, such as PPARα and RXRα. Meanwhile, the expression of circadian genes was changed following with amplitude reduced or the peak mRNA level delayed. Conclusions Our studies indicated that heperlipidemia altered both the rhythmicity and expression of circadian genes. Diet-induced circadian disruption may affect the process of atherosclerosis and some acute cardiovascular disease.

  13. Hypothesis: Cryptochromes and brown fat are essential for adaptation and affect mood and mood-related behaviors.

    Directory of Open Access Journals (Sweden)

    Timo ePartonen

    2012-11-01

    Full Text Available Solar radiation and ambient temperature have acted as selective physical forces among populations and thereby guided species distributions in the globe. Circadian clocks are universal and evolve when subjected to selection, and their properties contribute to variations in fitness within specific environments. Concerning humans, as compared to the remaining, the evening owls have a greater deviation from the 24-hour cycle, are under a greater pressure to circadian desynchrony and more prone to a cluster of health hazards with the increased mortality. Because of their position in the hierarchy and repressive actions, cryptochromes are the key components of the feedback loops on which circadian clocks are built. Based on the evidence a new hypothesis is formulated in which brown adipocytes with their cryptochromes are responsive to a broad range of physical stimuli from the habitat and through their activity ensure adaptation of the individual. The over-activated brown adipose tissue with deficient cryptochromes might induce disrupted thermoregulation and circadian desynchrony, and thereby contribute to lowered mood and pronounced depressive behaviors.

  14. Circadian gene variants and susceptibility to type 2 diabetes: a pilot study.

    Directory of Open Access Journals (Sweden)

    M Ann Kelly

    Full Text Available BACKGROUND: Disruption of endogenous circadian rhythms has been shown to increase the risk of developing type 2 diabetes, suggesting that circadian genes might play a role in determining disease susceptibility. We present the results of a pilot study investigating the association between type 2 diabetes and selected single nucleotide polymorphisms (SNPs in/near nine circadian genes. The variants were chosen based on their previously reported association with prostate cancer, a disease that has been suggested to have a genetic link with type 2 diabetes through a number of shared inherited risk determinants. METHODOLOGY/PRINCIPAL FINDINGS: The pilot study was performed using two genetically homogeneous Punjabi cohorts, one resident in the United Kingdom and one indigenous to Pakistan. Subjects with (N = 1732 and without (N = 1780 type 2 diabetes were genotyped for thirteen circadian variants using a competitive allele-specific polymerase chain reaction method. Associations between the SNPs and type 2 diabetes were investigated using logistic regression. The results were also combined with in silico data from other South Asian datasets (SAT2D consortium and white European cohorts (DIAGRAM+ using meta-analysis. The rs7602358G allele near PER2 was negatively associated with type 2 diabetes in our Punjabi cohorts (combined odds ratio [OR] = 0.75 [0.66-0.86], p = 3.18 × 10(-5, while the BMAL1 rs11022775T allele was associated with an increased risk of the disease (combined OR = 1.22 [1.07-1.39], p = 0.003. Neither of these associations was replicated in the SAT2D or DIAGRAM+ datasets, however. Meta-analysis of all the cohorts identified disease associations with two variants, rs2292912 in CRY2 and rs12315175 near CRY1, although statistical significance was nominal (combined OR = 1.05 [1.01-1.08], p = 0.008 and OR = 0.95 [0.91-0.99], p = 0.015 respectively. CONCLUSIONS/SIGNIFICANCE: None of the selected circadian gene variants was associated with type

  15. Localisation of the Putative Magnetoreceptive Protein Cryptochrome 1b in the Retinae of Migratory Birds and Homing Pigeons.

    Directory of Open Access Journals (Sweden)

    Petra Bolte

    Full Text Available Cryptochromes are ubiquitously expressed in various animal tissues including the retina. Some cryptochromes are involved in regulating circadian activity. Cryptochrome proteins have also been suggested to mediate the primary mechanism in light-dependent magnetic compass orientation in birds. Cryptochrome 1b (Cry1b exhibits a unique carboxy terminus exclusively found in birds so far, which might be indicative for a specialised function. Cryptochrome 1a (Cry1a is so far the only cryptochrome protein that has been localised to specific cell types within the retina of migratory birds. Here we show that Cry1b, an alternative splice variant of Cry1a, is also expressed in the retina of migratory birds, but it is primarily located in other cell types than Cry1a. This could suggest different functions for the two splice products. Using diagnostic bird-specific antibodies (that allow for a precise discrimination between both proteins, we show that Cry1b protein is found in the retinae of migratory European robins (Erithacus rubecula, migratory Northern Wheatears (Oenanthe oenanthe and pigeons (Columba livia. In all three species, retinal Cry1b is localised in cell types which have been discussed as potentially well suited locations for magnetoreception: Cry1b is observed in the cytosol of ganglion cells, displaced ganglion cells, and in photoreceptor inner segments. The cytosolic rather than nucleic location of Cry1b in the retina reported here speaks against a circadian clock regulatory function of Cry1b and it allows for the possible involvement of Cry1b in a radical-pair-based magnetoreception mechanism.

  16. Localisation of the Putative Magnetoreceptive Protein Cryptochrome 1b in the Retinae of Migratory Birds and Homing Pigeons.

    Science.gov (United States)

    Bolte, Petra; Bleibaum, Florian; Einwich, Angelika; Günther, Anja; Liedvogel, Miriam; Heyers, Dominik; Depping, Anne; Wöhlbrand, Lars; Rabus, Ralf; Janssen-Bienhold, Ulrike; Mouritsen, Henrik

    2016-01-01

    Cryptochromes are ubiquitously expressed in various animal tissues including the retina. Some cryptochromes are involved in regulating circadian activity. Cryptochrome proteins have also been suggested to mediate the primary mechanism in light-dependent magnetic compass orientation in birds. Cryptochrome 1b (Cry1b) exhibits a unique carboxy terminus exclusively found in birds so far, which might be indicative for a specialised function. Cryptochrome 1a (Cry1a) is so far the only cryptochrome protein that has been localised to specific cell types within the retina of migratory birds. Here we show that Cry1b, an alternative splice variant of Cry1a, is also expressed in the retina of migratory birds, but it is primarily located in other cell types than Cry1a. This could suggest different functions for the two splice products. Using diagnostic bird-specific antibodies (that allow for a precise discrimination between both proteins), we show that Cry1b protein is found in the retinae of migratory European robins (Erithacus rubecula), migratory Northern Wheatears (Oenanthe oenanthe) and pigeons (Columba livia). In all three species, retinal Cry1b is localised in cell types which have been discussed as potentially well suited locations for magnetoreception: Cry1b is observed in the cytosol of ganglion cells, displaced ganglion cells, and in photoreceptor inner segments. The cytosolic rather than nucleic location of Cry1b in the retina reported here speaks against a circadian clock regulatory function of Cry1b and it allows for the possible involvement of Cry1b in a radical-pair-based magnetoreception mechanism. PMID:26953791

  17. Localisation of the Putative Magnetoreceptive Protein Cryptochrome 1b in the Retinae of Migratory Birds and Homing Pigeons

    Science.gov (United States)

    Bolte, Petra; Bleibaum, Florian; Einwich, Angelika; Günther, Anja; Liedvogel, Miriam; Heyers, Dominik; Depping, Anne; Wöhlbrand, Lars; Rabus, Ralf; Janssen‐Bienhold, Ulrike; Mouritsen, Henrik

    2016-01-01

    Cryptochromes are ubiquitously expressed in various animal tissues including the retina. Some cryptochromes are involved in regulating circadian activity. Cryptochrome proteins have also been suggested to mediate the primary mechanism in light-dependent magnetic compass orientation in birds. Cryptochrome 1b (Cry1b) exhibits a unique carboxy terminus exclusively found in birds so far, which might be indicative for a specialised function. Cryptochrome 1a (Cry1a) is so far the only cryptochrome protein that has been localised to specific cell types within the retina of migratory birds. Here we show that Cry1b, an alternative splice variant of Cry1a, is also expressed in the retina of migratory birds, but it is primarily located in other cell types than Cry1a. This could suggest different functions for the two splice products. Using diagnostic bird-specific antibodies (that allow for a precise discrimination between both proteins), we show that Cry1b protein is found in the retinae of migratory European robins (Erithacus rubecula), migratory Northern Wheatears (Oenanthe oenanthe) and pigeons (Columba livia). In all three species, retinal Cry1b is localised in cell types which have been discussed as potentially well suited locations for magnetoreception: Cry1b is observed in the cytosol of ganglion cells, displaced ganglion cells, and in photoreceptor inner segments. The cytosolic rather than nucleic location of Cry1b in the retina reported here speaks against a circadian clock regulatory function of Cry1b and it allows for the possible involvement of Cry1b in a radical-pair-based magnetoreception mechanism. PMID:26953791

  18. Integrating circadian activity and gene expression profiles to predict chronotoxicity of Drosophila suzukii response to insecticides.

    Science.gov (United States)

    Hamby, Kelly A; Kwok, Rosanna S; Zalom, Frank G; Chiu, Joanna C

    2013-01-01

    Native to Southeast Asia, Drosophila suzukii (Matsumura) is a recent invader that infests intact ripe and ripening fruit, leading to significant crop losses in the U.S., Canada, and Europe. Since current D. suzukii management strategies rely heavily on insecticide usage and insecticide detoxification gene expression is under circadian regulation in the closely related Drosophila melanogaster, we set out to determine if integrative analysis of daily activity patterns and detoxification gene expression can predict chronotoxicity of D. suzukii to insecticides. Locomotor assays were performed under conditions that approximate a typical summer or winter day in Watsonville, California, where D. suzukii was first detected in North America. As expected, daily activity patterns of D. suzukii appeared quite different between 'summer' and 'winter' conditions due to differences in photoperiod and temperature. In the 'summer', D. suzukii assumed a more bimodal activity pattern, with maximum activity occurring at dawn and dusk. In the 'winter', activity was unimodal and restricted to the warmest part of the circadian cycle. Expression analysis of six detoxification genes and acute contact bioassays were performed at multiple circadian times, but only in conditions approximating Watsonville summer, the cropping season, when most insecticide applications occur. Five of the genes tested exhibited rhythmic expression, with the majority showing peak expression at dawn (ZT0, 6am). We observed significant differences in the chronotoxicity of D. suzukii towards malathion, with highest susceptibility at ZT0 (6am), corresponding to peak expression of cytochrome P450s that may be involved in bioactivation of malathion. High activity levels were not found to correlate with high insecticide susceptibility as initially hypothesized. Chronobiology and chronotoxicity of D. suzukii provide valuable insights for monitoring and control efforts, because insect activity as well as insecticide timing

  19. The Trichoderma atroviride cryptochrome/photolyase genes regulate the expression of blr1-independent genes both in red and blue light.

    Science.gov (United States)

    García-Esquivel, Mónica; Esquivel-Naranjo, Edgardo U; Hernández-Oñate, Miguel A; Ibarra-Laclette, Enrique; Herrera-Estrella, Alfredo

    2016-04-01

    Quantitative transcriptome analysis led to the identification of 331 transcripts regulated by white light. Evaluation of the response to white light in mutants affected in the previously characterized blue-light receptor Blr1, demonstrated the existence of both Blr1-dependent and independent responses. Functional categorization of the light responsive genes indicated the effect of light on regulation of various transcription factors, regulators of chromatin structure, signaling pathways, genes related to different kinds of stress, metabolism, redox adjustment, and cell cycle among others. In order to establish the participation of other photoreceptors, gene expression was validated in response to different wavelengths. Gene regulation by blue and red light suggests the involvement of several photoreceptors in integrating light signals of different wavelengths in Trichoderma atroviride. Functional analysis of potential blue light photoreceptors suggests that several perception systems for different wavelengths are involved in the response to light. Deletion of cry1, one of the potential photoreceptors, resulted in severe reduction in the photoreactivation capacity of the fungus, as well as a change in gene expression under blue and red light. PMID:27020152

  20. Circadian rhythm-dependent alterations of gene expression in Drosophila brain lacking fragile X mental retardation protein.

    Directory of Open Access Journals (Sweden)

    Shunliang Xu

    Full Text Available Fragile X syndrome is caused by the loss of the FMR1 gene product, fragile X mental retardation protein (FMRP. The loss of FMRP leads to altered circadian rhythm behaviors in both mouse and Drosophila; however, the molecular mechanism behind this phenomenon remains elusive. Here we performed a series of gene expression analyses, including of both mRNAs and microRNAs (miRNAs, and identified a number of mRNAs and miRNAs (miRNA-1 and miRNA-281 with circadian rhythm-dependent altered expression in dfmr1 mutant flies. Identification of these RNAs lays the foundation for future investigations of the molecular pathway(s underlying the altered circadian rhythms associated with loss of dFmr1.

  1. A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response.

    Directory of Open Access Journals (Sweden)

    Michael J McCarthy

    Full Text Available Circadian rhythm abnormalities in bipolar disorder (BD have led to a search for genetic abnormalities in circadian "clock genes" associated with BD. However, no significant clock gene findings have emerged from genome-wide association studies (GWAS. At least three factors could account for this discrepancy: complex traits are polygenic, the organization of the clock is more complex than previously recognized, and/or genetic risk for BD may be shared across multiple illnesses. To investigate these issues, we considered the clock gene network at three levels: essential "core" clock genes, upstream circadian clock modulators, and downstream clock controlled genes. Using relaxed thresholds for GWAS statistical significance, we determined the rates of clock vs. control genetic associations with BD, and four additional illnesses that share clinical features and/or genetic risk with BD (major depression, schizophrenia, attention deficit/hyperactivity. Then we compared the results to a set of lithium-responsive genes. Associations with BD-spectrum illnesses and lithium-responsiveness were both enriched among core clock genes but not among upstream clock modulators. Associations with BD-spectrum illnesses and lithium-responsiveness were also enriched among pervasively rhythmic clock-controlled genes but not among genes that were less pervasively rhythmic or non-rhythmic. Our analysis reveals previously unrecognized associations between clock genes and BD-spectrum illnesses, partly reconciling previously discordant results from past GWAS and candidate gene studies.

  2. The intrinsic circadian clock within the cardiomyocyte directly regulates myocardial gene expression, metabolism, and contractile function

    Science.gov (United States)

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology remains unknown. We hypothesized that circadian clock within the cardiomyocyte plays a role in regulating myocardia...

  3. CIRCADIAN CLOCK AND CELL CYCLE GENE EXPRESSION: IN MOUSE MAMMARY EPITHELIAL CELLS AND IN THE DEVELOPING MOUSE MAMMARY GLAND

    OpenAIRE

    Metz, Richard P.; Qu, Xiaoyu; Laffin, Brian; Earnest, David; Porter, Weston W.

    2006-01-01

    Mouse mammary epithelial cells (HC-11) and mammary tissues were analyzed for developmental changes in circadian clock, cellular proliferation and differentiation marker genes. Expression of the clock genes, Per1 and Bmal1, were elevated in differentiated HC-11 cells whereas Per2 mRNA levels were higher in undifferentiated cells. This differentiation-dependent profile of clock gene expression was consistent with that observed in mouse mammary glands as Per1 and Bmal1 mRNA levels were elevated ...

  4. There Is No Association Between the Circadian Clock Gene HPER3 and Cognitive Dysfunction After Noncardiac Surgery

    DEFF Research Database (Denmark)

    Voigt Hansen, Melissa; Simon Rasmussen, Lars; Jespersgaard, Cathrine;

    2012-01-01

    The specific clock-gene PERIOD3 is important with regard to circadian rhythmicity, sleep homeostasis, and cognitive function. The allele PER3(5/5) has been associated with worse cognitive performance in response to sleep deprivation. We hypothesized that patients with the PER3(5/5) genotype would...

  5. α1B-Adrenergic receptor signaling controls circadian expression of Tnfrsf11b by regulating clock genes in osteoblasts

    Directory of Open Access Journals (Sweden)

    Takao Hirai

    2015-11-01

    Full Text Available Circadian clocks are endogenous and biological oscillations that occur with a period of <24 h. In mammals, the central circadian pacemaker is localized in the suprachiasmatic nucleus (SCN and is linked to peripheral tissues through neural and hormonal signals. In the present study, we investigated the physiological function of the molecular clock on bone remodeling. The results of loss-of-function and gain-of-function experiments both indicated that the rhythmic expression of Tnfrsf11b, which encodes osteoprotegerin (OPG, was regulated by Bmal1 in MC3T3-E1 cells. We also showed that REV-ERBα negatively regulated Tnfrsf11b as well as Bmal1 in MC3T3-E1 cells. We systematically investigated the relationship between the sympathetic nervous system and the circadian clock in osteoblasts. The administration of phenylephrine, a nonspecific α1-adrenergic receptor (AR agonist, stimulated the expression of Tnfrsf11b, whereas the genetic ablation of α1B-AR signaling led to the alteration of Tnfrsf11b expression concomitant with Bmal1 and Per2 in bone. Thus, this study demonstrated that the circadian regulation of Tnfrsf11b was regulated by the clock genes encoding REV-ERBα (Nr1d1 and Bmal1 (Bmal1, also known as Arntl, which are components of the core loop of the circadian clock in osteoblasts.

  6. Gene-environment factors in depressive disorders with a focus on circadian genes

    OpenAIRE

    Sjöholm, Louise

    2010-01-01

    Depressive disorders have a multifactorial etiology, where both environmental and genetic risk factors contribute. Depression is characterized by a depressed mood and accompanied by e.g. loss of interest and pleasure, disturbed sleep and appetite and difficulties in concentrating. A disturbed sleep-wake pattern as well as disruptions of other biological (circadian) rhythms is a hallmark of depression. This fact has led researchers to believe that disruptions of biological ...

  7. USP2 Regulates the Intracellular Localization of PER1 and Circadian Gene Expression

    DEFF Research Database (Denmark)

    Yang, Yaoming; Duguay, David; Fahrenkrug, Jan;

    2014-01-01

    Endogenous 24-h rhythms in physiology are driven by a network of circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Posttranslational modifications, including ubiquitination, are important for...... regulating the clock feedback mechanism. Recently, we showed that the deubiquitinating enzyme ubiquitin-specific peptidase 2 (USP2) associates with clock proteins and deubiquitinates PERIOD1 (PER1) but does not affect its overall stability. Mice devoid of USP2 display defects in clock function. Here, we show...... that USP2 regulates nucleocytoplasmic shuttling and nuclear retention of PER1 and its repressive role on the clock transcription factors CLOCK and BMAL1. The rhythm of nuclear entry of PER1 in Usp2 knockout mouse embryonic fibroblasts (MEFs) was advanced but with reduced nuclear accumulation of PER1...

  8. Single mutations in sasA enable a simpler ΔcikA gene network architecture with equivalent circadian properties.

    Science.gov (United States)

    Shultzaberger, Ryan K; Boyd, Joseph S; Katsuki, Takeo; Golden, Susan S; Greenspan, Ralph J

    2014-11-25

    The circadian input kinase of the cyanobacterium Synechococcus elongatus PCC 7942 (CikA) is important both for synchronizing circadian rhythms with external environmental cycles and for transferring temporal information between the oscillator and the global transcriptional regulator RpaA (regulator of phycobilisome-associated A). KOs of cikA result in one of the most severely altered but still rhythmic circadian phenotypes observed. We chemically mutagenized a cikA-null S. elongatus strain and screened for second-site suppressor mutations that could restore normal circadian rhythms. We identified two independent mutations in the Synechococcus adaptive sensor A (sasA) gene that produce nearly WT rhythms of gene expression, likely because they compensate for the loss of CikA on the temporal phosphorylation of RpaA. Additionally, these mutations restore the ability to reset the clock after a short dark pulse through an output-independent pathway, suggesting that SasA can influence entrainment through direct interactions with KaiC, a property previously unattributed to it. These experiments question the evolutionary advantage of integrating CikA into the cyanobacterial clock, challenge the conventional construct of separable input and output pathways, and show how easily the cell can adapt to restore phenotype in a severely compromised genetic network. PMID:25385627

  9. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN

    Science.gov (United States)

    Ono, Daisuke; Honma, Sato; Honma, Ken-ichi

    2016-01-01

    The suprachiasmatic nucleus (SCN) is the site of the master circadian clock in mammals. The SCN neural network plays a critical role in expressing the tissue-level circadian rhythm. Previously, we demonstrated postnatal changes in the SCN network in mice, in which the clock gene products CRYPTOCHROMES (CRYs) are involved. Here, we show that vasoactive intestinal polypeptide (VIP) signaling is essential for the tissue-level circadian PER2::LUC rhythm in the neonatal SCN of CRY double-deficient mice (Cry1,2−/−). VIP and arginine vasopressin (AVP) signaling showed redundancy in expressing the tissue-level circadian rhythm in the SCN. AVP synthesis was significantly attenuated in the Cry1,2−/− SCN, which contributes to aperiodicity in the adult mice together with an attenuation of VIP signaling as a natural process of ontogeny. The SCN network consists of multiple clusters of cellular circadian rhythms that are differentially integrated by AVP and VIP signaling, depending on the postnatal period.

  10. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN.

    Science.gov (United States)

    Ono, Daisuke; Honma, Sato; Honma, Ken-Ichi

    2016-09-01

    The suprachiasmatic nucleus (SCN) is the site of the master circadian clock in mammals. The SCN neural network plays a critical role in expressing the tissue-level circadian rhythm. Previously, we demonstrated postnatal changes in the SCN network in mice, in which the clock gene products CRYPTOCHROMES (CRYs) are involved. Here, we show that vasoactive intestinal polypeptide (VIP) signaling is essential for the tissue-level circadian PER2::LUC rhythm in the neonatal SCN of CRY double-deficient mice (Cry1,2 (-/-) ). VIP and arginine vasopressin (AVP) signaling showed redundancy in expressing the tissue-level circadian rhythm in the SCN. AVP synthesis was significantly attenuated in the Cry1,2 (-/-) SCN, which contributes to aperiodicity in the adult mice together with an attenuation of VIP signaling as a natural process of ontogeny. The SCN network consists of multiple clusters of cellular circadian rhythms that are differentially integrated by AVP and VIP signaling, depending on the postnatal period. PMID:27626074

  11. Mechanism of magnetic field effect in cryptochrome

    CERN Document Server

    Solov'yov, Ilia A

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor to operate properly. Here, we propose a concrete light-driven reaction cycle in cryptochrome that lets a magnetic field influence the signaling state of the photoreceptor. The reaction cycle ties together transient absorption and electron-spin-resonance observations with known facts on avian magnetoreception. Our analysis establishes the feasibility of cryptochrome to act as a g...

  12. Early doors (Edo) mutant mouse reveals the importance of period 2 (PER2) PAS domain structure for circadian pacemaking.

    Science.gov (United States)

    Militi, Stefania; Maywood, Elizabeth S; Sandate, Colby R; Chesham, Johanna E; Barnard, Alun R; Parsons, Michael J; Vibert, Jennifer L; Joynson, Greg M; Partch, Carrie L; Hastings, Michael H; Nolan, Patrick M

    2016-03-01

    The suprachiasmatic nucleus (SCN) defines 24 h of time via a transcriptional/posttranslational feedback loop in which transactivation of Per (period) and Cry (cryptochrome) genes by BMAL1-CLOCK complexes is suppressed by PER-CRY complexes. The molecular/structural basis of how circadian protein complexes function is poorly understood. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT-SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) that accelerates the circadian clock of Per2(Edo/Edo) mice by 1.5 h. Structural and biophysical analyses revealed that Edo alters the packing of the highly conserved interdomain linker of the PER2 PAS core such that, although PER2(Edo) complexes with clock proteins, its vulnerability to degradation mediated by casein kinase 1ε (CSNK1E) is increased. The functional relevance of this mutation is revealed by the ultrashort (<19 h) but robust circadian rhythms in Per2(Edo/Edo); Csnk1e(Tau/Tau) mice and the SCN. These periods are unprecedented in mice. Thus, Per2(Edo) reveals a direct causal link between the molecular structure of the PER2 PAS core and the pace of SCN circadian timekeeping. PMID:26903623

  13. Circadian polymorphisms associated with affective disorders

    OpenAIRE

    Kripke, Daniel F; Nievergelt, Caroline M; Joo, EJ; Shekhtman, Tatyana; Kelsoe, John R.

    2009-01-01

    Background: Clinical symptoms of affective disorders, their response to light treatment, and sensitivity to other circadian interventions indicate that the circadian system has a role in mood disorders. Possibly the mechanisms involve circadian seasonal and photoperiodic mechanisms. Since genetic susceptibilities contribute a strong component to affective disorders, we explored whether circadian gene polymorphisms were associated with affective disorders in four complementary studies.Methods:...

  14. Rapid attenuation of circadian clock gene oscillations in the rat heart following ischemia-reperfusion

    Science.gov (United States)

    The intracellular circadian clock consists of a series of transcriptional modulators that together allow the cell to perceive the time of day. Circadian clocks have been identified within various components of the cardiovascular system (e.g., cardiomyocytes, vascular smooth muscle cells) and possess...

  15. Circadian expression of clock genes and angiotensin Ⅱ type 1 receptors in suprachiasmatic nuclei of sinoaortic-denervated rats

    Institute of Scientific and Technical Information of China (English)

    Hui LI; Ning-ling SUN; Jin WANG; Ai-jun LIU; Ding-feng SU

    2007-01-01

    Aim: To investigate whether the circadian expression of central clock genes and angiotensin Ⅱ type 1 (AT1) receptors was altered in sinoaortic-denervated (SAD)rats. Methods: Male Sprague-Dawley rats underwent sinoaortic denervation or a sham operation at the age of 12 weeks. Four weeks after the operation, blood pressure and heart period were measured in the conscious state in a group of sham-operated (n=10) and SAD rats (n=9). Rest SAD and sham-operated rats were divided into 6 groups (n=6 in each group). The suprachiasmatic nuclei (SCN)tissues were taken every 4 h throughout the day from each group for the determi-nation of the mRNA expression of clock genes (Per2 and Bmall) and the AT1receptor by RT-PCR; the protein expression of Per2 and Bmall was determined by Western blotting. Results: Blood pressure levels in the SAD rats were similar to those of the sham-operated rats. However, blood pressure variabilities signifi-cantly increased in the SAD rats compared with the sham-operated rats. The circadian variation of clock genes in the SCN of the sham-operated rats was char-acterized by a marked increase in the mRNA and protein expression during dark periods. Per2 and Bmall mRNA levels were significantly lower in the SAD rats,especially during dark periods. Western blot analysis confirmed an attenuation of the circadian rhythm of the 2 clock proteins in the SCN of the SAD rats. AT1 receptor mRNA expressions in the SCN were abnormally upregulated in the light phase, changed to a 12-h cycle in the SAD rats. Conclusion: The circadian varia-tion of the 2 central clock genes was attenuated in the SAD rats. Arterial baroreflex dysfunction also induced a disturbance in the expression of AT1 receptors in the SCN.

  16. Chronic exposure to low doses of pharmaceuticals disturbs the hepatic expression of circadian genes in lean and obese mice

    Energy Technology Data Exchange (ETDEWEB)

    Anthérieu, Sébastien; Le Guillou, Dounia; Coulouarn, Cédric; Begriche, Karima [INSERM, U991, Université de Rennes 1, 35000 Rennes (France); Trak-Smayra, Viviane [Pathology Department, Saint-Joseph University, Beirut (Lebanon); Martinais, Sophie [INSERM, U991, Université de Rennes 1, 35000 Rennes (France); Porceddu, Mathieu [Mitologics SAS, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris (France); Robin, Marie-Anne [INSERM, U991, Université de Rennes 1, 35000 Rennes (France); Fromenty, Bernard, E-mail: bernard.fromenty@inserm.fr [INSERM, U991, Université de Rennes 1, 35000 Rennes (France)

    2014-04-01

    Drinking water can be contaminated with pharmaceuticals. However, it is uncertain whether this contamination can be harmful for the liver, especially during obesity. Hence, the goal of our study was to determine whether chronic exposure to low doses of pharmaceuticals could have deleterious effects on livers of lean and obese mice. To this end, lean and ob/ob male mice were treated for 4 months with a mixture of 11 drugs provided in drinking water at concentrations ranging from 10 to 10{sup 6} ng/l. At the end of the treatment, some liver and plasma abnormalities were observed in ob/ob mice treated with the cocktail containing 10{sup 6} ng/l of each drug. For this dosage, a gene expression analysis by microarray showed altered expression of circadian genes (e.g. Bmal1, Dbp, Cry1) in lean and obese mice. RT-qPCR analyses carried out in all groups of animals confirmed that expression of 8 different circadian genes was modified in a dose-dependent manner. For some genes, a significant modification was observed for dosages as low as 10{sup 2}–10{sup 3} ng/l. Drug mixture and obesity presented an additive effect on circadian gene expression. These data were validated in an independent study performed in female mice. Thus, our study showed that chronic exposure to trace pharmaceuticals disturbed hepatic expression of circadian genes, particularly in obese mice. Because some of the 11 drugs can be found in drinking water at such concentrations (e.g. acetaminophen, carbamazepine, ibuprofen) our data could be relevant in environmental toxicology, especially for obese individuals exposed to these contaminants. - Highlights: • The contamination of drinking water with drugs may have harmful effects on health. • Some drugs can be more hepatotoxic in the context of obesity and fatty liver. • Effects of chronic exposure of trace drugs were studied in lean and obese mouse liver. Drugs and obesity present additive effects on circadian gene expression and toxicity. • Trace

  17. Chronic exposure to low doses of pharmaceuticals disturbs the hepatic expression of circadian genes in lean and obese mice

    International Nuclear Information System (INIS)

    Drinking water can be contaminated with pharmaceuticals. However, it is uncertain whether this contamination can be harmful for the liver, especially during obesity. Hence, the goal of our study was to determine whether chronic exposure to low doses of pharmaceuticals could have deleterious effects on livers of lean and obese mice. To this end, lean and ob/ob male mice were treated for 4 months with a mixture of 11 drugs provided in drinking water at concentrations ranging from 10 to 106 ng/l. At the end of the treatment, some liver and plasma abnormalities were observed in ob/ob mice treated with the cocktail containing 106 ng/l of each drug. For this dosage, a gene expression analysis by microarray showed altered expression of circadian genes (e.g. Bmal1, Dbp, Cry1) in lean and obese mice. RT-qPCR analyses carried out in all groups of animals confirmed that expression of 8 different circadian genes was modified in a dose-dependent manner. For some genes, a significant modification was observed for dosages as low as 102–103 ng/l. Drug mixture and obesity presented an additive effect on circadian gene expression. These data were validated in an independent study performed in female mice. Thus, our study showed that chronic exposure to trace pharmaceuticals disturbed hepatic expression of circadian genes, particularly in obese mice. Because some of the 11 drugs can be found in drinking water at such concentrations (e.g. acetaminophen, carbamazepine, ibuprofen) our data could be relevant in environmental toxicology, especially for obese individuals exposed to these contaminants. - Highlights: • The contamination of drinking water with drugs may have harmful effects on health. • Some drugs can be more hepatotoxic in the context of obesity and fatty liver. • Effects of chronic exposure of trace drugs were studied in lean and obese mouse liver. Drugs and obesity present additive effects on circadian gene expression and toxicity. • Trace pharmaceuticals could

  18. Systematic identification of rhythmic genes reveals camk1gb as a new element in the circadian clockwork.

    Directory of Open Access Journals (Sweden)

    Adi Tovin

    Full Text Available A wide variety of biochemical, physiological, and molecular processes are known to have daily rhythms driven by an endogenous circadian clock. While extensive research has greatly improved our understanding of the molecular mechanisms that constitute the circadian clock, the links between this clock and dependent processes have remained elusive. To address this gap in our knowledge, we have used RNA sequencing (RNA-seq and DNA microarrays to systematically identify clock-controlled genes in the zebrafish pineal gland. In addition to a comprehensive view of the expression pattern of known clock components within this master clock tissue, this approach has revealed novel potential elements of the circadian timing system. We have implicated one rhythmically expressed gene, camk1gb, in connecting the clock with downstream physiology of the pineal gland. Remarkably, knockdown of camk1gb disrupts locomotor activity in the whole larva, even though it is predominantly expressed within the pineal gland. Therefore, it appears that camk1gb plays a role in linking the pineal master clock with the periphery.

  19. Exploring the possibilities for radical pair effects in cryptochrome

    OpenAIRE

    Ilia A Solov'yov; Chandler, Danielle E.; Schulten, Klaus

    2008-01-01

    The ability of some animals to sense magnetic fields has long captured the human imagination. In our recent paper, we explored how radical pair effects in the protein cryptochrome may underlie the magnetic orientation sense of migratory birds. Here we explain our model and discuss its relationship to experimental results on plant cryptochromes, as well as discuss the next steps in refining our model, and explore alternate but related possibilities for modeling and understanding cryptochrome a...

  20. Chromatin Dynamics of Circadian Transcription

    OpenAIRE

    Aguilar-Arnal, Lorena; Sassone-Corsi, Paolo

    2015-01-01

    The molecular circadian clock orchestrates the daily cyclical expression of thousands of genes. Disruption of this transcriptional program leads to a variety of pathologies, including insomnia, depression and metabolic disorders. Circadian rhythms in gene expression rely on specific chromatin transitions which are ultimately coordinated by the molecular clock. As a consequence, a highly plastic and dynamic circadian epigenome can be delineated across different tissues and cell types. Intrigui...

  1. Immunoreactivities to three circadian clock proteins in two ground crickets suggest interspecific diversity of the circadian clock structure

    Czech Academy of Sciences Publication Activity Database

    Shao, Q. M.; Sehadová, H.; Ichihara, N.; Sehnal, František; Takeda, M.

    2006-01-01

    Roč. 21, č. 2 (2006), s. 118-131. ISSN 0748-7304 Grant ostatní: Japan Society for the Promotion of Science(JP) JSPS 99L01205; Japan Society for the Promotion of Science(JP) ID No. P 04197 Institutional research plan: CEZ:AV0Z50070508 Keywords : circadian rhythm * photoperiodic clock * cryptochrome (CRY) Subject RIV: ED - Physiology Impact factor: 4.633, year: 2006

  2. Expression patterns of a circadian clock gene are associated with age-related polyethism in harvester ants, Pogonomyrmex occidentalis

    Directory of Open Access Journals (Sweden)

    Ingram Krista K

    2009-04-01

    Full Text Available Abstract Background Recent advances in sociogenomics allow for comparative analyses of molecular mechanisms regulating the development of social behavior. In eusocial insects, one key aspect of their sociality, the division of labor, has received the most attention. Age-related polyethism, a derived form of division of labor in ants and bees where colony tasks are allocated among distinct behavioral phenotypes, has traditionally been assumed to be a product of convergent evolution. Previous work has shown that the circadian clock is associated with the development of behavior and division of labor in honeybee societies. We cloned the ortholog of the clock gene, period, from a harvester ant (Pogonomyrmex occidentalis and examined circadian rhythms and daily activity patterns in a species that represents an evolutionary origin of eusociality independent of the honeybee. Results Using real time qPCR analyses, we determined that harvester ants have a daily cyclic expression of period and this rhythm is endogenous (free-running under dark-dark conditions. Cyclic expression of period is task-specific; foragers have strong daily fluctuations but nest workers inside the nest do not. These patterns correspond to differences in behavior as activity levels of foragers show a diurnal pattern while nest workers tend to exhibit continuous locomotor activity at lower levels. In addition, we found that foragers collected in the early fall (relative warm, long days exhibit a delay in the nightly peak of period expression relative to foragers collected in the early spring (relative cold, short days. Conclusion The association of period mRNA expression levels with harvester ant task behaviors suggests that the development of circadian rhythms is associated with the behavioral development of ants. Thus, the circadian clock pathway may represent a conserved 'genetic toolkit' that has facilitated the parallel evolution of age-related polyethism and task allocation in

  3. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    Science.gov (United States)

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. PMID:27091299

  4. Circadian Rhythms

    Science.gov (United States)

    ... body function and health? Circadian rhythms can influence sleep-wake cycles, hormone release, body temperature and other important bodily functions. They have been linked to various sleep disorders, such as insomnia. Abnormal circadian rhythms have also ...

  5. Mechanism of magnetic field effect in cryptochrome

    OpenAIRE

    Solov'yov, Ilia A.; Schulten, Klaus

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow...

  6. Cryptochrome 2 mediates directional magnetoreception in cockroaches

    Czech Academy of Sciences Publication Activity Database

    Bazalová, Olga; Kvíčalová, M.; Válková, T.; Slabý, P.; Bartoš, P.; Netušil, R.; Tomanová, K.; Braeunig, P.; Lee, H.-J.; Šauman, Ivo; Damulewicz, Milena; Provazník, Jan; Pokorný, R.; Doležel, David; Vácha, M.

    2016-01-01

    Roč. 113, č. 6 (2016), s. 1660-1665. ISSN 0027-8424 R&D Projects: GA MŠk LH14029; GA ČR(CZ) GC13-11908J; GA ČR(CZ) GC206/07/J041 Institutional support: RVO:60077344 Keywords : magnetoreception * cryptochrome * light spectrum Subject RIV: CE - Biochemistry Impact factor: 9.674, year: 2014

  7. The orphan receptor Rev-erbα gene is a target of the circadian clock pacemaker

    OpenAIRE

    Triqueneaux, Gérard; Thenot, Sandrine; Kakizawa, Tomoko; Antoch, Marina P.; Safi, Rachid; Takahashi, Joseph S.; Delaunay, Franck; Laudet, Vincent

    2004-01-01

    Rev-erbα is a ubiquitously expressed orphan nuclear receptor which functions as a constitutive transcriptional repressor and is expressed in vertebrates according to a robust circadian rhythm. We report here that two Rev-erbα mRNA isoforms, namely Rev-erbα1 and Rev-erbα2, are generated through alternative promoter usage and that both show a circadian expression pattern in an in vitro system using serum-shocked fibroblasts. Both promoter regions P1 (Rev-erbα1) and P2 (Rev-erbα2) contain severa...

  8. Evidence for a Circadian Effect on the Reduction of Human Growth Hormone Gene Expression in Response to Excess Caloric Intake.

    Science.gov (United States)

    Vakili, Hana; Jin, Yan; Cattini, Peter A

    2016-06-24

    Rhythmicity of biological functions is fundamental for optimal adaptations to environmental cues. Growth hormone (GH) is a major metabolic homeostatic factor that is secreted with a circadian pattern, but whether it is synthesized rhythmically is unknown. We used transgenic mice containing the human (h) GH gene (hGH1) locus to investigate the rhythmicity of hGH synthesis and secretion and to show that RNA and secreted protein levels oscillate over a 24-h cycle. Analysis of hGH1 promoter sequences revealed an enhancer motif (E-box) element that binds the circadian transcriptional machinery (Bmal1 and Clock). Furthermore, Bmal1/Clock were able to transactivate the hGH1 promoter, and mutation of this E-box element adversely affected basal activity after gene transfer. The ability of Bmal1 to bind the hGH1 promoter region containing the E-box element was confirmed in the hGH1 transgenic mouse pituitary in situ Occupancy was reduced in mice fed a high fat diet during the light (inactive) stage of the daily cycle in mice and corresponded to a decrease in hGH1 RNA levels. The decreases in occupancy and RNA levels were not seen, however, during the dark (active) stage. A chromatin loop required for efficient postnatal hGH1 expression was negatively affected by the high fat diet in the light but not dark stage similar to the pattern observed with Bmal1 association with the promoter region. This is the first evidence that hGH synthesis follows a diurnal rhythm and of dynamic associations of the circadian machinery with a component of a chromosomal structure of the hGH1 locus that is essential for efficient expression. PMID:27151213

  9. The association of circadian clock candidate genes to increased adiposity in the TIGER study

    Science.gov (United States)

    Obesity is a highly prevalent disease that has become a major health crisis in the United States. A number of studies have suggested a link between the altered sleep/wake patterns associated with our "24 hour" lifestyle and obesity. We hypothesize that disruption of the circadian clock intrinsic t...

  10. Entrainment Dissociates Transcription and Translation of a Circadian Clock Gene in Neurospora

    NARCIS (Netherlands)

    Tan, Ying; Dragovic, Zdravko; Roenneberg, Till; Merrow, Martha

    2004-01-01

    Circadian systems coordinate the daily sequence of events in cells, tissues, and organisms. In constant conditions, the biological clock oscillates with its endogenous period, whereas it is synchronized to the 24 hr light:dark cycle in nature. Here, we investigate light entrainment of Neurospora cra

  11. Circadian mechanisms of food anticipatory rhythms in rats fed once or twice daily: clock gene and endocrine correlates.

    Directory of Open Access Journals (Sweden)

    Danica F Patton

    Full Text Available Circadian clocks in many brain regions and peripheral tissues are entrained by the daily rhythm of food intake. Clocks in one or more of these locations generate a daily rhythm of locomotor activity that anticipates a regular mealtime. Rats and mice can also anticipate two daily meals. Whether this involves 1 or 2 circadian clocks is unknown. To gain insight into how the circadian system adjusts to 2 daily mealtimes, male rats in a 12∶12 light-dark cycle were fed a 2 h meal either 4 h after lights-on or 4 h after lights-off, or a 1 h meal at both times. After 30 days, brain, blood, adrenal and stomach tissue were collected at 6 time points. Multiple clock genes from adrenals and stomachs were assayed by RT-PCR. Blood was assayed for corticosterone and ghrelin. Bmal1 expression was quantified in 14 brain regions by in situ hybridization. Clock gene rhythms in adrenal and stomach from day-fed rats oscillated in antiphase with the rhythms in night-fed rats, and at an intermediate phase in rats fed twice daily. Corticosterone and ghrelin in 1-meal rats peaked at or prior to the expected mealtime. In 2-meal rats, corticosterone peaked only prior the nighttime meal, while ghrelin peaked prior to the daytime meal and then remained elevated. The olfactory bulb, nucleus accumbens, dorsal striatum, cerebellum and arcuate nucleus exhibited significant daily rhythms of Bmal1 in the night-fed groups that were approximately in antiphase in the day-fed groups, and at intermediate levels (arrhythmic in rats anticipating 2 daily meals. The dissociations between anticipatory activity and the peripheral clocks and hormones in rats anticipating 2 daily meals argue against a role for these signals in the timing of behavioral rhythms. The absence of rhythmicity at the tissue level in brain regions from rats anticipating 2 daily meals support behavioral evidence that circadian clock cells in these tissues may reorganize into two populations coupled to different

  12. Circuit topology and the evolution of robustness in two-gene circadian oscillators

    OpenAIRE

    Wagner, Andreas

    2005-01-01

    Many parameters driving the behavior of biochemical circuits vary extensively and are thus not fine-tuned. Therefore, the topology of such circuits (the who-interacts-with-whom) is key to understanding their central properties. I here explore several hundred different topologies of a simple biochemical model of circadian oscillations to ask two questions: Do different circuits differ dramatically in their robustness to parameter change? If so, can a process of gradual molecular evolution find...

  13. Inferring bi-directional interactions between circadian clock genes and metabolism with model ensembles

    OpenAIRE

    Grzegorczyk, Marco; Aderhold, Andrej; Husmeier, Dirk

    2015-01-01

    There has been much interest in reconstructing bi-directional regulatory networks linking the circadian clock to metabolism in plants. A variety of reverse engineering methods from machine learning and computational statistics have been proposed and evaluated. The emphasis of the present paper is on combining models in a model ensemble to boost the network reconstruction accuracy, and to explore various model combination strategies to maximize the improvement. Our results demonstrate that a r...

  14. Preliminary Transcriptome Analysis in Lymphoblasts from Cluster Headache and Bipolar Disorder Patients Implicates Dysregulation of Circadian and Serotonergic Genes.

    Science.gov (United States)

    Costa, Marta; Squassina, Alessio; Piras, Ignazio Stefano; Pisanu, Claudia; Congiu, Donatella; Niola, Paola; Angius, Andrea; Chillotti, Caterina; Ardau, Raffaella; Severino, Giovanni; Stochino, Erminia; Deidda, Arianna; Persico, Antonio M; Alda, Martin; Del Zompo, Maria

    2015-07-01

    Bipolar disorder (BD) and cluster headache (CH) are distinct conditions with important similarities such as a temporal pattern of disturbances, dysregulation of the sleep-wake cycle, and response to lithium treatment in a proportion of patients. Aiming to identify common transcription signatures in these two disorders, we carried out an exploratory microarray gene expression analysis in lymphoblasts from 8 CH and 10 BD I patients selected for positive response to lithium and 10 healthy controls (CO). Gene expression levels of BD and CH were compared with CO to create two lists of differentially expressed genes. We then matched the two lists and focus on genes showing statistically significant difference and same change direction in both disorders. RNA binding motif protein 3 (RBM3) was the most significantly altered gene in the list (3.17 × 10(-13) in BD, 9.44 × 10(-14) in CH). Pathway analysis identified protein processing in endoplasmic reticulum as the most significantly enriched. For validation with quantitative reverse transcription PCR (qRT-PCR) using the same samples, we selected seven genes. Among these, we were able to validate the RBM3, nuclear receptor subfamily 1, group D, member 1 (NR1D1), and tryptophan hydroxylase 1 (TPH1). These genes encode for elements involved in circadian rhythm regulation (RBM3 and NR1D1) and in serotonin synthesis (TPH1), processes previously involved in both disorders, and in the mechanism of action of lithium. PMID:25912293

  15. Potential cancer-related role of circadian gene TIMELESS suggested by expression profiling and in vitro analyses

    International Nuclear Information System (INIS)

    The circadian clock and cell cycle are two global regulatory systems that have pervasive behavioral and physiological effects on eukaryotic cells, and both play a role in cancer development. Recent studies have indicated that the circadian and cell cycle regulator, TIMELESS, may serve as a molecular bridge between these two regulatory systems. To assess the role of TIMELESS in tumorigenesis, we analyzed TIMELESS expression data from publically accessible online databases. A loss-of-function analysis was then performed using TIMELESS-targeting siRNA oligos followed by a whole-genome expression microarray and network analysis. We further tested the effect of TIMELESS down-regulation on cell proliferation rates of a breast and cervical cancer cell line, as suggested by the results of our network analysis. TIMELESS was found to be frequently overexpressed in different tumor types compared to normal controls. Elevated expression of TIMELESS was significantly associated with more advanced tumor stage and poorer breast cancer prognosis. We identified a cancer-relevant network of transcripts with altered expression following TIMELESS knockdown which contained many genes with known functions in cancer development and progression. Furthermore, we observed that TIMELESS knockdown significantly decreased cell proliferation rate. Our results suggest a potential role for TIMELESS in tumorigenesis, which warrants further investigation of TIMELESS expression as a potential biomarker of cancer susceptibility and prognostic outcome

  16. Decrypting Cryptochrome: Revealing the Molecular Identity of the Photoactivation Reaction

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Domratcheva, Tatiana; Shahi, Abdul Rehaman Moughal;

    2012-01-01

    Migrating birds fly thousand miles and more, often without visual cues and in treacherous winds, yet keep direction. They employ for this purpose, apparently, as a powerful navigational tool the photoreceptor protein cryptochrome to sense the geomagnetic field. The unique biological function of...... pairs, indeed, can act as a magnetic compass. The photo-reaction pathway in cryptochrome is not fully resolved yet. We employ ab initio quantum chemistry and classical all-atom MD simulations for Arabidopsis thaliana cryptochrome to determine how the radical pair is formed, becomes stabilized through...

  17. A Circadian Clock in Neurospora: How Genes and Proteins Cooperate to Produce a Sustained, Entrainable, and Compensated Biological Oscillator with a Period of about a Day

    OpenAIRE

    Dunlap, J C; Loros, J.J.; Colot, H V; Mehra, A.; Belden, W J; Shi, M.; Hong, C.I.; Larrondo, L. F.; Baker, C.L.; Chen, C. -H.; Schwerdtfeger, C.; Collopy, P.D.; Gamsby, J.J.; Lambreghts, R.

    2007-01-01

    Neurospora has proven to be a tractable model system for understanding the molecular bases of circadian rhythms in eukary-otes. At the core of the circadian oscillatory system is a negative feedback loop in which two transcription factors, WC-1 and WC-2, act together to drive expression of the frq gene. WC-2 enters the promoter region of frq coincident with increases in frq expression and then exits when the cycle of transcription is over, whereas WC-1 can always be found there. FRQ promotes ...

  18. Transcriptional profiling in the adrenal gland reveals circadian regulation of hormone biosynthesis genes and nucleosome assembly genes

    NARCIS (Netherlands)

    Oster, Henrik; Damerow, Sebastian; Hut, Roelof A.; Eichele, Gregor

    2006-01-01

    The master circadian pacemaker of the suprachiasmatic nuclei coordinates behavioral and physiological rhythms via synchronization of subordinate peripheral oscillators in the central nervous system and organs throughout the body. Among these organs, the adrenal glands hold a prime position because o

  19. Expression of core clock genes in colorectal tumour cells compared with normal mucosa

    DEFF Research Database (Denmark)

    Fonnes, S; Donatsky, A M; Gögenur, I

    2015-01-01

    AIM: Experimental studies have shown that some circadian core clock genes may act as tumour suppressors and have an important role in the response to oncological treatment. This study investigated the evidence regarding modified expression of core clock genes in colorectal cancer and its...... expression of colorectal cancer cells compared with healthy mucosa cells from specimens analysed by real-time or quantitative real-time polymer chain reaction. The expression of the core clock genes Period, Cryptochrome, Bmal1 and Clock in colorectal tumours were compared with healthy mucosa and correlated...... of Clock. Other core clock genes did not appear to be differentially expressed. Decreased Period gene expression was correlated to some clinicopathological features. CONCLUSION: The Period genes seemed to be modified in colorectal tumour cells compared with normal mucosa. Core clock genes might be...

  20. Mammalian TIMELESS is involved in period determination and DNA damage-dependent phase advancing of the circadian clock.

    Directory of Open Access Journals (Sweden)

    Erik Engelen

    Full Text Available The transcription/translation feedback loop-based molecular oscillator underlying the generation of circadian gene expression is preserved in almost all organisms. Interestingly, the animal circadian clock proteins CRYPTOCHROME (CRY, PERIOD (PER and TIMELESS (TIM are strongly conserved at the amino acid level through evolution. Within this evolutionary frame, TIM represents a fascinating puzzle. While Drosophila contains two paralogs, dTIM and dTIM2, acting in clock/photoreception and chromosome integrity/photoreception respectively, mammals contain only one TIM homolog. Whereas TIM has been shown to regulate replication termination and cell cycle progression, its functional link to the circadian clock is under debate. Here we show that RNAi-mediated knockdown of TIM in NIH3T3 and U2OS cells shortens the period by 1 hour and diminishes DNA damage-dependent phase advancing. Furthermore, we reveal that the N-terminus of TIM is sufficient for interaction with CRY1 and CHK1 as well for homodimerization, and the C-terminus is necessary for nuclear localization. Interestingly, the long TIM isoform (l-TIM, but not the short (s-TIM, interacts with CRY1 and both proteins can reciprocally regulate their nuclear translocation in transiently transfected COS7 cells. Finally, we demonstrate that co-expression of PER2 abolishes the formation of the TIM/CRY1 complex through affinity binding competition to the C-terminal tail of CRY1. Notably, the presence of the latter protein region evolutionarily and structurally distinguishes mammalian from insect CRYs. We propose that the dynamic interaction between these three proteins could represent a post-translational aspect of the mammalian circadian clock that is important for its pace and adaption to external stimuli, such as DNA damage and/or light.

  1. Blue- and red-light regulation and circadian control of gene expression of S-adenosylmethionine decarboxylase in Pharbitis nil

    International Nuclear Information System (INIS)

    The abundance of mRNA for S-adenosylmethionine decarboxylase (SAMDC) (EC 4.1.1.50) in leaves of Pharbitis nil is regulated by light. The level of this mRNA fluctuated dramatically, peaking 45 min after light exposure and then decreasing rapidly to a very low level. The half-life of the SAMDC mRNA was estimated by using actinomycin D to be approximately 30 min, which partly accounts for the rapid decline in the mRNA level after the peak of light induction is reached. The mRNA level for the SAMDC gene increased after light exposure from red, green, blue or UV light, but not after far-red light exposure. The short irradiation of red light increased the expression of the SAMDC gene and this induction was reverted by subsequent far-red light irradiation. The immediate blue light illumination after the initial red light exposure resulted in a further increase in the SAMDC mRNA level. These results indicate that both the blue light photoreceptor- and phytochrome-mediated pathways are involved in the light regulation of the SAMDC gene. The transcription of the SAMDC gene was also shown to be under circadian control. (author)

  2. Circadian regulation of myocardial sarcomeric Titin-cap (Tcap, telethonin: identification of cardiac clock-controlled genes using open access bioinformatics data.

    Directory of Open Access Journals (Sweden)

    Peter S Podobed

    Full Text Available Circadian rhythms are important for healthy cardiovascular physiology and are regulated at the molecular level by a circadian clock mechanism. We and others previously demonstrated that 9-13% of the cardiac transcriptome is rhythmic over 24 h daily cycles; the heart is genetically a different organ day versus night. However, which rhythmic mRNAs are regulated by the circadian mechanism is not known. Here, we used open access bioinformatics databases to identify 94 transcripts with expression profiles characteristic of CLOCK and BMAL1 targeted genes, using the CircaDB website and JTK_Cycle. Moreover, 22 were highly expressed in the heart as determined by the BioGPS website. Furthermore, 5 heart-enriched genes had human/mouse conserved CLOCK:BMAL1 promoter binding sites (E-boxes, as determined by UCSC table browser, circadian mammalian promoter/enhancer database PEDB, and the European Bioinformatics Institute alignment tool (EMBOSS. Lastly, we validated findings by demonstrating that Titin cap (Tcap, telethonin was targeted by transcriptional activators CLOCK and BMAL1 by showing 1 Tcap mRNA and TCAP protein had a diurnal rhythm in murine heart; 2 cardiac Tcap mRNA was rhythmic in animals kept in constant darkness; 3 Tcap and control Per2 mRNA expression and cyclic amplitude were blunted in Clock(Δ19/Δ19 hearts; 4 BMAL1 bound to the Tcap promoter by ChIP assay; 5 BMAL1 bound to Tcap promoter E-boxes by biotinylated oligonucleotide assay; and 6 CLOCK and BMAL1 induced tcap expression by luciferase reporter assay. Thus this study identifies circadian regulated genes in silico, with validation of Tcap, a critical regulator of cardiac Z-disc sarcomeric structure and function.

  3. Folate deprivation modulates the expression of autophagy- and circadian-related genes in HT-22 hippocampal neuron cells through GR-mediated pathway.

    Science.gov (United States)

    Sun, Qinwei; Yang, Yang; Li, Xi; He, Bin; Jia, Yimin; Zhang, Nana; Zhao, Ruqian

    2016-08-01

    Folic acid (FA) is an extremely important nutrient for brain formation and development. FA deficiency is highly linked to brain degeneration and age-related diseases, which are also associated with autophagic activities and circadian rhythm in hippocampal neurons. However, little is known how autophagy- and circadian-related genes in hippocampal neurons are regulated under FA deficiency. Here, hippocampal neuroncells (HT-22) were employed to determine the effect of FA deprivation (FD) on the expression of relevant genes and to reveal the potential role of glucocorticoid receptor (GR). FD increased autophagic activities in HT-22 cells, associated with significantly (PChIP assay showed that FD promoted (Pnetwork in response to folate deficiency. PMID:27133904

  4. A constitutively active cryptochrome in Drosophila melanogaster

    Czech Academy of Sciences Publication Activity Database

    Dissel, S.; Codd, V.; Fedič, Robert; Garner, K. J.; Costa, R.; Kyriacou, C. P.; Rosato, E.

    2004-01-01

    Roč. 7, č. 8 (2004), s. 834-840. ISSN 1097-6256 R&D Projects: GA AV ČR(CZ) KSK5052113 Keywords : Circadian clock * behavioral rhythms * light Subject RIV: ED - Physiology Impact factor: 16.980, year: 2004

  5. The Trichoderma reesei Cry1 protein is a member of the cryptochrome/photolyase family with 6-4 photoproduct repair activity.

    Directory of Open Access Journals (Sweden)

    Jesús Guzmán-Moreno

    Full Text Available DNA-photolyases use UV-visible light to repair DNA damage caused by UV radiation. The two major types of DNA damage are cyclobutane pyrimidine dimers (CPD and 6-4 photoproducts (6-4PP, which are repaired under illumination by CPD and 6-4 photolyases, respectively. Cryptochromes are proteins related to DNA photolyases with strongly reduced or lost DNA repair activity, and have been shown to function as blue-light photoreceptors and to play important roles in circadian rhythms in plants and animals. Both photolyases and cryptochromes belong to the cryptochrome/photolyase family, and are widely distributed in all organisms. Here we describe the characterization of cry1, a member of the cryptochrome/photolyase protein family of the filamentous fungus Trichoderma reesei. We determined that cry1 transcript accumulates when the fungus is exposed to light, and that such accumulation depends on the photoreceptor Blr1 and is modulated by Envoy. Conidia of cry1 mutants show decreased photorepair capacity of DNA damage caused by UV light. In contrast, strains over-expressing Cry1 show increased repair, as compared to the parental strain even in the dark. These observations suggest that Cry1 may be stimulating other systems involved in DNA repair, such as the nucleotide excision repair system. We show that Cry1, heterologously expressed and purified from E. coli, is capable of binding to undamaged and 6-4PP damaged DNA. Photorepair assays in vitro clearly show that Cry1 repairs 6-4PP, but not CPD and Dewar DNA lesions.

  6. CBF gene expression in peach leaf and bark tissues is gated by a circadian clock

    Science.gov (United States)

    CBF transcription factors are part of the AP2/ERF domain family of DNA-binding proteins that recognize a C-repeat response cis-acting element that regulates a number of cold-responsive genes (CBF-regulon). In peach (Prunus persica), five CBF genes are situated in tandem on scaffold (Linkage Group) ...

  7. Circadian Control of Global Transcription

    Science.gov (United States)

    Li, Shujing; Zhang, Luoying

    2015-01-01

    Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions. PMID:26682214

  8. Circadian Control of Global Transcription

    Directory of Open Access Journals (Sweden)

    Shujing Li

    2015-01-01

    Full Text Available Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs. CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions.

  9. Gene Profiling the Response to Repeated Cocaine Self-administration in Dorsal Striatum: A Focus on Circadian Genes

    OpenAIRE

    Lynch, Wendy J.; Girgenti, Matthew J.; Breslin, Florence J.; Newton, Samuel S.; Taylor, Jane R.

    2008-01-01

    Alterations in gene expression in the dorsal striatum caused by chronic cocaine exposure have been implicated in the long-term behavioral changes associated with cocaine addiction. To gain further insight into the molecular alterations that occur as a result of cocaine self-administration, we conducted a microarray analysis of gene expression followed by bioinformatic gene network analysis that allowed us to identify adaptations at the level of gene expression as well as into interconnected n...

  10. The circadian clock in cancer development and therapy

    Science.gov (United States)

    Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The...

  11. Exploring the possibilities for radical pair effects in cryptochrome

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Chandler, Danielle E.; Schulten, Klaus

    2008-01-01

    The ability of some animals to sense magnetic fields has long captured the human imagination. In our recent paper, we explored how radical pair effects in the protein cryptochrome may underlie the magnetic orientation sense of migratory birds. Here we explain our model and discuss its relationship...

  12. Magnetic field effects in Arabidopsis thaliana Cryptochrome-1

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Chandler, Danielle E.; Schulten, Klaus

    2007-01-01

    The ability of some animals, most notably migratory birds, to sense magnetic fields is still poorly understood. It has been suggested that this "magnetic sense" may be mediated by the blue light receptor protein cryptochrome, which is known to be localized in the retinas of migratory birds. Crypt...

  13. Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral Acropora millepora.

    Science.gov (United States)

    Brady, Aisling K; Willis, Bette L; Harder, Lawrence D; Vize, Peter D

    2016-04-01

    Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks. PMID:27132135

  14. Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana.

    Science.gov (United States)

    Harris, Sue-Re; Henbest, Kevin B; Maeda, Kiminori; Pannell, John R; Timmel, Christiane R; Hore, P J; Okamoto, Haruko

    2009-12-01

    The scientific literature describing the effects of weak magnetic fields on living systems contains a plethora of contradictory reports, few successful independent replication studies and a dearth of plausible biophysical interaction mechanisms. Most such investigations have been unsystematic, devoid of testable theoretical predictions and, ultimately, unconvincing. A recent study, of magnetic responses in the model plant Arabidopsis thaliana, however, stands out; it has a clear hypothesis-that seedling growth is magnetically sensitive as a result of photoinduced radical-pair reactions in cryptochrome photoreceptors-tested by measuring several cryptochrome-dependent responses, all of which proved to be enhanced in a magnetic field of intensity 500 muT. The potential importance of this study in the debate on putative effects of extremely low-frequency electromagnetic fields on human health prompted us to subject it to the 'gold standard' of independent replication. With experimental conditions chosen to match those of the original study, we have measured hypocotyl lengths and anthocyanin accumulation for Arabidopsis seedlings grown in a 500 microT magnetic field, with simultaneous control experiments at 50 microT. Additionally, we have determined hypocotyl lengths of plants grown in 50 microT, 1 mT and approximately 100 mT magnetic fields (with zero-field controls), measured gene (CHS, HY5 and GST) expression levels, investigated blue-light intensity effects and explored the influence of sucrose in the growth medium. In no case were consistent, statistically significant magnetic field responses detected. PMID:19324677

  15. Circadian oscillation of starch branching enzyme gene expression in the sorghum endosperm

    Energy Technology Data Exchange (ETDEWEB)

    Mutisya, J.; Sun, C.; Jansson, C.

    2009-08-31

    Expression of the three SBE genes, encoding starch branching enzymes, in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle. Remarkably, the oscillation in SBE expression was maintained in cultured spikes after a 48-h dark treatment, also when fed a continuous solution of sucrose or abscisic acid. Our findings suggest that the rhythmicity in SBE expression in the endosperm is independent of cues from the photosynthetic source and that the oscillator resides within the endosperm itself.

  16. Circadian Gene Circuitry Predicts Hyperactive Behavior in a Mood Disorder Mouse Model

    OpenAIRE

    Hideo Hagihara; Tomoyasu Horikawa; Hironori K. Nakamura; Juzoh Umemori; Hirotaka Shoji; Yukiyasu Kamitani; Tsuyoshi Miyakawa

    2016-01-01

    Bipolar disorder, also known as manic-depressive illness, causes swings in mood and activity levels at irregular intervals. Such changes are difficult to predict, and their molecular basis remains unknown. Here, we use infradian (longer than a day) cyclic activity levels in αCaMKII (Camk2a) mutant mice as a proxy for such mood-associated changes. We report that gene-expression patterns in the hippocampal dentate gyrus could retrospectively predict whether the mice were in a state of high or l...

  17. Circadian Rhythms in Anesthesia and Critical Care Medicine: Potential importance of circadian disruptions

    OpenAIRE

    Brainard, Jason; Gobel, Merit; Bartels, Karsten; Scott, Benjamin; Koeppen, Michael; Eckle, Tobias

    2014-01-01

    The rotation of the earth and associated alternating cycles of light and dark–the basis of our circadian rhythms–are fundamental to human biology and culture. However, it was not until 1971 that researchers first began to describe the molecular mechanisms for the circadian system. During the last few years, groundbreaking research has revealed a multitude of circadian genes affecting a variety of clinical diseases, including diabetes, obesity, sepsis, cardiac ischemia, and sudden cardiac deat...

  18. Coordination of the maize transcriptome by a conserved circadian clock

    Directory of Open Access Journals (Sweden)

    Harmon Frank G

    2010-06-01

    Full Text Available Abstract Background The plant circadian clock orchestrates 24-hour rhythms in internal physiological processes to coordinate these activities with daily and seasonal changes in the environment. The circadian clock has a profound impact on many aspects of plant growth and development, including biomass accumulation and flowering time. Despite recent advances in understanding the circadian system of the model plant Arabidopsis thaliana, the contribution of the circadian oscillator to important agronomic traits in Zea mays and other cereals remains poorly defined. To address this deficit, this study investigated the transcriptional landscape of the maize circadian system. Results Since transcriptional regulation is a fundamental aspect of circadian systems, genes exhibiting circadian expression were identified in the sequenced maize inbred B73. Of the over 13,000 transcripts examined, approximately 10 percent displayed circadian expression patterns. The majority of cycling genes had peak expression at subjective dawn and dusk, similar to other plant circadian systems. The maize circadian clock organized co-regulation of genes participating in fundamental physiological processes, including photosynthesis, carbohydrate metabolism, cell wall biogenesis, and phytohormone biosynthesis pathways. Conclusions Circadian regulation of the maize genome was widespread and key genes in several major metabolic pathways had circadian expression waveforms. The maize circadian clock coordinated transcription to be coincident with oncoming day or night, which was consistent with the circadian oscillator acting to prepare the plant for these major recurring environmental changes. These findings highlighted the multiple processes in maize plants under circadian regulation and, as a result, provided insight into the important contribution this regulatory system makes to agronomic traits in maize and potentially other C4 plant species.

  19. Intergeneric complementation of a circadian rhythmicity defect : phylogenetic conservation of structure and function of the clock gene frequency

    NARCIS (Netherlands)

    Merrow, Martha W.; Dunlap, Jay C.; Dover, G.

    1994-01-01

    The Neurospora crassa frequency locus encodes a 989 amino acid protein that is a central component, a state variable, of the circadian biological clock. We have determined the sequence of all or part of this protein and surrounding regulatory regions from additional fungi representing three genera a

  20. Molecular Mechanisms of Circadian Regulation During Spaceflight

    Science.gov (United States)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ip

  1. Analysis of Circadian Leaf Movements.

    Science.gov (United States)

    Müller, Niels A; Jiménez-Gómez, José M

    2016-01-01

    The circadian clock is a molecular timekeeper that controls a wide variety of biological processes. In plants, clock outputs range from the molecular level, with rhythmic gene expression and metabolite content, to physiological processes such as stomatal conductance or leaf movements. Any of these outputs can be used as markers to monitor the state of the circadian clock. In the model plant Arabidopsis thaliana, much of the current knowledge about the clock has been gained from time course experiments profiling expression of endogenous genes or reporter constructs regulated by the circadian clock. Since these methods require labor-intensive sample preparation or transformation, monitoring leaf movements is an interesting alternative, especially in non-model species and for natural variation studies. Technological improvements both in digital photography and image analysis allow cheap and easy monitoring of circadian leaf movements. In this chapter we present a protocol that uses an autonomous point and shoot camera and free software to monitor circadian leaf movements in tomato. PMID:26867616

  2. Entrainment of the Neurospora circadian clock

    NARCIS (Netherlands)

    Merrow, M; Boesl, C; Ricken, J; Messerschmitt, M; Goedel, M; Roenneberg, T

    2006-01-01

    Neurospora crassa has been systematically investigated for circadian entrainment behavior. Many aspects of synchronization can be investigated in this simple, cellular system, ranging from systematic entrainment and drivenness to masking. Clock gene expression during entrainment and entrainment with

  3. Development of circadian oscillators in neurosphere cultures during adult neurogenesis.

    Directory of Open Access Journals (Sweden)

    Astha Malik

    Full Text Available Circadian rhythms are common in many cell types but are reported to be lacking in embryonic stem cells. Recent studies have described possible interactions between the molecular mechanism of circadian clocks and the signaling pathways that regulate stem cell differentiation. Circadian rhythms have not been examined well in neural stem cells and progenitor cells that produce new neurons and glial cells during adult neurogenesis. To evaluate circadian timing abilities of cells undergoing neural differentiation, neurospheres were prepared from the mouse subventricular zone (SVZ, a rich source of adult neural stem cells. Circadian rhythms in mPer1 gene expression were recorded in individual spheres, and cell types were characterized by confocal immunofluorescence microscopy at early and late developmental stages in vitro. Circadian rhythms were observed in neurospheres induced to differentiate into neurons or glia, and rhythms emerged within 3-4 days as differentiation proceeded, suggesting that the neural stem cell state suppresses the functioning of the circadian clock. Evidence was also provided that neural stem progenitor cells derived from the SVZ of adult mice are self-sufficient clock cells capable of producing a circadian rhythm without input from known circadian pacemakers of the organism. Expression of mPer1 occurred in high frequency oscillations before circadian rhythms were detected, which may represent a role for this circadian clock gene in the fast cycling of gene expression responsible for early cell differentiation.

  4. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism

    OpenAIRE

    Gegear, Robert J; Foley, Lauren E.; Casselman, Amy; Reppert, Steven M.

    2010-01-01

    Understanding the biophysical basis of animal magnetoreception has been one of the greatest challenges in sensory biology. Recently, it was discovered that the light-dependent magnetic sense of Drosophila melanogaster is mediated by the ultraviolet (UV)-A/blue light photoreceptor Cryptochrome (Cry)1. We now show using a transgenic approach that the photoreceptive, Drosophila-like Type 1 Cry and the transcriptionally repressive, vertebrate-like Type 2 Cry of the monarch butterfly (Danaus plexi...

  5. Electron spin relaxation in cryptochrome-based magnetoreception.

    Science.gov (United States)

    Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J

    2016-05-14

    The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have a significant effect on the coherent spin dynamics of the radicals. It is generally assumed that evolutionary pressure has led to protection of the electron spins from irreversible loss of coherence in order that the underlying quantum dynamics can survive in a noisy biological environment. Here, we address this question for a structurally characterized model cryptochrome expected to share many properties with the putative avian receptor protein. To this end we combine all-atom molecular dynamics simulations, Bloch-Redfield relaxation theory and spin dynamics calculations to assess the effects of spin relaxation on the performance of the protein as a compass sensor. Both flavin-tryptophan and flavin-Z˙ radical pairs are studied (Z˙ is a radical with no hyperfine interactions). Relaxation is considered to arise from modulation of hyperfine interactions by librational motions of the radicals and fluctuations in certain dihedral angles. For Arabidopsis thaliana cryptochrome 1 (AtCry1) we find that spin relaxation implies optimal radical pair lifetimes of the order of microseconds, and that flavin-Z˙ pairs are less affected by relaxation than flavin-tryptophan pairs. Our results also demonstrate that spin relaxation in isolated AtCry1 is incompatible with the long coherence times that have been postulated to explain the disruption of the avian magnetic compass sense by weak radiofrequency magnetic fields. We conclude that a cryptochrome sensor in vivo would have to differ dynamically, if not structurally, from isolated AtCry1. Our results clearly mark the limits of the current hypothesis and lead to a better understanding of the operation of radical pair magnetic sensors

  6. Reaction Kinetics and Mechanism of Magnetic Field Effects in Cryptochrome

    OpenAIRE

    Ilia A Solov'yov; Schulten, Klaus

    2012-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and birds have an intriguing ‘sixth’ sense that allows them to orient themselves in the Earth's magnetic field. Despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of animal eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities...

  7. The circadian clock coordinates ribosome biogenesis.

    Directory of Open Access Journals (Sweden)

    Céline Jouffe

    Full Text Available Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis.

  8. Period gene expression in relation to seasonality and circadian rhythms in the linden bug,Pyrrhocoris apterus (Heteroptera)

    Czech Academy of Sciences Publication Activity Database

    Hodková, Magdalena; Syrová, Zdeňka; Doležel, David; Šauman, Ivo

    2003-01-01

    Roč. 100, - (2003), s. 267-273. ISSN 1210-5759 R&D Projects: GA ČR GA206/02/0900; GA ČR GA204/01/0404 Institutional research plan: CEZ:AV0Z5007907 Keywords : circadian clock * per mRNA * photoperiod Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.741, year: 2003

  9. Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption.

    Directory of Open Access Journals (Sweden)

    Jana Husse

    Full Text Available Human and animal studies demonstrate that short sleep or poor sleep quality, e.g. in night shift workers, promote the development of obesity and diabetes. Effects of sleep disruption on glucose homeostasis and liver physiology are well documented. However, changes in adipokine levels after sleep disruption suggest that adipocytes might be another important peripheral target of sleep. Circadian clocks regulate metabolic homeostasis and clock disruption can result in obesity and the metabolic syndrome. The finding that sleep and clock disruption have very similar metabolic effects prompted us to ask whether the circadian clock machinery may mediate the metabolic consequences of sleep disruption. To test this we analyzed energy homeostasis and adipocyte transcriptome regulation in a mouse model of shift work, in which we prevented mice from sleeping during the first six hours of their normal inactive phase for five consecutive days (timed sleep restriction--TSR. We compared the effects of TSR between wild-type and Per1/2 double mutant mice with the prediction that the absence of a circadian clock in Per1/2 mutants would result in a blunted metabolic response to TSR. In wild-types, TSR induces significant transcriptional reprogramming of white adipose tissue, suggestive of increased lipogenesis, together with increased secretion of the adipokine leptin and increased food intake, hallmarks of obesity and associated leptin resistance. Some of these changes persist for at least one week after the end of TSR, indicating that even short episodes of sleep disruption can induce prolonged physiological impairments. In contrast, Per1/2 deficient mice show blunted effects of TSR on food intake, leptin levels and adipose transcription. We conclude that the absence of a functional clock in Per1/2 double mutants protects these mice from TSR-induced metabolic reprogramming, suggesting a role of the circadian timing system in regulating the physiological effects

  10. Circadian and wakefulness-sleep modulation of cognition in humans.

    Science.gov (United States)

    Wright, Kenneth P; Lowry, Christopher A; Lebourgeois, Monique K

    2012-01-01

    Cognitive and affective processes vary over the course of the 24 h day. Time of day dependent changes in human cognition are modulated by an internal circadian timekeeping system with a near-24 h period. The human circadian timekeeping system interacts with sleep-wakefulness regulatory processes to modulate brain arousal, neurocognitive and affective function. Brain arousal is regulated by ascending brain stem, basal forebrain (BF) and hypothalamic arousal systems and inhibition or disruption of these systems reduces brain arousal, impairs cognition, and promotes sleep. The internal circadian timekeeping system modulates cognition and affective function by projections from the master circadian clock, located in the hypothalamic suprachiasmatic nuclei (SCN), to arousal and sleep systems and via clock gene oscillations in brain tissues. Understanding the basic principles of circadian and wakefulness-sleep physiology can help to recognize how the circadian system modulates human cognition and influences learning, memory and emotion. Developmental changes in sleep and circadian processes and circadian misalignment in circadian rhythm sleep disorders have important implications for learning, memory and emotion. Overall, when wakefulness occurs at appropriate internal biological times, circadian clockwork benefits human cognitive and emotion function throughout the lifespan. Yet, when wakefulness occurs at inappropriate biological times because of environmental pressures (e.g., early school start times, long work hours that include work at night, shift work, jet lag) or because of circadian rhythm sleep disorders, the resulting misalignment between circadian and wakefulness-sleep physiology leads to impaired cognitive performance, learning, emotion, and safety. PMID:22529774

  11. Circadian and Wakefulness-Sleep Modulation of Cognition in Humans

    Directory of Open Access Journals (Sweden)

    Kenneth P Wright

    2012-04-01

    Full Text Available Cognitive and affective processes vary over the course of the 24 hour day. Time of day dependent changes in human cognition are modulated by an internal circadian timekeeping system with a near-24-hour period. The human circadian timekeeping system interacts with sleep-wakefulness regulatory processes to modulate brain arousal, neurocognitive and affective function. Brain arousal is regulated by ascending brain stem, basal forebrain and hypothalamic arousal systems and inhibition or disruption of these systems reduces brain arousal, impairs cognition, and promotes sleep. The internal circadian timekeeping system modulates cognition and affective function by projections from the master circadian clock, located in the hypothalamic suprachiasmatic nuclei, to arousal and sleep systems and via clock gene oscillations in brain tissues. Understanding the basic principles of circadian and wakefulness-sleep physiology can help to recognize how the circadian system modulates human cognition and influences learning, memory and emotion. Developmental changes in sleep and circadian processes and circadian misalignment in circadian rhythm sleep disorders have important implications for learning, memory and emotion. Overall, when wakefulness occurs at appropriate internal biological times, circadian clockwork benefits human cognitive and emotion function throughout the lifespan. Yet, when wakefulness occurs at inappropriate biological times because of environmental pressures (e.g., early school start times, long work hours that include work at night, shift work, jet lag or because of circadian rhythm sleep disorders, the resulting misalignment between circadian and wakefulness-sleep physiology leads to impaired cognitive performance, learning, emotion, and safety.

  12. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production

    Directory of Open Access Journals (Sweden)

    Izabela eChincinska

    2013-02-01

    Full Text Available Several recent publications report different subcellular localisation of members of the SUT4 subfamily of sucrose transporters. The physiological function of SUT4 sucrose transporters is still not entirely clarified as down-regulation of members of the SUT4 clade had very different effects in rice, poplar and potato. Here, we provide new data on the localization and function of the Solanaceous StSUT4 protein, further elucidating involvement in the onset of flowering, tuberization and in the shade avoidance syndrome of potato plants.Induction of early flowering and tuberization in SUT4-inhibited potato plants correlates with increased sucrose export from leaves and increased sucrose and starch accumulation in terminal sink organs such as developing tubers. SUT4 does not only affect the expression of gibberellin and ethylene biosynthetic enzymes, but also the rate of ethylene synthesis in potato. In SUT4-inhibited plants, the ethylene production no longer follows a diurnal rhythm, leading to the assumption that StSUT4 controls circadian gene expression, potentially by regulating sucrose export from leaves. Furthermore, SUT4 expression affects clock-regulated genes such as StFT, StSOC1 and StCO, which might also be involved in a photoperiod-dependently controlled tuberization. A model is proposed in which StSUT4 controls a phloem-mobile signalling molecule generated in leaves which together with enhanced sucrose export affects developmental switches in apical meristems. SUT4 seems to link photoreceptor-perceived information about the light quality and day length, with phytohormone biosynthesis and the expression of circadian genes.

  13. Proteomics of the photoneuroendocrine circadian system of the brain

    DEFF Research Database (Denmark)

    Møller, Morten; Lund-Andersen, Casper; Rovsing, Louise;

    2010-01-01

    The photoneuroendocrine circadian system of the brain consists of (a) specialized photoreceptors in the retina, (b) a circadian generator located in the forebrain that contains "clock genes," (c) specialized nuclei in the forebrain involved in neuroendocrine secretion, and (d) the pineal gland. The...... circadian generator is a nucleus, called the suprachiasmatic nucleus (SCN). The neurons of this nucleus contain "clock genes," the transcription of which exhibits a circadian rhythm. Most circadian rhythms are generated by the neurons of this nucleus and, via neuronal and humoral connections, the SCN......-generating system in mammals is described, and recent proteomic studies that investigate day/night changes in the retina, SCN, and pineal gland are reviewed. Further circadian changes controlled by the SCN in gene and protein expression in the liver are discussed....

  14. Expression profiling of skeletal muscle following acute and chronic β2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm

    Directory of Open Access Journals (Sweden)

    Lynch Gordon S

    2009-09-01

    administration also appeared to influence some genes associated with the peripheral regulation of circadian rhythm (including nuclear factor interleukin 3 regulated, D site albumin promoter binding protein, and cryptochrome 2. Conclusion This is the first study to utilize gene expression profiling to examine global gene expression in response to acute β2-AR agonist treatment of skeletal muscle. In summary, systemic administration of a β2-AR agonist had a profound effect on global gene expression in skeletal muscle. In terms of hypertrophy, β2-AR agonist treatment altered the expression of several genes associated with myostatin signaling, a previously unreported effect of β-AR signaling in skeletal muscle. This study also demonstrates a β2-AR agonist regulation of circadian rhythm genes, indicating crosstalk between β-AR signaling and circadian cycling in skeletal muscle. Gene expression alterations discovered in this study provides insight into many of the underlying changes in gene expression that mediate β-AR induced skeletal muscle hypertrophy and altered metabolism.

  15. Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana

    Science.gov (United States)

    Harris, Sue-Re; Henbest, Kevin B.; Maeda, Kiminori; Pannell, John R.; Timmel, Christiane R.; Hore, P.J.; Okamoto, Haruko

    2009-01-01

    The scientific literature describing the effects of weak magnetic fields on living systems contains a plethora of contradictory reports, few successful independent replication studies and a dearth of plausible biophysical interaction mechanisms. Most such investigations have been unsystematic, devoid of testable theoretical predictions and, ultimately, unconvincing. A recent study, of magnetic responses in the model plant Arabidopsis thaliana, however, stands out; it has a clear hypothesis—that seedling growth is magnetically sensitive as a result of photoinduced radical-pair reactions in cryptochrome photoreceptors—tested by measuring several cryptochrome-dependent responses, all of which proved to be enhanced in a magnetic field of intensity 500 μT. The potential importance of this study in the debate on putative effects of extremely low-frequency electromagnetic fields on human health prompted us to subject it to the ‘gold standard’ of independent replication. With experimental conditions chosen to match those of the original study, we have measured hypocotyl lengths and anthocyanin accumulation for Arabidopsis seedlings grown in a 500 μT magnetic field, with simultaneous control experiments at 50 μT. Additionally, we have determined hypocotyl lengths of plants grown in 50 μT, 1 mT and approximately 100 mT magnetic fields (with zero-field controls), measured gene (CHS, HY5 and GST) expression levels, investigated blue-light intensity effects and explored the influence of sucrose in the growth medium. In no case were consistent, statistically significant magnetic field responses detected. PMID:19324677

  16. Circadian Rhythm Abnormalities

    OpenAIRE

    Zee, Phyllis C.; Attarian, Hrayr; Videnovic, Aleksandar

    2013-01-01

    Purpose: This article reviews the recent advances in understanding of the fundamental properties of circadian rhythms and discusses the clinical features, diagnosis, and treatment of circadian rhythm sleep disorders (CRSDs).

  17. Circadian Rhythm Sleep Disorders

    Science.gov (United States)

    ... psychiatric and other sleep disorders such as sleep apnea and individuals with a strong need for stable ... and circadian rhythm sleep disorder, free-running type. Prevalence • The prevalence of circadian rhythm sleep disorders in ...

  18. HnRNP Q Has a Suppressive Role in the Translation of Mouse Cryptochrome1.

    Directory of Open Access Journals (Sweden)

    Ilgye Lim

    Full Text Available Precise regulation of gene expression is especially important for circadian timekeeping which is maintained by the proper oscillation of the mRNA and protein of clock genes and clock-controlled genes. As a main component of the core negative arm feedback loops in the circadian clock, the Cry1 gene contributes to the maintenance of behavioral and molecular rhythmicity. Despite the central role of Cry1, the molecular mechanisms regulating expression levels of Cry1 mRNA and protein are not well defined. In particular, the post-transcriptional regulation of Cry1 mRNA fate decisions is unclear. Here, we demonstrate that hnRNP Q binds to mCry1 mRNA via the 5'UTR. Furthermore, hnRNP Q inhibits the translation of mCry1 mRNA, leading to altered rhythmicity in the mCRY1 protein profile.

  19. Clock circadian regulator (CLOCK) gene network expression patterns in bovine adipose, liver, and mammary gland at 3 time points during the transition from pregnancy into lactation.

    Science.gov (United States)

    Wang, M; Zhou, Z; Khan, M J; Gao, J; Loor, J J

    2015-07-01

    The transition from late gestation to early lactation is the most critical phase of the lactation cycle for mammals. Research in rodents has revealed changes in the clock circadian regulator (CLOCK) gene network expression around parturition. However, their expression profiles and putative functions during the periparturient period in ruminants remain to be determined. The present study aimed to investigate the expression pattern of the CLOCK network and selected metabolic genes simultaneously in mammary gland (MG), liver (LIV), and subcutaneous adipose tissue (AT). Seven dairy cows were biopsied at -10 (±2), 7, and 21 d relative to parturition. A day × tissue interaction was observed for ARNTL, CRY1, and PER2 due to upregulation at 7 and 21 d postpartum, with their expression being greater in AT and MG compared with LIV. No interaction was detected for CLOCK, CRY2, PER1, and PER3. In general, the expression of NPAS2, NR1D1, NR2F2, ALAS1, FECH, FBXW11, CCRN4L, PPARA, PPARGC1A, and FGF21 was lower at -10 d but increased postpartum in all tissues. The interaction detected for CSNK1D was associated with increased expression postpartum in AT and MG but not LIV. The interaction detected for CPT1A was due to upregulation in AT and LIV postpartum without a change in MG. In contrast, the interaction for PPARG was due to upregulation in AT and MG postpartum but a downregulation in LIV. Leptin was barely detectable in LIV, but there was an interaction effect in AT and MG associated with upregulation postpartum in MG and downregulation in AT. Together, these results suggest that the control of metabolic adaptations in LIV, MG, and AT around parturition might be partly regulated through the CLOCK gene network. Although the present study did not specifically address rhythmic control of tissue metabolism via the CLOCK gene network, the difference in expression of genes studied among tissues confirms that the behavior of circadian-controlled metabolic genes around parturition

  20. Electron spin relaxation in cryptochrome-based magnetoreception

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J

    2016-01-01

    The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have...... a significant effect on the coherent spin dynamics of the radicals. It is generally assumed that evolutionary pressure has led to protection of the electron spins from irreversible loss of coherence in order that the underlying quantum dynamics can survive in a noisy biological environment. Here, we address...

  1. Circadian Clock Regulates Bone Resorption in Mice.

    Science.gov (United States)

    Xu, Cheng; Ochi, Hiroki; Fukuda, Toru; Sato, Shingo; Sunamura, Satoko; Takarada, Takeshi; Hinoi, Eiichi; Okawa, Atsushi; Takeda, Shu

    2016-07-01

    The circadian clock controls many behavioral and physiological processes beyond daily rhythms. Circadian dysfunction increases the risk of cancer, obesity, and cardiovascular and metabolic diseases. Although clinical studies have shown that bone resorption is controlled by circadian rhythm, as indicated by diurnal variations in bone resorption, the molecular mechanism of circadian clock-dependent bone resorption remains unknown. To clarify the role of circadian rhythm in bone resorption, aryl hydrocarbon receptor nuclear translocator-like (Bmal1), a prototype circadian gene, was knocked out specifically in osteoclasts. Osteoclast-specific Bmal1-knockout mice showed a high bone mass phenotype due to reduced osteoclast differentiation. A cell-based assay revealed that BMAL1 upregulated nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (Nfatc1) transcription through its binding to an E-box element located on the Nfatc1 promoter in cooperation with circadian locomotor output cycles kaput (CLOCK), a heterodimer partner of BMAL1. Moreover, steroid receptor coactivator (SRC) family members were shown to interact with and upregulate BMAL1:CLOCK transcriptional activity. Collectively, these data suggest that bone resorption is controlled by osteoclastic BMAL1 through interactions with the SRC family and binding to the Nfatc1 promoter. © 2016 American Society for Bone and Mineral Research. PMID:26841172

  2. Circadian influences on myocardial infarction.

    Science.gov (United States)

    Virag, Jitka A I; Lust, Robert M

    2014-01-01

    Components of circadian rhythm maintenance, or "clock genes," are endogenous entrainable oscillations of about 24 h that regulate biological processes and are found in the suprachaismatic nucleus (SCN) and many peripheral tissues, including the heart. They are influenced by external cues, or Zeitgebers, such as light and heat, and can influence such diverse phenomena as cytokine expression immune cells, metabolic activity of cardiac myocytes, and vasodilator regulation by vascular endothelial cells. While it is known that the central master clock in the SCN synchronizes peripheral physiologic rhythms, the mechanisms by which the information is transmitted are complex and may include hormonal, metabolic, and neuronal inputs. Whether circadian patterns are causally related to the observed periodicity of events, or whether they are simply epi-phenomena is not well established, but a few studies suggest that the circadian effects likely are real in their impact on myocardial infarct incidence. Cycle disturbances may be harbingers of predisposition and subsequent response to acute and chronic cardiac injury, and identifying the complex interactions of circadian rhythms and myocardial infarction may provide insights into possible preventative and therapeutic strategies for susceptible populations. PMID:25400588

  3. Shifting the circadian rhythm of feeding in mice induces gastrointestinal, metabolic and immune alterations which are influenced by ghrelin and the core clock gene Bmal1.

    Directory of Open Access Journals (Sweden)

    Jorien Laermans

    Full Text Available BACKGROUND: In our 24-hour society, an increasing number of people are required to be awake and active at night. As a result, the circadian rhythm of feeding is seriously compromised. To mimic this, we subjected mice to restricted feeding (RF, a paradigm in which food availability is limited to short and unusual times of day. RF induces a food-anticipatory increase in the levels of the hunger hormone ghrelin. We aimed to investigate whether ghrelin triggers the changes in body weight and gastric emptying that occur during RF. Moreover, the effect of genetic deletion of the core clock gene Bmal1 on these physiological adaptations was studied. METHODS: Wild-type, ghrelin receptor knockout and Bmal1 knockout mice were fed ad libitum or put on RF with a normal or high-fat diet (HFD. Plasma ghrelin levels were measured by radioimmunoassay. Gastric contractility was studied in vitro in muscle strips and in vivo (13C breath test. Cytokine mRNA expression was quantified and infiltration of immune cells was assessed histologically. RESULTS: The food-anticipatory increase in plasma ghrelin levels induced by RF with normal chow was abolished in HFD-fed mice. During RF, body weight restoration was facilitated by ghrelin and Bmal1. RF altered cytokine mRNA expression levels and triggered contractility changes resulting in an accelerated gastric emptying, independent from ghrelin signaling. During RF with a HFD, Bmal1 enhanced neutrophil recruitment to the stomach, increased gastric IL-1α expression and promoted gastric contractility changes. CONCLUSIONS: This is the first study demonstrating that ghrelin and Bmal1 regulate the extent of body weight restoration during RF, whereas Bmal1 controls the type of inflammatory infiltrate and contractility changes in the stomach. Disrupting the circadian rhythm of feeding induces a variety of diet-dependent metabolic, immune and gastrointestinal alterations, which may explain the higher prevalence of obesity and

  4. Identification of Soybean Genes Involved in Circadian Clock Mechanism and Photoperiodic Control of Flowering Time by In Silico Analyses Flowering Time by In Silico Analyses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Glycine max is a photoperiodic short-day plant and the practical consequence of the response is latitude and sowing period limitations to commercial crops.Genetic and physiological studies using the model plants Arabidopsis thaliana and rice (Oryza sativa)have uncovered several genes and genetic pathways controlling the process,however information about the corresponding pathways in legumes is scarce.Data mining prediction methodologies,Including multiple sequence alignment,phylogenetic analysis,bioinformatics expression and sequence motif pattern identification were used to identify soybean genes involved In day length perception and photoperiodic flowering induction.We have investigated approximately 330 000 sequences from open-access databases and have identified all bona fide central oscillator genes and circadian photoreceptors from A.thaliana in soybean sequence databases.We propose e working model for the photoperiodic control of flowering time in G.max,based on the identified key components.These results demonstrate the power of comparative genomics between model systems and crop species to elucidate the several aspects of plant physiology and metabolism.

  5. Circadian influences on myocardial infarction

    OpenAIRE

    Virag, Jitka A. I.; Lust, Robert M.

    2014-01-01

    Components of circadian rhythm maintenance, or “clock genes,” are endogenous entrainable oscillations of about 24 h that regulate biological processes and are found in the suprachaismatic nucleus (SCN) and many peripheral tissues, including the heart. They are influenced by external cues, or Zeitgebers, such as light and heat, and can influence such diverse phenomena as cytokine expression immune cells, metabolic activity of cardiac myocytes, and vasodilator regulation by vascular endothelial...

  6. Mechanisms by which circadian rhythm disruption may lead to cancer

    Directory of Open Access Journals (Sweden)

    L. C. Roden

    2010-02-01

    Full Text Available Humans have evolved in a rhythmic environment and display daily (circadian rhythms in physiology, metabolism and behaviour that are in synchrony with the solar day. Modern lifestyles have compromised the exposure to bright light during the day and dark nights, resulting in the desynchronisation of endogenously generated circadian rhythms from the external environment and loss of coordination between rhythms within the body. This has detrimental effects on physical and mental health, due to the misregulation and uncoupling of important cellular and physiological processes. Long-term shift workers who are exposed to bright light at night experience the greatest disruption of their circadian rhythms. Studies have shown an association between exposure to light at night, circadian rhythm disruption and an increased risk of cancer. Previous reviews have explored the relevance of light and melatonin in cancer, but here we explore the correlation of circadian rhythm disruption and cancer in terms of molecular mechanisms affecting circadian gene expression and melatonin secretion.

  7. Circadian rhythms and addiction: mechanistic insights and future directions.

    Science.gov (United States)

    Logan, Ryan W; Williams, Wilbur P; McClung, Colleen A

    2014-06-01

    Circadian rhythms are prominent in many physiological and behavioral functions. Circadian disruptions either by environmental or molecular perturbation can have profound health consequences, including the development and progression of addiction. Both animal and humans studies indicate extensive bidirectional relationships between the circadian system and drugs of abuse. Addicted individuals display disrupted rhythms, and chronic disruption or particular chronotypes may increase the risk for substance abuse and relapse. Moreover, polymorphisms in circadian genes and an evening chronotype have been linked to mood and addiction disorders, and recent efforts suggest an association with the function of reward neurocircuitry. Animal studies are beginning to determine how altered circadian gene function results in drug-induced neuroplasticity and behaviors. Many studies suggest a critical role for circadian rhythms in reward-related pathways in the brain and indicate that drugs of abuse directly affect the central circadian pacemaker. In this review, we highlight key findings demonstrating the importance of circadian rhythms in addiction and how future studies will reveal important mechanistic insights into the involvement of circadian rhythms in drug addiction. PMID:24731209

  8. The Circadian Clock-Controlled Transcriptome of Developing Soybean Seeds.

    Science.gov (United States)

    A number of metabolic and physiological processes in plants are controlled by the circadian clock, which enables the plant to anticipate daily changes in the environment. Microarray expression profiling was used to identify circadian clock controlled genes expressed in developing soybean seeds. 1.8...

  9. Development and entrainment of the colonic circadian clock during ontogenesis

    Czech Academy of Sciences Publication Activity Database

    Polidarová, Lenka; Olejníková, Lucie; Paušlyová, Lucia; Sládek, Martin; Soták, Matúš; Pácha, Jiří; Sumová, Alena

    2014-01-01

    Roč. 306, č. 4 (2014), G346-G356. ISSN 0193-1857 R&D Projects: GA ČR(CZ) GAP303/12/1108 Institutional support: RVO:67985823 Keywords : circadian clock * clock gene * ontogenesis * circadian entrainment Subject RIV: ED - Physiology Impact factor: 3.798, year: 2014

  10. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators...... residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice with...... conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje and...

  11. Circadian Rhythms and Mood Disorders: Are the Phenomena and Mechanisms Causally Related?

    OpenAIRE

    Bechtel, William

    2015-01-01

    This paper reviews some of the compelling evidence of disrupted circadian rhythms in individuals with mood disorders (major depressive disorder, seasonal affective disorder, and bipolar disorder) and that treatments such as bright light, designed to alter circadian rhythms, are effective in treating these disorders. Neurotransmitters in brain regions implicated in mood regulation exhibit circadian rhythms. A mouse model originally employed to identify a circadian gene has proven a potent mode...

  12. Circadian Rhythms and Mood Disorders: Are The Phenomena and Mechanisms Causally Related?

    OpenAIRE

    William eBechtel

    2015-01-01

    This paper reviews some of the compelling evidence of disrupted circadian rhythms in individuals with mood disorders (major depressive disorder, seasonal affective disorder, and bipolar disorder) and that treatments such as bright light, designed to alter circadian rhythms, are effective in treating these disorders. Neurotransmitters in brain regions implicated in mood regulation exhibit circadian rhythms. A mouse model originally employed to identify a circadian gene has proven a potent mode...

  13. Ablation of the ID2 gene results in altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue.

    Directory of Open Access Journals (Sweden)

    Deepa Mathew

    Full Text Available Inhibitor of DNA binding 2 (ID2 is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our earlier studies have demonstrated a role for ID2 in the input pathway, core clock function and output pathways of the mouse circadian system. We have also reported that Id2 null (Id2-/- mice are lean with low gonadal white adipose tissue deposits and lower lipid content in the liver. These results coincided with altered or disrupted circadian expression profiles of liver genes including those involved in lipid metabolism. In the present phenotypic study we intended to decipher, on a sex-specific basis, the role of ID2 in glucose metabolism and in the circadian regulation of activity, important components of energy balance. We find that Id2-/- mice exhibited altered daily and circadian rhythms of feeding and locomotor activity; activity profiles extended further into the late night/dark phase of the 24-hr cycle, despite mice showing reduced total locomotor activity. Also, male Id2-/- mice consumed a greater amount of food relative to body mass, and displayed less weight gain. Id2-/- females had smaller adipocytes, suggesting sexual-dimorphic programing of adipogenesis. We observed increased glucose tolerance and insulin sensitivity in male Id2-/- mice, which was exacerbated in older animals. FDG-PET analysis revealed increased glucose uptake by skeletal muscle and brown adipose tissue of male Id2-/- mice, suggesting increased glucose metabolism and thermogenesis in these tissues. Reductions in intramuscular triacylglycerol and diacylglycerol were detected in male Id2-/- mice, highlighting its possible mechanistic role in enhanced insulin sensitivity in these mice. Our findings indicate a role for ID2 as a regulator of glucose and lipid metabolism, and in the circadian control of feeding/locomotor behavior; and contribute to the understanding of the development of obesity and diabetes, particularly in shift work

  14. Ablation of the ID2 gene results in altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue.

    Science.gov (United States)

    Mathew, Deepa; Zhou, Peng; Pywell, Cameron M; van der Veen, Daan R; Shao, Jinping; Xi, Yang; Bonar, Nicolle A; Hummel, Alyssa D; Chapman, Sarah; Leevy, W Matthew; Duffield, Giles E

    2013-01-01

    Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our earlier studies have demonstrated a role for ID2 in the input pathway, core clock function and output pathways of the mouse circadian system. We have also reported that Id2 null (Id2-/-) mice are lean with low gonadal white adipose tissue deposits and lower lipid content in the liver. These results coincided with altered or disrupted circadian expression profiles of liver genes including those involved in lipid metabolism. In the present phenotypic study we intended to decipher, on a sex-specific basis, the role of ID2 in glucose metabolism and in the circadian regulation of activity, important components of energy balance. We find that Id2-/- mice exhibited altered daily and circadian rhythms of feeding and locomotor activity; activity profiles extended further into the late night/dark phase of the 24-hr cycle, despite mice showing reduced total locomotor activity. Also, male Id2-/- mice consumed a greater amount of food relative to body mass, and displayed less weight gain. Id2-/- females had smaller adipocytes, suggesting sexual-dimorphic programing of adipogenesis. We observed increased glucose tolerance and insulin sensitivity in male Id2-/- mice, which was exacerbated in older animals. FDG-PET analysis revealed increased glucose uptake by skeletal muscle and brown adipose tissue of male Id2-/- mice, suggesting increased glucose metabolism and thermogenesis in these tissues. Reductions in intramuscular triacylglycerol and diacylglycerol were detected in male Id2-/- mice, highlighting its possible mechanistic role in enhanced insulin sensitivity in these mice. Our findings indicate a role for ID2 as a regulator of glucose and lipid metabolism, and in the circadian control of feeding/locomotor behavior; and contribute to the understanding of the development of obesity and diabetes, particularly in shift work personnel among whom

  15. Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs.

    OpenAIRE

    Miriam Liedvogel; Kiminori Maeda; Kevin Henbest; Erik Schleicher; Thomas Simon; Timmel, Christiane R.; Hore, P. J.; Henrik Mouritsen

    2007-01-01

    Cryptochromes (Cry) have been suggested to form the basis of light-dependent magnetic compass orientation in birds. However, to function as magnetic compass sensors, the cryptochromes of migratory birds must possess a number of key biophysical characteristics. Most importantly, absorption of blue light must produce radical pairs with lifetimes longer than about a microsecond. Cryptochrome 1a (gwCry1a) and the photolyase-homology-region of Cry1 (gwCry1-PHR) from the migratory garden warbler we...

  16. Chemical Magnetoreception: Bird Cryptochrome 1a Is Excited by Blue Light and Forms Long-Lived Radical-Pairs

    OpenAIRE

    Liedvogel, M; Maeda, K.; Henbest, K; Schleicher, E; Simon, T.; Timmel, CR; Hore, PJ; Mouritsen, H

    2007-01-01

    Cryptochromes (Cry) have been suggested to form the basis of light-dependent magnetic compass orientation in birds. However, to function as magnetic compass sensors, the cryptochromes of migratory birds must possess a number of key biophysical characteristics. Most importantly, absorption of blue light must produce radical pairs with lifetimes longer than about a microsecond. Cryptochrome 1a (gwCry1a) and the photolyase-homology-region of Cry1 (gwCry1-PHR) from the migratory garden warbler we...

  17. Synergistic interactions between the molecular and neuronal circadian networks drive robust behavioral circadian rhythms in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ron Weiss

    2014-04-01

    Full Text Available Most organisms use 24-hr circadian clocks to keep temporal order and anticipate daily environmental changes. In Drosophila melanogaster CLOCK (CLK and CYCLE (CYC initiates the circadian system by promoting rhythmic transcription of hundreds of genes. However, it is still not clear whether high amplitude transcriptional oscillations are essential for circadian timekeeping. In order to address this issue, we generated flies in which the amplitude of CLK-driven transcription can be reduced partially (approx. 60% or strongly (90% without affecting the average levels of CLK-target genes. The impaired transcriptional oscillations lead to low amplitude protein oscillations that were not sufficient to drive outputs of peripheral oscillators. However, circadian rhythms in locomotor activity were resistant to partial reduction in transcriptional and protein oscillations. We found that the resilience of the brain oscillator is depending on the neuronal communication among circadian neurons in the brain. Indeed, the capacity of the brain oscillator to overcome low amplitude transcriptional oscillations depends on the action of the neuropeptide PDF and on the pdf-expressing cells having equal or higher amplitude of molecular rhythms than the rest of the circadian neuronal groups in the fly brain. Therefore, our work reveals the importance of high amplitude transcriptional oscillations for cell-autonomous circadian timekeeping. Moreover, we demonstrate that the circadian neuronal network is an essential buffering system that protects against changes in circadian transcription in the brain.

  18. Neuroimaging, cognition, light and circadian rhythms

    Directory of Open Access Journals (Sweden)

    Giulia eGaggioni

    2014-07-01

    Full Text Available In humans, sleep and wakefulness and the associated cognitive processes are regulated through interactions between sleep homeostasis and the circadian system. Chronic disruption of sleep and circadian rhythmicity is common in our society and there is a need for a better understanding of the brain mechanisms regulating sleep, wakefulness and associated cognitive processes. This review summarizes recent investigations which provide first neural correlates of the combined influence of sleep homeostasis and circadian rhythmicity on cognitive brain activity. Markers of interindividual variations in sleep-wake regulation, such as chronotype and polymorphisms in sleep and clock genes, are associated with changes in cognitive brain responses in subcortical and cortical areas in response to manipulations of the sleep-wake cycle. This review also includes recent data showing that cognitive brain activity is regulated by light, which is a powerful modulator of cognition and alertness and also directly impacts sleep and circadian rhythmicity. The effect of light varied with age, psychiatric status, PERIOD3 genotype and changes in sleep homeostasis and circadian phase. These data provide new insights into the contribution of demographic characteristics, the sleep-wake cycle, circadian rhythmicity and light to brain functioning.

  19. Circadian Clock Control of Liver Metabolic Functions.

    Science.gov (United States)

    Reinke, Hans; Asher, Gad

    2016-03-01

    The circadian clock is an endogenous biological timekeeping system that synchronizes physiology and behavior to day/night cycles. A wide variety of processes throughout the entire gastrointestinal tract and notably the liver appear to be under circadian control. These include various metabolic functions such as nutrient uptake, processing, and detoxification, which align organ function to cycle with nutrient supply and demand. Remarkably, genetic or environmental disruption of the circadian clock can cause metabolic diseases or exacerbate pathological states. In addition, modern lifestyles force more and more people worldwide into asynchrony between the external time and their circadian clock, resulting in a constant state of social jetlag. Recent evidence indicates that interactions between altered energy metabolism and disruptions in the circadian clock create a downward spiral that can lead to diabetes and other metabolic diseases. In this review, we provide an overview of rhythmic processes in the liver and highlight the functions of circadian clock genes under physiological and pathological conditions; we focus on their roles in regulation of hepatic glucose as well as lipid and bile acid metabolism and detoxification and their potential effects on the development of fatty liver and nonalcoholic steatohepatitis. PMID:26657326

  20. The promoter activities of sucrose phosphate synthase genes in rice, OsSPS1 and OsSPS11, are controlled by light and circadian clock, but not by sucrose

    Directory of Open Access Journals (Sweden)

    Madoka eYonekura

    2013-03-01

    Full Text Available Although sucrose plays a role in sugar sensing and its signaling pathway, little is known about the regulatory mechanisms of the expressions of plant sucrose-related genes. Our previous study on the expression of the sucrose phosphate synthase gene family in rice (OsSPSs suggested the involvement of sucrose sensing and/or circadian rhythm in the transcriptional regulation of OsSPS. To examine whether the promoters of OsSPSs can be controlled by sugars and circadian clock, we produced transgenic rice plants harboring a promoter–luciferase construct for OsSPS1 or OsSPS11 and analyzed the changes in the promoter activities by monitoring bioluminescence from intact transgenic plants in real time. Transgenic plants fed sucrose, glucose, or mannitol under continuous light conditions showed no changes in bioluminescence intensity; meanwhile, the addition of sucrose increased the concentration of sucrose in the plants, and the mRNA levels of OsSPS remained constant. These results suggest that these OsSPS promoters may not be regulated by sucrose levels in the tissues. Next, we investigated the changes in the promoter activities under 12-h light/12-h dark cycles and continuous light conditions. Under the light–dark cycle, both OsSPS1 and OsSPS11 promoter activities were low in the dark and increased rapidly after the beginning of the light period. When the transgenic rice plants were moved to the continuous light condition, both POsSPS1::LUC and POsSPS11::LUC reporter plants exhibited circadian bioluminescence rhythms; bioluminescence peaked during the subjective day with a 27-h period: in the early morning as for OsSPS1 promoter and midday for OsSPS11 promoter. These results indicate that these OsSPS promoters are controlled by both light illumination and circadian clock and that the regulatory mechanism of promoter activity differs between the 2 OsSPS genes.

  1. Molecular Mechanisms of Circadian Regulation During Spaceflight

    Science.gov (United States)

    Zanello, Susana; Boyle, Richard

    2011-01-01

    Disruption of the regular environmental circadian cues in addition to stringent and demanding operational schedules are two main factors that undoubtedly impact sleep patterns and vigilant performance in the astronaut crews during spaceflight. Most research is focused on the behavioral aspects of the risk of circadian desynchronization, characterized by fatigue and health and performance decrement. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate this risk. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. The molecular clock consists of sets of proteins that perform different functions within the clock machinery: circadian oscillators (genes whose expression levels cycle during the day, keep the pass of cellular time and regulate downstream effector genes), the effector or output genes (those which impact the physiology of the tissue or organism), and the input genes (responsible for sensing the environmental cues that allow circadian entrainment). The main environmental cue is light. As opposed to the known photoreceptors (rods and cones), the non-visual light stimulus is received by a subset of the population of retinal ganglion cells called intrinsically photosensitive retinal ganglion cells (ipRGC) that express melanopsin (opsin 4 -Opn4-) as the photoreceptor. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight. To answer this question, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (animal enclosure module) mice were used as ground controls. Opn4 expression was analyzed by real time RT/qPCR and retinal sections were stained for Opn4

  2. Quantum effects in ultrafast electron transfers within cryptochromes.

    Science.gov (United States)

    Firmino, Thiago; Mangaud, Etienne; Cailliez, Fabien; Devolder, Adrien; Mendive-Tapia, David; Gatti, Fabien; Meier, Christoph; Desouter-Lecomte, Michèle; de la Lande, Aurélien

    2016-08-21

    Cryptochromes and photolyases are flavoproteins that may undergo ultrafast charge separation upon electronic excitation of their flavin cofactors. Charge separation involves chains of three or four tryptophan residues depending on the protein of interest. The molecular mechanisms of these processes are not completely clear. In the present work we investigate the relevance of quantum effects like the occurrence of nuclear tunneling and of coherences upon charge transfer in Arabidopsis thaliana cryptochromes. The possible breakdown of the Condon approximation is also investigated. We have devised a simulation protocol based on the realization of molecular dynamics simulations on diabatic potential energy surfaces defined at the hybrid constrained density functional theory/molecular mechanics level. The outcomes of the simulations are analyzed through various dedicated kinetics schemes related to the Marcus theory that account for the aforementioned quantum effects. MD simulations also provide a basic material to define realistic model Hamiltonians for subsequent quantum dissipative dynamics. To carry out quantum simulations, we have implemented an algorithm based on the Hierarchical Equations of Motion. With this new tool in hand we have been able to model the electron transfer chain considering either two- or three-state models. Kinetic models and quantum simulations converge to the conclusion that quantum effects have a significant impact on the rate of charge separation. Nuclear tunneling involving atoms of the tryptophan redox cofactors as well as of the environment (protein atoms and water molecules) is significant. On the other hand non-Condon effects are negligible in most simulations. Taken together, the results of the present work provide new insights into the molecular mechanisms controlling charge separation in this family of flavoproteins. PMID:27427185

  3. Circadian Clock genes Per2 and clock regulate steroid production, cell proliferation, and luteinizing hormone receptor transcription in ovarian granulosa cells

    International Nuclear Information System (INIS)

    Highlights: → Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression. →Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom. → Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. →Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. → The expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. -- Abstract: Circadian Clock genes are associated with the estrous cycle in female animals. Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression in follicle-stimulating hormone FSH-treated granulosa cells. Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom, whereas Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. Similarly, expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. Our data provide a new insight that Per2 and Clock have different action on ovarian granulosa cell functions.

  4. Sympathetic Activation Induces Skeletal Fgf23 Expression in a Circadian Rhythm-dependent Manner*

    Science.gov (United States)

    Kawai, Masanobu; Kinoshita, Saori; Shimba, Shigeki; Ozono, Keiichi; Michigami, Toshimi

    2014-01-01

    The circadian clock network is well known to link food intake and metabolic outputs. Phosphorus is a pivotal nutritional factor involved in energy and skeletal metabolisms and possesses a circadian profile in the circulation; however, the precise mechanisms whereby phosphate metabolism is regulated by the circadian clock network remain largely unknown. Because sympathetic tone, which displays a circadian profile, is activated by food intake, we tested the hypothesis that phosphate metabolism was regulated by the circadian clock network through the modification of food intake-associated sympathetic activation. Skeletal Fgf23 expression showed higher expression during the dark phase (DP) associated with elevated circulating FGF23 levels and enhanced phosphate excretion in the urine. The peaks in skeletal Fgf23 expression and urine epinephrine levels, a marker for sympathetic tone, shifted from DP to the light phase (LP) when mice were fed during LP. Interestingly, β-adrenergic agonist, isoproterenol (ISO), induced skeletal Fgf23 expression when administered at ZT12, but this was not observed in Bmal1-deficient mice. In vitro reporter assays revealed that ISO trans-activated Fgf23 promoter through a cAMP responsive element in osteoblastic UMR-106 cells. The mechanism of circadian regulation of Fgf23 induction by ISO in vivo was partly explained by the suppressive effect of Cryptochrome1 (Cry1) on ISO signaling. These results indicate that the regulation of skeletal Fgf23 expression by sympathetic activity is dependent on the circadian clock system and may shed light on new regulatory networks of FGF23 that could be important for understanding the physiology of phosphate metabolism. PMID:24302726

  5. Methylation on the Circadian Gene BMAL1 Is Associated with the Effects of a Weight Loss Intervention on Serum Lipid Levels.

    Science.gov (United States)

    Samblas, Mirian; Milagro, Fermin I; Gómez-Abellán, Purificación; Martínez, J Alfredo; Garaulet, Marta

    2016-06-01

    The circadian clock system has been linked to the onset and development of obesity and some accompanying comorbidities. Epigenetic mechanisms, such as DNA methylation, are putatively involved in the regulation of the circadian clock system. The aim of this study was to investigate the influence of a weight loss intervention based on an energy-controlled Mediterranean dietary pattern in the methylation levels of 3 clock genes, BMAL1, CLOCK, and NR1D1, and the association between the methylation levels and changes induced in the serum lipid profile with the weight loss treatment. The study sample enrolled 61 women (body mass index = 28.6 ± 3.4 kg/m(2); age: 42.2 ± 11.4 years), who followed a nutritional program based on a Mediterranean dietary pattern. DNA was isolated from whole blood obtained at the beginning and end point. Methylation levels at different CpG sites of BMAL1, CLOCK, and NR1D1 were analyzed by Sequenom's MassArray. The energy-restricted intervention modified the methylation levels of different CpG sites in BMAL1 (CpGs 5, 6, 7, 9, 11, and 18) and NR1D1 (CpGs 1, 10, 17, 18, 19, and 22). Changes in cytosine methylation in the CpG 5 to 9 region of BMAL1 with the intervention positively correlated with the eveningness profile (p = 0.019). The baseline methylation of the CpG 5 to 9 region in BMAL1 positively correlated with energy (p = 0.047) and carbohydrate (p = 0.017) intake and negatively correlated with the effect of the weight loss intervention on total cholesterol (p = 0.032) and low-density lipoprotein cholesterol (p = 0.005). Similar significant and positive correlations were found between changes in methylation levels in the CpG 5 to 9 region of BMAL1 due to the intervention and changes in serum lipids (p lipids levels. PMID:26873744

  6. Pathophysiology and pathogenesis of circadian rhythm sleep disorders

    Directory of Open Access Journals (Sweden)

    Hida Akiko

    2012-03-01

    Full Text Available Abstract Metabolic, physiological and behavioral processes exhibit 24-hour rhythms in most organisms, including humans. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues. The transcription and translation feedback loops of multiple clock genes are involved in the molecular mechanism of the circadian system. Disturbed circadian rhythms are known to be closely related to many diseases, including sleep disorders. Advanced sleep phase type, delayed sleep phase type and nonentrained type of circadian rhythm sleep disorders (CRSDs are thought to result from disorganization of the circadian system. Evaluation of circadian phenotypes is indispensable to understanding the pathophysiology of CRSD. It is laborious and costly to assess an individual's circadian properties precisely, however, because the subject is usually required to stay in a laboratory environment free from external cues and masking effects for a minimum of several weeks. More convenient measurements of circadian rhythms are therefore needed to reduce patients' burden. In this review, we discuss the pathophysiology and pathogenesis of CRSD as well as surrogate measurements for assessing an individual's circadian phenotype.

  7. Interactions between the circadian clock and metabolism: there are good times and bad times

    Institute of Scientific and Technical Information of China (English)

    Mi Shi; Xiangzhong Zheng

    2013-01-01

    An endogenous circadian (~24 h) clock regulates rhythmic processes of physiology,metabolism and behavior in most living organisms.While able to free-run under constant conditions,the circadian clock is coupled to day:night cycles to increase its amplitude and align the phase of circadian rhythms to the right time of the day.Disruptions of the circadian clock are correlated with brain dysfunctions,cardiovascular diseases and metabolic disorders.In this review,we focus on the interactions between the circadian clock and metabolism.We discuss recent findings on circadian clock regulation of feeding behavior and rhythmic expression of metabolic genes,and present evidence of metabolic input to the circadian clock.We emphasize how misalignment of circadian clocks within the body and with environmental cycles or daily schedules leads to the increasing prevalence of metabolic syndromes in modern society.

  8. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor

    NARCIS (Netherlands)

    Lamia, Katja A.; Papp, Stephanie J.; Yu, Ruth T.; Barish, Grant D.; Uhlenhaut, N. Henriette; Jonker, Johan W.; Downes, Michael; Evans, Ronald M.

    2011-01-01

    Mammalian metabolism is highly circadian and major hormonal circuits involving nuclear hormone receptors display interlinked diurnal cycling(1,2). However, mechanisms that logically explain the coordination of nuclear hormone receptors and the clock are poorly understood. Here we show that two circa

  9. Photoperiodic Modulation of Circadian Clock and Reproductive Axis Gene Expression in the Pre-Pubertal European Sea Bass Brain

    Science.gov (United States)

    Martins, Rute S. T.; Gomez, Ana; Zanuy, Silvia; Carrillo, Manuel; Canário, Adelino V. M.

    2015-01-01

    The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG) axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL) alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP) accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis. PMID:26641263

  10. Circadian Rhythms and Mood Disorders: Are The Phenomena and Mechanisms Causally Related?

    Directory of Open Access Journals (Sweden)

    William eBechtel

    2015-08-01

    Full Text Available This paper reviews some of the compelling evidence of disrupted circadian rhythms in individuals with mood disorders (major depressive disorder, seasonal affective disorder, and bipolar disorder and that treatments such as bright light, designed to alter circadian rhythms, are effective in treating these disorders. Neurotransmitters in brain regions implicated in mood regulation exhibit circadian rhythms. A mouse model originally employed to identify a circadian gene has proven a potent model for mania. While this evidence is suggestive of an etiological role for altered circadian rhythms in mood disorders, it is compatible with other explanations, including that disrupted circadian rhythms and mood disorders are effects of a common cause and that genes and proteins implicated in both simply have pleiotropic effects. In light of this, the paper advances a proposal as to what evidence would be needed to establish a direct causal link between disruption of circadian rhythms and mood disorders.

  11. Circadian Rhythms and Mood Disorders: Are the Phenomena and Mechanisms Causally Related?

    Science.gov (United States)

    Bechtel, William

    2015-01-01

    This paper reviews some of the compelling evidence of disrupted circadian rhythms in individuals with mood disorders (major depressive disorder, seasonal affective disorder, and bipolar disorder) and that treatments such as bright light, designed to alter circadian rhythms, are effective in treating these disorders. Neurotransmitters in brain regions implicated in mood regulation exhibit circadian rhythms. A mouse model originally employed to identify a circadian gene has proven a potent model for mania. While this evidence is suggestive of an etiological role for altered circadian rhythms in mood disorders, it is compatible with other explanations, including that disrupted circadian rhythms and mood disorders are effects of a common cause and that genes and proteins implicated in both simply have pleiotropic effects. In light of this, the paper advances a proposal as to what evidence would be needed to establish a direct causal link between disruption of circadian rhythms and mood disorders. PMID:26379559

  12. Mechanisms of geomagnetic field influence on gene expression using influenza as a model system: basics of physical epidemiology.

    Science.gov (United States)

    Zaporozhan, Valeriy; Ponomarenko, Andriy

    2010-03-01

    Recent studies demonstrate distinct changes in gene expression in cells exposed to a weak magnetic field (MF). Mechanisms of this phenomenon are not understood yet. We propose that proteins of the Cryptochrome family (CRY) are "epigenetic sensors" of the MF fluctuations, i.e., magnetic field-sensitive part of the epigenetic controlling mechanism. It was shown that CRY represses activity of the major circadian transcriptional complex CLOCK/BMAL1. At the same time, function of CRY, is apparently highly responsive to weak MF because of radical pairs that periodically arise in the functionally active site of CRY and mediate the radical pair mechanism of magnetoreception. It is known that the circadian complex influences function of every organ and tissue, including modulation of both NF-kappaB- and glucocorticoids- dependent signaling pathways. Thus, MFs and solar cycles-dependent geomagnetic field fluctuations are capable of altering expression of genes related to function of NF-kappaB, hormones and other biological regulators. Notably, NF-kappaB, along with its significant role in immune response, also participates in differential regulation of influenza virus RNA synthesis. Presented data suggests that in the case of global application (example-geomagnetic field), MF-mediated regulation may have epidemiological and other consequences. PMID:20617011

  13. Mechanisms of Geomagnetic Field Influence on Gene Expression Using Influenza as a Model System: Basics of Physical Epidemiology

    Directory of Open Access Journals (Sweden)

    Andriy Ponomarenko

    2010-03-01

    Full Text Available Recent studies demonstrate distinct changes in gene expression in cells exposed to a weak magnetic field (MF. Mechanisms of this phenomenon are not understood yet. We propose that proteins of the Cryptochrome family (CRY are "epigenetic sensors" of the MF fluctuations, i.e., magnetic field-sensitive part of the epigenetic controlling mechanism. It was shown that CRY represses activity of the major circadian transcriptional complex CLOCK/BMAL1. At the same time, function of CRY, is apparently highly responsive to weak MF because of radical pairs that periodically arise in the functionally active site of CRY and mediate the radical pair mechanism of magnetoreception. It is known that the circadian complex influences function of every organ and tissue, including modulation of both NF-κB- and glucocorticoids- dependent signaling pathways. Thus, MFs and solar cycles-dependent geomagnetic field fluctuations are capable of altering expression of genes related to function of NF-κB, hormones and other biological regulators. Notably, NF-κB, along with its significant role in immune response, also participates in differential regulation of influenza virus RNA synthesis. Presented data suggests that in the case of global application (example—geomagnetic field, MF-mediated regulation may have epidemiological and other consequences.

  14. Comprehensive analysis of circadian periodic pattern in plant transcriptome

    OpenAIRE

    Ptitsyn Andrey

    2008-01-01

    Abstract Background Circadian rhythm is a crucial factor in orchestration of plant physiology, keeping it in synchrony with the daylight cycle. Previous studies have reported that up to 16% of plant transcriptome are circadially expressed. Results Our studies of mammalian gene expression revealed circadian baseline oscillation in nearly 100% of genes. Here we present a comprehensive analysis of periodicity in two independent data sets. Application of the advanced algorithms and analytic appro...

  15. Effect of circadian rhythm disturbance on morphine preference and addiction in male rats: Involvement of period genes and dopamine D1 receptor.

    Science.gov (United States)

    Garmabi, B; Vousooghi, N; Vosough, M; Yoonessi, A; Bakhtazad, A; Zarrindast, M R

    2016-05-13

    It is claimed that a correlation exists between disturbance of circadian rhythms by factors such as alteration of normal light-dark cycle and the development of addiction. However, the exact mechanisms involved in this relationship are not much understood. Here we have studied the effect of constant light on morphine voluntary consumption and withdrawal symptoms and also investigated the involvement of Per1, Per2 and dopamine D1 receptor in these processes. Male wistar rats were kept under standard (LD) or constant light (LL) conditions for one month. The plasma concentration of melatonin was evaluated by enzyme-linked immunosorbent assay (ELISA). Real-time PCR was used to determine the mRNA expression of Per1, Per2 and dopamine D1 receptor in the striatum and prefrontal cortex. Morphine preference (50mg/L) was evaluated in a two-bottle-choice paradigm for 10weeks and withdrawal symptoms were recorded after administration of naloxone (3mg/kg). One month exposure to constant light resulted in a significant decrease of melatonin concentration in the LL group. In addition, mRNA levels of Per2 and dopamine D1 receptor were up-regulated in both the striatum and prefrontal cortex of the LL group. However, expression of Per1 gene was only up-regulated in the striatum of LL rats in comparison to LD animals. Furthermore, after one month exposure to constant light, morphine consumption and preference ratio and also severity of naloxone-induced withdrawal syndrome were significantly greater in LL animals. It is concluded that exposure to constant light by up-regulation of Per2 and dopamine D1 receptor in the striatum and prefrontal cortex and up-regulation of Per1 in the striatum and the possible involvement of melatonin makes animals vulnerable to morphine preference and addiction. PMID:26892296

  16. Quantification of circadian rhythms in single cells.

    Directory of Open Access Journals (Sweden)

    Pål O Westermark

    2009-11-01

    Full Text Available Bioluminescence techniques allow accurate monitoring of the circadian clock in single cells. We have analyzed bioluminescence data of Per gene expression in mouse SCN neurons and fibroblasts. From these data, we extracted parameters such as damping rate and noise intensity using two simple mathematical models, one describing a damped oscillator driven by noise, and one describing a self-sustained noisy oscillator. Both models describe the data well and enabled us to quantitatively characterize both wild-type cells and several mutants. It has been suggested that the circadian clock is self-sustained at the single cell level, but we conclude that present data are not sufficient to determine whether the circadian clock of single SCN neurons and fibroblasts is a damped or a self-sustained oscillator. We show how to settle this question, however, by testing the models' predictions of different phases and amplitudes in response to a periodic entrainment signal (zeitgeber.

  17. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism.

    Science.gov (United States)

    Gegear, Robert J; Foley, Lauren E; Casselman, Amy; Reppert, Steven M

    2010-02-11

    Understanding the biophysical basis of animal magnetoreception has been one of the greatest challenges in sensory biology. Recently it was discovered that the light-dependent magnetic sense of Drosophila melanogaster is mediated by the ultraviolet (UV)-A/blue light photoreceptor cryptochrome (Cry). Here we show, using a transgenic approach, that the photoreceptive, Drosophila-like type 1 Cry and the transcriptionally repressive, vertebrate-like type 2 Cry of the monarch butterfly (Danaus plexippus) can both function in the magnetoreception system of Drosophila and require UV-A/blue light (wavelength below 420 nm) to do so. The lack of magnetic responses for both Cry types at wavelengths above 420 nm does not fit the widely held view that tryptophan triad-generated radical pairs mediate the ability of Cry to sense a magnetic field. We bolster this assessment by using a mutant form of Drosophila and monarch type 1 Cry and confirm that the tryptophan triad pathway is not crucial in magnetic transduction. Together, these results suggest that animal Crys mediate light-dependent magnetoreception through an unconventional photochemical mechanism. This work emphasizes the utility of Drosophila transgenesis for elucidating the precise mechanisms of Cry-mediated magnetosensitivity in insects and also in vertebrates such as migrating birds. PMID:20098414

  18. Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor

    Science.gov (United States)

    Kattnig, Daniel R.; Sowa, Jakub K.; Solov'yov, Ilia A.; Hore, P. J.

    2016-06-01

    The radical pair model of the avian magnetoreceptor relies on long-lived electron spin coherence. Dephasing, resulting from interactions of the spins with their fluctuating environment, is generally assumed to degrade the sensitivity of this compass to the direction of the Earth's magnetic field. Here we argue that certain spin relaxation mechanisms can enhance its performance. We focus on the flavin–tryptophan radical pair in cryptochrome, currently the only candidate magnetoreceptor molecule. Correlation functions for fluctuations in the distance between the two radicals in Arabidopsis thaliana cryptochrome 1 were obtained from molecular dynamics (MD) simulations and used to calculate the spin relaxation caused by modulation of the exchange and dipolar interactions. We find that intermediate spin relaxation rates afford substantial enhancements in the sensitivity of the reaction yields to an Earth-strength magnetic field. Supported by calculations using toy radical pair models, we argue that these enhancements could be consistent with the molecular dynamics and magnetic interactions in avian cryptochromes.

  19. The Molecular Circadian Clock and Alcohol-Induced Liver Injury

    Science.gov (United States)

    Udoh, Uduak S.; Valcin, Jennifer A.; Gamble, Karen L.; Bailey, Shannon M.

    2015-01-01

    Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases. PMID:26473939

  20. The Molecular Circadian Clock and Alcohol-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Uduak S. Udoh

    2015-10-01

    Full Text Available Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases.

  1. Daily rhythmicity of clock gene transcripts in atlantic cod fast skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carlo C Lazado

    Full Text Available The classical notion of a centralized clock that governs circadian rhythmicity has been challenged with the discovery of peripheral oscillators that enable organisms to cope with daily changes in their environment. The present study aimed to identify the molecular clock components in Atlantic cod (Gadus morhua and to investigate their daily gene expression in fast skeletal muscle. Atlantic cod clock genes were closely related to their orthologs in teleosts and tetrapods. Synteny was conserved to varying degrees in the majority of the 18 clock genes examined. In particular, aryl hydrocarbon receptor nuclear translocator-like 2 (arntl2, RAR-related orphan receptor A (rora and timeless (tim displayed high degrees of conservation. Expression profiling during the early ontogenesis revealed that some transcripts were maternally transferred, namely arntl2, cryptochrome 1b and 2 (cry1b and cry2, and period 2a and 2b (per2a and per2b. Most clock genes were ubiquitously expressed in various tissues, suggesting the possible existence of multiple peripheral clock systems in Atlantic cod. In particular, they were all detected in fast skeletal muscle, with the exception of neuronal PAS (Per-Arnt-Single-minded domain-containing protein (npas1 and rora. Rhythmicity analysis revealed 8 clock genes with daily rhythmic expression, namely arntl2, circadian locomotor output cycles kaput (clock, npas2, cry2, cry3 per2a, nuclear receptor subfamily 1, group D, member 1 (nr1d1, and nr1d2a. Transcript levels of the myogenic genes myogenic factor 5 (myf5 and muscleblind-like 1 (mbnl1 strongly correlated with clock gene expression. This is the first study to unravel the molecular components of peripheral clocks in Atlantic cod. Taken together, our data suggest that the putative clock system in fast skeletal muscle of Atlantic cod has regulatory implications on muscle physiology, particularly in the expression of genes related to myogenesis.

  2. Brain photoreceptor pathways contributing to circadian rhythmicity in crayfish.

    Science.gov (United States)

    Sullivan, Jeremy M; Genco, Maria C; Marlow, Elizabeth D; Benton, Jeanne L; Beltz, Barbara S; Sandeman, David C

    2009-08-01

    Freshwater crayfish have three known photoreceptive systems: the compound eyes, extraretinal brain photoreceptors, and caudal photoreceptors. The primary goal of the work described here was to explore the contribution of the brain photoreceptors to circadian locomotory activity and define some of the underlying neural pathways. Immunocytochemical studies of the brain photoreceptors in the parastacid (southern hemisphere) crayfish Cherax destructor reveal their expression of the blue light-sensitive photopigment cryptochrome and the neurotransmitter histamine. The brain photoreceptors project to two small protocerebral neuropils, the brain photoreceptor neuropils (BPNs), where they terminate among fibers expressing the neuropeptide pigment-dispersing hormone (PDH), a signaling molecule in arthropod circadian systems. Comparable pathways are also described in the astacid (northern hemisphere) crayfish Procambarus clarkii. Despite exhibiting markedly different diurnal locomotor activity rhythms, removal of the compound eyes and caudal photoreceptors in both C. destructor and P. clarkii (leaving the brain photoreceptors intact) does not abolish the normal light/dark activity cycle in either species, nor prevent the entrainment of their activity cycles to phase shifts of the light/dark period. These results suggest, therefore, that crayfish brain photoreceptors are sufficient for the entrainment of locomotor activity rhythms to photic stimuli, and that they can act in the absence of the compound eyes and caudal photoreceptors. We also demonstrate that the intensity of PDH expression in the BPNs varies in phase with the locomotor activity rhythm of both crayfish species. Together, these findings suggest that the brain photoreceptor cells can function as extraretinal circadian photoreceptors and that the BPN represents part of an entrainment pathway synchronizing locomotor activity to environmental light/dark cycles, and implicating the neuropeptide PDH in these functions

  3. The mood stabilizer valproic acid opposes the effects of dopamine on circadian rhythms.

    OpenAIRE

    Landgraf, D; Joiner, WJ; McCarthy, MJ; Kiessling, S.; Barandas, R; Young, JW; Cermakian, N; Welsh, DK

    2016-01-01

    Endogenous circadian (∼24 h) clocks regulate key physiological and cognitive processes via rhythmic expression of clock genes. The main circadian pacemaker is the hypothalamic suprachiasmatic nucleus (SCN). Mood disorders, including bipolar disorder (BD), are commonly associated with disturbed circadian rhythms. Dopamine (DA) contributes to mania in BD and has direct impact on clock gene expression. Therefore, we hypothesized that high levels of DA during episodes of mania contribute to distu...

  4. Circadian Misalignment and Health

    OpenAIRE

    Baron, Kelly Glazer; Reid, Kathryn J.

    2014-01-01

    Circadian rhythms are near 24-hour patterns of physiology and behavior that are present independent of external cues including hormones, body temperature, mood, and sleep propensity. The term “circadian misalignment” describes a variety of circumstances, such as inappropriately timed sleep and wake, misalignment of sleep/wake with feeding rhythms, or misaligned central and peripheral rhythms. The predominance of early research focused on misalignment of sleep to the biological night. However,...

  5. Photoperiodic plasticity in circadian clock neurons in insects

    Directory of Open Access Journals (Sweden)

    Sakiko eShiga

    2013-08-01

    Full Text Available Since Bünning’s observation of circadian rhythms and photoperiodism in the runner bean Phaseolus multiflorus in 1936, many studies have shown that photoperiodism is based on the circadian clock system. In insects, involvement of circadian clock genes or neurons has been recently shown in the photoperiodic control of developmental arrests, diapause. Based on molecular and neuronal studies in Drosophila melanogaster, photoperiodic changes have been reported for expression patterns of the circadian clock genes, subcellular distribution of clock proteins, fiber distribution, or the number of plausible clock neurons in different species. Photoperiod sets peaks of per or tim mRNA abundance at lights-off in Sarcophaga crassipalpis, Chymomyza costata and Protophormia terraenovae. Abundance of per and Clock mRNA changes by photoperiod in Pyrrhocoris apterus. Subcellular Per distribution in circadian clock neurons changes with photoperiod in P. terraenovae. Although photoperiodism is not known in Leucophaea maderae, under longer day length, more stomata and longer commissural fibers of circadian clock neurons have been found. These plastic changes in the circadian clock neurons could be an important constituent for photoperiodic clock mechanisms to integrate repetitive photoperiodic information and produce different outputs based on day length.

  6. Circadian rhythm sleep disorders

    Directory of Open Access Journals (Sweden)

    Morgenthaler TI

    2012-05-01

    Full Text Available Bhanu P Kolla,1,2 R Robert Auger,1,2 Timothy I Morgenthaler11Mayo Center for Sleep Medicine, 2Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USAAbstract: Misalignment between endogenous circadian rhythms and the light/dark cycle can result in pathological disturbances in the form of erratic sleep timing (irregular sleep–wake rhythm, complete dissociation from the light/dark cycle (circadian rhythm sleep disorder, free-running type, delayed sleep timing (delayed sleep phase disorder, or advanced sleep timing (advanced sleep phase disorder. Whereas these four conditions are thought to involve predominantly intrinsic mechanisms, circadian dysrhythmias can also be induced by exogenous challenges, such as those imposed by extreme work schedules or rapid transmeridian travel, which overwhelm the ability of the master clock to entrain with commensurate rapidity, and in turn impair approximation to a desired sleep schedule, as evidenced by the shift work and jet lag sleep disorders. This review will focus on etiological underpinnings, clinical assessments, and evidence-based treatment options for circadian rhythm sleep disorders. Topics are subcategorized when applicable, and if sufficient data exist. The length of text associated with each disorder reflects the abundance of associated literature, complexity of management, overlap of methods for assessment and treatment, and the expected prevalence of each condition within general medical practice.Keywords: circadian rhythm sleep disorders, assessment, treatment

  7. Separation of photo-induced radical pair in cryptochrome to a functionally critical distance

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Domratcheva, Tatiana; Schulten, Klaus

    2014-01-01

    Cryptochrome is a blue light receptor that acts as a sensor for the geomagnetic field and assists many animals in long-range navigation. The magnetoreceptor function arises from light-induced formation of a radical pair through electron transfer between a flavin cofactor (FAD) and a triad of tryp...

  8. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds

    Science.gov (United States)

    Nießner, Christine; Denzau, Susanne; Stapput, Katrin; Ahmad, Margaret; Peichl, Leo; Wiltschko, Wolfgang; Wiltschko, Roswitha

    2013-01-01

    The radical pair model proposes that the avian magnetic compass is based on radical pair processes in the eye, with cryptochrome, a flavoprotein, suggested as receptor molecule. Cryptochrome 1a (Cry1a) is localized at the discs of the outer segments of the UV/violet cones of European robins and chickens. Here, we show the activation characteristics of a bird cryptochrome in vivo under natural conditions. We exposed chickens for 30 min to different light regimes and analysed the amount of Cry1a labelled with an antiserum against an epitope at the C-terminus of this protein. The staining after exposure to sunlight and to darkness indicated that the antiserum labels only an illuminated, activated form of Cry1a. Exposure to narrow-bandwidth lights of various wavelengths revealed activated Cry1a at UV, blue and turquoise light. With green and yellow, the amount of activated Cry1a was reduced, and with red, as in the dark, no activated Cry1a was labelled. Activated Cry1a is thus found at all those wavelengths at which birds can orient using their magnetic inclination compass, supporting the role of Cry1a as receptor molecule. The observation that activated Cry1a and well-oriented behaviour occur at 565 nm green light, a wavelength not absorbed by the fully oxidized form of cryptochrome, suggests that a state other than the previously suggested Trp•/FAD• radical pair formed during photoreduction is crucial for detecting magnetic directions. PMID:23966619

  9. Crystallization and preliminary X-ray analysis of cryptochrome 3 from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Recombinant cryptochrome 3 from A. thaliana with FAD and MTHF cofactors has been crystallized using the hanging-drop vapour-diffusion technique in the orthorhombic space group P212121 and X-ray diffraction data were collected to 1.9 Å resolution. Cryptochromes are flavoproteins which serve as blue-light receptors in plants, animals, fungi and prokaryotes and belong to the same protein family as the catalytically active DNA photolyases. Cryptochrome 3 from the plant Arabidopsis thaliana (cry3; 525 amino acids, 60.7 kDa) is a representative of the novel cryDASH subfamily of UV-A/blue-light receptors and has been expressed as a mature FAD-containing protein in Escherichia coli without the signal sequence that directs the protein into plant organelles. The purified cryptochrome was found to be complexed to methenyltetrahydrofolate as an antenna pigment. Crystals of the cryptochrome–antenna pigment complex were obtained by vapour diffusion and display orthorhombic symmetry, with unit-cell parameters a = 76.298, b = 116.782, c = 135.024 Å. X-ray diffraction data were collected to 1.9 Å resolution using synchrotron radiation. The asymmetric unit comprises a cry3 dimer, the physiological role of which remains to be elucidated

  10. The mood stabilizer valproic acid opposes the effects of dopamine on circadian rhythms.

    Science.gov (United States)

    Landgraf, Dominic; Joiner, William J; McCarthy, Michael J; Kiessling, Silke; Barandas, Rita; Young, Jared W; Cermakian, Nicolas; Welsh, David K

    2016-08-01

    Endogenous circadian (∼24 h) clocks regulate key physiological and cognitive processes via rhythmic expression of clock genes. The main circadian pacemaker is the hypothalamic suprachiasmatic nucleus (SCN). Mood disorders, including bipolar disorder (BD), are commonly associated with disturbed circadian rhythms. Dopamine (DA) contributes to mania in BD and has direct impact on clock gene expression. Therefore, we hypothesized that high levels of DA during episodes of mania contribute to disturbed circadian rhythms in BD. The mood stabilizer valproic acid (VPA) also affects circadian rhythms. Thus, we further hypothesized that VPA normalizes circadian disturbances caused by elevated levels of DA. To test these hypotheses, we examined locomotor rhythms and circadian gene cycling in mice with reduced expression of the dopamine transporter (DAT-KD mice), which results in elevated DA levels and mania-like behavior. We found that elevated DA signaling lengthened the circadian period of behavioral rhythms in DAT-KD mice and clock gene expression rhythms in SCN explants. In contrast, we found that VPA shortened circadian period of behavioral rhythms in DAT-KD mice and clock gene expression rhythms in SCN explants, hippocampal cell lines, and human fibroblasts from BD patients. Thus, DA and VPA have opposing effects on circadian period. To test whether the impact of VPA on circadian rhythms contributes to its behavioral effects, we fed VPA to DAT-deficient Drosophila with and without functioning circadian clocks. Consistent with our hypothesis, we found that VPA had potent activity-suppressing effects in hyperactive DAT-deficient flies with intact circadian clocks. However, these effects were attenuated in DAT-deficient flies in which circadian clocks were disrupted, suggesting that VPA functions partly through the circadian clock to suppress activity. Here, we provide in vivo and in vitro evidence across species that elevated DA signaling lengthens the circadian

  11. Circadian Modulation of Dopamine Levels and Dopaminergic Neuron Development Contributes to Attention Deficiency and Hyperactive Behavior

    OpenAIRE

    Huang, Jian; Zhong, Zhaomin; Wang, Mingyong; Chen, Xifeng; Tan, Yicheng; Zhang, Shuqing; He, Wei; He, Xiong; Huang, Guodong; Lu, Haiping; Wu, Ping; Che, Yi; Yan, Yi-Lin; Postlethwait, John H.; Chen, Wenbiao

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopa...

  12. AMPK regulates circadian rhythms in a tissue- and isoform-specific manner.

    Directory of Open Access Journals (Sweden)

    Jee-Hyun Um

    Full Text Available BACKGROUND: AMP protein kinase (AMPK plays an important role in food intake and energy metabolism, which are synchronized to the light-dark cycle. In vitro, AMPK affects the circadian rhythm by regulating at least two clock components, CKIα and CRY1, via direct phosphorylation. However, it is not known whether the catalytic activity of AMPK actually regulates circadian rhythm in vivo. METHODOLOGY/PRINCIPAL FINDING: THE CATALYTIC SUBUNIT OF AMPK HAS TWO ISOFORMS: α1 and α2. We investigate the circadian rhythm of behavior, physiology and gene expression in AMPKα1-/- and AMPKα2-/- mice. We found that both α1-/- and α2-/- mice are able to maintain a circadian rhythm of activity in dark-dark (DD cycle, but α1-/- mice have a shorter circadian period whereas α2-/- mice showed a tendency toward a slightly longer circadian period. Furthermore, the circadian rhythm of body temperature was dampened in α1-/- mice, but not in α2-/- mice. The circadian pattern of core clock gene expression was severely disrupted in fat in α1-/- mice, but it was severely disrupted in the heart and skeletal muscle of α2-/- mice. Interestingly, other genes that showed circadian pattern of expression were dysreguated in both α1-/- and α2-/- mice. The circadian rhythm of nicotinamide phosphoryl-transferase (NAMPT activity, which converts nicotinamide (NAM to NAD+, is an important regulator of the circadian clock. We found that the NAMPT rhythm was absent in AMPK-deficient tissues and cells. CONCLUSION/SIGNIFICANCE: This study demonstrates that the catalytic activity of AMPK regulates circadian rhythm of behavior, energy metabolism and gene expression in isoform- and tissue-specific manners.

  13. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism

    DEFF Research Database (Denmark)

    Feng, Dan; Liu, Tao; Sun, Zheng;

    2011-01-01

    Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost whe...... hepatic steatosis. Thus, genomic recruitment of HDAC3 by Rev-erbα directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis....

  14. Circadian Clocks, Stress, and Immunity

    Science.gov (United States)

    Dumbell, Rebecca; Matveeva, Olga; Oster, Henrik

    2016-01-01

    In mammals, molecular circadian clocks are present in most cells of the body, and this circadian network plays an important role in synchronizing physiological processes and behaviors to the appropriate time of day. The hypothalamic–pituitary–adrenal endocrine axis regulates the response to acute and chronic stress, acting through its final effectors – glucocorticoids – released from the adrenal cortex. Glucocorticoid secretion, characterized by its circadian rhythm, has an important role in synchronizing peripheral clocks and rhythms downstream of the master circadian pacemaker in the suprachiasmatic nucleus. Finally, glucocorticoids are powerfully anti-inflammatory, and recent work has implicated the circadian clock in various aspects and cells of the immune system, suggesting a tight interplay of stress and circadian systems in the regulation of immunity. This mini-review summarizes our current understanding of the role of the circadian clock network in both the HPA axis and the immune system, and discusses their interactions. PMID:27199894

  15. Central Circadian Control of Female Reproductive Function

    Directory of Open Access Journals (Sweden)

    BrookeHMiller

    2014-01-01

    Full Text Available Over the past two decades, it has become clear just how much of our physiology is under the control of the suprachiasmatic nucleus (SCN and the cell-intrinsic molecular clock that ticks with a periodicity of approximately 24 hours. The SCN prepares our digestive system for meals, our adrenal axis for the stress of waking up in the morning, and the genes expressed in our muscles when we prepare to exercise, Long before molecular studies of genes such as Clock, Bmal1, and the Per homologs were possible, it was obvious that female reproductive function was under strict circadian control at every level of the hypothalamic-pituitary-gonadal (HPG axis, and in the establishment and successful maintenance of pregnancy. This review highlights our current understanding of the role that the SCN plays in regulating female reproductive physiology, with a special emphasis on the advances made possible through the use of circadian mutant mice.

  16. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  17. Circadian clock, cell cycle and cancer

    OpenAIRE

    Cansu Özbayer; İrfan Değirmenci

    2011-01-01

    There are a few rhythms of our daily lives that we are under the influence. One of them is characterized by predictable changes over a 24-hour timescale called circadian clock. This cellular clock is coordinated by the suprachiasmatic nucleus in the anterior hypothalamus. The clock consist of an autoregulatory transcription-translation feedback loop compose of four genes/proteins; BMAL1, Clock, Cyrptochrome, and Period. BMAL 1 and Clock are transcriptional factors and Period and Cyrptochrome ...

  18. Circadian clock components in the rat neocortex

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Fahrenkrug, Jan;

    2013-01-01

    The circadian master clock of the mammalian brain resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. At the molecular level, the clock of the SCN is driven by a transcriptional/posttranslational autoregulatory network with clock gene products as core elements. Recent investigations...... have shown the presence of peripheral clocks in extra-hypothalamic areas of the central nervous system. However, knowledge on the clock gene network in the cerebral cortex is limited. We here show that the mammalian clock genes Per1, Per2, Per3, Cry1, Cry2, Bmal1, Clock, Nr1d1 and Dbp are expressed...

  19. Cardiovascular tissues contain independent circadian clocks

    Science.gov (United States)

    Davidson, A. J.; London, B.; Block, G. D.; Menaker, M.

    2005-01-01

    Acute cardiovascular events exhibit a circadian rhythm in the frequency of occurrence. The mechanisms underlying these phenomena are not yet fully understood, but they may be due to rhythmicity inherent in the cardiovascular system. We have begun to characterize rhythmicity of the clock gene mPer1 in the rat cardiovascular system. Luciferase activity driven by the mPer1 gene promoter is rhythmic in vitro in heart tissue explants and a wide variety of veins and arteries cultured from the transgenic Per1-luc rat. The tissues showed between 3 and 12 circadian cycles of gene expression in vitro before damping. Whereas peak per1-driven bioluminescence consistently occurred during the late night in the heart and all arteries sampled, the phases of the rhythms in veins varied significantly by anatomical location. Varying the time of the culture procedure relative to the donor animal's light:dark cycle revealed that, unlike some other rat tissues such as liver, the phases of in vitro rhythms of arteries, veins, and heart explants were affected by culture time. However, phase relationships among tissues were consistent across culture times; this suggests diversity in circadian regulation among components of the cardiovascular system.

  20. Circadian adaptations to meal timing: Neuroendocrine mechanisms

    Directory of Open Access Journals (Sweden)

    Danica F Patton

    2013-10-01

    Full Text Available Circadian rhythms of behavior and physiology are generated by central and peripheral circadian oscillators entrained by periodic environmental or physiological stimuli. A master circadian pacemaker in the hypothalamic suprachiasmatic nucleus is directly entrained by daily light-dark cycles, and coordinates the timing of other oscillators by direct and indirect neural, hormonal and behavioral outputs. The daily rhythm of food intake provides stimuli that entrain most peripheral and central oscillators, some of which can drive a daily rhythm of food anticipatory activity if food is restricted to one daily mealtime. The location of food-entrainable oscillators (FEOs that drive food anticipatory rhythms, and the food-related stimuli that entrain these oscillators, remain to be clarified. Here, we critically examine the role of peripheral metabolic hormones as potential internal entrainment stimuli or outputs for FEOs controlling food anticipatory rhythms in rats and mice. Hormones for which data are available include corticosterone, ghrelin, leptin, insulin, glucagon, and glucagon-like peptide 1. All of these hormones exhibit daily rhythms of synthesis and secretion that are synchronized by meal timing. There is some evidence that ghrelin and leptin modulate the expression of food anticipatory rhythms, but none of the hormones examined so far are necessary for entrainment. Ghrelin and leptin likely modulate food-entrained rhythms by actions in hypothalamic circuits utilizing melanocortin and orexin signaling, although again food-entrained behavioral rhythms can persist in lesion and gene knockout models in which these systems are disabled. Actions of these hormones on circadian oscillators in central reward circuits remain to be evaluated. Food-entrained activity rhythms are likely mediated by a distributed system of circadian oscillators sensitive to multiple feeding related inputs. Metabolic hormones appear to play a modulatory role within this

  1. When clocks go bad: neurobehavioural consequences of disrupted circadian timing.

    Directory of Open Access Journals (Sweden)

    Alun R Barnard

    2008-05-01

    Full Text Available Progress in unravelling the cellular and molecular basis of mammalian circadian regulation over the past decade has provided us with new avenues through which we can explore central nervous system disease. Deteriorations in measurable circadian output parameters, such as sleep/wake deficits and dysregulation of circulating hormone levels, are common features of most central nervous system disorders. At the core of the mammalian circadian system is a complex of molecular oscillations within the hypothalamic suprachiasmatic nucleus. These oscillations are modifiable by afferent signals from the environment, and integrated signals are subsequently conveyed to remote central neural circuits where specific output rhythms are regulated. Mutations in circadian genes in mice can disturb both molecular oscillations and measurable output rhythms. Moreover, systematic analysis of these mutants indicates that they can express an array of abnormal behavioural phenotypes that are intermediate signatures of central nervous system disorders. Furthermore, the response of these mutants to psychoactive drugs suggests that clock genes can modify a number of the brain's critical neurotransmitter systems. This evidence has led to promising investigations into clock gene polymorphisms in psychiatric disease. Preliminary indications favour the systematic investigation of the contribution of circadian genes to central nervous system disease.

  2. Temperature regulates transcription in the zebrafish circadian clock.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available It has been well-documented that temperature influences key aspects of the circadian clock. Temperature cycles entrain the clock, while the period length of the circadian cycle is adjusted so that it remains relatively constant over a wide range of temperatures (temperature compensation. In vertebrates, the molecular basis of these properties is poorly understood. Here, using the zebrafish as an ectothermic model, we demonstrate first that in the absence of light, exposure of embryos and primary cell lines to temperature cycles entrains circadian rhythms of clock gene expression. Temperature steps drive changes in the basal expression of certain clock genes in a gene-specific manner, a mechanism potentially contributing to entrainment. In the case of the per4 gene, while E-box promoter elements mediate circadian clock regulation, they do not direct the temperature-driven changes in transcription. Second, by studying E-box-regulated transcription as a reporter of the core clock mechanism, we reveal that the zebrafish clock is temperature-compensated. In addition, temperature strongly influences the amplitude of circadian transcriptional rhythms during and following entrainment by light-dark cycles, a property that could confer temperature compensation. Finally, we show temperature-dependent changes in the expression levels, phosphorylation, and function of the clock protein, CLK. This suggests a mechanism that could account for changes in the amplitude of the E-box-directed rhythm. Together, our results imply that several key transcriptional regulatory elements at the core of the zebrafish clock respond to temperature.

  3. Circadian transitions in radiation dose-dependent augmentation of mRNA levels for DNA damage-induced genes elicited by accurate real-time RT-PCR quantification

    International Nuclear Information System (INIS)

    Molecular mechanisms of intracellular response after DNA-damage by exposure to ionizing radiation have been studied. In the case of cells isolated from living body of human and experimental animals, alteration of the responsiveness by physiological oscillation such as circadian rhythm must be considered. To examine the circadian variation in the response of p53-responsible genes p21, mdm2, bax, and puma, we established a method to quantitate their mRNA levels with high reproducibility and accuracy based on real-time reverse transcription polymerase chain reaction (RT-PCR) and compared the levels of responsiveness in mouse hemocytes after diurnal irradiation to that after nocturnal irradiation. Augmentations of p21 and mdm2 mRNA levels with growth-arrest and of puma mRNA before apoptosis were confirmed by time-course experiment in RAW264.7, and dose-dependent increases in the peak levels of all the RNA were shown. Similarly, the relative RNA levels of p21, mdm2, bax, and puma per glyceraldehyde-3-phosphate dehydrogenase (GAPDH) also increased dose-dependently in peripheral blood and bone marrow cells isolated from whole-body-irradiated mice. Induction levels of all messages reduced by half after nighttime irradiation as compared with daytime irradiation in blood cells. In marrow cells, nighttime irradiation enhanced the p21 and mdm2 mRNA levels than daytime irradiation. No significant difference in bax or puma mRNA levels was observed between nighttime and daytime irradiation in marrow cells. This suggests that early-stage cellular responsiveness in DNA damage-induced genes is modulated between diurnal and nocturnal irradiation. (author)

  4. Links between circadian rhythms and psychiatric disease

    Directory of Open Access Journals (Sweden)

    Ilia N Karatsoreos

    2014-05-01

    Full Text Available Determining the cause of psychiatric disorders is a goal of modern neuroscience, and will hopefully lead to the discovery of treatments to either prevent or alleviate the suffering caused by these diseases. One roadblock to attaining this goal is the realization that neuropsychiatric diseases are rarely due to a single gene polymorphism, environmental exposure, or developmental insult. Rather, it is a complex interaction between these various influences that likely leads to the development of clinically relevant syndromes. Our lab is exploring the links between environmental exposures and neurobehavioral function by investigating how disruption of the circadian (daily clock alters the structure and function of neural circuits, with the hypothesis that disrupting this crucial homeostatic system can directly contribute to altered vulnerability of the organism to other factors that interact to produce psychiatric illness. This review explores some historical and more recent findings that link disrupted circadian clocks to neuropsychiatric disorders, particularly depression, mania, and schizophrenia. We take a comparative approach by exploring the effects observed in human populations, as well as some experimental models used in the laboratory to unravel mechanistic and causal relationships between disruption of the circadian clock and behavioral abnormalities. This is a rich area of research that we predict will contribute greatly to our understanding of how genes, environment, and development interact to modulate an individual’s vulnerability to psychiatric disorders.

  5. Sleep and circadian rhythms

    Science.gov (United States)

    Monk, Timothy H.

    1991-01-01

    Three interacting processes are involved in the preservation of circadian rhythms: (1) endogenous rhythm generation mechanisms, (2) entrainment mechanisms to keep these rhythms 'on track', and (3) exogenous masking processes stemming from changes in environment and bahavior. These processes, particularly the latter two, can be dramatically affected in individuals of advanced age and in space travelers, with a consequent disruption in sleep and daytime functioning. This paper presents results of a phase-shift experiment investigating the age-related effects of the exogeneous component of circadian rhythms in various physiological and psychological functions by comparing these functions in middle aged and old subjects. Dramatic differences were found between the two age groups in measures of sleep, mood, activation, and performance efficiency.

  6. Postoperative circadian disturbances

    DEFF Research Database (Denmark)

    Gögenur, Ismail

    2010-01-01

    postoperative recovery parameters, and if pharmacological administration of chronobiotics could improve postoperative recovery. Circadian rhythm disturbances were found in all the examined endogenous rhythms. A delay was found in the endogenous rhythm of plasma melatonin and excretion of the metabolite of...... after major surgery was increased on the fourth day after surgery and the total excretion of AMT6s in urine was correlated to sleep efficiency and wake time after sleep onset, but was not correlated to the occurrence of postoperative cognitive dysfunction. We could only prove an effect of melatonin...... rhythm, autonomic nervous system tone, myocardial ischaemia and activity rhythm after surgery. Correlation exists between circadian rhythm parameters and measures of postoperative sleep quality and recovery. However, oral melatonin treatment in the first three nights after surgery, cannot yet be...

  7. Separation of photo-induced radical pair in cryptochrome to a functionally critical distance

    OpenAIRE

    Solov'yov, Ilia A.; Domratcheva, Tatiana; Schulten, Klaus

    2014-01-01

    Cryptochrome is a blue light receptor that acts as a sensor for the geomagnetic field and assists many animals in long-range navigation. The magnetoreceptor function arises from light-induced formation of a radical pair through electron transfer between a flavin cofactor (FAD) and a triad of tryptophan residues. Here, this electron transfer is investigated by quantum chemical and classical molecular dynamics calculations. The results reveal how sequential electron transfer, assisted by rearra...

  8. Circadian clock, cell cycle and cancer

    Directory of Open Access Journals (Sweden)

    Cansu Özbayer

    2011-12-01

    Full Text Available There are a few rhythms of our daily lives that we are under the influence. One of them is characterized by predictable changes over a 24-hour timescale called circadian clock. This cellular clock is coordinated by the suprachiasmatic nucleus in the anterior hypothalamus. The clock consist of an autoregulatory transcription-translation feedback loop compose of four genes/proteins; BMAL1, Clock, Cyrptochrome, and Period. BMAL 1 and Clock are transcriptional factors and Period and Cyrptochrome are their targets. Period and Cyrptochrome dimerize in the cytoplasm to enter the nucleus where they inhibit Clock/BMAL activity.It has been demonstrate that circadian clock plays an important role cellular proliferation, DNA damage and repair mechanisms, checkpoints, apoptosis and cancer.

  9. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.

    Science.gov (United States)

    Saint-Charles, Alexandra; Michard-Vanhée, Christine; Alejevski, Faredin; Chélot, Elisabeth; Boivin, Antoine; Rouyer, François

    2016-10-01

    Light is the major stimulus for the synchronization of circadian clocks with day-night cycles. The light-driven entrainment of the clock that controls rest-activity rhythms in Drosophila relies on different photoreceptive molecules. Cryptochrome (CRY) is expressed in most brain clock neurons, whereas six different rhodopsins (RH) are present in the light-sensing organs. The compound eye includes outer photoreceptors that express RH1 and inner photoreceptors that each express one of the four rhodopsins RH3-RH6. RH6 is also expressed in the extraretinal Hofbauer-Buchner eyelet, whereas RH2 is only found in the ocelli. In low light, the synchronization of behavioral rhythms relies on either CRY or the canonical rhodopsin phototransduction pathway, which requires the phospholipase C-β encoded by norpA (no receptor potential A). We used norpA(P24) cry(02) double mutants that are circadianly blind in low light and restored NORPA function in each of the six types of photoreceptors, defined as expressing a particular rhodopsin. We first show that the NORPA pathway is less efficient than CRY for synchronizing rest-activity rhythms with delayed light-dark cycles but is important for proper phasing, whereas the two light-sensing pathways can mediate efficient adjustments to phase advances. Four of the six rhodopsin-expressing photoreceptors can mediate circadian entrainment, and all are more efficient for advancing than for delaying the behavioral clock. In contrast, neither RH5-expressing retinal photoreceptors nor RH2-expressing ocellar photoreceptors are sufficient to mediate synchronization through the NORPA pathway. Our results thus reveal different contributions of rhodopsin-expressing photoreceptors and suggest the existence of several circuits for rhodopsin-dependent circadian entrainment. J. Comp. Neurol. 524:2828-2844, 2016. © 2016 Wiley Periodicals, Inc. PMID:26972685

  10. Statistical inference of regulatory networks for circadian regulation.

    Science.gov (United States)

    Aderhold, Andrej; Husmeier, Dirk; Grzegorczyk, Marco

    2014-06-01

    We assess the accuracy of various state-of-the-art statistics and machine learning methods for reconstructing gene and protein regulatory networks in the context of circadian regulation. Our study draws on the increasing availability of gene expression and protein concentration time series for key circadian clock components in Arabidopsis thaliana. In addition, gene expression and protein concentration time series are simulated from a recently published regulatory network of the circadian clock in A. thaliana, in which protein and gene interactions are described by a Markov jump process based on Michaelis-Menten kinetics. We closely follow recent experimental protocols, including the entrainment of seedlings to different light-dark cycles and the knock-out of various key regulatory genes. Our study provides relative network reconstruction accuracy scores for a critical comparative performance evaluation, and sheds light on a series of highly relevant questions: it quantifies the influence of systematically missing values related to unknown protein concentrations and mRNA transcription rates, it investigates the dependence of the performance on the network topology and the degree of recurrency, it provides deeper insight into when and why non-linear methods fail to outperform linear ones, it offers improved guidelines on parameter settings in different inference procedures, and it suggests new hypotheses about the structure of the central circadian gene regulatory network in A. thaliana. PMID:24864301

  11. Gibberellin and Auxin Influence the Diurnal Transcription Pattern of Photoreceptor Genes via CRY1a in Tomato

    OpenAIRE

    Facella, Paolo; Daddiego, Loretta; Giuliano, Giovanni; Perrotta, Gaetano

    2012-01-01

    Background Plant photoreceptors, phytochromes and cryptochromes, regulate many aspects of development and growth, such as seed germination, stem elongation, seedling de-etiolation, cotyledon opening, flower induction and circadian rhythms. There are several pieces of evidence of interaction between photoreceptors and phyto-hormones in all of these physiological processes, but little is known about molecular and genetic mechanisms underlying hormone-photoreceptor crosstalk. Methodology/Princip...

  12. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.

    Science.gov (United States)

    Leone, Vanessa; Gibbons, Sean M; Martinez, Kristina; Hutchison, Alan L; Huang, Edmond Y; Cham, Candace M; Pierre, Joseph F; Heneghan, Aaron F; Nadimpalli, Anuradha; Hubert, Nathaniel; Zale, Elizabeth; Wang, Yunwei; Huang, Yong; Theriault, Betty; Dinner, Aaron R; Musch, Mark W; Kudsk, Kenneth A; Prendergast, Brian J; Gilbert, Jack A; Chang, Eugene B

    2015-05-13

    Circadian clocks and metabolism are inextricably intertwined, where central and hepatic circadian clocks coordinate metabolic events in response to light-dark and sleep-wake cycles. We reveal an additional key element involved in maintaining host circadian rhythms, the gut microbiome. Despite persistence of light-dark signals, germ-free mice fed low or high-fat diets exhibit markedly impaired central and hepatic circadian clock gene expression and do not gain weight compared to conventionally raised counterparts. Examination of gut microbiota in conventionally raised mice showed differential diurnal variation in microbial structure and function dependent upon dietary composition. Additionally, specific microbial metabolites induced under low- or high-fat feeding, particularly short-chain fatty acids, but not hydrogen sulfide, directly modulate circadian clock gene expression within hepatocytes. These results underscore the ability of microbially derived metabolites to regulate or modify central and hepatic circadian rhythm and host metabolic function, the latter following intake of a Westernized diet. PMID:25891358

  13. Estimation methods for human circadian phase by use of peripheral tissues.

    Science.gov (United States)

    Matsumura, Ritsuko; Node, Koichi; Akashi, Makoto

    2016-09-01

    Almost all living organisms, including humans, exhibit diurnal rhythms of physiology and behavior, which are driven by the circadian clock. Many studies have found that chronic misalignment between circadian and environmental/social rhythms carries a significant risk of various disorders, including sleep disorders, metabolic syndrome, cardiovascular diseases and cancer. However, irregular sleep-wake cycles and circadian maladjustment often cause 'social jet lag', which is minor but chronic jet-lag in our daily lives. Establishment of objective and convenient circadian-phase estimation methods in the clinical setting would therefore greatly contribute not only to resolving this global health problem but also to developing chronomedicine, a clinical approach for optimizing the time of day of treatments. Traditional melatonin-based methods have limitations with respect to circadian-phase evaluation; however, estimation methods based on clock gene expression may be able to compensate for these limitations. As a representative application of circadian-phase estimation based on clock gene expression, our method of using hair follicle cells may aid in the rapid clinical detection of circadian-related sleep problems, especially circadian rhythm sleep disorders that are masked because of forced adaptation to social time schedules. PMID:27334057

  14. Interaction of MAGED1 with nuclear receptors affects circadian clock function

    Science.gov (United States)

    Wang, Xiaohan; Tang, Jing; Xing, Lijuan; Shi, Guangsen; Ruan, Haibin; Gu, Xiwen; Liu, Zhiwei; Wu, Xi; Gao, Xiang; Xu, Ying

    2010-01-01

    The circadian clock has a central role in physiological adaption and anticipation of day/night changes. In a genetic screen for novel regulators of circadian rhythms, we found that mice lacking MAGED1 (Melanoma Antigen Family D1) exhibit a shortened period and altered rest–activity bouts. These circadian phenotypes are proposed to be caused by a direct effect on the core molecular clock network that reduces the robustness of the circadian clock. We provide in vitro and in vivo evidence indicating that MAGED1 binds to RORα to bring about positive and negative effects on core clock genes of Bmal1, Rev-erbα and E4bp4 expression through the Rev-Erbα/ROR responsive elements (RORE). Maged1 is a non-rhythmic gene that, by binding RORα in non-circadian way, enhances rhythmic input and buffers the circadian system from irrelevant, perturbing stimuli or noise. We have thus identified and defined a novel circadian regulator, Maged1, which is indispensable for the robustness of the circadian clock to better serve the organism. PMID:20300063

  15. Evidence Suggesting that the Cardiomyocyte Circadian Clock Modulates Responsiveness of the Heart to Hypertrophic Stimuli in Mice

    OpenAIRE

    Durgan, David J.; Tsai, Ju-Yun; Grenett, Maximiliano H.; Pat, Betty M.; Ratcliffe, William F.; Villegas-Montoya, Carolina; Garvey, Merissa E.; Nagendran, Jeevan; Dyck, Jason R. B.; Bray, Molly S.; Gamble, Karen L.; Gimble, Jeffrey M.; Young, Martin E.

    2011-01-01

    Circadian dyssynchrony of an organism (at the whole body level) with its environment, either through light/dark cycle or genetic manipulation of clock genes, augments various cardiometabolic diseases. The cardiomyocyte circadian clock has recently been shown to influence multiple myocardial processes, ranging from transcriptional regulation and energy metabolism, to contractile function. We therefore reasoned that chronic dyssychrony of the cardiomyocyte circadian clock with its environment w...

  16. Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs.

    Directory of Open Access Journals (Sweden)

    Miriam Liedvogel

    Full Text Available Cryptochromes (Cry have been suggested to form the basis of light-dependent magnetic compass orientation in birds. However, to function as magnetic compass sensors, the cryptochromes of migratory birds must possess a number of key biophysical characteristics. Most importantly, absorption of blue light must produce radical pairs with lifetimes longer than about a microsecond. Cryptochrome 1a (gwCry1a and the photolyase-homology-region of Cry1 (gwCry1-PHR from the migratory garden warbler were recombinantly expressed and purified from a baculovirus/Sf9 cell expression system. Transient absorption measurements show that these flavoproteins are indeed excited by light in the blue spectral range leading to the formation of radicals with millisecond lifetimes. These biophysical characteristics suggest that gwCry1a is ideally suited as a primary light-mediated, radical-pair-based magnetic compass receptor.

  17. Chemical Magnetoreception: Bird Cryptochrome 1a Is Excited by Blue Light and Forms Long-Lived Radical-Pairs

    Science.gov (United States)

    Liedvogel, Miriam; Maeda, Kiminori; Henbest, Kevin; Schleicher, Erik; Simon, Thomas; Timmel, Christiane R.; Hore, P. J.; Mouritsen, Henrik

    2007-01-01

    Cryptochromes (Cry) have been suggested to form the basis of light-dependent magnetic compass orientation in birds. However, to function as magnetic compass sensors, the cryptochromes of migratory birds must possess a number of key biophysical characteristics. Most importantly, absorption of blue light must produce radical pairs with lifetimes longer than about a microsecond. Cryptochrome 1a (gwCry1a) and the photolyase-homology-region of Cry1 (gwCry1-PHR) from the migratory garden warbler were recombinantly expressed and purified from a baculovirus/Sf9 cell expression system. Transient absorption measurements show that these flavoproteins are indeed excited by light in the blue spectral range leading to the formation of radicals with millisecond lifetimes. These biophysical characteristics suggest that gwCry1a is ideally suited as a primary light-mediated, radical-pair-based magnetic compass receptor. PMID:17971869

  18. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  19. Circadian changes in long noncoding RNAs in the pineal gland

    DEFF Research Database (Denmark)

    Coon, Steven L; Munson, Peter J; Cherukuri, Praveen F;

    2012-01-01

    Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the ra...

  20. My Path from Chemistry to Phytochrome and Circadian Rhythms

    OpenAIRE

    Tobin, EM

    2016-01-01

    I summarize my scientific journey from my first interest in science to my career investigating how plants use the phytochrome photoreceptor to regulate what genes they express. I then describe how this work led to an understanding of how circadian rhythms function in plants and to the discovery of CCA1, a component of the plant central oscillator.

  1. My Path from Chemistry to Phytochrome and Circadian Rhythms

    Science.gov (United States)

    Tobin, Elaine M.

    2016-01-01

    I summarize my scientific journey from my first interest in science to my career investigating how plants use the phytochrome photoreceptor to regulate what genes they express. I then describe how this work led to an understanding of how circadian rhythms function in plants and to the discovery of CCA1, a component of the plant central oscillator. PMID:27014288

  2. New methods to assess circadian clocks in humans

    Czech Academy of Sciences Publication Activity Database

    Nováková, Marta; Sumová, Alena

    2014-01-01

    Roč. 52, č. 5 (2014), s. 404-412. ISSN 0019-5189 R&D Projects: GA MZd(CZ) NT11474 Grant ostatní: Univerzita Karlova(CZ) 22810 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : circadian * clock gene * melatonin * human Subject RIV: ED - Physiology Impact factor: 0.835, year: 2014

  3. Assessment of regression methods for inference of regulatory networks involved in circadian regulation

    OpenAIRE

    Aderhold, A.; Husmeier, D.; Smith, V A; Millar, A. J.; Grzegorczyk, M.

    2013-01-01

    We assess the accuracy of three established regression methods for reconstructing gene and protein regulatory networks in the context of circadian regulation. Data are simulated from a recently published regulatory network of the circadian clock in Arabidopsis thaliana, in which protein and gene interactions are described by a Markov jump process based on Michaelis-Menten kinetics. We closely follow recent experimental protocols, including the entrainment of seedlings to dif...

  4. Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK

    OpenAIRE

    Bordon Alain; Tallone Tiziano; Langmesser Sonja; Rusconi Sandro; Albrecht Urs

    2008-01-01

    Abstract Background Circadian oscillation of clock-controlled gene expression is mainly regulated at the transcriptional level. Heterodimers of CLOCK and BMAL1 act as activators of target gene transcription; however, interactions of PER and CRY proteins with the heterodimer abolish its transcriptional activation capacity. PER and CRY are therefore referred to as negative regulators of the circadian clock. To further elucidate the mechanism how positive and negative components of the clock int...

  5. Endocrine Effects of Circadian Disruption.

    Science.gov (United States)

    Bedrosian, Tracy A; Fonken, Laura K; Nelson, Randy J

    2016-01-01

    Disruption of circadian rhythms, provoked by artificial lighting at night, inconsistent sleep-wake schedules, and transmeridian air travel, is increasingly prevalent in modern society. Desynchrony of biological rhythms from environmental light cycles has dramatic consequences for human health. In particular, disrupting homeostatic oscillations in endocrine tissues and the hormones that these tissues regulate can have cascading effects on physiology and behavior. Accumulating evidence suggests that chronic disruption of circadian organization of endocrine function may lead to metabolic, reproductive, sleep, and mood disorders. This review discusses circadian control of endocrine systems and the consequences of distorting rhythmicity of these systems. PMID:26208951

  6. Circadian Modulation of Alcohol-Induced Sedation and Recovery in Male and Female Drosophila.

    Science.gov (United States)

    De Nobrega, Aliza K; Lyons, Lisa C

    2016-04-01

    Delineating the factors that affect behavioral and neurological responses to alcohol is critical to facilitate measures for preventing or treating alcohol abuse. The high degree of conserved molecular and physiological processes makes Drosophila melanogaster a valuable model for investigating circadian interactions with alcohol-induced behaviors and examining sex-specific differences in alcohol sensitivity. We found that wild-type Drosophila exhibited rhythms in alcohol-induced sedation under light-dark and constant dark conditions with considerably greater alcohol exposure necessary to induce sedation during the late (subjective) day and peak sensitivity to alcohol occurring during the late (subjective) night. The circadian clock also modulated the recovery from alcohol-induced sedation with flies regaining motor control significantly faster during the late (subjective) day. As predicted, the circadian rhythms in sedation and recovery were absent in flies with a mutation in the circadian gene period or arrhythmic flies housed in constant light conditions. Flies lacking a functional circadian clock were more sensitive to the effects of alcohol with significantly longer recovery times. Similar to other animals and humans, Drosophila exhibit sex-specific differences in alcohol sensitivity. We investigated whether the circadian clock modulated the rhythms in the loss-of-righting reflex, alcohol-induced sedation, and recovery differently in males and females. We found that both sexes demonstrated circadian rhythms in the loss-of-righting reflex and sedation with the differences in alcohol sensitivity between males and females most pronounced during the late subjective day. Recovery of motor reflexes following alcohol sedation also exhibited circadian modulation in male and female flies, although the circadian clock did not modulate the difference in recovery times between the sexes. These studies provide a framework outlining how the circadian clock modulates alcohol

  7. Circadian system from conception till adulthood

    Czech Academy of Sciences Publication Activity Database

    Sumová, Alena; Sládek, Martin; Polidarová, Lenka; Nováková, Marta; Houdek, Pavel

    2012-01-01

    Roč. 199, č. 2012 (2012), s. 83-103. ISSN 0079-6123 R&D Projects: GA ČR(CZ) GA305/09/0321; GA ČR(CZ) GAP303/11/0668; GA MŠk(CZ) LC554; GA MZd(CZ) NT11474; GA ČR(CZ) GAP303/12/1108 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : ontogenesis * suprachiasmatic nucleus * peripheral circadian clocks * clock gene Subject RIV: ED - Physiology Impact factor: 4.191, year: 2012

  8. Circadian Dysrhythmias, Physiological Aberrations, and the Link to Skin Cancer

    Directory of Open Access Journals (Sweden)

    Daniel Gutierrez

    2016-04-01

    Full Text Available Circadian rhythms are core regulators of a variety of mammalian physiologic processes and oscillate in a 24-h pattern. Many peripheral organs possess endogenous rhythmicity that is then modulated by a master clock; the skin is one of these peripheral organs. The dysregulation of rhythms is associated with decreased ability to ameliorate cellular stressors at a local and global level, which then increases the propensity for the development of neoplastic growths. In this article, we review the implications of altered circadian rhythms on DNA repair as well as modified gene expression of core clock proteins with particular focus on skin models. These findings are then correlated with epidemiologic data regarding skin cancer to showcase the effects of circadian disruption on this phenomenon.

  9. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism.

    Science.gov (United States)

    Masri, Selma; Rigor, Paul; Cervantes, Marlene; Ceglia, Nicholas; Sebastian, Carlos; Xiao, Cuiying; Roqueta-Rivera, Manuel; Deng, Chuxia; Osborne, Timothy F; Mostoslavsky, Raul; Baldi, Pierre; Sassone-Corsi, Paolo

    2014-07-31

    Circadian rhythms are intimately linked to cellular metabolism. Specifically, the NAD(+)-dependent deacetylase SIRT1, the founding member of the sirtuin family, contributes to clock function. Whereas SIRT1 exhibits diversity in deacetylation targets and subcellular localization, SIRT6 is the only constitutively chromatin-associated sirtuin and is prominently present at transcriptionally active genomic loci. Comparison of the hepatic circadian transcriptomes reveals that SIRT6 and SIRT1 separately control transcriptional specificity and therefore define distinctly partitioned classes of circadian genes. SIRT6 interacts with CLOCK:BMAL1 and, differently from SIRT1, governs their chromatin recruitment to circadian gene promoters. Moreover, SIRT6 controls circadian chromatin recruitment of SREBP-1, resulting in the cyclic regulation of genes implicated in fatty acid and cholesterol metabolism. This mechanism parallels a phenotypic disruption in fatty acid metabolism in SIRT6 null mice as revealed by circadian metabolome analyses. Thus, genomic partitioning by two independent sirtuins contributes to differential control of circadian metabolism. PMID:25083875

  10. Chasing migration genes: a brain expressed sequence tag resource for summer and migratory monarch butterflies (Danaus plexippus.

    Directory of Open Access Journals (Sweden)

    Haisun Zhu

    Full Text Available North American monarch butterflies (Danaus plexippus undergo a spectacular fall migration. In contrast to summer butterflies, migrants are juvenile hormone (JH deficient, which leads to reproductive diapause and increased longevity. Migrants also utilize time-compensated sun compass orientation to help them navigate to their overwintering grounds. Here, we describe a brain expressed sequence tag (EST resource to identify genes involved in migratory behaviors. A brain EST library was constructed from summer and migrating butterflies. Of 9,484 unique sequences, 6068 had positive hits with the non-redundant protein database; the EST database likely represents approximately 52% of the gene-encoding potential of the monarch genome. The brain transcriptome was cataloged using Gene Ontology and compared to Drosophila. Monarch genes were well represented, including those implicated in behavior. Three genes involved in increased JH activity (allatotropin, juvenile hormone acid methyltransfersase, and takeout were upregulated in summer butterflies, compared to migrants. The locomotion-relevant turtle gene was marginally upregulated in migrants, while the foraging and single-minded genes were not differentially regulated. Many of the genes important for the monarch circadian clock mechanism (involved in sun compass orientation were in the EST resource, including the newly identified cryptochrome 2. The EST database also revealed a novel Na+/K+ ATPase allele predicted to be more resistant to the toxic effects of milkweed than that reported previously. Potential genetic markers were identified from 3,486 EST contigs and included 1599 double-hit single nucleotide polymorphisms (SNPs and 98 microsatellite polymorphisms. These data provide a template of the brain transcriptome for the monarch butterfly. Our "snap-shot" analysis of the differential regulation of candidate genes between summer and migratory butterflies suggests that unbiased, comprehensive

  11. Chasing migration genes: a brain expressed sequence tag resource for summer and migratory monarch butterflies (Danaus plexippus).

    Science.gov (United States)

    Zhu, Haisun; Casselman, Amy; Reppert, Steven M

    2008-01-01

    North American monarch butterflies (Danaus plexippus) undergo a spectacular fall migration. In contrast to summer butterflies, migrants are juvenile hormone (JH) deficient, which leads to reproductive diapause and increased longevity. Migrants also utilize time-compensated sun compass orientation to help them navigate to their overwintering grounds. Here, we describe a brain expressed sequence tag (EST) resource to identify genes involved in migratory behaviors. A brain EST library was constructed from summer and migrating butterflies. Of 9,484 unique sequences, 6068 had positive hits with the non-redundant protein database; the EST database likely represents approximately 52% of the gene-encoding potential of the monarch genome. The brain transcriptome was cataloged using Gene Ontology and compared to Drosophila. Monarch genes were well represented, including those implicated in behavior. Three genes involved in increased JH activity (allatotropin, juvenile hormone acid methyltransfersase, and takeout) were upregulated in summer butterflies, compared to migrants. The locomotion-relevant turtle gene was marginally upregulated in migrants, while the foraging and single-minded genes were not differentially regulated. Many of the genes important for the monarch circadian clock mechanism (involved in sun compass orientation) were in the EST resource, including the newly identified cryptochrome 2. The EST database also revealed a novel Na+/K+ ATPase allele predicted to be more resistant to the toxic effects of milkweed than that reported previously. Potential genetic markers were identified from 3,486 EST contigs and included 1599 double-hit single nucleotide polymorphisms (SNPs) and 98 microsatellite polymorphisms. These data provide a template of the brain transcriptome for the monarch butterfly. Our "snap-shot" analysis of the differential regulation of candidate genes between summer and migratory butterflies suggests that unbiased, comprehensive transcriptional

  12. Endocrine regulation of circadian physiology.

    Science.gov (United States)

    Tsang, Anthony H; Astiz, Mariana; Friedrichs, Maureen; Oster, Henrik

    2016-07-01

    Endogenous circadian clocks regulate 24-h rhythms of behavior and physiology to align with external time. The endocrine system serves as a major clock output to regulate various biological processes. Recent findings suggest that some of the rhythmic hormones can also provide feedback to the circadian system at various levels, thus contributing to maintaining the robustness of endogenous rhythmicity. This delicate balance of clock-hormone interaction is vulnerable to modern lifestyle factors such as shiftwork or high-calorie diets, altering physiological set points. In this review, we summarize the current knowledge on the communication between the circadian timing and endocrine systems, with a focus on adrenal glucocorticoids and metabolic peptide hormones. We explore the potential role of hormones as systemic feedback signals to adjust clock function and their relevance for the maintenance of physiological and metabolic circadian homeostasis. PMID:27106109

  13. The circadian clock goes genomic

    OpenAIRE

    Staiger, D; Shin, J; Johansson, M; Davis, S

    2013-01-01

    Large-scale biology among plant species, as well as comparative genomics of circadian clock architecture and clock-regulated output processes, have greatly advanced our understanding of the endogenous timing system in plants.

  14. Circadian Rhythm Management System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The value of measuring sleep-wake cycles is significantly enhanced by measuring other physiological signals that depend on circadian rhythms (such as heart rate and...

  15. 生物钟周期基因2与胰腺导管腺癌预后的相关性分析%Correlation analysis between period circadian clock 2 gene and the prognosis of pancreatic ductal adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    曾玮; 刘孟刚; 刘宏鸣; 谢斌; 袁涛; 杨俊涛; 蓝翔; 陈平

    2014-01-01

    Objective To explore the prognosis related genes of pancreatic ductal adenocarcinoma (PDAC)and investigate the molecular regulation mechanism.Methods Gene expression data of 102 PDAC patients with complete clinical survival data were selected from gene expression database of National Center for Biotechnology Information.The 106 transcription regulation gene collection was collected from Transfac database.The 715 microRNA (miRNA)target regulation gene collection was selected according to PicTar and TargetScanS method.Biological pathway data obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG).The known cancer genes were collected from the cancer gene census (CGC) database.Univariate Cox proportional hazards model was used to analyze the correlation between gene expression data and survival time,then obtained survival related candidate genes from the whole genome. Then the enriched genes were analyzed by hypergeometric distribution algorithm from three databases. Multiple correction testing was performed by BH-FDR method (FDR < 0.05 ).Kaplan-Meier was performed for survival curve analysis of PDAC.Results The results of data of 102 PDAC patients analyzed by univariate Cox proportional hazards model indicated that 273 genes were significantly related to the survival time of patients (P <0.000 1 ).After 273 survival genes were enrichment analyzed in 106 transcription factor regulation gene collection,12 survival genes enriched transcription factor target gene sets were found.After 273 survival genes were enrichment analyzed in 715 miRNA target regulation gene collection,11 survival genes enriched miRNAs target sets were discovered.After 273 survival genes were enrichment analyzed in pathway data of KEGG,15 survival genes enriched pathways were obtained. Period circadian clock 2 (PER2 )was regulated by CCAAT/enhancer binding protein (CEBPA)at transcription level and regulated by miRNA-32 after transcription.The prognosis of PDAC was affected by circadian

  16. Postoperative circadian disturbances

    DEFF Research Database (Denmark)

    Gögenur, Ismail

    2010-01-01

    reduced the first night after minimally invasive surgery. The core body temperature rhythm was disturbed after both major and minor surgery. There was a change in the sleep wake cycle with a significantly increased duration of REM-sleep in the day and evening time after major surgery compared with...... after major surgery was increased on the fourth day after surgery and the total excretion of AMT6s in urine was correlated to sleep efficiency and wake time after sleep onset, but was not correlated to the occurrence of postoperative cognitive dysfunction. We could only prove an effect of melatonin...... substitution in patients with lower than median pain levels for a three days period after laparoscopic cholecystectomy. In the series of studies included in this thesis we have systematically shown that circadian disturbances are found in the secretion of hormones, the sleep-wake cycle, core body temperature...

  17. The circadian clock in mammals

    OpenAIRE

    Zordan, Mauro; Kyriacou, Charalambos P

    2000-01-01

    The basic physiological and anatomical basis for circadian rhythms in mammalian behaviour and physiology is introduced. The pathways involved in photic entrainment of the circadian clock are discussed in relation of new findings that identify the molecules that are involved in signalling between the environment and the clock. The molecular basis of endogenous cycles is described in the mouse, and compared to the mechanism that is present in the fly. Finally we speculate on the relationship be...

  18. The circadian clock in mammals

    OpenAIRE

    Zordan, M. A.; Kyriacou, C P

    2005-01-01

    The basic physiological and anatomical basis for circadian rhythms in mammalian behaviour and physiology is introduced. The pathways involved in photic entrainment of the circadian clock are discussed in relation of new findings that identify the molecules that are involved in signalling between the environment and the clock. The molecular basis of endogenous cycles is described in the mouse, and compared to the mechanism that is present in the fly. Finally we speculate on the relationship be...

  19. Circadian Pacemaker – Temperature Compensation

    OpenAIRE

    Gerkema, Menno P.; Binder, Marc D.; Hirokawa, Nobutaka; Windhorst, Uwe

    2009-01-01

    One of the defining characteristics of circadian pacemakers and indicates the independence of the speed of circadian clock processes of environmental temperature. Mechanisms involved, so far not elucidated in full detail, entail at least two processes that are similarly affected by temperature changes, but with an opposing and counterbalancing effect on the periodicity of the clock system. As a result of temperature compensation, the increase in reaction velocity for every 10° rise in tempera...

  20. Die circadiane Uhr im Immunsystem

    OpenAIRE

    Keller, Maren

    2010-01-01

    Daily rhythms of a variety of immunological phenomena and functions are well known, but so far they have largely been neglected. Examples of daily rhythms in the immune system are: circadian differences in susceptibility to bacterial infection and daily variations in the symptoms of diseases such as rheumatoid arthritis or asthma. Therefore, it is very important for clinical diagnosis and pharmacological therapies to elucidate the connections between the circadian clock and the immune system....

  1. The circadian system is a target and modulator of prenatal cocaine effects.

    Directory of Open Access Journals (Sweden)

    Eva H Shang

    Full Text Available BACKGROUND: Prenatal exposure to cocaine can be deleterious to embryonic brain development, but the results in humans remain controversial, the mechanisms involved are not well understood and effective therapies are yet to be designed. We hypothesize that some of the prenatal effects of cocaine might be related to dysregulation of physiological rhythms due to alterations in the integrating circadian clock function. METHODOLOGY AND PRINCIPLE FINDINGS: Here we introduce a new high-throughput genetically well-characterized diurnal vertebrate model for studying the mechanisms of prenatal cocaine effects by demonstrating reduced viability and alterations in the pattern of neuronal development following repeated cocaine exposure in zebrafish embryos. This effect is associated with acute cocaine-induced changes in the expression of genes affecting growth (growth hormone, zGH and neurotransmission (dopamine transporter, zDAT. Analysis of circadian gene expression, using quantitative real-time RT-PCR (QPCR, demonstrates that cocaine acutely and dose-dependently changes the expression of the circadian genes (zPer-3, zBmal-1 and genes encoding melatonin receptors (zMelR that mediate the circadian message to the entire organism. Moreover, the effects of prenatal cocaine depend on the time of treatment, being more robust during the day, independent of whether the embryos are raised under the light-dark cycle or in constant light. The latter suggests involvement of the inherited circadian factors. The principal circadian hormone, melatonin, counteracts the effects of cocaine on neuronal development and gene expression, acting via specific melatonin receptors. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that, in a diurnal vertebrate, prenatal cocaine can acutely dysregulate the expression of circadian genes and those affecting melatonin signaling, growth and neurotransmission, while repeated cocaine exposure can alter neuronal development. Daily

  2. Does the core circadian clock in the moss Physcomitrella patens (Bryophyta comprise a single loop?

    Directory of Open Access Journals (Sweden)

    Hedman Harald

    2010-06-01

    Full Text Available Abstract Background The endogenous circadian clock allows the organism to synchronize processes both to daily and seasonal changes. In plants, many metabolic processes such as photosynthesis, as well as photoperiodic responses, are under the control of a circadian clock. Comparative studies with the moss Physcomitrella patens provide the opportunity to study many aspects of land plant evolution. Here we present a comparative overview of clock-associated components and the circadian network in the moss P. patens. Results The moss P. patens has a set of conserved circadian core components that share genetic relationship and gene expression patterns with clock genes of vascular plants. These genes include Myb-like transcription factors PpCCA1a and PpCCA1b, pseudo-response regulators PpPRR1-4, and regulatory elements PpELF3, PpLUX and possibly PpELF4. However, the moss lacks homologs of AtTOC1, AtGI and the AtZTL-family of genes, which can be found in all vascular plants studied here. These three genes constitute essential components of two of the three integrated feed-back loops in the current model of the Arabidopsis circadian clock mechanism. Consequently, our results suggest instead a single loop circadian clock in the moss. Possibly as a result of this, temperature compensation of core clock gene expression appears to be decreased in P. patens. Conclusions This study is the first comparative overview of the circadian clock mechanism in a basal land plant, the moss P. patens. Our results indicate that the moss clock mechanism may represent an ancestral state in contrast to the more complex and partly duplicated structure of subsequent land plants. These findings may provide insights into the understanding of the evolution of circadian network topology.

  3. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor.

    Science.gov (United States)

    Maeda, Kiminori; Robinson, Alexander J; Henbest, Kevin B; Hogben, Hannah J; Biskup, Till; Ahmad, Margaret; Schleicher, Erik; Weber, Stefan; Timmel, Christiane R; Hore, P J

    2012-03-27

    Among the biological phenomena that fall within the emerging field of "quantum biology" is the suggestion that magnetically sensitive chemical reactions are responsible for the magnetic compass of migratory birds. It has been proposed that transient radical pairs are formed by photo-induced electron transfer reactions in cryptochrome proteins and that their coherent spin dynamics are influenced by the geomagnetic field leading to changes in the quantum yield of the signaling state of the protein. Despite a variety of supporting evidence, it is still not clear whether cryptochromes have the properties required to respond to magnetic interactions orders of magnitude weaker than the thermal energy, k(B)T. Here we demonstrate that the kinetics and quantum yields of photo-induced flavin-tryptophan radical pairs in cryptochrome are indeed magnetically sensitive. The mechanistic origin of the magnetic field effect is clarified, its dependence on the strength of the magnetic field measured, and the rates of relevant spin-dependent, spin-independent, and spin-decoherence processes determined. We argue that cryptochrome is fit for purpose as a chemical magnetoreceptor. PMID:22421133

  4. Solvent driving force ensures fast formation of a persistent and well-separated radical pair in plant cryptochrome

    DEFF Research Database (Denmark)

    Lüdemann, Gesa; Solov'yov, Ilia; Kubar, Tomás;

    2015-01-01

    The photoreceptor protein cryptochrome is thought to host, upon light absorption, a radical pair which is sensitive to very weak magnetic fields, endowing migratory birds with a magnetic compass sense. The molecular mechanism which leads to formation of a stabilised, magnetic field sensitive...

  5. Assembly of a comprehensive regulatory network for the mammalian circadian clock: a bioinformatics approach.

    Directory of Open Access Journals (Sweden)

    Robert Lehmann

    Full Text Available By regulating the timing of cellular processes, the circadian clock provides a way to adapt physiology and behaviour to the geophysical time. In mammals, a light-entrainable master clock located in the suprachiasmatic nucleus (SCN controls peripheral clocks that are present in virtually every body cell. Defective circadian timing is associated with several pathologies such as cancer and metabolic and sleep disorders. To better understand the circadian regulation of cellular processes, we developed a bioinformatics pipeline encompassing the analysis of high-throughput data sets and the exploitation of published knowledge by text-mining. We identified 118 novel potential clock-regulated genes and integrated them into an existing high-quality circadian network, generating the to-date most comprehensive network of circadian regulated genes (NCRG. To validate particular elements in our network, we assessed publicly available ChIP-seq data for BMAL1, REV-ERBα/β and RORα/γ proteins and found strong evidence for circadian regulation of Elavl1, Nme1, Dhx6, Med1 and Rbbp7 all of which are involved in the regulation of tumourigenesis. Furthermore, we identified Ncl and Ddx6, as targets of RORγ and REV-ERBα, β, respectively. Most interestingly, these genes were also reported to be involved in miRNA regulation; in particular, NCL regulates several miRNAs, all involved in cancer aggressiveness. Thus, NCL represents a novel potential link via which the circadian clock, and specifically RORγ, regulates the expression of miRNAs, with particular consequences in breast cancer progression. Our findings bring us one step forward towards a mechanistic understanding of mammalian circadian regulation, and provide further evidence of the influence of circadian deregulation in cancer.

  6. Regulated DNA Methylation and the Circadian Clock: Implications in Cancer

    Directory of Open Access Journals (Sweden)

    Tammy M. Joska

    2014-09-01

    Full Text Available Since the cloning and discovery of DNA methyltransferases (DNMT, there has been a growing interest in DNA methylation, its role as an epigenetic modification, how it is established and removed, along with the implications in development and disease. In recent years, it has become evident that dynamic DNA methylation accompanies the circadian clock and is found at clock genes in Neurospora, mice and cancer cells. The relationship among the circadian clock, cancer and DNA methylation at clock genes suggests a correlative indication that improper DNA methylation may influence clock gene expression, contributing to the etiology of cancer. The molecular mechanism underlying DNA methylation at clock loci is best studied in the filamentous fungi, Neurospora crassa, and recent data indicate a mechanism analogous to the RNA-dependent DNA methylation (RdDM or RNAi-mediated facultative heterochromatin. Although it is still unclear, DNA methylation at clock genes may function as a terminal modification that serves to prevent the regulated removal of histone modifications. In this capacity, aberrant DNA methylation may serve as a readout of misregulated clock genes and not as the causative agent. This review explores the implications of DNA methylation at clock loci and describes what is currently known regarding the molecular mechanism underlying DNA methylation at circadian clock genes.

  7. 大麦(Hordeum vulgare)昼夜节律钟基因CCA1的克隆及表达分析%Cloning and Expression Analysis of Circadian Clock Gene CCA1 in Barley (Hordeum vulgare)

    Institute of Scientific and Technical Information of China (English)

    邢国芳; 宋萌; 姚涵; 韩渊怀

    2012-01-01

    CCA 1 gene plays an important role in circadian clock sensitivity in rice (Oryza sativa L. ) and Arabidopsis thaliana. In this study, CCAl gene in barley was cloned by RT-PCR using homological primers based on the highly conserved region of the multiple alignments of the rice and Arabidopsis. The similarities of this sequence were up to 72% and 69%, respectively, to corresponding mRNA sequences of rice and maize in BLASTx of GenBank database. Using ORF Finder software, a 2157 bp open reading frame was found to code 718 amino acids. Using Compute pI/Mw tool, the amino acid sequence was analyzed, and it revealed that the molecular weight of this protein was about 77 769. 4 Da, and isoelectric point was about 6. 55. We established fluorescence quantitative RT-PCR system with barley inbred lines HUADAMAI 1 and HUADAMAI 2, and studied the expression of CCAl in leaf under 16h/8h (light/ dark) conditions. Expression analysis showed that the gene expression peaked at dawn (ZTO) then gradually declined from ZTO to ZT15, bottomed at ZT15, then increased and returned to the initial level at ZT24. This study will provide information of barley CCAl gene for further studying the function in regulating photoperiod sensitivity in barley, and provide scientific basis for clarifying the mechanism of the circadian synchronization in barley.%昼夜节律钟基因CCA1在调解水稻和拟南芥的光周期反应中起着重要作用.利用BLAST手段以玉米中的CCA1基因序列作为靶序列,调取Genbank数据库信息,并结合RT-PCR方法获得了大麦的cDNA同源序列.BLASTx分析发现其与水稻和玉米的序列相似性分别达到72%和69%.通过ORF Finder软件分析发现,该序列包含一个2157 bp的开放阅读框,编码一个由718个氨基酸残基组成的蛋白序列,其分子量为77769.4 Da,等电点为6.55.采用实时荧光定量PCR分析发现,随光照时间的变化,该基因在大麦叶片中的表达量呈现出白天不断降低而夜晚逐渐

  8. Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior.

    Science.gov (United States)

    Huang, Jian; Zhong, Zhaomin; Wang, Mingyong; Chen, Xifeng; Tan, Yicheng; Zhang, Shuqing; He, Wei; He, Xiong; Huang, Guodong; Lu, Haiping; Wu, Ping; Che, Yi; Yan, Yi-Lin; Postlethwait, John H; Chen, Wenbiao; Wang, Han

    2015-02-11

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopamine-related genes monoamine oxidase and dopamine β hydroxylase, and acts via genes important for the development or maintenance of dopaminergic neurons to regulate their number and organization in the ventral diencephalic posterior tuberculum. We then found that Per1 knock-out mice also display ADHD-like symptoms and reduced levels of dopamine, thereby showing highly conserved roles of the circadian clock in ADHD. Our studies demonstrate that disruption of a circadian clock gene elicits ADHD-like syndrome. The circadian model for attention deficiency and hyperactive behavior sheds light on ADHD pathogenesis and opens avenues for exploring novel targets for diagnosis and therapy for this common psychiatric disorder. PMID:25673850

  9. The effects of hydrogen peroxide on the circadian rhythms of Microcystis aeruginosa.

    Directory of Open Access Journals (Sweden)

    Haifeng Qian

    Full Text Available BACKGROUND: The cyanobacterium Microcystis aeruginosa is one of the principal bloom-forming cyanobacteria present in a wide range of freshwater ecosystems. M. aeruginosa produces cyanotoxins, which can harm human and animal health. Many metabolic pathways in M. aeruginosa, including photosynthesis and microcystin synthesis, are controlled by its circadian rhythms. However, whether xenobiotics affect the cyanobacterial circadian system and change its growth, physiology and biochemistry is unknown. We used real-time PCR to study the effect of hydrogen peroxide (H(2O(2 on the expression of clock genes and some circadian genes in M. aeruginosa during the light/dark (LD cycle. RESULTS: The results revealed that H(2O(2 changes the expression patterns of clock genes (kaiA, kaiB, kaiC and sasA and significantly decreases the transcript levels of kaiB, kaiC and sasA. H(2O(2 treatment also decreased the transcription of circadian genes, such as photosynthesis-related genes (psaB, psbD1 and rbcL and microcystin-related genes (mcyA, mcyD and mcyH, and changed their circadian expression patterns. Moreover, the physiological functions of M. aeruginosa, including its growth and microcystin synthesis, were greatly influenced by H(2O(2 treatment during LD. These results indicate that changes in the cyanobacterial circadian system can affect its physiological and metabolic pathways. CONCLUSION: Our findings show that a xenobiotic can change the circadian expression patterns of its clock genes to influence clock-controlled gene regulation, and these influences are evident at the level of cellular physiology.

  10. Circadian and pharmacological regulation of casein kinase I in the hamster suprachiasmatic nucleus

    Indian Academy of Sciences (India)

    Patricia V. Agostino; Santiago A. Plano; Diego A. Golombek

    2008-12-01

    In mammals, the mechanism for the generation of circadian rhythms and entrainment by light–dark (LD) cycles resides in the hypothalamic suprachiasmatic nuclei (SCN), and the principal signal that adjusts this biological clock with environmental timing is the light:dark cycle. Within the SCN, rhythms are generated by a complex of molecular feedback loops that regulate the transcription of clock genes, including per and cry. Posttranslational modification plays an essential role in the regulation of biological rhythms; in particular, clock gene phosphorylation by casein kinase I, both epsilon (CKI) and delta (CKI), regulates key molecular mechanisms in the circadian clock. In this paper, we report for the first time that CKI activity undergoes a significant circadian rhythm in the SCN (peaking at circadian time 12, the start of the subjective night), and its pharmacological inhibition alters photic entrainment of the clock, indicating that CKI may be a key element in this pathway.

  11. Nutrition and the circadian system.

    Science.gov (United States)

    Potter, Gregory D M; Cade, Janet E; Grant, Peter J; Hardie, Laura J

    2016-08-01

    The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partitions incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24-h day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation, and thereby contributes to adverse metabolic consequences and chronic disease development. 'High-fat diets' (HFD) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFD in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases. PMID:27221157

  12. Cloning and Expression Analysis of Circadian Clock Gene CCA1 in Maize%玉米昼夜节律钟基因CCA1的克隆及表达分析

    Institute of Scientific and Technical Information of China (English)

    邢国芳; 杜伟建; 张雁明; 韩浩坤; 韩渊怀

    2011-01-01

    昼夜节律钟基因CCA1在调解水稻和拟南芥的光周期反应中起着重要作用.本研究利用从水稻和拟南芥中分离到的CCA1基因序列作为靶序列BLAST获取Genbank中的信息,通过RT-PCR方法克隆获得了一条2326bp的玉米CCA1基因cDNA序列.BLAST比对发现其与水稻、大麦和拟南芥的序列相似性分别达73.7%、69.4%和39.8%.利用NCBI中的ORF Finder软件分析,发现该序列包含一个2163bp的开放阅读框,编码720个氨基酸残基,蛋白的分子量约为78819.17Da,等电点为6.468.推测其含有3个myb-DNA结合域、7个N-豆蔻酰化位点、1个G-box蛋白结合域以及1个蛋白跨膜结合域.采用实时荧光定量PCR分析发现,随光照时间的变化,该基因在玉米叶片中的表达量呈现出白天不断降低而夜晚逐渐升高的昼夜变化趋势.本研究为进一步研究玉米CCA1基因在调控玉米光周期敏感现象中的功能,阐明玉米光周期敏感机制提供了科学依据.%CCA 1 gene plays an important role in circadian clock sensitivity in rice (Oryza sative L. ) and Arabidopsis thaliana. In this study, CCA1 (2326 bp) was cloned by RT-PCR using homological primers based on the highly conserved region of the multiple alignment of the rice and Arabidopsis. CCA1 from GenBank of NCBI. The similarities of these sequences were up to 73. 7% ,69. 4 and 39. 8% , respectively, to corresponding mRNA sequences of rice, barley and Arabidopsis in BLAST/nr of GenBank database. Using ORF Finder software, a 2163 bp open reading frame was found to code 720 amino acids. Analyzing this ami no acid sequence by Compute pI/Mw tool revealed that the molecular weight of this protein was about 78819.17 Da , and isoelectric point was about 6. 468. The amino acid sequence contained three myb-DNA binding domains, seven N-myristoylation sites, one G-box binding domain and one putative transmembrane spanning region. We established fluorescence quantitative RT-PCR system with maize

  13. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock

    OpenAIRE

    Tamaru, Teruya; Hattori, Mitsuru; Honda, Kousuke; Nakahata, Yasukazu; Sassone-Corsi, Paolo; van der Horst, Gijsbertus T. J.; Ozawa, Takeaki; Takamatsu, Ken

    2015-01-01

    Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK)-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P) in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a ...

  14. Circadian Oscillation of the Lettuce Transcriptome under Constant Light and Light–Dark Conditions

    Science.gov (United States)

    Higashi, Takanobu; Aoki, Koh; Nagano, Atsushi J.; Honjo, Mie N.; Fukuda, Hirokazu

    2016-01-01

    Although, the circadian clock is a universal biological system in plants and it orchestrates important role of plant production such as photosynthesis, floral induction and growth, there are few such studies on cultivated species. Lettuce is one major cultivated species for both open culture and plant factories and there is little information concerning its circadian clock system. In addition, most of the relevant genes have not been identified. In this study, we detected circadian oscillation in the lettuce transcriptome using time-course RNA sequencing (RNA-Seq) data. Constant light (LL) and light–dark (LD) conditions were used to detect circadian oscillation because the circadian clock has some basic properties: one is self-sustaining oscillation under constant light and another is entrainment to environmental cycles such as light and temperature. In the results, 215 contigs were detected as common oscillating contigs under both LL and LD conditions. The 215 common oscillating contigs included clock gene-like contigs CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)-like, TOC1 (TIMING OF CAB EXPRESSION 1)-like and LHY (LATE ELONGATED HYPOCOTYL)-like, and their expression patterns were similar to those of Arabidopsis. Functional enrichment analysis by GO (gene ontology) Slim and GO Fat showed that the GO terms of response to light stimulus, response to stress, photosynthesis and circadian rhythms were enriched in the 215 common oscillating contigs and these terms were actually regulated by circadian clocks in plants. The 215 common oscillating contigs can be used to evaluate whether the gene expression pattern related to photosynthesis and optical response performs normally in lettuce. PMID:27512400

  15. Effects of Ovarian Hormones on Internal Circadian Organization in Rats1

    OpenAIRE

    Murphy, Zachary C.; Pezuk, Pinar; Menaker, Michael; Sellix, Michael T

    2013-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is the central pacemaker driving rhythms in endocrine physiology. Gonadal steroid hormones affect behavioral rhythms and clock gene expression. However, the impact of fluctuating ovarian steroid levels during the estrous cycle on internal circadian organization remains to be determined. Further, it is not known if steroid hormone depletion, as in menopause, affects the timing system. To determine the influence of est...

  16. Circadian Rhythms and Mood Regulation: Insights from Pre-Clinical Models

    OpenAIRE

    McClung, Colleen A.

    2011-01-01

    Affective disorders such as major depression, bipolar disorder, and seasonal affective disorder are associated with major disruptions in circadian rhythms. Indeed, altered sleep/wake cycles are a critical feature for diagnosis in the DSM IV and several of the therapies used to treat these disorders have profound effects on rhythm length and stabilization in human populations. Furthermore, multiple human genetic studies have identified polymorphisms in specific circadian genes that associate w...

  17. Oscillating perceptions: the ups and downs of the CLOCK protein in the mouse circadian system

    Indian Academy of Sciences (India)

    Jason P. Debruyne

    2008-12-01

    A functional mouse CLOCK protein has long been thought to be essential for mammalian circadian clockwork function, based mainly on studies of mice bearing a dominant negative, antimorphic mutation in the Clock gene. However, new discoveries using recently developed Clock-null mutant mice have shaken up this view. In this review, I discuss how this recent work impacts and alters the previous view of the role of CLOCK in the mouse circadian clockwork.

  18. A wheel of time: the circadian clock, nuclear receptors, and physiology

    OpenAIRE

    Yang, Xiaoyong

    2010-01-01

    It is a long-standing view that the circadian clock functions to proactively align internal physiology with the 24-h rotation of the earth. Recent studies, including one by Schmutz and colleagues (pp. 345–357) in the February 15, 2010, issue of Genes & Development, delineate strikingly complex connections between molecular clocks and nuclear receptor signaling pathways, implying the existence of a large-scale circadian regulatory network coordinating a diverse array of physiological processes...

  19. Circadian rhythms of cyanobacteria: monitoring the biological clocks of individual colonies by bioluminescence.

    OpenAIRE

    Kondo, T.; Ishiura, M

    1994-01-01

    Reproducible circadian rhythms of bioluminescence from individual colonies of cyanobacteria (Synechococcus sp. strain PCC 7942) has been observed. Phenotypic monitoring of colonies on agar plates will enable us to genetically analyze the molecular mechanism of the circadian clock of cyanobacteria by screening for clock mutants. By the introduction of a bacterial luciferase gene, we previously developed a transformed cyanobacterial strain (AMC149) that expresses luciferase as a bioluminescent ...

  20. Circadian Oscillation of the Lettuce Transcriptome under Constant Light and Light-Dark Conditions.

    Science.gov (United States)

    Higashi, Takanobu; Aoki, Koh; Nagano, Atsushi J; Honjo, Mie N; Fukuda, Hirokazu

    2016-01-01

    Although, the circadian clock is a universal biological system in plants and it orchestrates important role of plant production such as photosynthesis, floral induction and growth, there are few such studies on cultivated species. Lettuce is one major cultivated species for both open culture and plant factories and there is little information concerning its circadian clock system. In addition, most of the relevant genes have not been identified. In this study, we detected circadian oscillation in the lettuce transcriptome using time-course RNA sequencing (RNA-Seq) data. Constant light (LL) and light-dark (LD) conditions were used to detect circadian oscillation because the circadian clock has some basic properties: one is self-sustaining oscillation under constant light and another is entrainment to environmental cycles such as light and temperature. In the results, 215 contigs were detected as common oscillating contigs under both LL and LD conditions. The 215 common oscillating contigs included clock gene-like contigs CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)-like, TOC1 (TIMING OF CAB EXPRESSION 1)-like and LHY (LATE ELONGATED HYPOCOTYL)-like, and their expression patterns were similar to those of Arabidopsis. Functional enrichment analysis by GO (gene ontology) Slim and GO Fat showed that the GO terms of response to light stimulus, response to stress, photosynthesis and circadian rhythms were enriched in the 215 common oscillating contigs and these terms were actually regulated by circadian clocks in plants. The 215 common oscillating contigs can be used to evaluate whether the gene expression pattern related to photosynthesis and optical response performs normally in lettuce. PMID:27512400

  1. Reduced anxiety and depression-like behaviours in the circadian period mutant mouse afterhours.

    Directory of Open Access Journals (Sweden)

    Robert Keers

    Full Text Available BACKGROUND: Disruption of the circadian rhythm is a key feature of bipolar disorder. Variation in genes encoding components of the molecular circadian clock has been associated with increased risk of the disorder in clinical populations. Similarly in animal models, disruption of the circadian clock can result in altered mood and anxiety which resemble features of human mania; including hyperactivity, reduced anxiety and reduced depression-like behaviour. One such mutant, after hours (Afh, an ENU-derived mutant with a mutation in a recently identified circadian clock gene Fbxl3, results in a disturbed (long circadian rhythm of approximately 27 hours. METHODOLOGY: Anxiety, exploratory and depression-like behaviours were evaluated in Afh mice using the open-field, elevated plus maze, light-dark box, holeboard and forced swim test. To further validate findings for human mania, polymorphisms in the human homologue of FBXL3, genotyped by three genome wide case control studies, were tested for association with bipolar disorder. PRINCIPAL FINDINGS: Afh mice showed reduced anxiety- and depression-like behaviour in all of the behavioural tests employed, and some evidence of increased locomotor activity in some tests. An analysis of three separate human data sets revealed a gene wide association between variation in FBXL3 and bipolar disorder (P = 0.009. CONCLUSIONS: Our results are consistent with previous studies of mutants with extended circadian periods and suggest that disruption of FBXL3 is associated with mania-like behaviours in both mice and humans.

  2. Redox regulation and pro-oxidant reactions in the physiology of circadian systems.

    Science.gov (United States)

    Méndez, Isabel; Vázquez-Martínez, Olivia; Hernández-Muñoz, Rolando; Valente-Godínez, Héctor; Díaz-Muñoz, Mauricio

    2016-05-01

    Rhythms of approximately 24 h are pervasive in most organisms and are known as circadian. There is a molecular circadian clock in each cell sustained by a feedback system of interconnected "clock" genes and transcription factors. In mammals, the timing system is formed by a central pacemaker, the suprachiasmatic nucleus, in coordination with a collection of peripheral oscillators. Recently, an extensive interconnection has been recognized between the molecular circadian clock and the set of biochemical pathways that underlie the bioenergetics of the cell. A principle regulator of metabolic networks is the flow of electrons between electron donors and acceptors. The concomitant reduction and oxidation (redox) reactions directly influence the balance between anabolic and catabolic processes. This review summarizes and discusses recent findings concerning the mutual and dynamic interactions between the molecular circadian clock, redox reactions, and redox signaling. The scope includes the regulatory role played by redox coenzymes (NAD(P)+/NAD(P)H, GSH/GSSG), reactive oxygen species (superoxide anion, hydrogen peroxide), antioxidants (melatonin), and physiological events that modulate the redox state (feeding condition, circadian rhythms) in determining the timing capacity of the molecular circadian clock. In addition, we discuss a purely metabolic circadian clock, which is based on the redox enzymes known as peroxiredoxins and is present in mammalian red blood cells and in other biological systems. Both the timing system and the metabolic network are key to a better understanding of widespread pathological conditions such as the metabolic syndrome, obesity, and diabetes. PMID:25926044

  3. Circadian transcription contributes to core period determination in Drosophila.

    Directory of Open Access Journals (Sweden)

    Sebastian Kadener

    2008-05-01

    Full Text Available The Clock-Cycle (CLK-CYC heterodimer constitutes a key circadian transcription complex in Drosophila. CYC has a DNA-binding domain but lacks an activation domain. Previous experiments also indicate that most of the transcriptional activity of CLK-CYC derives from the glutamine-rich region of its partner CLK. To address the role of transcription in core circadian timekeeping, we have analyzed the effects of a CYC-viral protein 16 (VP16 fusion protein in the Drosophila system. The addition of this potent and well-studied viral transcriptional activator (VP16 to CYC imparts to the CLK-CYC-VP16 complex strongly enhanced transcriptional activity relative to that of CLK-CYC. This increase is manifested in flies expressing CYC-VP16 as well as in S2 cells. These flies also have increased levels of CLK-CYC direct target gene mRNAs as well as a short period, implicating circadian transcription in period determination. A more detailed examination of reporter gene expression in CYC-VP16-expressing flies suggests that the short period is due at least in part to a more rapid transcriptional phase. Importantly, the behavioral effects require a period (per promoter and are therefore unlikely to be merely a consequence of generally higher PER levels. This indicates that the CLK-CYC-VP16 behavioral effects are a consequence of increased per transcription. All of this also suggests that the timing of transcriptional activation and not the activation itself is the key event responsible for the behavioral effects observed in CYC-VP16-expressing flies. The results taken together indicate that circadian transcription contributes to core circadian function in Drosophila.

  4. Circadian rhythms of clock gene expression in Nile tilapia (Oreochromis niloticus) central and peripheral tissues: influence of different lighting and feeding conditions.

    Science.gov (United States)

    Costa, Leandro S; Serrano, Ignacio; Sánchez-Vázquez, Francisco J; López-Olmeda, Jose F

    2016-08-01

    The present research aimed to investigate the existence of clock gene expression rhythms in tilapia, their endogenous origin, and how light and feeding cycles synchronize these rhythms. In the first experiment, two groups of fish were kept under an LD cycle and fed at two different time points: in the middle of the light (ML) or in the middle of the dark (MD) phase. In the second experiment, fish fed at ML was fasted and kept under constant lighting (LL) conditions for 1 day. In both experiments, the samples from central (optic tectum and hypothalamus) and peripheral (liver) tissues were collected every 3 h throughout a 24 h cycle. The expression levels of clock genes bmal1a, clock1, per1b, cry2a, and cry5 were analyzed by quantitative PCR. All the clock genes analyzed in brain regions showed daily rhythms: clock1, bmal1a, and cry2a showed the acrophase approximately at the end of the light phase (ZT 8:43-11:22 h), whereas per1b and cry5 did so between the end of the dark phase and the beginning of the light phase, respectively (ZT 21:16-4:00 h). These rhythms persisted under constant conditions. No effect of the feeding time was observed in the brain. In the liver, however, the rhythms of clock1 and cry5 were influenced by feeding, and a shift was observed in the MD fish group (ZT 3:58 h for clock1 and 11:20 h for cry5). This study provides the first insights into the molecular clock of tilapia, a very important fish species for aquaculture. It also reveals the endogenous origin of clock gene rhythms and the ability of feeding time to shift the phase in some clock genes in the peripheral, but not the central, oscillator. PMID:27085855

  5. Circadian clock manipulation for cancer prevention and control and the relief of cancer symptoms.

    Science.gov (United States)

    Hrushesky, William J M; Grutsch, James; Wood, Patricia; Yang, Xiaoming; Oh, Eun-Young; Ansell, Christine; Kidder, Stephanie; Ferrans, Carol; Quiton, Dinah Faith T; Reynolds, Justin; Du-Quiton, Jovelyn; Levin, Robert; Lis, Christopher; Braun, Donald

    2009-12-01

    Life has evolved on this planet with regular daily spans of direct solar energy availability alternating with nocturnal spans of dark. Virtually every earth-borne life form has factored this circadian pattern into its biology to ensure the temporal coordination with its resonating environment, a task essential for its individual survival and that of its species. The first whole genome inspections of mutations in human colon and breast cancer have observed specific retained clock gene mutations. Single nucleotide polymorphisms within the genes of clock, clock-controlled, and melatonin pathways have been found to confer excess cancer risk or protection from cancer. Experimental studies have shown that specific core clock genes (Per2 and Per1) are tumor suppressors because their genetic absence doubles tumor numbers, and decreasing their expression in cancer cells doubles cancer growth rate, whereas their overexpression decreases cancer growth rate and diminishes tumor numbers. Experimental interference with circadian clock function increases cancer growth rate, and clinical circadian disruption is associated with higher cancer incidence, faster cancer progression, and shorter cancer patient survival. Patients with advanced lung cancer suffering greater circadian activity/sleep cycle disruption suffer greater interference with function, greater anxiety and depression, poorer nighttime sleep, greater daytime fatigue, and poorer quality of life than comparable patients who maintain good circadian integration. We must now determine whether strategies known to help synchronize the circadian clocks of normal individuals can do so in advanced cancer patients and whether doing so allows cancer patients to feel better and/or live longer. Several academic laboratories and at least 2 large pharmaceutical firms are screening for small molecules targeting the circadian clock to stabilize its phase and enhance its amplitude and thereby consolidate and coordinate circadian

  6. The circadian clock regulates auxin signaling and responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Michael F Covington

    2007-08-01

    Full Text Available The circadian clock plays a pervasive role in the temporal regulation of plant physiology, environmental responsiveness, and development. In contrast, the phytohormone auxin plays a similarly far-reaching role in the spatial regulation of plant growth and development. Went and Thimann noted 70 years ago that plant sensitivity to auxin varied according to the time of day, an observation that they could not explain. Here we present work that explains this puzzle, demonstrating that the circadian clock regulates auxin signal transduction. Using genome-wide transcriptional profiling, we found many auxin-induced genes are under clock regulation. We verified that endogenous auxin signaling is clock regulated with a luciferase-based assay. Exogenous auxin has only modest effects on the plant clock, but the clock controls plant sensitivity to applied auxin. Notably, we found both transcriptional and growth responses to exogenous auxin are gated by the clock. Thus the circadian clock regulates some, and perhaps all, auxin responses. Consequently, many aspects of plant physiology not previously thought to be under circadian control may show time-of-day-specific sensitivity, with likely important consequences for plant growth and environmental responses.

  7. Circadian Rhythm and Cartilage Extracellular Matrix Genes in Osseointegration: A Genome-Wide Screening of Implant Failure by Vitamin D Deficiency

    OpenAIRE

    Mengatto, Cristiane Machado; Mussano, Federico; Honda, Yoshitomo; Colwell, Christopher S.; Nishimura, Ichiro

    2011-01-01

    Background Successful dental and orthopedic implants require the establishment of an intimate association with bone tissue; however, the mechanistic explanation of how biological systems accomplish osseointegration is still incomplete. We sought to identify critical gene networks involved in osseointegration by exploring the implant failure model under vitamin D deficiency. Methodology Adult male Sprague-Dawley rats were exposed to control or vitamin D-deficient diet prior to the osteotomy su...

  8. Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits.

    Science.gov (United States)

    Atamian, Hagop S; Creux, Nicky M; Brown, Evan A; Garner, Austin G; Blackman, Benjamin K; Harmer, Stacey L

    2016-08-01

    Young sunflower plants track the Sun from east to west during the day and then reorient during the night to face east in anticipation of dawn. In contrast, mature plants cease movement with their flower heads facing east. We show that circadian regulation of directional growth pathways accounts for both phenomena and leads to increased vegetative biomass and enhanced pollinator visits to flowers. Solar tracking movements are driven by antiphasic patterns of elongation on the east and west sides of the stem. Genes implicated in control of phototropic growth, but not clock genes, are differentially expressed on the opposite sides of solar tracking stems. Thus, interactions between environmental response pathways and the internal circadian oscillator coordinate physiological processes with predictable changes in the environment to influence growth and reproduction. PMID:27493185

  9. The relationship between circadian disruption and the development of metabolic syndrome and type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Karatsoreos IN

    2014-12-01

    Full Text Available Ilia N Karatsoreos Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA Abstract: Circadian (daily rhythms are pervasive in nature, and expressed in nearly every behavioral and physiological process. In mammals, circadian rhythms are regulated by the master brain clock in the suprachiasmatic nucleus of the hypothalamus that coordinates the activity of “peripheral” oscillators throughout the brain and body. While much progress has been made in understanding the basic functioning of the circadian clock at the level of genes, molecules, and cells, our understanding of how these clocks interact with complex systems is still in its infancy. Much recent work has focused on the role of circadian clocks in the etiology of disorders as diverse as cancer, diabetes, and obesity. Given the rapid rise in obesity, and the economic costs involved in treating its associated cardiometabolic disorders such as heart disease and diabetes mellitus, understanding the development of obesity and metabolic dysregulation is crucial. Significant epidemiological data indicate a role for circadian rhythms in metabolic disorders. Shift workers have a higher incidence of obesity and diabetes, and laboratory studies in humans show misaligning sleep and the circadian clock leads to hyperinsulinemia. In animal models, body-wide “clock gene” knockout mice are prone to obesity. Further, disrupting the circadian clock by manipulating the light–dark cycle can result in metabolic dysregulation and development of obesity. At the molecular level, elegant studies have shown that targeted disruption of the genetic circadian clock in the pancreas leads to diabetes, highlighting the fact that the circadian clock is directly coupled to metabolism at the cellular level. Keywords: glucose, metabolism, sleep, rhythms, obesity

  10. Ablation of the ID2 gene results in altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue.

    OpenAIRE

    Mathew, D.; P. Zhou; Pywell, CM; van der Veen, DR; Shao, J.; Xi, Y.; Bonar, NA; Hummel, AD; Chapman, S.; Leevy, WM; Duffield, GE

    2013-01-01

    Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our earlier studies have demonstrated a role for ID2 in the input pathway, core clock function and output pathways of the mouse circadian system. We have also reported that Id2 null (Id2−/−) mice are lean with low gonadal white adipose tissue deposits and lower lipid content in the liver. These results coincided with altered or disrupted circadian expression profiles ...

  11. Working around the clock: circadian rhythms and skeletal muscle

    OpenAIRE

    ZHANG, XIPING; Dube, Thomas J.; Esser, Karyn A.

    2009-01-01

    The study of the circadian molecular clock in skeletal muscle is in the very early stages. Initial research has demonstrated the presence of the molecular clock in skeletal muscle and that skeletal muscle of a clock-compromised mouse, Clock mutant, exhibits significant disruption in normal expression of many genes required for adult muscle structure and metabolism. In light of the growing association between the molecular clock, metabolism, and metabolic disease, it will also be important to ...

  12. Evidence for Time-of-Day Dependent Effect of Neurotoxic Dorsomedial Hypothalamic Lesions on Food Anticipatory Circadian Rhythms in Rats

    OpenAIRE

    Landry, Glenn J.; Kent, Brianne A.; Patton, Danica F.; Mark Jaholkowski; Marchant, Elliott G.; Mistlberger, Ralph E.

    2011-01-01

    The dorsomedial hypothalamus (DMH) is a site of circadian clock gene and immediate early gene expression inducible by daytime restricted feeding schedules that entrain food anticipatory circadian rhythms in rats and mice. The role of the DMH in the expression of anticipatory rhythms has been evaluated using different lesion methods. Partial lesions created with the neurotoxin ibotenic acid (IBO) have been reported to attenuate food anticipatory rhythms, while complete lesions made with radiof...

  13. Investigation of a non-invasive method of assessing the equine circadian clock using hair follicle cells

    OpenAIRE

    Watts, Lisa M; Browne, John A.; Murphy, Barbara A

    2012-01-01

    Background: A comprehensive understanding of the equine circadian clock involves the evaluation of circadian clock gene expression. A non-invasive and effective method for detecting equine clock gene expression has yet to be established. Currently, research surrounding this area has relied on collecting tissue biopsies or blood samples that can often be costly, time consuming and uncomfortable for the animal.Methods: Five mares were individually stabled under a light–dark (LD) cycle that mimi...

  14. Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem?

    Science.gov (United States)

    Stevens, Richard G; Zhu, Yong

    2015-05-01

    Over the past 3 billion years, an endogenous circadian rhythmicity has developed in almost all life forms in which daily oscillations in physiology occur. This allows for anticipation of sunrise and sunset. This physiological rhythmicity is kept at precisely 24 h by the daily cycle of sunlight and dark. However, since the introduction of electric lighting, there has been inadequate light during the day inside buildings for a robust resetting of the human endogenous circadian rhythmicity, and too much light at night for a true dark to be detected; this results in circadian disruption and alters sleep/wake cycle, core body temperature, hormone regulation and release, and patterns of gene expression throughout the body. The question is the extent to which circadian disruption compromises human health, and can account for a portion of the modern pandemics of breast and prostate cancers, obesity, diabetes and depression. As societies modernize (i.e. electrify) these conditions increase in prevalence. There are a number of promising leads on putative mechanisms, and epidemiological findings supporting an aetiologic role for electric lighting in disease causation. These include melatonin suppression, circadian gene expression, and connection of circadian rhythmicity to metabolism in part affected by haem iron intake and distribution. PMID:25780233

  15. PPARα is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders

    International Nuclear Information System (INIS)

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPARα) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPARα ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3 h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erbα was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPARα is involved in circadian clock control independently of the SCN and that PPARα could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS

  16. Depression-like behaviour in mice is associated with disrupted circadian rhythms in nucleus accumbens and periaqueductal grey.

    Science.gov (United States)

    Landgraf, Dominic; Long, Jaimie E; Welsh, David K

    2016-05-01

    An association between circadian rhythms and mood regulation is well established, and disturbed circadian clocks are believed to contribute to the development of mood disorders, including major depressive disorder. The circadian system is coordinated by the suprachiasmatic nucleus (SCN), the master pacemaker in the hypothalamus that receives light input from the retina and synchronizes circadian oscillators in other brain regions and peripheral tissues. Lacking the tight neuronal network that couples single-cell oscillators in the SCN, circadian clocks outside the SCN may be less stable and more susceptible to disturbances, for example by clock gene mutations or uncontrollable stress. However, non-SCN circadian clocks have not been studied extensively in rodent models of mood disorders. In the present study, it was hypothesized that disturbances of local circadian clocks in mood-regulating brain areas are associated with depression-like behaviour in mice. Using the learned helplessness procedure, depression-like behaviour was evoked in mice bearing the PER2::LUC circadian reporter, and then circadian rhythms of PER2 expression were examined in brain slices from these mice using luminometry and bioluminescence imaging. It was found that helplessness is associated with absence of circadian rhythms in the nucleus accumbens and the periaqueductal grey, two of the most critical brain regions within the reward circuit. The current study provides evidence that susceptibility of mice to depression-like behaviour is associated with disturbed local circadian clocks in a subset of mood-regulating brain areas, but the direction of causality remains to be determined. PMID:26414405

  17. Biomarkers for Circadian Rhythm Disruption Independent of Time of Day

    Science.gov (United States)

    Van Dycke, Kirsten C. G.; Pennings, Jeroen L. A.; van Oostrom, Conny T. M.; van Kerkhof, Linda W. M.; van Steeg, Harry; van der Horst, Gijsbertus T. J.; Rodenburg, Wendy

    2015-01-01

    Frequent shift work causes disruption of the circadian rhythm and might on the long-term result in increased health risk. Current biomarkers evaluating the presence of circadian rhythm disturbance (CRD), including melatonin, cortisol and body temperature, require 24-hr (“around the clock”) measurements, which is tedious. Therefore, these markers are not eligible to be used in large-scale (human) studies. The aim of the present study was to identify universal biomarkers for CRD independent of time of day using a transcriptomics approach. Female FVB mice were exposed to six shifts in a clockwise (CW) and counterclockwise (CCW) CRD protocol and sacrificed at baseline and after 1 shift, 6 shifts, 5 days recovery and 14 days recovery, respectively. At six time-points during the day, livers were collected for mRNA microarray analysis. Using a classification approach, we identified a set of biomarkers able to classify samples into either CRD or non-disrupted based on the hepatic gene expression. Furthermore, we identified differentially expressed genes 14 days after the last shift compared to baseline for both CRD protocols. Non-circadian genes differentially expressed upon both CW and CCW protocol were considered useful, universal markers for CRD. One candidate marker i.e. CD36 was evaluated in serum samples of the CRD animals versus controls. These biomarkers might be useful to measure CRD and can be used later on for monitoring the effectiveness of intervention strategies aiming to prevent or minimize chronic adverse health effects. PMID:25984797

  18. Optogenetic Control of Gene Expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yick-Bun Chan

    Full Text Available To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expression in vivo using blue light or two-photon excitation. We show that this system offers high spatiotemporal resolution by inducing gene expression in tissues at various developmental stages. In combination with two-photon excitation, gene expression can be manipulated at precise sites in embryos, potentially offering an important tool with which to examine developmental processes.

  19. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor

    OpenAIRE

    Maeda, Kiminori; Robinson, Alexander J.; Henbest, Kevin B.; Hogben, Hannah J.; Biskup, Till; Ahmad, Margaret; Schleicher, Erik; Weber, Stefan; Timmel, Christiane R.; Hore, P. J.

    2012-01-01

    Among the biological phenomena that fall within the emerging field of “quantum biology” is the suggestion that magnetically sensitive chemical reactions are responsible for the magnetic compass of migratory birds. It has been proposed that transient radical pairs are formed by photo-induced electron transfer reactions in cryptochrome proteins and that their coherent spin dynamics are influenced by the geomagnetic field leading to changes in the quantum yield of the signaling state of the prot...

  20. A novel protein, CHRONO, functions as a core component of the mammalian circadian clock.

    Directory of Open Access Journals (Sweden)

    Akihiro Goriki

    2014-04-01

    Full Text Available Circadian rhythms are controlled by a system of negative and positive genetic feedback loops composed of clock genes. Although many genes have been implicated in these feedback loops, it is unclear whether our current list of clock genes is exhaustive. We have recently identified Chrono as a robustly cycling transcript through genome-wide profiling of BMAL1 binding on the E-box. Here, we explore the role of Chrono in cellular timekeeping. Remarkably, endogenous CHRONO occupancy around E-boxes shows a circadian oscillation antiphasic to BMAL1. Overexpression of Chrono leads to suppression of BMAL1-CLOCK activity in a histone deacetylase (HDAC -dependent manner. In vivo loss-of-function studies of Chrono including Avp neuron-specific knockout (KO mice display a longer circadian period of locomotor activity. Chrono KO also alters the expression of core clock genes and impairs the response of the circadian clock to stress. CHRONO forms a complex with the glucocorticoid receptor and mediates glucocorticoid response. Our comprehensive study spotlights a previously unrecognized clock component of an unsuspected negative circadian feedback loop that is independent of another negative regulator, Cry2, and that integrates behavioral stress and epigenetic control for efficient metabolic integration of the clock.

  1. Cryptochromes and Hormone Signal Transduction under Near-Zero Magnetic Fields: New Clues to Magnetic Field Effects in a Rice Planthopper.

    Directory of Open Access Journals (Sweden)

    Gui-Jun Wan

    Full Text Available Although there are considerable reports of magnetic field effects (MFE on organisms, very little is known so far about the MFE-related signal transduction pathways. Here we establish a manipulative near-zero magnetic field (NZMF to investigate the potential signal transduction pathways involved in MFE. We show that exposure of migratory white-backed planthopper, Sogatella furcifera, to the NZMF results in delayed egg and nymphal development, increased frequency of brachypterous females, and reduced longevity of macropterous female adults. To understand the changes in gene expression underlying these phenotypes, we examined the temporal patterns of gene expression of (i CRY1 and CRY2 as putative magnetosensors, (ii JHAMT, FAMeT and JHEH in the juvenile hormone pathway, (iii CYP307A1 in the ecdysone pathway, and (iv reproduction-related Vitellogenin (Vg. The significantly altered gene expression of CRY1 and CRY2 under the NZMF suggest their developmental stage-specific patterns and potential upstream location in magnetic response. Gene expression patterns of JHAMT, JHEH and CYP307A1 were consistent with the NZMF-triggered delay in nymphal development, higher proportion of brachypterous female adults, and the shortened longevity of macropterous female adults, which show feasible links between hormone signal transduction and phenotypic MFE. By conducting manipulative NZMF experiments, our study suggests an important role of the geomagnetic field (GMF in modulating development and physiology of insects, provides new insights into the complexity of MFE-magnetosensitivity interactions, and represents an initial but crucial step forward in understanding the molecular basis of cryptochromes and hormone signal transduction involved in MFE.

  2. Effect of melatonin on endogenous circadian rhythm

    Institute of Scientific and Technical Information of China (English)

    XU Feng; WANG Min; ZANG Ling-he

    2008-01-01

    Objective To further authenticate the role of melatonin on endogenous biologic clock system. Methods Pinealectomized mice were used in the experiments, a series of circadian rhythm of physiology index, such as glucocorticoid, amino acid neurotransmitter, immune function, sensitivity of algesia and body temperature were measured. Results Effects of melatonin on endogenous circadian rhythm roughly appeared four forms: 1) The model of inherent rhythm was invariant, but midvalue was removed. 2) Pacing function: pinealectomy and melatonin administration changed amplitude of the circadian vibration of aspartate, peripheral blood WBC and serum hemolysin. 3) Phase of rhythm changed, such as the effects on percentage of lymphocyte and sensitivity of algesia. 4) No effect, the circadian rhythm of body temperature belong to this form Conclusions Melatonin has effects some circadian rhythm, and it can adjust endogenous inherent rhythm and make the rhythm keep step with environmental cycle. Melatonin may be a kind of Zeitgeber, Pineal gland might being a rhythm bearing organ to some circadian rhythm.

  3. Glucose Alters Per2 Rhythmicity Independent of AMPK, Whereas AMPK Inhibitor Compound C Causes Profound Repression of Clock Genes and AgRP in mHypoE-37 Hypothalamic Neurons.

    Directory of Open Access Journals (Sweden)

    Johanneke E Oosterman

    Full Text Available Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1, agouti-related peptide (AgRP, carnitine palmitoyltransferase 1C (Cpt1c, and O-linked N-acetylglucosamine transferase (Ogt were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation.

  4. Metabolic consequences of sleep and circadian disorders

    OpenAIRE

    Depner, Christopher M.; Stothard, Ellen R.; Wright, Kenneth P.

    2014-01-01

    Sleep and circadian rhythms modulate or control daily physiological patterns with importance for normal metabolic health. Sleep deficiencies associated with insufficient sleep schedules, insomnia with short-sleep duration, sleep apnea, narcolepsy, circadian misalignment, shift work, night eating syndrome and sleep-related eating disorder may all contribute to metabolic dysregulation. Sleep deficiencies and circadian disruption associated with metabolic dysregulation may contribute to weight g...

  5. Unraveling the circadian clock in Arabidopsis

    OpenAIRE

    Wang, Xiaoxue; Ma, Ligeng

    2012-01-01

    The circadian clock is an endogenous timing system responsible for coordinating an organism’s biological processes with its environment. Interlocked transcriptional feedback loops constitute the fundamental architecture of the circadian clock. In Arabidopsis, three feedback loops, the core loop, morning loop and evening loop, comprise a network that is the basis of the circadian clock. The components of these three loops are regulated in distinct ways, including transcriptional, post-transcri...

  6. Circadian regulators of intestinal lipid absorption

    OpenAIRE

    Hussain, M. Mahmood; Pan, Xiaoyue

    2015-01-01

    Among all the metabolites present in the plasma, lipids, mainly triacylglycerol and diacylglycerol, show extensive circadian rhythms. These lipids are transported in the plasma as part of lipoproteins. Lipoproteins are synthesized primarily in the liver and intestine and their production exhibits circadian rhythmicity. Studies have shown that various proteins involved in lipid absorption and lipoprotein biosynthesis show circadian expression. Further, intestinal epithelial cells express circa...

  7. Toward a detailed computational model for the mammalian circadian clock

    Science.gov (United States)

    Leloup, Jean-Christophe; Goldbeter, Albert

    2003-06-01

    We present a computational model for the mammalian circadian clock based on the intertwined positive and negative regulatory loops involving the Per, Cry, Bmal1, Clock, and Rev-Erb genes. In agreement with experimental observations, the model can give rise to sustained circadian oscillations in continuous darkness, characterized by an antiphase relationship between Per/Cry/Rev-Erb and Bmal1 mRNAs. Sustained oscillations correspond to the rhythms autonomously generated by suprachiasmatic nuclei. For other parameter values, damped oscillations can also be obtained in the model. These oscillations, which transform into sustained oscillations when coupled to a periodic signal, correspond to rhythms produced by peripheral tissues. When incorporating the light-induced expression of the Per gene, the model accounts for entrainment of the oscillations by light-dark cycles. Simulations show that the phase of the oscillations can then vary by several hours with relatively minor changes in parameter values. Such a lability of the phase could account for physiological disorders related to circadian rhythms in humans, such as advanced or delayed sleep phase syndrome, whereas the lack of entrainment by light-dark cycles can be related to the non-24h sleep-wake syndrome. The model uncovers the possible existence of multiple sources of oscillatory behavior. Thus, in conditions where the indirect negative autoregulation of Per and Cry expression is inoperative, the model indicates the possibility that sustained oscillations might still arise from the negative autoregulation of Bmal1 expression.

  8. Systemic PPARγ deletion impairs circadian rhythms of behavior and metabolism.

    Science.gov (United States)

    Yang, Guangrui; Jia, Zhanjun; Aoyagi, Toshinori; McClain, Donald; Mortensen, Richard M; Yang, Tianxin

    2012-01-01

    Compelling evidence from both human and animal studies suggests a physiological link between the circadian rhythm and metabolism but the underlying mechanism is still incompletely understood. We examined the role of PPARγ, a key regulator of energy metabolism, in the control of physiological and behavioral rhythms by analyzing two strains of whole-body PPARγ null mouse models. Systemic inactivation of PPARγ was generated constitutively by using Mox2-Cre mice (MoxCre/flox) or inducibly by using the tamoxifen system (EsrCre/flox/TM). Circadian variations in oxygen consumption, CO(2) production, food and water intake, locomotor activity, and cardiovascular parameters were all remarkably suppressed in MoxCre/flox mice. A similar phenotype was observed in EsrCre/flox/TM mice, accompanied by impaired rhythmicity of the canonical clock genes in adipose tissues and liver but not skeletal muscles or the kidney. PPARγ inactivation in isolated preadipocytes following exposure to tamoxifen led to a similar blockade of the rhythmicity of the clock gene expression. Together, these results support an essential role of PPARγ in the coordinated control of circadian clocks and metabolic pathways. PMID:22899986

  9. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    Vasu Sheeba

    2008-12-01

    As an experimental model system, the fruit fly Drosophila melanogaster has been seminal in shaping our understanding of the circadian clockwork. The wealth of genetic tools at our disposal over the past four decades has enabled discovery of the genetic and molecular bases of circadian rhythmicity. More recently, detailed investigation leading to the anatomical, neurochemical and electrophysiological characterization of the various neuronal subgroups that comprise the circadian machinery has revealed pathways through which these neurons come together to act as a neuronal circuit. Thus the D. melanogaster circadian pacemaker circuit presents a relatively simple and attractive model for the study of neuronal circuits and their functions.

  10. Circadian clocks are designed optimally

    CERN Document Server

    Hasegawa, Yoshihiko

    2014-01-01

    Circadian rhythms are acquired through evolution to increase the chances for survival by synchronizing to the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. Since both properties have been tuned through natural selection, their adaptation can be formalized in the framework of mathematical optimization. By using a succinct model, we found that simultaneous optimization of regularity and entrainability entails inherent features of the circadian mechanism irrespective of model details. At the behavioral level we discovered the existence of a dead zone, a time during which light pulses neither advance nor delay the clock. At the molecular level we demonstrate the role-sharing of two light inputs, phase advance and delay, as is well observed in mammals. We also reproduce the results of phase-controlling experiments and predict molecular elements responsible for the clockwork...

  11. The output signal of Purkinje cells of the cerebellum and circadian rhythmicity.

    Directory of Open Access Journals (Sweden)

    Jérôme Mordel

    Full Text Available Measurement of clock gene expression has recently provided evidence that the cerebellum, like the master clock in the SCN, contains a circadian oscillator. The cerebellar oscillator is involved in anticipation of mealtime and possibly resides in Purkinje cells. However, the rhythmic gene expression is likely transduced into a circadian cerebellar output signal to exert an effective control of neuronal brain circuits that are responsible for feeding behavior. Using electrophysiological recordings from acute and organotypic cerebellar slices, we tested the hypothesis whether Purkinje cells transmit a circadian modulated signal to their targets in the brain. Extracellular recordings from brain slices revealed the typical discharge pattern previously described in vivo in single cell recordings showing basically a tonic or a trimodal-like firing pattern. However, in acute sagittal cerebellar slices the average spike rate of randomly selected Purkinje cells did not exhibit significant circadian variations, irrespective of their specific firing pattern. Also, frequency and amplitude of spontaneous inhibitory postsynaptic currents and the amplitude of GABA- and glutamate-evoked currents did not vary with circadian time. Long-term recordings using multielectrode arrays (MEA allowed to monitor neuronal activity at multiple sites in organotypic cerebellar slices for several days to weeks. With this recording technique we observed oscillations of the firing rate of cerebellar neurons, presumably of Purkinje cells, with a period of about 24 hours which were stable for periods up to three days. The daily renewal of culture medium could induce circadian oscillations of the firing rate of Purkinje cells, a feature that is compatible with the behavior of slave oscillators. However, from the present results it appears that the circadian expression of cerebellar clock genes exerts only a weak influence on the electrical output of cerebellar neurons.

  12. Profiling molecular and behavioral circadian rhythms in the non-symbiotic sea anemone Nematostella vectensis.

    Science.gov (United States)

    Oren, Matan; Tarrant, Ann M; Alon, Shahar; Simon-Blecher, Noa; Elbaz, Idan; Appelbaum, Lior; Levy, Oren

    2015-01-01

    Endogenous circadian clocks are poorly understood within early-diverging animal lineages. We have characterized circadian behavioral patterns and identified potential components of the circadian clock in the starlet sea anemone, Nematostella vectensis: a model cnidarian which lacks algal symbionts. Using automatic video tracking we showed that Nematostella exhibits rhythmic circadian locomotor activity, which is persistent in constant dark, shifted or disrupted by external dark/light cues and maintained the same rate at two different temperatures. This activity was inhibited by a casein kinase 1δ/ε inhibitor, suggesting a role for CK1 homologue(s) in Nematostella clock. Using high-throughput sequencing we profiled Nematostella transcriptomes over 48 hours under a light-dark cycle. We identified 180 Nematostella diurnally-oscillated transcripts and compared them with previously established databases of adult and larvae of the symbiotic coral Acropora millepora, revealing both shared homologues and unique rhythmic genes. Taken together, this study further establishes Nematostella as a non-symbiotic model organism to study circadian rhythms and increases our understanding about the fundamental elements of circadian regulation and their evolution within the Metazoa. PMID:26081482

  13. Mini Screening of Kinase Inhibitors Affecting Period-length of Mammalian Cellular Circadian Clock

    International Nuclear Information System (INIS)

    In mammalian circadian rhythms, the transcriptional-translational feedback loop (TTFL) consisting of a set of clock genes is believed to elicit the circadian clock oscillation. The TTFL model explains that the accumulation and degradation of mPER and mCRY proteins control the period-length (tau) of the circadian clock. Although recent studies revealed that the Casein Kinase Iεδ (CKIεδ) regurates the phosphorylation of mPER proteins and the circadian period-length, other kinases are also likely to contribute the phosphorylation of mPER. Here, we performed small scale screening using 84 chemical compounds known as kinase inhibitors to identify candidates possibly affecting the circadian period-length in mammalian cells. Screening by this high-throughput real-time bioluminescence monitoring system revealed that the several chemical compounds apparently lengthened the cellular circadian clock oscillation. These compounds are known as inhibitors against kinases such as Casein Kinase II (CKII), PI3-kinase (PI3K) and c-Jun N-terminal Kinase (JNK) in addition to CKIεδ. Although these kinase inhibitors may have some non-specific effects on other factors, our mini screening identified new candidates contributing to period-length control in mammalian cells

  14. Peripheral Skin Temperature and Circadian Biological Clock in Shift Nurses after a Day off.

    Science.gov (United States)

    Bracci, Massimo; Ciarapica, Veronica; Copertaro, Alfredo; Barbaresi, Mariella; Manzella, Nicola; Tomasetti, Marco; Gaetani, Simona; Monaco, Federica; Amati, Monica; Valentino, Matteo; Rapisarda, Venerando; Santarelli, Lory

    2016-01-01

    The circadian biological clock is essentially based on the light/dark cycle. Some people working with shift schedules cannot adjust their sleep/wake cycle to the light/dark cycle, and this may result in alterations of the circadian biological clock. This study explored the circadian biological clock of shift and daytime nurses using non-invasive methods. Peripheral skin temperature, cortisol and melatonin levels in saliva, and Per2 expression in pubic hair follicle cells were investigated for 24 h after a day off. Significant differences were observed in peripheral skin temperature and cortisol levels between shift and daytime nurses. No differences in melatonin levels were obtained. Per2 maximum values were significantly different between the two groups. Shift nurses exhibited lower circadian variations compared to daytime nurses, and this may indicate an adjustment of the circadian biological clock to continuous shift schedules. Non-invasive procedures, such as peripheral skin temperature measurement, determination of cortisol and melatonin in saliva, and analysis of clock genes in hair follicle cells, may be effective approaches to extensively study the circadian clock in shift workers. PMID:27128899

  15. Peripheral Skin Temperature and Circadian Biological Clock in Shift Nurses after a Day off

    Directory of Open Access Journals (Sweden)

    Massimo Bracci

    2016-04-01

    Full Text Available The circadian biological clock is essentially based on the light/dark cycle. Some people working with shift schedules cannot adjust their sleep/wake cycle to the light/dark cycle, and this may result in alterations of the circadian biological clock. This study explored the circadian biological clock of shift and daytime nurses using non-invasive methods. Peripheral skin temperature, cortisol and melatonin levels in saliva, and Per2 expression in pubic hair follicle cells were investigated for 24 h after a day off. Significant differences were observed in peripheral skin temperature and cortisol levels between shift and daytime nurses. No differences in melatonin levels were obtained. Per2 maximum values were significantly different between the two groups. Shift nurses exhibited lower circadian variations compared to daytime nurses, and this may indicate an adjustment of the circadian biological clock to continuous shift schedules. Non-invasive procedures, such as peripheral skin temperature measurement, determination of cortisol and melatonin in saliva, and analysis of clock genes in hair follicle cells, may be effective approaches to extensively study the circadian clock in shift workers.

  16. Design principles underlying circadian clocks.

    OpenAIRE

    Rand, D.A.; Shulgin, B. V.; D. Salazar; Millar, A. J.

    2004-01-01

    A fundamental problem for regulatory networks is to understand the relation between form and function: to uncover the underlying design principles of the network. Circadian clocks present a particularly interesting instance, as recent work has shown that they have complex structures involving multiple interconnected feedback loops with both positive and negative feedback. While several authors have speculated on the reasons for this, a convincing explanation is still lacking.We analyse both t...

  17. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA.

    Directory of Open Access Journals (Sweden)

    Guo-Xiang Ruan

    2008-10-01

    Full Text Available The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER

  18. Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation.

    Science.gov (United States)

    Xie, Zhongwen; Su, Wen; Liu, Shu; Zhao, Guogang; Esser, Karyn; Schroder, Elizabeth A; Lefta, Mellani; Stauss, Harald M; Guo, Zhenheng; Gong, Ming Cui

    2015-01-01

    As the central pacemaker, the suprachiasmatic nucleus (SCN) has long been considered the primary regulator of blood pressure circadian rhythm; however, this dogma has been challenged by the discovery that each of the clock genes present in the SCN is also expressed and functions in peripheral tissues. The involvement and contribution of these peripheral clock genes in the circadian rhythm of blood pressure remains uncertain. Here, we demonstrate that selective deletion of the circadian clock transcriptional activator aryl hydrocarbon receptor nuclear translocator-like (Bmal1) from smooth muscle, but not from cardiomyocytes, compromised blood pressure circadian rhythm and decreased blood pressure without affecting SCN-controlled locomotor activity in murine models. In mesenteric arteries, BMAL1 bound to the promoter of and activated the transcription of Rho-kinase 2 (Rock2), and Bmal1 deletion abolished the time-of-day variations in response to agonist-induced vasoconstriction, myosin phosphorylation, and ROCK2 activation. Together, these data indicate that peripheral inputs contribute to the daily control of vasoconstriction and blood pressure and suggest that clock gene expression outside of the SCN should be further evaluated to elucidate pathogenic mechanisms of diseases involving blood pressure circadian rhythm disruption. PMID:25485682

  19. Synchronization of circadian Per2 rhythms and HSF1-BMAL1:CLOCK interaction in mouse fibroblasts after short-term heat shock pulse.

    Directory of Open Access Journals (Sweden)

    Teruya Tamaru

    Full Text Available Circadian rhythms are the general physiological processes of adaptation to daily environmental changes, such as the temperature cycle. A change in temperature is a resetting cue for mammalian circadian oscillators, which are possibly regulated by the heat shock (HS pathway. The HS response (HSR is a universal process that provides protection against stressful conditions, which promote protein-denaturation. Heat shock factor 1 (HSF1 is essential for HSR. In the study presented here, we investigated whether a short-term HS pulse can reset circadian rhythms. Circadian Per2 rhythm and HSF1-mediated gene expression were monitored by a real-time bioluminescence assay for mPer2 promoter-driven luciferase and HS element (HSE; HSF1-binding site-driven luciferase activity, respectively. By an optimal duration HS pulse (43°C for approximately 30 minutes, circadian Per2 rhythm was observed in the whole mouse fibroblast culture, probably indicating the synchronization of the phases of each cell. This rhythm was preceded by an acute elevation in mPer2 and HSF1-mediated gene expression. Mutations in the two predicted HSE sites adjacent (one of them proximally to the E-box in the mPer2 promoter dramatically abolished circadian mPer2 rhythm. Circadian Per2 gene/protein expression was not observed in HSF1-deficient cells. These findings demonstrate that HSF1 is essential to the synchronization of circadian rhythms by the HS pulse. Importantly, the interaction between HSF1 and BMAL1:CLOCK heterodimer, a central circadian transcription factor, was observed after the HS pulse. These findings reveal that even a short-term HS pulse can reset circadian rhythms and cause the HSF1-BMAL1:CLOCK interaction, suggesting the pivotal role of crosstalk between the mammalian circadian and HSR systems.

  20. 大鼠视交叉上核与松果体中Clock基因转录的昼夜节律性及不同光反应性%Circadian rhythms and different photoresponses of Clock gene transcription in the rat suprachiasmatic nucleus and pineal gland

    Institute of Scientific and Technical Information of China (English)

    王国卿; 傅春玲; 李建祥; 杜玉珍; 童建

    2006-01-01

    The aim of this study was to observe and compare the endogenous circadian rhythm and photoresponse of Clock gene transcription in the suprachiasmatic nucleus (SCN) and pineal gland (PG) of rats. With free access to food and water in special darkrooms, Sprague-Dawley rats were housed under the light regime of constant darkness (DD) for 8 weeks (n=36) or 12 hour-light:12 hour-dark cycle (LD) for 4 weeks (n=36), respectively. Then, their SCN and PG were dissected out every 4 h in a circadian day, 6rats at each time (n=6). All animal treatments and sampling during the dark phases were conducted under red dim light (<0.1 lux). The total RNA was extracted from each sample and the semi-quantitative RT-PCR was used to determine the temporal mRNA changes of Clock gene in the SCN and PG at different circadian times (CT) or zeitgeber times (ZT). The grayness ratio of Clock/H3.3 bands was served as the relative estimation of Clock gene expression. The experimental data were analyzed by the Cosine method and the Clock Lab software to fit original results measured at 6 time points and to simulate a circadian rhythmic curve which was then examined for statistical difference by the amplitude F test. The main results are as follows: (1) The mRNA levels of Clock gene in the SCN under DD regime displayed the circadian oscillation (P<0.05). The endogenous rhythmic profiles of Clock gene transcription in the PG were similar to those in the SCN (P>0.05) throughout the day with the peak at the subjective night (CT15 in the SCN or CT18 in the PG)and the trough during the subjective day (CT3 in the SCN or CT6 in the PG). (2) Clock gene transcription in the SCN under LD cycle also showed the circadian oscillation (P<0.05), and the rhythmic profile was anti-phasic to that under DD condition (P<0.05). The amplitude and the mRNA level at the peak of Clock gene transcription in the SCN under LD were significantly increased compared with that under DD (P<0.05), while the value of

  1. The Circadian Timing System and Environmental Circadian Disruption: From Follicles to Fertility.

    Science.gov (United States)

    Sen, Aritro; Sellix, Michael T

    2016-09-01

    The internal or circadian timing system is deeply integrated in female reproductive physiology. Considerable details of rheostatic timing function in the neuroendocrine control of pituitary hormone secretion, adenohypophyseal hormone gene expression and secretion, gonadal steroid hormone biosynthesis and secretion, ovulation, implantation, and parturition have been reported. The molecular clock, an autonomous feedback loop oscillator of interacting transcriptional regulators, dictates the timing and amplitude of gene expression in each tissue of the female hypothalamic-pituitary-gonadal (HPG) axis. Although multiple targets of the molecular clock have been identified, many associated with critical physiological functions in the HPG axis, the full extent of clock-driven gene expression and physiology in this critical system remains unknown. Environmental circadian disruption (ECD), the disturbance of temporal relationships within and between internal clocks (brain and periphery), and external timing cues (eg, light, nutrients, social cues) due to rotating/night shift work or transmeridian travel have been linked to reproductive dysfunction and subfertility. Moreover, ECD resulting from exposure to endocrine disrupting chemicals, environmental toxins, and/or irregular hormone levels during sexual development can also reduce fertility. Thus, perturbations that disturb clock function at the molecular, cellular or systemic level correlate with significant declines in female reproductive function. Here we briefly review the evidence for molecular clock function in each tissue of the female HPG axis (GnRH neuron, pituitary, uterus, oviduct, and ovary), describe the human epidemiological and animal data supporting the negative effects of ECD on fertility, and explore the potential for novel chronotherapeutics in women's health and fertility. PMID:27501186

  2. Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception

    Science.gov (United States)

    Worster, Susannah; Kattnig, Daniel R.; Hore, P. J.

    2016-07-01

    Long-lived spin coherence and rotationally ordered radical pairs have previously been identified as key requirements for the radical pair mechanism of the avian magnetic compass sense. Both criteria are hard to meet in a biological environment, where thermal motion of the radicals creates dynamic disorder and drives efficient spin relaxation. This has long been cited as a major stumbling block of the radical pair hypothesis. Here we combine Redfield relaxation theory with analytical solutions to a rotational diffusion equation to assess the impact of restricted rotational motion of the radicals on the operation of the compass. The effects of such motions are first investigated generally in small, model systems and are then critically examined in the magnetically sensitive flavin-tryptophan radical pair that is formed photochemically in the proposed magnetoreceptor protein, cryptochrome. We conclude that relaxation is slowest when rotational motion of the radicals within the protein is fast and highly constrained; that in a regime of slow relaxation, the motional averaging of hyperfine interactions has the potential to improve the sensitivity of the compass; and that consideration of motional effects can significantly alter the design criteria for an optimal compass. In addition, we demonstrate that motion of the flavin radical is likely to be compatible with its role as a component of a functioning radical-pair compass, whereas the motion of the tryptophan radical is less ideal, unless it is particularly fast.

  3. The circadian clock protein timeless regulates phagocytosis of bacteria in Drosophila.

    Directory of Open Access Journals (Sweden)

    Elizabeth F Stone

    2012-01-01

    Full Text Available Survival of bacterial infection is the result of complex host-pathogen interactions. An often-overlooked aspect of these interactions is the circadian state of the host. Previously, we demonstrated that Drosophila mutants lacking the circadian regulatory proteins Timeless (Tim and Period (Per are sensitive to infection by S. pneumoniae. Sensitivity to infection can be mediated either by changes in resistance (control of microbial load or tolerance (endurance of the pathogenic effects of infection. Here we show that Tim regulates resistance against both S. pneumoniae and S. marcescens. We set out to characterize and identify the underlying mechanism of resistance that is circadian-regulated. Using S. pneumoniae, we found that resistance oscillates daily in adult wild-type flies and that these oscillations are absent in Tim mutants. Drosophila have at least three main resistance mechanisms to kill high levels of bacteria in their hemolymph: melanization, antimicrobial peptides, and phagocytosis. We found that melanization is not circadian-regulated. We further found that basal levels of AMP gene expression exhibit time-of-day oscillations but that these are Tim-independent; moreover, infection-induced AMP gene expression is not circadian-regulated. We then show that phagocytosis is circadian-regulated. Wild-type flies exhibit up-regulated phagocytic activity at night; Tim mutants have normal phagocytic activity during the day but lack this night-time peak. Tim appears to regulate an upstream event in phagocytosis, such as bacterial recognition or activation of phagocytic hemocytes. Interestingly, inhibition of phagocytosis in wild type flies results in survival kinetics similar to Tim mutants after infection with S. pneumoniae. Taken together, these results suggest that loss of circadian oscillation of a specific immune function (phagocytosis can have significant effects on long-term survival of infection.

  4. A colorful model of the circadian clock.

    Science.gov (United States)

    Reppert, Steven M

    2006-01-27

    The migration of the colorful monarch butterfly provides biologists with a unique model system with which to study the cellular and molecular mechanisms underlying a sophisticated circadian clock. The monarch circadian clock is involved in the induction of the migratory state and navigation over long distances, using the sun as a compass. PMID:16439193

  5. Circadian regulation of human cortical excitability.

    Science.gov (United States)

    Ly, Julien Q M; Gaggioni, Giulia; Chellappa, Sarah L; Papachilleos, Soterios; Brzozowski, Alexandre; Borsu, Chloé; Rosanova, Mario; Sarasso, Simone; Middleton, Benita; Luxen, André; Archer, Simon N; Phillips, Christophe; Dijk, Derk-Jan; Maquet, Pierre; Massimini, Marcello; Vandewalle, Gilles

    2016-01-01

    Prolonged wakefulness alters cortical excitability, which is essential for proper brain function and cognition. However, besides prior wakefulness, brain function and cognition are also affected by circadian rhythmicity. Whether the regulation of cognition involves a circadian impact on cortical excitability is unknown. Here, we assessed cortical excitability from scalp electroencephalography (EEG) responses to transcranial magnetic stimulation in 22 participants during 29 h of wakefulness under constant conditions. Data reveal robust circadian dynamics of cortical excitability that are strongest in those individuals with highest endocrine markers of circadian amplitude. In addition, the time course of cortical excitability correlates with changes in EEG synchronization and cognitive performance. These results demonstrate that the crucial factor for cortical excitability, and basic brain function in general, is the balance between circadian rhythmicity and sleep need, rather than sleep homoeostasis alone. These findings have implications for clinical applications such as non-invasive brain stimulation in neurorehabilitation. PMID:27339884

  6. Circadian RNA expression elicited by 3’-UTR IRAlu-paraspeckle associated elements

    Science.gov (United States)

    Torres, Manon; Becquet, Denis; Blanchard, Marie-Pierre; Guillen, Séverine; Boyer, Bénédicte; Moreno, Mathias; Franc, Jean-Louis; François-Bellan, Anne-Marie

    2016-01-01

    Paraspeckles are nuclear bodies form around the long non-coding RNA, Neat1, and RNA-binding proteins. While their role is not fully understood, they are believed to control gene expression at a post-transcriptional level by means of the nuclear retention of mRNA containing in their 3’-UTR inverted repeats of Alu sequences (IRAlu). In this study, we found that, in pituitary cells, all components of paraspeckles including four major proteins and Neat1 displayed a circadian expression pattern. Furthermore the insertion of IRAlu at the 3’-UTR of the EGFP cDNA led to a rhythmic circadian nuclear retention of the egfp mRNA that was lost when paraspeckles were disrupted whereas insertion of a single antisense Alu had only a weak effect. Using real-time video-microscopy, these IRAlu were further shown to drive a circadian expression of EGFP protein. This study shows that paraspeckles, thanks to their circadian expression, control circadian gene expression at a post-transcriptional level. DOI: http://dx.doi.org/10.7554/eLife.14837.001 PMID:27441387

  7. SRC-2 Is an Essential Coactivator for Orchestrating Metabolism and Circadian Rhythm

    Directory of Open Access Journals (Sweden)

    Erin Stashi

    2014-02-01

    Full Text Available Synchrony of the mammalian circadian clock is achieved by complex transcriptional and translational feedback loops centered on the BMAL1:CLOCK heterodimer. Modulation of circadian feedback loops is essential for maintaining rhythmicity, yet the role of transcriptional coactivators in driving BMAL1:CLOCK transcriptional networks is largely unexplored. Here, we show diurnal hepatic steroid receptor coactivator 2 (SRC-2 recruitment to the genome that extensively overlaps with the BMAL1 cistrome during the light phase, targeting genes that enrich for circadian and metabolic processes. Notably, SRC-2 ablation impairs wheel-running behavior, alters circadian gene expression in several peripheral tissues, alters the rhythmicity of the hepatic metabolome, and deregulates the synchronization of cell-autonomous metabolites. We identify SRC-2 as a potent coregulator of BMAL1:CLOCK and find that SRC-2 targets itself with BMAL1:CLOCK in a feedforward loop. Collectively, our data suggest that SRC-2 is a transcriptional coactivator of the BMAL1:CLOCK oscillators and establish SRC-2 as a critical positive regulator of the mammalian circadian clock.

  8. What time is it? Deep learning approaches for circadian rhythms

    Science.gov (United States)

    Agostinelli, Forest; Ceglia, Nicholas; Shahbaba, Babak; Sassone-Corsi, Paolo; Baldi, Pierre

    2016-01-01

    Motivation: Circadian rhythms date back to the origins of life, are found in virtually every species and every cell, and play fundamental roles in functions ranging from metabolism to cognition. Modern high-throughput technologies allow the measurement of concentrations of transcripts, metabolites and other species along the circadian cycle creating novel computational challenges and opportunities, including the problems of inferring whether a given species oscillate in circadian fashion or not, and inferring the time at which a set of measurements was taken. Results: We first curate several large synthetic and biological time series datasets containing labels for both periodic and aperiodic signals. We then use deep learning methods to develop and train BIO_CYCLE, a system to robustly estimate which signals are periodic in high-throughput circadian experiments, producing estimates of amplitudes, periods, phases, as well as several statistical significance measures. Using the curated data, BIO_CYCLE is compared to other approaches and shown to achieve state-of-the-art performance across multiple metrics. We then use deep learning methods to develop and train BIO_CLOCK to robustly estimate the time at which a particular single-time-point transcriptomic experiment was carried. In most cases, BIO_CLOCK can reliably predict time, within approximately 1 h, using the expression levels of only a small number of core clock genes. BIO_CLOCK is shown to work reasonably well across tissue types, and often with only small degradation across conditions. BIO_CLOCK is used to annotate most mouse experiments found in the GEO database with an inferred time stamp. Availability and Implementation: All data and software are publicly available on the CircadiOmics web portal: circadiomics.igb.uci.edu/. Contacts: fagostin@uci.edu or pfbaldi@uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307647

  9. Clock is important for food and circadian regulation of macronutrient absorption in mice

    OpenAIRE

    Pan, Xiaoyue; Hussain, M. Mahmood

    2009-01-01

    Clock genes respond to external stimuli and exhibit circadian rhythms. This study investigated the expression of clock genes in the small intestine and their contribution in the regulation of nutrient absorption by enterocytes. We examined expression of clock genes and macronutrient transport proteins in the small intestines of wild-type and Clock mutant (Clkmt/mt) mice with free or limited access to food. In addition, we studied absorption of macronutrients in these mice. Intestinal clock ge...

  10. Circadian Oscillations within the Hippocampus Support Hippocampus-dependent Memory Processing

    Directory of Open Access Journals (Sweden)

    Kristin Lynn Eckel-Mahan

    2012-04-01

    Full Text Available The ability to sustain memories over long periods of time, sometimes even a lifetime, is one of the most remarkable properties of the brain. Much knowledge has been gained over the past few decades regarding the molecular correlates of memory formation. Once a memory is forged, however, the molecular events that provide permanence are as of yet unclear. Studies in multiple organisms have revealed that circadian rhythmicity is important for the formation, stability, and recall of memories [1]. The neuronal events that provide this link need to be explored further. This article will discuss the findings related to the circadian regulation of memory-dependent processes in the hippocampus. Specifically, the circadian-controlled MAP kinase and cAMP signal transduction pathway plays critical roles in the consolidation of hippocampus-dependent memory. A series of studies have revealed the circadian oscillation of this pathway within the hippocampus, an activity that is absent in memory-deficient, transgenic mice lacking Ca2+-stimulated adenylyl cyclases. Interference with these oscillations proceeding the cellular memory consolidation period impairs the persistence of hippocampus-dependent memory. These data suggest that the persistence of long-term memories may depend upon reactivation of this signal transduction pathway in the hippocampus during the circadian cycle. New data reveals the dependence of hippocampal oscillation in MAPK activity on the SCN, again underscoring the importance of this region in maintaining the circadian physiology of memory. Finally, the downstream ramification of these oscillations in terms of gene expression and epigenetics should be considered, as emerging evidence is pointing strongly to a circadian link between epigenetics and long term synaptic plasticity.

  11. Nonphotic entrainment of the human circadian pacemaker

    Science.gov (United States)

    Klerman, E. B.; Rimmer, D. W.; Dijk, D. J.; Kronauer, R. E.; Rizzo, J. F. 3rd; Czeisler, C. A.

    1998-01-01

    In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals "free run" even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.

  12. Cryptochrome 1b: a possible inducer of visual lateralization in pigeons?

    Science.gov (United States)

    Ströckens, Felix; Güntürkün, Onur

    2016-01-01

    The visual system of adult pigeons shows a lateralization of object discrimination with a left hemispheric dominance on the behavioural, physiological and anatomical levels. The crucial trigger for the establishment of this asymmetry is the position of the embryo inside the egg, which exposes the right eye to light falling through the egg shell. As a result, the right-sided retina is more strongly stimulated with light during embryonic development. However, it is unknown how this embryonic light stimulation is transduced to the brain as rods and cones are not yet functional. A possible solution could be the blue-light-sensitive molecule cryptochrome 1 (Cry1), which is expressed in retinal ganglion cells (RGCs) of several mammalian and avian species. RGCs have been shown to be functional during the time of induction of asymmetry and possess projections to primary visual areas. Therefore, Cry1-containing RGCs could be responsible for induction of asymmetry. The aim of this study was to identify the expression pattern of the Cry1 subtype Cry1b in the retina of embryonic, post-hatch and adult pigeons by immunohistochemical staining and to show whether Cry1b-containing RGCs project to the optic tectum. Cry1b-positive cells were indeed mainly found in the RGC layer and to lesser extent in the inner nuclear layer at all ages, including the embryonic stage. Tracing in adult animals revealed that at least a subset of Cry1b-containing RGCs project to the optic tectum. Thus, Cry1b-containing RGCs within the embryonic retina could be involved in the induction of asymmetries in the visual system of pigeons. PMID:26535920

  13. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity.

    Science.gov (United States)

    Crosthwaite, S K; Dunlap, J C; Loros, J J

    1997-05-01

    Circadian rhythmicity is universally associated with the ability to perceive light, and the oscillators ("clocks") giving rise to these rhythms, which are feedback loops based on transcription and translation, are reset by light. Although such loops must contain elements of positive and negative regulation, the clock genes analyzed to date-frq in Neurospora and per and tim in Drosophila-are associated only with negative feedback and their biochemical functions are largely inferred. The white collar-1 and white collar-2 genes, both global regulators of photoresponses in Neurospora, encode DNA binding proteins that contain PAS domains and are believed to act as transcriptional activators. Data shown here suggest that wc-1 is a clock-associated gene and wc-2 is a clock component; both play essential roles in the assembly or operation of the Neurospora circadian oscillator. Thus DNA binding and transcriptional activation can now be associated with a clock gene that may provide a positive element in the feedback loop. In addition, similarities between the PAS-domain regions of molecules involved in light perception and circadian rhythmicity in several organisms suggest an evolutionary link between ancient photoreceptor proteins and more modern proteins required for circadian oscillation. PMID:9115195

  14. Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Hastings, M. H.; Green, E. W.; Tauber, E.; Sládek, Martin; Webster, S. G.; Kyriacou, C. P.; Wilcockson, D. C.

    2013-01-01

    Roč. 23, č. 19 (2013), s. 1863-1873. ISSN 0960-9822 Institutional support: RVO:67985823 Keywords : tidal rhythms * circadian rhythms * circatidal oscillator * Eurydice pulchra * casein kinase 1 * clock genes, chromatophore Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.916, year: 2013

  15. Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2

    DEFF Research Database (Denmark)

    Yang, Yaoming; Duguay, David; Bédard, Nathalie;

    2012-01-01

    Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock...

  16. Moderate Changes in the Circadian System of Alzheimer's Disease Patients Detected in Their Home Environment

    Czech Academy of Sciences Publication Activity Database

    Weissová, Kamila; Bartoš, A.; Sládek, Martin; Nováková, Marta; Sumová, Alena

    Roč. 11, č. 1 ( 2016 ), e0146200. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : circadian * melatonin * clock gene * Alzheimer's disease Subject RIV: FH - Neurology Impact factor: 3.234, year: 2014

  17. Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans

    NARCIS (Netherlands)

    Olmedo, Maria; O'Neill, John S.; Edgar, Rachel S.; Valekunja, Utham K.; Reddy, Akhilesh B.; Merrow, Martha

    2012-01-01

    Circadian clocks provide a temporal structure to processes from gene expression to behavior in organisms from all phyla. Most clocks are synchronized to the environment by alternations of light and dark. However, many organisms experience only muted daily environmental cycles due to their lightless

  18. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock

    NARCIS (Netherlands)

    T. Tamaru (Teruya); M. Hattori (Mitsuru); K. Honda (Kousuke); Y. Nakahata (Yasukazu); P. Sassone-Corsi (Paolo); G.T.J. van der Horst (Gijsbertus); T. Ozawa (Takeaki); K. Takamatsu (Ken)

    2015-01-01

    textabstractIntracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we establi

  19. The circadian system of patients with bipolar disorder differs in episodes of mania and depression

    Czech Academy of Sciences Publication Activity Database

    Nováková, Marta; Praško, J.; Látalová, K.; Sládek, Martin; Sumová, Alena

    2015-01-01

    Roč. 17, č. 3 (2015), s. 303-314. ISSN 1398-5647 R&D Projects: GA MZd(CZ) NT11474 Institutional support: RVO:67985823 Keywords : bipolar disorder * circadian * clock gene * melatonin * Nr1d1 * Per1 Subject RIV: FH - Neurology Impact factor: 4.965, year: 2014

  20. Modeling an evolutionary conserved circadian cis-element.

    Directory of Open Access Journals (Sweden)

    Eric R Paquet

    2008-02-01

    Full Text Available Circadian oscillator networks rely on a transcriptional activator called CLOCK/CYCLE (CLK/CYC in insects and CLOCK/BMAL1 or NPAS2/BMAL1 in mammals. Identifying the targets of this heterodimeric basic-helix-loop-helix (bHLH transcription factor poses challenges and it has been difficult to decipher its specific sequence affinity beyond a canonical E-box motif, except perhaps for some flanking bases contributing weakly to the binding energy. Thus, no good computational model presently exists for predicting CLK/CYC, CLOCK/BMAL1, or NPAS2/BMAL1 targets. Here, we use a comparative genomics approach and first study the conservation properties of the best-known circadian enhancer: a 69-bp element upstream of the Drosophila melanogaster period gene. This fragment shows a signal involving the presence of two closely spaced E-box-like motifs, a configuration that we can also detect in the other four prominent CLK/CYC target genes in flies: timeless, vrille, Pdp1, and cwo. This allows for the training of a probabilistic sequence model that we test using functional genomics datasets. We find that the predicted sequences are overrepresented in promoters of genes induced in a recent study by a glucocorticoid receptor-CLK fusion protein. We then scanned the mouse genome with the fly model and found that many known CLOCK/BMAL1 targets harbor sequences matching our consensus. Moreover, the phase of predicted cyclers in liver agreed with known CLOCK/BMAL1 regulation. Taken together, we built a predictive model for CLK/CYC or CLOCK/BMAL1-bound cis-enhancers through the integration of comparative and functional genomics data. Finally, a deeper phylogenetic analysis reveals that the link between the CLOCK/BMAL1 complex and the circadian cis-element dates back to before insects and vertebrates diverged.

  1. Circadian rhythms of women with fibromyalgia

    Science.gov (United States)

    Klerman, E. B.; Goldenberg, D. L.; Brown, E. N.; Maliszewski, A. M.; Adler, G. K.

    2001-01-01

    Fibromyalgia syndrome is a chronic and debilitating disorder characterized by widespread nonarticular musculoskeletal pain whose etiology is unknown. Many of the symptoms of this syndrome, including difficulty sleeping, fatigue, malaise, myalgias, gastrointestinal complaints, and decreased cognitive function, are similar to those observed in individuals whose circadian pacemaker is abnormally aligned with their sleep-wake schedule or with local environmental time. Abnormalities in melatonin and cortisol, two hormones whose secretion is strongly influenced by the circadian pacemaker, have been reported in women with fibromyalgia. We studied the circadian rhythms of 10 women with fibromyalgia and 12 control healthy women. The protocol controlled factors known to affect markers of the circadian system, including light levels, posture, sleep-wake state, meals, and activity. The timing of the events in the protocol were calculated relative to the habitual sleep-wake schedule of each individual subject. Under these conditions, we found no significant difference between the women with fibromyalgia and control women in the circadian amplitude or phase of rhythms of melatonin, cortisol, and core body temperature. The average circadian phases expressed in hours posthabitual bedtime for women with and without fibromyalgia were 3:43 +/- 0:19 and 3:46 +/- 0:13, respectively, for melatonin; 10:13 +/- 0:23 and 10:32 +/- 0:20, respectively for cortisol; and 5:19 +/- 0:19 and 4:57 +/- 0:33, respectively, for core body temperature phases. Both groups of women had similar circadian rhythms in self-reported alertness. Although pain and stiffness were significantly increased in women with fibromyalgia compared with healthy women, there were no circadian rhythms in either parameter. We suggest that abnormalities in circadian rhythmicity are not a primary cause of fibromyalgia or its symptoms.

  2. Circadian clocks and the regulation of virulence in fungi: Getting up to speed.

    Science.gov (United States)

    Hevia, Montserrat A; Canessa, Paulo; Larrondo, Luis F

    2016-09-01

    You cannot escape time. Therefore, it seems wise to learn how to keep track of it and use it to your advantage. Circadian clocks are molecular circuits that allow organisms to temporally coordinate a plethora of processes, including gene expression, with a close to 24h rhythm, optimizing cellular function in synchrony with daily environmental cycles. The molecular bases of these clocks have been extensively studied in the fungus Neurospora crassa, providing a detailed molecular description. Surprisingly, there is scarce molecular information of clocks in fungi other than Neurospora, despite the existence of rhythmic phenomena in many fungal species, including pathogenic ones. This review will comment on the overall importance of clocks, what is known in Neurospora and what has been described in other fungi including new insights on the evolution of fungal clock components. The molecular description of the circadian system of the phytopathogenic fungus Botrytis cinerea will be revisited, as well as time-of-the-day variation in host-pathogen interaction dynamics, utilizing an Arabidopsis-Botrytis system, including also what is known regarding circadian regulation of defense mechanisms in the Arabidopsis thaliana plant model. Finally, this review will mention how little is known about circadian regulation of human pathogenic fungi, commenting on potential future directions and the overall perspective of fungal circadian studies. PMID:27039027

  3. Post-transcriptional control of the mammalian circadian clock: implications for health and disease.

    Science.gov (United States)

    Preußner, Marco; Heyd, Florian

    2016-06-01

    Many aspects of human physiology and behavior display rhythmicity with a period of approximately 24 h. Rhythmic changes are controlled by an endogenous time keeper, the circadian clock, and include sleep-wake cycles, physical and mental performance capability, blood pressure, and body temperature. Consequently, many diseases, such as metabolic, sleep, autoimmune and mental disorders and cancer, are connected to the circadian rhythm. The development of therapies that take circadian biology into account is thus a promising strategy to improve treatments of diverse disorders, ranging from allergic syndromes to cancer. Circadian alteration of body functions and behavior are, at the molecular level, controlled and mediated by widespread changes in gene expression that happen in anticipation of predictably changing requirements during the day. At the core of the molecular clockwork is a well-studied transcription-translation negative feedback loop. However, evidence is emerging that additional post-transcriptional, RNA-based mechanisms are required to maintain proper clock function. Here, we will discuss recent work implicating regulated mRNA stability, translation and alternative splicing in the control of the mammalian circadian clock, and its role in health and disease. PMID:27108448

  4. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1

    Science.gov (United States)

    Bellet, Marina M.; Nakahata, Yasukazu; Boudjelal, Mohamed; Watts, Emma; Mossakowska, Danuta E.; Edwards, Kenneth A.; Cervantes, Marlene; Astarita, Giuseppe; Loh, Christine; Ellis, James L.; Vlasuk, George P.; Sassone-Corsi, Paolo

    2013-01-01

    Circadian rhythms govern a wide variety of physiological and metabolic functions in many organisms, from prokaryotes to humans. We previously reported that silent information regulator 1 (SIRT1), a NAD+-dependent deacetylase, contributes to circadian control. In addition, SIRT1 activity is regulated in a cyclic manner in virtue of the circadian oscillation of the coenzyme NAD+. Here we used specific SIRT1 activator compounds both in vitro and in vivo. We tested a variety of compounds to show that the activation of SIRT1 alters CLOCK:BMAL1-driven transcription in different systems. Activation of SIRT1 induces repression of circadian gene expression and decreases H3 K9/K14 acetylation at corresponding promoters in a time-specific manner. Specific activation of SIRT1 was demonstrated in vivo using liver-specific SIRT1-deficient mice, where the effect of SIRT1 activator compounds was shown to be dependent on SIRT1. Our findings demonstrate that SIRT1 can fine-tune circadian rhythm and pave the way to the development of pharmacological strategies to address a broad range of therapeutic indications. PMID:23341587

  5. The Circadian System: A Regulatory Feedback Network of Periphery and Brain.

    Science.gov (United States)

    Buijs, Frederik N; León-Mercado, Luis; Guzmán-Ruiz, Mara; Guerrero-Vargas, Natali N; Romo-Nava, Francisco; Buijs, Ruud M

    2016-05-01

    Circadian rhythms are generated by the autonomous circadian clock, the suprachiasmatic nucleus (SCN), and clock genes that are present in all tissues. The SCN times these peripheral clocks, as well as behavioral and physiological processes. Recent studies show that frequent violations of conditions set by our biological clock, such as shift work, jet lag, sleep deprivation, or simply eating at the wrong time of the day, may have deleterious effects on health. This infringement, also known as circadian desynchronization, is associated with chronic diseases like diabetes, hypertension, cancer, and psychiatric disorders. In this review, we will evaluate evidence that these diseases stem from the need of the SCN for peripheral feedback to fine-tune its output and adjust physiological processes to the requirements of the moment. This feedback can vary from neuronal or hormonal signals from the liver to changes in blood pressure. Desynchronization renders the circadian network dysfunctional, resulting in a breakdown of many functions driven by the SCN, disrupting core clock rhythms in the periphery and disorganizing cellular processes that are normally driven by the synchrony between behavior and peripheral signals with neuronal and humoral output of the hypothalamus. Consequently, we propose that the loss of synchrony between the different elements of this circadian network as may occur during shiftwork and jet lag is the reason for the occurrence of health problems. PMID:27053731

  6. Lithium impacts on the amplitude and period of the molecular circadian clockwork.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available Lithium salt has been widely used in treatment of Bipolar Disorder, a mental disturbance associated with circadian rhythm disruptions. Lithium mildly but consistently lengthens circadian period of behavioural rhythms in multiple organisms. To systematically address the impacts of lithium on circadian pacemaking and the underlying mechanisms, we measured locomotor activity in mice in vivo following chronic lithium treatment, and also tracked clock protein dynamics (PER2::Luciferase in vitro in lithium-treated tissue slices/cells. Lithium lengthens period of both the locomotor activity rhythms, as well as the molecular oscillations in the suprachiasmatic nucleus, lung tissues and fibroblast cells. In addition, we also identified significantly elevated PER2::LUC expression and oscillation amplitude in both central and peripheral pacemakers. Elevation of PER2::LUC by lithium was not associated with changes in protein stabilities of PER2, but instead with increased transcription of Per2 gene. Although lithium and GSK3 inhibition showed opposing effects on clock period, they acted in a similar fashion to up-regulate PER2 expression and oscillation amplitude. Collectively, our data have identified a novel amplitude-enhancing effect of lithium on the PER2 protein rhythms in the central and peripheral circadian clockwork, which may involve a GSK3-mediated signalling pathway. These findings may advance our understanding of the therapeutic actions of lithium in Bipolar Disorder or other psychiatric diseases that involve circadian rhythm disruptions.

  7. Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging

    Science.gov (United States)

    Wang, Rui-Hong; Zhao, Tingrui; Cui, Kairong; Hu, Gangqing; Chen, Qiang; Chen, Weiping; Wang, Xin-Wei; Soto-Gutierrez, Alejandro; Zhao, Keji; Deng, Chu-Xia

    2016-01-01

    Sirtuin 1 (SIRT1) is involved in both aging and circadian-clock regulation, yet the link between the two processes in relation to SIRT1 function is not clear. Using Sirt1-deficient mice, we found that Sirt1 and Period 2 (Per2) constitute a reciprocal negative regulation loop that plays important roles in modulating hepatic circadian rhythmicity and aging. Sirt1-deficient mice exhibited profound premature aging and enhanced acetylation of histone H4 on lysine16 (H4K16) in the promoter of Per2, the latter of which leads to its overexpression; in turn, Per2 suppresses Sirt1 transcription through binding to the Sirt1 promoter at the Clock/Bmal1 site. This negative reciprocal relationship between SIRT1 and PER2 was also observed in human hepatocytes. We further demonstrated that the absence of Sirt1 or the ectopic overexpression of Per2 in the liver resulted in a dysregulated pace of the circadian rhythm. The similar circadian rhythm was also observed in aged wild type mice. The interplay between Sirt1 and Per2 modulates aging gene expression and circadian-clock maintenance. PMID:27346580

  8. Genetic determinism of parasitic circadian periodicity and subperiodicity in human lymphatic filariasis.

    Science.gov (United States)

    Pichon, Gaston; Treuil, Jean-Pierre

    2004-12-01

    The larval parasites of the pantropical lymphatic filariasis exhibit two types of circadian behaviour. Typically, they only appear in the human bloodstream at nighttime, synchronised with their mosquito vectors. In Polynesia and parts of Southeast Asia, free of nocturnal vectors, they are found at all hours, and each population biorhythm differs. Through a geometrical approach, we explain this circadian diversity by a single, dominant mutation: the clocks of individual parasites are set at midnight (ubiquitous) or at 2 p.m. Compared to other circadian genes, this mutation must be very old, as it is shared by four biologically remote genera of parasites. This seniority sheds new light on several theoretical and practical aspects of vector-parasite temporal relations. PMID:15656351

  9. The harmala alkaloid harmine is a modulator of circadian Bmal1 transcription.

    Science.gov (United States)

    Onishi, Yoshiaki; Oishi, Katsutaka; Kawano, Yasuhiro; Yamazaki, Yoshimitsu

    2012-02-01

    Biological rhythms are orchestrated by a cell-autonomous clock system that drives the rhythmic cascade of clock genes. We established an assay system using NIH 3T3 cells stably expressing the Bmal1 promoter-driven luciferase reporter gene and used it to analyse circadian oscillation of the gene. Modulators of PKC (protein kinase C) revealed that an activator and an inhibitor represented short- and long-period phenotypes respectively which were consistent with reported effects of PKC on the circadian clock and validated the assay system. We examined the effects of the alkaloid harmine, contained in Hoasca, which has a wide spectrum of pharmacological actions, on circadian rhythms using the validated assay system. Harmine dose dependently elongated the period. Furthermore, EMSA (electrophoretic mobility-shift assay) and Western-blot analysis showed that harmine enhanced the transactivating function of RORα (retinoid-related orphan receptor α), probably by increasing its nuclear translocation. Exogenous expression of RORα also caused a long period, confirming the phenotype indicated by harmine. These results suggest that harmine extends the circadian period by enhancing RORα function and that harmine is a new candidate that contributes to the control of period length in mammalian cells. PMID:21401525

  10. Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri.

    Directory of Open Access Journals (Sweden)

    Quentin Thommen

    Full Text Available The development of systemic approaches in biology has put emphasis on identifying genetic modules whose behavior can be modeled accurately so as to gain insight into their structure and function. However, most gene circuits in a cell are under control of external signals and thus, quantitative agreement between experimental data and a mathematical model is difficult. Circadian biology has been one notable exception: quantitative models of the internal clock that orchestrates biological processes over the 24-hour diurnal cycle have been constructed for a few organisms, from cyanobacteria to plants and mammals. In most cases, a complex architecture with interlocked feedback loops has been evidenced. Here we present the first modeling results for the circadian clock of the green unicellular alga Ostreococcus tauri. Two plant-like clock genes have been shown to play a central role in the Ostreococcus clock. We find that their expression time profiles can be accurately reproduced by a minimal model of a two-gene transcriptional feedback loop. Remarkably, best adjustment of data recorded under light/dark alternation is obtained when assuming that the oscillator is not coupled to the diurnal cycle. This suggests that coupling to light is confined to specific time intervals and has no dynamical effect when the oscillator is entrained by the diurnal cycle. This intriguing property may reflect a strategy to minimize the impact of fluctuations in daylight intensity on the core circadian oscillator, a type of perturbation that has been rarely considered when assessing the robustness of circadian clocks.

  11. Neuroimaging, cognition, light and circadian rhythms

    OpenAIRE

    Gaggioni, Giulia; Maquet, Pierre; Schmidt, Christina, 1984-; Dijk, Derk-Jan; Vandewalle, Gilles

    2014-01-01

    In humans, sleep and wakefulness and the associated cognitive processes are regulated through interactions between sleep homeostasis and the circadian system. Chronic disruption of sleep and circadian rhythmicity is common in our society and there is a need for a better understanding of the brain mechanisms regulating sleep, wakefulness and associated cognitive processes. This review summarizes recent investigations which provide first neural correlates of the combined influence of sleep home...

  12. Sleep and circadian rhythm disruption in schizophrenia†

    OpenAIRE

    Wulff, Katharina; Dijk, Derk-Jan; Middleton, Benita; Foster, Russell G.; Joyce, Eileen M.

    2012-01-01

    Background Sleep disturbances comparable with insomnia occur in up to 80% of people with schizophrenia, but very little is known about the contribution of circadian coordination to these prevalent disruptions. Aims A systematic exploration of circadian time patterns in individuals with schizophrenia with recurrent sleep disruption. Method We examined the relationship between sleep-wake activity, recorded actigraphically over 6 weeks, along with ambient light exposure and simultaneous circadia...

  13. Circadian Clock Proteins in Mood Regulation

    OpenAIRE

    Partonen, Timo

    2015-01-01

    Mood regulation is known to be affected by the change of seasons. Recent research findings have suggested that mood regulation may be influenced by the function of circadian clocks. In addition, the activity of brown adipocytes has been hypothesized to contribute to mood regulation. Here, the overarching link to mood disorders might be the circadian clock protein nuclear receptor subfamily 1, group D, member 1.

  14. Circadian Rhythms and Obesity in Mammals

    OpenAIRE

    Oren Froy

    2012-01-01

    Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Attempts to understand the causes of obesity and develop new therapeutic strategies have mostly focused on caloric intake and energy expenditure. Recent studies have shown that the circadian clock controls energy homeostasis by regulating the circadian expression and/or activity of enzymes, hormones, and transport systems involved in metabol...

  15. Neuroanatomy of the Extended Circadian Rhythm System

    OpenAIRE

    Morin, Lawrence P

    2012-01-01

    The suprachiasmatic nucleus (SCN), site of the primary clock in the circadian rhythm system, has three major afferent connections. The most important consists of a retinohypothalamic projection through which photic information, received by classical rod/cone photoreceptors and intrinsically photoreceptive retinal ganglion cells, gains access to the clock. This information influences phase and period of circadian rhythms. The two other robust afferent projections are the median raphe serotoner...

  16. Glaucoma Alters the Circadian Timing System

    OpenAIRE

    Drouyer, Elise; Dkhissi-Benyahya, Ouria; Chiquet, Christophe; WoldeMussie, Elizabeth; Ruiz, Guadalupe; Wheeler, Larry A.; Denis, Philippe; Cooper, Howard M.

    2008-01-01

    Glaucoma is a widespread ocular disease and major cause of blindness characterized by progressive, irreversible damage of the optic nerve. Although the degenerative loss of retinal ganglion cells (RGC) and visual deficits associated with glaucoma have been extensively studied, we hypothesize that glaucoma will also lead to alteration of the circadian timing system. Circadian and non-visual responses to light are mediated by a specialized subset of melanopsin expressing RGCs that provide photi...

  17. Visual impairment and circadian rhythm disorders.

    OpenAIRE

    Lockley, SW; Arendt, J; Skene, DJ

    2007-01-01

    Many aspects of human physiology and behavior are dominated by 24-hour circadian rhythms that have a major impact on our health and well-being, including the sleep-wake cycle, alertness and performance patterns, and many daily hormone profiles. These rhythms are spontaneously generated by an internal "pacemaker" in the hypothalamus, and daily light exposure to the eyes is required to keep these circadian rhythms synchronized both internally and with the external environment. Sighted individua...

  18. Circadian clock proteins in mood regulation

    Directory of Open Access Journals (Sweden)

    Timo ePartonen

    2015-01-01

    Full Text Available Mood regulation is known to be affected by the change of seasons. Recent research findings have suggested that mood regulation may be influenced by the function of circadian clocks. In addition, the activity of brown adipocytes has been hypothesized to contribute to mood regulation. Here, the overarching link to mood disorders might be the circadian clock protein NR1D1 (nuclear receptor subfamily 1, group D, member 1.

  19. Evolution of circadian organization in vertebrates

    Directory of Open Access Journals (Sweden)

    M. Menaker

    1997-03-01

    Full Text Available Circadian organization means the way in which the entire circadian system above the cellular level is put together physically and the principles and rules that determine the interactions among its component parts which produce overt rhythms of physiology and behavior. Understanding this organization and its evolution is of practical importance as well as of basic interest. The first major problem that we face is the difficulty of making sense of the apparently great diversity that we observe in circadian organization of diverse vertebrates. Some of this diversity falls neatly into place along phylogenetic lines leading to firm generalizations: i in all vertebrates there is a "circadian axis" consisting of the retinas, the pineal gland and the suprachiasmatic nucleus (SCN, ii in many non-mammalian vertebrates of all classes (but not in any mammals the pineal gland is both a photoreceptor and a circadian oscillator, and iii in all non-mammalian vertebrates (but not in any mammals there are extraretinal (and extrapineal circadian photoreceptors. An interesting explanation of some of these facts, especially the differences between mammals and other vertebrates, can be constructed on the assumption that early in their evolution mammals passed through a "nocturnal bottleneck". On the other hand, a good deal of the diversity among the circadian systems of vertebrates does not fall neatly into place along phylogenetic lines. In the present review we will consider how we might better understand such "phylogenetically incoherent" diversity and what sorts of new information may help to further our understanding of the evolution of circadian organization in vertebrates

  20. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae

    OpenAIRE

    Rund, Samuel SC; James E. Gentile; Duffield, Giles E.

    2013-01-01

    Background Mosquitoes exhibit 24 hr rhythms in flight activity, feeding, reproduction and development. To better understand the molecular basis for these rhythms in the nocturnal malaria vector Anopheles gambiae, we have utilized microarray analysis on time-of-day specific collections of mosquitoes over 48 hr to explore the coregulation of gene expression rhythms by the circadian clock and light, and compare these with the 24 hr rhythmic gene expression in the diurnal Aedes aegypti dengue vec...

  1. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms.

    Directory of Open Access Journals (Sweden)

    Noheon Park

    Full Text Available The mammalian circadian clock is an endogenous biological timer comprised of transcriptional/translational feedback loops of clock genes. Bmal1 encodes an indispensable transcription factor for the generation of circadian rhythms. Here, we report a new circadian mutant mouse from gene-trapped embryonic stem cells harboring a C-terminus truncated Bmal1 (Bmal1GTΔC allele. The homozygous mutant (Bmal1GTΔC/GTΔC mice immediately lost circadian behavioral rhythms under constant darkness. The heterozygous (Bmal1+/GTΔC mice displayed a gradual loss of rhythms, in contrast to Bmal1+/- mice where rhythms were sustained. Bmal1GTΔC/GTΔC mice also showed arrhythmic mRNA and protein expression in the SCN and liver. Lack of circadian reporter oscillation was also observed in cultured fibroblast cells, indicating that the arrhythmicity of Bmal1GTΔC/GTΔC mice resulted from impaired molecular clock machinery. Expression of clock genes exhibited distinct responses to the mutant allele in Bmal1+/GTΔC and Bmal1GTΔC/GTΔC mice. Despite normal cellular localization and heterodimerization with CLOCK, overexpressed BMAL1GTΔC was unable to activate transcription of Per1 promoter and BMAL1-dependent CLOCK degradation. These results indicate that the C-terminal region of Bmal1 has pivotal roles in the regulation of circadian rhythms and the Bmal1GTΔC mice constitute a novel model system to evaluate circadian functional mechanism of BMAL1.

  2. A software solution for recording circadian oscillator features in time-lapse live cell microscopy

    Directory of Open Access Journals (Sweden)

    Salmon Patrick

    2010-07-01

    Full Text Available Abstract Background Fluorescent and bioluminescent time-lapse microscopy approaches have been successfully used to investigate molecular mechanisms underlying the mammalian circadian oscillator at the single cell level. However, most of the available software and common methods based on intensity-threshold segmentation and frame-to-frame tracking are not applicable in these experiments. This is due to cell movement and dramatic changes in the fluorescent/bioluminescent reporter protein during the circadian cycle, with the lowest expression level very close to the background intensity. At present, the standard approach to analyze data sets obtained from time lapse microscopy is either manual tracking or application of generic image-processing software/dedicated tracking software. To our knowledge, these existing software solutions for manual and automatic tracking have strong limitations in tracking individual cells if their plane shifts. Results In an attempt to improve existing methodology of time-lapse tracking of a large number of moving cells, we have developed a semi-automatic software package. It extracts the trajectory of the cells by tracking theirs displacements, makes the delineation of cell nucleus or whole cell, and finally yields measurements of various features, like reporter protein expression level or cell displacement. As an example, we present here single cell circadian pattern and motility analysis of NIH3T3 mouse fibroblasts expressing a fluorescent circadian reporter protein. Using Circadian Gene Express plugin, we performed fast and nonbiased analysis of large fluorescent time lapse microscopy datasets. Conclusions Our software solution, Circadian Gene Express (CGE, is easy to use and allows precise and semi-automatic tracking of moving cells over longer period of time. In spite of significant circadian variations in protein expression with extremely low expression levels at the valley phase, CGE allows accurate and

  3. A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba.

    Directory of Open Access Journals (Sweden)

    Mathias Teschke

    Full Text Available Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9-12 h period in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9-12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle.

  4. The role of chronobiology and circadian rhythms in type 2 diabetes mellitus: implications for management of diabetes

    Directory of Open Access Journals (Sweden)

    Kurose T

    2014-07-01

    Full Text Available Takeshi Kurose, Takanori Hyo, Daisuke Yabe, Yutaka Seino Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Fukushima, Osaka, Japan Abstract: Circadian clocks regulate cellular to organic and individual behavior levels of all organisms. Almost all cells in animals have self-sustained clocks entrained by environmental signals. Recent progress in genetic research has included identification of clock genes whose disruption causes metabolic abnormalities such as diabetes, obesity, and hyperlipidemia. Here we review recent advances in research on circadian disruption, shift work, altered eating behaviors, and disrupted sleep-wake cycles, with reference to management of type 2 diabetes. Keywords: diabetes, clock gene, shift work, eating behavior, sleep loss

  5. PI3K regulates BMAL1/CLOCK-mediated circadian transcription from the Dbp promoter.

    Science.gov (United States)

    Morishita, Yoshikazu; Miura, Daiki; Kida, Satoshi

    2016-06-01

    The circadian rhythm generated by circadian clock underlies a molecular mechanism of rhythmic transcriptional regulation by transcription factor BMAL1/CLOCK. Importantly, the circadian clock is coordinated by exogenous cues to accommodate to changes in the external environment. However, the molecular mechanisms by which intracellular-signaling pathways mediate the adjustments of the circadian transcriptional rhythms remain unclear. In this study, we found that pharmacological inhibition or shRNA-mediated knockdown of phosphatidylinositol 3-kinase (PI3K) blocked upregulation of Dbp mRNA induced by serum shock in NIH 3T3 cells. Moreover, the inhibition of PI3K significantly reduced the promoter activity of the Dbp gene, as well as decreased the recruitment of BMAL1/CLOCK to the E-box in the Dbp promoter. Interestingly, the inhibition of PI3K blocked heterodimerization of BMAL1 and CLOCK. Our findings suggest that PI3K signaling plays a modulatory role in the regulation of the transcriptional rhythm of the Dbp gene by targeting BMAL1 and CLOCK. PMID:27022680

  6. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock.

    Directory of Open Access Journals (Sweden)

    Vaibhav Bhardwaj

    Full Text Available The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000, with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime.

  7. Defence responses of arabidopsis thaliana to infection by pseudomonas syringae are regulated by the circadian clock

    KAUST Repository

    Bhardwaj, Vaibhav

    2011-10-31

    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime. © 2011 Bhardwaj et al.

  8. Insights into the role of the habenular circadian clock in addiction

    Directory of Open Access Journals (Sweden)

    Nora L Salaberry

    2016-01-01

    Full Text Available Drug addiction is a brain disease involving alterations in anatomy and functional neural communication. Drug intake and toxicity show daily rhythms in both humans and rodents. Evidence concerning the role of clock genes in drug intake has been previously reported. However, the implication of a timekeeping brain locus is much less known. The epithalamic lateral habenula (LHb is now emerging as a key nucleus in drug intake and addiction. This brain structure modulates the activity of dopaminergic neurons from the ventral tegmental area, a central part of the reward system. Moreover, the LHb has circadian properties: LHb cellular activity (i.e., firing rate and clock genes expression oscillates in a 24h range, and the nucleus is affected by photic stimulation and has anatomical connections with the main circadian pacemaker, the suprachiasmatic nucleus. Here, we describe the current insights on the role of the LHb as a circadian oscillator and its possible implications on the rhythmic regulation of the dopaminergic activity and drug intake. This data could inspire new strategies to treat drug addiction, considering circadian timing as a principal factor.

  9. Drosophila timeless2 is required for chromosome stability and circadian photoreception.

    Science.gov (United States)

    Benna, Clara; Bonaccorsi, Silvia; Wülbeck, Corinna; Helfrich-Förster, Charlotte; Gatti, Maurizio; Kyriacou, Charalambos P; Costa, Rodolfo; Sandrelli, Federica

    2010-02-23

    In Drosophila, there are two timeless paralogs, timeless1 (tim1) and timeless2 (tim2, or timeout). Phylogenetic analyses suggest that tim1 originated as a duplication of tim2 around the time of the Cambrian explosion. The function of tim1 as a canonical circadian component is well established, but the role of tim2 in the fly is poorly understood. Many organisms possess a single tim2-like gene that has been implicated in DNA synthesis and, in the case of mammals, somewhat controversially, in circadian rhythmicity. Here we analyze the structure and the functional role of fly tim2. tim2 is a large locus (approximately 75 kb) that harbors several transcribed intronic sequences. Using insertional mutations and tissue-specific RNA interference-mediated downregulation, we find that tim2 is an essential gene required for normal DNA metabolism and chromosome integrity. Moreover, tim2 is involved in light entrainment of the adult circadian clock, via its expression in the T1 basket cells of the optic lobes. tim2's residual role in light entrainment thus provides an evolutionary link that may explain why its derived paralog, tim1, came to play such a major role in both circadian photosensitivity and core clock function. PMID:20153199

  10. Circadian rhythms and addiction: Mechanistic insights and future directions

    OpenAIRE

    Logan, Ryan W.; Williams, Wilbur P.; McClung, Colleen A.

    2014-01-01

    Circadian rhythms are prominent in many physiological and behavioral functions. Circadian disruptions either by environmental or molecular perturbation can have profound health consequences, including the development and progression of addiction. Both animal and humans studies indicate extensive bidirectional relationships between the circadian system and drugs of abuse. Addicted individuals display disrupted rhythms, and chronic disruption or particular chronotypes, may increase the risk for...

  11. Phase resetting of the mammalian circadian clock by DNA damage

    NARCIS (Netherlands)

    Oklejewicz, Malgorzata; Destici, Eugin; Tamanini, Filippo; Hut, Roelof A.; Janssens, Roel; van der Horst, Gijsbertus T. J.

    2008-01-01

    To anticipate the momentum of the day, most organisms have developed an internal clock that drives circadian rhythms in metabolism, physiology, and behavior [1]. Recent studies indicate that cell-cycle progression and DNA-damage-response pathways are under circadian control [2-4]. Because circadian

  12. Probing entrainment of Ostreococcus tauri circadian clock by blue and green light through a mathematical modeling approach

    Directory of Open Access Journals (Sweden)

    Quentin eThommen

    2015-02-01

    Full Text Available Most organisms anticipate daily environmental variations and orchestrate cellular functions thanks to a circadian clock which entrains robustly to the day/night cycle, despite fluctuations in light intensity due to weather or seasonal variations. Marine organisms are also subjected to fluctuations in light spectral composition as their depth varies, due to differential absorption of different wavelengths by sea water. Studying how light input pathways contribute to circadian clock robustness is therefore important.Ostreococcus tauri, a unicellular picoplanktonic marine green alga with low genomic complexity and simple cellular organization, has become a promising model organism for systems biology. Functional and modeling approaches have shown that a core circadian oscillator based on orthologs of Arabidopsis TOC1 and CCA1 clock genes accounts for most experimental data acquired under a wide range of conditions. Some evidence points at putative light input pathway(s consisting of a two-component signaling system (TCS controlled by the only two histidine kinases (HK of O. tauri. LOVHK is a blue light photoreceptor under circadian control, that is required for circadian clock function. An involvement of Rhodopsin-HK (RhodHK is also conceivable since rhodopsin photoreceptors mediate blue to green light input in animal circadian clocks.Here, we probe the role of LOVHK and RhodHK in mediating light input to the TOC1-CCA1 oscillator using a mathematical model incorporating the TCS hypothesis. This model agrees with clock gene expression time series representative of multiple environmental conditions in blue or green light, characterizing entrainment by light/dark cycles, free-running in constant light, and resetting. Experimental and theoretical results indicate that both blue and green light can reset O. tauri circadian clock. Moreover, our mathematical analysis suggests that Rhod-HK is a blue-green light receptor and drives the clock together with

  13. Light and the circadian clock mediate time-specific changes in sensitivity to UV-B stress under light/dark cycles

    OpenAIRE

    Takeuchi, Tomomi; Newton, Linsey; Burkhardt, Alyssa; Mason, Saundra; Farré, Eva M.

    2014-01-01

    In Arabidopsis, the circadian clock regulates UV-B-mediated changes in gene expression. Here it is shown that circadian clock components are able to inhibit UV-B-induced gene expression in a gene-by-gene-specific manner and act downstream of the initial UV-B sensing by COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) and UVR8 (UV RESISTANCE LOCUS 8). For example, the UV-B induction of ELIP1 (EARLY LIGHT INDUCIBLE PROTEIN 1) and PRR9 (PSEUDO-RESPONSE REGULATOR 9) is directly regulated by LUX (LUX ARRYTH...

  14. Stochastic models of cellular circadian rhythms in plants help to understand the impact of noise on robustness and clock structure

    Directory of Open Access Journals (Sweden)

    Maria Luisa eGuerriero

    2014-10-01

    Full Text Available Rhythmic behavior is essential for plants; for example, daily (circadian rhythms control photosynthesis and seasonal rhythms regulate their life cycle. The core of the circadian clock is a genetic network that coordinates the expression of specific clock genes in a circadian rhythm reflecting the 24-hour day/night cycle.Circadian clocks exhibit stochastic noise due to the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic noise plays a major role in circadian clocks by inducing more robust oscillatory behavior. Another source of noise is the environment, which causes variation in temperature and light intensity: this extrinsic noise is part of the requirement for the structural complexity of clock networks.Advances in experimental techniques now permit single-cell measurements and the development of single-cell models. Here we present some modeling studies showing the importance of considering both types of noise in understanding how plants adapt to regular and irregular light variations. Stochastic models have proven useful for understanding the effect of regular variations. By contrast, the impact of irregular variations and the interaction of different noise sources are less studied.

  15. Optimal implementations for reliable circadian clocks.

    Science.gov (United States)

    Hasegawa, Yoshihiko; Arita, Masanori

    2014-09-01

    Circadian rhythms are acquired through evolution to increase the chances for survival through synchronizing with the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. We find by using a phase model with multiple inputs that achieving the maximal limit of regularity and entrainability entails many inherent features of the circadian mechanism. At the molecular level, we demonstrate the role sharing of two light inputs, phase advance and delay, as is well observed in mammals. At the behavioral level, the optimal phase-response curve inevitably contains a dead zone, a time during which light pulses neither advance nor delay the clock. We reproduce the results of phase-controlling experiments entrained by two types of periodic light pulses. Our results indicate that circadian clocks are designed optimally for reliable clockwork through evolution. PMID:25238386

  16. Circadian pattern in cerebro vascular disorders.

    Directory of Open Access Journals (Sweden)

    Bhalla A

    2002-10-01

    Full Text Available Over the last decade, various studies have been reported to evaluate the circadian pattern of cardiovascular and cerebro-vascular diseases. The data from Indian population is lacking. We undertook this prospective observational study to evaluate the circadian variation in disorders like cerebro-vascular accidents and transient ischemic attacks. Total of 146 patients (events were studied. Only 10 patients had TIA′s. 55% had hemorrhage and 45% had infarction. The 24 hours period was divided into 6 equal portions of 4 hours each. The maximum events were seen between 4 am to 8 am and 12 noon to 4 pm (23.28% each. Minimum events were seen between 12 midnight to 4 am 14/146 - 9.58%. The circadian variation in occurrence of cerebro-vascular disorders was present with two equal peaks.

  17. Circadian rhythms and post-transcriptional regulation in higher plants

    Directory of Open Access Journals (Sweden)

    Andres eRomanowski

    2015-06-01

    Full Text Available The circadian clock of plants allows them to cope with daily changes in their environment. This is accomplished by the rhythmic regulation of gene expression, in a process that involves many regulatory steps. One of the key steps involved at the RNA level is post-transcriptional regulation, which ensures a correct control on the different amounts and types of mRNA that will ultimately define the current physiological state of the plant cell. Recent advances in the study of the processes of regulation of pre-mRNA processing, RNA turn-over and surveillance, regulation of translation, function of lncRNAs, biogenesis and function of small RNAs and the development of bioinformatics tools have helped to vastly expand our understanding of how this regulatory step performs its role. In this work we review the current progress in circadian regulation at the post-transcriptional level research in plants. It is the continuous interaction of all the information flow control post-transcriptional processes that allow a plant to precisely time and predict daily environmental changes.

  18. Modelling of intercellular synchronization in the Drosophila circadian clock

    Institute of Scientific and Technical Information of China (English)

    Wang Jun-Wei; Chen Ai-Min; Zhang Jia-Jun; Yuan Zhan-Jiang; Zhou Tian-Shou

    2009-01-01

    In circadian rhythm generation, intercellular signaling factors are shown to play a crucial role in both sustaining intrinsic cellular rhythmicity and acquiring collective behaviours across a population of circadian neurons. However, the physical mechanism behind their role remains to be fully understood. In this paper, we propose an indirectly coupled multicellular model for the synchronization of Drosophila circadian oscillators combining both intracellular and intercellular dynamics. By simulating different experimental conditions, we find that such an indirect coupling way can synchronize both heterogeneous self-sustained circadian neurons and heterogeneous mutational damped circadian neurons. Moreover, they can also be entrained to ambient light-dark (LD) cycles depending on intercellular signaling.

  19. Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY.

    Science.gov (United States)

    Oldemeyer, Sabine; Franz, Sophie; Wenzel, Sandra; Essen, Lars-Oliver; Mittag, Maria; Kottke, Tilman

    2016-07-01

    Cryptochromes constitute a group of flavin-binding blue light receptors in bacteria, fungi, plants, and insects. Recently, the response of cryptochromes to light was extended to nearly the entire visible spectral region on the basis of the activity of the animal-like cryptochrome aCRY in the green alga Chlamydomonas reinhardtii This finding was explained by the absorption of red light by the flavin neutral radical as the dark state of the receptor, which then forms the anionic fully reduced state. In this study, time-resolved UV-visible spectroscopy on the full-length aCRY revealed an unusually long-lived tyrosyl radical with a lifetime of 2.6 s, which is present already 1 μs after red light illumination of the flavin radical. Mutational studies disclosed the tyrosine 373 close to the surface to form the long-lived radical and to be essential for photoreduction. This residue is conserved exclusively in the sequences of other putative aCRY proteins distinguishing them from conventional (6-4) photolyases. Size exclusion chromatography showed the full-length aCRY to be a dimer in the dark at 0.5 mm injected concentration with the C-terminal extension as the dimerization site. Upon illumination, partial oligomerization was observed via disulfide bridge formation at cysteine 482 in close proximity to tyrosine 373. The lack of any light response in the C-terminal extension as evidenced by FTIR spectroscopy differentiates aCRY from plant and Drosophila cryptochromes. These findings imply that aCRY might have evolved a different signaling mechanism via a light-triggered redox cascade culminating in photooxidation of a yet unknown substrate or binding partner. PMID:27189948

  20. 光照对大鼠视网膜隐色素2表达的影响%Effect of artificial light on expression of cryptochrome 2 in rat retina

    Institute of Scientific and Technical Information of China (English)

    林琳; 王育良; 徐金华

    2011-01-01

    目的 探讨日光灯长期照射对SD大鼠视网膜钟基因隐色素2(Cry2)表达的影响.方法 健康SD大鼠30只,随机分成2组,每组15只.实验组接受人工光源循环照射,对照组接受自然光线的照射,观察时间3个月.采用免疫组织化学法和实时定量-PCR检测Cry2蛋白和Cry2mRNA在视网膜组织的表达.结果 两组视网膜节细胞及部分内核层细胞均有Cry2蛋白的阳性表达.实验组Cry2蛋白和Cry2 mRNA表达均较对照组减少(P<0.05).结论 日光灯长期照射可引起视网膜钟基因Cry2的表达降低,提示光照对视网膜生物钟可能产生影响.%Objective To investigate the effect of artificial light on the expression of cryptochrome 2(Cry2) in the retina of rats. Methods Thirty SD rats were equally randomized into 2 groups of A(exposed to artificial light for 3 months) and B(exposed to natural light as the control). The expressions of Cry2 protein and Cry2 mRNA were detected by immunohistochemistry and Q-PCR technique. Results The positive expression of Cry2 protein was found in most of the ganglion cell layers and some of inner nuclear layers in both groups. The expressions of of Cry2 protein and Cry2 mRNA were lower in group A than those in group B(P<0. 05). Conclusion Artificial light exposure for a long time can cause less expression of Cry2 in the retina of rats,suggesting that artificial light can affect the circadian clock system in the retina of rats.

  1. Progestins alter photo-transduction cascade and circadian rhythm network in eyes of zebrafish (Danio rerio)

    Science.gov (United States)

    Zhao, Yanbin; Fent, Karl

    2016-02-01

    Environmental progestins are implicated in endocrine disruption in vertebrates. Additional targets that may be affected in organisms are poorly known. Here we report that progesterone (P4) and drospirenone (DRS) interfere with the photo-transduction cascade and circadian rhythm network in the eyes of zebrafish. Breeding pairs of adult zebrafish were exposed to P4 and DRS for 21 days with different measured concentrations of 7-742 ng/L and 99-13´650 ng/L, respectively. Of totally 10 key photo-transduction cascade genes analyzed, transcriptional levels of most were significantly up-regulated, or normal down-regulation was attenuated. Similarly, for some circadian rhythm genes, dose-dependent transcriptional alterations were also observed in the totally 33 genes analyzed. Significant alterations occurred even at environmental relevant levels of 7 ng/L P4. Different patterns were observed for these transcriptional alterations, of which, the nfil3 family displayed most significant changes. Furthermore, we demonstrate the importance of sampling time for the determination and interpretation of gene expression data, and put forward recommendations for sampling strategies to avoid false interpretations. Our results suggest that photo-transduction signals and circadian rhythm are potential targets for progestins. Further studies are required to assess alterations on the protein level, on physiology and behavior, as well as on implications in mammals.

  2. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork.

    Directory of Open Access Journals (Sweden)

    Johanna L Barclay

    Full Text Available Shiftwork is associated with adverse metabolic pathophysiology, and the rising incidence of shiftwork in modern societies is thought to contribute to the worldwide increase in obesity and metabolic syndrome. The underlying mechanisms are largely unknown, but may involve direct physiological effects of nocturnal light exposure, or indirect consequences of perturbed endogenous circadian clocks. This study employs a two-week paradigm in mice to model the early molecular and physiological effects of shiftwork. Two weeks of timed sleep restriction has moderate effects on diurnal activity patterns, feeding behavior, and clock gene regulation in the circadian pacemaker of the suprachiasmatic nucleus. In contrast, microarray analyses reveal global disruption of diurnal liver transcriptome rhythms, enriched for pathways involved in glucose and lipid metabolism and correlating with first indications of altered metabolism. Although altered food timing itself is not sufficient to provoke these effects, stabilizing peripheral clocks by timed food access can restore molecular rhythms and metabolic function under sleep restriction conditions. This study suggests that peripheral circadian desynchrony marks an early event in the metabolic disruption associated with chronic shiftwork. Thus, strengthening the peripheral circadian system by minimizing food intake during night shifts may counteract the adverse physiological consequences frequently observed in human shift workers.

  3. Disrupted Circadian Rhythm as a Common Player in Developmental Models of Neuropsychiatric Disorders.

    Science.gov (United States)

    Marco, Eva M; Velarde, Elena; Llorente, Ricardo; Laviola, Giovanni

    2016-01-01

    The environment in which individuals develop and mature is critical for their physiological and psychological outcome; in particular, the intrauterine environment has reached far more clinical relevance given its potential influence on shaping brain function and thus mental health. Gestational stress and/or maternal infection during pregnancy has been related with an increased incidence of neuropsychiatric disorders, including depression and schizophrenia. In this framework, the use of animal models has allowed a formal and deep investigation of causal determinants. Despite disruption of circadian clocks often represents a hallmark of several neuropsychiatric disorders, the relationship between disruption of brain development and the circadian system has been scarcely investigated. Nowadays, there is an increasing amount of studies suggesting a link between circadian system malfunction, early-life insults and the appearance of neuropsychiatric diseases at adulthood. Here, we briefly review evidence from clinical literature and animal models suggesting that the exposure to prenatal insults, i.e. severe gestational stress or maternal immune activation, changes the foetal hormonal milieu increasing the circulating levels of both glucocorticoids and pro-inflammatory cytokines. These two biological events have been reported to affect genes expression in experimental models and critically interfere with brain development triggering and/or exacerbating behavioural anomalies in the offspring. Herein, we highlight the importance to unravel the individual components of the body circadian system that might also be altered by prenatal insults and that may be causally associated with the disruption of neural and endocrine developmental programming. PMID:26728169

  4. Retinal circadian clocks and non-visual photoreceptors: light input to the circadian system.

    OpenAIRE

    Ouria Dkhissi-Benyahya

    2013-01-01

    The mammalian retina contains an endogenous pacemaker that regulates retinal physiology and adjusts daily the temporal phase of the central circadian timing system with environmental time. This entrainment process involves rods, cones and melanopsin-expressing retinal ganglion cells. In contrast with non mammalian retinas, in which the clock has been identified in photoreceptors, the location of the retinal circadian clock in mammals is still controversial. In addition, the impact of specific...

  5. period-1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol; Baker, Scott E.; Loros, Jennifer J.; Dunlap, Jay C.

    2015-12-22

    Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prdi-1smutantssiois an ATP-dependent RNA helicase, member of a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Thus PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd­-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.

  6. Melatonin administered during the fetal stage affects circadian clock in the suprachiasmatic nucleus but not in the liver

    Czech Academy of Sciences Publication Activity Database

    Houdek, Pavel; Polidarová, Lenka; Nováková, Marta; Matějů, Kristýna; Kubík, Štěpán; Sumová, Alena

    2015-01-01

    Roč. 75, č. 2 (2015), s. 131-144. ISSN 1932-8451 R&D Projects: GA ČR(CZ) GAP303/12/1108 Institutional support: RVO:67985823 Keywords : ontogenesis * circadian system * suprachiasmatic nuclei * clock gene * melatonin Subject RIV: FH - Neurology Impact factor: 3.370, year: 2014

  7. Circadian metabolism in the light of evolution.

    Science.gov (United States)

    Gerhart-Hines, Zachary; Lazar, Mitchell A

    2015-06-01

    Circadian rhythm, or daily oscillation, of behaviors and biological processes is a fundamental feature of mammalian physiology that has developed over hundreds of thousands of years under the continuous evolutionary pressure of energy conservation and efficiency. Evolution has fine-tuned the body's clock to anticipate and respond to numerous environmental cues in order to maintain homeostatic balance and promote survival. However, we now live in a society in which these classic circadian entrainment stimuli have been dramatically altered from the conditions under which the clock machinery was originally set. A bombardment of artificial lighting, heating, and cooling systems that maintain constant ambient temperature; sedentary lifestyle; and the availability of inexpensive, high-calorie foods has threatened even the most powerful and ancient circadian programming mechanisms. Such environmental changes have contributed to the recent staggering elevation in lifestyle-influenced pathologies, including cancer, cardiovascular disease, depression, obesity, and diabetes. This review scrutinizes the role of the body's internal clocks in the hard-wiring of circadian networks that have evolved to achieve energetic balance and adaptability, and it discusses potential therapeutic strategies to reset clock metabolic control to modern time for the benefit of human health. PMID:25927923

  8. Circadian systems biology: When time matters

    Directory of Open Access Journals (Sweden)

    Luise Fuhr

    2015-01-01

    In this manuscript we review the combination of experimental methodologies, bioinformatics and theoretical models that have been essential to explore this remarkable timing-system. Such an integrative and interdisciplinary approach may provide new strategies with regard to chronotherapeutic treatment and new insights concerning the restoration of the circadian timing in clock-associated diseases.

  9. Temperature compensation and entrainment in circadian rhythms

    International Nuclear Information System (INIS)

    To anticipate daily variations in the environment and coordinate biological activities into a daily cycle many organisms possess a circadian clock. In the absence of external time cues the circadian rhythm persists with a period of approximately 24 h. The clock phase can be shifted by single pulses of light, darkness, chemicals, or temperature and this allows entrainment of the clock to exactly 24 h by cycles of these zeitgebers. On the other hand, the period of the circadian rhythm is kept relatively constant within a physiological range of constant temperatures, which means that the oscillator is temperature compensated. The mechanisms behind temperature compensation and temperature entrainment are not fully understood, neither biochemically nor mathematically. Here, we theoretically investigate the interplay of temperature compensation and entrainment in general oscillatory systems. We first give an analytical treatment for small temperature shifts and derive that every temperature-compensated oscillator is entrainable to external small-amplitude temperature cycles. Temperature compensation ensures that this entrainment region is always centered at the endogenous period regardless of possible seasonal temperature differences. Moreover, for small temperature cycles the entrainment region of the oscillator is potentially larger for rectangular pulses. For large temperature shifts we numerically analyze different circadian clock models proposed in the literature with respect to these properties. We observe that for such large temperature shifts sinusoidal or gradual temperature cycles allow a larger entrainment region than rectangular cycles. (paper)

  10. How Temperature Changes Reset a Circadian Oscillator

    NARCIS (Netherlands)

    Merrow, Martha; Loros, Jennifer J.; Dunlap, Jay C.

    1998-01-01

    Circadian rhythms control many physiological activities. The environmental entrainment of rhythms involves the immediate responses of clock components. Levels of the clock protein FRQ were measured in Neurospora at various temperatures; at higher temperatures, the amount of FRQ oscillated around hig

  11. Circadian clockwork and entrainment during development

    Czech Academy of Sciences Publication Activity Database

    Sumová, Alena; Sládek, Martin; Kováčiková, Zuzana; El-Hennamy, Rehab; Laurinová, Kristýna; Bendová, Zdena; Illnerová, Helena

    Frankfurt/Main : J.W. Goethe- University, 2005. s. 55-55. [Congress of the EPBRS /10./. 01.09.2005-05.09.2005, Frankfurt/Main] Institutional research plan: CEZ:AV0Z50110509 Keywords : circadian clockwork * development Subject RIV: FH - Neurology

  12. Early Chronotype and Tissue-Specific Alterations of Circadian Clock Function in Spontaneously Hypertensive Rats

    Czech Academy of Sciences Publication Activity Database

    Sládek, Martin; Polidarová, Lenka; Nováková, Marta; Parkanová, Daniela; Sumová, Alena

    2012-01-01

    Roč. 7, č. 10 (2012), e46951. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP303/11/0668; GA ČR(CZ) GPP305/10/P244 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : SHR * circadian system * clock gene * metabolism * colon * liver * suprachiasmatic nucleus Subject RIV: ED - Physiology Impact factor: 3.730, year: 2012

  13. Alteration of the Circadian Clock in Children with Smith-Magenis Syndrome

    Czech Academy of Sciences Publication Activity Database

    Nováková, Marta; Nevšímalová, S.; Příhodová, I.; Sládek, Martin; Sumová, Alena

    2012-01-01

    Roč. 97, č. 2 (2012), E312-E318. ISSN 0021-972X R&D Projects: GA MZd(CZ) NT11474 Grant ostatní: GA ČR(CZ) GD309/08/H079 Institutional research plan: CEZ:AV0Z50110509 Keywords : melatonin * circadian clock * clock genes * Smith-Magenis syndrome Subject RIV: FH - Neurology Impact factor: 6.430, year: 2012

  14. The Circadian System Is a Target and Modulator of Prenatal Cocaine Effects

    OpenAIRE

    Shang, Eva H.; Zhdanova, Irina V.

    2007-01-01

    Background Prenatal exposure to cocaine can be deleterious to embryonic brain development, but the results in humans remain controversial, the mechanisms involved are not well understood and effective therapies are yet to be designed. We hypothesize that some of the prenatal effects of cocaine might be related to dysregulation of physiological rhythms due to alterations in the integrating circadian clock function. Methodology and Principle Findings Here we introduce a new high-throughput gene...

  15. Non-Alcoholic Fatty Pancreas Disease Pathogenesis: A Role for Developmental Programming and Altered Circadian Rhythms

    OpenAIRE

    Carter, R; Mouralidarane, A.; Soeda, J.; S Ray; Pombo, J.; Saraswati, R.; Novelli, M; Fusai, G.; Rappa, F.; Saracino, C; Pazienza, V; L. Poston; Taylor, PD; Vinciguerra, M Oben JA.

    2014-01-01

    Objectives Emerging evidence suggests that maternal obesity (MO) predisposes offspring to obesity and the recently described non-alcoholic fatty pancreas disease (NAFPD) but involved mechanisms remain unclear. Using a pathophysiologically relevant murine model, we here investigated a role for the biological clock - molecular core circadian genes (CCG) in the generation of NAFPD. Design Female C57BL6 mice were fed an obesogenic diet (OD) or standard chow (SC) for 6 weeks, prior to pregnancy an...

  16. The loss of circadian PAR bZip transcription factors results in epilepsy

    OpenAIRE

    Gachon F.; Fonjallaz P.; Damiola F; Gos P.; Kodama T.; Zakany J.; Duboule D.; Petit B.; Tafti M.; Schibler U.

    2004-01-01

    DBP (albumin D-site-binding protein), HLF (hepatic leukemia factor), and TEF (thyrotroph embryonic factor) are the three members of the PAR bZip (proline and acidic amino acid-rich basic leucine zipper) transcription factor family. All three of these transcriptional regulatory proteins accumulate with robust circadian rhythms in tissues with high amplitudes of clock gene expression, such as the suprachiasmatic nucleus (SCN) and the liver. However, they are expressed at nearly invariable level...

  17. Time Matters in Ecotoxicological Sampling Due to Circadian Rhythm.

    Science.gov (United States)

    Zhao, Yanbin; Fent, Karl

    2016-04-01

    As in general, technological inventions also drive the development in the field of toxicology and ecotoxicology. In the past decade, gene expression analysis has become a universally applied technology allowing many insights into toxicological pathways of environmental contaminants. Due to the novel technologies, including quantitative determination of mRNA by quantitative reverse transcription analysis (qRT-PCR), and semiquantitative methods, such as microarrays and RNA-sequencing technologies, toxicological profiles of contaminants could be identified. For instance, gene expression analysis of genes associated with the hypothalamic-pituitary-gonadal axis (HPG axis) in fish had become a conventional end point for endocrine disrupting chemicals. While these gene expression data provide novel insights into identifying potential toxicological end points and molecular mechanisms, often not enough attention is given to the question of mRNA stabilities and reliabilities of transcriptional data, in particular when links to physiological effects are difficult to make. A crucial factor in this issue is the endogenous circadian oscillations of genes during sampling. PMID:27010328

  18. The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Lucia Pagani

    Full Text Available BACKGROUND: Diurnal behavior in humans is governed by the period length of a circadian clock in the suprachiasmatic nuclei of the brain hypothalamus. Nevertheless, the cell-intrinsic mechanism of this clock is present in most cells of the body. We have shown previously that for individuals of extreme chronotype ("larks" and "owls", clock properties measured in human fibroblasts correlated with extreme diurnal behavior. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have measured circadian period in human primary fibroblasts taken from normal individuals and, for the first time, compared it directly with physiological period measured in vivo in the same subjects. Human physiological period length was estimated via the secretion pattern of the hormone melatonin in two different groups of sighted subjects and one group of totally blind subjects, each using different methods. Fibroblast period length was measured via cyclical expression of a lentivirally delivered circadian reporter. Within each group, a positive linear correlation was observed between circadian period length in physiology and in fibroblast gene expression. Interestingly, although blind individuals showed on average the same fibroblast clock properties as sighted ones, their physiological periods were significantly longer. CONCLUSIONS/SIGNIFICANCE: We conclude that the period of human circadian behaviour is mostly driven by cellular clock properties in normal individuals and can be approximated by measurement in peripheral cells such as fibroblasts. Based upon differences among sighted and blind subjects, we also speculate that period can be modified by prolonged unusual conditions such as the total light deprivation of blindness.

  19. Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Dominick A Matos

    Full Text Available Plant growth is commonly regulated by external cues such as light, temperature, water availability, and internal cues generated by the circadian clock. Changes in the rate of growth within the course of a day have been observed in the leaves, stems, and roots of numerous species. However, the relative impact of the circadian clock on the growth of grasses has not been thoroughly characterized. We examined the influence of diurnal temperature and light changes, and that of the circadian clock on leaf length growth patterns in Brachypodium distachyon using high-resolution time-lapse imaging. Pronounced changes in growth rate were observed under combined photocyles and thermocycles or with thermocycles alone. A considerably more rapid growth rate was observed at 28°C than 12°C, irrespective of the presence or absence of light. In spite of clear circadian clock regulated gene expression, plants exhibited no change in growth rate under conditions of constant light and temperature, and little or no effect under photocycles alone. Therefore, temperature appears to be the primary cue influencing observed oscillations in growth rate and not the circadian clock or photoreceptor activity. Furthermore, the size of the leaf meristem and final cell length did not change in response to changes in temperature. Therefore, the nearly five-fold difference in growth rate observed across thermocycles can be attributed to proportionate changes in the rate of cell division and expansion. A better understanding of the growth cues in B. distachyon will further our ability to model metabolism and biomass accumulation in grasses.

  20. Attenuated food anticipatory activity and abnormal circadian locomotor rhythms in Rgs16 knockdown mice.

    Directory of Open Access Journals (Sweden)

    Naoto Hayasaka

    Full Text Available Regulators of G protein signaling (RGS are a multi-functional protein family, which functions in part as GTPase-activating proteins (GAPs of G protein α-subunits to terminate G protein signaling. Previous studies have demonstrated that the Rgs16 transcripts exhibit robust circadian rhythms both in the suprachiasmatic nucleus (SCN, the master circadian light-entrainable oscillator (LEO of the hypothalamus, and in the liver. To investigate the role of RGS16 in the circadian clock in vivo, we generated two independent transgenic mouse lines using lentiviral vectors expressing short hairpin RNA (shRNA targeting the Rgs16 mRNA. The knockdown mice demonstrated significantly shorter free-running period of locomotor activity rhythms and reduced total activity as compared to the wild-type siblings. In addition, when feeding was restricted during the daytime, food-entrainable oscillator (FEO-driven elevated food-anticipatory activity (FAA observed prior to the scheduled feeding time was significantly attenuated in the knockdown mice. Whereas the restricted feeding phase-advanced the rhythmic expression of the Per2 clock gene in liver and thalamus in the wild-type animals, the above phase shift was not observed in the knockdown mice. This is the first in vivo demonstration that a common regulator of G protein signaling is involved in the two separate, but interactive circadian timing systems, LEO and FEO. The present study also suggests that liver and/or thalamus regulate the food-entrained circadian behavior through G protein-mediated signal transduction pathway(s.

  1. Relationships between the circadian system and Alzheimer's disease-like symptoms in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dani M Long

    Full Text Available Circadian clocks coordinate physiological, neurological, and behavioral functions into circa 24 hour rhythms, and the molecular mechanisms underlying circadian clock oscillations are conserved from Drosophila to humans. Clock oscillations and clock-controlled rhythms are known to dampen during aging; additionally, genetic or environmental clock disruption leads to accelerated aging and increased susceptibility to age-related pathologies. Neurodegenerative diseases, such as Alzheimer's disease (AD, are associated with a decay of circadian rhythms, but it is not clear whether circadian disruption accelerates neuronal and motor decline associated with these diseases. To address this question, we utilized transgenic Drosophila expressing various Amyloid-β (Aβ peptides, which are prone to form aggregates characteristic of AD pathology in humans. We compared development of AD-like symptoms in adult flies expressing Aβ peptides in the wild type background and in flies with clocks disrupted via a null mutation in the clock gene period (per01. No significant differences were observed in longevity, climbing ability and brain neurodegeneration levels between control and clock-deficient flies, suggesting that loss of clock function does not exacerbate pathogenicity caused by human-derived Aβ peptides in flies. However, AD-like pathologies affected the circadian system in aging flies. We report that rest/activity rhythms were impaired in an age-dependent manner. Flies expressing the highly pathogenic arctic Aβ peptide showed a dramatic degradation of these rhythms in tune with their reduced longevity and impaired climbing ability. At the same time, the central pacemaker remained intact in these flies providing evidence that expression of Aβ peptides causes rhythm degradation downstream from the central clock mechanism.

  2. Differential Regulation of the Period Genes in Striatal Regions following Cocaine Exposure

    OpenAIRE

    Falcon, Edgardo; Ozburn, Angela; Mukherjee, Shibani; Roybal, Kole; McClung, Colleen A.

    2013-01-01

    Several studies have suggested that disruptions in circadian rhythms contribute to the pathophysiology of multiple psychiatric diseases, including drug addiction. In fact, a number of the genes involved in the regulation of circadian rhythms are also involved in modulating the reward value for drugs of abuse, like cocaine. Thus, we wanted to determine the effects of chronic cocaine on the expression of several circadian genes in the Nucleus Accumbens (NAc) and Caudate Putamen (CP), regions of...

  3. MBD5 haploinsufficiency is associated with sleep disturbance and disrupts circadian pathways common to Smith-Magenis and fragile X syndromes.

    Science.gov (United States)

    Mullegama, Sureni V; Pugliesi, Loren; Burns, Brooke; Shah, Zalak; Tahir, Raiha; Gu, Yanghong; Nelson, David L; Elsea, Sarah H

    2015-06-01

    Individuals with autism spectrum disorders (ASD) who have an identifiable single-gene neurodevelopmental disorder (NDD), such as fragile X syndrome (FXS, FMR1), Smith-Magenis syndrome (SMS, RAI1), or 2q23.1 deletion syndrome (del 2q23.1, MBD5) share phenotypic features, including a high prevalence of sleep disturbance. We describe the circadian deficits in del 2q23.1 through caregiver surveys in which we identify several frequent sleep anomalies, including night/early awakenings, coughing/snoring loudly, and difficulty falling asleep. We couple these findings with studies on the molecular analysis of the circadian deficits associated with haploinsufficiency of MBD5 in which circadian gene mRNA levels of NR1D2, PER1, PER2, and PER3 were altered in del 2q23.1 lymphoblastoid cell lines (LCLs), signifying that haploinsufficiency of MBD5 can result in dysregulation of circadian rhythm gene expression. These findings were further supported by expression microarrays of MBD5 siRNA knockdown cells that showed significantly altered expression of additional circadian rhythm signaling pathway genes. Based on the common sleep phenotypes observed in del 2q23.1, SMS, and FXS patients, we explored the possibility that MBD5, RAI1, and FMR1 function in overlapping circadian rhythm pathways. Bioinformatic analysis identified conserved putative E boxes in MBD5 and RAI1, and expression levels of NR1D2 and CRY2 were significantly reduced in patient LCLs. Circadian and mTOR signaling pathways, both associated with sleep disturbance, were altered in both MBD5 and RAI1 knockdown microarray data, overlapping with findings associated with FMR1. These data support phenotypic and molecular overlaps across these syndromes that may be exploited to provide therapeutic intervention for multiple disorders. PMID:25271084

  4. The role of circadian rhythm in breast cancer

    Science.gov (United States)

    Li, Shujing; Ao, Xiang

    2013-01-01

    The circadian rhythm is an endogenous time keeping system shared by most organisms. The circadian clock is comprised of both peripheral oscillators in most organ tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN) of the central nervous system. The circadian rhythm is crucial in maintaining the normal physiology of the organism including, but not limited to, cell proliferation, cell cycle progression, and cellular metabolism; whereas disruption of the circadian rhythm is closely related to multi-tumorigenesis. In the past several years, studies from different fields have revealed that the genetic or functional disruption of the molecular circadian rhythm has been found in various cancers, such as breast, prostate, and ovarian. In this review, we will investigate and present an overview of the current research on the influence of circadian rhythm regulating proteins on breast cancer. PMID:23997531

  5. Circadian Organization of Behavior and Physiology in Drosophila

    Science.gov (United States)

    Allada, Ravi; Chung, Brian Y.

    2010-01-01

    Circadian clocks organize behavior and physiology to adapt to daily environmental cycles. Genetic approaches in the fruit fly, Drosophila melanogaster, have revealed widely conserved molecular gears of these 24-h timers. Yet much less is known about how these cell-autonomous clocks confer temporal information to modulate cellular functions. Here we discuss our current knowledge of circadian clock function in Drosophila, providing an overview of the molecular underpinnings of circadian clocks. We then describe the neural network important for circadian rhythms of locomotor activity, including how these molecular clocks might influence neuronal function. Finally, we address a range of behaviors and physiological systems regulated by circadian clocks, including discussion of specific peripheral oscillators and key molecular effectors where they have been described. These studies reveal a remarkable complexity to circadian pathways in this “simple” model organism. PMID:20148690

  6. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    OpenAIRE

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A

    2011-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock me...

  7. Circadian Organization of Behavior and Physiology in Drosophila

    OpenAIRE

    Allada, Ravi; Chung, Brian Y.

    2010-01-01

    Circadian clocks organize behavior and physiology to adapt to daily environmental cycles. Genetic approaches in the fruit fly, Drosophila melanogaster, have revealed widely conserved molecular gears of these 24-h timers. Yet much less is known about how these cell-autonomous clocks confer temporal information to modulate cellular functions. Here we discuss our current knowledge of circadian clock function in Drosophila, providing an overview of the molecular underpinnings of circadian clocks....

  8. A Clinical Approach to Circadian Rhythm Sleep Disorders

    OpenAIRE

    Barion, Ana; Zee, Phyllis C.

    2007-01-01

    Circadian rhythm sleep disorders are characterized by complaints of insomnia and excessive sleepiness that are primarily due to alterations in the internal circadian timing system or a misalignment between the timing of sleep and the 24-hour social and physical environment. In addition to physiological and environmental factors, maladaptive behaviors often play an important role in the development of many of the circadian rhythm sleep disorders. This review will focus on the clinical approach...

  9. AMPK at the crossroads of circadian clocks and metabolism

    OpenAIRE

    Jordan, Sabine D.; Lamia, Katja A.

    2012-01-01

    Circadian clocks coordinate behavior and physiology with daily environmental cycles and thereby optimize the timing of metabolic processes such as glucose production and insulin secretion. Such circadian regulation of metabolism provides an adaptive advantage in diverse organisms. Mammalian clocks are primarily based on a transcription and translation feedback loop in which a heterodimeric complex of the transcription factors CLOCK (circadian locomotor output cycles kaput) and BMAL1 (brain an...

  10. The in vitro real-time oscillation monitoring system identifies potential entrainment factors for circadian clocks

    Directory of Open Access Journals (Sweden)

    Yasuda Akio

    2006-02-01

    Full Text Available Abstract Background Circadian rhythms are endogenous, self-sustained oscillations with approximately 24-hr rhythmicity that are manifested in various physiological and metabolic processes. The circadian organization of these processes in mammals is governed by the master oscillator within the suprachiasmatic nuclei (SCN of the hypothalamus. Recent findings revealed that circadian oscillators exist in most organs, tissues, and even in immortalized cells, and that the oscillators in peripheral tissues are likely to be coordinated by SCN, the master oscillator. Some candidates for endogenous entrainment factors have sporadically been reported, however, their details remain mainly obscure. Results We developed the in vitro real-time oscillation monitoring system (IV-ROMS by measuring the activity of luciferase coupled to the oscillatory gene promoter using photomultiplier tubes and applied this system to screen and identify factors able to influence circadian rhythmicity. Using this IV-ROMS as the primary screening of entrainment factors for circadian clocks, we identified 12 candidates as the potential entrainment factor in a total of 299 peptides and bioactive lipids. Among them, four candidates (endothelin-1, all-trans retinoic acid, 9-cis retinoic acid, and 13-cis retinoic acid have already been reported as the entrainment factors in vivo and in vitro. We demonstrated that one of the novel candidates, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2, a natural ligand of the peroxisome proliferator-activated receptor-γ (PPAR-γ, triggers the rhythmic expression of endogenous clock genes in NIH3T3 cells. Furthermore, we showed that 15d-PGJ2 transiently induces Cry1, Cry2, and Rorα mRNA expressions and that 15d-PGJ2-induced entrainment signaling pathway is PPAR-γ – and MAPKs (ERK, JNK, p38MAPK-independent. Conclusion Here, we identified 15d-PGJ2 as an entrainment factor in vitro. Using our developed IV-ROMS to screen 299 compounds, we found eight

  11. Circadian rhythm variations of clock gene PER1 expression in oral squamous cell carcinoma and their relations with tumor growth in vivo%生物钟PER1基因在口腔鳞癌中的昼夜节律变化及与体内肿瘤生长的关系

    Institute of Scientific and Technical Information of China (English)

    赵宁波; 杨凯; 陈丹; 唐洪; 赵丹; 赵春蓉

    2013-01-01

    目的 探讨生物钟PER1基因在口腔鳞癌中的昼夜节律变化情况和与肿瘤体内生长的关系.方法 60只裸鼠置于12 h光照和12 h黑暗交替环境中饲养3周后,将人颊鳞癌BcaCD885细胞接种于裸鼠颊部,建立口腔颊鳞癌模型.3周成瘤后,在24 h内按灯亮后4、10、16、22 h(4 HALO、10 HALO、16 HALO、22 HALO)的4个时间点分别处死15只裸鼠,取出肿瘤,称量,常规切片在HE染色下计算各时间点肿瘤的有丝分裂指数(MI);分别用S-P免疫组化、Western blot和Real-time RT-PCR检测各时间点癌细胞中PER1蛋白和mRNA的表达;分别用方差分析和余弦分析检验各指标在4个时间点的差异性和是否具有昼夜节律性.结果 颊鳞癌细胞PER1蛋白、PER1 mRNA、肿瘤MI和肿瘤质量在昼夜不同时间点具有显著性差异(P<0.01),其变化波动具有昼夜节律性特征(P<0.05);肿瘤MI和肿瘤质量与PER1的表达水平呈反比关系,PER1 mRNA表达的峰值与肿瘤MI和质量的谷值均位于活动相的中期,而PER1 mRNA表达的谷值与肿瘤MI和质量的峰值均位于休息相中期.结论 口腔鳞癌中PER1的表达、肿瘤MI和质量在昼夜不同时间点的波动具有24 h昼夜节律性规律,PER1在口腔鳞癌中为抑癌基因.%Objective To determine the circadian rhythm variations of the expression of clock gene PER1 in oral squamous cell carcinoma (OSCC) and their relations with tumor growth in vivo.Methods Sixty nude mice were raised under 12 h light/12 h dark cycles for 3 weeks.Human OSCC cell line BcaCD885 was inoculated in the cheek of nude mice to establish a nude mice model of OSCC.In 3 weeks after the implantation,15 mice were sacrificed at 4 time points,including 4 h after light onset (HALO),10 HALO,16 HALO and 22 HALO,respectively,during a period of 24 h.Tumor tissues were excised and weighed.HE stained sections were prepared and mitotic index (MI) was calculated.The protein and mRNA expression of PER1 in the tumor

  12. Monitoring circadian time in rat plasma using a secreted Cypridina luciferase reporter.

    Science.gov (United States)

    Yamada, Yoshiko; Nishide, Shin-Ya; Nakajima, Yoshihiro; Watanabe, Toshiyuki; Ohmiya, Yoshihiro; Honma, Ken-Ichi; Honma, Sato

    2013-08-15

    A firefly luciferase reporter enabled us to monitor promoter activity in vivo as well as ex vivo; however, this requires a sufficient supply of the substrate luciferin and specific monitoring devices. To overcome these disadvantages, we developed transgenic rats carrying a secreted enzyme Cypridina luciferase (CLuc) reporter under the promoter of clock gene Per2 (Per2-CLuc). Per2-CLuc activity in serially sampled blood from freely moving rats exhibited robust circadian rhythms with a peak at early morning. The Per2-CLuc bioluminescence could be quantified even with approximately 100pl of plasma. Plasma Per2-CLuc rhythms were phase reversed, and the level was reduced by restricting food access for 2h during the light phase, suggesting that the plasma Per2-CLuc rhythms reflect the phase of peripheral clocks entrained to feeding cues as well as fuel metabolism. Fasting for 2days did not alter the circadian Per2-CLuc rhythms in rats, suggesting that feeding per se did not affect the circadian Per2-CLuc rhythms. Tissue-specific Per2-CLuc rhythms were observed in culture medium of peripheral tissues. The Per2-CLuc reporter is a powerful tool to access gene expression in vivo as well as ex vivo with ordinary laboratory equipment. PMID:23624321

  13. Circadian Clocks as Modulators of Metabolic Comorbidity in Psychiatric Disorders.

    Science.gov (United States)

    Barandas, Rita; Landgraf, Dominic; McCarthy, Michael J; Welsh, David K

    2015-12-01

    Psychiatric disorders such as schizophrenia, bipolar disorder, and major depressive disorder are often accompanied by metabolic dysfunction symptoms, including obesity and diabetes. Since the circadian system controls important brain systems that regulate affective, cognitive, and metabolic functions, and neuropsychiatric and metabolic diseases are often correlated with disturbances of circadian rhythms, we hypothesize that dysregulation of circadian clocks plays a central role in metabolic comorbidity in psychiatric disorders. In this review paper, we highlight the role of circadian clocks in glucocorticoid, dopamine, and orexin/melanin-concentrating hormone systems and describe how a dysfunction of these clocks may contribute to the simultaneous development of psychiatric and metabolic symptoms. PMID:26483181

  14. Circadian variation in the pharmacokinetics of verapamil

    DEFF Research Database (Denmark)

    Jespersen, C M; Frederiksen, M; Hansen, J F;

    1989-01-01

    Circadian variation in the metabolism of verapamil was investigated in 10 patients with stable angina pectoris during treatment with sustained-release verapamil 360 mg at 08.00 h or 22.0 h. No major difference in exercise parameters was found. During the evening dosage schedule a significantly...... greater bioavailability (AUC) and a prolonged time to peak concentration was found. During the night (24.00 h-06.00 h) the half-life of verapamil was significantly longer than during the day (16.00 h-22.00 h). These differences in pharmacokinetics may be due to reduced hepatic blood flow at night...... or to circadian variation in hepatic microsomal metabolism....

  15. Circadian rhythm and cell population growth

    CERN Document Server

    Clairambault, Jean; Lepoutre, Thomas

    2010-01-01

    Molecular circadian clocks, that are found in all nucleated cells of mammals, are known to dictate rhythms of approximately 24 hours (circa diem) to many physiological processes. This includes metabolism (e.g., temperature, hormonal blood levels) and cell proliferation. It has been observed in tumor-bearing laboratory rodents that a severe disruption of these physiological rhythms results in accelerated tumor growth. The question of accurately representing the control exerted by circadian clocks on healthy and tumour tissue proliferation to explain this phenomenon has given rise to mathematical developments, which we review. The main goal of these previous works was to examine the influence of a periodic control on the cell division cycle in physiologically structured cell populations, comparing the effects of periodic control with no control, and of different periodic controls between them. We state here a general convexity result that may give a theoretical justification to the concept of cancer chronothera...

  16. Expression of PER, CRY, and TIM genes for the pathological features of colorectal cancer patients

    OpenAIRE

    Wang Y; Cheng Y; Yu G.; Jia B.; Hu Z; Zhang L

    2016-01-01

    Yong Wang,1 Yunsheng Cheng,1 Gang Yu,1 Benli Jia,1 Zhihang Hu,1 Lijiu Zhang2 1Department of General Surgery, 2Department of Gastroenterology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China Abstract: As typical clock gene machinery, period (PER1, PER2, and PER3), cryptochrome (CRY1 and CRY2), and timeless (TIM), could control proliferation, cellular metabolism, and many key functions, such as recognition and repair of DNA damage, dysfuncti...

  17. The role of microRNAs (miRNA) in circadian rhythmicity

    Indian Academy of Sciences (India)

    Mirko Pegoraro; Eran Tauber

    2008-12-01

    MicroRNA (miRNA) is a recently discovered new class of small RNA molecules that have a significant role in regulating gene and protein expression. These small RNAs (∼22 nt) bind to 3′ untranslated regions (3′UTRs) and induce degradation or repression of translation of their mRNA targets. Hundreds of miRNAs have been identified in various organisms and have been shown to play a significant role in development and normal cell functioning. Recently, a few studies have suggested that miRNAs may be an important regulators of circadian rhythmicity, providing a new dimension (posttranscriptional) of our understanding of biological clocks. Here, we describe the mechanisms of miRNA regulation, and recent studies attempting to identify clock miRNAs and their function in the circadian system.

  18. The circadian clock, reward and memory

    OpenAIRE

    Urs eAlbrecht

    2011-01-01

    During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance, and reward may be related to one another. This review will summarize data that describe the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes.

  19. Circadian Metabolism in the Light of Evolution

    DEFF Research Database (Denmark)

    Gerhart-Hines, Zachary; Lazar, Mitchell A.

    2015-01-01

    A review. Circadian rhythm, or daily oscillation, of behaviors and biol. processes is a fundamental feature of mammalian physiol. that has developed over hundreds of thousands of years under the continuous evolutionary pressure of energy conservation and efficiency. Evolution has fine-tuned the...... energetic balance and adaptability, and it discusses potential therapeutic strategies to reset clock metabolic control to modern time for the benefit of human health. [on SciFinder(R)]...

  20. Shift work and circadian dysregulation of reproduction

    Directory of Open Access Journals (Sweden)

    Karen L. Gamble

    2013-08-01

    Full Text Available Health impairments, including reproductive issues, are associated with working nights or rotating shifts. For example, shift work has been associated with an increased risk of irregular menstrual cycles, endometriosis, infertility, miscarriage, low birth weight or pre-term delivery, and reduced incidence of breastfeeding. Based on what is known about circadian regulation of endocrine rhythms in rodents (and much less in humans, the circadian clock is an integral regulatory part of the reproductive system. When this 24-h program is disordered by environmental perturbation (such as shift work or genetic alterations, the endocrine system can be impaired. The purpose of this review is to explore the hypothesis that misalignment of reproductive hormones with the environmental light-dark cycle and/or sleep wake rhythms can disrupt menstrual cycles, pregnancy, and parturition. We highlight the role of the circadian clock in regulating human reproductive physiology and shift work-induced pathology within each step of the reproductive axis while exploring potential mechanisms from the animal model literature. In addition to documenting the reproductive hazards of shift work, we also point out important gaps in our knowledge as critical areas for future investigation. For example, future studies should examine whether forced desynchronization disrupts gonadotropin secretion rhythms and whether there are sleep/wake schedules that are better or worse for the adaptation of the reproductive system to shift work. These studies are necessary in order to define not only whether or not shift-work induced circadian misalignment impairs reproductive capacity, but also to identify strategies for the future that can minimize this desynchronization.

  1. Shift work and circadian dysregulation of reproduction.

    Science.gov (United States)

    Gamble, Karen L; Resuehr, David; Johnson, Carl Hirschie

    2013-01-01

    Health impairments, including reproductive issues, are associated with working nights or rotating shifts. For example, shift work has been associated with an increased risk of irregular menstrual cycles, endometriosis, infertility, miscarriage, low birth weight or pre-term delivery, and reduced incidence of breastfeeding. Based on what is known about circadian regulation of endocrine rhythms in rodents (and much less in humans), the circadian clock is an integral regulatory part of the reproductive system. When this 24-h program is disordered by environmental perturbation (such as shift work) or genetic alterations, the endocrine system can be impaired. The purpose of this review is to explore the hypothesis that misalignment of reproductive hormones with the environmental light-dark cycle and/or sleep-wake rhythms can disrupt menstrual cycles, pregnancy, and parturition. We highlight the role of the circadian clock in regulating human reproductive physiology and shift work-induced pathology within each step of the reproductive axis while exploring potential mechanisms from the animal model literature. In addition to documenting the reproductive hazards of shift work, we also point out important gaps in our knowledge as critical areas for future investigation. For example, future studies should examine whether forced desynchronization disrupts gonadotropin secretion rhythms and whether there are sleep/wake schedules that are better or worse for the adaptation of the reproductive system to shift work. These studies are necessary in order to define not only whether or not shift work-induced circadian misalignment impairs reproductive capacity, but also to identify strategies for the future that can minimize this desynchronization. PMID:23966978

  2. Glaucoma alters the circadian timing system.

    Science.gov (United States)

    Drouyer, Elise; Dkhissi-Benyahya, Ouria; Chiquet, Christophe; WoldeMussie, Elizabeth; Ruiz, Guadalupe; Wheeler, Larry A; Denis, Philippe; Cooper, Howard M

    2008-01-01

    Glaucoma is a widespread ocular disease and major cause of blindness characterized by progressive, irreversible damage of the optic nerve. Although the degenerative loss of retinal ganglion cells (RGC) and visual deficits associated with glaucoma have been extensively studied, we hypothesize that glaucoma will also lead to alteration of the circadian timing system. Circadian and non-visual responses to light are mediated by a specialized subset of melanopsin expressing RGCs that provide photic input to mammalian endogenous clock in the suprachiasmatic nucleus (SCN). In order to explore the molecular, anatomical and functional consequences of glaucoma we used a rodent model of chronic ocular hypertension, a primary causal factor of the pathology. Quantitative analysis of retinal projections using sensitive anterograde tracing demonstrates a significant reduction (approximately 50-70%) of RGC axon terminals in all visual and non-visual structures and notably in the SCN. The capacity of glaucomatous rats to entrain to light was challenged by exposure to successive shifts of the light dark (LD) cycle associated with step-wise decreases in light intensity. Although glaucomatous rats are able to entrain their locomotor activity to the LD cycle at all light levels, they require more time to re-adjust to a shifted LD cycle and show significantly greater variability in activity onsets in comparison with normal rats. Quantitative PCR reveals the novel finding that melanopsin as well as rod and cone opsin mRNAs are significantly reduced in glaucomatous retinas. Our findings demonstrate that glaucoma impacts on all these aspects of the circadian timing system. In light of these results, the classical view of glaucoma as pathology unique to the visual system should be extended to include anatomical and functional alterations of the circadian timing system. PMID:19079596

  3. Circadian Phase Preference in Pediatric Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Kerri L. Kim

    2014-03-01

    Full Text Available Pediatric bipolar disorder (BD rates have notably increased over the past three decades. Given the significant morbidity and mortality associated with BD, efforts are needed to identify factors useful in earlier detection to help address this serious public health concern. Sleep is particularly important to consider given the sequelae of disrupted sleep on normative functioning and that sleep is included in diagnostic criteria for both Major Depressive and Manic Episodes. Here, we examine one component of sleep—i.e., circadian phase preference with the behavioral construct of morningness/eveningness (M/E. In comparing 30 BD and 45 typically developing control (TDC participants, ages 7–17 years, on the Morningness-Eveningness Scale for Children (MESC, no between-group differences emerged. Similar results were found when comparing three groups (BD−ADHD; BD+ADHD; TDC. Consistent with data available on circadian phase preference in adults with BD, however, we found that BD adolescents, ages 13 years and older, endorsed significantly greater eveningness compared to their TDC peers. While the current findings are limited by reliance on subjective report and the high-rate of comorbid ADHD among the BD group, this finding that BD teens demonstrate an exaggerated shift towards eveningness than would be developmentally expected is important. Future studies should compare the circadian rhythms across the lifespan for individuals diagnosed with BD, as well as identify the point at which BD youth part ways with their healthy peers in terms of phase preference. In addition, given our BD sample was overall euthymic, it may be that M/E is more state vs. trait specific in latency age youth. Further work would benefit from assessing circadian functioning using a combination of rating forms and laboratory-based measures. Improved understanding of sleep in BD may identify behavioral targets for inclusion in prevention and intervention protocols.

  4. Glaucoma Alters the Circadian Timing System

    Science.gov (United States)

    Drouyer, Elise; Dkhissi-Benyahya, Ouria; Chiquet, Christophe; WoldeMussie, Elizabeth; Ruiz, Guadalupe; Wheeler, Larry A.; Denis, Philippe; Cooper, Howard M.

    2008-01-01

    Glaucoma is a widespread ocular disease and major cause of blindness characterized by progressive, irreversible damage of the optic nerve. Although the degenerative loss of retinal ganglion cells (RGC) and visual deficits associated with glaucoma have been extensively studied, we hypothesize that glaucoma will also lead to alteration of the circadian timing system. Circadian and non-visual responses to light are mediated by a specialized subset of melanopsin expressing RGCs that provide photic input to mammalian endogenous clock in the suprachiasmatic nucleus (SCN). In order to explore the molecular, anatomical and functional consequences of glaucoma we used a rodent model of chronic ocular hypertension, a primary causal factor of the pathology. Quantitative analysis of retinal projections using sensitive anterograde tracing demonstrates a significant reduction (∼50–70%) of RGC axon terminals in all visual and non-visual structures and notably in the SCN. The capacity of glaucomatous rats to entrain to light was challenged by exposure to successive shifts of the light dark (LD) cycle associated with step-wise decreases in light intensity. Although glaucomatous rats are able to entrain their locomotor activity to the LD cycle at all light levels, they require more time to re-adjust to a shifted LD cycle and show significantly greater variability in activity onsets in comparison with normal rats. Quantitative PCR reveals the novel finding that melanopsin as well as rod and cone opsin mRNAs are significantly reduced in glaucomatous retinas. Our findings demonstrate that glaucoma impacts on all these aspects of the circadian timing system. In light of these results, the classical view of glaucoma as pathology unique to the visual system should be extended to include anatomical and functional alterations of the circadian timing system. PMID:19079596

  5. Avian Circadian Organization: A Chorus of Clocks

    OpenAIRE

    Cassone, Vincent M.

    2013-01-01

    In birds, biological clock function pervades all aspects of biology, controlling daily changes in sleep: wake, visual function, song, migratory patterns and orientation, as well as seasonal patterns of reproduction, song and migration. The molecular bases for circadian clocks are highly conserved, and it is likely the avian molecular mechanisms are similar to those expressed in mammals, including humans. The central pacemakers in the avian pineal gland, retinae and SCN dynamically interact to...

  6. Imaging Multidimensional Therapeutically Relevant Circadian Relationships

    Directory of Open Access Journals (Sweden)

    Jamil Singletary

    2009-01-01

    Full Text Available Circadian clocks gate cellular proliferation and, thereby, therapeutically target availability within proliferative pathways. This temporal coordination occurs within both cancerous and noncancerous proliferating tissues. The timing within the circadian cycle of the administration of drugs targeting proliferative pathways necessarily impacts the amount of damage done to proliferating tissues and cancers. Concurrently measuring target levels and associated key pathway components in normal and malignant tissues around the circadian clock provides a path toward a fuller understanding of the temporal relationships among the physiologic processes governing the therapeutic index of antiproliferative anticancer therapies. The temporal ordering among these relationships, paramount to determining causation, is less well understood using two- or three-dimensional representations. We have created multidimensional multimedia depictions of the temporal unfolding of putatively causative and the resultant therapeutic effects of a drug that specifically targets these ordered processes at specific times of the day. The systems and methods used to create these depictions are provided, as well as three example supplementary movies.

  7. Aligning work and circadian time in shift workers improves sleep and reduces circadian disruption.

    Science.gov (United States)

    Vetter, Céline; Fischer, Dorothee; Matera, Joana L; Roenneberg, Till

    2015-03-30

    Sleep loss and circadian disruption-a state of misalignment between physiological functions and imposed sleep/wake behavior-supposedly play central roles in the etiology of shift work-related pathologies [1-4]. Circadian entrainment is, however, highly individual [5], resulting in different chronotypes [6, 7]. Chronotype in turn modulates the effects of working times: compared to late chronotypes, earlier ones sleep worse and shorter and show higher levels of circadian misalignment during night shifts, while late types experience more sleep and circadian disruption than early types when working morning shifts [8]. To promote sleep and reduce the mismatch between circadian and working time, we implemented a chronotype-adjusted (CTA) shift schedule in a factory. We abolished the most strenuous shifts for extreme chronotypes (i.e., mornings for late chronotypes, nights for early ones) and examined whether sleep duration and quality, social jetlag [9, 10], wellbeing, subjective stress perception, and satisfaction with leisure time improved in this schedule. Intermediate chronotypes (quartiles 2 and 3) served as a control group, still working morning (6:00-14:00), evening (14:00-22:00), and night (22:00-6:00) shifts, with two strenuous shifts (out of twelve per month) replaced by evening ones. We observed a significant increase of self-reported sleep duration and quality, along with increased wellbeing ratings on workdays among extreme chronotypes. The CTA schedule reduced overall social jetlag by 1 hr, did not alter stress levels, and increased satisfaction with leisure time (early types only). Chronotype-based schedules thus can reduce circadian disruption and improve sleep; potential long-term effects on health and economic indicators need to be elucidated in future studies. PMID:25772446

  8. Clock genes, hair growth and aging

    OpenAIRE

    Geyfman, Mikhail; Andersen, Bogi

    2010-01-01

    Hair follicles undergo continuous cycles of growth, involution and rest. This process, referred to as the hair growth cycle, has a periodicity of weeks to months. At the same time, skin and hair follicles harbor a functional circadian clock that regulates gene expression with a periodicity of approximately twenty four hours. In our recent study we found that circadian clock genes play a role in regulation of the hair growth cycle during synchronized hair follicle cycling, uncovering an unexpe...

  9. Effects of different per translational kinetics on the dynamics of a core circadian clock model.

    Directory of Open Access Journals (Sweden)

    Paula S Nieto

    Full Text Available Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.

  10. Temporal requirements of the fragile X mental retardation protein in modulating circadian clock circuit synaptic architecture

    Directory of Open Access Journals (Sweden)

    Cheryl L Gatto

    2009-08-01

    Full Text Available Loss of fragile X mental retardation 1 (FMR1 gene function is the most common cause of inherited mental retardation and autism spectrum disorders, characterized by attention disorder, hyperactivity and disruption of circadian activity cycles. Pursuit of effective intervention strategies requires determining when the FMR1 product (FMRP is required in the regulation of neuronal circuitry controlling these behaviors. In the well-characterized Drosophila disease model, loss of the highly conserved dFMRP causes circadian arrhythmicity and conspicuous abnormalities in the circadian clock circuitry. Here, a novel Sholl Analysis was used to quantify over-elaborated synaptic architecture in dfmr1-null small ventrolateral neurons (sLNvs, a key subset of clock neurons. The transgenic Gene-Switch system was employed to drive conditional neuronal dFMRP expression in the dfmr1-null mutant background in order to dissect temporal requirements within the clock circuit. Introduction of dFMRP during early brain development, including the stages of neurogenesis, neuronal fate specification and early pathfinding, provided no rescue of dfmr1 mutant phenotypes. Similarly, restoring normal dFMRP expression in the adult failed to restore circadian circuit architecture. In sharp contrast, supplying dFMRP during a transient window of very late brain development, wherein synaptogenesis and substantial subsequent synaptic reorganization (e.g. use-dependent pruning occur, provided strong morphological rescue to reestablish normal sLNvs synaptic arbors. We conclude that dFMRP plays a developmentally restricted role in sculpting synaptic architecture in these neurons that cannot be compensated for by later reintroduction of the protein at maturity.

  11. Circadian profiling in two mouse models of lysosomal storage disorders; Niemann Pick type-C and Sandhoff disease.

    Science.gov (United States)

    Richardson, Katie; Livieratos, Achilleas; Dumbill, Richard; Hughes, Steven; Ang, Gauri; Smith, David A; Morris, Lauren; Brown, Laurence A; Peirson, Stuart N; Platt, Frances M; Davies, Kay E; Oliver, Peter L

    2016-01-15

    Sleep and circadian rhythm disruption is frequently associated with neurodegenerative disease, yet it is unclear how the specific pathology in these disorders leads to abnormal rest/activity profiles. To investigate whether the pathological features of lysosomal storage disorders (LSDs) influence the core molecular clock or the circadian behavioural abnormalities reported in some patients, we examined mouse models of Niemann-Pick Type-C (Npc1 mutant, Npc1(nih)) and Sandhoff (Hexb knockout, Hexb(-/-)) disease using wheel-running activity measurement, neuropathology and clock gene expression analysis. Both mutants exhibited regular, entrained rest/activity patterns under light:dark (LD) conditions despite the onset of their respective neurodegenerative phenotypes. A slightly shortened free-running period and changes in Per1 gene expression were observed in Hexb(-/-) mice under constant dark conditions (DD); however, no overt neuropathology was detected in the suprachiasmatic nucleus (SCN). Conversely, despite extensive cholesterol accumulation in the SCN of Npc1(nih) mutants, no circadian disruption was observed under constant conditions. Our results indicate the accumulation of specific metabolites in LSDs may differentially contribute to circadian deregulation at the molecular and behavioural level. PMID:26467605

  12. Circadian profiling in two mouse models of lysosomal storage disorders; Niemann Pick type-C and Sandhoff disease

    Science.gov (United States)

    Richardson, Katie; Livieratos, Achilleas; Dumbill, Richard; Hughes, Steven; Ang, Gauri; Smith, David A.; Morris, Lauren; Brown, Laurence A.; Peirson, Stuart N.; Platt, Frances M.; Davies, Kay E.; Oliver, Peter L.

    2016-01-01

    Sleep and circadian rhythm disruption is frequently associated with neurodegenerative disease, yet it is unclear how the specific pathology in these disorders leads to abnormal rest/activity profiles. To investigate whether the pathological features of lysosomal storage disorders (LSDs) influence the core molecular clock or the circadian behavioural abnormalities reported in some patients, we examined mouse models of Niemann-Pick Type-C (Npc1 mutant, Npc1nih) and Sandhoff (Hexb knockout, Hexb−/−) disease using wheel-running activity measurement, neuropathology and clock gene expression analysis. Both mutants exhibited regular, entrained rest/activity patterns under light:dark (LD) conditions despite the onset of their respective neurodegenerative phenotypes. A slightly shortened free-running period and changes in Per1 gene expression were observed in Hexb−/− mice under constant dark conditions (DD); however, no overt neuropathology was detected in the suprachiasmatic nucleus (SCN). Conversely, despite extensive cholesterol accumulation in the SCN of Npc1nih mutants, no circadian disruption was observed under constant conditions. Our results indicate the accumulation of specific metabolites in LSDs may differentially contribute to circadian deregulation at the molecular and behavioural level. PMID:26467605

  13. Circadian Control of the Estrogenic Circuits Regulating GnRH Secretion and the Preovulatory Luteinizing Hormone Surge

    Directory of Open Access Journals (Sweden)

    Lance J Kriegsfeld

    2012-05-01

    Full Text Available Female reproduction requires the precise temporal organization of interacting, estradiol-sensitive neural circuits that converge to optimally drive hypothalamo-pituitary-gonadal (HPG axis functioning. In mammals, the master circadian pacemaker in the suprachaismatic nucleus (SCN of the anterior hypothalamus coordinates reproductively-relevant neuroendocrine events necessary to maximize reproductive success. Likewise, in species where periods of fertility are brief, circadian oversight of reproductive function ensures that estradiol-dependent increases in sexual motivation coincide with ovulation. Across species, including humans, disruptions to circadian timing (e.g., through rotating shift work, night shift work, poor sleep hygiene lead to pronounced deficits in ovulation and fecundity. Despite the well-established roles for the circadian system in female reproductive functioning, the specific neural circuits and neurochemical mediators underlying these interactions are not fully understood. Most work to date has focused on the direct and indirect communication from the SCN to the GnRH system in control of the preovulatory LH surge. However, the same clock genes underlying circadian rhythms at the cellular level in SCN cells are also common to target cell populations of the SCN, including the GnRH neuronal network. Exploring the means by which the master clock synergizes with subordinate clocks in GnRH cells and its upstream modulatory systems represents an exciting opportunity to further understand the role of endogenous timing systems in female reproduction. Herein we provide an overview of the state of knowledge regarding interactions between the circadian timing system and estradiol-sensitive neural circuits driving GnRH secretion and the preovulatory LH surge.

  14. Influence of weeks of circadian misalignment on leptin levels

    Directory of Open Access Journals (Sweden)

    June Nguyen

    2009-12-01

    Full Text Available June Nguyen, Kenneth P Wright JrDepartment of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado, Boulder, CO, USAAbstract: The neurobiology of circadian, wakefulness–sleep, and feeding systems interact to influence energy homeostasis. Sleep and circadian disruptions are reported to be associated with increased risk of diabetes and obesity, yet the roles of energy balance hormones in these associations are largely unknown. Therefore, in the current study we aimed to assess the influence of several weeks of circadian misalignment (sleep and wakefulness occurring at an inappropriate biological time on the anorexigenic adipocyte hormone leptin. We utilized data from a previous study designed to assess physiological and cognitive consequences of changes in day length and light exposure as may occur during space flight, including exploration class space missions and exposure to the Martian Sol (day length. We hypothesized that circadian misalignment during an exploration class spaceflight simulation would reduce leptin levels. Following a three-week ~8 hours per night home sleep schedule, 14 healthy participants lived in the laboratory for more than one month. After baseline data collection, participants were scheduled to either 24.0 or 24.6 hours of wakefulness–sleep schedules for 25 days. Changes in the phase of the circadian melatonin rhythm, sleep, and leptin levels were assessed. Half of participants analyzed exhibited circadian misalignment with an average change in phase angle from baseline of ~4 hours and these participants showed reduced leptin levels, sleep latency, stage 2 and total sleep time (7.3 to 6.6 hours and increased wakefulness after sleep onset (all P < 0.05. The control group remained synchronized and showed significant increases in sleep latency and leptin levels. Our findings indicate that weeks of circadian misalignment, such as that which occurs in circadian sleep disorders, alters leptin

  15. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man.

    Directory of Open Access Journals (Sweden)

    Evangelia Charmandari

    Full Text Available CONTEXT AND OBJECTIVE: Circulating cortisol fluctuates diurnally under the control of the "master" circadian CLOCK, while the peripheral "slave" counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans. DESIGN AND PARTICIPANTS: We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs as non-synchronized controls. RESULTS: GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo. CONCLUSIONS: Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night.

  16. A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery.

    Directory of Open Access Journals (Sweden)

    Annabelle Ballesta

    2011-09-01

    Full Text Available Circadian timing largely modifies efficacy and toxicity of many anticancer drugs. Recent findings suggest that optimal circadian delivery patterns depend on the patient genetic background. We present here a combined experimental and mathematical approach for the design of chronomodulated administration schedules tailored to the patient molecular profile. As a proof of concept we optimized exposure of Caco-2 colon cancer cells to irinotecan (CPT11, a cytotoxic drug approved for the treatment of colorectal cancer. CPT11 was bioactivated into SN38 and its efflux was mediated by ATP-Binding-Cassette (ABC transporters in Caco-2 cells. After cell synchronization with a serum shock defining Circadian Time (CT 0, circadian rhythms with a period of 26 h 50 (SD 63 min were observed in the mRNA expression of clock genes REV-ERBα, PER2, BMAL1, the drug target topoisomerase 1 (TOP1, the activation enzyme carboxylesterase 2 (CES2, the deactivation enzyme UDP-glucuronosyltransferase 1, polypeptide A1 (UGT1A1, and efflux transporters ABCB1, ABCC1, ABCC2 and ABCG2. DNA-bound TOP1 protein amount in presence of CPT11, a marker of the drug PD, also displayed circadian variations. A mathematical model of CPT11 molecular pharmacokinetics-pharmacodynamics (PK-PD was designed and fitted to experimental data. It predicted that CPT11 bioactivation was the main determinant of CPT11 PD circadian rhythm. We then adopted the therapeutics strategy of maximizing efficacy in non-synchronized cells, considered as cancer cells, under a constraint of maximum toxicity in synchronized cells, representing healthy ones. We considered exposure schemes in the form of an initial concentration of CPT11 given at a particular CT, over a duration ranging from 1 to 27 h. For any dose of CPT11, optimal exposure durations varied from 3h40 to 7h10. Optimal schemes started between CT2h10 and CT2h30, a time interval corresponding to 1h30 to 1h50 before the nadir of CPT11 bioactivation rhythm in

  17. Rhythmic control of mRNA stability modulates circadian amplitude of mouse Period3 mRNA.

    Science.gov (United States)

    Kim, Sung-Hoon; Lee, Kyung-Ha; Kim, Do-Yeon; Kwak, Eunyee; Kim, Seunghwan; Kim, Kyong-Tai

    2015-03-01

    The daily oscillations observed in most living organisms are endogenously generated with a period of 24 h, and the underlying structure of periodic oscillation is an autoregulatory transcription-translation feedback loop. The mechanisms of untranslated region (UTR)-mediated post-transcriptional regulation (e.g., mRNA degradation and internal ribosomal entry site (IRES)-mediated translation) have been suggested to fine-tune the expression of clock genes. Mouse Period3 (mPer3) is one of the paralogs of Period gene and its function is important in peripheral clocks and sleep physiology. mPer3 mRNA displays a circadian oscillation as well as a circadian phase-dependent stability, while the stability regulators still remain unknown. In this study, we identify three proteins - heterogeneous nuclear ribonucleoprotein (hnRNP) K, polypyrimidine tract-binding protein (PTB), and hnRNP D - that bind to mPer3 mRNA 3'-UTR. We show that hnRNP K is a stabilizer that increases the amplitude of circadian mPer3 mRNA oscillation and hnRNP D is a destabilizer that decreases it, while PTB exhibits no effect on mPer3 mRNA expression. Our experiments describe their cytoplasmic roles for the mRNA stability regulation and the circadian amplitude formation. Moreover, our mathematical model suggests a mechanism through which post-transcriptional mRNA stability modulation provides not only the flexibility of oscillation amplitude, but also the robustness of the period and the phase for circadian mPer3 expression. Mouse Period3 (mPer3) is one of well-known clock genes. We identified three 3'-UTR-binding proteins that modulate the mRNA stability, and they influenced to the amplitude of circadian mPer3 mRNA oscillation. Our mathematical model not only showed the relationship between mRNA stability and its oscillation profile but provided the molecular mechanism for the robustness of the period and the phase in circadian oscillation. hnK, heterogeneous nuclear ribonucleoprotein (hnRNP) K; hnD, hn

  18. Integration of human sleep-wake regulation and circadian rhythmicity

    Science.gov (United States)

    Dijk, Derk-Jan; Lockley, Steven W.

    2002-01-01

    The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.

  19. Circadian rhythms and fractal fluctuations in forearm motion

    Science.gov (United States)

    Hu, Kun; Hilton, Michael F.

    2005-03-01

    Recent studies have shown that the circadian pacemaker --- an internal body clock located in the brain which is normally synchronized with the sleep/wake behavioral cycles --- influences key physiologic functions such as the body temperature, hormone secretion and heart rate. Surprisingly, no previous studies have investigated whether the circadian pacemaker impacts human motor activity --- a fundamental physiologic function. We investigate high-frequency actigraph recordings of forearm motion from a group of young and healthy subjects during a forced desynchrony protocol which allows to decouple the sleep/wake cycles from the endogenous circadian cycle while controlling scheduled behaviors. We investigate both static properties (mean value, standard deviation), dynamical characteristics (long-range correlations), and nonlinear features (magnitude and Fourier-phase correlations) in the fluctuations of forearm acceleration across different circadian phases. We demonstrate that while the static properties exhibit significant circadian rhythms with a broad peak in the afternoon, the dynamical and nonlinear characteristics remain invariant with circadian phase. This finding suggests an intrinsic multi-scale dynamic regulation of forearm motion the mechanism of which is not influenced by the circadian pacemaker, thus suggesting that increased cardiac risk in the early morning hours is not related to circadian-mediated influences on motor activity.

  20. Heritable circadian period length in a wild bird population

    NARCIS (Netherlands)

    Helm, B.; Visser, M.E.

    2010-01-01

    Timing is essential, but circadian clocks, which play a crucial role in timekeeping, are almost unaddressed in evolutionary ecology. A key property of circadian clocks is their free-running period length (τ), i.e. the time taken for a full cycle under constant conditions. Under laboratory conditions

  1. Heritable circadian period length in a wild bird population

    NARCIS (Netherlands)

    Helm, Barbara; Visser, Marcel E.

    2010-01-01

    Timing is essential, but circadian clocks, which play a crucial role in timekeeping, are almost unaddressed in evolutionary ecology. A key property of circadian clocks is their free-running period length (tau), i.e. the time taken for a full cycle under constant conditions. Under laboratory conditio

  2. Bidirectional Interactions between Circadian Entrainment and Cognitive Performance

    Science.gov (United States)

    Gritton, Howard J.; Kantorowski, Ana; Sarter, Martin; Lee, Theresa M.

    2012-01-01

    Circadian rhythms influence a variety of physiological and behavioral processes; however, little is known about how circadian rhythms interact with the organisms' ability to acquire and retain information about their environment. These experiments tested whether rats trained outside their endogenous active period demonstrate the same rate of…

  3. Melatonin is a redundant entraining signal in the rat circadian system.

    Science.gov (United States)

    Houdek, Pavel; Nováková, Marta; Polidarová, Lenka; Sládek, Martin; Sumová, Alena

    2016-07-01

    The role of melatonin in maintaining proper function of the circadian system has been proposed but very little evidence for such an effect has been provided. To ascertain the role, the aim of the study was to investigate impact of long-term melatonin absence on regulation of circadian system. The parameters of behavior and circadian clocks of rats which were devoid of the melatonin signal due to pinealectomy (PINX) for more than one year were compared with those of intact age-matched controls. PINX led to a decrease in spontaneous locomotor activity and a shortening of the free-running period of the activity rhythm driven by the central clock in the suprachiasmatic nuclei (SCN) in constant darkness. However, the SCN-driven rhythms in activity and feeding were not affected and remained well entrained in the light/dark cycle. In contrast, in these conditions PINX had a significant effect on amplitudes of the clock gene expression rhythms in the duodenum and also partially in the liver. These results demonstrate the significant impact of long-term melatonin absence on period of the central clock in the SCN and the amplitudes of the peripheral clocks in duodenum and liver and suggest that melatonin might be a redundant but effective endocrine signal for these clocks. PMID:27167607

  4. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination.

    Science.gov (United States)

    Barrero, Jose M; Downie, A Bruce; Xu, Qian; Gubler, Frank

    2014-03-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8'-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944

  5. Effects of Gravity on Insect Circadian Rhythmicity

    Science.gov (United States)

    Hoban-Higgins, Tana M.

    2000-01-01

    Circadian rhythms - endogenous daily rhythmic fluctuations in virtually all characteristics of life - are generated and coordinated by the circadian timing system (CTS). The CTS is synchronized to the external 24-hour day by time cues such as the light/dark cycle. In an environment without time cues, the length of an animal's day is determined by the period of its internal pacemaker (tau) and the animal is said to be free-running. All life on earth evolved under the solar day; the CTS exists as an adaptation that allows organisms to anticipate and to prepare for rhythmic environmental fluctuations. All life on earth also evolved under the force of earth's gravitational environment. While it is therefore not surprising that changes in the lighting environment affect the CTS, it is surprising that changes in the gravitational environment would do so. However, recent data from one of our laboratories using the brn-3.1 knockout mouse revealed that this model, which lacks the sensory receptor hair cells within the neurovestibular system, does not respond to exposure to a hyperdynamic environment in the same fashion as normal mice. The brn-3.1 mice did not show the expected suppression of circadian rhythmicity shown by control mice exposed to 2G. Exposure to altered ambient force environments affects the amplitude, mean and timing of circadian rhythms in species from unicellular organisms to man. In addition, there is a circadian influence on the homeostatic response to acute 2G acceleration and pulses of 2G can act as a time cue, synchronizing the CTS. This is of significance because maintenance of internal and external temporal coordination is critical for normal physiological and psychological function. Typically, during adaptation to an increased gravitational environment (+G), an initial acute reaction is followed by adaptation and, eventually, a new steady state (14-16), which can take weeks to months to establish. Until the development of space stations, exposure

  6. Manipulating the circadian and sleep cycles to protect against metabolic disease

    Directory of Open Access Journals (Sweden)

    Kazunari eNohara

    2015-03-01

    Full Text Available Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g. obesity involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude enhancing small molecules (CEMs identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep and metabolism will also have far-reaching implications for various chronic human diseases and aging.

  7. Alteration of daily and circadian rhythms following dopamine depletion in MPTP treated non-human primates.

    Directory of Open Access Journals (Sweden)

    Karim Fifel

    Full Text Available Disturbances of the daily sleep/wake cycle are common non-motor symptoms of Parkinson's disease (PD. However, the impact of dopamine (DA depletion on circadian rhythms in PD patients or non-human primate (NHP models of the disorder have not been investigated. We evaluated alterations of circadian rhythms in NHP following MPTP lesion of the dopaminergic nigro-striatal system. DA degeneration was assessed by in vivo PET ([(11C]-PE2I and post-mortem TH and DAT quantification. In a light∶dark cycle, control and MPTP-treated NHP both exhibit rest-wake locomotor rhythms, although DA-depleted NHP show reduced amplitude, decreased stability and increased fragmentation. In all animals, 6-sulphatoxymelatonin peaks at night and cortisol in early morning. When the circadian system is challenged by exposure to constant light, controls retain locomotor rest-wake and hormonal rhythms that free-run with stable phase relationships whereas in the DA-depleted NHP, locomotor rhythms are severely disturbed or completely abolished. The amplitude and phase relations of hormonal rhythms nevertheless remain unaltered. Use of a light-dark masking paradigm shows that expression of daily rest-wake activity in MPTP monkeys requires the stimulatory and inhibitory effects of light and darkness. These results suggest that following DA lesion, the central clock in the SCN remains intact but, in the absence of environmental timing cues, is unable to drive downstream rhythmic processes of striatal clock gene and dopaminergic functions that control locomotor output. These findings suggest that the circadian component of the sleep-wake disturbances in PD is more profoundly affected than previously assumed.

  8. Lmo mutants reveal a novel role for circadian pacemaker neurons in cocaine-induced behaviors.

    Directory of Open Access Journals (Sweden)

    Linus T-Y Tsai

    2004-12-01

    Full Text Available Drosophila has been developed recently as a model system to investigate the molecular and neural mechanisms underlying responses to drugs of abuse. Genetic screens for mutants with altered drug-induced behaviors thus provide an unbiased approach to define novel molecules involved in the process. We identified mutations in the Drosophila LIM-only (LMO gene, encoding a regulator of LIM-homeodomain proteins, in a genetic screen for mutants with altered cocaine sensitivity. Reduced Lmo function increases behavioral responses to cocaine, while Lmo overexpression causes the opposite effect, reduced cocaine responsiveness. Expression of Lmo in the principal Drosophila circadian pacemaker cells, the PDF-expressing ventral lateral neurons (LN(vs, is sufficient to confer normal cocaine sensitivity. Consistent with a role for Lmo in LN(vfunction,Lmomutants also show defects in circadian rhythms of behavior. However, the role for LN(vs in modulating cocaine responses is separable from their role as pacemaker neurons: ablation or functional silencing of the LN(vs reduces cocaine sensitivity, while loss of the principal circadian neurotransmitter PDF has no effect. Together, these results reveal a novel role for Lmo in modulating acute cocaine sensitivity and circadian locomotor rhythmicity, and add to growing evidence that these behaviors are regulated by shared molecular mechanisms. The finding that the degree of cocaine responsiveness is controlled by the Drosophila pacemaker neurons provides a neuroanatomical basis for this overlap. We propose that Lmo controls the responsiveness of LN(vs to cocaine, which in turn regulate the flies' behavioral sensitivity to the drug.

  9. Dysglycemia induces abnormal circadian blood pressure variability

    Directory of Open Access Journals (Sweden)

    Kumarasamy Sivarajan

    2011-11-01

    Full Text Available Abstract Background Prediabetes (PreDM in asymptomatic adults is associated with abnormal circadian blood pressure variability (abnormal CBPV. Hypothesis Systemic inflammation and glycemia influence circadian blood pressure variability. Methods Dahl salt-sensitive (S rats (n = 19 after weaning were fed either an American (AD or a standard (SD diet. The AD (high-glycemic-index, high-fat simulated customary human diet, provided daily overabundant calories which over time lead to body weight gain. The SD (low-glycemic-index, low-fat mirrored desirable balanced human diet for maintaining body weight. Body weight and serum concentrations for fasting glucose (FG, adipokines (leptin and adiponectin, and proinflammatory cytokines [monocyte chemoattractant protein-1 (MCP-1 and tumor necrosis factor-α (TNF-α] were measured. Rats were surgically implanted with C40 transmitters and blood pressure (BP-both systolic; SBP and diastolic; DBP and heart rate (HR were recorded by telemetry every 5 minutes during both sleep (day and active (night periods. Pulse pressure (PP was calculated (PP = SBP-DBP. Results [mean(SEM]: The AD fed group displayed significant increase in body weight (after 90 days; p Conclusion These data validate our stated hypothesis that systemic inflammation and glycemia influence circadian blood pressure variability. This study, for the first time, demonstrates a cause and effect relationship between caloric excess, enhanced systemic inflammation, dysglycemia, loss of blood pressure control and abnormal CBPV. Our results provide the fundamental basis for examining the relationship between dysglycemia and perturbation of the underlying mechanisms (adipose tissue dysfunction induced local and systemic inflammation, insulin resistance and alteration of adipose tissue precursors for the renin-aldosterone-angiotensin system which generate abnormal CBPV.

  10. PPARα deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPARγ activation in the liver

    International Nuclear Information System (INIS)

    Research highlights: → PPARα deficiency augments a ketogenic diet-induced circadian PAI-1 expression. → Hepatic expressions of PPARγ and PCG-1α are induced by a ketogenic diet. → PPARγ antagonist attenuates a ketogenic diet-induced PAI-1 expression. → Ketogenic diet advances the phase of circadian clock in a PPARα-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor α (PPARα) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPARα-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPARα-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPARα target genes such as Cyp4A10 and FGF21 was damped in PPARα-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPARα-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPARα activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPARγ and its coactivator PCG-1α were more effectively induced in PPARα-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPARγ antagonist, in both WT and PPARα-null mice. PPARγ activation seems to be involved in KD-induced hypofibrinolysis by augmenting PAI-1 gene expression

  11. cGMP-phosphodiesterase inhibition enhances photic responses and synchronization of the biological circadian clock in rodents.

    Directory of Open Access Journals (Sweden)

    Santiago A Plano

    Full Text Available The master circadian clock in mammals is located in the hypothalamic suprachiasmatic nuclei (SCN and is synchronized by several environmental stimuli, mainly the light-dark (LD cycle. Light pulses in the late subjective night induce phase advances in locomotor circadian rhythms and the expression of clock genes (such as Per1-2. The mechanism responsible for light-induced phase advances involves the activation of guanylyl cyclase (GC, cGMP and its related protein kinase (PKG. Pharmacological manipulation of cGMP by phosphodiesterase (PDE inhibition (e.g., sildenafil increases low-intensity light-induced circadian responses, which could reflect the ability of the cGMP-dependent pathway to directly affect the photic sensitivity of the master circadian clock within the SCN. Indeed, sildenafil is also able to increase the phase-shifting effect of saturating (1200 lux light pulses leading to phase advances of about 9 hours, as well as in C57 a mouse strain that shows reduced phase advances. In addition, sildenafil was effective in both male and female hamsters, as well as after oral administration. Other PDE inhibitors (such as vardenafil and tadalafil also increased light-induced phase advances of locomotor activity rhythms and accelerated reentrainment after a phase advance in the LD cycle. Pharmacological inhibition of the main downstream target of cGMP, PKG, blocked light-induced expression of Per1. Our results indicate that the cGMP-dependent pathway can directly modulate the light-induced expression of clock-genes within the SCN and the magnitude of light-induced phase advances of overt rhythms, and provide promising tools to design treatments for human circadian disruptions.

  12. [Cognitive Function and Calcium. Ca2+-dependent regulatory mechanism of circadian clock oscillation and its relevance to neuronal function].

    Science.gov (United States)

    Kon, Naohiro; Fukada, Yoshitaka

    2015-02-01

    Circadian clock generates a variety of biological rhythms such as sleep/wake cycles and blood hormone rhythms. The circadian clock also bolsters daily mental activities. In fact, abnormalities of the circadian rhythms are found in several neurological disorders. The circadian clock has two important functions: (i) a cell-autonomous oscillatory function and (ii) a phase-adjusting function that synchronizes the clock oscillation with environmental cycling conditions such as light/dark cycle. Behavioral rhythms are controlled by the central clock in hypothalamic suprachiasmatic nucleus (SCN). The central clock orchestrates peripheral clocks in the other tissues via neuronal connection and/or actions of humoral factors. The molecular mechanism of the cell-autonomous clock is based on transcriptional feedback regulation of clock genes by their encoded products. Ca2+ is essential for not only the light response of the clock but also the cell autonomous oscillation mechanism. This article provides an overview of recent progress in studies of Ca2+-dependent regulatory mechanism of the molecular clockwork. PMID:25634045

  13. The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity

    OpenAIRE

    Franken, Paulus; Lopez Molina, Luis; Marcacci, Lysiane; Schibler, Ulrich; Tafti, Mehdi

    2000-01-01

    Albumin D-binding protein (DBP) is a PAR leucine zipper transcription factor that is expressed according to a robust circadian rhythm in the suprachiasmatic nuclei, harboring the circadian master clock, and in most peripheral tissues. Mice lacking DBP display a shorter circadian period in locomotor activity and are less active. Thus, although DBP is not essential for circadian rhythm generation, it does modulate important clock outputs. We studied the role of DBP in the circadian and homeosta...

  14. Circadian Rhythms: Hijacking the Cyanobacterial Clock

    Science.gov (United States)

    Hoyle, Nathaniel P.; O’Neill, John S

    2016-01-01

    The production of limitless carbon-free energy is a long-sought dream of scientists and politicians alike. One strategy for achieving this aim is the production of hydrogen by photosynthetic microorganisms – harnessing the effectively limitless power of the sun to power our cars, toasters and PCR machines. It may be tempting to think of host expression systems as miniature factories given over entirely to the production our molecule of interest. However, the biological nature of the host must be taken into account if we are to maximize productivity. The circadian rhythm, an organism’s entrainable oscillation of biological processes with a period of around 24 hours, is one such aspect that has received scant attention but is likely to be of particular importance to photosynthetic host systems. In this issue of current biology Xu et al. describe how our knowledge of the Synechococcus elongatus circadian clock can be leveraged to improve the production of exogeneous proteins, including those involved in the production of hydrogen [1]. PMID:24309283

  15. Increased Sensitivity of the Circadian System to Temporal Changes in the Feeding Regime of Spontaneously Hypertensive Rats - A Potential Role for Bmal2 in the Liver

    Czech Academy of Sciences Publication Activity Database

    Polidarová, Lenka; Sládek, Martin; Nováková, Marta; Parkanová, Daniela; Sumová, Alena

    2013-01-01

    Roč. 8, č. 9 (2013), e75690. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP303/11/0668 Institutional support: RVO:67985823 Keywords : circadian * clock gene * metabolism * liver * feeding regime * Bmal2 * spontaneously hypertensive rat Subject RIV: ED - Physiology Impact factor: 3.534, year: 2013

  16. Circadian Role in Daily Pattern of Cardiovascular Risk

    Science.gov (United States)

    Ivanov, Plamen Ch.; Hu, Kun; Chen, Zhi; Hilton, Michael F.; Stanley, H. Eugene; Shea, Steven A.

    2004-03-01

    Numerous epidemiological studies demonstrate that sudden cardiac death, pulmonary embolism, myocardial infarction, and stroke have a 24-hour daily pattern with a broad peak between 9-11am. Such a daily pattern in cardiovascular risk could be attributable to external factors, such as the daily behavior patterns, including sleep-wake cycles and activity levels, or internal factors, such as the endogenous circadian pacemaker. Findings of significant alternations in the temporal organization and nonlinear properties of heartbeat fluctuations with disease and with sleep-wake transitions raise the intriguing possibility that changes in the mechanism of control associated with behavioral sleep-wake transition may be responsible for the increased cardiac instability observed in particular circadian phases. Alternatively, we hypothesize that there is a circadian clock, independent of the sleep-wake cycle, which affects the cardiac dynamics leading to increased cardiovascular risk. We analyzed continuous recordings from healthy subjects during 7 cycles of forced desynchrony routine wherein subjects' sleep-wake cycles are adjusted to 28 hours so that their behaviors occur across all circadian phases. Heartbeat data were divided into one-hour segments. For each segment, we estimated the correlations and the nonlinear properties of the heartbeat fluctuations at the corresponding circadian phase. Since the sleep and wake contributions are equally weighted in our experiment, a change of the properties of the heartbeat dynamics with circadian phase suggest a circadian rhythm. We show significant circadian-mediated alterations in the correlation and nonlinear properties of the heartbeat resembling those observed in patients with heart failure. Remarkably, these dynamical alterations are centered at 60 degrees circadian phase, coinciding with the 9-11am window of cardiac risk.

  17. The role of chronobiology and circadian rhythms in type 2 diabetes mellitus: implications for management of diabetes

    OpenAIRE

    Kurose, Takeshi

    2014-01-01

    Takeshi Kurose, Takanori Hyo, Daisuke Yabe, Yutaka Seino Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Fukushima, Osaka, Japan Abstract: Circadian clocks regulate cellular to organic and individual behavior levels of all organisms. Almost all cells in animals have self-sustained clocks entrained by environmental signals. Recent progress in genetic research has included identification of clock genes whose disruption causes metabolic abnormalities such as d...

  18. Sleep Deprivation and Circadian Disruption: Stress, Allostasis, and Allostatic Load.

    Science.gov (United States)

    McEwen, Bruce S; Karatsoreos, Ilia N

    2015-03-01

    Sleep has important homeostatic functions, and circadian rhythms organize physiology and behavior on a daily basis to insure optimal function. Sleep deprivation and circadian disruption can be stressors, enhancers of other stressors that have consequences for the brain and many body systems. Whether the origins of circadian disruption and sleep disruption and deprivation are from anxiety, depression, shift work, long-distance air travel, or a hectic lifestyle, there are consequences that impair brain functions and contribute to the cumulative wear and tear on body systems caused by too much stress and/or inefficient management of the systems that promote adaptation. PMID:26055668

  19. Circadian profile of cardiac autonomic nervous modulation in healthy subjects

    DEFF Research Database (Denmark)

    Bonnemeier, Hendrik; Richardt, Gert; Potratz, Jürgen;

    2003-01-01

    , awoke around 7 A.M., and had 6 to 8 hours of sleep. Circadian profiles of vagus-associated HRV parameters revealed a marked day-night pattern, with a peak at nighttime and a plateau at daytime. The characteristic nocturnal peak and the day-night amplitude diminished with aging by decade. Estimates of......UNLABELLED: Circadian Profile of Heart Rate Variability. INTRODUCTION: Although heart rate variability (HRV) has been established as a tool to study cardiac autonomic activity, almost no data are available on the circadian patterns of HRV in healthy subjects aged 20 to 70 years. METHODS AND RESULTS...

  20. [Directional hearing in relation to individual circadian biorhythm].

    Science.gov (United States)

    Karnicki, C

    1990-01-01

    Acuity angle of the directional hearing was investigated in connection with the individual circadian rhythm. Two groups of 15 persons represented the morning and evening form of the circadian rhythm. Body temperature fixed the rhythm character. The evaluations of the angle acuity of the directional hearing were performed in the highest and the lowest point of body temperature as well as in the neutral point, which was determined in the morning group in the middle between the two extremes. The possibility of the sound localization in individual and linked with the body temperature circadian rhythm. PMID:2234972

  1. Evolutionary history of the PER3 variable number of tandem repeats (VNTR: idiosyncratic aspect of primate molecular circadian clock.

    Directory of Open Access Journals (Sweden)

    Flávia Cal Sabino

    Full Text Available The PER3 gene is one of the clock genes, which function in the core mammalian molecular circadian system. A variable number of tandem repeats (VNTR locus in the 18th exon of this gene has been strongly associated to circadian rhythm phenotypes and sleep organization in humans, but it has not been identified in other mammals except primates. To better understand the evolution and the placement of the PER3 VNTR in a phylogenetical context, the present study enlarges the investigation about the presence and the structure of this variable region in a large sample of primate species and other mammals. The analysis of the results has revealed that the PER3 VNTR occurs exclusively in simiiforme primates and that the number of copies of the primitive unit ranges from 2 to 11 across different primate species. Two transposable elements surrounding the 18th exon of PER3 were found in primates with published genome sequences, including the tarsiiforme Tarsius syrichta, which lacks the VNTR. These results suggest that this VNTR may have evolved in a common ancestor of the simiiforme branch and that the evolutionary copy number differentiation of this VNTR may be associated with primate simiiformes sleep and circadian phenotype patterns.

  2. The Physiological Period Length of the Human Circadian Clock In Vivo Is Directly Proportional to Period in Human Fibroblasts

    Science.gov (United States)

    Moriggi, Ermanno; Revell, Victoria L.; Hack, Lisa M.; Lockley, Steven W.; Arendt, Josephine; Skene, Debra J.; Meier, Fides; Izakovic, Jan; Wirz-Justice, Anna; Cajochen, Christian; Sergeeva, Oksana J.; Cheresiz, Sergei V.; Danilenko, Konstantin V.; Eckert, Anne; Brown, Steven A.

    2010-01-01

    Background Diurnal behavior in humans is governed by the period length of a circadian clock in the suprachiasmatic nuclei of the brain hypothalamus. Nevertheless, the cell-intrinsic mechanism of this clock is present in most cells of the body. We have shown previously that for individuals of extreme chronotype (“larks” and “owls”), clock properties measured in human fibroblasts correlated with extreme diurnal behavior. Methodology/Principal Findings In this study, we have measured circadian period in human primary fibroblasts taken from normal individuals and, for the first time, compared it directly with physiological period measured in vivo in the same subjects. Human physiological period length was estimated via the secretion pattern of the hormone melatonin in two different groups of sighted subjects and one group of totally blind subjects, each using different methods. Fibroblast period length was measured via cyclical expression of a lentivirally delivered circadian reporter. Within each group, a positive linear correlation was observed between circadian period length in physiology and in fibroblast gene expression. Interestingly, although blind individuals showed on average the same fibroblast clock properties as sighted ones, their physiological periods were significantly longer. Conclusions/Significance We conclude that the period of human circadian behaviour is mostly driven by cellular clock properties in normal individuals and can be approximated by measurement in peripheral cells such as fibroblasts. Based upon differences among sighted and blind subjects, we also speculate that period can be modified by prolonged unusual conditions such as the total light deprivation of blindness. PMID:21042402

  3. Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2

    Directory of Open Access Journals (Sweden)

    Yaoming Yang

    2012-06-01

    Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock feedback mechanism. Previous work has focused on the role of ubiquitin ligases in the clock mechanism. Here we show a role for the rhythmically-expressed deubiquitinating enzyme ubiquitin specific peptidase 2 (USP2 in clock function. Mice with a deletion of the Usp2 gene (Usp2 KO display a longer free-running period of locomotor activity rhythms and altered responses of the clock to light. This was associated with altered expression of clock genes in synchronized Usp2 KO mouse embryonic fibroblasts and increased levels of clock protein PERIOD1 (PER1. USP2 can be coimmunoprecipitated with several clock proteins but directly interacts specifically with PER1 and deubiquitinates it. Interestingly, this deubiquitination does not alter PER1 stability. Taken together, our results identify USP2 as a new core component of the clock machinery and demonstrate a role for deubiquitination in the regulation of the circadian clock, both at the level of the core pacemaker and its response to external cues.

  4. Significance of circadian genes clock protein in papillary thyroid carcinoma tissues%生物钟基因CLOCK蛋白对甲状腺乳头状癌的影响

    Institute of Scientific and Technical Information of China (English)

    韩昌; 刘冬良; 周峰; 张召辉; 李德本; 牛万成

    2016-01-01

    Objective To investigate the protein expression level of CLOCK gene in papillary thyroid carcinoma (PTC) tissues and the relationship between the expression level and pathological features of patients with PTC. Methods PTC patients undergoing radical surgery at Affliated PLA No. 97 Hospital from March 2012 to March 2015 were collected. Finally, seventy four cases were enrolled in this study. The expression level of CLOCK protein was analyzed by immunohistochemistry in PTC tissues and the paired adjacent normal thyroid tissues. The relationship between the expression level of CLOCK protein and clinicopathological features were also analyzed. Results The positive expression rates of CLOCK protein in PTC tissues and paired adjacent normal tissues were 68.9% (51/74) and 20.3% (15/74), respectively, with significant difference (χ2=35.44, P=0.000). The expression level of CLCOK protein in thyroid cancer was related to lymph node metastasis, diameter of tumor and TNM stage. Conclusion The CLOCK protein plays an important role in tumorigenesis, tumor invasion and metastasis.%目的:探讨生物钟基因CLOCK在甲状腺乳头状癌组织中的蛋白表达,并分析其与甲状腺癌病理特征的关系。方法收集2012年3月到2015年3月在中国人民解放军第九七医院手术切除的甲状腺乳头状癌标本74份,采用免疫组化方法检测CLOCK蛋白在甲状腺乳头状癌及配对癌旁组织中的表达水平,分析其表达与临床病理特征的关系。结果甲状腺乳头状癌组织与其配对的癌旁正常组织中CLOCK蛋白阳性表达分别为68.9%(51/74)、20.3%(15/74),两类组织中阳性率的差异有统计学意义(χ2=35.44,P=0.000)。CLOCK蛋白表达情况与甲状腺乳头状癌淋巴结转移情况、肿瘤直径及TNM分期有关(P<0.05)。结论 CLOCK蛋白可能与甲状腺乳头状癌的发生、肿瘤的侵袭和转移等关系密切,可为甲状腺癌的早期诊断提供依据。

  5. Potent social synchronization can override photic entrainment of circadian rhythms.

    Science.gov (United States)

    Fuchikawa, Taro; Eban-Rothschild, Ada; Nagari, Moshe; Shemesh, Yair; Bloch, Guy

    2016-01-01

    Circadian rhythms in behaviour and physiology are important for animal health and survival. Studies with individually isolated animals in the laboratory have consistently emphasized the dominant role of light for the entrainment of circadian rhythms to relevant environmental cycles. Although in nature interactions with conspecifics are functionally significant, social signals are typically not considered important time-givers for the animal circadian clock. Our results challenge this view. By studying honeybees in an ecologically relevant context and using a massive data set, we demonstrate that social entrainment can be potent, may act without direct contact with other individuals and does not rely on gating the exposure to light. We show for the first time that social time cues stably entrain the clock, even in animals experiencing conflicting photic and social environmental cycles. These findings add to the growing appreciation for the importance of studying circadian rhythms in ecologically relevant contexts. PMID:27210069

  6. Novel putative mechanisms to link circadian clocks to healthy aging.

    Science.gov (United States)

    Popa-Wagner, Aurel; Catalin, Bogdan; Buga, Ana-Maria

    2015-08-01

    The circadian clock coordinates the internal physiology to increase the homeostatic capacity thereby providing both a survival advantage to the system and an optimization of energy budgeting. Multiple-oscillator circadian mechanisms are likely to play a role in regulating human health and may contribute to the aging process. Our aim is to give an overview of how the central clock in the hypothalamus and peripheral clocks relate to aging and metabolic disorders, including hyperlipidemia and hyperglycemia. In particular, we unravel novel putative mechanisms to link circadian clocks to healthy aging. This review may lead to the design of large-scale interventions to help people stay healthy as they age by adjusting daily activities, such as feeding behavior, and or adaptation to age-related changes in individual circadian rhythms. PMID:24297467

  7. The transcription factor Runx2 is under circadian control in the suprachiasmatic nucleus and functions in the control of rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Meghan E Reale

    Full Text Available Runx2, a member of the family of runt-related transcription factors, is rhythmically expressed in bone and may be involved in circadian rhythms in bone homeostasis and osteogenesis. Runx2 is also expressed in the brain, but its function is unknown. We tested the hypothesis that in the brain, Runx2 may interact with clock-controlled genes to regulate circadian rhythms in behavior. First, we demonstrated diurnal and circadian rhythms in the expression of Runx2 in the mouse brain. Expression of Runx2 mRNA and protein mirrored that of the core clock genes, Period1 and Period2, in the suprachiasmatic nucleus (SCN, the paraventricular nucleus and the olfactory bulb. The rhythm of Runx2 expression was eliminated in the SCN of Bmal1(-/- mice. Moreover, by crossbreeding mPer2(Luc mice with Runx2(+/- mice and recording bioluminescence rhythms, a significant lengthening of the period of rhythms was detected in cultured SCN of Runx2(-/- animals compared to either Runx2(+/- or Runx2(+/+ mice. Behavioral analyses of Runx2 mutant mice revealed that Runx2(+/- animals displayed a significantly lengthened free-running period of running wheel activity compared to Runx2(+/+ littermates. Taken together, these findings provide evidence for clock gene-mediated rhythmic expression of Runx2, and its functional role in regulating circadian period at the level of the SCN and behavior.

  8. Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Carmen Espinoza

    Full Text Available In plants, there is a large overlap between cold and circadian regulated genes and in Arabidopsis, we have shown that cold (4°C affects the expression of clock oscillator genes. However, a broader insight into the significance of diurnal and/or circadian regulation of cold responses, particularly for metabolic pathways, and their physiological relevance is lacking. Here, we performed an integrated analysis of transcripts and primary metabolites using microarrays and gas chromatography-mass spectrometry. As expected, expression of diurnally regulated genes was massively affected during cold acclimation. Our data indicate that disruption of clock function at the transcriptional level extends to metabolic regulation. About 80% of metabolites that showed diurnal cycles maintained these during cold treatment. In particular, maltose content showed a massive night-specific increase in the cold. However, under free-running conditions, maltose was the only metabolite that maintained any oscillations in the cold. Furthermore, although starch accumulates during cold acclimation we show it is still degraded at night, indicating significance beyond the previously demonstrated role of maltose and starch breakdown in the initial phase of cold acclimation. Levels of some conventional cold induced metabolites, such as γ-aminobutyric acid, galactinol, raffinose and putrescine, exhibited diurnal and circadian oscillations and transcripts encoding their biosynthetic enzymes often also cycled and preceded their cold-induction, in agreement with transcriptional regulation. However, the accumulation of other cold-responsive metabolites, for instance homoserine, methionine and maltose, did not have consistent transcriptional regulation, implying that metabolic reconfiguration involves complex transcriptional and post-transcriptional mechanisms. These data demonstrate the importance of understanding cold acclimation in the correct day-night context, and are further

  9. Synchronization and entrainment of coupled circadian oscillators

    CERN Document Server

    Komin, Niko; Hernandez-Garcia, Emilio; Toral, Raul

    2010-01-01

    Circadian rhythms in mammals are controlled by the neurons located in the suprachiasmatic nucleus of the hypothalamus. In physiological conditions, the system of neurons is very efficiently entrained by the 24-hour light-dark cycle. Most of the studies carried out so far emphasize the crucial role of the periodicity imposed by the light dark cycle in neuronal synchronization. Nevertheless, heterogeneity as a natural and permanent ingredient of these cellular interactions is seemingly to play a major role in these biochemical processes. In this paper we use a model that considers the neurons of the suprachiasmatic nucleus as chemically-coupled modified Goodwin oscillators, and introduce non-negligible heterogeneity in the periods of all neurons in the form of quenched noise. The system response to the light-dark cycle periodicity is studied as a function of the interneuronal coupling strength, external forcing amplitude and neuronal heterogeneity. Our results indicate that the right amount of heterogeneity hel...

  10. Circadian variation in unexpected postoperative death

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, M H; Ramsing, T;

    1992-01-01

    Unexpected deaths still occur following major surgical procedures. The cause is often unknown but may be cardiac or thromboembolic in nature. Postoperative ischaemia, infarction and sudden cardiac death may be triggered by episodic or constant arterial hypoxaemia, which increases during the night....... This study examined the circadian variation of sudden unexpected death following abdominal surgery between 1985 and 1989 inclusive. Deaths were divided into those occurring during the day (08.00-16.00 hours), evening (16.00-24.00 hours) and night (24.00-08.00 hours). Twenty-three deaths were considered...... to have been totally unexpected. Of 16 such patients undergoing autopsy, pulmonary embolism was the cause of death in five. In the remaining 11 patients, death occurred at night in eight (P < 0.005). Five of the seven patients without an autopsy died at night (P < 0.04); overall, 13 of 18 unexpected...

  11. The circadian clock and cell cycle: Interconnected biological circuits

    OpenAIRE

    Masri, Selma; Cervantes, Marlene; Sassone-Corsi, Paolo

    2013-01-01

    The circadian clock governs biological timekeeping on a systemic level, helping to regulate and maintain physiological processes, including endocrine and metabolic pathways with a periodicity of 24-hours. Disruption within the circadian clock machinery has been linked to numerous pathological conditions, including cancer, suggesting that clock-dependent regulation of the cell cycle is an essential control mechanism. This review will highlight recent advances on the ‘gating’ controls of the ci...

  12. Circadian modulation of complex learning in diurnal and nocturnal Aplysia

    OpenAIRE

    Lyons, Lisa C.; Rawashdeh, Oliver; Katzoff, Ayelet; Susswein, Abraham J.; Eskin, Arnold

    2005-01-01

    Understanding modulation of memory, as well as the mechanisms underlying memory formation, has become a key issue in neuroscience research. Previously, we found that the formation of long-term, but not short-term, memory for a nonassociative form of learning, sensitization, was modulated by the circadian clock in the diurnal Aplysia californica. To define the scope of circadian modulation of memory, we examined an associative operant learning paradigm, learning that food is inedible (LFI). Si...

  13. Heritable circadian period length in a wild bird population

    OpenAIRE

    Helm, Barbara; Visser, Marcel E

    2010-01-01

    Timing is essential, but circadian clocks, which play a crucial role in timekeeping, are almost unaddressed in evolutionary ecology. A key property of circadian clocks is their free-running period length (τ), i.e. the time taken for a full cycle under constant conditions. Under laboratory conditions, concordance of τ with the ambient light–dark cycle confers major fitness benefits, but little is known about period length and its implications in natural populations. We therefore studied natura...

  14. The Melanocortin-4 Receptor Integrates Circadian Light Cues and Metabolism

    OpenAIRE

    Arble, Deanna M.; Holland, Jenna; Ottaway, Nickki; Sorrell, Joyce; Pressler, Joshua W.; Morano, Rachel; Woods, Stephen C.; Seeley, Randy J.; Herman, James P.; Sandoval, Darleen A.; Perez-Tilve, Diego

    2015-01-01

    The melanocortin system directs diverse physiological functions from coat color to body weight homoeostasis. A commonality among melanocortin-mediated processes is that many animals modulate similar processes on a circannual basis in response to longer, summer days, suggesting an underlying link between circadian biology and the melanocortin system. Despite key neuroanatomical substrates shared by both circadian and melanocortin-signaling pathways, little is known about the relationship betwe...

  15. Methylphenidate Modifies the Motion of the Circadian Clock

    OpenAIRE

    Antle, Michael C.; van Diepen, Hester C; Deboer, Tom; Pedram, Pardis; Pereira, Rob Rodrigues; Meijer, Johanna H.

    2012-01-01

    People with attention-deficit/hyperactivity disorder (ADHD) often experience sleep problems, and these are frequently exacerbated by the methylphenidate they take to manage their ADHD symptoms. Many of the changes to sleep are consistent with a change in the underlying circadian clock. The present study was designed to determine if methylphenidate alone could alter properties of the circadian clock. Young male mice were examined in light–dark cycles and in constant darkness and recordings wer...

  16. Temperature as a universal resetting cue for mammalian circadian oscillators

    OpenAIRE

    Buhr, Ethan D.; Yoo, Seung-Hee; Takahashi, Joseph S.

    2010-01-01

    Environmental temperature cycles are a universal entraining cue for all circadian systems at the organismal level with the exception of homeothermic vertebrates. We report here that resistance to temperature entrainment is a property of the suprachiasmatic nucleus (SCN) network and is not a cell autonomous property of mammalian clocks. This differential sensitivity to temperature allows the SCN to drive circadian rhythms in body temperature which can then act as a universal cue for the entrai...

  17. Circadian and wakefulness-sleep modulation of cognition in humans

    OpenAIRE

    Wright, Kenneth P.; Lowry, Christopher A.; LeBourgeois, Monique K.

    2012-01-01

    Cognitive and affective processes vary over the course of the 24 h day. Time of day dependent changes in human cognition are modulated by an internal circadian timekeeping system with a near-24 h period. The human circadian timekeeping system interacts with sleep-wakefulness regulatory processes to modulate brain arousal, neurocognitive and affective function. Brain arousal is regulated by ascending brain stem, basal forebrain (BF) and hypothalamic arousal systems and inhibition or disruption...

  18. Circadian rhythms and sleep—the metabolic connection

    OpenAIRE

    Albrecht, Urs

    2011-01-01

    The circadian system coordinates mammalian physiology and behavior with the environmental light–dark cycle. It allocates sleep to the inactivity phase using various mechanisms involving neurotransmitters, nuclear receptors, and protein kinases. These pathways are related to metabolism, indicating that the circadian system and sleep are connected via metabolic parameters. This suggests that organs other than the brain may “sleep.” A hypothetic view on this aspect is presented providing a diffe...

  19. Mistimed sleep disrupts circadian regulation of the human transcriptome.

    OpenAIRE

    Archer, SN; Laing, EE; Möller-Levet, CS; Van der Veen, DR; Bucca, G; Lazar, AS; Santhi, N.; Slak, A; Kabiljo, R.; von Schantz, M.; Smith, CP; DIJK, DJ

    2014-01-01

    Circadian organization of the mammalian transcriptome is achieved by rhythmic recruitment of key modifiers of chromatin structure and transcriptional and translational processes. These rhythmic processes, together with posttranslational modification, constitute circadian oscillators in the brain and peripheral tissues, which drive rhythms in physiology and behavior, including the sleep-wake cycle. In humans, sleep is normally timed to occur during the biological night, when body temperature i...

  20. Circadian rhythm and sleep influences on digestive physiology and disorders

    OpenAIRE

    Vaughn, Bradley

    2014-01-01

    Bradley V Vaughn, Sean Rotolo, Heidi L Roth Division of Sleep Medicine, Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA Abstract: Circadian rhythms and sleep influence a variety of physiological functions, including the digestive system. The digestive system also has intrinsic rhythms that interact dynamically with circadian rhythms. New advances in understanding the interaction of these rhythms and sleep provide the prospect of evaluating their...