WorldWideScience

Sample records for cigs photovoltaic array

  1. A Novel Semiconductor CIGS Photovoltaic Material and Thin-Film ED Technology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to achieve low-cost high-efficiency thin-film solar cells, a novel Semiconductor Photovoltaic (PV) active material CuIn1-xGaxSe2 (CIGS) and thin-film Electro-Deposition (ED) technology is explored. Firstly,the PV materials and technologies is investigated, then the detailed experimental processes of CIGS/Mo/glass structure by using the novel ED technology and the results are reported. These results shows that high quality CIGS polycrystalline thin-films can be obtained by the ED method, in which the polycrystalline CIGS is definitely identified by the (112), (204, 220) characteristic peaks of the tetragonal structure, the continuous CIGS thin-film layers with particle average size of about 2μm of length and around 1.6μm of thickness. The thickness and solargrade quality of CIGS thin-films can be produced with good repeatability. Discussion and analysis on the ED technique, CIGS energy band and sodium (Na) impurity properties, were also performed. The alloy CIGS exhibits not only increasing band-gap with increasing x, but also a change in material properties that is relevant to the device operation. The beneficial impurity Na originating from the low-cost soda-lime glass substrate becomes one prerequisite for high quality CIGS films. These novel material and technology are very useful for low-cost high-efficiency thin-film solar cells and other devices.

  2. Development of Enhanced Window layers for CIGS Photovoltaic Devices

    Science.gov (United States)

    Alexander, J. Nicholas

    change found in the elerical and optical properties has strongly indicated that incorporation of zirconium into the InZnO thin film may not be replacing indium and zinc in the structure of the film and not influence the high frequency permittivity and carrier concentration of InZnO. It is also shown that the incorporation of zirconium does not indicate any detrimental effects on the properties of InZnO. To investigate film reliability, a custom damp-heat chamber was designed in this study to expose samples of InZnO/SLG (soda lime glass), Zr:InZnO/SLG, and AZO up to 5000 hours in approximately 85°C and 85% relative humidity to accelerate the degradation rate of the films. AZO was found to degrade very rapidly and enter MO resistance in approximately 1 week in this damp heat setup, while the majority of InZnO and Zr:InZnO films remained conductive through the entire experiment. It was found films showed improvements to their reliability with increases in film thickness and indium content, decreases in the amount of oxygen present in the films (containing more oxygen vacancies), and films incorporated with zirconium. Zirconium may not have had the desired impact to the electrical and optical properties, but by adding zirconium doping and tailoring oxygen incorporation, films of Zr:InZnO were able to show no significant change in several thousand hours exposed to the damp-heat environment. Films were also investigated by XPS and chemical analysis showed hydroxide formation, which similar to AZO is likely the reason for performance degradation. Even in samples that did not heavily change in electrical properties show indication of diffusion of moisture through the film which is a potential problem for degradation at the interfaces in completed CIGS devices. In Addition to the TCO studies, two other studies are performed in this work on CIGS and photovoltaic related work. First the CdS layer, which is part of the window layers, usually referred to as the n-type buffer layer

  3. Electrochemical behavior of CIGS electrodeposition for applications to photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunju; Ji, Changwook; Kim, Yangdo; Hwang, Yoonhwae [Pusan National University, Busan (Korea, Republic of); Lee, Jaeho [Hongik University, Seoul (Korea, Republic of); Jo, Ilguk [Colorado School of Mines, Golden, CO (United States); Kim, Hyoungchan [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2014-04-15

    The electrodeposition mechanism of Cu(In,Ga)Se{sub 2} (CIGS) thin films on ITO substrates was examined by using cyclic voltammetry (CV). The CV study was performed in unitary In, binary In-Se, ternary Cu-In-Se, and quaternary Cu-In-Ga-Se systems. CV of the Cu-In-Ga-Se system revealed a reduction peak at -0.6 V with the addition of GaCl{sub 3} and showed that the current density was affected significantly by the concentrations of GaCl{sub 3} and InCl{sub 3}. This is probably due to the adsorption-site competition between In{sup 3+} and Ga{sup 3+} on the electrode surface. Energy dispersive X-ray spectroscopy confirmed the CV results. The composition of Ga in the CIGS films increased with increasing concentration of GaCl{sub 3} in the electrolyte whereas the composition of In decreased sharply. The as-deposited films were annealed at 500 .deg. C in a N{sub 2} atmosphere for crystallization. XRD revealed three major peaks corresponding to the (112), (220) and (312) planes of CIGS chalcopyrite respectively. On the other hand, a secondary phase, such as In{sub 4}Se{sub 3}, was observed in the CIGS films containing a high In composition.

  4. Photovoltaic cell array

    Science.gov (United States)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  5. Cost and Potential of Monolithic CIGS Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey; Woodhouse, Michael

    2015-06-17

    A bottom-up cost analysis of monolithic, glass-glass Cu(In,Ga)(Se,S)2 (CIGS) modules is presented, illuminating current cost drivers for this technology and possible pathways to reduced cost. At 14% module efficiency, for the case of U.S. manufacturing, a manufacturing cost of $0.56/WDC and a minimum sustainable price of $0.72/WDC were calculated. Potential for reduction in manufacturing costs to below $0.40/WDC in the long-term may be possible if module efficiency can be increased without significant increase in $/m2 costs. The levelized cost of energy (LCOE) in Phoenix, AZ under different conditions is assessed and compared to standard c-Si.

  6. Solution-deposited CIGS thin films for ultra-low-cost photovoltaics

    Science.gov (United States)

    Eldada, Louay A.; Hersh, Peter; Stanbery, Billy J.

    2010-09-01

    We describe the production of photovoltaic modules with high-quality large-grain copper indium gallium selenide (CIGS) thin films obtained with the unique combination of low-cost ink-based precursors and a reactive transfer printing method. The proprietary metal-organic inks contain a variety of soluble Cu-, In- and Ga- multinary selenide materials; they are called metal-organic decomposition (MOD) precursors, as they are designed to decompose into the desired precursors. Reactive transfer is a two-stage process that produces CIGS through the chemical reaction between two separate precursor films, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage, these precursors are rapidly reacted together under pressure in the presence of heat. The use of two independent thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the synthesis of CIGS. In a few minutes, the process produces high quality CIGS films, with large grains on the order of several microns, and preferred crystallographic orientation, as confirmed by compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 14% and module efficiencies of 12% were achieved using this method. The atmospheric deposition processes include slot die extrusion coating, ultrasonic atomization spraying, pneumatic atomization spraying, inkjet printing, direct writing, and screen printing, and provide low capital equipment cost, low thermal budget, and high throughput.

  7. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Nadja Rebecca [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Wehrli, Bernhard [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland)

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L{sup −1} molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L{sup −1}. From OPV, copper (14 μg L{sup −1}), zinc (87 μg L{sup −1}) and silver (78 μg L{sup −1}) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. - Highlights: • Photovoltaics may be disposed in the environment after usage. • Copper indium gallium selenide (CIGS) and organic (OPV) cells were compared. • Morphological and molecular effects were assessed in zebrafish embryos. • Environmental condition affected metal leaching and ecotoxicological activity. • Damaged CIGS cells pose higher risk to the environment than OPV cells.

  8. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    Science.gov (United States)

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Thin Film CIGS Solar Cells, Photovoltaic Modules, and the Problems of Modeling

    Directory of Open Access Journals (Sweden)

    Antonino Parisi

    2013-01-01

    Full Text Available Starting from the results regarding a nonvacuum technique to fabricate CIGS thin films for solar cells by means of single-step electrodeposition, we focus on the methodological problems of modeling at cell structure and photovoltaic module levels. As a matter of fact, electrodeposition is known as a practical alternative to costly vacuum-based technologies for semiconductor processing in the photovoltaic device sector, but it can lead to quite different structural and electrical properties. For this reason, a greater effort is required to ensure that the perspectives of the electrical engineer and the material scientist are given an opportunity for a closer comparison and a common language. Derived parameters from ongoing experiments have been used for simulation with the different approaches, in order to develop a set of tools which can be used to put together modeling both at single cell structure and complete module levels.

  10. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Vasekar, Parag S., E-mail: psvasekar@yahoo.co [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States); Jahagirdar, Anant H.; Dhere, Neelkanth G. [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States)

    2010-01-31

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of {approx} 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 {mu}m CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 {mu}m absorber prepared under similar conditions as that of a 2.7 {mu}m thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10{sup -10} mA/cm{sup 2} to 1.78 x 10{sup -8} mA/cm{sup 2}. This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  11. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    International Nuclear Information System (INIS)

    Vasekar, Parag S.; Jahagirdar, Anant H.; Dhere, Neelkanth G.

    2010-01-01

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of ∼ 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 μm CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 μm absorber prepared under similar conditions as that of a 2.7 μm thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10 -10 mA/cm 2 to 1.78 x 10 -8 mA/cm 2 . This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  12. Analysis on the Performance of Copper Indium Gallium Selenide (CIGS Based Photovoltaic Thermal

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available This paper deals with the efficiency improvement of Copper Indium Gallium Selenide (CIGS Photovoltaic (PV and also solar thermal collector. Photovoltaic thermal (PV/T can improve overall efficiency for PV and also solve the problem of limited roof space at urban area. Objective of this study is to clarify the effect of mass flow rate on the efficiency of the PV/T system. A CIGS solar cell is used with rated output power 65 W and 1.18 m2 of area. 4 set of experiments were carried out, which were: thermal collector with 0.12 kg/s flow rate, PV/T with 0.12 kg/s flow rate, PV/T with 0.09 kg/s flow rate and PV. It was found that PV/T with 0.12 kg/s flow rate had the highest electrical efficiency, 2.92 %. PV/T with 0.09 kg/s flow rate had the lowest electrical efficiency, 2.68 %. It also had 2 % higher overall efficiency. The efficiency gained is low due to several factors. The rated output power of the PV is low for the area of 1.18 m2. The packing factor of the PV also need to be considered as it may not be operated at the optimal packing factor. Furthermore, aluminium sheet of the PV may affect the PV temperature due to high thermal conductivity. Further study on more values of mass flow rate and also other parameters that affect the efficiency of the PV/T is necessary.

  13. Temperature compensated photovoltaic array

    Science.gov (United States)

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  14. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    International Nuclear Information System (INIS)

    Eisenberg, Daniel A.; Yu, Mengjing; Lam, Carl W.; Ogunseitan, Oladele A.; Schoenung, Julie M.

    2013-01-01

    Highlights: • Comparative alternatives assessment of thin film manufacturing technologies. • Development of chemical alternatives assessment in a life cycle context. • Screening of manufacturing and solar cell hazardous substances simultaneously. -- Abstract: Copper–indium–gallium–selenium–sulfide (CIGS) thin film photovoltaics are increasingly penetrating the market supply for consumer solar panels. Although CIGS is attractive for producing less greenhouse gas emissions than fossil-fuel based energy sources, CIGS manufacturing processes and solar cell devices use hazardous materials that should be carefully considered in evaluating and comparing net environmental benefits of energy products. Through this research, we present a case study on the toxicity hazards associated with alternative materials selection for CIGS manufacturing. We applied two numeric models, The Green Screen for Safer Chemicals™ and the Toxic Potential Indicator. To improve the sensitivity of the model outputs, we developed a novel, life cycle thinking based hazard assessment method that facilitates the projection of hazards throughout material life cycles. Our results show that the least hazardous CIGS solar cell device and manufacturing protocol consist of a titanium substrate, molybdenum metal back electrode, CuInS 2 p-type absorber deposited by spray pyrolysis, ZnS buffer deposited by spray ion layer gas reduction, ZnO:Ga transparent conducting oxide (TCO) deposited by sputtering, and the encapsulant polydimethylsiloxane

  15. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics.

    Science.gov (United States)

    Eisenberg, Daniel A; Yu, Mengjing; Lam, Carl W; Ogunseitan, Oladele A; Schoenung, Julie M

    2013-09-15

    Copper-indium-gallium-selenium-sulfide (CIGS) thin film photovoltaics are increasingly penetrating the market supply for consumer solar panels. Although CIGS is attractive for producing less greenhouse gas emissions than fossil-fuel based energy sources, CIGS manufacturing processes and solar cell devices use hazardous materials that should be carefully considered in evaluating and comparing net environmental benefits of energy products. Through this research, we present a case study on the toxicity hazards associated with alternative materials selection for CIGS manufacturing. We applied two numeric models, The Green Screen for Safer Chemicals and the Toxic Potential Indicator. To improve the sensitivity of the model outputs, we developed a novel, life cycle thinking based hazard assessment method that facilitates the projection of hazards throughout material life cycles. Our results show that the least hazardous CIGS solar cell device and manufacturing protocol consist of a titanium substrate, molybdenum metal back electrode, CuInS₂ p-type absorber deposited by spray pyrolysis, ZnS buffer deposited by spray ion layer gas reduction, ZnO:Ga transparent conducting oxide (TCO) deposited by sputtering, and the encapsulant polydimethylsiloxane. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, Daniel A.; Yu, Mengjing; Lam, Carl W. [University of California, Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Ogunseitan, Oladele A. [University of California, Irvine, Irvine, CA 92697 (United States); Schoenung, Julie M., E-mail: jmschoenung@ucdavis.edu [University of California, Davis, 1 Shields Avenue, Davis, CA 95616 (United States)

    2013-09-15

    Highlights: • Comparative alternatives assessment of thin film manufacturing technologies. • Development of chemical alternatives assessment in a life cycle context. • Screening of manufacturing and solar cell hazardous substances simultaneously. -- Abstract: Copper–indium–gallium–selenium–sulfide (CIGS) thin film photovoltaics are increasingly penetrating the market supply for consumer solar panels. Although CIGS is attractive for producing less greenhouse gas emissions than fossil-fuel based energy sources, CIGS manufacturing processes and solar cell devices use hazardous materials that should be carefully considered in evaluating and comparing net environmental benefits of energy products. Through this research, we present a case study on the toxicity hazards associated with alternative materials selection for CIGS manufacturing. We applied two numeric models, The Green Screen for Safer Chemicals™ and the Toxic Potential Indicator. To improve the sensitivity of the model outputs, we developed a novel, life cycle thinking based hazard assessment method that facilitates the projection of hazards throughout material life cycles. Our results show that the least hazardous CIGS solar cell device and manufacturing protocol consist of a titanium substrate, molybdenum metal back electrode, CuInS{sub 2} p-type absorber deposited by spray pyrolysis, ZnS buffer deposited by spray ion layer gas reduction, ZnO:Ga transparent conducting oxide (TCO) deposited by sputtering, and the encapsulant polydimethylsiloxane.

  17. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  18. Thin-Film CIGS Photovoltaic Technology: Annual Technical Report-Phase II, 16 April 1999-15 April 2000

    Energy Technology Data Exchange (ETDEWEB)

    Delahoy, A.E.; Bruns, J.; Ruppert, A.; Akhtar, M.; Chen, L.; Kiss, Z.J.

    2000-08-24

    A summary of Energy Photovoltaics' Phase II work includes the following: (1) EPV has demonstrated that it can sputter a Mo back-contact capable of supporting very high efficiency cell processing. Using EPV Mo, NREL has deposited a 17.1% CIGS cell (no AR coating). EPV believes it can identify the signature of ``good'' Mo. The Mo was produced on EPV's 0.43 m{sup 2} pilot-line equipment; (2) EPV has performed compound synthesis for several classes of materials, namely non-Cu precursor materials, Cu-containing materials, and ternary buffer materials. Using a ternary compound synthesized at EPV (ZIS) as an evaporation source material for the buffer layer, a Cd-free CIGS device has been produced having an efficiency of 11.5% (560 mV, 32.1 mA/cm{sup 2}, FF 64.3%). The ZIS films are photoconductive, and the devices exhibit no dark-light crossover or light soaking effects; (3) EPV initiated the interest of the University of Oregon in capacitance spectroscopy of CIGS devices. An Urbach tail with characteristic energy E0 < 20meV was identified by transient photocapacitance spectroscopy; (4) Small-area CIGS devices were produced in the pilot-line system with an efficiency of 12.0% (581 mV, 30.1 mA/cm{sup 2}, FF 68.7%), and in an R and D-scale system with 13.3% efficiency (569 mV, 34.1 mA/cm{sup 2}, FF 68.1%); (5) An improved linear evaporation source for Cu delivery has been developed and was used for CIGS formation in the pilot-line system. The deposition width is 45 cm. This technological ``tour de force'' allows EPV to build large-area CIGS systems possessing considerable flexibility. In particular, both EPV's FORNAX process and NREL's 3-stage process have been implemented on the pilot line. A CIGS thickness uniformity of 7% over a 40 cm width has been achieved; (6) A 4-head linear source assembly was designed, constructed, and is in use. Flux monitoring is practiced; (7) Large-area CIGS modules were produced with Voc's up to 36

  19. Thin-Film CIGS Photovoltaic Technology: Annual Technical Report-Phase II, 16 April 1999-15 April 2000; ANNUAL

    International Nuclear Information System (INIS)

    Delahoy, A.E.; Bruns, J.; Ruppert, A.; Akhtar, M.; Chen, L.; Kiss, Z.J.

    2000-01-01

    A summary of Energy Photovoltaics' Phase II work includes the following: (1) EPV has demonstrated that it can sputter a Mo back-contact capable of supporting very high efficiency cell processing. Using EPV Mo, NREL has deposited a 17.1% CIGS cell (no AR coating). EPV believes it can identify the signature of''good'' Mo. The Mo was produced on EPV's 0.43 m(sup 2) pilot-line equipment; (2) EPV has performed compound synthesis for several classes of materials, namely non-Cu precursor materials, Cu-containing materials, and ternary buffer materials. Using a ternary compound synthesized at EPV (ZIS) as an evaporation source material for the buffer layer, a Cd-free CIGS device has been produced having an efficiency of 11.5% (560 mV, 32.1 mA/cm(sup 2), FF 64.3%). The ZIS films are photoconductive, and the devices exhibit no dark-light crossover or light soaking effects; (3) EPV initiated the interest of the University of Oregon in capacitance spectroscopy of CIGS devices. An Urbach tail with characteristic energy E0 and lt; 20meV was identified by transient photocapacitance spectroscopy; (4) Small-area CIGS devices were produced in the pilot-line system with an efficiency of 12.0% (581 mV, 30.1 mA/cm(sup 2), FF 68.7%), and in an R and D-scale system with 13.3% efficiency (569 mV, 34.1 mA/cm(sup 2), FF 68.1%); (5) An improved linear evaporation source for Cu delivery has been developed and was used for CIGS formation in the pilot-line system. The deposition width is 45 cm. This technological''tour de force'' allows EPV to build large-area CIGS systems possessing considerable flexibility. In particular, both EPV's FORNAX process and NREL's 3-stage process have been implemented on the pilot line. A CIGS thickness uniformity of 7% over a 40 cm width has been achieved; (6) A 4-head linear source assembly was designed, constructed, and is in use. Flux monitoring is practiced; (7) Large-area CIGS modules were produced with Voc's up to 36.3 V; (8) EPV has started to construct an

  20. Supply risks associated with CdTe and CIGS thin-film photovoltaics

    International Nuclear Information System (INIS)

    Helbig, Christoph; Bradshaw, Alex M.; Kolotzek, Christoph; Thorenz, Andrea; Tuma, Axel

    2016-01-01

    Highlights: • Supply risks associated with thin film photovoltaic technologies are considered. • Eleven supply risk indicators are used to evaluate Cd, Te, Cu, In, Ga, Se and Mo. • Indicator weighting based on peer assessment and an Analytic Hierarchy Process. • Various possibilities for the aggregation of elemental supply risks discussed. • Aggregated results show a marginally lower supply risk for CdTe than for CIGS. - Abstract: As a result of the global warming potential of fossil fuels there has been a rapid growth in the installation of photovoltaic generating capacity in the last decade. While this market is dominated by crystalline silicon, thin-film photovoltaics are still expected to make a substantial contribution to global electricity supply in future, due both to lower production costs and to recent increases in conversion efficiency. At present, cadmium telluride (CdTe) and copper-indium-gallium diselenide (CuIn_xGa_1_−_xSe_2) seem to be the most promising materials and currently have a share of ≈9% of the photovoltaic market. An expected stronger market penetration by these thin-film technologies raises the question as to the supply risks associated with the constituent elements. Against this background, we report here a semi-quantitative, relative assessment of mid- to long-term supply risk associated with the elements Cd, Te, Cu, In, Ga, Se and Mo. In this approach, the supply risk is measured using 11 indicators in the four categories “Risk of Supply Reduction”, “Risk of Demand Increase”, “Concentration Risk” and “Political Risk”. In a second step, the single indicator values, which are derived from publicly accessible databases, are weighted relative to each other specifically for the case of thin film photovoltaics. For this purpose, a survey among colleagues and an Analytic Hierarchy Process (AHP) approach are used, in order to obtain a relative, element-specific value for the supply risk. The aggregation of these

  1. Photovoltaic array mounting apparatus, systems, and methods

    Science.gov (United States)

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2016-01-05

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  2. Thin-Film CIGS Photovoltaic Technology; Annual Technical Report, Phase I; 16 April 1998 - 15 April 1999

    International Nuclear Information System (INIS)

    Chorobski, D.; Delahoy, A.E.; Kiss, Z.J.; Ziobro, F.

    1999-01-01

    This report describes work performed by Energy Photovoltaics, Inc. (EPV) under Phase I of this subcontract. EPV's new FORNAX process for CIGS formation is capable of producing devices with high Voc ( and gt;600 mV) and no dark aging effects. Parameters of the best device so far are Voc= 611 mV, Jsc= 27.5 mA/cm2, FF= 74.5%, and efficiency= 12.5%. A 34-cm2 16-cell minimodule was produced using FORNAX CIGS with Voc= 9.58 V, Isc= 52.0 mA, FF69.8%, and efficiency= 10.2%. A new version of EPV's linear evaporation source was developed with improved rate and uniformity for Cu deposition over a width of 45 cm. Using the new linear source, the FORNAX process was implemented on 0.43-m2 substrates in EPV's CIGS pilot line, with Voc= 537 mV and FF= 70.3% being achieved on a device. The EPV Subteam of the National CIS R and D Team has produced Cd-free ZnO/CIGS devices on NREL CIGS using the ROMEAO process (reaction of metal and atomic oxygen) for ZnO deposition. After soaking, the best device exhibited a Voc of 565 mV and an efficiency of 12.3%. Novel bias drive methods were devised for field soaking/anti-soaking experiments as a function of time and temperature. Scaling laws and an activation energy of 0.51 eV were found. Thermally stimulated capacitance reveals the existence of three distinct contributions to ZnO/CIGS device capacitance, two appearing to be gap-state effects and one related to net doping concentration. The coating time of the sputtered pilot-line ZnO:Al has been reduced by a factor of 3 while maintaining film quality. The deposition rate is 48 A s-1. Plans are under way to increase the substrate size from 0.43 m2 to 0.79 m2

  3. Flat-plate photovoltaic array design optimization

    Science.gov (United States)

    Ross, R. G., Jr.

    1980-01-01

    An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.

  4. Photovoltaic manufacturing cost and throughput improvements for thin-film CIGS-based modules: Phase 1 technical report, July 1998--July 1999

    Energy Technology Data Exchange (ETDEWEB)

    Wiedeman, S.; Wendt, R.G.

    2000-03-01

    The primary objectives of the Global Solar Energy (GSE) Photovoltaic Manufacturing Technology (PVMaT) subcontract are directed toward reducing cost and expanding the production rate of thin-film CuInGaSe{sub 2} (CIGS)-based PV modules on flexible substrates. Improvements will be implemented in monolithic integration, CIGS deposition, contact deposition, and in-situ CIGS control and monitoring. In Phase 1, GSE has successfully attacked many of the highest risk aspects of each task. All-laser, selective scribing processes for CIGS have been developed, and many end-of-contract goals for scribing speed have been exceeded in the first year. High-speed ink-jet deposition of insulating material in the scribes now appears to be a viable technique, again exceeding some end-of-contract goals in the first year. Absorber deposition of CIGS was reduced corresponding to throughput speeds of up to 24-in/min, also exceeding an end-of-contract goal. Alternate back-contact materials have been identified that show potential as candidates for replacement of higher-cost molybdenum, and a novel, real-time monitoring technique (parallel-detector spectroscopic ellipsometry) has shown remarkable sensitivity to relevant properties of the CIGS absorber layer for use as a diagnostic tool. Currently, one of the bilayers has been baselined by GSE for flexible CIGS on polymeric substrates. Resultant back-contacts meet sheet-resistance goals and exhibit much less intrinsic stress than Mo. CIGS has been deposited, and resultant devices are comparable in performance to pure Mo back-contacts. Debris in the chamber has been substantially reduced, allowing longer roll-length between system cleaning.

  5. Automated installation methods for photovoltaic arrays

    Science.gov (United States)

    Briggs, R.; Daniels, A.; Greenaway, R.; Oster, J., Jr.; Racki, D.; Stoeltzing, R.

    1982-11-01

    Since installation expenses constitute a substantial portion of the cost of a large photovoltaic power system, methods for reduction of these costs were investigated. The installation of the photovoltaic arrays includes all areas, starting with site preparation (i.e., trenching, wiring, drainage, foundation installation, lightning protection, grounding and installation of the panel) and concluding with the termination of the bus at the power conditioner building. To identify the optimum combination of standard installation procedures and automated/mechanized techniques, the installation process was investigated including the equipment and hardware available, the photovoltaic array structure systems and interfaces, and the array field and site characteristics. Preliminary designs of hardware for both the standard installation method, the automated/mechanized method, and a mix of standard installation procedures and mechanized procedures were identified to determine which process effectively reduced installation costs. In addition, costs associated with each type of installation method and with the design, development and fabrication of new installation hardware were generated.

  6. Designing Flat-Plate Photovoltaic Arrays

    Science.gov (United States)

    Ross, R. G., Jr.

    1984-01-01

    Report presents overview of state of art in design techniques for flat-plate solar photovoltaic modules and arrays. Paper discusses design requirements, design analyses, and test methods identified and developed for this technology over past several years in effort to reduce cost and improve utility and reliability for broad spectrum of terrestrial applications.

  7. Degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.J.

    2015-01-01

    Large scale commercial introduction of CIGS photovoltaics (PV) requires modules with low costs, high efficiencies and long and predictable lifetimes. Unfortunately,knowledge about the lifetime of CIGS PV is limited, which is reflected in the results of field studies: degradation rates varying from

  8. Photovoltaic array performance simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D. F.

    1986-09-15

    The experience of the solar industry confirms that, despite recent cost reductions, the profitability of photovoltaic (PV) systems is often marginal and the configuration and sizing of a system is a critical problem for the design engineer. Construction and evaluation of experimental systems are expensive and seldom justifiable. A mathematical model or computer-simulation program is a desirable alternative, provided reliable results can be obtained. Sandia National Laboratories, Albuquerque (SNLA), has been studying PV-system modeling techniques in an effort to develop an effective tool to be used by engineers and architects in the design of cost-effective PV systems. This paper reviews two of the sources of error found in previous PV modeling programs, presents the remedies developed to correct these errors, and describes a new program that incorporates these improvements.

  9. Characterization of photovoltaic array performance: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Jr., R. G.

    1986-09-15

    Characterization of the electrical performance of a photovoltaic array can take many forms depending on the end use of the data. Typical uses include buyer-seller negotiations, system performance prediction, and performance measurement. Buyer-seller negotiations may deal with specifying the size (power) of an array to be purchased under some standard reporting conditions, and may treat the warranty conditions governing allowable degradation of this performance with time. System design, on the other hand, requires prediction of performance under varying field conditions, not standard reporting conditions, and must include the non-ideal realities of operating systems: array shadowing, steep angles of incidence, soiling, and array-load energy utilization. Typical uses of predicted array performance include array sizing tradeoffs, tracking-pointing comparisons, load-array interface analyses and system economic evaluations. The third use, performance measurement, refers to the characterization of an as-built array as opposed to prediction of the performance of an array to be built. This may be done to assess actual array performance or to measure performance degradation over time.

  10. Photovoltaic Manufacturing Cost and Throughput Improvements for Thin Film CIGS-Based Modules: Final Technical Report, July 1998 -- September 2001

    Energy Technology Data Exchange (ETDEWEB)

    Britt, J.

    2002-04-01

    This report describes the marked improvements made of the production line under the PVMaT program: successfully developed a high-speed, all-laser, monolithic integration process for CIGS-based modules on polyimide substrates; exceeded PVMaT goals for scribing rate and total interconnect width; developed robust, well-controlled techniques for selective scribing; improved CIGS evaporation sources to allow uniform, controllable delivery; completed foundation required to integrate higher CIGS deposition rates into the production line; developed well-controlled Se delivery system to minimize Se consumption; successfully integrated the parallel-detector spectroscope ellipsometer (PDSE) into a production CIGS deposition chamber; collected useful, in-situ data with PDSE; validated the performance of the X-ray fluorescometry (XRF) sensor in the production CIGS deposition chamber; and successfully incorporated the XRF sensor into the control architecture of the production CIGS deposition chamber .

  11. Photovoltaic array sizing for Yemeni electrical needs

    Energy Technology Data Exchange (ETDEWEB)

    Al-Motawakel, M K; McVeigh, J C; Probert, S D; Norton, B

    1986-10-01

    A behavioural model has been developed for correlating the area of the solar array, the capacity of the storage batteries, and the system cost of a roof-top or centralized solar-energy system relative to the average daily electricity demand. The mathematical analysis incorporates pertinent social, economic, climatic and energy-resource factors. The model is employed to predict the average daily electrical needs for any one of the ten common energy uses currently occurring in Yemeni houses, reviews these needs in terms of the available solar energy systems, selects the relevant system components, and suggests the most cost-effective appropriate design of solar photovoltaic system.

  12. Fault Analysis in Solar Photovoltaic Arrays

    Science.gov (United States)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  13. Photovoltaic Array Space Power flight experiment plus diagnostics (PASP+) modules

    International Nuclear Information System (INIS)

    Cooley, W.T.; Adams, S.F.; Reinhardt, K.C.; Piszczor, M.F.

    1992-01-01

    The Photovoltaic Array Space Power Plus Diagnostics flight experiment (PASP+) subsumes twelve solar array modules which represent the state of the art in the space photovoltaic array industry. Each of the twelve modules individually feature specific photovoltaic technologies such as advanced semiconductor materials, multi-bandgap structures, lightweight array designs, advanced interconnect technologies, or concentrator array designs. This paper will describe each module in detail including the configuration, components, materials, anticipated on orbit performance, and some of the aspects of each array technology. The layout of each module and the photovoltaic cell or array cross section will be presented graphically. A discussion on the environmental constraints and materials selection will be included as well as a delineation of the differences between the modules and the baseline array configuration in its intended application

  14. Nonimaging concentrators for photovoltaic arrays in space

    Science.gov (United States)

    Winston, R.; Greenman, P.; Rockey, D.

    1981-01-01

    Two stage concentrators are studied in order to design an optimum concentrator for photovoltaic arrays in space. The study is directed at designs with two-dimensional geometries because they are better suited to moderate concentrations of about 10 X to 50 X, and because the instantaneous flux distribution is more uniform. It is found that with an f/0.5 primary, where f is the focal length of the primary, the flux distribution is very smooth regardless of the angle of incidence of the radiation. As the focal ratio is increased, peaks in the distribution begin to appear. The nonuniformities can be reduced by introducing small, closely spaced distortions into the reflecting surfaces, and practical arrays can achieve a concentration of 10 when the acceptance half angle is 4.25 deg or 50 when the acceptance half angle is + or - 1 deg.

  15. Organic photovoltaic cells with pentacene nanocolumn arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuwen; Schaefer, Peter; Rabe, Juergen P.; Koch, Norbert [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Brook-Taylor-Str. 6, 12489 Berlin (Germany)

    2011-07-01

    Highly ordered pentacene nanocolumn arrays were fabricated by glancing angle deposition (GLAD) on indium tin oxide (ITO) substrates. The nanocolumn diameter was set to 100-150 nm as revealed by scanning electron microscopy and atomic force microscopy. Interdigitated bulk heterojunction photovoltaic cells (OPVCs) were formed by spin-coating [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) as the acceptor material onto the pentacene nanocolumn film. Bathocuproine (BCP) was deposited on top of PCBM as exciton blocking layer. The conversion efficiency of nanocolumn-based OPVCs was significantly higher compared to planar heterojunction OPVCs of the same materials. Further device performance improvement was achieved through employing a thin pentacene seed layer before GLAD, which promoted PCBM solution infiltration between pentacene nanocolumns.

  16. Photovoltaic array for Martian surface power

    Science.gov (United States)

    Appelbaum, J.; Landis, G. A.

    1992-01-01

    Missions to Mars will require electric power. A leading candidate for providing power is solar power produced by photovoltaic arrays. To design such a power system, detailed information on solar-radiation availability on the Martian surface is necessary. The variation of the solar radiation on the Martian surface is governed by three factors: (1) variation in Mars-Sun distance; (2) variation in solar zenith angle due to Martian season and time of day; and (3) dust in the Martian atmosphere. A major concern is the dust storms, which occur on both local and global scales. However, there is still appreciable diffuse sunlight available even at high opacity, so that solar array operation is still possible. Typical results for tracking solar collectors are also shown and compared to the fixed collectors. During the Northern Hemisphere spring and summer the isolation is relatively high, 2-5 kW-hr/sq m-day, due to the low optical depth of the Martian atmosphere. These seasons, totalling a full terrestrial year, are the likely ones during which manned mission will be carried out.

  17. Plasmonic Nanocone Arrays as Photoconductive and Photovoltaic Metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Babicheva, Viktoriia; Evlyuknin, Andrey B.

    2014-01-01

    Photoconductive and photovolta ic properties of metamaterials comprising plasmonic nanocone arrays embedded in a semiconductor matrix are studied. Under uniform plane-wave illumination, directed photocurrent and electromotive force arise ne ar asymmetrically shaped nanocones. The resulting giant...... photogalvanic effect is a plasmonic analogue of the bulk photovoltaic effect in ferroelectrics....

  18. APSA - A new generation of photovoltaic solar arrays

    Science.gov (United States)

    Stella, P. M.; Kurland, R. M.

    1989-01-01

    This paper provides details on the Advanced Photovoltaic Solar Array (APSA) wing design, fabrication, and testing. The impact of array size change on performance and mechanical characteristics is discussed. Projections for future performance enhancements that may be expected through the use of advanced solar cells presently under development are examined.

  19. Photovoltaic array with minimally penetrating rooftop support system

    Science.gov (United States)

    Lenox, Carl J.S.

    2012-10-23

    A photovoltaic array including a plurality of photovoltaic assemblies and a plurality of mounting units. The mounting units each include an elongate rail and a plurality of leg assemblies. The rail is sized and configured to maintain a portion of at least two of the photovoltaic assemblies, with the leg assemblies extending from the rail in a spaced-apart fashion and terminating in a foot for placement against a rooftop structure for minimally penetration installation. Further, at least one of the leg assemblies can include a retractable leg. When the photovoltaic array is installed to a rooftop structure including a membrane intermittently secured to a rooftop deck, the retractable leg accommodates upward billowing of the membrane under windy conditions.

  20. Solar radiation on Mars: Stationary photovoltaic array

    Science.gov (United States)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  1. Photovoltaic array: Power conditioner interface characteristics

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  2. Wind loads on flat plate photovoltaic array fields

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  3. Development of photovoltaic array and module safety requirements

    Science.gov (United States)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  4. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  5. Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid-Liquid Extraction.

    NARCIS (Netherlands)

    Zimmermann, Y.S.; Niewersch, C.; Lenz, M.; Corvini, P.F.X.; Schäffer, A.; Wintgens, T.

    2014-01-01

    Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called “urban mining” considers them as secondary resources since they may contain precious elements at concentrations many times higher than

  6. Semi-transparent photovoltaic glazing based on electrodeposited CIGS solar cells on patterned molybdenum/glass substrates

    Directory of Open Access Journals (Sweden)

    Sidali Tarik

    2018-01-01

    Full Text Available In this paper, a new way of preparing semi-transparent solar cells using Cu(In1−xGaxSe2 (CIGS chalcopyrite semiconductors as absorbers for BIPV applications is presented. The key to the elaboration process consists in the co-electrodeposition of Cu-In-Ga mixed oxides on submillimetric hole-patterned molybdenum substrate, followed by thermal reduction to metallic alloys and selenisation. This method has the advantage of being a selective deposition technique where the thin film growth is carried out only on Mo covered areas. Thus, after annealing, the transparency of the sample is always preserved, allowing light to pass through the device. A complete device (5 × 5 cm2 with 535 μm diameter holes and total glass aperture of around 35% shows an open circuit voltage (VOC of 400 mV. Locally, the I-V curves reveal a maximum efficiency of 7.7%, VOC of 460 mV, JSC of 24 mA.cm−2 in an area of 0.1 cm2 with 35% aperture. This efficiency on the semi-transparent area is equivalent to a record efficiency of 11.9% by taking into account only the effective area.

  7. Semi-transparent photovoltaic glazing based on electrodeposited CIGS solar cells on patterned molybdenum/glass substrates

    Science.gov (United States)

    Sidali, Tarik; Bou, Adrien; Coutancier, Damien; Chassaing, Elisabeth; Theys, Bertrand; Barakel, Damien; Garuz, Richard; Thoulon, Pierre-Yves; Lincot, Daniel

    2018-03-01

    In this paper, a new way of preparing semi-transparent solar cells using Cu(In1-xGax)Se2 (CIGS) chalcopyrite semiconductors as absorbers for BIPV applications is presented. The key to the elaboration process consists in the co-electrodeposition of Cu-In-Ga mixed oxides on submillimetric hole-patterned molybdenum substrate, followed by thermal reduction to metallic alloys and selenisation. This method has the advantage of being a selective deposition technique where the thin film growth is carried out only on Mo covered areas. Thus, after annealing, the transparency of the sample is always preserved, allowing light to pass through the device. A complete device (5 × 5 cm2) with 535 μm diameter holes and total glass aperture of around 35% shows an open circuit voltage (VOC) of 400 mV. Locally, the I-V curves reveal a maximum efficiency of 7.7%, VOC of 460 mV, JSC of 24 mA.cm-2 in an area of 0.1 cm2 with 35% aperture. This efficiency on the semi-transparent area is equivalent to a record efficiency of 11.9% by taking into account only the effective area.

  8. Solar Radiation on Mars: Tracking Photovoltaic Array

    Science.gov (United States)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  9. Model Building of Photovoltaic Array with MPPT Function and Research on Single Phase Grid Connected

    OpenAIRE

    Li Zhengzhou

    2016-01-01

    With the continued development of solar photovoltaic technology, research on distributed grid connected photovoltaic system has become a research focus in the field of photovoltaic grid power plant and the computer simulation technology is an effective technology means in the study. On the basis of the photovoltaic array output characteristic equation, the photovoltaic array maximum power control simulation model based on M function is established by using MATLAB/Simulink and the simulation m...

  10. Broadband absorption of semiconductor nanowire arrays for photovoltaic applications

    International Nuclear Information System (INIS)

    Huang, Ningfeng; Lin, Chenxi; Povinelli, Michelle L

    2012-01-01

    We use electromagnetic simulations to carry out a systematic study of broadband absorption in vertically-aligned semiconductor nanowire arrays for photovoltaic applications. We study six semiconductor materials that are commonly used for solar cells. We optimize the structural parameters of each nanowire array to maximize the ultimate efficiency. We plot the maximal ultimate efficiency as a function of height to determine how it approaches the perfect-absorption limit. We further show that the ultimate efficiencies of optimized nanowire arrays exceed those of equal-height thin films for all six materials and over a wide range of heights from 100 nm to 100 µm

  11. Design of photovoltaic central power station concentrator array

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  12. Nd:YAG laser annealing investigation of screen-printed CIGS layer on PET: Layer annealing method for photovoltaic cell fabrication process

    KAUST Repository

    Alsaggaf, Ahmed; Alarousu, Erkki; Boulfrad, Samir; Rothenberger, Alexander

    2014-01-01

    by heat treatment using a Nd:YAG laser. The structure and morphology of the heated thin films were studied. The characterization of the CIGS powder, ink, and film was done using TGA, SEM, FIB, EDS, and XRD. TGA analysis shows that the CIGS ink is drying

  13. An Advanced Photovoltaic Array Regulator Module

    Science.gov (United States)

    Button, Robert M.

    1996-01-01

    Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Unit (SCBU). The SCBU uses any isolating DC-DC converter and adds a unique series connection. This simple modification provides the SCBU topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 W/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBU technology are presented, and it is shown that the SCBU makes an ideal photovoltaic an-ay regulator. A set of photovoltaic power system requirements are presented that can be applied to almost any low Earth orbit satellite. Finally, a modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.

  14. Wind loads on flat plate photovoltaic array fields (nonsteady winds)

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    Techniques to predict the dynamic response and the structural dynamic loads of flat plate photovoltaic arrays due to wind turbulence were analyzed. Guidelines for use in predicting the turbulent portion of the wind loading on future similar arrays are presented. The dynamic response and the loads dynamic magnification factor of the two array configurations are similar. The magnification factors at a mid chord and outer chord location on the array illustrated and at four points on the chord are shown. The wind tunnel test experimental rms pressure coefficient on which magnification factors are based is shown. It is found that the largest response and dynamic magnification factor occur at a mid chord location on an array and near the trailing edge. A technique employing these magnification factors and the wind tunnel test rms fluctuating pressure coefficients to calculate design pressure loads due to wind turbulence is presented.

  15. Photovoltaic array mounting apparatus, systems, and methods

    Science.gov (United States)

    West, John Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2014-12-02

    An apparatus for mounting a photovoltaic (PV) module on a surface, including a support with an upper surface, a lower surface, tabs, one or more openings, and a clip comprising an arm and a notch, where the apparatus resists wind forces and seismic forces and creates a grounding electrical bond between the PV module, support, and clip. The invention further includes a method for installing PV modules on a surface that includes arranging supports in rows along an X axis and in columns along a Y axis on a surface such that in each row the distance between two neighboring supports does not exceed the length of the longest side of a PV module and in each column the distance between two neighboring supports does not exceed the length of the shortest side of a PV module.

  16. Nd:YAG laser annealing investigation of screen-printed CIGS layer on PET: Layer annealing method for photovoltaic cell fabrication process

    KAUST Repository

    Alsaggaf, Ahmed

    2014-06-01

    Cu(In, Ga)Se2 (CIGS) ink was formulated from CIGS powder, polyvinyl butyral PVB, terpineol and polyester/polyamine co-polymeric dispersant KD-1. Thin films with different thicknesses were deposited on PET substrate using screen-printing followed by heat treatment using a Nd:YAG laser. The structure and morphology of the heated thin films were studied. The characterization of the CIGS powder, ink, and film was done using TGA, SEM, FIB, EDS, and XRD. TGA analysis shows that the CIGS ink is drying at 200 °C, which is well below the decomposition temperature of the PET substrate. It was observed by SEM that 20 pulses of 532nm and 60 mJ/cm2 Nd:YAG laser annealing causes atomic diffusion on the near surface area. Furthermore, FIB cross section images were utilized to monitor the effect of laser annealing in the depth of the layer. Laser annealing effects were compared to as deposited layer using XRD in reference to CIGS powder. The measurement shows that crystallinity of deposited CIGS is retained while EDS quantification and atomic ratio result in gradual loss of selenium as laser energy increases. The laser parameters were tuned in an effort to utilize laser annealing of screen-printed CIGS layer as a layer annealing method for solar cell fabrication process.

  17. Modeling impact of environmental factors on photovoltaic array performance

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie; Sun, Yize; Xu, Yang [College of Mechanical Engineering, Donghua University NO.2999, North Renmin Road, Shanghai (China)

    2013-07-01

    It is represented in this paper that a methodology to model and quantify the impact of the three environmental factors, the ambient temperature, the incident irradiance and the wind speed, upon the performance of photovoltaic array operating under outdoor conditions. First, A simple correlation correlating operating temperature with the three environmental variables is validated for a range of wind speed studied, 2-8, and for irradiance values between 200 and 1000. Root mean square error (RMSE) between modeled operating temperature and measured values is 1.19% and the mean bias error (MBE) is -0.09%. The environmental factors studied influence I-V curves, P-V curves, and maximum-power outputs of photovoltaic array. The cell-to-module-to-array mathematical model for photovoltaic panels is established in this paper and the method defined as segmented iteration is adopted to solve the I-V curve expression to relate model I-V curves. The model I-V curves and P-V curves are concluded to coincide well with measured data points. The RMSE between numerically calculated maximum-power outputs and experimentally measured ones is 0.2307%, while the MBE is 0.0183%. In addition, a multivariable non-linear regression equation is proposed to eliminate the difference between numerically calculated values and measured ones of maximum power outputs over the range of high ambient temperature and irradiance at noon and in the early afternoon. In conclusion, the proposed method is reasonably simple and accurate.

  18. Maximum power point tracking of partially shaded solar photovoltaic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Roy Chowdhury, Shubhajit; Saha, Hiranmay [IC Design and Fabrication Centre, Department of Electronics and Telecommunication Engineering, Jadavpur University (India)

    2010-09-15

    The paper presents the simulation and hardware implementation of maximum power point (MPP) tracking of a partially shaded solar photovoltaic (PV) array using a variant of Particle Swarm Optimization known as Adaptive Perceptive Particle Swarm Optimization (APPSO). Under partially shaded conditions, the photovoltaic (PV) array characteristics get more complex with multiple maxima in the power-voltage characteristic. The paper presents an algorithmic technique to accurately track the maximum power point (MPP) of a PV array using an APPSO. The APPSO algorithm has also been validated in the current work. The proposed technique uses only one pair of sensors to control multiple PV arrays. This result in lower cost and higher accuracy of 97.7% compared to earlier obtained accuracy of 96.41% using Particle Swarm Optimization. The proposed tracking technique has been mapped onto a MSP430FG4618 microcontroller for tracking and control purposes. The whole system based on the proposed has been realized on a standard two stage power electronic system configuration. (author)

  19. Design considerations for large roof-integrated photovoltaic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ropp, M.E.; Begovic, M.; Rohatgi, A. [Georgia Inst. of Tech., Atlanta, GA (United States); Long, R. [Georgia Institute of Technology, Atlanta (United States). Office of Facilities

    1997-01-01

    This paper describes calculations and modeling used in the design of the photovoltaic (PV) array built on the roof of the Georgia Tech Aquatic Center, the aquatic sports venue for the 1996 Olympic and Paralympic Games. The software package PVFORM (version 3.3) was extensively utilized; because of its importance to this work, it is thoroughly reviewed here. Procedures required to adapt PVFORM to this particular installation are described. The expected behavior and performance of the system, including maximum power output, annual energy output and maximum expected temperature, are then presented, and the use of this information in making informed design decisions is described. Finally, since the orientation of the PV array is not optimal, the effect of the unoptimized array orientation on the system`s performance is quantified. (author)

  20. TEMPERATURE EFFECT OF ELECTRICAL PROPERTIES OF CIGS ...

    African Journals Online (AJOL)

    2011-06-30

    Jun 30, 2011 ... Key words: Thin film solar cells, SCAPS, CIGS, temperature, effiency energetic. 1. INTRODUCTION ... technology are the low material consumption and the high efficiency that has been demonstrated, which .... [2] S. Wenham, M. Green, M. Watt, Applied Photovoltaics, The University of New. South Wales ...

  1. Enhancing transformer dynamic rating through grid application of photovoltaic arrays

    International Nuclear Information System (INIS)

    El-Gasseir, M.M.; Sayer, M.A.; Alteneder, K.P.; McCulla, G.A.; Bigger, J.

    1993-01-01

    This paper demonstrates that exact matching between the substation's peak-day load profile and the profile of coincident net output generation of the PV array is unjustifiable and will unduly lead to overlooking many investment deferment opportunities that would otherwise be major components of high value applications of PV arrays. Further, the paper shows how and to what extent the load matchability requirement could be relaxed. Because of the thermal inertia of transformers, the output of an adequately sized and located photovoltaic array can both delay and reduce transformer temperature rise even in cases where load peak occurs after sunset. The time lag due to thermal inertia and ambient temperature decline allow overloading of the transformer beyond its normal rating without significant loss of life. Simulations depicting the interplay between PV array capacity, ambient temperature, transformer size, oil and winding temperature rise, peak load magnitude, load profile and loss of life, have been conducted. Tradeoffs between PV array capacity and transformer over-rating gains have been assessed. The impacts of PV generation on the over-rating potential of an actual 22.4-MVA bank transformer of a Salt River Project (SRP) distribution substation in Phoenix, Arizona were evaluated

  2. Characterization and Diagnostics for Photovoltaic Modules and Arrays

    DEFF Research Database (Denmark)

    Spataru, Sergiu

    part of this work were developed based on two well-known module characterization techniques, namely current-voltage (I-V) characterization, and electroluminescence imaging. he I-V based module diagnostic methods were developed by combining the strengths of light I-V and dark I-V characterization......, characterization and diagnostic methods are increasingly important in identifying and understanding the failures and degradation modes affecting PV modules and arrays, as well as developing relevant tools and tests for assessing the reliability and lifetime of PV modules. This thesis investigates diagnostic...... methods for characterizing and detecting degradation modes in crystalline silicon photovoltaic modules and arrays, and is structured into two parts. The first part of this work is focused on developing PV module characterization and diagnostic methods for use in module diagnostics and failure...

  3. Model Building of Photovoltaic Array with MPPT Function and Research on Single Phase Grid Connected

    Directory of Open Access Journals (Sweden)

    Li Zhengzhou

    2016-01-01

    Full Text Available With the continued development of solar photovoltaic technology, research on distributed grid connected photovoltaic system has become a research focus in the field of photovoltaic grid power plant and the computer simulation technology is an effective technology means in the study. On the basis of the photovoltaic array output characteristic equation, the photovoltaic array maximum power control simulation model based on M function is established by using MATLAB/Simulink and the simulation model of single phase grid connected photovoltaic array is proposed. It overcomes the shortcomings of the process of building the model of the PV array by using Simulink component library and provides the basic guarantee for the realization of system simulation, guiding theory research and system design.

  4. Component and prototype panel testing of the mini-dome Fresnel lens photovoltaic concentrator array

    Science.gov (United States)

    Piszczor, Michael F.; Swartz, Clifford K.; O'Neill, Mark J.

    1990-01-01

    The mini-dome Fresnel lens concentrator array, a high-efficiency, lightweight space photovoltaic array concept, is described. The three critical elements of the array concept are the Fresnel lens concentrator, the prismatic cell power cover, and the photovoltaic cell. Prototype concentrator lenses have been fabricated and tested, with optical efficiencies reaching 90 percent. Work is progressing on the design and fabrication of the panel structure. The impact of recent advances in 30 percent-efficient multijunction photovoltaic cells on array performance is also discussed. Near-term performance goals of 300 w/sq m and 100 w/kg are now feasible.

  5. A photovoltaic catenary-tent array for the Martian surface

    Science.gov (United States)

    Crutchik, M.; Colozza, Anthony J.; Appelbaum, J.

    1993-01-01

    To provide electrical power during an exploration mission to Mars, a deployable tent-shaped structure with a flexible photovoltaic (PV) blanket is proposed. The array is designed with a self-deploying mechanism utilizing pressurized gas expansion. The structural design for the array uses a combination of cables, beams, and columns to support and deploy the PV blanket. Under the force of gravity a cable carrying a uniform load will take the shape of a catenary curve. A catenary-tent collector is self shadowing which must be taken into account in the solar radiation calculation. The shape and the area of the shadow on the array was calculated and used in the determination of the global radiation on the array. The PV blanket shape and structure dimension were optimized to achieve a configuration which maximizes the specific power (W/kg). The optimization was performed for four types of PV blankets (Si, GaAs/Ge, GaAs CLEFT, and amorphous Si) and four types of structure materials (Carbon composite, Aramid Fiber composite, Aluminum, and Magnesium). The results show that the catenary shape of the PV blanket, which produces the highest specific power, corresponds to zero end angle at the base with respect to the horizontal. The tent angle is determined by the combined effect of the array structure specific mass and the PV blanket output power. The combination of carbon composite structural material and GaAs CLEFT solar cells produce the highest specific power. The study was carried out for two sites on Mars corresponding to the Viking Lander locations. The designs were also compared for summer, winter, and yearly operation.

  6. Glass fiber reinforced concrete for terrestrial photovoltaic arrays

    Science.gov (United States)

    Maxwell, H.

    1979-01-01

    The use of glass-fiber-reinforced concrete (GRC) as a low-cost structural substrate for terrestrial solar cell arrays is discussed. The properties and fabrication of glass-reinforced concrete structures are considered, and a preliminary design for a laminated solar cell assembly built on a GRC substrate is presented. A total cost for such a photovoltaic module, composed of a Korad acrylic plastic film front cover, an aluminum foil back cover, an ethylene/vinyl acetate pottant/adhesive and a cotton fabric electrical isolator in addition to the GRC substrate, of $9.42/sq m is projected, which is less than the $11.00/sq m cost goal set by the Department of Energy. Preliminary evaluations are concluded to have shown the design capabilities and cost effectiveness of GRC; however, its potential for automated mass production has yet to be evaluated.

  7. Ultradense, Deep Subwavelength Nanowire Array Photovoltaics As Engineered Optical Thin Films

    KAUST Repository

    Tham, Douglas; Heath, James R.

    2010-01-01

    A photovoltaic device comprised of an array of 20 nm wide, 32 nm pitch array of silicon nanowires is modeled as an optical material. The nanowire array (NWA) has characteristic device features that are deep in the subwavelength regime for light

  8. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    Science.gov (United States)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  9. 2D Finite Element Model of a CIGS Module

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G.J.M.; Slooff, L.H.; Bende, E.E. [ECN Solar Energy, P.O.Box 1, NL-1755 ZG Petten (Netherlands)

    2012-06-15

    The performance of thin-film CIGS (Copper indium gallium selenide) modules is often limited due to inhomogeneities in CIGS layers. A 2-dimensional Finite Element Model for CIGS modules is presented that predicts the impact of such inhomogeneities on the module performance. Results are presented of a module with a region of poor diode characteristics. It is concluded that according to this model the effects of poor diodes depend strongly on their location in the module and on their dispersion over the module surface. Due to its generic character the model can also be applied to other series connections of photovoltaic cells.

  10. 2D - Finite element model of a CIGS module

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G.J.M.; Slooff, L.H.; Bende, E.E. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    The performance of thin-film CIGS modules is often limited due to inhomogeneities in CIGS layers. A 2-dimensional Finite Element Model for CIGS modules is demonstrated that predicts the impact of such inhomogeneities on the module performance. Results are presented of a module with a region of poor diode characteristics. It is concluded that according to this model the effects of poor diodes depend strongly on their location in the module and on their dispersion over the module surface. Due to its generic character the model can also be applied to other series connections of photovoltaic cells.

  11. Self-Cleaning Microcavity Array for Photovoltaic Modules.

    Science.gov (United States)

    Vüllers, Felix; Fritz, Benjamin; Roslizar, Aiman; Striegel, Andreas; Guttmann, Markus; Richards, Bryce S; Hölscher, Hendrik; Gomard, Guillaume; Klampaftis, Efthymios; Kavalenka, Maryna N

    2018-01-24

    Development of self-cleaning coatings is of great interest for the photovoltaic (PV) industry, as soiling of the modules can significantly reduce their electrical output and increase operational costs. We fabricated flexible polymeric films with novel disordered microcavity array (MCA) topography from fluorinated ethylene propylene (FEP) by hot embossing. Because of their superhydrophobicity with water contact angles above 150° and roll-off angles below 5°, the films possess self-cleaning properties over a wide range of tilt angles, starting at 10°, and contaminant sizes (30-900 μm). Droplets that impact the FEP MCA surface with velocities of the same order of magnitude as that of rain bounce off the surface without impairing its wetting properties. Additionally, the disordered MCA topography of the films enhances the performance of PV devices by improving light incoupling. Optical coupling of the FEP MCA films to a glass-encapsulated multicrystalline silicon solar cell results in 4.6% enhancement of the electrical output compared to that of an uncoated device.

  12. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area

    Science.gov (United States)

    1981-01-01

    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  13. Modeling and simulation of a dual-junction CIGS solar cell using Silvaco ATLAS

    OpenAIRE

    Fotis, Konstantinos

    2012-01-01

    Approved for public release; distribution is unlimited. The potential of designing a dual-junction Copper Indium Gallium Selenide (CIGS) photovoltaic cell is investigated in this thesis. Research into implementing a dual-junction solar cell, using a CIGS bottom cell and different thin-film designs as a top cell, was conducted in order to increase the current record efficiency of 20.3% for a single CIGS cell. This was accomplished through modeling and simulation using Silvaco ATLASTM, an ad...

  14. Residential photovoltaic module and array requirement study. Low-Cost Solar Array Project engineering area. Final report appendices

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This volume contains the appendices to a study to identify design requirements for photovoltaic modules and arrays used in residential applications. Appendices include: (1) codes, standards, and manuals of accepted practice-definition and importance; (2) regional code variations-impact; (3) model and city codes-review; (4) National Electric Code (NEC)-review; (5) types of standards-definition and importance; (6) federal standards-review; (7) standards review method; (8) manuals of accepted practice; (9) codes and referenced standards-summary; (10) public safety testing laboratories; (11) insurance review; (12) studies approach; (13) mounting configurations; (14) module/panel size and shape cost analysis; (15) grounding, wiring, terminal and voltage studies; (16) array installation cost summary; (17) photovoltaic shingle/module comparison; (18) retrofit application; (19) residential photovoltaic module performance criteria; (20) critique of JPL's solar cell module design and test specifications for residential applications; and (21) CSI format specification. (WHK)

  15. Safety-related requirements for photovoltaic modules and arrays

    Science.gov (United States)

    Levins, A.; Smoot, A.; Wagner, R.

    1984-01-01

    Safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications are investigated. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaic systems is made. A discussion of the Underwriters Laboratory UL investigation of the photovoltaic module evaluated to the provisions of the proposed UL standard for plat plate photovoltaic modules and panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit groundings, and the type of circuit ground are covered.

  16. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin

    2008-01-01

    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...... undertaken with an appropriate PV array simulator provide accurate and reproducible results. Thus the PV array simulator has been developed and implemented. MPPT efficiency tests on a commercial grid-connected PV inverter have been performed to validate the PV array simulator....

  17. SIMULATION OF NEW SIMPLE FUZZY LOGIC MAXIMUM POWER POINT TRACKER FOR PHOTOVOLTAIC ARRAY

    Directory of Open Access Journals (Sweden)

    H. Serhoud

    2015-08-01

    Full Text Available A new simple fuzzy method used for tracking the maximum power point tracker (MPPT for photovoltaic systems is proposed. The input parameters   and duty cycle D are used to generate the optimal MPPT under different operating conditions, The photovoltaic system simulated and constructed by photovoltaic arrays, a DC/DC boost converter, a fuzzy MPPT control and a resistive load, The Fuzzy control law designed and the results in a simulation platform will be presented and compare to Perturbation and observation (P&O controller.

  18. Design of a photovoltaic central power station: flat-plate array

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  19. The optimal configuration of photovoltaic module arrays based on adaptive switching controls

    International Nuclear Information System (INIS)

    Chao, Kuei-Hsiang; Lai, Pei-Lun; Liao, Bo-Jyun

    2015-01-01

    Highlights: • We propose a strategy for determining the optimal configuration of a PV array. • The proposed strategy was based on particle swarm optimization (PSO) method. • It can identify the optimal module array connection scheme in the event of shading. • It can also find the optimal connection of a PV array even in module malfunctions. - Abstract: This study proposes a strategy for determining the optimal configuration of photovoltaic (PV) module arrays in shading or malfunction conditions. This strategy was based on particle swarm optimization (PSO). If shading or malfunctions of the photovoltaic module array occur, the module array immediately undergoes adaptive reconfiguration to increase the power output of the PV power generation system. First, the maximal power generated at various irradiation levels and temperatures was recorded during normal array operation. Subsequently, the irradiation level and module temperature, regardless of operating conditions, were used to recall the maximal power previously recorded. This previous maximum was compared with the maximal power value obtained using the maximum power point tracker to assess whether the PV module array was experiencing shading or malfunctions. After determining that the array was experiencing shading or malfunctions, PSO was used to identify the optimal module array connection scheme in abnormal conditions, and connection switches were used to implement optimal array reconfiguration. Finally, experiments were conducted to assess the strategy for identifying the optimal reconfiguration of a PV module array in the event of shading or malfunctions

  20. Electrodeposition route to synthesize cigs films – an economical way ...

    African Journals Online (AJOL)

    Electrodeposition route to synthesize cigs films – an economical way to harness solar energy. ... for solar cells, how the charge separation in this nano scale photovoltaic (PV) materials occurs which help in absorption of radiation, and the electro-deposition route, a low cost one, produces thin film solar cells are analyzed.

  1. Improvements in CdTe- and CIGS-based thin-film solar cells and investigation on new materials for photovoltaic applications.

    OpenAIRE

    Rosa, Greta

    2018-01-01

    Currently, thin-film solar cells are one of the most promising technologies for low-cost renewable energy production. CdTe- and CuInGaSe2-based cells, which achieved record efficiencies of 22.1% and 22.6% respectively, are the most attractive among thin-film solar cells. These high efficiencies have had a huge influence in making them highly competitive in the photovoltaic market, with an estimated final cost per module lower than US $ 0.50 per peak-watt. At the Thin Film Laboratory of the...

  2. Fire-induced reradiation underneath photovoltaic arrays on flat roofs

    DEFF Research Database (Denmark)

    Kristensen, Jens Steemann; Merci, Bart; Jomaas, Grunde

    2018-01-01

    The impact of the reflection of fire-induced heat from a gas burner was studied experimentally to gain knowledge on the interaction between photovoltaic (PV) panels and a fire on flat roofs. The heat flux was measured in a total of eight points at the same level as the top of the gas burner. The ...

  3. Teaching Photovoltaic Array Modelling and Characterization Using a Graphical User Interface and a Flash Solar Simulator

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2012-01-01

    This paper presents a set of laboratory tools aimed to support students with various backgrounds (no programming) to understand photovoltaic array modelling and characterization techniques. A graphical user interface (GUI) has been developed in Matlab, for modelling PV arrays and characterizing...... the effect of different types of parameters and operating conditions, on the current-voltage and power-voltage curves. The GUI is supported by experimental investigation and validation on PV module level, with the help of an indoor flash solar simulator....

  4. High-Speed Monitoring of Multiple Grid-Connected Photovoltaic Array Configurations and Supplementary Weather Station.

    Science.gov (United States)

    Boyd, Matthew T

    2017-06-01

    Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation.

  5. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    Science.gov (United States)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  6. Proceedings of the Flat-Plate Solar Array Project Research Forum on Photovoltaic Metallization Systems

    Science.gov (United States)

    1983-01-01

    A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.

  7. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    Science.gov (United States)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  8. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

  9. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    Science.gov (United States)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  10. Standard Test Methods for Electrical Performance of Nonconcentrator Terrestrial Photovoltaic Modules and Arrays Using Reference Cells

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover the electrical performance of photovoltaic modules and arrays under natural or simulated sunlight using a calibrated reference cell. 1.1.1 These test methods allow a reference module to be used instead of a reference cell provided the reference module has been calibrated using these test methods against a calibrated reference cell. 1.2 Measurements under a variety of conditions are allowed; results are reported under a select set of reporting conditions (RC) to facilitate comparison of results. 1.3 These test methods apply only to nonconcentrator terrestrial modules and arrays. 1.4 The performance parameters determined by these test methods apply only at the time of the test, and imply no past or future performance level. 1.5 These test methods apply to photovoltaic modules and arrays that do not contain series-connected photovoltaic multijunction devices; such module and arrays should be tested according to Test Methods E 2236. 1.6 The values stated in SI units are to be re...

  11. Characterization of the electrical output of flat-plate photovoltaic arrays

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electric output of flat-plate photovoltaic arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as direct-current to alternating-current power conditioners must be able to accommodate widely varying input levels, while maintaining operation at or near the array maximum power point.The results of an extensive computer simulation study that was used to define the parameters necessary for the systematic design of array/power-conditioner interfaces are presented as normalized ratios of power-conditioner parameters to array parameters, to make the results universally applicable to a wide variety of system sizes, sites, and operating modes. The advantages of maximum power tracking and a technique for computing average annual power-conditioner efficiency are discussed.

  12. Low-cost modular array-field designs for flat-panel and concentrator photovoltaic systems

    Science.gov (United States)

    Post, H. N.; Carmichael, D. C.; Alexander, G.; Castle, J. A.

    1982-09-01

    Described are the design and development of low-cost, modular array fields for flat-panel and concentrator photovoltaic (PV) systems. The objective of the work was to reduce substantially the cost of the array-field Balance-of-System (BOS) subsystems and site-specific design costs as compared to previous PV installations. These subsystems include site preparation, foundations, support structures, electrical writing, grounding, lightning protection, electromagnetic interference considerations, and controls. To reduce these BOS and design costs, standardized modular (building-block) designs for flat-panel and concentrator array fields have been developed that are fully integrated and optimized for lowest life-cycle costs. Using drawings and specifications now available, these building-block designs can be used in multiples to install various size array fields. The developed designs are immediately applicable (1982) and reduce the array-field BOS costs to a fraction of previous costs.

  13. A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions

    Directory of Open Access Journals (Sweden)

    Daniel Gonzalez Montoya

    2018-03-01

    Full Text Available Photovoltaic (PV arrays can be connected following regular or irregular connection patterns to form regular configurations (e.g., series-parallel, total cross-tied, bridge-linked, etc. or irregular configurations, respectively. Several reported works propose models for a single configuration; hence, making the evaluation of arrays with different configuration is a considerable time-consuming task. Moreover, if the PV array adopts an irregular configuration, the classical models cannot be used for its analysis. This paper proposes a modeling procedure for PV arrays connected in any configuration and operating under uniform or partial shading conditions. The procedure divides the array into smaller arrays, named sub-arrays, which can be independently solved. The modeling procedure selects the mesh current solution or the node voltage solution depending on the topology of each sub-array. Therefore, the proposed approach analyzes the PV array using the least number of nonlinear equations. The proposed solution is validated through simulation and experimental results, which demonstrate the proposed model capacity to reproduce the electrical behavior of PV arrays connected in any configuration.

  14. PVSIM{copyright}: A simulation program for photovoltaic cells, modules, and arrays

    Energy Technology Data Exchange (ETDEWEB)

    King, D.L.; Dudley, J.K.; Boyson, W.E.

    1996-06-01

    An electrical simulation model for photovoltaic cells, modules, and arrays has been developed that will be useful to a wide range of analysts in the photovoltaic industry. The Microsoft{reg_sign} Windows{trademark} based program can be used to analyze individual cells, to analyze the effects of cell mismatch or reverse bias(`hot spot`) heating in modules and to analyze the performance of large arrays of modules including bypass and blocking diodes. User defined statistical variance can be applied to the fundamental parameters used to simulate the cells and diodes. The model is most appropriate for cells that can be accurately modeled using a two-diode equivalent circuit. This paper describes the simulation program and illustrates its versatility with examples.

  15. Analytical Modelling and Simulation of Photovoltaic Panels and Arrays

    Directory of Open Access Journals (Sweden)

    H. Bourdoucen

    2007-12-01

    Full Text Available In this paper, an analytical model for PV panels and arrays based on extracted physical parameters of solar cells is developed. The proposed model has the advantage of simplifying mathematical modelling for different configurations of cells and panels without losing efficiency of PV system operation. The effects of external parameters, mainly temperature and solar irradiance have been considered in the modelling. Due to their critical effects on the operation of the panel, effects of series and shunt resistances were also studied. The developed analytical model has been easily implemented, simulated and validated using both Spice and Matlab packages for different series and parallel configurations of cells and panels. The results obtained with these two programs are in total agreement, which make the proposed model very useful for researchers and designers for quick and accurate sizing of PV panels and arrays.

  16. Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings

    Science.gov (United States)

    Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B.

    2018-04-01

    Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO2) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.

  17. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  18. Effects of design on cost of flat-plate solar photovoltaic arrays for terrestrial central station power applications

    Science.gov (United States)

    Tsou, P.; Stolte, W.

    1978-01-01

    The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.

  19. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  20. Plasmonic Photovoltaic Cells with Dual-Functional Gold, Silver, and Copper Half-Shell Arrays.

    Science.gov (United States)

    Wu, Ling; Kim, Gyu Min; Nishi, Hiroyasu; Tatsuma, Tetsu

    2017-09-12

    Solid-state photovoltaic cells based on plasmon-induced charge separation (PICS) have attracted growing attention during the past decade. However, the power conversion efficiency (PCE) of the previously reported devices, which are generally loaded with dispersed metal nanoparticles as light absorbers, has not been sufficiently high. Here we report simpler plasmonic photovoltaic cells with interconnected Au, Ag, and Cu half-shell arrays deposited on SiO 2 @TiO 2 colloidal crystals, which serve both as a plasmonic light absorber and as a current collector. The well-controlled and easily prepared plasmonic structure allows precise comparison of the PICS efficiency between different plasmonic metal species. The cell with the Ag half-shell array has higher photovoltaic performance than the cells with Au and Cu half-shell arrays because of the high population of photogenerated energetic electrons, which gives a high electron injection efficiency and suppressed charge recombination probability, achieving the highest PCE among the solid-state PICS devices even without a hole transport layer.

  1. Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method

    International Nuclear Information System (INIS)

    Lin, Chia-Hung; Huang, Cong-Hui; Du, Yi-Chun; Chen, Jian-Liung

    2011-01-01

    Highlights: → The FOICM can shorten the tracking time less than traditional methods. → The proposed method can work under lower solar radiation including thin and heavy clouds. → The FOICM algorithm can achieve MPPT for radiation and temperature changes. → It is easy to implement in a single-chip microcontroller or embedded system. -- Abstract: This paper proposes maximum photovoltaic power tracking (MPPT) for the photovoltaic (PV) array using the fractional-order incremental conductance method (FOICM). Since the PV array has low conversion efficiency, and the output power of PV array depends on the operation environments, such as various solar radiation, environment temperature, and weather conditions. Maximum charging power can be increased to a battery using a MPPT algorithm. The energy conversion of the absorbed solar light and cell temperature is directly transferred to the semiconductor, but electricity conduction has anomalous diffusion phenomena in inhomogeneous material. FOICM can provide a dynamic mathematical model to describe non-linear characteristics. The fractional-order incremental change as dynamic variable is used to adjust the PV array voltage toward the maximum power point. For a small-scale PV conversion system, the proposed method is validated by simulation with different operation environments. Compared with traditional methods, experimental results demonstrate the short tracking time and the practicality in MPPT of PV array.

  2. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  3. A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system

    International Nuclear Information System (INIS)

    Khatib, Tamer; Ibrahim, Ibrahim A.; Mohamed, Azah

    2016-01-01

    Highlights: • We review the current methods for sizing standalone PV systems. • We review the current criteria adapted in sizing standalone PV systems. • We review current method for sizing battery in standalone PV systems. - Abstract: The reliance of future energy demand on standalone PV system is based on its payback period and particular electrical grid parity prices. This highlights the importance for optimum and applicable methods for sizing these systems. Moreover, the designers are being more sensitive toward simple and reliable sizing models for standalone PV system. This paper proposes a review on important knowledge that needs to be taken into account while designing and implementing standalone PV systems. Such a knowledge includes configurations of standalone photovoltaic system, evaluation criteria for unit sizing, sizing methodologies. Moreover, this review provides highlights on challenges and limitations of standalone PV system size optimization techniques.

  4. An optimized efficient dual junction InGaN/CIGS solar cell: A numerical simulation

    Science.gov (United States)

    Farhadi, Bita; Naseri, Mosayeb

    2016-08-01

    The photovoltaic performance of an efficient double junction InGaN/CIGS solar cell including a CdS antireflector top cover layer is studied using Silvaco ATLAS software. In this study, to gain a desired structure, the different design parameters, including the CIGS various band gaps, the doping concentration and the thickness of CdS layer are optimized. The simulation indicates that under current matching condition, an optimum efficiency of 40.42% is achieved.

  5. Standard Test Method for Wet Insulation Integrity Testing of Photovoltaic Arrays

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers a procedure to determine the insulation resistance of a photovoltaic (PV) array (or its component strings), that is, the electrical resistance between the array's internal electrical components and is exposed, electrically conductive, non-current carrying parts and surfaces of the array. 1.2 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  6. Ultradense, Deep Subwavelength Nanowire Array Photovoltaics As Engineered Optical Thin Films

    KAUST Repository

    Tham, Douglas

    2010-11-10

    A photovoltaic device comprised of an array of 20 nm wide, 32 nm pitch array of silicon nanowires is modeled as an optical material. The nanowire array (NWA) has characteristic device features that are deep in the subwavelength regime for light, which permits a number of simplifying approximations. Using photocurrent measurements as a probe of the absorptance, we show that the NWA optical properties can be accurately modeled with rigorous coupled-wave analysis. The densely structured NWAs behave as homogeneous birefringent materials into the ultraviolet with effective optical properties that are accurately modeled using the dielectric functions of bulk Si and SiO 2, coupled with a physical model for the NWA derived from ellipsometry and transmission electron microscopy. © 2010 American Chemical Society.

  7. Design of a Solar Motor Drive System Fed by a Direct-Connected Photovoltaic Array

    Directory of Open Access Journals (Sweden)

    AYDOGMUS, O.

    2012-08-01

    Full Text Available A solar motor pump drive system is modeled and simulated. The proposed drive system does not require any kind of energy storage system and dc-dc converter. The system is connected directly to a photovoltaic (PV array. Thus, a low cost solar system can be achieved. A vector controlled Permanent Magnet Synchronous Motor (PMSM is used as a solar motor to increase the efficiency of system. The motor is designed for a low rated voltage level about 24V. The hill climbing MPPT method is used for balanced the motor power and PV power to obtain a high efficiency. The results are performed by using MATLAB/SimPowerSystem blocks. In addition, the PV array is modeled to allow for the possibility of running as on-line adjustable in simulation environment without using lookup table. The performances of motor, MPPT and drive system are analyzed in different conditions as temperature and irradiation of PV array.

  8. E-Cigs, Menthol & Dip

    Science.gov (United States)

    ... are many types of tobacco products. Learn how e-cigarettes, menthol cigarettes, smokeless tobacco, and other products are ... your health. What We Know About Electronic Cigarettes (E-cigarettes) Some people use e-cigs to quit smoking. ...

  9. E-Cigs, Menthol & Dip

    Science.gov (United States)

    ... Close Search × MENU BACK CLOSE SMOKEFREE.GOV HOME E-Cigs, Menthol & Dip There are many types of tobacco products. Learn how e-cigarettes, menthol cigarettes, smokeless tobacco, and other products ...

  10. Multiple Solutions for Reconfiguration to Address Partial Shading Losses in Solar Photovoltaic Arrays

    Science.gov (United States)

    Sharma, Nikesh; Pareek, Smita; Chaturvedi, Nitin; Dahiya, Ratna

    2018-03-01

    Solar photovoltaic (SPV) systems are steadily rising and considered as the best alternatives to meet the rising demand of energy. In developing countries like India, SPV’s contribution being a clean energy is the most favourable. However, experiences have shown that produced power of these systems is usually affected due to day, night, seasonal variations, insolation, partial shading conditions etc. Among these parameters, partial shading causes a huge reduction in output power of PV systems. This results in lack of confidence for this technology among users. Thus, it is important and a major challenge in PV systems to minimize the effect of partial shading on their energy production. The work in this paper aims to propose solutions for reconfiguration of solar photovoltaic arrays in order to reduce partial shading losses and thus to enhance power generation.

  11. Enhanced model of photovoltaic cell/panel/array considering the direct and reverse modes

    Science.gov (United States)

    Zegaoui, Abdallah; Boutoubat, Mohamed; Sawicki, Jean-Paul; Kessaissia, Fatma Zohra; Djahbar, Abdelkader; Aillerie, Michel

    2018-05-01

    This paper presents an improved generalized physical model for photovoltaic, PV cells, panels and arrays taking into account the behavior of these devices when considering their biasing existing in direct and reverse modes. Existing PV physical models generally are very efficient for simulating influence of irradiation changes on the short circuit current but they could not visualize the influences of temperature changes. The Enhanced Direct and Reverse Mode model, named EDRM model, enlightens the influence on the short-circuit current of both temperature and irradiation in the reverse mode of the considered PV devices. Due to its easy implementation, the proposed model can be a useful power tool for the development of new photovoltaic systems taking into account and in a more exhaustive manner, environmental conditions. The developed model was tested on a marketed PV panel and it gives a satisfactory results compared with parameters given in the manufacturer datasheet.

  12. Scale-up issues of CIGS thin film PV modules

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, Neelkanth G. [Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, FL 32922 (United States)

    2011-01-15

    Photovoltaics cost has been declining following a 70% learning curve. Now the challenge is to bring down the cost of solar electricity to make it competitive with conventional sources within the next decade. In the long run, the module efficiencies tend to reach 80% of the champion cell efficiencies. Using a semiempirical methodology, it has been shown earlier that while the triple junction a-Si:H thin film technology is competitive, CIGS and CdTe thin film module technologies are highly competitive and presently offer the best approach for significantly exceeding the cost/performance levels of standard and non-standard crystalline Si PV technologies. Since 2006, the production of thin film solar cell in the U.S. has surpassed that of c-Si. At present, the production of CIGS PV modules lags considerably behind that of CdTe PV modules. This is mainly because of its complexity. Scale-up issues related to various CIGS preparation technologies such as co-evaporation, metallic precursor deposition by magnetron sputtering and non-vacuum techniques such as ink-jet printing, electroplating or doctor-blade technology followed by their selenization/sulfurization are discussed so as to assist the CIGS technology to attain its full potential. Besides the welcome announcements of large volume production, it is essential to achieve the production cost below $1/Wp in the near term and attain production speeds comparable to CdTe production speeds. Comparable production speeds are expected to be achieved within the next decade. This will enable reduction of CIGS module production costs to {proportional_to}65 cents /Wp that would be comparable to the CdTe module projected production cost. Additionally CIGS will have a higher efficiency premium. (author)

  13. Regional climate consequences of large-scale cool roof and photovoltaic array deployment

    International Nuclear Information System (INIS)

    Millstein, Dev; Menon, Surabi

    2011-01-01

    Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately, photovoltaic arrays across the United States. We use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover. With the adoption of cool roofs and pavements, domain-wide annual average outgoing radiation increased by 0.16 ± 0.03 W m -2 (mean ± 95% C.I.) and afternoon summertime temperature in urban locations was reduced by 0.11-0.53 deg. C, although some urban areas showed no statistically significant temperature changes. In response to increased urban albedo, some rural locations showed summer afternoon temperature increases of up to + 0.27 deg. C and these regions were correlated with less cloud cover and lower precipitation. The emissions offset obtained by this increase in outgoing radiation is calculated to be 3.3 ± 0.5 Gt CO 2 (mean ± 95% C.I.). The hypothetical solar arrays were designed to be able to produce one terawatt of peak energy and were located in the Mojave Desert of California. To simulate the arrays, the desert surface albedo was darkened, causing local afternoon temperature increases of up to + 0.4 deg. C. Due to the solar arrays, local and regional wind patterns within a 300 km radius were affected. Statistically significant but lower magnitude changes to temperature and radiation could be seen across the domain due to the introduction of the solar arrays. The addition of photovoltaic arrays caused no significant change to summertime outgoing radiation when averaged

  14. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    Science.gov (United States)

    Siaw, Fei-Lu

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%. PMID:24453823

  15. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Fei-Lu Siaw

    2013-01-01

    Full Text Available This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells’ voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  16. A systematic method of interconnection optimization for dense-array concentrator photovoltaic system.

    Science.gov (United States)

    Siaw, Fei-Lu; Chong, Kok-Keong

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  17. Smart Global Maximum Power Point Tracking Controller of Photovoltaic Module Arrays

    Directory of Open Access Journals (Sweden)

    Long-Yi Chang

    2018-03-01

    Full Text Available This study first explored the effect of shading on the output characteristics of modules in a photovoltaic module array. Next, a modified particle swarm optimization (PSO method was employed to track the maximum power point of the multiple-peak characteristic curve of the array. Through the optimization method, the weighting value and cognition learning factor decreased with an increasing number of iterations, whereas the social learning factor increased, thereby enhancing the tracking capability of a maximum power point tracker. In addition, the weighting value was slightly modified on the basis of the changes in the slope and power of the characteristic curve to increase the tracking speed and stability of the tracker. Finally, a PIC18F8720 microcontroller was coordinated with peripheral hardware circuits to realize the proposed PSO method, which was then adopted to track the maximum power point of the power–voltage (P–V output characteristic curve of the photovoltaic module array under shading. Subsequently, tests were conducted to verify that the modified PSO method exhibited favorable tracking speed and accuracy.

  18. Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Li, Ming; Ji, Xu; Li, Guoliang; Wei, Shengxian; Li, YingFeng; Shi, Feng

    2011-01-01

    Highlights: → The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied. → The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were studied by experiments. → The influences between the solar cell's performance and the series resistances, the working temperature, solar irradiation intensity were explored. - Abstract: The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied via both experiment and theoretical calculation. The I-V characteristics of the solar cell arrays and the output performances of the TCPV/T system demonstrated that among the investigated four types of solar cell arrays, the triple junction GaAs cells possessed good performance characteristics and the polysilicon cells exhibited poor performance characteristics under concentrating conditions. The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were also studied by experiments. The optimum concentration ratios for the single crystalline silicon cells and Super cells were 4.23 and 8.46 respectively, and the triple junction GaAs cells could work well at higher concentration ratio. Besides, some theoretical calculations and experiments were performed to explore the influences of the series resistances and the working temperature. When the series resistances R s changed from 0 Ω to 1 Ω, the maximum power P m of the single crystalline silicon, the polycrystalline silicon, the Super cell and the GaAs cell arrays decreased by 67.78%, 74.93%, 77.30% and 58.07% respectively. When the cell temperature increased by 1 K, the short circuit current of the four types of solar cell arrays decreased by 0.11818 A, 0.05364 A, 0.01387 A and 0.00215 A respectively. The research results demonstrated that the output performance of the solar cell arrays with lower

  19. A general modeling method for I-V characteristics of geometrically and electrically configured photovoltaic arrays

    International Nuclear Information System (INIS)

    Liu Guangyu; Nguang, Sing Kiong; Partridge, Ashton

    2011-01-01

    Highlights: → A novel and general method is proposed for modeling PV arrays or modules. → A robust algorithm is used for the first time to improve the convergence to solution. → Auxiliary functions in other general methods are not compulsory in our method. → It is novel that geometric configuration is also incorporated. → A case study is performed to show the approach's advantages and unique features. - Abstract: A general method for modeling typical photovoltaic (PV) arrays and modules is proposed to find the exact current and voltage relationship of PV arrays or modules of geometrically and electrically different configurations. Nonlinear characteristic equations of electrical devices in solar array or module systems are numerically constructed without adding any virtual electrical components. Then, a robust damped Newton method is used to find exact I-V relationship of these general nonlinear equations, where the convergence is guaranteed. The model can deal with different mismatch effects such as different configurations of bypass diodes, and partial shading. Geometry coordinates of PV components are also considered to facilitate the modeling of the actual physical configuration. Simulation of a PV array with 48 modules, partially shaded by a concrete structure, is performed to verify the effectiveness and advantages of the proposed method.

  20. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    Science.gov (United States)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  1. 26+ Year Old Photovoltaic Power Plant: Degradation and Reliability Evaluation of Crystalline Silicon Modules -- South Array

    Science.gov (United States)

    Olakonu, Kolapo

    As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kW dc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kW ac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power

  2. EPRI 25kW high concentration photovoltaic integrated array concept and associated economics

    International Nuclear Information System (INIS)

    Gunn, J.A.; Dostalek, F.J.

    1993-01-01

    This paper describes a cost effective photovoltaic array design for the high concentration technology being developed by the Electric Power Research Institute for utility scale applications. The concept of an ''integrated array'' is to attach Fresnel lens parquets directly to the front of the tracker structure and PV panels directly to the back of the structure thereby eliminating redundant structural components. The concept also incorporates the maximum use of automated manufacturing techniques for all components thereby minimizing material waste, fabrication and assembly labor. This paper also describes the results of a first approach cost and economic study for the technology which shows the potential for levelized energy cost below $0.10/kWh for a 50 MW ac plant given a mature technology

  3. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  4. Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final Report. Volume II: Silicon material

    OpenAIRE

    Lutwack, R.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. The goal of the Silicon Material Task, a part of the FSA Project, was to develop and ...

  5. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    Science.gov (United States)

    Hanak, Joseph J.; Kaschmitter, Jim

    1991-01-01

    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.

  6. A distributed monitoring system for photovoltaic arrays based on a two-level wireless sensor network

    Science.gov (United States)

    Su, F. P.; Chen, Z. C.; Zhou, H. F.; Wu, L. J.; Lin, P. J.; Cheng, S. Y.; Li, Y. F.

    2017-11-01

    In this paper, a distributed on-line monitoring system based on a two-level wireless sensor network (WSN) is proposed for real time status monitoring of photovoltaic (PV) arrays to support the fine management and maintenance of PV power plants. The system includes the sensing nodes installed on PV modules (PVM), sensing and routing nodes installed on combiner boxes of PV sub-arrays (PVA), a sink node and a data management centre (DMC) running on a host computer. The first level WSN is implemented by the low-cost wireless transceiver nRF24L01, and it is used to achieve single hop communication between the PVM nodes and their corresponding PVA nodes. The second level WSN is realized by the CC2530 based ZigBee network for multi-hop communication among PVA nodes and the sink node. The PVM nodes are used to monitor the PVM working voltage and backplane temperature, and they send the acquired data to their PVA node via the nRF24L01 based first level WSN. The PVA nodes are used to monitor the array voltage, PV string current and environment irradiance, and they send the acquired and received data to the DMC via the ZigBee based second level WSN. The DMC is designed using the MATLAB GUIDE and MySQL database. Laboratory experiment results show that the system can effectively acquire, display, store and manage the operating and environment parameters of PVA in real time.

  7. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Noel, G.T.; Sliemers, F.A.; Deringer, G.C.; Wood, V.E.; Wilkes, K.E.; Gaines, G.B.; Carmichael, D.C.

    1978-01-15

    The validation of a service life of 20 years for low-cost photovoltaic arrays must be accomplished through accelerated life-prediction tests. A methodology for such tests has been developed in a preceding study. The results discussed consist of the initial identification and assessment of all known measurement techniques and instruments that might be used in these life-prediction tests. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories--chemical, electrical, optical, thermal, mechanical, and ''other physicals''. Using specified evaluation criteria, the most promising techniques and instruments for use in life-prediction tests of arrays are then selected. These recommended techniques and their characteristics are described. Recommendations are made regarding establishment of the adequacy, particularly with respect to precision, of the more fully developed techniques for this application, and regarding the experimental evaluation of promising developmental techniques. Measurement needs not satisfied by presently available techniques/instruments are also identified.

  8. Degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.J.

    2015-01-01

    Thin film CIGS solar cells and individual layers within these solar cells have been tested in order to assess their long term stability. Alongside with the execution of standard tests, in which elevated temperatures and humidity levels are used, the solar cells have also been exposed to a

  9. Monolithic two-terminal hybrid a-Si:H/CIGS tandem cells

    NARCIS (Netherlands)

    Blanker, J.; Vroon, Z.; Zeman, M.; Smets, A.

    2016-01-01

    Copper-indium-gallium-di-selenide (CIGS) is the present record holder in lab-scale thin-film photovoltaics (TFPV). One of the problems of this PV technology is the scarcity of indium. Multi-junction solar cells allow better spectral utilization of the light spectrum, while the required current

  10. Development of a Photovoltaic Array Emulator System in Real Time Considering Climatic Conditions Variations

    Directory of Open Access Journals (Sweden)

    Camilo E. Ardila-Franco

    2013-11-01

    Full Text Available This paper presents the development of an emulator that has the ability to replicate, in real time, the behavior of photovoltaic panels (PV arrays considering different conditions of irradiation and temperature for each one. The emulator consists of a data acquisition card, a programmable source and a computer. It is based on the bypass diode model that provides a better approximation to real operating conditions. The solution is computed by a simplified equation that uses the Lambert W function, which reduces the computation time. After that, it generates a solution table of values of current as a function of voltage on terminals, temperature and irradiation. Real-time emulation is performed by means of a search algorithm in the solutions table of the closest value to the voltage imposed on the terminals.

  11. Reduction of intensity variations on a photovoltaic array with compound parabolic concentrators

    Science.gov (United States)

    Greenman, P.; Ogallagher, J.; Winston, R.; Costogue, E.

    1979-01-01

    The reduction of nonuniformities in the intensity distribution of light focused on a photovoltaic array by a compound parabolic concentrator is investigated. The introduction of small distortions into the surfaces of the reflector in order to diffuse the incident collimated light to fill the angular acceptance of the concentrator is calculated by means of ray tracing to decrease the irradiance nonuniformity at the cost of a lowered effective concentration of the concentrator. Measurements of the intensity distribution on a scale test model in terrestrial sunlight with corrugated aluminized mylar reflectors are shown to be in good agreement with the ray tracing results. A two-stage concentrator consisting of a focusing primary and a nonimaging secondary is also shown to result in a fairly uniform intensity distribution except in the case of a 4-deg incidence angle, which may be corrected by the introduction of distortions into one or both concentration stages.

  12. Optical characterization of nonimaging dish concentrator for the application of dense-array concentrator photovoltaic system.

    Science.gov (United States)

    Tan, Ming-Hui; Chong, Kok-Keong; Wong, Chee-Woon

    2014-01-20

    Optimization of the design of a nonimaging dish concentrator (NIDC) for a dense-array concentrator photovoltaic system is presented. A new algorithm has been developed to determine configuration of facet mirrors in a NIDC. Analytical formulas were derived to analyze the optical performance of a NIDC and then compared with a simulated result obtained from a numerical method. Comprehensive analysis of optical performance via analytical method has been carried out based on facet dimension and focal distance of the concentrator with a total reflective area of 120 m2. The result shows that a facet dimension of 49.8 cm, focal distance of 8 m, and solar concentration ratio of 411.8 suns is the most optimized design for the lowest cost-per-output power, which is US$1.93 per watt.

  13. Theory for optimal design of waveguiding light concentrators in photovoltaic microcell arrays.

    Science.gov (United States)

    Semichaevsky, Andrey V; Johnson, Harley T; Yoon, Jongseung; Nuzzo, Ralph G; Li, Lanfang; Rogers, John

    2011-06-10

    Efficiency of ultrathin flexible solar photovoltaic silicon microcell arrays can be significantly improved using nonimaging solar concentrators. A fluorophore is introduced to match the solar spectrum and the low-reflectivity wavelength range of Si, reduce the escape losses, and allow the nontracking operation. In this paper we optimize our solar concentrators using a luminescent/nonluminescent photon transport model. Key modeling results are compared quantitatively to experiments and are in good agreement with the latter. Our solar concentrator performance is not limited by the dye self-absorption. Bending deformations of the flexible solar collectors do not result in their indirect gain degradation compared to flat solar concentrators with the same projected area.

  14. Using Measured Plane-of-Array Data Directly in Photovoltaic Modeling: Methodology and Validation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine; Freestate, David; Riley, Cameron; Hobbs, William

    2016-11-01

    Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results from both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.

  15. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    Science.gov (United States)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  16. Photovoltaics

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the photovoltaics. It presents the principles and the applications, the issues and the current technology, the challenges and the Group Total commitment in the domain. (A.L.B.)

  17. Broadband High Efficiency Fractal-Like and Diverse Geometry Silicon Nanowire Arrays for Photovoltaic Applications

    Science.gov (United States)

    AL-Zoubi, Omar H.

    Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been proposed which offer the benefits of the low amount of material and fabrication costs. Regrettably, thin film PVSC show poor light to electricity conversion efficiency because of many factors especially the high optical losses. To enhance conversion efficiency, numerous techniques have been proposed to reduce the optical losses and to enhance the absorption of light in thin film PVSC. One promising technique is the nanowire (NW) arrays in general and the silicon nanowire (SiNW) arrays in particular. The purpose of this research is to introduce vertically aligned SiNW arrays with enhanced and broadband absorption covering the entire solar spectrum while simultaneously reducing the amount of material used. To this end, we apply new concept for designing SiNW arrays based on employing diversity of physical dimensions, especially radial diversity within certain lattice configurations. In order to study the interaction of light with SiNW arrays and compute their optical properties, electromagnetic numerical modeling is used. A commercial numerical electromagnetic solver software package, high frequency structure simulation (HFSS), is utilized to model the SiNW arrays and to study their optical properties. We studied different geometries factors that affect the optical properties of SiNW arrays. Based on this study, we

  18. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  19. All-Nonvacuum-Processed CIGS Solar Cells Using Scalable Ag NWs/AZO-Based Transparent Electrodes.

    Science.gov (United States)

    Wang, Mingqing; Choy, Kwang-Leong

    2016-07-06

    With record cell efficiency of 21.7%, CIGS solar cells have demonstrated to be a very promising photovoltaic (PV) technology. However, their market penetration has been limited due to the inherent high cost of the cells. In this work, to lower the cost of CIGS solar cells, all nonvacuum-processed CIGS solar cells were designed and developed. CIGS absorber was prepared by the annealing of electrodeposited metallic layers in a chalcogen atmosphere. Nonvacuum-deposited Ag nanowires (NWs)/AZO transparent electrodes (TEs) with good transmittance (92.0% at 550 nm) and high conductivity (sheet resistance of 20 Ω/□) were used to replace the vacuum-sputtered window layer. Additional thermal treatment after device preparation was conducted at 220 °C for a few of minutes to improve both the value and the uniformity of the efficiency of CIGS pixel cell on 5 × 5 cm substrate. The best performance of the all-nonvacuum-fabricated CIGS solar cells showed an efficiency of 14.05% with Jsc of 34.82 mA/cm(2), Voc of 0.58 V, and FF of 69.60%, respectively, which is comparable with the efficiency of 14.45% of a reference cell using a sputtered window layer.

  20. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    Science.gov (United States)

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-12-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  1. High efficiency copper indium gallium diselenide (CIGS) thin film solar cells

    Science.gov (United States)

    Rajanikant, Ray Jayminkumar

    The generation of electrical current from the solar radiation is known as the photovoltaic effect. Solar cell, also known as photovoltaic (PV) cell, is a device that works on the principle of photovoltaic effect, and is widely used for the generation of electricity. Thin film polycrystalline solar cells based on copper indium gallium diselenide (CIGS) are admirable candidates for clean energy production with competitive prices in the near future. CIGS based polycrystalline thin film solar cells with efficiencies of 20.3 % and excellent temperature stability have already been reported at the laboratory level. The present study discusses about the fabrication of CIGS solar cell. Before the fabrication part of CIGS solar cell, a numerical simulation is carried out using One-Dimensional Analysis of Microelectronic and Photonic Structures (AMPS-ID) for understanding the physics of a solar cell device, so that an optimal structure is analyzed. In the fabrication part of CIGS solar cell, Molybdenum (Mo) thin film, which acts as a 'low' resistance metallic back contact, is deposited by RF magnetron sputtering on organically cleaned soda lime glass substrate. The major advantages for using Mo are high temperature, (greater than 600 °C), stability and inertness to CIGS layer (i.e., no diffusion of CIGS into Mo). Mo thin film is deposited at room temperature (RT) by varying the RF power and the working pressure. The Mo thin films deposited with 100 W RF power and 1 mTorr working pressure show a reflectivity of above average 50 % and the low sheet resistance of about 1 O/□. The p-type CIGS layer is deposited on Mo. Before making thin films of CIGS, a powder of CIGS material is synthesized using melt-quenching method. Thin films of CIGS are prepared by a single-stage flash evaporation process on glass substrates, initially, for optimization of deposition parameters and than on Mo coated glass substrates for device fabrication. CIGS thin film is deposited at 250 °C at a

  2. The mini-dome Fresnel lens photovoltaic concentrator array - Current status of component and prototype panel testing

    Science.gov (United States)

    Piszczor, M. F.; Swartz, C. K.; O'Neill, M. J.; Mcdanal, A. J.; Fraas, L. M.

    1990-01-01

    NASA Lewis and ENTECH have been developing a high-efficiency, lightweight space photovoltaic concentrator array. The emphasis of the program has shifted to fabrication and testing of the minidome Fresnel lens and other array components. Protototype lenses have been tested for optical efficiency, with results around 90 percent, and tracking error performance. The results of these tests have been very consistent with the predicted analytical performance. Work has also progressed in the fabrication of the array support structure. Recent advances in 30 percent efficient stacked cell technology will have a significant effect on the array performance. It is concluded that near-term array performance goals of 300 W/sq m and 100 W/kg are feasible.

  3. Photovoltaics

    International Nuclear Information System (INIS)

    Prince, M.B.

    1994-01-01

    Photovoltaic energy systems have the long range potential for supplying a significant part of the world's need for electricity Even today, such systems offer many benefits compared to other energy systems such as fossil fuel, nuclear and other renewable systems. These include: stability, reliability, require no water, no moving parts, environmentally benign, moderate efficiency, modular, universally usable, easy maintenance, and low power distribution costs. This paper will present information on present costs of the key system components, realistic cost projections and the results of a comparative study of three renewable approaches for a large system. (author), (tabs. 2)

  4. Research on the Electrical Characteristics of Photovoltaic Arrays and Corresponding MPPT Simulation

    Directory of Open Access Journals (Sweden)

    Shengming Li

    2013-05-01

    Full Text Available Photovoltaic cells, as the primary part of a solar photovoltaic system, are a nonlinear DC power supply related to multiple parameters. The demand of increasing the generating efficiency of photovoltaic cells requires having a good understanding of their electrical characteristics. In this study, the mathematical and physical model of the photovoltaic cells was built by the means of Matlab and Simulink based on the internal principles and equivalent circuits of the photovoltaic cells. After the simulation of such practical and versatile model, it’s found that the nonlinear P-V and I-V characteristics of the photovoltaic cells, with the change of sunlight intensity and temperature, could be accurately reflected by this high simulation precision model. Furthermore, the Maximum Power Point Tracking method was proposed using the logical formula dP/dI=0 of the maximum power point of photovoltaic cells. This method can simply and fast implement the tracking for the maximum power point.

  5. Modeling and performance analysis dataset of a CIGS solar cell with ZnS buffer layer

    Directory of Open Access Journals (Sweden)

    Md. Billal Hosen

    2017-10-01

    Full Text Available This article represents the baseline data of the several semiconductor materials used in the model of a CIGS thin film solar cell with an inclusion of ZnS buffer layer. As well, input parameters, contact layer data and operating conditions for CIGS solar cell simulation with ZnS buffer layer have been described. The schematic diagram of photovoltaic solar cell has been depicted. Moreover, the most important performance measurement graph, J-V characteristic curve, resulting from CIGS solar cell simulation has been analyzed to estimate the optimum values of fill factor and cell efficiency. These optimum results have been obtained from the open circuit voltage, short circuit current density, and the maximum points of voltage and current density generated from the cell.

  6. Photovoltaic

    International Nuclear Information System (INIS)

    Fechner, H.; Heidenreich, M.

    2001-01-01

    In 1993 a wide test for photovoltaic (PV) was carried out in Austria, 110 stations were built and precise measurements were done. At that time the demand of integrating direct current from solar cells into the 50 Hz alternating current network was a weak point. At present four european research projects dealing with security, reliability, network compatibility and its integration in buildings are being developed. The cost development of PVs in Germany from 1983 to 1998 is given. Because of the PV environmental quality, one million of new intallations are demanded (until 2010) by the European commission. In Austria exists ∼5,000 kWp installed capacity and the growth rate average in the last years was 30 %. (nevyjel)

  7. Low temperature deposition of bifacial CIGS solar cells on Al-doped Zinc Oxide back contacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavallari, Nicholas, E-mail: nicholas.cavallari@imem.cnr.it [IMEM-CNR, Parco Area delle Scienze 37/a, 43124 Parma (Italy); Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/a, 43124 Parma (Italy); Pattini, Francesco; Rampino, Stefano; Annoni, Filippo [IMEM-CNR, Parco Area delle Scienze 37/a, 43124 Parma (Italy); Barozzi, Mario [FBK—CMM—Micro Nano Facility, Via Sommarive 18, 38123 Trento (Italy); Bronzoni, Matteo; Gilioli, Edmondo; Gombia, Enos [IMEM-CNR, Parco Area delle Scienze 37/a, 43124 Parma (Italy); Maragliano, Carlo [Solar Bankers LLC, Phoenix, AZ (United States); Mazzer, Massimo [IMEM-CNR, Parco Area delle Scienze 37/a, 43124 Parma (Italy); Pepponi, Giancarlo [FBK—CMM—Micro Nano Facility, Via Sommarive 18, 38123 Trento (Italy); Spaggiari, Giulia; Fornari, Roberto [IMEM-CNR, Parco Area delle Scienze 37/a, 43124 Parma (Italy); Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/a, 43124 Parma (Italy)

    2017-08-01

    Highlights: • AZO and CIGS were deposited by Low-Temperature Pulsed Electron Deposition (LT-PED). • CIGS/AZO contacts with ohmic behavior and resistance of 1.07 Ω cm{sup 2} were fabricated. • LT-PED deposition of AZO and CIGS prevents formation of Ga{sub 2}O{sub 3} interlayer. • CIGS-based bifacial solar cells with AZO back contact were realized. • Front PV efficiency of 9.3% and equivalent bifacial efficiency of 11.6% were achieved. - Abstract: We report on the fabrication and characterization of Cu(In,Ga)Se{sub 2} (CIGS)-based thin film bifacial solar cells using Al-doped ZnO (AZO) as cost-effective and non-toxic transparent back contact. We show that, by depositing both CIGS and AZO by Low Temperature Pulsed Electron Deposition at a maximum temperature of 250 °C, a good ohmic contact is formed between the two layers and good quality solar cells can be fabricated as a result. Photovoltaic efficiencies as high as 9.3% (front illumination), 5.1% (backside illumination) and 11.6% (bifacial illumination) have been obtained so far. These values are remarkably higher than those previously reported in the literature. We demonstrate that this improvement is ascribed to the low-temperature deposition process that avoids the formation of Ga{sub 2}O{sub 3} at the CIGS/AZO interface and favours the formation of a low-resistivity contact in agreement with device simulations.

  8. Hydrazine-based deposition route for device-quality CIGS films

    International Nuclear Information System (INIS)

    Mitzi, David B.; Yuan, Min; Liu, Wei; Kellock, Andrew J.; Chey, S. Jay; Gignac, Lynne; Schrott, Alex G.

    2009-01-01

    A simple solution-based approach for depositing CIGS (Cu-In-Ga-Se/S) absorber layers is discussed, with an emphasis on film characterization, interfacial properties and integration into photovoltaic devices. The process involves incorporating all metal and chalcogenide components into a single hydrazine-based solution, spin coating a precursor film, and heat treating in an inert atmosphere, to form the desired CIGS film with up to micron-scaled film thickness and grain size. PV devices (glass/Mo/CIGS/CdS/i-ZnO/ITO) employing the spin-coated CIGS and using processing temperatures below 500 deg. C have yielded power conversion efficiencies of up to 10% (AM 1.5 illumination), without the need for a post-CIGS-deposition treatment in a gaseous Se source or a cyanide-based bath etch. Short-duration low-temperature (T < 200 deg. C ) oxygen treatment of completed devices is shown to have a positive impact on the performance of initially underperforming cells, thereby enabling better performance in devices prepared at temperatures below 500 deg. C

  9. Hydrazine-based deposition route for device-quality CIGS films

    Energy Technology Data Exchange (ETDEWEB)

    Mitzi, David B. [IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598 (United States)], E-mail: dmitzi@us.ibm.com; Yuan, Min; Liu, Wei [IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598 (United States); Kellock, Andrew J [IBM Almaden Research Center, 650 Harry Rd, San Jose, CA 95120 (United States); Chey, S Jay; Gignac, Lynne; Schrott, Alex G [IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598 (United States)

    2009-02-02

    A simple solution-based approach for depositing CIGS (Cu-In-Ga-Se/S) absorber layers is discussed, with an emphasis on film characterization, interfacial properties and integration into photovoltaic devices. The process involves incorporating all metal and chalcogenide components into a single hydrazine-based solution, spin coating a precursor film, and heat treating in an inert atmosphere, to form the desired CIGS film with up to micron-scaled film thickness and grain size. PV devices (glass/Mo/CIGS/CdS/i-ZnO/ITO) employing the spin-coated CIGS and using processing temperatures below 500 deg. C have yielded power conversion efficiencies of up to 10% (AM 1.5 illumination), without the need for a post-CIGS-deposition treatment in a gaseous Se source or a cyanide-based bath etch. Short-duration low-temperature (T < 200 deg. C ) oxygen treatment of completed devices is shown to have a positive impact on the performance of initially underperforming cells, thereby enabling better performance in devices prepared at temperatures below 500 deg. C.

  10. Degradation analysis of thin film photovoltaic modules

    International Nuclear Information System (INIS)

    Radue, C.; Dyk, E.E. van

    2009-01-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P MAX ) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 ∼30% and a total degradation of ∼42%. For Si-2 the initial P MAX was 7.93 W, with initial light-induced degradation of ∼10% and a total degradation of ∼17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  11. Degradation analysis of thin film photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C., E-mail: chantelle.radue@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2009-12-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P{sub MAX}) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 approx30% and a total degradation of approx42%. For Si-2 the initial P{sub MAX} was 7.93 W, with initial light-induced degradation of approx10% and a total degradation of approx17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  12. Alternative bufferlayers for CIGS solarcells

    Energy Technology Data Exchange (ETDEWEB)

    Beleanu, A.; Gruhn, T.; Blum, C.G.F.; Balke, B.; Felser, C. [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg - University, Mainz (Germany)

    2010-07-01

    Cadmium sulfide is a highly efficient buffer layer material in Cu(In,Ga)(S,Se2)[CIGS] solar devices, but for environmental reasons and possible gains in efficiency there is a great interest in replacing CdS by a cadmium-free alternative buffer layer. Using standard density functional theory (DFT) methods possible candidates like LiZnP and LiCuS have been proposed as alternative buffer layers. The experimental verification of the DFT results was quite challenging due to the fact that LiCuS was an unknow and completely new material. In a first step, we tried to synthesize LiCuS through solid state reactions in a corund crucible. After optimizing the parameters and successfully synthesizing the material its properties were investigated. In a second step, huge amounts of LiCuS and LiZnP were synthesized and pressed using Spark Plasma Sintering as 3 inch targets. LiCuS and LiZnP films were grown by radio-frequency magnetron sputtering from these target and their properties as an alternative buffer layer in CIGS solar cells were investigated. The 1:1:1 stoichiometry of the films was delivered from in-situ XPS measurements. Absorption measurements show a band gap of {approx}2.0 eV which is in good agreement with the theoretical estimates.

  13. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications

    Science.gov (United States)

    Borden, C. S.; Schwartz, D. L.

    1984-01-01

    The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options.

  14. Design, testing, and economics of a 430 W sub p photovoltaic concentrator array for non grid-connected applications

    Science.gov (United States)

    Maish, A. B.; Rios, M., Jr.; Togami, H.

    A stand-alone 430 W/sub p/ photovoltaic (PV) concentrating system for low power, non grid-connected applications has been designed, fabricated, and tested at Sandia National Laboratories. The array consists of four passively cooled Fresnel lens concentrating modules on a newly developed polar axis tracking structure. Two axis tracking is provided using a self powered clock drive unit mounted on a single post foundation. Test results of tracking accuracy, array output power, parasitic power, performance in winds and array reliability are discussed. using a range of estimated production costs for small production volumes, the life-cycle energy costs have been calculated and compared to the equivalent energy costs of a 3 kW diesel electric generator set and of an equivalent flat panel PV system.

  15. Computational Infrastructure for Geodynamics (CIG)

    Science.gov (United States)

    Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.

    2004-12-01

    Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to

  16. Nanosecond laser scribing of CIGS thin film solar cell based on ITO bottom contact

    Science.gov (United States)

    Kuk, Seungkuk; Wang, Zhen; Fu, Shi; Zhang, Tao; Yu, Yi Yin; Choi, JaeMyung; Jeong, Jeung-hyun; Hwang, David J.

    2018-03-01

    Cu(In,Ga)Se2 (CIGS) thin films, a promising photovoltaic architecture, have mainly relied on Molybdenum for the bottom contact. However, the opaque nature of Molybdenum (Mo) poses limitations in module level fabrication by laser scribing as a preferred method for interconnect. We examined the P1, P2, and P3 laser scribing processes on CIGS photovoltaic architecture on the indium tin oxide (ITO) bottom contact with a cost-effective nanosecond pulsed laser of 532 nm wavelength. Laser illuminated from the substrate side, enabled by the transparent bottom contact, facilitated selective laser energy deposition onto relevant interfaces towards high-quality scribing. Parametric tuning procedures are described in conjunction with experimental and numerical investigation of relevant mechanisms, and preliminary mini-module fabrication results are also presented.

  17. Analisis Mode Sistem Pembangkit Listrik Tenaga Hibrid Microhydro - Photovoltaic Array Menggunakan Homer (Studi Kasus : Kampung Bayang Janiah, Kabupaten Pesisir Selatan

    Directory of Open Access Journals (Sweden)

    Novi Kurniasih

    2015-03-01

    Full Text Available In this study discusses the optimization of the design and analysis of engineering economics Hybrid Power Plant Off-Grid Microhydro - Photovoltaic Array with the help of software HOMER 2 version 2.81. Utilization of Hybrid Power Plant System can overcome the electrical problems in Bayang Janiah village, Nagari Koto Ranah, Bayang Utara Subdistrict, Pesisir Selatan District that is far from the reach of the grid and can improve the reliability of electricity economically in which initially operated only 12 hours/day sourced from microhydro power plant only, can be upgraded to full operation 24 hours/day. From the analysis that has been conducted, obtained monthly discharge of Bayang Janiah river availability using dependable discharge F. J. Mock 90% of 102 L/s to 14 m of effective head is able to move the hydro turbine to produce power of about 11,3 kW. Meanwhile, for an array of photovoltaic systems produce power equal to 8.4 kW with a number of solar modules by 84 modules and the number of battery 6 V 1.091 Ah required 8 units and a bidirectional converter with a total capacity of 10 kW, totaling 2 units. HOMER simulation results show that the determination of the configuration of the hybrid power plant system design most optimal for application in Bayang Janiah village lowest Total NPC is based on the integration between microhydro - photovoltaic array - battery bank - bidirectional converter. On the optimal system configuration, microhydro contribution of 78.945 kWh/yr, a photovoltaic array of 11.404 kWh/yr, with a Total NPC of $ 146.041, Levelized COE of $ 0,525/kWh, while the electrical energy consumption of 30.668 kWh per year and has excess energy of 59.608 kWh/yr, so it can meet the needs of household electricity to 56 households as well as social facilities in the village.

  18. Game-Changing Photovoltaic Flexible Blanket Solar Array Technology with Spectrolab Flexsheets, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) in collaboration with Spectrolab, Inc. has developed a modular multi-junction photovoltaic flexible blanket technology that uses...

  19. CIGS thin films, solar cells, and submodules fabricated using a rf-plasma cracked Se-radical beam source

    International Nuclear Information System (INIS)

    Ishizuka, Shogo; Yamada, Akimasa; Shibata, Hajime; Fons, Paul; Niki, Shigeru

    2011-01-01

    Coevaporated Cu(In,Ga)Se 2 (CIGS) film growth using a rf-plasma cracked Se-radical beam (R-Se) source leads to a significant reduction in the amount of raw Se source material wasted during growth and exhibits unique film properties such as highly dense, smooth surfaces and large grain size. R-Se grown CIGS solar cells also show concomitant unique properties different from conventional evaporative Se (E-Se) source grown CIGS cells. In the present work, the impact of modified surfaces, interfaces, and bulk crystal properties of R-Se grown CIGS films on the solar cell performance was studied. When a R-Se source was used, Na diffusion into CIGS layers was enhanced while a remarkable diffusion of elemental Ga and Se into Mo back contact layers was observed. Improvements in the bulk crystal quality as manifested by large grain size and increased Na concentration with the use of a R-Se source is expected to be effective to improve photovoltaic performance. Using a R-Se source for the growth of CIGS absorber layers at a relatively low growth temperature, we have successfully demonstrated a monolithically integrated submodule efficiency of 15.0% (17 cells, aperture area of 76.5 cm 2 ) on 0.25-mm thick soda-lime glass substrates.

  20. Global Maximum Power Point Tracking (MPPT of a Photovoltaic Module Array Constructed through Improved Teaching-Learning-Based Optimization

    Directory of Open Access Journals (Sweden)

    Kuei-Hsiang Chao

    2016-11-01

    Full Text Available The present study proposes a maximum power point tracking (MPPT method in which improved teaching-learning-based optimization (I-TLBO is applied to perform global MPPT of photovoltaic (PV module arrays under dissimilar shading situations to ensure the maximum power output of the module arrays. The proposed I-TLBO enables the automatic adjustment of teaching factors according to the self-learning ability of students. Incorporating smart-tracking and self-study strategies can effectively improve the tracking response speed and steady-state tracking performance. To evaluate the feasibility of the proposed I-TLBO, a HIP-2717 PV module array from Sanyo Electric was employed to compose various arrays with different serial and parallel configurations. The arrays were operated under different shading conditions to test the MPPT with double, triple, or quadruple peaks of power-voltage characteristic curves. Boost converters were employed with TMS320F2808 digital signal processors to test the proposed MPPT method. Empirical results confirm that the proposed method exhibits more favorable dynamic and static-state response tracking performance compared with that of conventional TLBO.

  1. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Shi, Xusheng; Huang, Qunwu; Cui, Yong; Kang, Xue

    2017-01-01

    Highlights: • Direct-contact liquid film cooling dense-array solar cells was first proposed. • Average temperature was controlled well below 80 °C. • The maximum temperature difference was less than 10 °C. • The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under 589X. - Abstract: This paper presented a new method of cooling dense-array solar cells in high concentrating photovoltaic system by direct-contact liquid film, and water was used as working fluid. An electric heating plate was designed to simulate the dense-array solar cells in high concentrating photovoltaic system. The input power of electric heating plate simulated the concentration ratios. By heat transfer experiments, the effect of water temperatures and flow rates on heat transfer performance was investigated. The results indicated that: the average temperature of simulated solar cells was controlled well below 80 °C under water temperature of 30 °C and flow rate of 300 L/h when concentration ratio ranged between 300X and 600X. The maximum temperature difference among temperature measurement points was less than 10 °C, which showed the temperature distribution was well uniform. The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under concentration ratio of 589X. To improve heat transfer performance and obtain low average temperature of dense-array solar cells, lower water temperature and suitable water flow rate are preferred.

  2. Optimization of single channel glazed photovoltaic thermal (PVT) array using Evolutionary Algorithm (EA) and carbon credit earned by the optimized array

    International Nuclear Information System (INIS)

    Singh, Sonveer; Agrawal, Sanjay; Gadh, Rajit

    2015-01-01

    Highlights: • Optimization of SCGPVT array using Evolutionary Algorithm. • The overall exergy gain is maximized with an Evolutionary Algorithm. • Annual Performance has been evaluated for New Delhi (India). • There are improvement in results than the model given in literature. • Carbon credit analysis has been done. - Abstract: In this paper, work is carried out in three steps. In the first step, optimization of single channel glazed photovoltaic thermal (SCGPVT) array has been done with an Evolutionary Algorithm (EA) keeping the overall exergy gain is an objective function of the SCGPVT array. For maximization of overall exergy gain, total seven design variables have been optimized such as length of the channel (L), mass flow rate of flowing fluid (m_F), velocity of flowing fluid (V_F), convective heat transfer coefficient through the tedlar (U_T), overall heat transfer coefficient between solar cell to ambient through glass cover (U_S_C_A_G), overall back loss heat transfer coefficient from flowing fluid to ambient (U_F_A) and convective heat transfer coefficient of tedlar (h_T). It has been observed that the instant overall exergy gain obtained from optimized system is 1.42 kW h, which is 87.86% more than the overall exergy gain of a un-optimized system given in literature. In the second step, overall exergy gain and overall thermal gain of SCGPVT array has been evaluated annually and there are 69.52% and 88.05% improvement in annual overall exergy gain and annual overall thermal gain respectively than the un-optimized system for the same input irradiance and ambient temperature. In the third step, carbon credit earned by the optimized SCGPVT array has also been evaluated as per norms of Kyoto Protocol Bangalore climatic conditions.

  3. Characterization and Analysis of Ultrathin CIGS Films and Solar Cells Deposited by 3-Stage Process

    Directory of Open Access Journals (Sweden)

    Grace Rajan

    2018-01-01

    Full Text Available In view of the large-scale utilization of Cu(In,GaSe2 (CIGS solar cells for photovoltaic application, it is of interest not only to enhance the conversion efficiency but also to reduce the thickness of the CIGS absorber layer in order to reduce the cost and improve the solar cell manufacturing throughput. In situ and real-time spectroscopic ellipsometry (RTSE has been used conjointly with ex situ characterizations to understand the properties of ultrathin CIGS films. This enables monitoring the growth process, analyzing the optical properties of the CIGS films during deposition, and extracting composition, film thickness, grain size, and surface roughness which can be corroborated with ex situ measurements. The fabricated devices were characterized using current voltage and quantum efficiency measurements and modeled using a 1-dimensional solar cell device simulator. An analysis of the diode parameters indicates that the efficiency of the thinnest cells was restricted not only by limited light absorption, as expected, but also by a low fill factor and open-circuit voltage, explained by an increased series resistance, reverse saturation current, and diode quality factor, associated with an increased trap density.

  4. Nonimaging solar concentrator with near-uniform irradiance for photovoltaic arrays

    Science.gov (United States)

    O'Gallagher, Joseph J.; Winston, Roland; Gee, Randy

    2001-11-01

    We report results of a study our group has undertaken to design a solar concentrator with uniform irradiance on a planar target. This attribute is especially important for photovoltaic concentrators. We find that a variety of optical mixers, some incorporating a moderate level of concentration, can be quite effective in achieving near uniform irradiance.

  5. Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration

    Science.gov (United States)

    Lorach, Henri; Goetz, Georges; Mandel, Yossi; Lei, Xin; Kamins, Theodore I.; Mathieson, Keith; Huie, Philip; Dalal, Roopa; Harris, James S.; Palanker, Daniel

    2014-01-01

    Summary Loss of photoreceptors during retinal degeneration leads to blindness, but information can be reintroduced into the visual system using electrical stimulation of the remaining retinal neurons. Subretinal photovoltaic arrays convert pulsed illumination into pulsed electric current to stimulate the inner retinal neurons. Since required irradiance exceeds the natural luminance levels, an invisible near-infrared (915nm) light is used to avoid photophobic effects. We characterized the thresholds and dynamic range of cortical responses to prosthetic stimulation with arrays of various pixel sizes and with different number of photodiodes. Stimulation thresholds for devices with 140µm pixels were approximately half those of 70µm pixels, and with both pixel sizes, thresholds were lower with 2 diodes than with 3 diodes per pixel. In all cases these thresholds were more than two orders of magnitude below the ocular safety limit. At high stimulation frequencies (>20Hz), the cortical response exhibited flicker fusion. Over one order of magnitude of dynamic range could be achieved by varying either pulse duration or irradiance. However, contrast sensitivity was very limited. Cortical responses could be detected even with only a few illuminated pixels. Finally, we demonstrate that recording of the corneal electric potential in response to patterned illumination of the subretinal arrays allows monitoring the current produced by each pixel, and thereby assessing the changes in the implant performance over time. PMID:25255990

  6. An initial analysis of options for a UK feed-in tariff for photovoltaic energy, from an array owner's viewpoint

    International Nuclear Information System (INIS)

    Plater, Steve

    2009-01-01

    The UK government has announced the introduction from April 2010 of a feed-in tariff (FIT) for renewable energy, and initiated a consultation on its design. This paper compares three possible variants of a UK FIT for rooftop photovoltaic (PV) arrays, on the basis of calculated income and array cost payback time, and for three locations (north, central and southern England) and various levels of household electricity consumption. This modelling is based on an FIT rate equivalent to Germany's. It concludes that an FIT which paid only for PV electricity surplus to on-site needs, and exported to the grid, would mean a simple payback time too long to make array purchase appealing. Preferable would be either export to the grid of all PV electricity for FIT payment; or a lower FIT rate for electricity used on-site, plus full FIT for any surplus exported. The latter would involve significantly lower costs in feed-in tariff payments. Finally, the effect of the UK government's illustrative FIT rate for consultation is examined for the same locations and annual consumption levels.

  7. Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors.

    Science.gov (United States)

    Xie, Chao; Nie, Biao; Zeng, Longhui; Liang, Feng-Xia; Wang, Ming-Zheng; Luo, Linbao; Feng, Mei; Yu, Yongqiang; Wu, Chun-Yan; Wu, Yucheng; Yu, Shu-Hong

    2014-04-22

    Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.

  8. Optimal Design of MPPT Controllers for Grid Connected Photovoltaic Array System

    Science.gov (United States)

    Ebrahim, M. A.; AbdelHadi, H. A.; Mahmoud, H. M.; Saied, E. M.; Salama, M. M.

    2016-10-01

    Integrating photovoltaic (PV) plants into electric power system exhibits challenges to power system dynamic performance. These challenges stem primarily from the natural characteristics of PV plants, which differ in some respects from the conventional plants. The most significant challenge is how to extract and regulate the maximum power from the sun. This paper presents the optimal design for the most commonly used Maximum Power Point Tracking (MPPT) techniques based on Proportional Integral tuned by Particle Swarm Optimization (PI-PSO). These suggested techniques are, (1) the incremental conductance, (2) perturb and observe, (3) fractional short circuit current and (4) fractional open circuit voltage techniques. This research work provides a comprehensive comparative study with the energy availability ratio from photovoltaic panels. The simulation results proved that the proposed controllers have an impressive tracking response. The system dynamic performance improved greatly using the proposed controllers.

  9. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    Science.gov (United States)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  10. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    Science.gov (United States)

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  11. Comparative Performance and Model Agreement of Three Common Photovoltaic Array Configurations.

    Science.gov (United States)

    Boyd, Matthew T

    2018-02-01

    Three grid-connected monocrystalline silicon arrays on the National Institute of Standards and Technology (NIST) campus in Gaithersburg, MD have been instrumented and monitored for 1 yr, with only minimal gaps in the data sets. These arrays range from 73 kW to 271 kW, and all use the same module, but have different tilts, orientations, and configurations. One array is installed facing east and west over a parking lot, one in an open field, and one on a flat roof. Various measured relationships and calculated standard metrics have been used to compare the relative performance of these arrays in their different configurations. Comprehensive performance models have also been created in the modeling software pvsyst for each array, and its predictions using measured on-site weather data are compared to the arrays' measured outputs. The comparisons show that all three arrays typically have monthly performance ratios (PRs) above 0.75, but differ significantly in their relative output, strongly correlating to their operating temperature and to a lesser extent their orientation. The model predictions are within 5% of the monthly delivered energy values except during the winter months, when there was intermittent snow on the arrays, and during maintenance and other outages.

  12. Photovoltaic Array Condition Monitoring Based on Online Regression of Performance Model

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2013-01-01

    regression modeling, from PV array production, plane-of-array irradiance, and module temperature measurements, acquired during an initial learning phase of the system. After the model has been parameterized automatically, the condition monitoring system enters the normal operation phase, where...

  13. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics

    International Nuclear Information System (INIS)

    Chen, Zhicong; Wu, Lijun; Cheng, Shuying; Lin, Peijie; Wu, Yue; Lin, Wencheng

    2017-01-01

    Highlights: •An improved Simulink based modeling method is proposed for PV modules and arrays. •Key points of I-V curves and PV model parameters are used as the feature variables. •Kernel extreme learning machine (KELM) is explored for PV arrays fault diagnosis. •The parameters of KELM algorithm are optimized by the Nelder-Mead simplex method. •The optimized KELM fault diagnosis model achieves high accuracy and reliability. -- Abstract: Fault diagnosis of photovoltaic (PV) arrays is important for improving the reliability, efficiency and safety of PV power stations, because the PV arrays usually operate in harsh outdoor environment and tend to suffer various faults. Due to the nonlinear output characteristics and varying operating environment of PV arrays, many machine learning based fault diagnosis methods have been proposed. However, there still exist some issues: fault diagnosis performance is still limited due to insufficient monitored information; fault diagnosis models are not efficient to be trained and updated; labeled fault data samples are hard to obtain by field experiments. To address these issues, this paper makes contribution in the following three aspects: (1) based on the key points and model parameters extracted from monitored I-V characteristic curves and environment condition, an effective and efficient feature vector of seven dimensions is proposed as the input of the fault diagnosis model; (2) the emerging kernel based extreme learning machine (KELM), which features extremely fast learning speed and good generalization performance, is utilized to automatically establish the fault diagnosis model. Moreover, the Nelder-Mead Simplex (NMS) optimization method is employed to optimize the KELM parameters which affect the classification performance; (3) an improved accurate Simulink based PV modeling approach is proposed for a laboratory PV array to facilitate the fault simulation and data sample acquisition. Intensive fault experiments are

  14. Photovoltaic cell and array technology development for future unique NASA missions

    Science.gov (United States)

    Bailey, S.; Curtis, H.; Piszczor, M.; Surampudi, R.; Hamilton, T.; Rapp, D.; Stella, P.; Mardesich, N.; Mondt, J.; Bunker, R.; hide

    2002-01-01

    A technology review committee from NASA, the U.S. Department of Energy (DOE), and the Air Force Research Lab, was formed to assess solar cell and array technologies required for future NASA science missions.

  15. Environmental Assessment for the Solar Photovoltaic Array at Eglin Air Force Base, Florida

    Science.gov (United States)

    2014-01-24

    fire hazard to solar panel array. ● Where applicable, reduce erosion using rough grade slopes or terrace slopes. ● Identify areas of existing...method would entail the installation of numerous smaller solar PV systems on the roofs of various buildings on the base. This alternative was...panel array.  Where applicable, reduce erosion using rough grade slopes or terrace slopes.  Identify areas of existing vegetation that the proponent

  16. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2

    OpenAIRE

    Michael Powalla; Stefan Paetel; Dimitrios Hariskos; Roland Wuerz; Friedrich Kessler; Peter Lechner; Wiltraud Wischmann; Theresa Magorian Friedlmeier

    2017-01-01

    In this article, we discuss the leading thin-film photovoltaic (PV) technology based on the Cu(In,Ga)Se2 (CIGS) compound semiconductor. This contribution includes a general comparison with the conventional Si-wafer-based PV technology and discusses the basics of the CIGS technology as well as advances in world-record-level conversion efficiency, production, applications, stability, and future developments with respect to a flexible product. Once in large-scale mass production, the CIGS techno...

  17. Numerical modelling of CIGS/CdS solar cell

    Science.gov (United States)

    Devi, Nisha; Aziz, Anver; Datta, Shouvik

    2018-05-01

    In this work, we design and analyze the Cu(In,Ga)Se2 (CIGS) solar cell using simulation software "Solar Cell Capacitance Simulator in One Dimension (SCAPS-1D)". The conventional CIGS solar cell uses various layers, like intrinsic ZnO/Aluminium doped ZnO as transparent oxide, antireflection layer MgF2, and electron back reflection (EBR) layer at CIGS/Mo interface for good power conversion efficiency. We replace this conventional model by a simple model which is easy to fabricate and also reduces the cost of this cell because of use of lesser materials. The new designed model of CIGS solar cell is ITO/CIGS/OVC/CdS/Metal contact, where OVC is ordered vacancy compound. From this simple structure, even at very low illumination we are getting good results. We simulate this CIGS solar cell model by varying various physical parameters of CIGS like thickness, carrier density, band gap and temperature.

  18. High density micro-pyramids with silicon nanowire array for photovoltaic applications

    International Nuclear Information System (INIS)

    Rahman, Tasmiat; Navarro-Cía, Miguel; Fobelets, Kristel

    2014-01-01

    We use a metal assisted chemical etch process to fabricate silicon nanowire arrays (SiNWAs) onto a dense periodic array of pyramids that are formed using an alkaline etch masked with an oxide layer. The hybrid micro-nano structure acts as an anti-reflective coating with experimental reflectivity below 1% over the visible and near-infrared spectral regions. This represents an improvement of up to 11 and 14 times compared to the pyramid array and SiNWAs on bulk, respectively. In addition to the experimental work, we optically simulate the hybrid structure using a commercial finite difference time domain package. The results of the optical simulations support our experimental work, illustrating a reduced reflectivity in the hybrid structure. The nanowire array increases the absorbed carrier density within the pyramid by providing a guided transition of the refractive index along the light path from air into the silicon. Furthermore, electrical simulations which take into account surface and Auger recombination show an efficiency increase for the hybrid structure of 56% over bulk, 11% over pyramid array and 8.5% over SiNWAs. (paper)

  19. Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications

    Science.gov (United States)

    Sunkoju, Sravan Kumar

    Solar energy is a promising source of renewable energy which can meet the demand for clean energy in near future with advances in research in the field of photovoltaics and cost reduction by commercialization. Availability of a non-contact, in-line, real time robust process control strategies can greatly aid in reducing the gap between cell and module efficiencies, thereby leading to cost-effective large-scale manufacturing of high efficiency CIGS solar cells. In order to achieve proper process monitoring and control for the deposition of the functional layers of CuIn1-xGaxSe 2 (CIGS) based thin film solar cell, optical techniques such as spectroscopic reflectometry and polarimetry are advantageous because they can be set up in an unobtrusive manner in the manufacturing line, and collect data in-line and in-situ. The use of these techniques requires accurate optical models that correctly represent the properties of the layers being deposited. In this study, Spectroscopic ellipsometry (SE) has been applied for the characterization of each individual stage of CIGS layers deposited using the 3-stage co-evaporation process along with the other functional layers. Dielectric functions have been determined for the energy range from 0.7 eV to 5.1 eV. Critical-point line-shape analysis was used in this study to determine the critical point energies of the CIGS based layers. To control the compositional and thickness uniformity of all the functional layers during the fabrication of CIGS solar cells over large areas, multilayer photovoltaics (PV) stack optical models were developed with the help of extracted dielectric functions. In this study, mapping capability of RC2 spectroscopic ellipsometer was used to map all the functional layer thicknesses of a CIGS solar cell in order to probe the spatial non-uniformities that can affect the performance of a cell. The optical functions for each of the stages of CIGS 3-stage deposition process along with buffer layer and transparent

  20. The Theory of Planned Behavior and E-cig Use: Impulsive Personality, E-cig Attitudes, and E-cig Use.

    Science.gov (United States)

    Hershberger, Alexandra; Connors, Miranda; Um, Miji; Cyders, Melissa A

    2018-04-01

    The current paper applied the Theory of Planned Behavior (TPB; Ajzen & Fishbein, 1988) to understand how impulsive personality traits and attitudes concerning e-cig use relate to the likelihood of electronic cigarette (e-cig) use. Seven hundred and fourteen participants (Mean age = 34.04, SD = 10.89, 48.6% female) completed cross-sectional measures of e-cig use attitudes (CEAC) and the Short UPPS-P Impulsive Behavior Scale. A structural path analysis suggested that urgency and deficits in conscientiousness were significantly related to e-cig attitudes (CFI = 0.99, TLI = 0.99, RMSEA = 0.02; urgency: β = 0.32, p = .001; deficits in conscientiousness: β = -0.48, p E-cig attitude scores were significantly higher for e-cig users than non-users, β = 0.85, p e-cig use. Findings provide initial support for a model in which impulsive traits are related to e-cig use through positive e-cig attitudes.

  1. Photovoltaic devices based on quantum dot functionalized nanowire arrays embedded in an organic matrix

    Science.gov (United States)

    Kung, Patrick; Harris, Nicholas; Shen, Gang; Wilbert, David S.; Baughman, William; Balci, Soner; Dawahre, Nabil; Butler, Lee; Rivera, Elmer; Nikles, David; Kim, Seongsin M.

    2012-01-01

    Quantum dot (QD) functionalized nanowire arrays are attractive structures for low cost high efficiency solar cells. QDs have the potential for higher quantum efficiency, increased stability and lifetime compared to traditional dyes, as well as the potential for multiple electron generation per photon. Nanowire array scaffolds constitute efficient, low resistance electron transport pathways which minimize the hopping mechanism in the charge transport process of quantum dot solar cells. However, the use of liquid electrolytes as a hole transport medium within such scaffold device structures have led to significant degradation of the QDs. In this work, we first present the synthesis uniform single crystalline ZnO nanowire arrays and their functionalization with InP/ZnS core-shell quantum dots. The structures are characterized using electron microscopy, optical absorption, photoluminescence and Raman spectroscopy. Complementing photoluminescence, transmission electron microanalysis is used to reveal the successful QD attachment process and the atomistic interface between the ZnO and the QD. Energy dispersive spectroscopy reveals the co-localized presence of indium, phosphorus, and sulphur, suggestive of the core-shell nature of the QDs. The functionalized nanowire arrays are subsequently embedded in a poly-3(hexylthiophene) hole transport matrix with a high degree of polymer infiltration to complete the device structure prior to measurement.

  2. Proof of Concept of an Irradiance Estimation System for Reconfigurable Photovoltaic Arrays

    Directory of Open Access Journals (Sweden)

    Vincenzo Li Vigni

    2015-06-01

    Full Text Available In order to reduce the mismatch effect caused by non-uniform shadows in PV arrays, reconfigurable interconnections approaches have been recently proposed in the literature. These systems usually require the knowledge of the solar radiation affecting every solar module. The aim of this work is to evaluate the effectiveness of three irradiance estimation approaches in order to define which can be well suited for reconfigurable PV arrays. It is presented a real-time solar irradiance estimation device (IrradEst, implementing the three different estimation methods. The proposed system is based on mathematical models of PV modules enabling to estimate irradiation values by sensing a combination of temperature, voltage and current of a PV module. Experimental results showed generally good agreement between the estimated irradiances and the measurements performed by a standard pyranometer taken as reference. Finally one of the three methods was selected as possible solution for a reconfigurable PV system.

  3. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.

    Science.gov (United States)

    Lin, Chenxi; Povinelli, Michelle L

    2009-10-26

    In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.

  4. Surface Plasmon Enhanced Light Trapping in Metal/Silicon Nanobowl Arrays for Thin Film Photovoltaics

    Directory of Open Access Journals (Sweden)

    Ruinan Sun

    2017-01-01

    Full Text Available Enhancing the light absorption in thin film silicon solar cells with nanophotonic and plasmonic structures is important for the realization of high efficiency solar cells with significant cost reduction. In this work, we investigate periodic arrays of conformal metal/silicon nanobowl arrays (MSNBs for light trapping applications in silicon solar cells. They exhibited excellent light-harvesting ability across a wide range of wavelengths up to infrared regimes. The optimized structure (MSNBsH covered by SiO2 passivation layer and hemisphere Ag back reflection layer has a maximal short-circuit density (Jsc 25.5 mA/cm2, which is about 88.8% higher than flat structure counterpart, and the light-conversion efficiency (η is increased two times from 6.3% to 12.6%. The double-side textures offer a promising approach to high efficiency ultrathin silicon solar cells.

  5. Performance enhancement of photovoltaic array through string and central based MPPT system under non-uniform irradiance conditions

    International Nuclear Information System (INIS)

    Syafaruddin; Karatepe, Engin; Hiyama, Takashi

    2012-01-01

    Highlights: ► We propose MPPT method for tracking global MPP of PV arrays under non-uniform irradiance conditions. ► We compare the performance of string and central based MPPT. ► Intelligent control method is utilized to identify the global operating voltage in string and central based MPPT system. ► The performance of proposed method is tested on different size of PV. - Abstract: Mismatching losses reduction of photovoltaic (PV) array has been intensively discussed through the increasing penetration of residential and commercial PV systems. Many causes of mismatching losses have been identified and plenty of proposed methods to solve this problem have been recently proposed. This paper deals with reducing method of mismatching losses due to the non-uniform irradiance conditions. It is well-known that a certain number of multiple peaks occur on the power–voltage curve as the number of PV modules in one-string increases under non-uniform operating conditions. Since the conventional control method only drives the operating points of PV system to the local maxima close to open circuit voltage, only small portion of power can be extracted from the PV system. In this study, a radial basis function neural network (RBF-ANN) based intelligent control method is utilized to map the global operating voltage and non-irradiance operating condition in string and central based MPPT systems. The proposed method has been tested on 10 × 3 (2.2 kW), 15 × 3 (2.5 kW) and 20 × 3 (3.3 kW) of series–parallel PV array configuration under random-shaded and continuous-shaded patterns. The proposed method is compared with the ideal case and conventional method through a simple power–voltage curve of PV arrays. The simulation results show that there are significant increases of about 30–60% of the extracted power in one operating condition when the proposed method is able to shift the operating voltage of modules to their optimum voltages.

  6. Novel temperature control technique for a medicinal herb dryer system powered by a photovoltaic array

    International Nuclear Information System (INIS)

    Abd El-Shafy A Nafeh; Hanaa M Fargali; Faten H Fahmy; Mohamed A Hassan

    2006-01-01

    Each plant has its own optimal drying temperature, especially for the medicinal herbs, because they are sensitive to heat. If the drying temperature becomes more than the optimal value, some chemical reactions will occur and influence the quality of the dried herb, such as color, taste, and aroma. While if the drying temperature becomes lower than the optimal value, the drying process will slow down; and consequently an expected degradation in the quality of the herb may occur, due to insects and fungi infestation which increase in moist conditions. This paper presents a new temperature control technique for a medicinal herb dryer system. The technique fixes the drying temperature of the medicinal herbs at 40 degree C, even in cases of rapidly changing atmospheric conditions. The control of the dryer temperature is achieved through using the proportional integral (PI) controller. The designed dryer contains two systems, which are the thermal and the electrical systems. The thermal system is designed to heat the drying air by using the solar energy and bio-gas fuel. Whereas, the electrical system, which contains a photovoltaic (PV) modules and a battery, is designed to supply the different electrical loads of the dryer system. The control technique is investigated through simulation work by using MATLAB-SIMULINK. The simulation results indicate the high capability of the proposed technique in controlling the drying temperature, even in cases of rapidly changing atmospheric conditions

  7. TEMPERATUREEFFECT OFELECTRICALPROPERTIES OF CIGS SOLAR CELL

    Directory of Open Access Journals (Sweden)

    A. M. Ferouani

    2015-07-01

    Full Text Available In this paper we are interested in studying the copper–indium–gallium–selenium (CIGS solar cells sandwiched between cadmium sulfide (CdS and ZnO as buffer layers, and Molybdenum (Mo. Thus, we report our simulation results using the capacitance simulator (SCAPS in terms of layer thickness, absorber layer band gap and operating temperature to find out the optimum choice. An efficiency of 20.61% (with Voc of 635.2mV, Jsc of 44.08 mA/cm2 and fill factor of 0.73 has been achieved with CdS used as buffer layer as the reference case. It is also found that the high efficiency CIGS cells with the low temperature were a very high efficiency conversion.

  8. Bacteria-foraging based-control of high-performance railway level-crossing safety drives fed from photovoltaic array

    Directory of Open Access Journals (Sweden)

    Essamudin A. Ebrahim

    2016-12-01

    Full Text Available In the past ten years, railway level-crossing accidents have noticeably escalated in an indisputably preposterous manner, this devastating snag opened the floodgates for the frustrating death of a numerous number of the third world’s citizens, especially in Egypt. To tackle with this problem, a fully intelligent control system is required, which must be automated without human intervention. So, in this research, a new proposed level-crossing tracking system is designed and introduced. The system comprises a high-performance induction motor (IM fed from photovoltaic (PV array, the boom barrier (gate with its mechanism – as a load – buck–boost converter, inverter, and two smart PI-controllers. The first one is designed to regulate the duty cycle of the converter to its optimum value required to balance between maximum power point tracking (MPPT and keeping dc-link voltage of the inverter at a minimum level needed to maintain the motor internal torque at rated value. The second PI-controller is designed for speed control of indirect field-oriented vector-control (IFO-VC IM. The proposed design problems of MPPT, dc-link voltage and speed controllers are solved as optimization problems by bacteria-foraging optimization (BFO algorithm to search for the optimal PI-parameters. The simulation test results are acquired when using the battery-less PV-array with and without the proposed controllers. Also, results are obtained when applying several prescribed speed trajectories to test the robustness against PV-irradiance fluctuations and motor-dynamic disturbances. From these results, the proposed intelligent controllers are robust compared to classical Ziegler–Nichols (ZN PI-controllers and also when the motor is directly fed from PV generator without converter.

  9. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Moura, Scott; Yin, Xiaofeng; Pickert, Volker

    2016-11-01

    Energy management strategies are instrumental in the performance and economy of smart homes integrating renewable energy and energy storage. This article focuses on stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array. It is motivated by the challenges associated with sustainable energy supplies and the local energy storage opportunity provided by vehicle electrification. This paper seeks to minimize a consumer's energy charges under a time-of-use tariff, while satisfying home power demand and PEV charging requirements, and accommodating the variability of solar power. First, the random-variable models are developed, including Markov Chain model of PEV mobility, as well as predictive models of home power demand and PV power supply. Second, a stochastic optimal control problem is mathematically formulated for managing the power flow among energy sources in the smart home. Finally, based on time-varying electricity price, we systematically examine the performance of the proposed control strategy. As a result, the electric cost is 493.6% less for a Tesla Model S with optimal stochastic dynamic programming (SDP) control relative to the no optimal control case, and it is by 175.89% for a Nissan Leaf.

  10. Maximum Power Point Tracking Using Sliding Mode Control for Photovoltaic Array

    Directory of Open Access Journals (Sweden)

    J. Ghazanfari

    2013-09-01

    Full Text Available In this paper, a robust Maximum Power Point Tracking (MPPT for PV array has been proposed using sliding mode control by defining a new formulation for sliding surface which is based on increment conductance (INC method. The stability and robustness of the proposed controller are investigated to load variations and environment changes. Three different types of DC-DC converter are used in Maximum Power Point (MPP system and the results obtained are given. The simulation results confirm the effectiveness of the proposed method in the presence of load variations and environment changes for different types of DC-DC converter topologies.

  11. Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications

    Science.gov (United States)

    Deng, Can; Tan, Xinyu; Jiang, Lihua; Tu, Yiteng; Ye, Mao; Yi, Yasha

    2018-01-01

    Structural design with high light absorption is the key challenge for thin film solar cells because of its poor absorption. In this paper, the light-trapping performance of silicon inclined nanohole arrays is systematically studied. The finite difference time domain method is used to calculate the optical absorption of different inclination angles in different periods and diameters. The results indicate that the inclined nanoholes with inclination angles between 5° and 45° demonstrate greater light-trapping ability than their counterparts of the vertical nanoholes, and they also show that by choosing the optimal parameters for the inclined nanoholes, a 31.2 mA/cm2 short circuit photocurrent density could be achieved, which is 10.25% higher than the best vertical nanohole system and 105.26% higher than bare silicon with a thickness of 2330 nm. The design principle proposed in this work gives a guideline for choosing reasonable parameters in the application of solar cells.

  12. Mission-Enabling Photovoltaic Flexible Blanket Solar Array with SNC/SJ Surface Mount Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) in collaboration with Sierra Nevada Corporation (SNC) has developed a modular multi-junction photovoltaic flexible blanket...

  13. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.

    Science.gov (United States)

    Pan, Caofeng; Luo, Zhixiang; Xu, Chen; Luo, Jun; Liang, Renrong; Zhu, Guang; Wu, Wenzhuo; Guo, Wenxi; Yan, Xingxu; Xu, Jun; Wang, Zhong Lin; Zhu, Jing

    2011-08-23

    We have developed a method combining lithography and catalytic etching to fabricate large-area (uniform coverage over an entire 5-in. wafer) arrays of vertically aligned single-crystal Si nanowires with high throughput. Coaxial n-Si/p-SiGe wire arrays are also fabricated by further coating single-crystal epitaxial SiGe layers on the Si wires using ultrahigh vacuum chemical vapor deposition (UHVCVD). This method allows precise control over the diameter, length, density, spacing, orientation, shape, pattern and location of the Si and Si/SiGe nanowire arrays, making it possible to fabricate an array of devices based on rationally designed nanowire arrays. A proposed fabrication mechanism of the etching process is presented. Inspired by the excellent antireflection properties of the Si/SiGe wire arrays, we built solar cells based on the arrays of these wires containing radial junctions, an example of which exhibits an open circuit voltage (V(oc)) of 650 mV, a short-circuit current density (J(sc)) of 8.38 mA/cm(2), a fill factor of 0.60, and an energy conversion efficiency (η) of 3.26%. Such a p-n radial structure will have a great potential application for cost-efficient photovoltaic (PV) solar energy conversion. © 2011 American Chemical Society

  14. Bilayer–metal assisted chemical etching of silicon microwire arrays for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    R. W. Wu

    2016-02-01

    Full Text Available Silicon microwires with lateral dimension from 5 μm to 20 μm and depth as long as 20 μm are prepared by bilayer metal assisted chemical etching (MaCE. A bilayer metal configuration (Metal 1 / Metal 2 was applied to assist etching of Si where metal 1 acts as direct catalyst and metal 2 provides mechanical support. Different metal types were investigated to figure out the influence of metal catalyst on morphology of etched silicon. We find that silicon microwires with vertical side wall are produced when we use Ag/Au bilayer, while cone–like and porous microwires formed when Pt/Au is applied. The different micro-/nano-structures in as-etched silicon are demonstrated to be due to the discrepancy of work function of metal catalyst relative to Si. Further, we constructed a silicon microwire arrays solar cells in a radial p–n junction configurations in a screen printed aluminum paste p–doping process.

  15. Optimalisasi Desain Sistem Pembangkit Listrik Tenaga Hybrid Diesel Generator  Photovoltaic Array Menggunakan Homer (Studi Kasus : Desa Sirilogui, Kabupaten Kepulauan Mentawai

    Directory of Open Access Journals (Sweden)

    Dewi Purnama Sari

    2015-03-01

    Full Text Available Hybrid Power Plant is one of the solutions to overcome the shortage of electricity in underdeveloped and isolated areas not covered by PLN electricity network, due to underdeveloped regions generally have the geography and topography that does not allow for expansion of PLN electricity network. Integration of the two power plants is a conventional power plant (diesel generator that comes from fuel oil (BBM with power plants sourced from renewable energy (photovoltaic arrays is an advantageous solution to meet the needs of daily electricity load in remote areas such as the Village Sirilogui located in the District of North Siberut Mentawai Islands, because the integration of photovoltaic arrays diesel generator can provide 24 hour lighting solution for 310 households (families in the village Sirilogui which at first only enjoy the lighting for 4 hours, and even then only at night days, from 06.00 to 10.00 pm o'clock sourced from 3 units of diesel generator. With the integration of these two power plants, diesel generator operation can be minimized so it saves fuel consumption and reduce CO2 emissions caused by the operation of the diesel generator. This study focuses the discussion on Design Optimization of Hybrid Power Plant System Diesel Generator-Photovoltaic Array by using HOMER as a tool for simulation. HOMER software is used to help simplify the task of the modeler in evaluating the design of hybrid power plant system that allows to sort based on the total net present cost (TNPC, the lowest for the most optimal system. In this study, the results of the design for the system with the daily electricity load of 479,280 kWh most optimal based on the simulation results using HOMER ie photovoltaic capacity of 65 kW, 3 units of diesel generators with a capacity of each 15 kW, 156 units of battery and bidirectional converter with a capacity of 78 kW TNPC amounted to $ 1.362.474 and the cost of energy (COE of $ 1,485/kWh. Hybrid Power Plant System

  16. Improved Performance Characteristics For Indium Antimonide Photovoltaic Detector Arrays Using A FET-Switched Multiplexing Technique

    Science.gov (United States)

    Ma, Yung-Lung; Ma, Chialo

    1987-03-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main

  17. Optical characteristics of thin CIGS cells on TCO back contact

    NARCIS (Netherlands)

    Deelen, J. van; Kniknie, B.; Vroon, Z.A.E.P.; Wuerz, R.; Kessler, F.

    2014-01-01

    Reduction of CIGS layer thickness could translate in significant cost reduction. CIGS was made on transparent conductive oxide (TCO) to allow for optical characterization. This data was compared with external quantum efficiency (EQE) data. The results suggest that changes in surface morphology are

  18. 7 CFR 1466.27 - Conservation Innovation Grants (CIG).

    Science.gov (United States)

    2010-01-01

    ..., evaluation, and implementation of: (i) Conservation adoption incentive systems, including market-based... 7 Agriculture 10 2010-01-01 2010-01-01 false Conservation Innovation Grants (CIG). 1466.27 Section... PROGRAM Contracts and Payments § 1466.27 Conservation Innovation Grants (CIG). (a) Definitions. In...

  19. Analysis and research on Maximum Power Point Tracking of Photovoltaic Array with Fuzzy Logic Control and Three-point Weight Comparison Method

    Institute of Scientific and Technical Information of China (English)

    LIN; Kuang-Jang; LIN; Chii-Ruey

    2010-01-01

    The Photovoltaic Array has a best optimal operating point where the array operating can obtain the maximum power.However, the optimal operating point can be compromised by the strength of solar radiation,angle,and by the change of environment and load.Due to the constant changes in these conditions,it has become very difficult to locate the optimal operating point by following a mathematical model.Therefore,this study will focus mostly on the application of Fuzzy Logic Control theory and Three-point Weight Comparison Method in effort to locate the optimal operating point of solar panel and achieve maximum efficiency in power generation. The Three-point Weight Comparison Method is the comparison between the characteristic curves of the voltage of photovoltaic array and output power;it is a rather simple way to track the maximum power.The Fuzzy Logic Control,on the other hand,can be used to solve problems that cannot be effectively dealt with by calculation rules,such as concepts,contemplation, deductive reasoning,and identification.Therefore,this paper uses these two kinds of methods to make simulation successively. The simulation results show that,the Three-point Comparison Method is more effective under the environment with more frequent change of solar radiation;however,the Fuzzy Logic Control has better tacking efficiency under the environment with violent change of solar radiation.

  20. Modelling Defects Acceptors And Determination Of Electric Model From The Nyquist Plot And Bode In Thin Film CIGS

    Directory of Open Access Journals (Sweden)

    Demba Diallo

    2015-08-01

    Full Text Available Abstract The performance of the chalcopyrite material CuInGaSe2 CIGS used as an absorber layer in thin-film photovoltaic devices is significantly affected by the presence of native defects. Multivalent defects e.g. double acceptors or simple acceptor are important immaterial used in solar cell production in general and in chalcopyrite materials in particular. We used the thin film solar cell simulation software SCAPS to enable the simulation of multivalent defects with up to five different charge states.Algorithms enabled us to simulate an arbitrary number of possible states of load. The presented solution method avoids numerical inaccuracies caused by the subtraction of two almost equal numbers. This new modelling facility is afterwards used to investigate the consequences of the multivalent character of defects for the simulation of chalcopyrite based CIGS. The capacitance increase with the evolution of the number of defects C- f curves have found to have defect dependence.

  1. Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111)B Substrate

    Science.gov (United States)

    2010-01-01

    We report on the molecular beam epitaxy growth of Au-assisted GaAs p-type-doped NW arrays on the n-type GaAs(111)B substrate and their photovoltaic properties. The samples are grown at different substrate temperature within the range from 520 to 580 °C. It is shown that the dependence of conversion efficiency on the substrate temperature has a maximum at the substrate temperature of 550 °C. For the best sample, the conversion efficiency of 1.65% and the fill factor of 25% are obtained. PMID:20672038

  2. Photovoltaic solar energy

    International Nuclear Information System (INIS)

    Mouratoglou, P.; Therond, P.G.

    2009-01-01

    The most important assets of photovoltaic energy for sustainable development are its simplicity (no need for complicated thermodynamical cycles) and the universal availability of the sun which explains its great popularity. The main restraint to its full development is the high cost of the technologies used. The silicon technology is the historical technology, it has high conversion rates but is expensive because of high fabrication costs. This technology represents 80% of the market. On the other hand the thin film technology with CdTe, CIS or CIGS is promising in terms of costs but requires research works to increase its conversion rate. Japan and Germany are the leader countries in terms of photovoltaic for research, industrial fabrication or state support, they are followed by Spain, Usa, and China. (A.C.)

  3. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Weicheng [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn; Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Cheng, Xiang' ai, E-mail: xiang-ai-cheng@126.com; Wang, Rui [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  4. Photovoltaic cell module and method of forming

    Science.gov (United States)

    Howell, Malinda; Juen, Donnie; Ketola, Barry; Tomalia, Mary Kay

    2017-12-12

    A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.

  5. A high-efficiency solution-deposited thin-film photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Mitzi, David B; Yuan, Min; Liu, Wei; Chey, S Jay; Schrott, Alex G [IBM T. J. Watson Research Center, Yorktown Heights, NY (United States); Kellock, Andrew J; Deline, Vaughn [IBM Almaden Research Center, San Jose, CA (United States)

    2008-10-02

    High-quality Cu(In,Ga)Se{sub 2} (CIGS) films are deposited from hydrazine-based solutions and are employed as absorber layers in thin-film photovoltaic devices. The CIGS films exhibit tunable stoichiometry and well-formed grain structure without requiring post-deposition high-temperature selenium treatment. Devices based on these films offer power conversion efficiencies of 10% (AM1.5 illumination). (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  6. Photonic Design for Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  7. Efficiency of solar radiation conversion in photovoltaic panels

    OpenAIRE

    Kurpaska Sławomir; Knaga Jarosław; Latała Hubert; Sikora Jakub; Tomczyk Wiesław

    2018-01-01

    This paper included analysis the conversion efficiency in photovoltaic panels. The tests were done between February and June at a test stand equipped with three commonly used types of photovoltaic panels: poly- and monocrystalline silicon and with semi-conductive layer made of copper (Cu), indium (In), gallium (Ga) and selenium (Se) (CIGS). Five days of each month were selected for a detailed analysis. They were close to the so-called recommended day for calculations in solar power engineerin...

  8. Electrodeposition route to synthesize cigs films – an economical way ...

    African Journals Online (AJOL)

    user

    Unlike binary conductors CIGS film preparation needs highly ... This argument also holds well in forming a hetero-junction partner CdS ..... successfully electrodeposited onto indium tin oxide substrate and it is recently reported (Li et al., 2010).

  9. Road map for photovoltaic electricity

    International Nuclear Information System (INIS)

    2011-02-01

    This road map aims at highlighting industrial, technological and social challenges, at elaborating comprehensive visions, at highlighting technological locks, and at outlining research needs for the photovoltaic sector. It considers the following sector components: preparation of photo-sensitive materials, manufacturing of photovoltaic cells, manufacturing of photovoltaic arrays, design and manufacturing of electric equipment to control photovoltaic arrays and to connect them to the grid. It highlights the demand for photovoltaic installations, analyzes the value chain, proposes a vision of the sector by 2050 and defines target for 2020, discusses needs for demonstration and experimentation

  10. Design of Arrangement of Solar Array and Energy Storage in Solar Photovoltaic Generation%光伏阵列及储能的布置设计

    Institute of Scientific and Technical Information of China (English)

    韩学栋; 王海华

    2015-01-01

    Facing energy and environmental pressure, solar which is a kind natural renewable clean energy has become the focus of world development and utilization. This paper describes the optimal choice of the best dip angle of the solar array, deducing the layout spacing theoretical formula when the battery array in the horizontal plane and on the roof with a slope. Also, the paper describes the formula of the calculating components in series and parallel arrays of photovoltaic cells and storage cells in series and parallel. This paper provides some theoretical support to the design of the photovoltaic power generation system.%在能源和环境的双重压力下,太阳能这一清洁可再生的自然能源成为世界各国开发利用的重点。本文介绍了太阳能电池阵列最佳倾角的优化选择,推导了电池阵列在水平面以及带有一定坡度的屋面上进行布置时前后间距的理论计算公式,介绍了光伏电池阵列中组件的串并联以及储能蓄电池的串并联计算公式。上述工作对太阳能光伏发电系统的设计提供了一定的理论支撑。

  11. Vaping cannabis (marijuana): parallel concerns to e-cigs?

    OpenAIRE

    Budney, Alan J.; Sargent, James D.; Lee, Dustin C.

    2015-01-01

    The proliferation of vaporization (‘vaping’) as a method for administering cannabis raises many of the same public health issues being debated and investigated in relation to e-cigarettes (e-cigs). Good epidemiological data on the prevalence of vaping cannabis are not yet available, but with current trends towards societal approval of medicinal and recreational use of cannabis, the pros and cons of vaping cannabis warrant study. As with e-cigs, vaping cannabis portends putative health benefit...

  12. Arrays of ZnO/CuIn{sub x}Ga{sub 1−x}Se{sub 2} nanocables with tunable shell composition for efficient photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad Aftab; Javed, Sofia [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (Hong Kong); City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518057 (Hong Kong); School of Chemical and Materials Engineering, National University of Sciences and Technology, Sector H-12, Islamabad 44000 (Pakistan); Xu, Jun, E-mail: apjunxu@hfut.edu.cn [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China); Mujahid, Mohammad, E-mail: principal@scme.nust.edu.pk [School of Chemical and Materials Engineering, National University of Sciences and Technology, Sector H-12, Islamabad 44000 (Pakistan); Lee, Chun-Sing, E-mail: c.s.lee@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (Hong Kong); City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057 (Hong Kong)

    2015-05-28

    Arrays of one-dimensional (1D) nanostructure are receiving much attention for their optoelectronic and photovoltaic applications due to their advantages in light absorption, charge separation, and transportation. In this work, arrays of ZnO/CuIn{sub x}Ga{sub 1−x}Se{sub 2} core/shell nanocables with tunable shell compositions over the full range of 0 ≤ x ≤ 1 have been controllably synthesized. Chemical conversions of ZnO nanorods to a series of ZnO-based nanocables, including ZnO/ZnSe, ZnO/CuSe, ZnO/CuSe/In{sub x}Ga{sub 1−x}, ZnO/CuSe/(In{sub x}Ga{sub 1−x}){sub 2}Se{sub 3}, and ZnO/CuIn{sub x}Ga{sub 1−x}Se{sub 2}, are well designed and successfully achieved. Composition-dependent influences of the CuIn{sub x}Ga{sub 1−x}Se{sub 2} shells on photovoltaic performance are investigated. It is found that the increase in indium content (x) leads to an increase in short-circuit current density (J{sub SC}) but a decrease in open-circuit voltage (V{sub OC}) for the ZnO/CuIn{sub x}Ga{sub 1−x}Se{sub 2} nanocable solar cells. An array of ZnO/CuIn{sub 0.67}Ga{sub 0.33}Se{sub 2} nanocables with a length of ∼1 μm and a shell thickness of ∼10 nm exhibits a bandgap of 1.20 eV, and yields a maximum power conversion efficiency of 1.74% under AM 1.5 G illumination at an intensity of 100 mW/cm{sup 2}. It dramatically surpasses that (0.22%) of the ZnO/CuIn{sub 0.67}Ga{sub 0.33}Se{sub 2} planar thin-film device. Our work reveals that 1D nanoarray allows efficient photovoltaics without using toxic CdS buffer layer.

  13. Arrays of ZnO/CuInxGa1−xSe2 nanocables with tunable shell composition for efficient photovoltaics

    International Nuclear Information System (INIS)

    Akram, Muhammad Aftab; Javed, Sofia; Xu, Jun; Mujahid, Mohammad; Lee, Chun-Sing

    2015-01-01

    Arrays of one-dimensional (1D) nanostructure are receiving much attention for their optoelectronic and photovoltaic applications due to their advantages in light absorption, charge separation, and transportation. In this work, arrays of ZnO/CuIn x Ga 1−x Se 2 core/shell nanocables with tunable shell compositions over the full range of 0 ≤ x ≤ 1 have been controllably synthesized. Chemical conversions of ZnO nanorods to a series of ZnO-based nanocables, including ZnO/ZnSe, ZnO/CuSe, ZnO/CuSe/In x Ga 1−x , ZnO/CuSe/(In x Ga 1−x ) 2 Se 3 , and ZnO/CuIn x Ga 1−x Se 2 , are well designed and successfully achieved. Composition-dependent influences of the CuIn x Ga 1−x Se 2 shells on photovoltaic performance are investigated. It is found that the increase in indium content (x) leads to an increase in short-circuit current density (J SC ) but a decrease in open-circuit voltage (V OC ) for the ZnO/CuIn x Ga 1−x Se 2 nanocable solar cells. An array of ZnO/CuIn 0.67 Ga 0.33 Se 2 nanocables with a length of ∼1 μm and a shell thickness of ∼10 nm exhibits a bandgap of 1.20 eV, and yields a maximum power conversion efficiency of 1.74% under AM 1.5 G illumination at an intensity of 100 mW/cm 2 . It dramatically surpasses that (0.22%) of the ZnO/CuIn 0.67 Ga 0.33 Se 2 planar thin-film device. Our work reveals that 1D nanoarray allows efficient photovoltaics without using toxic CdS buffer layer

  14. Thin-Film Photovoltaic Cells: Long-Term Metal(loid) Leaching at Their End-of-Life

    NARCIS (Netherlands)

    Zimmermann, Y.S.; Schäffer, A.; Corvini, P.F.X.; Lenz, M.

    2013-01-01

    The photovoltaic effect of thin-film copper indium gallium selenide cells (CIGS) is conferred by the latter elements. Organic photovoltaic cells (OPV), relying on organic light-absorbing molecules, also contain a variety of metals (e.g., Zn, Al, In, Sn, Ag). The environmental impact of such

  15. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu; Yin, Wan-Jian; Wu, Yelong; Shi, Tingting; Paudel, Naba R. [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); Li, Chen [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Poplawsky, Jonathan [The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, Zhiwei [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Moseley, John; Guthrey, Harvey; Moutinho, Helio; Al-Jassim, Mowafak M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can be chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.

  16. Se interlayer in CIGS absorption layer for solar cell devices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kyu; Sim, Jae-Kwan [Semiconductor Materials Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development, Chonbuk National University, Deokjin-Dong 664-14, Jeonju 561-756 (Korea, Republic of); Kissinger, N.J. Suthan [Department of General Studies, Physics Group, Jubail University College, Royal Commission for Jubail, Jubail 10074 (Saudi Arabia); Song, Il-Seok; Kim, Jin-Soo; Baek, Byung-Joon [Semiconductor Materials Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development, Chonbuk National University, Deokjin-Dong 664-14, Jeonju 561-756 (Korea, Republic of); Lee, Cheul-Ro, E-mail: crlee7@jbnu.ac.kr [Semiconductor Materials Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development, Chonbuk National University, Deokjin-Dong 664-14, Jeonju 561-756 (Korea, Republic of)

    2015-06-05

    Highlights: • Se interlayer is deposited between the CuGa and CuIn/In/Mo/STS stacked layer. • Both CIG precursor layers were selenized at 500 °C for 1 h. • SIMS depth profile shows that Ga distribution is uniform by Se interlayer. • The efficiency was improved for the CIGS solar cell by Se interlayer. - Abstract: A CIGS absorber layer with high gallium contents in the space-charge region can reduce the carrier recombination and improve the open circuit voltage V{sub oc}. Therefore, controlling Ga grading on top of CIGS thin film solar cells is the main objective of this experiment. To reduce Selenium (Se) vacancy, it is important that the diffusion of Ga elements into Se vacancy between Mo back contact and CIGS absorption layer would be controlled. In order to reduce Se vacancy and confirm Ga inter-diffusion, two CIGS solar cells were fabricated by converting CIG precursor with and without Se interlayer. The copper-indium metallic precursors were fabricated corresponding to the sequence CuIn/In/Mo/STS on stainless steel (STS) substrates by sequential direct current magnetron sputtering while Se layer was evaporated by rapid thermal annealing (RTA) system to obtain a Se/CuIn/In/Mo/STS stack. CuGa precursor layer was also fabricated on the Se/CuIn/In/Mo/STS stack. Finally, both CuGa/Se/CuIn/In/Mo/STS and CuGa/CuIn/In/Mo/STS stacks were selenized at 500 °C for 1 h. It was clearly observed from the secondary ion mass spectroscopy (SIMS) and X-ray diffraction (XRD) that there was a change between the fabricated CIGS absorption layers and the amount of Ga elements. Furthermore, the Ga elements gradually decreased from the top to the bottom layer of the CIGS absorption layer. We also discussed the effect of Se interlayer in the CIGS absorption layer and its influence on the solar cell’s performance.

  17. Se interlayer in CIGS absorption layer for solar cell devices

    International Nuclear Information System (INIS)

    Lee, Seung-Kyu; Sim, Jae-Kwan; Kissinger, N.J. Suthan; Song, Il-Seok; Kim, Jin-Soo; Baek, Byung-Joon; Lee, Cheul-Ro

    2015-01-01

    Highlights: • Se interlayer is deposited between the CuGa and CuIn/In/Mo/STS stacked layer. • Both CIG precursor layers were selenized at 500 °C for 1 h. • SIMS depth profile shows that Ga distribution is uniform by Se interlayer. • The efficiency was improved for the CIGS solar cell by Se interlayer. - Abstract: A CIGS absorber layer with high gallium contents in the space-charge region can reduce the carrier recombination and improve the open circuit voltage V oc . Therefore, controlling Ga grading on top of CIGS thin film solar cells is the main objective of this experiment. To reduce Selenium (Se) vacancy, it is important that the diffusion of Ga elements into Se vacancy between Mo back contact and CIGS absorption layer would be controlled. In order to reduce Se vacancy and confirm Ga inter-diffusion, two CIGS solar cells were fabricated by converting CIG precursor with and without Se interlayer. The copper-indium metallic precursors were fabricated corresponding to the sequence CuIn/In/Mo/STS on stainless steel (STS) substrates by sequential direct current magnetron sputtering while Se layer was evaporated by rapid thermal annealing (RTA) system to obtain a Se/CuIn/In/Mo/STS stack. CuGa precursor layer was also fabricated on the Se/CuIn/In/Mo/STS stack. Finally, both CuGa/Se/CuIn/In/Mo/STS and CuGa/CuIn/In/Mo/STS stacks were selenized at 500 °C for 1 h. It was clearly observed from the secondary ion mass spectroscopy (SIMS) and X-ray diffraction (XRD) that there was a change between the fabricated CIGS absorption layers and the amount of Ga elements. Furthermore, the Ga elements gradually decreased from the top to the bottom layer of the CIGS absorption layer. We also discussed the effect of Se interlayer in the CIGS absorption layer and its influence on the solar cell’s performance

  18. The Status and Outlook for the Photovoltaics Industry

    Science.gov (United States)

    Carlson, David

    2006-03-01

    The first silicon solar cell was made at Bell Labs in 1954, and over the following decades, shipments of photovoltaic (PV) modules increased at a rate of about 18% annually. In the last several years, the annual growth rate has increased to ˜ 35% due largely to government-supported programs in Japan and Germany. Silicon technology has dominated the PV industry since its inception, and in 2005 about 65% of all solar cells were made from polycrystalline (or multicrystalline) silicon, 24% from monocrystalline silicon and ˜ 4% from ribbon silicon. While conversion efficiencies as high as 24.7% have been obtained in the laboratory for silicon solar cells, the best efficiencies for commercial PV modules are in the range of 17 18% (the efficiency limit for a silicon solar cell is ˜ 29%). A number of companies are commercializing solar cells based on other materials such as amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-gallium-diselenide (CIGS), gallium arsenide (and related compounds) and dye- sensitized titanium oxide. Thin film CIGS solar cells have been fabricated with conversion efficiencies as high as 19.5% while efficiencies as high as 39% have been demonstrated for a GaInP/Ga(In)As/Ge triple-junction cell operating at a concentration of 236 suns. Thin film solar cells are being used in consumer products and in some building-integrated applications, while PV concentrator systems are being tested in grid-connected arrays located in high solar insolation areas. Nonetheless, crystalline silicon PV technology is likely to dominate the terrestrial market for at least the next decade with module efficiencies > 20% and module prices of penetration of the utility grid market. However, crystalline silicon solar cells may be challenged in the next decade or two by new low-cost, high performance devices based on organic materials and nanotechnology.

  19. Thin-film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.N. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-07-01

    The high material and processing costs associated with single-crystal and polycrystalline silicon wafers that are commonly used in photovoltaic cells render these modules expensive. This presentation described thin-film solar cell technology as a promising alternative to silicon solar cell technology. Cadmium telluride (CdTe) thin films along with copper, indium, gallium, and selenium (CIGS) thin films have become the leaders in this field. Their large optical absorption coefficient can be attributed to a direct energy gap that allows the use of thin layers (1-2 {mu}m) of active material. The efficiency of thin-film solar cell devices based on CIGS is 20 per cent, compared to 16.7 per cent for thin-film solar cell devices based on CdTe. IBM recently reported an efficiency of 9.7 per cent for a new type of inorganic thin-film solar cell based on a Cu{sub 2}ZnSn(S, Se){sub 4} compound. The efficiency of an organic thin-film solar cell is 7.9 per cent. This presentation included a graph of PV device efficiencies and discussed technological advances in non-vacuum deposited, CIGS-based thin-film solar cells. 1 fig.

  20. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2

    Institute of Scientific and Technical Information of China (English)

    Michael Powalla; Stefan Paetel; Dimitrios Hariskos; Roland Wuerz; Friedrich Kessler; Peter Lechner; Wiltraud Wischmann; Theresa Magorian Friedlmeier

    2017-01-01

    In this article,we discuss the leading thin-film photovoltaic (PV) technology based on the Cu(In,Ga)Se2 (CIGS)compound semiconductor.This contribution includes a general comparison with the conventional Si-wafer-based PV technology and discusses the basics of the CIGS technology as well as advances in worldrecord-level conversion efficiency,production,applications,stability,and future developments with respect to a flexible product.Once in large-scale mass production,the CIGS technology has the highest potential of all PV technologies for cost-efficient clean energy generation.

  1. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,GaSe2

    Directory of Open Access Journals (Sweden)

    Michael Powalla

    2017-08-01

    Full Text Available In this article, we discuss the leading thin-film photovoltaic (PV technology based on the Cu(In,GaSe2 (CIGS compound semiconductor. This contribution includes a general comparison with the conventional Si-wafer-based PV technology and discusses the basics of the CIGS technology as well as advances in world-record-level conversion efficiency, production, applications, stability, and future developments with respect to a flexible product. Once in large-scale mass production, the CIGS technology has the highest potential of all PV technologies for cost-efficient clean energy generation.

  2. Optimizing the solar array of stand-alone photovoltaic energy systems as a function of time and load profiles

    Science.gov (United States)

    Abou-Hussein, M. S.; El-Maghraby, M. H.; Groumpos, P. P.; El-Geldawy, F. A.; El-Tamaly, H. H.

    This paper presents a proposed novel technique in which an accurate optimum design of the solar array (SCA) can be attained. It depends on an hour-by-hour approach with different daily load profiles. A generalized mathematical formula has been developed for sizing of the solar array given the geographical and one year's insolation data for a particular site in Egypt. This approach can reduce the required size compared to other methods using the same tilt angle.

  3. Assessment of High-Voltage Photovoltaic Technologies for the Design of a Direct Drive Hall Effect Thruster Solar Array

    Science.gov (United States)

    Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2004-01-01

    A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.

  4. Surface Passivation of CIGS Solar Cells Using Gallium Oxide

    KAUST Repository

    Garud, Siddhartha

    2018-02-27

    This work proposes gallium oxide grown by plasma-enhanced atomic layer deposition, as a surface passivation material at the CdS buffer interface of Cu(In,Ga)Se2 (CIGS) solar cells. In preliminary experiments, a metal-insulator-semiconductor (MIS) structure is used to compare aluminium oxide, gallium oxide, and hafnium oxide as passivation layers at the CIGS-CdS interface. The findings suggest that gallium oxide on CIGS may show a density of positive charges and qualitatively, the least interface trap density. Subsequent solar cell results with an estimated 0.5 nm passivation layer show an substantial absolute improvement of 56 mV in open-circuit voltage (VOC), 1 mA cm−2 in short-circuit current density (JSC), and 2.6% in overall efficiency as compared to a reference (with the reference showing 8.5% under AM 1.5G).

  5. An investigation on preparation of CIGS targets by sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ning, E-mail: zhn98@126.co [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Zhuang Daming; Zhang Gong [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-01-15

    Pressureless sintering process was used to fabricate CIGS targets with Cu{sub 2}Se, In{sub 2}Se{sub 3}, and Ga{sub 2}Se{sub 3} as raw powders mixed according to the stoichiometry of CuIn{sub 0.72}Ga{sub 0.28}Se{sub 2} (CIGS). The results showed that only CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} phase can be detected in the sintered targets. The pores in sintered specimen become smaller and distribute more homogeneously under the conditions of finer powders and higher cold pressure. Both mass loss caused by the formation of volatile phase relating to Ga and volume expansion occur during the sintering process, which result in the decrease of density. The tendency of anti-densification becomes stronger under the conditions of coarser powders and higher cold pressure. The sintering process and causes for anti-densification were discussed. Finally, a hot pressing process was carried out, which was proved to be fairly effective to increase the density of CIGS target. The fabricated target can be used for magnetron-sputtering deposition of CIGS absorbers.

  6. Lessons learned from NMSG-085 CIG Land Operation demonstration

    NARCIS (Netherlands)

    Gautreau, B.; Remmersmann, T.; Henderson, H.C.; Reus, N.M. de; Khimeche, L.; Pedersen, E.; Lillesoe, J.; Liberg, D.

    2013-01-01

    This paper presents the experience gained during demonstrations carried out between Denmark, France, Germany, the Netherlands and Spain under the umbrella of the NMSG-085 / CIG Land Operation group. The demonstration, also presented in this paper, focuses on command post exercise training. It

  7. Modeling and Implementing a Digitally Embedded Maximum Power Point Tracking Algorithm and a Series-Loaded Resonant DC-DC Converter to Integrate a Photovoltaic Array with a Micro-Grid

    Science.gov (United States)

    2014-09-01

    These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources, photovoltaic (PV) arrays...renewable energy source [1]. These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources...26, May 2011. [6] H. G. Xu, J. P. He, Y. Qin, and Y. H. Li, “Energy management and control strategy for DC micro-grid in data center,” China

  8. Metal-assisted chemical etching of CIGS thin films for grain size analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Chaowei [Research and Development Centre, Hanergy Thin Film Power Group Limited, Chengdu (China); Loi, Huu-Ha; Duong, Anh; Parker, Magdalena [Failure Analysis Department, MiaSole Hi-Tech Corp., Santa Clara, CA (United States)

    2016-09-15

    Grain size of the CIGS absorber is an important monitoring factor in the CIGS solar cell manufacturing. Electron backscatter diffraction (EBSD) analysis is commonly used to perform CIGS grain size analysis in the scanning electron microscope (SEM). Although direct quantification on SEM image using the average grain intercept (AGI) method is faster and simpler than EBSD, it is hardly applicable on CIGS thin films. The challenge is that, not like polycrystalline silicon, to define grain boundaries by selective chemical etching is not easily realizable for the multi-component CIGS alloy. In this Letter, we present direct quantification of CIGS thin film grain size using the AGI method by developing metal-assisted wet chemical etching process to define CIGS grain boundaries. The calculated value is similar to EBSD result. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Characteristics of heat transfer and fluid flow in a channel with single-row plates array oblique to flow direction for photovoltaic/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Hamza H. [Department of Energy Resources and Environmental Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City, Alexandria 21934 (Egypt); Ahmed, Mahmoud; Youssef, M.S. [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut 71516 (Egypt)

    2010-09-15

    This study has been carried out to investigate the characteristics of convective heat transfer and fluid flow for a single row of oblique plates array to the flow direction inside a channel. The flow inside the channel is laminar and the plates array have spanwise distance between the plates and heated by radiation. This configuration has been designed to be used for Photovoltaic/Thermal system (PV/T) applications. The theoretical results are validated with measured values, and a good agreement prevailed. The results show that an increase in the plate oblique angle ({gamma}) in the range from 0 to 15 degrees, leads to an increase in the Nusselt number (Nu) up to a maximum value and then decreases. The oblique angle at the maximum value of Nu depends on the flow Reynolds Number (Re), and (l{sub w}/l{sub pl}), where (l{sub w}/l{sub pl}) is defined as the ratio of the plates' spacing at zero oblique angle to the plate length. Furthermore, increasing (l{sub w}/l{sub pl}) results in a significant increase in the heat transfer coefficient depending on the values of Re, and plate oblique angle ({gamma}). In addition, increasing ({gamma}) from 0 to 15 degrees results in a decrease in the friction factor up to a certain value, after which the friction value approaches a constant value depending on Re value and (l{sub w}/l{sub pl}). It was found that for any value of the plate oblique angle ({gamma}), the friction factor decreases with the increase of the values of (l{sub w}/l{sub pl}) and Re, respectively. (author)

  10. Characteristics of heat transfer and fluid flow in a channel with single-row plates array oblique to flow direction for photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Ali, Ahmed Hamza H.; Ahmed, Mahmoud; Youssef, M.S.

    2010-01-01

    This study has been carried out to investigate the characteristics of convective heat transfer and fluid flow for a single row of oblique plates array to the flow direction inside a channel. The flow inside the channel is laminar and the plates array have spanwise distance between the plates and heated by radiation. This configuration has been designed to be used for Photovoltaic/Thermal system (PV/T) applications. The theoretical results are validated with measured values, and a good agreement prevailed. The results show that an increase in the plate oblique angle (γ) in the range from 0 to 15 degrees, leads to an increase in the Nusselt number (Nu) up to a maximum value and then decreases. The oblique angle at the maximum value of Nu depends on the flow Reynolds Number (Re), and (l w /l pl ), where (l w /l pl ) is defined as the ratio of the plates' spacing at zero oblique angle to the plate length. Furthermore, increasing (l w /l pl ) results in a significant increase in the heat transfer coefficient depending on the values of Re, and plate oblique angle (γ). In addition, increasing (γ) from 0 to 15 degrees results in a decrease in the friction factor up to a certain value, after which the friction value approaches a constant value depending on Re value and (l w /l pl ). It was found that for any value of the plate oblique angle (γ), the friction factor decreases with the increase of the values of (l w /l pl ) and Re, respectively.

  11. Controlling the physical parameters of crystalline CIGS nanowires for use in superstrate configuration using vapor phase epitaxy

    Science.gov (United States)

    Lee, Dongjin; Jeon, H. C.; Kang, T. W.; Kumar, Sunil

    2018-03-01

    Indium tin oxide (ITO) is a suitable candidate for smart windows and bifacial semi-transparent solar cell applications. In this study, highly crystalline CuInGaSe2 (CIGS) nanowires were successfully grown by horizontal-type vapor phase epitaxy on an ITO substrate. Length, diameter, and density of the nanowires were studied by varying the growth temperature (500, 520, and 560 °C), time (3.5, 6.5, and 9.5 h), and type of catalyst (In, Au, and Ga). Length, diameter, and density of the nanowires were found to be highly dependent on the growth conditions. At an optimized growth period and temperature of 3.5 h and 520 °C, respectively, the length and diameter of the nanowires were found to increase when grown in a catalyst-free environment. However, the density of the nanowires was found to be higher while using a catalyst during growth. Even in a catalyst-free environment, an Indium cluster formed at the bottom of the nanowires. The source of these nanowires is believed to be Indium from the ITO substrate which was observed in the EDS measurement. TEM-based EDS and line EDS indicated that the nanowires are made up of CIGS material with a very low Gallium content. XRD measurements also show the appearance of wurtzite CIS nanowires grown on ITO in addition to the chalcopyrite phase. PL spectroscopy was done to see the near-band-edge emission for finding band-to-band optical transition in this material. Optical response of the CIGS nanowire network was also studied to see the photovoltaic effect. This work creates opportunities for making real solar cell devices in superstrate configuration.

  12. Enhanced photovoltaic performance of fully flexible dye-sensitized solar cells based on the Nb{sub 2}O{sub 5} coated hierarchical TiO{sub 2} nanowire-nanosheet arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenwu; Hong, Chengxun; Wang, Hui-gang; Zhang, Mei; Guo, Min, E-mail: guomin@ustb.edu.cn

    2016-02-28

    Graphical abstract: Nb{sub 2}O{sub 5} coated hierarchical TiO{sub 2} nanowire-sheet arrays photoanode was synthesized on Ti-mesh substrate by using a hydrothermal approach for fully flexible dye-sensitized solar cells which exhibited well photovoltaic efficiency of 4.55%. - Highlights: • Nb{sub 2}O{sub 5} coated hierarchical TiO{sub 2} nanowire-nanosheet arrays were prepared on Ti-mesh. • Nb{sub 2}O{sub 5} coated TiO{sub 2} HNWAs/Pt-ITO-PEN flexible DSSC was constructed. • The fully flexible DSSC exhibited an enhanced photovoltaic performance of 4.55%. • The reasons for the improved conversion efficiency of the DSSC were discussed. - Abstract: Nb{sub 2}O{sub 5} coated hierarchical TiO{sub 2} nanowire-sheet arrays photoanode was synthesized on flexible Ti-mesh substrate by using a hydrothermal approach. The effect of TiO{sub 2} morphology and Nb{sub 2}O{sub 5} coating layer on the photovoltaic performance of the flexible dye sensitized solar cells (DSSCs) based on Ti-mesh supported nanostructures were systematically investigated. Compared to the TiO{sub 2} nanowire arrays (NWAs), hierarchical TiO{sub 2} nanowire arrays (HNWAs) with enlarged internal surface area and strong light scattering properties exhibited higher overall conversion efficiency. The introduction of thin Nb{sub 2}O{sub 5} coating layers on the surface of the TiO{sub 2} HNWAs played a key role in improving the photovoltaic performance of the flexible DSSC. By separating the TiO{sub 2} and electrolyte (I{sup –}/I{sub 3}{sup –}), the Nb{sub 2}O{sub 5} energy barrier decreased the electron recombination rate and increased electron collection efficiency and injection efficiency, resulting in improved J{sub sc} and V{sub oc}. Furthermore, the influence of Nb{sub 2}O{sub 5} coating amounts on the power conversion efficiency were discussed in detail. The fully flexible DSSC based on Nb{sub 2}O{sub 5} coated TiO{sub 2} HNWAs films with a thickness of 14 μm displayed a well photovoltaic property

  13. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  14. Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational

  15. Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO2 photocatalyst

    International Nuclear Information System (INIS)

    Dhere, Neelkanth G.; Jahagirdar, Anant H.

    2005-01-01

    This paper presents the development of photoelectrochemical (PEC) cell for water splitting setup using multiple band gap combination of CuIn 1-x Ga x S 2 (CIGS2) thin-film photovoltaic (PV) cell and ruthenium oxide (RuO 2 ) photocatalyst. FSEC PV Materials Lab has developed a PEC setup consisting of two illuminated CIGS2 cells, a ruthenium oxide (RuO 2 ) anode deposited on titanium sheet for oxygen evolution and a platinum foil cathode for hydrogen evolution. With this combination, a PEC efficiency of 4.29% has been achieved. This paper also presents the research aimed at further improvements in the PEC efficiency by employing highly efficient photoanode that can be illuminated by photons not absorbed at the PV cell and by increasing the concentration of electrolyte solution (pH 10). The former will be achieved by employing a p-type transparent and conducting layer at the back of PV cell to transmit the unabsorbed photons, and the latter will reduce the resistance offered by the electrolyte. Concentration of the electrolyte was increased by five times, and the I-V characteristics of both RuO 2 and RuS 2 were measured with and without illumination. The results indicate that PEC efficiencies of over 9% can be achieved using RuS 2 with illumination and five times concentrated pH 10 solution instead of pH 10 with normal concentration

  16. Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO{sub 2} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, Neelkanth G. [University of Central Florida, Florida Solar Energy Center, 1679 Clearlake Road Cocoa, FL 32922-5703 (United States)]. E-mail: dhere@fsec.ucf.edu; Jahagirdar, Anant H. [University of Central Florida, Florida Solar Energy Center, 1679 Clearlake Road Cocoa, FL 32922-5703 (United States)

    2005-06-01

    This paper presents the development of photoelectrochemical (PEC) cell for water splitting setup using multiple band gap combination of CuIn{sub 1-x}Ga {sub x}S{sub 2} (CIGS2) thin-film photovoltaic (PV) cell and ruthenium oxide (RuO{sub 2}) photocatalyst. FSEC PV Materials Lab has developed a PEC setup consisting of two illuminated CIGS2 cells, a ruthenium oxide (RuO{sub 2}) anode deposited on titanium sheet for oxygen evolution and a platinum foil cathode for hydrogen evolution. With this combination, a PEC efficiency of 4.29% has been achieved. This paper also presents the research aimed at further improvements in the PEC efficiency by employing highly efficient photoanode that can be illuminated by photons not absorbed at the PV cell and by increasing the concentration of electrolyte solution (pH 10). The former will be achieved by employing a p-type transparent and conducting layer at the back of PV cell to transmit the unabsorbed photons, and the latter will reduce the resistance offered by the electrolyte. Concentration of the electrolyte was increased by five times, and the I-V characteristics of both RuO{sub 2} and RuS{sub 2} were measured with and without illumination. The results indicate that PEC efficiencies of over 9% can be achieved using RuS{sub 2} with illumination and five times concentrated pH 10 solution instead of pH 10 with normal concentration.

  17. Grounds of two positions photovoltaic panels

    OpenAIRE

    Castán Fortuño, Fernando

    2008-01-01

    The objective of this Master Thesis is to find the optimum positioning for a two positions photovoltaic panel. Hence, it will be implemented a model in order to optimize the energy of the sun that the photovoltaic panel is receiving by its positioning. Likewise this project will include the comparison with other photovoltaic panel systems as the single position photovoltaics panels. Ultimately, it is also going to be designed a system array for the optimized model of two positions photovoltai...

  18. Development of CIGS2 solar cells with lower absorber thickness

    Energy Technology Data Exchange (ETDEWEB)

    Vasekar, Parag S.; Dhere, Neelkanth G. [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Rd., Cocoa, FL 32922 (United States); Moutinho, Helio [National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO 80401 (United States)

    2009-09-15

    The availability and cost of materials, especially of indium can be a limiting factor as chalcopyrite based thin-film solar cells advance in their commercialization. The required amounts of metals can be lowered by using thinner films. When the thickness of the film decreases, there is possibility of remaining only in the small grain region because the coalescence of grains does not have an opportunity to enhance the grain size to the maximum. Solar cell performance in smaller grain chalcopyrite absorber deteriorates due to larger fraction of grain boundaries. Efforts are being made to reduce the thickness while maintaining the comparable performance. This work presents a study of preparation, morphology and other material properties of CIGS2 absorber layers with decreasing thicknesses up to 1.2 {mu}m and its correlation with the device performance. Encouraging results were obtained demonstrating that reasonable solar cell efficiencies (>10%) can be achieved even for thinner CIGS2 thin-film solar cells. (author)

  19. Vaping cannabis (marijuana): parallel concerns to e-cigs?

    Science.gov (United States)

    Budney, Alan J; Sargent, James D; Lee, Dustin C

    2015-11-01

    The proliferation of vaporization ('vaping') as a method for administering cannabis raises many of the same public health issues being debated and investigated in relation to e-cigarettes (e-cigs). Good epidemiological data on the prevalence of vaping cannabis are not yet available, but with current trends towards societal approval of medicinal and recreational use of cannabis, the pros and cons of vaping cannabis warrant study. As with e-cigs, vaping cannabis portends putative health benefits by reducing harm from ingesting toxic smoke. Indeed, vaping is perceived and being sold as a safer way to use cannabis, despite the lack of data on the health effects of chronic vaping. Other perceived benefits include better taste, more efficient and intense effects and greater discretion which allows for use in more places. Unfortunately, these aspects of vaping could prompt an increased likelihood of trying cannabis, earlier age of onset, more positive initial experiences, and more frequent use, thereby increasing the probability of problematic use or addiction. Sales and marketing of vaping devices with no regulatory guidelines, especially related to advertising or product development targeting youth, parallels concerns under debate related to e-cigs and youth. Thus, the quandary of whether or not to promote vaping as a safer method of cannabis administration for those wishing to use cannabis, and how to regulate vaping and vaping devices, necessitates substantial investigation and discussion. Addressing these issues in concert with efforts directed towards e-cigs may save time and energy and result in a more comprehensive and effective public health policy on vaping. © 2015 Society for the Study of Addiction.

  20. Band gap engineering of tandem structured CIGS compound absorption layer fabricated by sputtering and selenization

    Energy Technology Data Exchange (ETDEWEB)

    Kang, San; Sharma, Rahul; Sim, Jae-Kwan [Semiconductor Materials Processing Laboratory, School of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Chonbuk National University, Deokjin-dong 664-14, Jeonju 561-756 (Korea, Republic of); Lee, Cheul-Ro, E-mail: crlee7@jbnu.ac.kr [Semiconductor Materials Processing Laboratory, School of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Chonbuk National University, Deokjin-dong 664-14, Jeonju 561-756 (Korea, Republic of)

    2013-06-25

    Highlights: ► Systematic band gap engineering to fabricate tandem Cu(In,Ga)Se{sub 2} absorption layers. ► XRD shows prominent (1 1 2) reflection shift for attributed CIS, CIGS, and CGS phases. ► Optical transmittance and reflectance spectrum are improved towards infrared region. ► The Cu/In + Ga and Ga/In + Ga effect is matched with highest efficient solar cell. ► Tandem CIS/CIGS/CGS layer, the band gap is increased from 1.15 to 2.06 eV. -- Abstract: Band gap engineering was executed to fabricate a multi-junction stacked i.e. tandem Cu(In,Ga)Se{sub 2} (CIGS) absorption layer. The CIGS absorption layers consist of multi-junction stacked CIS/CIGS/CGS thin films from bottom to top with increasing band gap. Tandem CIGS layers were fabricated by using three precursor of CuIn, In/CuGa/In, and CuGa onto the Mo coated soda-lime glass (SLG) by the sequential sputtering of CuIn, CuGa, and In targets. The CIG precursors were converted into CIGS absorption thin film by selenization process. From the X-ray diffraction (XRD) pattern of CIS/CIGS/CGS tandem layer, with the prominent peak shift for (1 1 2) reflections was attributed to the individual CIS, CIGS, and CGS phases at 26.76°, 27.15°, and 27.65° diffraction angles, respectively. The morphologies and atomic (at%) composition uniformity onto the surface and along the depth were extensively analyzed with field effect scanning electron microscope (FESEM) attached energy dispersive spectroscopy (EDS) and secondary ion mass spectroscopy (SIMS). The optical properties such as transmittance, reflectance and absorbance were found to improve in the infrared region for all the tandem CIGS layers. Near the fundamental absorption edge, the absorption coefficient was approached to 10{sup 5} cm{sup −1} for CIS/CIGS/CGS tandem layer. The straight-line behavior indicates that the films have a direct band gap. The band gap was found to increase from 1.15 to 1.74 eV with the Ga-grading along the depth of individual CIS, CIGS

  1. Band gap engineering of tandem structured CIGS compound absorption layer fabricated by sputtering and selenization

    International Nuclear Information System (INIS)

    Kang, San; Sharma, Rahul; Sim, Jae-Kwan; Lee, Cheul-Ro

    2013-01-01

    Highlights: ► Systematic band gap engineering to fabricate tandem Cu(In,Ga)Se 2 absorption layers. ► XRD shows prominent (1 1 2) reflection shift for attributed CIS, CIGS, and CGS phases. ► Optical transmittance and reflectance spectrum are improved towards infrared region. ► The Cu/In + Ga and Ga/In + Ga effect is matched with highest efficient solar cell. ► Tandem CIS/CIGS/CGS layer, the band gap is increased from 1.15 to 2.06 eV. -- Abstract: Band gap engineering was executed to fabricate a multi-junction stacked i.e. tandem Cu(In,Ga)Se 2 (CIGS) absorption layer. The CIGS absorption layers consist of multi-junction stacked CIS/CIGS/CGS thin films from bottom to top with increasing band gap. Tandem CIGS layers were fabricated by using three precursor of CuIn, In/CuGa/In, and CuGa onto the Mo coated soda-lime glass (SLG) by the sequential sputtering of CuIn, CuGa, and In targets. The CIG precursors were converted into CIGS absorption thin film by selenization process. From the X-ray diffraction (XRD) pattern of CIS/CIGS/CGS tandem layer, with the prominent peak shift for (1 1 2) reflections was attributed to the individual CIS, CIGS, and CGS phases at 26.76°, 27.15°, and 27.65° diffraction angles, respectively. The morphologies and atomic (at%) composition uniformity onto the surface and along the depth were extensively analyzed with field effect scanning electron microscope (FESEM) attached energy dispersive spectroscopy (EDS) and secondary ion mass spectroscopy (SIMS). The optical properties such as transmittance, reflectance and absorbance were found to improve in the infrared region for all the tandem CIGS layers. Near the fundamental absorption edge, the absorption coefficient was approached to 10 5 cm −1 for CIS/CIGS/CGS tandem layer. The straight-line behavior indicates that the films have a direct band gap. The band gap was found to increase from 1.15 to 1.74 eV with the Ga-grading along the depth of individual CIS, CIGS, and CGS thin films

  2. Design and long-term monitoring of DSC/CIGS tandem solar module

    International Nuclear Information System (INIS)

    Vildanova, M F; Nikolskaia, A B; Kozlov, S S; Shevaleevskiy, O I

    2015-01-01

    This paper describes the design and development of tandem dye-sensitized/Cu(In, Ga)Se (DSC/CIGS) PV modules. The tandem PV module comprised of the top DSC module and a bottom commercial 0,8 m 2 CIGS module. The top DSC module was made of 10 DSC mini-modules with the field size of 20 × 20 cm 2 each. Tandem DSC/CIGS PV modules were used for providing the long-term monitoring of energy yield and electrical parameters in comparison with standalone CIGS modules under outdoor conditions. The outdoor test facility, containing solar modules of both types and a measurement unit, was located on the roof of the Institute of Biochemical Physics in Moscow. The data obtained during monitoring within the 2014 year period has shown the advantages of the designed tandem DSC/CIGS PV-modules over the conventional CIGS modules, especially for cloudy weather and low-intensity irradiation conditions. (paper)

  3. Outdoor Performance Comparison of Concentrator Photovoltaic and Flat Plate Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Hidaka Yoshihide

    2016-01-01

    Full Text Available Output characteristics of tracking type concentrator photovoltaic (CPV system, multi-crystalline silicon (mc-Si PV system, CIGS PV system, and amorphous silicon (a-Si PV system were analyzed in the data period of a year from August 2013 to July 2014. In this study, we analyzed the influence of environmental factors using average photon energy (APE and temperature of solar cell (Tcell. The characteristics of 14 kW CPV system, 50 kW mc-Si PV system, 60 kW CIGS PV system, 1.35 kW a-Si PV system were evaluated and compared. As a result, the output performance of CPV was highest between the four systems at the most frequent conditions in the outdoor environment.

  4. New approach to exploit optimally the PV array output energy by maximizing the discharge rate of a directly-coupled photovoltaic water pumping system (DC/PVPS)

    International Nuclear Information System (INIS)

    Boutelhig, Azzedine; Hadj Arab, Amar; Hanini, Salah

    2016-01-01

    Highlights: • Mismatches on a designed d-c PV pumping system have been highlighted. • A new approach predicting the maximal discharge has been developed. • The approach has been discussed versus its linearity coefficient. • The approach effectiveness has been investigated and approved. • Theoretical and experimental obtained values have been compared and approved. - Abstract: A directly-coupled photovoltaic water pumping system (DC/PVPS) is generally designed by considering the worst month conditions on lowest daylight-hours, the maximum monthly daily required water volume and tank to store the excess water. In case of absence of hydraulic storage (water tank) or it is not enough dimensioned, the extra amount of pumped water is lost or is not reasonably used, when the system is operated on full daylight-hour. Beside that the extra amount of energy, which might be produced by the PV generator, is not exploited, when the system is operated only during a specified period-time needed to satisfy the demand. Beyond the accurate design that satisfying the end-user, a new approach has been developed as target to exploit maximally the PV array energy production, by maximizing the discharge rate of the system. The methodology consists of approaching maximally the demanded energy to the supplied energy on full operating day. Based on the demand/supply energy condition, the approach has been developed, upon the PV array and the pump performance models. The issued approach predicts the maximum delivery capacity of the system on monthly daily water volumes versus the monthly daily averages of solar irradiation, previously recorded. Its efficacy has been investigated and discussed according to the estimated and experimental values of its linearity coefficient, following the characterization tests of a designed system, carried out at our pumping test facility in Ghardaia (Algeria). The new theoretically and experimentally obtained flow-rates fit well, except

  5. The review of big photovoltaic plants

    International Nuclear Information System (INIS)

    Le Jannic, N.

    2010-01-01

    This document reviews all the photovoltaic plants settled in France that have a power output greater than 250 kWc. 467 plants have been reported, they cumulate a total capacity of 824.5 MWc. For each plant the following information is given: 1) the names of the owner, the installer and the designer, 2) the power output, 3) the manufacturer of the equipment, 4) the technology used (monocrystalline - polycrystalline - amorphous silicon - CdTe - monocrystalline heterojunction - CIGS), 5) the type of installations (on the ground, on the roof or on the facade), 6) the predicted annual power output, and 7) the date of commissioning. (A.C.)

  6. Simulation of the optimal size of photovoltaic system using ...

    African Journals Online (AJOL)

    . ... is composed of photovoltaic array, power tracker, battery storage, inverter and load. The data used were the sunshine duration and solar radiation intensity for ... covered by the photovoltaic system without battery storage, monthly-average ...

  7. Na effect on flexible Cu(In,Ga)Se{sub 2} photovoltaic cell depending on diffusion barriers (SiOx, i-ZnO) on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woo-Jung; Cho, Dae-Hyung; Wi, Jae-Hyung; Han, Won Seok [Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of); Kim, Jeha [Insitute of Photovoltaics, Cheongju University, Cheongju 360-764 (Korea, Republic of); Chung, Yong-Duck, E-mail: ydchung@etri.re.kr [Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of); Department of Advanced Device Engineering, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2014-10-15

    Cu(In,Ga)Se{sub 2} (CIGS) based-photovoltaic (PV) cells with different diffusion barriers of SiOx and i-ZnO were fabricated on stainless steel (STS) substrate and their electrical characteristics were investigated by measuring J–V curves under illuminated and dark conditions. The physical properties of the CIGS film depending on type of diffusion barrier were also analyzed using X-ray diffraction and secondary ion mass spectroscopy. The efficiency of the CIGS-PV cell with i-ZnO barrier was approximately 2% higher than that with the SiOx barrier. Through the analysis of dark J–V curves, we discovered that distinctive defects were formed in the band gap of CIGS based on which diffusion barrier contacted the STS. The diffraction pattern showed a slightly different tendency of the peak intensity ratio of (220/204)/(112) in the PV cell with the i-ZnO barrier, which was slightly higher than that in the PV cell with SiOx barrier. In elemental depth profile, a deficient Ga profile was observed near the surface of the CIGS film with the SiOx barrier, and an abundant Na profile within the CIGS film with the i-ZnO barrier was detected. This is attributed to a difference in thermal conduction through the diffusion barriers during CIGS film growth, originating from the larger thermal conductivity of ZnO compared with SiOx. - Highlights: • We fabricated CIGS-PV cells with diffusion barriers of SiOx and i-ZnO on STS. • The efficiency of CIGS-PV cell with i-ZnO was ∼2% higher than that with SiOx. • Distinctive defects were formed into CIGS absorber depending on diffusion barrier.

  8. Reflective photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Goeke, Ronald S.

    2018-03-06

    A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflective segments having standard film thicknesses.

  9. Law guide for photovoltaic installations: Array installation; Connecting the grid; Financing; The new legal regime implemented in 2011; Is green taxing still so green?; Which judge will bring the light?: Reactions of actors

    International Nuclear Information System (INIS)

    Ferracci, Vanina; Vandervorst, Alain; Tixier, Jean-Luc; Barthelemy, Christophe; Cloche-Dubois, Celine; Tenailleau, Francois; Rubio, Aurore-Emmanuelle; Pechamat, Olivier; Gandet, Stephanie; Deharbe, David; Rousset, Alain; Boedec, Morgan; Joffre, Andre; Blosseville, Thomas; Meunier, Stephane; Maincent, Guillaume

    2011-01-01

    The authors discuss legal issues and aspects regarding photovoltaic installations in France: the array installation (constraints related to urban planning: rules, authorizations and competencies when setting up on the ground or on buildings, urban taxes, estate issues), the connection to the grid, the financing (electricity prices, partnership contract), the new legal regime implemented in 2011, the question whether green taxing is still sufficiently attractive, the dispute about the mandatory purchase mechanism, and the attitude of the different actors (notably local communities, and industries) in front of the decrease of purchase prices

  10. Survey of CIG Data Base Generation from Imagery.

    Science.gov (United States)

    1980-09-01

    200, February 1980. McGrath, J., "The Use of Wide-Angle Cinematic Simulators in Pilot Training", Technical Report NAVTRAEQUIPCEN 70-C-0306-1, March 1973... March 1974. 5 NAVTRAEQUIPCEN IH-318 algorithms which utilize data bases in which the inf)rmation is stored as planar polygons. In currint, real-time CIG...Vision Simulation and Motion Conference, April 1976. 42McGrath, J., "The Use of Wide-Angle Cinematic Simulators in Pilot Training", Technical Report

  11. Photovoltaic demonstration projects 2

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W B; Hacker, R J [Halcrow (William) and Partners, Swindon (UK); Kaut, W [eds.

    1989-01-01

    This book, the proceedings of the third Photovoltaic Contractors' Meeting organised by the Commission of the European Communities, Directorate-General for Energy provides an overview of the photovoltaic demonstration projects which have been supported by the Energy Directorate of the Commission of the European Communities since 1983. It includes reports by each of the contractors who submitted proposals in 1983, 1984 and 1985, describing progress with their projects. The different technologies which are being demonstrated concern the modules, the cabling of the array, structure design, storage strategy and power conditioning. The various applications include powering of houses, villages, recreation centres, water desalination, communications, dairy farms, water pumping and warning systems. (author).

  12. Reusing a declarative specification to check the conformance of different CIGs

    NARCIS (Netherlands)

    Grando, M.A.; Aalst, van der W.M.P.; Mans, R.S.; Daniel, F.; Barkaoui, K.; Dustdar, S.

    2012-01-01

    Several Computer Interpretable Guidelines (CIGs) languages have been proposed by the health community. Even though these CIG languages share common ideas each language has to be provided with his own mechanism of verification. In an earlier work we have shown that a DECLARE model can be used for

  13. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  14. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  15. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  16. Growth of polycrystalline Cu(In,Ga)Se2 thin films using a radio frequency-cracked Se-radical beam source and application for photovoltaic devices

    International Nuclear Information System (INIS)

    Ishizuka, Shogo; Shibata, Hajime; Yamada, Akimasa; Fons, Paul; Sakurai, Keiichiro; Matsubara, Koji; Niki, Shigeru

    2007-01-01

    Cu(In,Ga)Se 2 (CIGS) thin films were grown using a rf-cracked Se-radical beam source. A unique combination of film properties, a highly dense and smooth surface with large grain size, is shown. These features seem to have no significant influence on the photovoltaic performance. Defect control in bulk CIGS leading to corresponding variations in the electrical and photoluminescence properties was found to be possible by regulating the Se-radical source parameters. A competitive energy conversion efficiency of 17.5%, comparable to that of a Se-evaporative source grown CIGS device, has been demonstrated from a solar cell fabricated using a Se-radical source grown CIGS absorber

  17. Production. Which price for photovoltaic?

    International Nuclear Information System (INIS)

    Dupin, L.

    2011-01-01

    As the French government decided to reduce its financial support to photovoltaic energy, a first article identifies and comments the issues to be addressed to have a competitive French photovoltaic industry: to bet on second generation arrays (thin layer arrays), to have higher yearly objectives in terms of installed power (800 MW or 1 GW instead of 500 MW, in order to create a reference market), to redefine the financing and the electricity purchase scheme, to promote self consumption, to support exportation. The second article presents the first French photovoltaic test and certification centre, located near Chambery, where solar arrays are inspected and where their ageing is simulated through thermal fatigue and impact testing

  18. CIGS thin film solar cell prepared by reactive co-sputtering

    Science.gov (United States)

    Kim, Jeha; Lee, Ho-Sub; Park, Nae-Man

    2013-09-01

    The reactive co-sputtering was developed as a new way of preparing high quality CuInGaSe2(CIGS) films from two sets of targets; Cu0.6Ga 0.4 and Cu0.4In0.6 alloy and Cu and (In0.7Ga0.3)2Se3 compound targets. During sputtering, Cu, In, Ga metallic elements as well as the compound materials were reacted to form CIGS simultaneously in highly reactive elemental Se atmosphere generated by a thermal cracker. CIGS layer had been grown on Mo/soda-lime glass(SLG) at 500°C. For both sets of targets, we controlled the composition of CIGS thin film by changing the RF power for target components. All the films showed a preferential (112) orientation as observed from X-ray diffraction analysis. The composition ratios of CIGS were easily set to 0.71-0.95, 0.10-0.30 for [Cu]/[III] and [Ga]/[III], respectively. The grain size and the surface roughness of a CIGS film increased as the [Cu]/[III] ratios increased. The solar cells were fabricated using a standard base line process in the device structure of grid/ITO/i-ZnO/CdS/CIGS/Mo/ SLG. The best performance was obtained the performance of Voc = 0.45 V, Jsc =35.6, FF = 0.535, η = 8.6% with a 0.9 μm-CIGS solar cell from alloy targets while Voc = 0.54 V, Jsc =30.8, FF = 0.509, η = 8.5% with a 0.8 μm-CIGS solar cell from Cu and (In0.7Ga0.3)2Se3.

  19. Photovoltaic sources modeling

    CERN Document Server

    Petrone, Giovanni; Spagnuolo, Giovanni

    2016-01-01

    This comprehensive guide surveys all available models for simulating a photovoltaic (PV) generator at different levels of granularity, from cell to system level, in uniform as well as in mismatched conditions. Providing a thorough comparison among the models, engineers have all the elements needed to choose the right PV array model for specific applications or environmental conditions matched with the model of the electronic circuit used to maximize the PV power production.

  20. Photovoltaic Cells

    OpenAIRE

    Karolis Kiela

    2012-01-01

    The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  1. Temperature Effect on Power Drop of Different Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Emad Talib Hahsim

    2016-05-01

    Full Text Available Solar module operating temperature is the second major factor affects the performance of solar photovoltaic panels after the amount of solar radiation. This paper presents a performance comparison of mono-crystalline Silicon (mc-Si, poly-crystalline Silicon (pc-Si, amorphous Silicon (a-Si and Cupper Indium Gallium di-selenide (CIGS photovoltaic technologies under Climate Conditions of Baghdad city. Temperature influence on the solar modules electric output parameters was investigated experimentally and their temperature coefficients was calculated. These temperature coefficients are important for all systems design and sizing. The experimental results revealed that the pc-Si module showed a decrease in open circuit voltage by -0.0912V/ºC while mc-Si and a-Si had nearly -0.07V/ºC and the CIGS has -0.0123V/ºC. The results showed a slightly increase in short circuit current with temperature increasing about 0.3mA/ºC ,4.4mA/ºC and 0.9mA/ºC for mc-Si , pc-Si and both a-Si and CIGS. The mc-Si had the largest drop in output power about -0.1353W/ºC while -0.0915, -0.0114 and -0.0276 W/ºC for pc-Si, a-Si and CIGS respectively. The amorphous silicon is the more suitable module for high operation temperature but it has the lowest conversion efficiency between the tested modules.

  2. Application of Thin Film Photovoltaic CIGS Cells to Extend the Endurance of Small Unmanned Aerial Systems

    Science.gov (United States)

    2017-06-01

    Source: [10]. ............................................................10  Figure 4.  IV Curve Example at Different Solar Intensity . Adapted from [2...research will show the growing capability and efficiency of using TFPV cells. Figure 4. IV Curve Example at Different Solar Intensity . Adapted from [2...tests were conducted to determine the power output. To determine the power output, we measured the electrical characteristics and solar efficiency

  3. NASA-OAST photovoltaic energy conversion program

    Science.gov (United States)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  4. Design of photovoltaic array electrical system based on solar power generation%基于太阳能发电的光伏阵列电气系统设计

    Institute of Scientific and Technical Information of China (English)

    窦伟山; 王薇

    2017-01-01

    清洁能源的使用是未来社会发展的趋势.以光伏发电为研究模型,对实现太阳能的高效利用展开研究,提出了一种高效的光伏阵列,使太阳能发电系统的能源利用率得到了显著的提升.通过对太阳能发电的电气系统进行一次设计,提出了35 kV侧无功补偿装置,使得系统更加合理、有效.%The use of clean energy is the future trend of social development.Using the solar photovoltaic power generation as the research model,the efficient utilization of solar energy was researched.A kind of high efficient photovoltaic array was put forward,significantly improving the energy efficiency of solar power generation system.Through the design of solar power generation electrical system,the 35 kV side reactive power compensation device was put forward,making the system more reasonable and effective.

  5. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Liu, Wei; Kovalgin, Alexeij Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  6. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    KAUST Repository

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; Bowring, Andrea R.; Unger, Eva L.; Nguyen, William H.; Burschka, Julian; Pellet, Norman; Lee, Jungwoo Z.; Grä tzel, Michael; Noufi, Rommel; Buonassisi, Tonio; Salleo, Alberto; McGehee, Michael D.

    2015-01-01

    solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS

  7. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  8. Photovoltaic Cells and Systems: Current State and Future Trends

    OpenAIRE

    Hadj Bourdoucen; Joseph A. Jervase; Abdullah Al-Badi; Adel Gastli; Arif Malik

    2000-01-01

    Photovoltaics is the process of converting solar energy into electrical energy. Any photovoltaic system invariably consists of solar cell arrays and electric power conditioners. Photovoltaic systems are reliable, quiet, safe and both environmentally benign and self-sustaining. In addition, they are cost-effective for applications in remote areas. This paper presents a review of solar system components and integration, manufacturing, applications, and basic research related to photovoltaics. P...

  9. Modeling and Simulation of a Dual-Junction CIGS Solar Cell Using Silvaco ATLAS

    Science.gov (United States)

    2012-12-01

    stage process, thermal evaporation, electrodeposition , deposition temperatures, content, stoichiometry and composition range on CIGS, inducing in...mesh. This location can be any specific region, and for the purposes of this thesis, a pair of cathode , and anode electrodes was assigned in the two...ATLASTM structure file for the dual-junction CIGS cell. In order to extract an overall I–V curve, two sets of anodes and cathodes were placed on the

  10. One-pot Synthesis of Soluble Nanoscale CIGS Photoactive Functional Materials

    Directory of Open Access Journals (Sweden)

    Yan Aixia

    2007-01-01

    Full Text Available Abstract Promising alternatives for solar energy utilization are thin film technologies involving various new materials. This contribution describes an easy and inexpensive synthetic method that can be used to prepare soluble nanoscale triphenyl phosphine-coordinated CIGS (TPP-CIGS photoactive functional materials. This complex is stable in the solid state under the irradiation of the ambient light, but its solution becomes a little bit unstable under the illumination of the low intensity laser.

  11. Organic photovoltaics

    DEFF Research Database (Denmark)

    Demming, Anna; Krebs, Frederik C; Chen, Hongzheng

    2013-01-01

    's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic...... solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency...... of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating...

  12. Defects in Cu(In,Ga)Se{sub 2} chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qing; Gunawan, Oki; Copel, Matthew; Reuter, Kathleen B; Chey, S Jay; Mitzi, David B [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States); Deline, Vaughn R [IBM Almaden Resesarch Center, San Jose, CA (United States)

    2011-10-15

    Understanding defects in Cu(In,Ga)(Se,S){sub 2} (CIGS), especially correlating changes in the film formation process with differences in material properties, photovoltaic (PV) device performance, and defect levels extracted from admittance spectroscopy, is a critical but challenging undertaking due to the complex nature of this polycrystalline compound semiconductor. Here we present a systematic comparative study wherein varying defect density levels in CIGS films were intentionally induced by growing CIGS grains using different selenium activity levels. Material characterization results by techniques including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and medium energy ion scattering indicate that this process variation, although not significantly affecting CIGS grain structure, crystal orientation, or bulk composition, leads to enhanced formation of a defective chalcopyrite layer with high density of indium or gallium at copper antisite defects ((In, Ga){sub Cu}) near the CIGS surface, for CIGS films grown with insufficient selenium supply. This defective layer or the film growth conditions associated with it is further linked with observed current-voltage characteristics, including rollover and crossover behavior, and a defect state at around 110 meV (generally denoted as the N1 defect) commonly observed in admittance spectroscopy. The impact of the (In, Ga){sub Cu} defects on device PV performance is also established. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Selenization of CIS and CIGS layers deposited by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Babu, B. J.; Egaas, B.; Velumani, S.

    2018-03-21

    Cu(In1-xGax)Se2 (CIGS) thin films with x=0 (CIS) and x=0.3 (CIGS) were prepared on Mo-coated glass substrate by using chemical spray pyrolysis at a substrate temperature of 350 degrees C, followed by selenization treatment at 550 degrees C in selenium environment under N2 gas flow. X-ray diffraction patterns of as-deposited CIGS layers on Mo showed polycrystalline chalcopyrite phase with an intense (112) plane. Splitting of (204)/(220) and (116)/(312) planes for the film with x=0.3 reveals deviation of tetragonal nature. Field emission scanning electron microscopy cross-sectional images of selenized films showed clear re-crystallization of grains. During the selenization process of the CIGS absorber, a thin interface layer of MoSe2 is formed. Line mapping of Mo/CIGS layer showed more gallium segregation at the interface of back contact resulting in band gap grading. Chemical composition and mapping of the as-deposited and selenized samples were determined by energy dispersive analysis of X-rays. This work leads to fabrication of low cost and large scale Mo/CIGS/CdS/ZnO/ZnO:Al device structure.

  14. Commercialization of High Efficiency Low Cost CIGS Technology Based on Electroplating: Final Technical Progress Report, 28 September 2007 - 30 June 2009

    Energy Technology Data Exchange (ETDEWEB)

    Basol, B.

    2010-08-01

    This report describes SoloPower's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. The project focused on SoloPower's electrodeposition-based copper indium gallium (di)selenide (CIGS) technology. Under this subcontract, SoloPower improved the quality of its flexible metal substrates, increased the size of its solar cells from 0.5 cm2 to 120 cm2, increased the small-area cell efficiencies from near 11% to near 14%, demonstrated large-area cells, and developed a module manufacturing process.

  15. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2014-01-01

    The global solar photovoltaic market enjoyed a strong revival in 2013. Preliminary estimates put it in excess of 37 GWp, compared to 30 GWp in 2012 and 2011. The solar photovoltaic sector led the annual installed capacity ratings for renewable energies, taking worldwide capacity up to 137 GWp by the end of the year which means a 35% year-on-year increase. At global level the high growth markets - China, Japan and America - contrast sharply with the contracting European Union market. The strong recovery of the global photovoltaic market is due to the drop in module prices which in some zones has dropped below the conventional electricity price. In the E.U, in 2013 the photovoltaic electricity reached 80.2 TWh while the capacity connected during this year was 9922.2 MWp. Concerning the capacity connected in 2013 the 2 main contributors in Europe are Germany (3310.0 MWc) and Italy (1462.0 MWc). These 2 countries represent also 68% of the cumulated and connected capacity in Europe. All along the article various charts and tables give the figures of the photovoltaic capacity per inhabitant for each E.U country in 2013, the electricity production from photovoltaic power for each E.U country, and the main photovoltaic module manufacturers in 2013 worldwide reporting production and turnover

  16. 600 Volt Stretched Lens Array for Solar Electric Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ENTECH, Auburn, NASA, and others have recently developed a new space photovoltaic array called the Stretched Lens Array (SLA), offering unprecedented performance...

  17. CuIn{sub 1-x}Ga{sub x}Se{sub 2} photovoltaic devices for tandem solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Seyrling, S. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland)], E-mail: seyrling@phys.ethz.ch; Calnan, S. [Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Buecheler, S. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland); Huepkes, J. [Institut fuer Energieforschung, Photovoltaik, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Wenger, S. [Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPF Lausanne, 1015 Lausanne (Switzerland); Bremaud, D.; Zogg, H. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland); Tiwari, A.N. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland); Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)

    2009-02-02

    CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS) solar cells show a good spectral response in a wide range of the solar spectrum and the bandgap of CIGS can be adjusted from 1.0 eV to 1.7 eV by increasing the gallium-to-indium ratio of the absorber. While the bandgaps of Ga-rich CIGS or CGS devices make them suitable for top or intermediate cells, the In rich CIGS or CIS devices are well suited to be used as bottom cells in tandem solar cells. The photocurrent can be adapted to the desired value for current matching in tandem cells by changing the composition of CIGS which influences the absorption characteristics. Therefore, CIGS layers with different [Ga]/[In + Ga] ratios were grown on Mo and ZnO:Al coated glass substrates. The grain size, composition of the layers, and morphology strongly depend on the Ga content. Layers with Ga rich composition exhibit smaller grain size and poor photovoltaic performance. The current densities of CIGS solar cells on ZnO:Al/glass varied from 29 mA cm{sup -2} to 13 mA cm{sup -2} depending on the Ga content, and 13.5% efficient cells were achieved using a low temperature process (450 deg. C ). However, Ga-rich solar cells exhibit lower transmission than dye sensitized solar cells (DSC). Prospects of tandem solar cells combining a DSC with CIGS are presented.

  18. Photovoltaic device

    DEFF Research Database (Denmark)

    2011-01-01

    A photovoltaic cell module including a plurality of serially connected photovoltaic cells on a common substrate, each including a first electrode, a printed light-harvesting layer and a printed second electrode, wherein at least one of the electrodes is transparent, and wherein the second electrode...... of a first cell is printed such that it forms an electrical contact with the first electrode of an adjacent second cell without forming an electrical contact with the first electrode of the first cell or the light-harvesting layer of the second cell, and a method of making such photovoltaic cell modules....

  19. Photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The photovoltaic sector is continuing on track, just as the extent of solar energy's electricity-generating potential is dawning on the public mind. The annual global installation figure was up more than twofold in 2010 (rising from just short of 7000 MWp in 2009). It leapt to over 16000 MWp, bringing worldwide installed photovoltaic capacity close to 38000 MWp. The photovoltaic power generated in the European Union at the end of 2010 reached 22.5 TWh which means an additional capacity of 13023 MWp during 2010. Concerning the cumulated installed capacity, Germany and Spain rank first and second in the European Union with respectively 17370 MWp and 3808 MWp

  20. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The european Union photovoltaic market reached the limits of the sector supply capacity for the first time. Meanwhile the prospects of growth in the photovoltaic market are still just as good as before. Silicon producers have finally responded to the expectations of the photovoltaic industry by announcing new production capacities. These extensions led to massively investing in new production capacities, in phase with ever greater demand. This increase in demand remains, however dependent upon the energy policy. (A.L.B.)

  1. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2013-01-01

    After the euphoria of 2011, the European Union's photovoltaic market slowed right down in 2012. EurObserv'ER puts newly connected capacity in 2012 at 16.5 GWp compared to 22 GWp in 2011, which is a 25% drop. At global level the market generally held up, with just over 30 GWp installed, bolstered by the build-up of the American and Asian markets. The photovoltaic electricity generated in the EU reached 68.1 TWh in 2012. The article begins with the description of the worldwide situation of photovoltaic electricity, then details the situation for each EU member with the help of tables and charts and ends with the state of photovoltaic industry at the world scale

  2. Effect of yoghurt or yoghurt serum on microbial quality of cig kofte.

    Science.gov (United States)

    Dogan, Mahmut; Cankurt, Hasan; Toker, Omer Said; Yetim, Hasan; Sagdic, Osman

    2014-07-01

    Cig kofte, raw meatball is a traditionally produced meat product in Turkey and some other Middle East countries. It is prepared from mixtures of finely minced raw beef, bulgur, onions, various spices and tap water. Cig kofte is an uncooked product and popularly consumed with lettuce and lemon juice. In this study, yoghurt or yoghurt serum (YS) were added to the mixtures of cig kofte instead of tap water to reduce microbial risks of the raw meatball. Additionally, the effects of yoghurt and YS on some physicochemical characteristics of cig kofte were investigated. Cig kofte is generally consumed within a few hours after the preparation because of its raw nature. Also, it is generally sold under unhygienic conditions in restaurants and restaurant-like places. For this purpose, reducing of the microbial load of cig kofte is important. In the results, Escherichia coli and Listeria monocytogenes were not detected in any samples. While lactic acid bacteria count increased by addition of yoghurt and YS, the number of other microorganisms except for total aerobic mesophilic bacteria (TAMB) were decreased. The aw values and% moisture contents of the samples were varied between 0.88-0.94 and 46.25-49.72, respectively. The pH values of the samples were slightly changed during the storage of 24 h while no changes detected in the control samples during the storage. In conclusion, it can be suggested that using the yoghurt or YS instead of tap water in the preparation of cig kofte might ensure the microbial safety, increase the nutritional value and its flavour or aroma.

  3. Photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    spain and Germany set the pace for the world photovoltaic market in 2008, which grew to more than twice its 2007 size. The European Union continued to drive photocell installation with an additional 4 592.3 MWp in 2008, or 151.6% growth over 2007. However, European growth prospects for the photovoltaic market in 2009 are being dampened by the global financial crisis and the scheduled slow-down of the Spanish market. (author)

  4. Photovoltaic technologies

    OpenAIRE

    Bagnall, Darren M; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power in...

  5. Photovoltaic applications

    International Nuclear Information System (INIS)

    Sidrach, M.

    1992-01-01

    The most common terrestrial applications of photovoltaic plants are reviewed. Classification of applications can be done considering end-use sectors and load profiles (consumption demand). For those systems with direct coupling the working point is determined by the intersection of the load line with the I-V curve Design guidelines are provided for photovoltaic systems. This lecture focusses on the distribution system and safeguards

  6. Assessing Reliability of Cold Spray Sputter Targets in Photovoltaic Manufacturing

    Science.gov (United States)

    Hardikar, Kedar; Vlcek, Johannes; Bheemreddy, Venkata; Juliano, Daniel

    2017-10-01

    Cold spray has been used to manufacture more than 800 Cu-In-Ga (CIG) sputter targets for deposition of high-efficiency photovoltaic thin films. It is a preferred technique since it enables high deposit purity and transfer of non-equilibrium alloy states to the target material. In this work, an integrated approach to reliability assessment of such targets with deposit weight in excess of 50 lb. is undertaken, involving thermal-mechanical characterization of the material in as-deposited condition, characterization of the interface adhesion on cylindrical substrate in as-deposited condition, and developing means to assess target integrity under thermal-mechanical loads during the physical vapor deposition (PVD) sputtering process. Mechanical characterization of cold spray deposited CIG alloy is accomplished through the use of indentation testing and adaptation of Brazilian disk test. A custom lever test was developed to characterize adhesion along the cylindrical interface between the CIG deposit and cylindrical substrate, overcoming limitations of current standards. A cohesive zone model for crack initiation and propagation at the deposit interface is developed and validated using the lever test and later used to simulate the potential catastrophic target failure in the PVD process. It is shown that this approach enables reliability assessment of sputter targets and improves robustness.

  7. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Science.gov (United States)

    El-Zoghby, Helmy M.; Bendary, Ahmed F.

    2016-10-01

    Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.

  8. Investigation of Some Transparent Metal Oxides as Damp Heat Protective Coating for CIGS Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Yan, F.; Zaaunbrecher, B.; To, B.; Perkins, J.; Noufi, R.

    2012-10-01

    We investigated the protective effectiveness of some transparent metal oxides (TMO) on CIGS solar cell coupons against damp heat (DH) exposure at 85oC and 85% relative humidity (RH). Sputter-deposited bilayer ZnO (BZO) with up to 0.5-um Al-doped ZnO (AZO) layer and 0.2-um bilayer InZnO were used as 'inherent' part of device structure on CdS/CIGS/Mo/SLG. Sputter-deposited 0.2-um ZnSnO and atomic layer deposited (ALD) 0.1-um Al2O3 were used as overcoat on typical BZO/CdS/CIGS/Mo/SLG solar cells. The results were all negative -- all TMO-coated CIGS cells exhibited substantial degradation in DH. Combining the optical photographs, PL and EL imaging, SEM surface micro-morphology, coupled with XRD, I-V and QE measurements, the causes of the device degradations are attributed to hydrolytic corrosion, flaking, micro-cracking, and delamination induced by the DH moisture. Mechanical stress and decrease in crystallinity (grain size effect) could be additional degrading factors for thicker AZO grown on CdS/CIGS.

  9. Parameters optimization of CIGS solar cell using 2D physical modeling

    Directory of Open Access Journals (Sweden)

    Samar Dabbabi

    Full Text Available In this study, the CIGS thin film solar cell has been investigated using the two-dimensional device simulator Silvaco-Atlas. Thickness and carrier concentration effects of the cell structure were studied to optimize the solar cell performances. Our results revealed high efficiency for a cell structure of 0.15 µm ZnO:Al, 0.06 µm i-ZnO, 0.04 µm CdS and 3 µm CIGS. The carrier concentration effects of the different layers were also studied revealing a better performance for CIGS doping concentration of 1018 cm−3. The optimized CIGS solar cell characteristics were a current density of short circuit Jsc = 38.75 mA/cm2, an open-circuit voltage V0C = 804.03 mV, a fill factor FF = 74.48% and an efficiency η = 23.20%. This result is in good agreement with experimental efficiencies found in literature. Keywords: CIGS solar cell, Electrical characteristics, Silvaco-Atlas software

  10. Photovoltaic venture analysis. Final report. Volume III. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Posner, D.; Schiffel, D.; Doane, J.; Bishop, C.

    1978-07-01

    This appendix contains a brief summary of a detailed description of alternative future energy scenarios which provide an overall backdrop for the photovoltaic venture analysis. Also included is a summary of a photovoltaic market/demand workshop, a summary of a photovoltaic supply workshop which used cross-impact analysis, and a report on photovoltaic array and system prices in 1982 and 1986. The results of a sectorial demand analysis for photovoltaic power systems used in the residential sector (single family homes), the service, commercial, and institutional sector (schools), and in the central power sector are presented. An analysis of photovoltaics in the electric utility market is given, and a report on the industrialization of photovoltaic systems is included. A DOE information memorandum regarding ''A Strategy for a Multi-Year Procurement Initiative on Photovoltaics (ACTS No. ET-002)'' is also included. (WHK)

  11. MOD silver metallization for photovoltaics

    Science.gov (United States)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.

  12. Potential-induced degradation of Cu(In,Ga)Se2 photovoltaic modules

    Science.gov (United States)

    Yamaguchi, Seira; Jonai, Sachiko; Hara, Kohjiro; Komaki, Hironori; Shimizu-Kamikawa, Yukiko; Shibata, Hajime; Niki, Shigeru; Kawakami, Yuji; Masuda, Atsushi

    2015-08-01

    Potential-induced degradation (PID) of Cu(In,Ga)Se2 (CIGS) photovoltaic (PV) modules fabricated from integrated submodules is investigated. PID tests were performed by applying a voltage of -1000 V to connected submodule interconnector ribbons at 85 °C. The normalized energy conversion efficiency of a standard module decreases to 0.2 after the PID test for 14 days. This reveals that CIGS modules suffer PID under this experimental condition. In contrast, a module with non-alkali glass shows no degradation, which implies that the degradation occurs owing to alkali metal ions, e.g., Na+, migrating from the cover glass. The results of dynamic secondary ion mass spectrometry show Na accumulation in the n-ZnO transparent conductive oxide layer of the degraded module. A CIGS PV module with an ionomer (IO) encapsulant instead of a copolymer of ethylene and vinyl acetate shows no degradation. This reveals that the IO encapsulant can prevent PID of CIGS modules. A degraded module can recover from its performance losses by applying +1000 V to connected submodule interconnector ribbons from an Al plate placed on the test module.

  13. Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up

    Science.gov (United States)

    Bermudez, Veronica; Perez-Rodriguez, Alejandro

    2018-06-01

    Cu(In,Ga)(S,Se)2 (CIGS) solar cells show record efficiencies comparable to those of crystalline Si-based technologies. Their industrial module production costs are also comparable to those of Si photovoltaics in spite of their much lower production volume. However, the competitiveness of CIGS is compromised by the difference in performance between cell and module scales, known as the cell-to-module efficiency gap, which is significantly higher than in competing industrial photovoltaic technologies. In this Review, we quantify the main cell-to-module efficiency loss mechanisms and discuss the various strategies explored in academia and industry to reduce the efficiency gap: new transparent conductive oxides, hybrid modularization approaches and the use of wide-bandgap solar absorbers in the 1.4-1.5 eV range. To implement these strategies, research gaps relating to various device layers need to be filled.

  14. The influence of Na on metastable defect kinetics in CIGS materials

    International Nuclear Information System (INIS)

    Erslev, Peter T.; Lee, Jin Woo; Shafarman, William N.; Cohen, J. David

    2009-01-01

    The electronic properties of matched pairs of Cu(In x Ga 1-x )Se 2 (CIGS) solar cells, with and without normal sodium levels, were studied by junction capacitance methods including admittance spectroscopy, drive level capacitance profiling (DLCP) and transient photocapacitance spectroscopy (TPC). The capacitance profiling measurements revealed a large deep defect density in the vicinity of the barrier interface that was likely responsible for the lower performance of the reduced Na samples. The metastable properties of CIGS solar cells were also examined, and these revealed marked differences between the two types of samples. These results directly address the predictions of theoretical microscopic models that have been proposed to account for metastable effects in CIGS

  15. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  16. Organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the International Conference and Exhibition at 16th September,2010 at the Maritim Hotel (Wuerzburg, Federal Republic of Germany) the following lectures were held: (1) History of Organic Photovoltaics (Niyazi Serdar Sariciftci); (2) PV Activities at the ZAE Bayern (Vladimir Dyakonov); (3) Progress in Solid State DSC (Peter Erk); (4) Polymer Semiconductors for OPV (Mats Andersson); (5) Fullerene Derivative N-Types in Organic Solar Cells (David Kronholm); (6) Modelling Charge-Transport in Organic Photovoltaic Materials (Jenny Nelson); (7) Multi Junction Modules R and D Status and Outlook (Paul Blom); (8) Imaging Technologies for Organic Solar Cells (Jonas Bachmann); (9) Production of Multi-junction Organic Photovoltaic Cells and Modules (Martin Pfeiffer); (10) Upscaling of Polymer Solar Cell Fabrication Using Full Roll-to-roll Processing (Frederik Christian Krebs); (11) Industrial Aspects and Large Scale OPV Production (Jens Hauch).

  17. Recycling of high purity selenium from CIGS solar cell waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Anna M.K., E-mail: anna.gustafsson@chalmers.se; Foreman, Mark R.StJ.; Ekberg, Christian

    2014-10-15

    Highlights: • A new method for recycling of selenium from CIGS solar cell materials is presented. • Separation of selenium as selenium dioxide after heating in oxygen atmosphere. • Complete selenium separation after oxidation of <63 μm particles at 800 °C for 1 h. • After reduction of selenium dioxide the selenium purity was higher than 99.999 wt%. - Abstract: Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition to the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1 h at 800 °C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS.

  18. Photovoltaic solar energy;L'energie solaire photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Mouratoglou, P. [EDF Energies Nouvelles, 75 - Paris (France); Therond, P.G. [EDF Dir. Nouvelles Technologies, 75 - Paris (France)

    2009-11-15

    The most important assets of photovoltaic energy for sustainable development are its simplicity (no need for complicated thermodynamical cycles) and the universal availability of the sun which explains its great popularity. The main restraint to its full development is the high cost of the technologies used. The silicon technology is the historical technology, it has high conversion rates but is expensive because of high fabrication costs. This technology represents 80% of the market. On the other hand the thin film technology with CdTe, CIS or CIGS is promising in terms of costs but requires research works to increase its conversion rate. Japan and Germany are the leader countries in terms of photovoltaic for research, industrial fabrication or state support, they are followed by Spain, Usa, and China. (A.C.)

  19. Applied photovoltaics

    CERN Document Server

    Wenham, Stuart R; Watt, Muriel E; Corkish, Richard; Sproul, Alistair

    2013-01-01

    The new edition of this thoroughly considered textbook provides a reliable, accessible and comprehensive guide for students of photovoltaic applications and renewable energy engineering. Written by a group of award-winning authors it is brimming with information and is carefully designed to meet the needs of its readers. Along with exercises and references at the end of each chapter, it features a set of detailed technical appendices that provide essential equations, data sources and standards. The new edition has been fully updated with the latest information on photovoltaic cells,

  20. Photovoltaic module mounting system

    Science.gov (United States)

    Miros, Robert H. J. [Fairfax, CA; Mittan, Margaret Birmingham [Oakland, CA; Seery, Martin N [San Rafael, CA; Holland, Rodney H [Novato, CA

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  1. Development of CIGS2 thin film solar cells

    International Nuclear Information System (INIS)

    Dhere, Neelkanth G.; Gade, Vivek S.; Kadam, Ankur A.; Jahagirdar, Anant H.; Kulkarni, Sachin S.; Bet, Sachin M.

    2005-01-01

    Research and development of CuIn 1-x Ga x Se 2-y S y (CIGSS) thin-film solar cells on ultralightweight flexible metallic foil substrates is being carried out at FSEC PV Materials Lab for space applications. Earlier, the substrate size was limited to 3 cm x 2.5 cm. Large-area sputtering systems and scrubber for hydrogen selenide and sulfide have been designed and constructed for preparation of CIGSS thin-films on large (15 cm x 10 cm) substrates. A selenization/sulfurization furnace donated by Shell (formerly Siemens) Solar has also been refurbished and upgraded. The sputtering target assembly design was modified for proper clamping of targets and effective cooling. A new design of the magnetic assembly for large-area magnetron sputtering sources was implemented so as to achieve uniform deposition on large area. Lightweight stainless steel foil and ultralightweight titanium foil substrates were utilized to increase the specific power of solar cells. Sol-gel derived SiO 2 layers were coated on titanium foil by dip coating method. Deposition parameters for the preparation of molybdenum back contact layers were optimized so as to minimize the residual stress as well as reaction with H 2 S. Presently large (15 cm x 10 cm) CuIn 1-x Ga x S 2 (CIGS2) thin film solar cells are being prepared on Mo-coated titanium and stainless steel foil by sulfurization of CuGa/In metallic precursors in diluted Ar:H 2 S(4%). Heterojunction partner CdS layers are deposited by chemical bath deposition. The regeneration sequence of ZnO/ZnO:Al targets was optimized for obtaining consistently good-quality, transparent and conducting ZnO/ZnO:Al bilayer by RF magnetron-sputter deposition. Excellent facilities at FSEC PV Materials Lab are one of its kinds and could serve as a nucleus of a small pilot plant for CIGSS thin film solar cell fabrication

  2. Surface microstructure evolution of highly transparent and conductive Al-doped ZnO thin films and its application in CIGS solar cells

    Science.gov (United States)

    Cheng, Ke; Liu, Jingjing; Jin, Ranran; Liu, Jingling; Liu, Xinsheng; Lu, Zhangbo; Liu, Ya; Liu, Xiaolan; Du, Zuliang

    2017-07-01

    Aluminum-doped zinc oxide (AZO) has attained intensive attention as being a very good transparent conducting oxide for photovoltaic applications. In this work, AZO films have been deposited on glass substrate by radio frequency (RF) magnetron sputtering. The influences of substrate temperatures on morphological, structural, optical and electrical properties of AZO films were systematically investigated. The results indicate that all AZO films have the hexagonal structure with c-axis preferred orientation. Morphological and electrical measurements have revealed that the substrate temperatures have strong influence on the microstructure, optical and electrical properties of AZO films. The AZO film is highly transparent from ultraviolet up to near infrared range with highest average transparency exceeding 83%. The minimum resistivity is as low as 6.1 × 10-4 Ω cm. The carrier concentration and mobility are as high as 3.357 × 1020 cm-3 and 30.48 cm2/Vs, respectively. Finally, the performances of the AZO film are evaluated by its practical application in Cu(In1-xGax)Se2 (CIGS) photovoltaic device as a transparent electrode. Benefited from its highly transparent and conductive feature, the most efficient device reveals an efficiency of 7.8% with a short-circuit current density of 28.99 mA/cm2, an open-circuit voltage of 430 mV, and a fill factor of 62.44 under standard conditions.

  3. Heterostructured TiO2/NiTiO3 Nanorod Arrays for Inorganic Sensitized Solar Cells with Significantly Enhanced Photovoltaic Performance and Stability.

    Science.gov (United States)

    Li, Yue-Ying; Wang, Jian-Gan; Sun, Huan-Huan; Wei, Bingqing

    2018-04-11

    Organic dyes used in the conventional dye-sensitized solar cells (DSSCs) suffer from poor light stability and high cost. In this work, we demonstrate a new inorganic sensitized solar cell based on ordered one-dimensional semiconductor nanorod arrays of TiO 2 /NiTiO 3 (NTO) heterostructures prepared via a facile two-step hydrothermal approach. The semiconductor heterostructure arrays are highly desirable and promising for DSSCs because of their direct charge transport capability and slow charge recombination rate. The low-cost NTO inorganic semiconductor possesses an appropriate band gap that matches well with TiO 2 , which behaves like a "dye" to enable efficient light harvesting and fast electron-hole separation. The solar cells constructed by the ordered TiO 2 /NTO heterostructure photoanodes show a significantly improved power conversion efficiency, high fill factor, and more promising, outstanding life stability. The present work will open up an avenue to design heterostructured inorganics for high-performance solar cells.

  4. Above-CMOS a-Si and CIGS Solar Cells for Powering Autonomous Microsystems

    NARCIS (Netherlands)

    Lu, J.; Liu, W.; van der Werf, C.H.M.; Kovalgin, A.Y.; Sun, Y.; Schropp, R.E.I.; Schmitz, J.

    2010-01-01

    Two types of solar cells are successfully grown on chips from two CMOS generations. The efficiency of amorphous-silicon (a-Si) solar cells reaches 5.2%, copperindium-gallium-selenide (CIGS) cells 7.1%. CMOS functionality is unaffected. The main integration issues: adhesion, surface topography, metal

  5. Materials Characterization of CIGS solar cells on Top of CMOS chips

    NARCIS (Netherlands)

    Lu, J.; Liu, W.; Kovalgin, A.Y.; Sun, Y.; Schmitz, J.; Venkatasubramanian, R.; Radousky, H.; Liang, H.

    2011-01-01

    In the current work, we present a detailed study on the material properties of the CIGS layers, fabricated on top of the CMOS chips, and compare the results with the fabrication on standard glass substrates. Almost identical elemental composition on both glass and CMOS chips (within measurement

  6. Thin film CIGS solar cells with a novel low cost process - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A. N.; Romanyuk, Y.

    2010-01-15

    Novel manufacturing routes for efficient and low-cost Cu(In,Ga)Se{sub 2} (called CIGS) thin film solar cells are explored and patented. CIGS has proven its suitability for highly efficient and extremely stable solar cells. The low-cost methods allow impurity free material synthesis, fast large-area deposition, high material utilization and a very short energy payback time with drastically lower manufacturing costs. Two non-vacuum, solution-based approaches are investigated to deposit thin layers of CIGS. The first approach considers incorporation of copper into indium gallium selenide precursor layers by ion-exchange from aqueous or organic solutions. Organic solutions provide faster copper incorporation and do not corrode the metal back contact. Solar cells processed from selenized precursor films exhibit efficiencies of up to 4.1%. The second approach with paste coating of inorganic salt solution results in a solar cell efficiency of 4% (record 6.7%), where further improvements are hindered by the presence of the residual carbon layer. Using alternative organic binders, pre-deposited selenium layers, non-binder recipes helps to avoid the carbon layer although the obtained layers are inhomogeneous and contain impurity phases. A patent for the ion-exchange approach is pending, and the obtained research results on the paste coating approach will be scrutinized during new European FP7 project 'NOVA-CIGS'. (authors)

  7. CIGS cells with metallized front contact: Longer cells and higher efficiency

    NARCIS (Netherlands)

    Deelen, J. van; Frijters, C.

    2017-01-01

    We have investigated the benefit of a patterned metallization on top of a transparent conductive oxide in CIGS thin-film solar panels. It was found that cells with a grid have a higher efficiency compared to cells with only a TCO. This was observed for all cell lengths used. Furthermore, metallic

  8. Identifying parasitic current pathways in CIGS solar cells by modelling dark J-V response

    NARCIS (Netherlands)

    Williams, B.L.; Smit, S.; Kniknie, B.J.; Bakker, K.J.; Keuning, W.; Kessels, W.M.M.; Schropp, R.E.I.; Creatore, M.

    2015-01-01

    An equivalent circuit model, which allows for the presence of three types of shunting pathways, has been developed to describe the dark J-V characteristics in CIGS solar cells. Excellent agreement between the model and experimental data was apparent throughout a temperature range of 183-323K.

  9. Parameters optimization of CIGS solar cell using 2D physical modeling

    Science.gov (United States)

    Dabbabi, Samar; Nasr, Tarek Ben; Kamoun-Turki, Najoua

    In this study, the CIGS thin film solar cell has been investigated using the two-dimensional device simulator Silvaco-Atlas. Thickness and carrier concentration effects of the cell structure were studied to optimize the solar cell performances. Our results revealed high efficiency for a cell structure of 0.15 μm ZnO:Al, 0.06 μm i-ZnO, 0.04 μm CdS and 3 μm CIGS. The carrier concentration effects of the different layers were also studied revealing a better performance for CIGS doping concentration of 1018 cm-3. The optimized CIGS solar cell characteristics were a current density of short circuit Jsc = 38.75 mA/cm2, an open-circuit voltage V0C = 804.03 mV, a fill factor FF = 74.48% and an efficiency η = 23.20%. This result is in good agreement with experimental efficiencies found in literature.

  10. Microstructural evolution of all-wet-processed CIGS films using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Soo; Choi, Eunmi; Kim, Areum; Pyo, Sung Gyu [School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Seoul, 156-756 (Korea, Republic of); Yoon, Sung Pil [Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of)

    2014-08-15

    We report a wet process deposition in order to identify a cost-effective processing scheme for CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS) layers on molybdenum/soda lime glass substrates from a Cu-In-Ga precursor solution. We employed a spin coater at various settings to evaluate the uniformity of the resulting CIGS solar cell layer. After the CIGS precursor film was deposited, we applied a selenization process. In the selenization process, we used a controlled temperature RTA system and compared it to a noncontrolled temperature system. We investigated the morphological properties for different selenization temperature treatments. We used Raman mapping to detect binary compounds and found the binary compound effect on the film. Raman mapping results show that the density of the binary compound in the CIGS layer increased with selenization temperature, and at 600 C, the density of the binary compounds was highest. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process

    International Nuclear Information System (INIS)

    Liu Wei; He Qing; Li Fengyan; Li Changjian; Sun Yun; Tian Jianguo; Li Zubin

    2009-01-01

    During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga–Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses

  12. Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process

    Science.gov (United States)

    Liu, Wei; Tian, Jian-Guo; Li, Zu-Bin; He, Qing; Li, Feng-Yan; Li, Chang-Jian; Sun, Yun

    2009-03-01

    During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga-Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses.

  13. Directory of French photovoltaic research and industry 2011

    International Nuclear Information System (INIS)

    Poubeau, Romain; Simmonet, Raphael; Canals, Jonathan

    2011-05-01

    After an overview of what is at stake in terms of industrial employment in the photovoltaic sector, a presentation of competitiveness clusters, a description of the value chain (cell manufacturers, arrays manufacturers, power inverter manufacturers, electric equipment manufacturers, structure component manufacturers, fabrication steps, etc.) in the photovoltaic sector, this document proposes a directory (addresses, activity descriptions) of research and industrial actors of the photovoltaic sector in France: research centres, manufacturers, industrial projects

  14. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have...... the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di) selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low...... efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG....

  15. CIS Photovoltaic Technology; Final Technical Report 12 January 1997 - 15 April 1998

    International Nuclear Information System (INIS)

    Delahoy, A.E.; Britt, J.S.; Kiss, Z.J.

    1998-01-01

    This report describes work performed by Energy Photovoltaics, Inc. (EPV) during the third phase of a three-phase, cost-shared subcontract. Researchers at EPV explored novel sequential formation recipes for CIGS that can be implemented on a unique pilot line constructed to coat low-cost, glass substrates 4300 cm2 in area; implemented a particular CIGS recipe on the pilot line that enabled large-area modules to be prepared with efficiencies up to 7.6%; and performed electrical resistance monitoring of the film that proved capable of indicating the temperature of compound formation and detecting termination. The substrate/Mo/Na working group (which included EPV, NREL, and others) studied Na in Mo and the effect of Na on devices, and found it beneficial except at concentrations exceeding 0.4%. Researchers determined the following properties of large-area, magnetron-sputtered ZnO:Al: sheet resistance 24 W/sq., transmission 82%, conductivity 440 S cm-1; and preheating the glass increases the conductivity. Devices prepared using a baseline CIGS process averaged 11.7% in efficiency. Modules and mini-modules were prepared using a diode-laser-pumped yttrium-aluminum-garnet laser for the Mo patterning and mechanical scribing for the cuts. Large-area CIGS formation involves the use of linear sources, and thickness profiles were presented for simple and optimized linear sources. An unencapsulated module producing 25 watts (7.65% aperture-area efficiency) was produced. Using a new diagnostic technique, the fill factor of a CIGS module was decomposed into contributions from the intrinsic device fill factor and ZnO sheet resistance

  16. Growth and structural properties of reactively co-sputtered CIGS films and their solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeha [Cheongju University, Cheongju (Korea, Republic of); Park, Nae-Man [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of)

    2014-02-15

    Using reactive sputtering, we fabricated stoichiometric CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS) thin films. Both Cu{sub 0.6}Ga{sub 0.4} (CuGa) and Cu{sub 0.4}In{sub 0.6} (CuIn) alloy targets were simultaneously sputtered under the delivery of elemental Se produced from a thermal cracker. By changing the sputtering rates of the CuGa and the CuIn, we were able to obtain the composition ratios of Cu/(Ga+In) and Ga/(Ga+In) in the range of 0.71-0.95 and 0.10-0.30, respectively. Both the grain size and the surface roughness of the CIGS film increased as the Cu/(Ga+In) ratio increased. In the X-ray diffraction analysis on CIGS films of 0.9 m, preferential growth with a [112] orientation was found, and reflections from the (211), (220)/(204), (301), (312)/(116), (400)/(008), and (332)/(316) planes were observed. The CIGS films showed the existence of Cu{sub 2-x}Se phases in the Cu-rich samples and ordered defect compound (ODC) phases in the Cu-poor films, as confirmed in the Raman measurements. A best device performance of η = 8.1%, V{sub oc} = 0.442 V, J{sub sc} = 34.3 mA/cm{sup 2}, and FF = 53.4% was obtained from a cell fabricated with a CIGS layer (t = 0.9 μm) with the Cu/(Ga+In) ratio = 0.71 and the Ga/(Ga+In) ratio = 0.10.

  17. Significant effect of substrate temperature on the phase structure, optical and electrical properties of RF sputtered CIGS films

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhou; Yan Yong; Li Shasha; Zhang Yanxia; Yan Chuanpeng; Liu Lian; Zhang Yong [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Superconductivity and New energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhao Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Superconductivity and New energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Secondary phase exist in the RF sputtered CIGS films as it deposited at 150 Degree-Sign C and 500 Degree-Sign C. Black-Right-Pointing-Pointer CIGS films deposited beyond 350 Degree-Sign C show (1 1 2) prefer orientation. Black-Right-Pointing-Pointer E{sub g} of the CIGS films increased with the increase of substrate temperature. Black-Right-Pointing-Pointer Conductivity of the films is affected by 'variable range hopping' mechanism. - Abstract: This work studied the effect of substrate temperature on the phase structure, optical and electrical properties of the one-step radio frequency sputtered Cu(In,Ga)Se{sub 2} (CIGS) thin films. X-ray diffraction (XRD) analysis revealed that all the deposited CIGS films are chalcopyrite phase with polycrystalline structure. The films deposited beyond the substrate temperature of 350 Degree-Sign C show (1 1 2) prefer orientation. Raman spectra reveal that the 150 Degree-Sign C deposited CIGS film coexists with Cu{sub 2-x}Se phase and the 500 Degree-Sign C deposited film contains ordered defect compound (ODC) phase. With the increase of substrate temperature, energy band gap of the CIGS film increase from 0.99 to 1.27 eV. Films deposited at higher temperature exhibit larger electrical conductivity. Conductivity of the CIGS films is dominated by 'variable range hopping' mechanism. The disorder in our CIGS the films is associated with the formation of intrinsic defects such as V{sub Se} and In{sub Cu} for their low formation energy.

  18. Particle Swarm Optimization Based of the Maximum Photovoltaic ...

    African Journals Online (AJOL)

    Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency. In this work, a Particle Swarm ...

  19. NASA-OAST program in photovoltaic energy conversion

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  20. Optimized organic photovoltaics with surface plasmons

    Science.gov (United States)

    Omrane, B.; Landrock, C.; Aristizabal, J.; Patel, J. N.; Chuo, Y.; Kaminska, B.

    2010-06-01

    In this work, a new approach for optimizing organic photovoltaics using nanostructure arrays exhibiting surface plasmons is presented. Periodic nanohole arrays were fabricated on gold- and silver-coated flexible substrates, and were thereafter used as light transmitting anodes for solar cells. Transmission measurements on the plasmonic thin film made of gold and silver revealed enhanced transmission at specific wavelengths matching those of the photoactive polymer layer. Compared to the indium tin oxide-based photovoltaic cells, the plasmonic solar cells showed overall improvements in efficiency up to 4.8-fold for gold and 5.1-fold for the silver, respectively.

  1. The Effect of Sputtering Parameters on the Film Properties of Molybdenum Back Contact for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    Peng-cheng Huang

    2013-01-01

    Full Text Available Molybdenum (Mo thin films are widely used as a back contact for CIGS-based solar cells. This paper determines the optimal settings for the sputtering parameters for an Mo thin film prepared on soda lime glass substrates, using direct current (dc magnetron sputtering, with a metal Mo target, in an argon gas environment. A Taguchi method with an L9 orthogonal array, the signal-to-noise ratio, and an analysis of variances is used to determine the performance characteristics of the coating operation. The main sputtering parameters, such as working pressure (mTorr, dc power (W, and substrate temperature (°C, are optimized with respect to the structural features, surface morphology, and electrical properties of the Mo films. An adhesive tape test is performed on each film to determine the adhesion strength of the films. The experimental results show that the working pressure has the dominant effect on electrical resistivity and reflectance. The intensity of the main peak (110 for the Mo film increases and the full width at half maximum decreases gradually as the sputtering power is increased. Additionally, the application of an Mo bilayer demonstrates good adherence and low resistivity.

  2. Photovoltaic technologies

    International Nuclear Information System (INIS)

    Bagnall, Darren M.; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power into the mainstream. Currently, photovoltaic production is 90% first-generation and is based on silicon wafers. These devices are reliable and durable, but half of the cost is the silicon wafer and efficiencies are limited to around 20%. A second generation of solar cells would use cheap semiconductor thin films deposited on low-cost substrates to produce devices of slightly lower efficiency. A number of thin-film device technologies account for around 5-6% of the current market. As second-generation technology reduces the cost of active material, the substrate will eventually be the cost limit and higher efficiency will be needed to maintain the cost-reduction trend. Third-generation devices will use new technologies to produce high-efficiency devices. Advances in nanotechnology, photonics, optical metamaterials, plasmonics and semiconducting polymer sciences offer the prospect of cost-competitive photovoltaics. It is reasonable to expect that cost reductions, a move to second-generation technologies and the implementation of new technologies and third-generation concepts can lead to fully cost-competitive solar energy in 10-15 years. (author)

  3. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    Science.gov (United States)

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  4. Roof Photovoltaic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — In order to accurately predict the annual energy production of photovoltaic systems for any given geographical location, building orientation, and photovoltaic cell...

  5. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  6. Road map for photovoltaic electricity; Feuille de route sur l'electricite photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    This road map aims at highlighting industrial, technological and social challenges, at elaborating comprehensive visions, at highlighting technological locks, and at outlining research needs for the photovoltaic sector. It considers the following sector components: preparation of photo-sensitive materials, manufacturing of photovoltaic cells, manufacturing of photovoltaic arrays, design and manufacturing of electric equipment to control photovoltaic arrays and to connect them to the grid. It highlights the demand for photovoltaic installations, analyzes the value chain, proposes a vision of the sector by 2050 and defines target for 2020, discusses needs for demonstration and experimentation

  7. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  8. Real time spectroscopic ellipsometry for analysis and control of thin film polycrystalline semiconductor deposition in photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Koirala, Prakash; Attygalle, Dinesh; Aryal, Puruswottam; Pradhan, Puja; Chen, Jie [Center for Photovoltaics Innovation and Commercialization and Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Marsillac, Sylvain [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States); Ferlauto, Andre S.; Podraza, Nikolas J.; Collins, Robert W. [Center for Photovoltaics Innovation and Commercialization and Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

    2014-11-28

    Real time spectroscopic ellipsometry (RTSE) from the near-infrared to ultraviolet has been applied for analysis of the deposition of polycrystalline thin films that form the basis of two key photovoltaic heterojunction configurations, superstrate SnO{sub 2}/CdS/CdTe and substrate Mo/Cu(In{sub 1−x}Ga{sub x})Se{sub 2}/CdS. The focus of this work is to develop capabilities for monitoring and controlling the key steps in the fabrication of these device structures. Analysis of RTSE data collected during sputter deposition of CdS on a rough SnO{sub 2} transparent top contact provides the time evolution of the CdS effective thickness, or film volume per unit substrate area. This thickness includes interface, bulk, and surface roughness layer components and affects the CdS/CdTe heterojunction performance and the quantum efficiency of the solar cell in the blue region of the solar spectrum. Similarly, analysis of RTSE data collected during co-evaporation of Cu(In{sub 1−x}Ga{sub x})Se{sub 2} (CIGS; x ∼ 0.3) on a rough Mo back contact provides the evolution of a second phase of Cu{sub 2−x}Se within the CIGS layer. During the last stage of CIGS deposition, the In, Ga, and Se co-evaporants convert this Cu{sub 2−x}Se phase to CIGS, and RTSE identifies the endpoint, specifically the time at which complete conversion occurs and single-phase, large-grain CIGS is obtained in this key stage. - Highlights: • Real time spectroscopic ellipsometry (RTSE) study of CdS and CuIn{sub 1−x}Ga{sub x}Se{sub 2} (CIGS) films. • RTSE during CdS deposition provides the evolution of the CdS effective thickness. • RTSE for CIGS film enables to measure and control the composition and thickness. • The work leads to the development of optical models for processing steps.

  9. Photovoltaic module and laminate

    Science.gov (United States)

    Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.

    2018-04-10

    A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaic solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.

  10. Effect of annealing on the structural properties of electron beam deposited CIGS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalam, M. [Department of Electronics, Erode Arts College, Erode (India)], E-mail: prabhu7737@yahoo.com; Kannan, M.D.; Jayakumar, S.; Balasundaraprabhu, R. [Thin Film Center, PSG College of Technology, Coimbatore (India); Muthukumarasamy, N. [Department of Physics, Coimbatore Institute of Technology, Coimbatore (India)

    2008-08-30

    CIGS bulk compound of three different compositions CuIn{sub 0.85}Ga{sub 0.15}Se{sub 2}, CuIn{sub 0.80}Ga{sub 0.20}Se{sub 2} and CuIn{sub 0.75}Ga{sub 0.25}Se{sub 2} have been prepared by direct reaction of elemental copper, indium, gallium and selenium. CIGS thin films of the three compositions have been deposited onto glass and silicon substrates using the prepared bulk by electron beam deposition method. The structural properties of the deposited films have been studied using X-ray diffraction technique. The as-deposited CIGS films have been found to be amorphous in nature. To study the effect of annealing on the structural properties, the films have been annealed in vacuum of the order of 10{sup -5} Torr. The X-ray diffractograms of the annealed CIGS films exhibited peaks revealing that the annealed films are crystalline in nature with tetragonal chalcopyrite structure. The (112) peak corresponding to the chalcopyrite structure has been observed to be the dominating peak in all the annealed films. The position of the (112) peak and other peaks in the X-ray diffraction pattern has been observed to shift to higher values of 2{theta} with the increase of gallium concentration. The lattice parameter values 'a' and 'c' have been calculated and they are found to be dependent on the concentration of gallium in the films. The FWHM in the X-ray diffraction pattern is found to decrease with an increase in annealing temperature indicating that the crystalline nature of the CIGS improves with increase in annealing temperature. The films grown on silicon substrates have been found to be of better crystalline quality than those deposited on glass substrates. The micro structural parameters like grain size, dislocation density and strain have been evaluated. The chemical constituents present in the deposited CIGS films have been identified using energy dispersive X-ray analysis. The surface topographical study on the films has been performed by AFM. The

  11. Fuzzy Controller Design Using FPGA for Photovoltaic Maximum Power Point Tracking

    OpenAIRE

    Basil M Hamed; Mohammed S. El-Moghany

    2012-01-01

    The cell has optimum operating point to be able to get maximum power. To obtain Maximum Power from photovoltaic array, photovoltaic power system usually requires Maximum Power Point Tracking (MPPT) controller. This paper provides a small power photovoltaic control system based on fuzzy control with FPGA technology design and implementation for MPPT. The system composed of photovoltaic module, buck converter and the fuzzy logic controller implemented on FPGA for controlling on/off time of MOSF...

  12. Photovoltaics: systems considerations

    Energy Technology Data Exchange (ETDEWEB)

    Haq, A M

    1982-08-01

    Photovoltaics applications to date and the potential uses and growth of this alternative energy source for the future are examined in the light of present world economic conditions. In addition, a more detailed description is given, illustrating the method by which system sizing and design are calculated and mentioning such factors as local solar radiation and insolation levels, humidity, wind loading and altitude, all of which affect the optimal system size. The role of computer programming in these calculations is also outlined, illustrating the way in which deterioration, battery losses, poor weather etc. can be accounted and compensated for in the systems design process. The elements of the actual systems are also described, including details of the solar cells and arrays, the electronic controls incorporated in the systems and the characteristics of the batteries used. A resume of projected costs and current technological advances in silicon processing techniques is given together with an analysis of present and future growth trends in the photovoltaics industry.

  13. Microsystem enabled photovoltaic modules and systems

    Science.gov (United States)

    Nielson, Gregory N; Sweatt, William C; Okandan, Murat

    2015-05-12

    A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.

  14. Photovoltaic demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W B; Hacker, R J; Kaut, W [eds.

    1991-01-01

    This book, the proceedings of the fourth PV-Contractors' Meeting organized by the Commission of the European Communities, Directorate-General for Energy, held at Brussels on 21 and 22 November 1989, provides an overview of the photovoltaic demonstration projects which have been supported in the framework of the Energy Demonstration Program since 1983. It includes reports by each of the contractors who submitted proposals in 1983, 1984, 1985 and 1986, describing progress with their projects. Summaries of the discussions held at the meeting, which included contractors whose projects were submitted in 1987, are also presented. The different technologies which are being demonstrated concern the modules, the cabling of the array, structure design, storage strategy and power conditioning. The various applications include desalination, communications, dairy farms, water pumping, and warning systems. Papers have been processed separately for inclusion on the data base.

  15. Identification and Validation of Novel Hedgehog-Responsive Enhancers Predicted by Computational Analysis of Ci/Gli Binding Site Density

    Science.gov (United States)

    Richards, Neil; Parker, David S.; Johnson, Lisa A.; Allen, Benjamin L.; Barolo, Scott; Gumucio, Deborah L.

    2015-01-01

    The Hedgehog (Hh) signaling pathway directs a multitude of cellular responses during embryogenesis and adult tissue homeostasis. Stimulation of the pathway results in activation of Hh target genes by the transcription factor Ci/Gli, which binds to specific motifs in genomic enhancers. In Drosophila, only a few enhancers (patched, decapentaplegic, wingless, stripe, knot, hairy, orthodenticle) have been shown by in vivo functional assays to depend on direct Ci/Gli regulation. All but one (orthodenticle) contain more than one Ci/Gli site, prompting us to directly test whether homotypic clustering of Ci/Gli binding sites is sufficient to define a Hh-regulated enhancer. We therefore developed a computational algorithm to identify Ci/Gli clusters that are enriched over random expectation, within a given region of the genome. Candidate genomic regions containing Ci/Gli clusters were functionally tested in chicken neural tube electroporation assays and in transgenic flies. Of the 22 Ci/Gli clusters tested, seven novel enhancers (and the previously known patched enhancer) were identified as Hh-responsive and Ci/Gli-dependent in one or both of these assays, including: Cuticular protein 100A (Cpr100A); invected (inv), which encodes an engrailed-related transcription factor expressed at the anterior/posterior wing disc boundary; roadkill (rdx), the fly homolog of vertebrate Spop; the segment polarity gene gooseberry (gsb); and two previously untested regions of the Hh receptor-encoding patched (ptc) gene. We conclude that homotypic Ci/Gli clustering is not sufficient information to ensure Hh-responsiveness; however, it can provide a clue for enhancer recognition within putative Hedgehog target gene loci. PMID:26710299

  16. Photovoltaic technologies for commercial power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    Photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  17. Photovoltaic technologies for commerical power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    The author reports photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  18. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  19. Experimental and theoretical investigations of structural and optical properties of CIGS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chandramohan, M., E-mail: chandramohan59@yahoo.co.in [Department of Physics, Park college of Engineering and Tecknology, Coimbatore-641 659 (India); Velumani, S., E-mail: vels64@yahoo.com [Centro de Investigacion y de Estudios Avanzados del I.P.N.(CINVESTAV), Av. Instituto Politecnico Nacional 2508 Col. San Pedro Zacatenco 07360, Mexico D.F (Mexico); Venkatachalam, T., E-mail: atvenkatachalam@yahoo.com [Department of Physics, Coimbatore Institute of Technology, Coimbatore-14. India (India)

    2010-10-25

    Experimental and theoretical studies of the structural and optical properties of Copper Indium Gallium diSelenide thin films have been performed. Thin films of CIGS were deposited on glass substrates by chemical bath deposition. From the XRD results of the films, it is found that the films are of chalcopyrite type structure. The lattice parameter were determined as a = 5.72 A and c = 11.462 A. The optical properties of the thin films were carried out with the help of spectrophotometer. First principles density functional theory calculations of the band structure, density of states and effective masses of electrons and holes of the CIGS crystals have been done by computer simulations. The experimental data and theoretically calculated data have demonstrated good agreement.

  20. Preparation of CIGS thin films by HiPIMS or DC sputtering and various selenization processes

    Czech Academy of Sciences Publication Activity Database

    Olejníček, Jiří; Hubička, Zdeněk; Kšírová, Petra; Kment, Štěpán; Brunclíková, Michaela; Kohout, Michal; Čada, Martin; Darveau, S.A.; Exstrom, C.L.

    2013-01-01

    Roč. 16, č. 2 (2013), s. 314-319 ISSN 1203-8407 R&D Projects: GA MŠk LH12045 Institutional support: RVO:68378271 Keywords : CIGS * HIPIMS * selenization * nanocrystals * solar energy * sputtering * thin films Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.106, year: 2013 http://www.ingentaconnect.com/content/stn/jaots/2013/00000016/00000002/art00015

  1. Organic photovoltaics

    Science.gov (United States)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  2. Detailed Performance Model for Photovoltaic Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tian, H.; Mancilla-David, F.; Ellis, K.; Muljadi, E.; Jenkins, P.

    2012-07-01

    This paper presents a modified current-voltage relationship for the single diode model. The single-diode model has been derived from the well-known equivalent circuit for a single photovoltaic cell. The modification presented in this paper accounts for both parallel and series connections in an array.

  3. Toward GW/year of CIGS production within the next decade

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, Neelkanth G. [Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, FL 32922-5703 (United States)

    2007-09-22

    A detailed study carried out in 1996-1997 showed that manufacturing cost of crystalline silicon PV modules could be lowered to 1 ECU/Wp when the c-Si annual module production level reaches 500 MWp while an annual production of only 60 MWp would lower production cost of thin-film PV modules to 0.6 ECU/Wp. During 1976-2003, the PV module price has followed the 80% learning curve with cumulative production volume. However, the price reduction has slowed since because of the polysilicon supply problem. Because of their high potential for improvement, thin-film PV and especially copper (Cu)-indium (In)-gallium (Ga)-selenide (Se)-sulfide (CIGS) technology have the potential for growing at the fastest rate and consequently not only to complement the lagging c-Si PV production but also to assist in following the 80% learning curve. This paper reviews the CIGS PV manufacturing processes in comparison to those of other PV technologies and predicts that annual production volume of CIGS thin-film PV modules will exceed 1 GW/year within the next 10 years. (author)

  4. Experimental studies of thin films deposition by magnetron sputtering method for CIGS solar cell fabrication

    Directory of Open Access Journals (Sweden)

    Gułkowski Sławomir

    2017-01-01

    Full Text Available Among a variety of the thin film solar cell technologies of second generation, copper-indium-gallium-diselenide device (CIGS with the latest highest lab cell efficiency record of 22.4 % seems to be the most promising for the power generation. This is partly due to the advantages of using low cost films of few microns thick not only as a metallic contacts but also as a main structure of the solar cell consisted of high quality semiconductor layers. This paper reports the experimental studies of the CIGS absorber formation on Soda Lime Glass substrate covered by thin molybdenum film as a back contact layer. All structures were deposited with the use of magnetron sputtering method only. Technological parameters of the deposition process such as deposition power, pressure and deposition time were optimized for each layer of the structure. Mo back contact was examined in terms of resistivity. EDS measurements were carried out to verify stoichiometric composition of CIGS absorber. Thin film of Al was used as a top contact in order to examine the quality of p-n junction. The I-V electrical characteristic of the p-n junction was analysed in terms of solar cell application.

  5. Sputtered molybdenum thin films and the application in CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D.; Zhu, H., E-mail: hongbing1982@hotmail.com; Liang, X.; Zhang, C.; Li, Z.; Xu, Y.; Chen, J.; Zhang, L.; Mai, Y., E-mail: yaohuamai@hbu.edu.cn

    2016-01-30

    Graphical abstract: - Highlights: • Mo thin films are prepared by magnetron sputtering. • The dynamic deposition rate increases with the increasing discharge power. • The surface structure of Mo films varies with discharge power and working pressure. • High efficiency CIGS thin film solar cell of 15.2% has been obtained. - Abstract: Molybdenum (Mo) thin films are prepared by magnetron sputtering with different discharge powers and working pressures for the application in Cu(In, Ga)Se{sub 2} (CIGS) thin film solar cells as back electrodes. Properties of these Mo thin films are systematically investigated. It is found that the dynamic deposition rate increases with the increasing discharge power while decreases with the increasing working pressure. The highest dynamic deposition rate of 15.1 nm m/min is achieved for the Mo thin film deposited at the discharge power of 1200 W and at the working pressure of 0.15 Pa. The achieved lowest resistivity of 3.7 × 10{sup −5} Ω cm is attributed to the large grains in the compact thin film. The discharge power and working pressure have great influence on the sputtered Mo thin films. High efficiency of 12.5% was achieved for the Cu(In, Ga)Se{sub 2} (CIGS) thin film solar cells with Mo electrodes prepared at 1200 W and low working pressures. By further optimizing material and device properties, the conversion efficiency has reached to 15.2%.

  6. Experimental studies of thin films deposition by magnetron sputtering method for CIGS solar cell fabrication

    Science.gov (United States)

    Gułkowski, Sławomir; Krawczak, Ewelina

    2017-10-01

    Among a variety of the thin film solar cell technologies of second generation, copper-indium-gallium-diselenide device (CIGS) with the latest highest lab cell efficiency record of 22.4 % seems to be the most promising for the power generation. This is partly due to the advantages of using low cost films of few microns thick not only as a metallic contacts but also as a main structure of the solar cell consisted of high quality semiconductor layers. This paper reports the experimental studies of the CIGS absorber formation on Soda Lime Glass substrate covered by thin molybdenum film as a back contact layer. All structures were deposited with the use of magnetron sputtering method only. Technological parameters of the deposition process such as deposition power, pressure and deposition time were optimized for each layer of the structure. Mo back contact was examined in terms of resistivity. EDS measurements were carried out to verify stoichiometric composition of CIGS absorber. Thin film of Al was used as a top contact in order to examine the quality of p-n junction. The I-V electrical characteristic of the p-n junction was analysed in terms of solar cell application.

  7. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2015-10-01

    Full Text Available This work studies the use of gold (Au and silver (Ag nanoparticles in multicrystalline silicon (mc-Si and copper-indium-gallium-diselenide (CIGS solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.

  8. Toward GW/year of CIGS production within the next decade

    International Nuclear Information System (INIS)

    Dhere, Neelkanth G.

    2007-01-01

    A detailed study carried out in 1996-1997 showed that manufacturing cost of crystalline silicon PV modules could be lowered to 1 ECU/Wp when the c-Si annual module production level reaches 500 MWp while an annual production of only 60 MWp would lower production cost of thin-film PV modules to 0.6 ECU/Wp. During 1976-2003, the PV module price has followed the 80% learning curve with cumulative production volume. However, the price reduction has slowed since because of the polysilicon supply problem. Because of their high potential for improvement, thin-film PV and especially copper (Cu)-indium (In)-gallium (Ga)-selenide (Se)-sulfide (CIGS) technology have the potential for growing at the fastest rate and consequently not only to complement the lagging c-Si PV production but also to assist in following the 80% learning curve. This paper reviews the CIGS PV manufacturing processes in comparison to those of other PV technologies and predicts that annual production volume of CIGS thin-film PV modules will exceed 1 GW/year within the next 10 years. (author)

  9. Solar photovoltaic/thermal residential experiment. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1980-07-01

    Month-by-month energy transfer data between an occupied residence and its energy supply systems are presented. The data were obtained during the first phase of photovoltaic/thermal residential research conducted at the University of Texas at Arlington/Solar Energy Research Facility. This research was part of the US Department of Energy Photovoltaic/Thermal Project managed by the M.I.T. Lincoln Laboratory. Energy transfer data are divided into different categories depending on how the energy is consumed. Energy transfers between some system components are also categorized. These components include a flat-plate thermal collector array, a flat-plate photovoltaic array, a dc-to-ac inverter, thermal storage tanks, and a series heat pump. System operations included directing surplus electrical energy (generated by the photovoltaic array) into the local utility grid. The heat pump used off-peak utility power to chill water during the cooling season.

  10. Interference Lithography for Vertical Photovoltaics

    Science.gov (United States)

    Balls, Amy; Pei, Lei; Kvavle, Joshua; Sieler, Andrew; Schultz, Stephen; Linford, Matthew; Vanfleet, Richard; Davis, Robert

    2009-10-01

    We are exploring low cost approaches for fabricating three dimensional nanoscale structures. These vertical structures could significantly improve the efficiency of devices made from low cost photovoltaic materials. The nanoscale vertical structure provides a way to increase optical absorption in thin photovoltaic films without increasing the electronic carrier separation distance. The target structure is a high temperature transparent template with a dense array of holes on a 400 - 600 nm pitch fabricated by a combination of interference lithography and nanoembossing. First a master was fabricated using ultraviolet light interference lithography and the pattern was transferred into a silicon wafer master by silicon reactive ion etching. Embossing studies were performed with the master on several high temperature polymers.

  11. Photovoltaics at Point Pelee Park

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Case study of an Ontario Hydro-installed photovoltaic system at Point Pelee Park, a bird sanctuary located on Lake Erie, is described. The system consists of a 1080 W photovoltaic array used to supply electricity to one of the washrooms. The cost for installing the system was $30,000 which was considerably cheaper than the $100,000 estimate for an underground power line. The independent system is the only source of energy for the washroom, therefore it was necessary to reduce the total electrical demand required by the facility. Electricity was used for the water pump, chlorinator and lighting. Motion sensors were installed to further reduce electrical demand. Washroom heaters were converted to propane. 2 figs.

  12. BADANIA NAD TECHNOLOGIĄ OTRZYMYWANIA CIENKICH WARSTW EMITERA METODĄ ROZPYLANIA MAGNETRONOWEGO DLA ZASTOSOWAŃ W OGNIWACH CIGS

    Directory of Open Access Journals (Sweden)

    Justyna PIETRASZEK

    Full Text Available Cienkowarstwowe ogniwa fotowoltaiczne wykonane na bazie struktury CIGS (mieszaniny pierwiastków miedzi, indu, galu oraz selenu należą do II generacji ogniw fotowoltaicznych. Wykazują one efektywność na poziomie zbliżonym do ogniw I generacji, lecz ze względu na niższe zużycie materiału, coraz częściej wypierają z rynku ogniwa krzemowe Artykuł przedstawia rezultaty badań dotyczących sposobu otrzymywania warstwy buforowej CdS (siarczku kadmu, zastosowanej w cienkowarstwowych ogniwach fotowoltaicznych typu CIGS. Przyjęto dwa rozwiązania technologii nanoszenia: warstwa okna CdS uzyskana metodą rozpylenia magnetronowego oraz warstwa okna CdS uzyskana metodą kąpieli chemicznej (CBD– Chemical Bath Deposition. Struktura ta powinna posiadać odpowiednią wielkość przerwy energetycznej, która pozwali na większą absorpcję fotonów, a także wymaga się, aby była cienka (mniej niż 100 nm i jednolita. Warstwy CdS zostały nałożone przez osadzanie w kąpieli chemicznej CBD na szklanych podłożach pokrytych Mo/CIGS (naniesione warstwy metodą sputteringu magnetronowego. Uzyskano dzięki temu warstwę emitera o grubości 80 nm po czasie osadzania 35 minut. Dla porównania warstwy CdS zostały nałożone poprzez sputtering magnetronowy na podłożu Mo/CIGS, uzyskanym tą samą metodą. Następnie oba rozwiązania zostały przebadane pod względem morfologii powierzchni na elektronowym mikroskopie skaningowym, jak również przeprowadzono analizy składu pierwiastkowego warstw. Zarówno jedna, jak i druga metoda prowadzi do otrzymania warstwy emitera CdS dla zastosowań w ogniwach CIGS.

  13. OTRZYMYWANIE CIENKICH WARSTW ABSORBERA CIGS METODĄ ROZPYLANIA MAGNETRONOWEGO DLA ZASTOSOWAŃ FOTOWOLTAICZNYCH

    Directory of Open Access Journals (Sweden)

    Sławomir GUŁKOWSKI

    w cienkowarstwowych ogniwach słonecznych. Metoda rozpylania magnetronowego jest efektywną metodą produkcji cienkich warstw CIGS. Proces nanoszenia warstw można podzielić na dwie zasadnicze części: pierwsza to tworzenie prekursora CIG, tj. nanoszenie warstw metalicznych miedzi, galu i indu w odpowiednich proporcjach. Etap drugi to krystalizacja absorbera CIGS w wyniku procesu wygrzewania prekursora w obecności selenu. W artykule skupiono się na opracowaniu odpowiednich proporcji poszczególnych pierwiastków wchodzących w skład prekursora. Przebadano następujące konfiguracje nanoszenia poszczególnych warstw absorbera: CuGa/In oraz CuGa/In/Cu. Poszczególne warstwy naniesione zostały na podłoże molibdenowe, stanowiące tylny kontakt ogniwa budowanego na bazie absorbera CIGS. Warstwa molibdenu została przebadana metodą czteroostrzową w celu znalezienia zależności rezystywności od grubości warstwy. Przeprowadzono analizę składu pierwiastkowego warstwy za pomocą skaningowego mikroskopu elektronowego wyposażonego w system EDS. Dla każdej z otrzymanych warstw określono atomowe współczynniki proporcji występowania miedzi oraz galu w składzie warstwy. Na podstawie otrzymanych wyników badań dokonano optymalizacji parametrów technologicznych procesu takich jak: moc katody, ciśnienie oraz czas procesu, a także temperatura. Znaleziono zależności grubości warstw w funkcji czasu nanoszenia dla ustalonych warunków ciśnienia i mocy. Grubości poszczególnych warstw określono na podstawie badań profilometrycznych. W oparciu o opracowane parametry wykonane warstwy prekursora poddawane są obróbce termicznej w celu uzyskania absorbera CIGS.

  14. NIR emitting K2SrCl4:Eu2+, Nd3+ phosphor as a spectral converter for CIGS solar cell

    Science.gov (United States)

    Tawalare, P. K.; Bhatkar, V. B.; Omanwar, S. K.; Moharil, S. V.

    2018-05-01

    Intense near-infrared emitting phosphor K2SrCl4:Eu2+,Nd3+ with various concentrations of Nd3+ were synthesized. These are characterized with X-ray diffraction, reflectance, photoluminescence emission and photoluminescence excitation spectroscopy, PL lifetime measurements. The emission can be excited by a broad band in near ultra violet region as a consequence of Eu2+→Nd3+ energy transfer. The efficiency of Eu2+→Nd3+ energy transfer is as high as 95%. Fluorescence decay curves for Eu2+ doped samples are almost exponential and described by τ = 500 ns. Eu2+ lifetimes are shortened after Nd3+ doping. Near infrared Emission intensity is limited by Nd3+→Nd3+ energy transfer and the consequent concentration quenching. Nd3+ emission matches well with the spectral response of CIGS and CIS solar cells. Absorption of near ultra violet radiations followed by conversion to near infrared indicates the potential application in solar photovoltaics.

  15. Dataset demonstrating the modeling of a high performance Cu(In,GaSe2 absorber based thin film photovoltaic cell

    Directory of Open Access Journals (Sweden)

    Md. Asaduzzaman

    2017-04-01

    Full Text Available The physical data of the semiconductor materials used in the design of a CIGS absorber based thin film photovoltaic cell have been presented in this data article. Besides, the values of the contact parameter and operating conditions of the cell have been reported. Furthermore, by conducting the simulation with data corresponding to the device structure: soda-lime glass (SLG substrate/Mo back-contact/CIGS absorber/CdS buffer/intrinsic ZnO/Al-doped ZnO window/Al-grid front-contact, the solar cell performance parameters such as open circuit voltage (Voc, short circuit current density Jsc, fill factor (FF, efficiency (η, and collection efficiency ηc have been analyzed.

  16. Metastable Electrical Characteristics of Polycrystalline Thin-Film Photovoltaic Modules upon Exposure and Stabilization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C. A.; del Cueto, J. A.; Albin, D. S.; Rummel, S. R.

    2011-09-01

    The significant features of a series of stabilization experiments conducted at the National Renewable Energy Laboratory (NREL) between May 2009 and the present are reported. These experiments evaluated a procedure to stabilize the measured performance of thin-film polycrystalline cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules. The current-voltage (I-V) characteristics of CdTe and CIGS thin-film PV devices and modules exhibit transitory changes in electrical performance after thermal exposure in the dark and/or bias and light exposures. We present the results of our case studies of module performance versus exposure: light-soaked at 65 degrees C; exposed in the dark under forward bias at 65 degrees C; and, finally, longer-term outdoor exposure. We find that stabilization can be achieved to varying degrees using either light-soaking or dark bias methods and that the existing IEC 61646 light-soaking interval may be appropriate for CdTe and CIGS modules with one caveat: it is likely that at least three exposure intervals are required for stabilization.

  17. Ultralightweight PV Array Materials for Deep Space Mission Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Photovoltaic arrays for future deep space NASA missions demand multiple functionalities. They must efficiently generate electrical power, have very large areas and...

  18. Microsystem enabled photovoltaic modules and systems

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N.; Sweatt, William C.; Okandan, Murat

    2017-09-12

    A photovoltaic (PV) module includes an absorber layer coupled to an optic layer. The absorber layer includes an array of PV elements. The optic layer includes a close-packed array of Keplerian telescope elements, each corresponding to one of an array of pupil elements. The Keplerian telescope substantially couple radiation that is incident on their objective surfaces into the corresponding pupil elements. Each pupil element relays radiation that is coupled into it from the corresponding Keplerian telescope element into the corresponding PV element.

  19. Technology developments toward 30-year-life of photovoltaic modules

    Science.gov (United States)

    Ross, R. G., Jr.

    1984-01-01

    As part of the United States National Photovoltaics Program, the Jet Propulsion Laboratory's Flat-Plate Solar Array Project (FSA) has maintained a comprehensive reliability and engineering sciences activity addressed toward understanding the reliability attributes of terrestrial flat-plate photovoltaic arrays and to deriving analysis and design tools necessary to achieve module designs with a 30-year useful life. The considerable progress to date stemming from the ongoing reliability research is discussed, and the major areas requiring continued research are highlighted. The result is an overview of the total array reliability problem and of available means of achieving high reliability at minimum cost.

  20. Understanding the Effect of Na in Improving the Performance of CuInSe2 Based Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Kevin D. [Univ. of Delaware, Newark, DE (United States)

    2015-11-17

    Cu(In,Ga)Se2 (CIGS) thin film photovoltaic technology is in the early stages of commercialization with an annual manufacturing capacity over 1 GW and has demonstrated the highest module efficiency of any of the thin film technologies. However there still is a lack of fundamental understanding of the relationship between the material properties and solar cell device operation. It is well known that the incorporation of a small amount of Na into the CIGS film during processing is essential for high efficiency devices. However, there are conflicting explanations for how Na behaves at the atomic scale. This report investigates how Na is incorporated into the CIGS device structure and evaluates the diffusion of Na into CIGS grain boundaries (GBs) and bulk crystallites. Participants: This project was carried out at the Institute of Energy Conversion at the University of Delaware, collaborating with the Rockett group at the University of Illinois Urbana-Champagne. Significant Findings: The significant outcomes of this project for each task include; Task 1.0: Effect of Na in Devices Fabricated on PVD Deposited CIGS; Na diffusion occurs through the Mo back contact via GBs driven by the presence of oxygen; Na reversibly compensates donor defects in CIGS GBs,Task 2.0: Na Incorporation in Single Crystal CIGS; and bulk Na diffusion proceeds rapidly such that grains are Na-saturated immediately following CIGS thin film manufacture. Industry Guidance: The presented results offer interesting concepts for modification of manufacturing processes of CIGS-based PV modules. Possible approaches to improve control of Na uptake and uniformly increase levels in CIGS films are highlighted for processes that employ either soda-lime glass or NaF as the Na source. Concepts include the potential of O2 or oxidative based treatments of Mo back contacts to improve Na diffusion through the metal film and increase Na uptake into the growing CIGS. This project has also offered

  1. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  2. Photovoltaic roof construction

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, W.W.

    1980-02-26

    In a batten-seam roof construction employing at least one photovoltaic cell module, the electrical conduits employed with the at least one photovoltaic cell module are disposed primarily under the battens of the roof.

  3. Space and industrial markets for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, C.R.; Hardingham, C.M.

    2000-07-01

    This report presents a review of applications, technologies and markets for photovoltaic power (PV) supplies. A brief history of PV and PV principles is presented, and an overview of the satellite industry is given. Space arrays, space PV, terrestrial PV, and thermo photovoltaics are examined. Targets and constraints in space and terrestrial solar cells are compared, and details of commercial market sizes for given technologies in space and terrestrial PV in 1999, and technical barriers to be overcome towards development of existing products are tabulated. The scope for cross-culture interaction in all aspects of manufacturing, testing and evaluation in the PV devices are considered. (UK)

  4. Space and industrial markets for photovoltaics

    International Nuclear Information System (INIS)

    Huggins, C.R.; Hardingham, C.M.

    2000-01-01

    This report presents a review of applications, technologies and markets for photovoltaic power (PV) supplies. A brief history of PV and PV principles is presented, and an overview of the satellite industry is given. Space arrays, space PV, terrestrial PV, and thermo photovoltaics are examined. Targets and constraints in space and terrestrial solar cells are compared, and details of commercial market sizes for given technologies in space and terrestrial PV in 1999, and technical barriers to be overcome towards development of existing products are tabulated. The scope for cross-culture interaction in all aspects of manufacturing, testing and evaluation in the PV devices are considered. (UK)

  5. Space Photovoltaic Research and Technology 1995

    Science.gov (United States)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  6. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    Science.gov (United States)

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  7. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  8. Thermionic photovoltaic energy converter

    Science.gov (United States)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  9. Photovoltaic device and method

    Science.gov (United States)

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  10. Comparative study of the role of Ga in CIGS solar cells with different thickness

    Energy Technology Data Exchange (ETDEWEB)

    Han, Anjun, E-mail: haj211@mail.sim.ac.cn [Institute of Photo Electronics Thin Film Devices and Technique of Nankai University, Tianjin 300071 (China); Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), 235 Chengbei Road, Jiading, Shanghai 201800 (China); Sun, Yun; Zhang, Yi [Institute of Photo Electronics Thin Film Devices and Technique of Nankai University, Tianjin 300071 (China); Liu, Xiaohui; Meng, Fanying; Liu, Zhengxin [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), 235 Chengbei Road, Jiading, Shanghai 201800 (China)

    2016-01-01

    Cu(In, Ga)Se{sub 2} (CIGS) thin films with thickness of 1 μm and 2 μm are prepared by co-evaporation process, and the different Ga/(Ga + In) are achieved by varying the temperature of Ga source. The morphology, structure, minimum band gap, and performance of solar cells are comparatively studied. As Ga/(Ga + In) increases, little changes can be observed in the crystal quality of 1 μm CIGS films, while the grain size of 2 μm films decreases significantly. (112) diffraction peak intensities of the 1 μm and 2 μm films decrease and increase, respectively. In the case of the same Ga/(Ga + In), the minimum band gap values of 1 μm films are larger than that of 2 μm films, and the difference becomes large with Ga/(Ga + In) increasing. The minimum band gap values of 1 μm films are more sensitive to variation of the Ga/(Ga + In). As Ga/(Ga + In) increases, a more improvement of the efficiency of solar cells with thickness of 1 μm is obtained due to the large enhancement of the open-circuit voltage, and the efficiency reaches the maximum value when Ga/(Ga + In) is about 0.37. - Highlights: • The role of Ga in CIGS solar cells with different thickness is comparatively studied. • Effect of Ga on the material properties of 1 μm and 2 μm films is totally different. • The minimum band gap of thinned films is more sensitive to variation of Ga/(Ga + In). • Efficiency of thinned solar cells increases more significantly with Ga increasing.

  11. Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics.

    Science.gov (United States)

    Lin, Chenxi; Povinelli, Michelle L

    2011-09-12

    We design a partially aperiodic, vertically-aligned silicon nanowire array that maximizes photovoltaic absorption. The optimal structure is obtained using a random walk algorithm with transfer matrix method based electromagnetic forward solver. The optimal, aperiodic structure exhibits a 2.35 times enhancement in ultimate efficiency compared to its periodic counterpart. The spectral behavior mimics that of a periodic array with larger lattice constant. For our system, we find that randomly-selected, aperiodic structures invariably outperform the periodic array.

  12. Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study

    NARCIS (Netherlands)

    Rezaei, N.; Isabella, O.; Vroon, Z.; Zeman, M.

    2018-01-01

    A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless

  13. Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer : A 3-D optical study

    NARCIS (Netherlands)

    Rezaei, N.; Isabella, O.; Vroon, Zeger; Zeman, M.

    2018-01-01

    A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless

  14. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers

    NARCIS (Netherlands)

    Xu, M.; Wachters, A.J.H.; Van Deelen, J.; Mourad, M.C.D.; Buskens, P.J.P.

    2014-01-01

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the

  15. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  16. Electrodeposition of ZnO-doped films as window layer for Cd-free CIGS-based solar cells

    Science.gov (United States)

    Tsin, Fabien; Vénérosy, Amélie; Hildebrandt, Thibaud; Hariskos, Dimitrios; Naghavi, Negar; Lincot, Daniel; Rousset, Jean

    2016-02-01

    The Cu(In,Ga)Se2 (CIGS) thin film solar cell technology has made a steady progress within the last decade reaching efficiency up to 22.3% on laboratory scale, thus overpassing the highest efficiency for polycrystalline silicon solar cells. High efficiency CIGS modules employ a so-called buffer layer of cadmium sulfide CdS deposited by Chemical Bath Deposition (CBD), which presence and Cd-containing waste present some environmental concerns. A second potential bottleneck for CIGS technology is its window layer made of i-ZnO/ZnO:Al, which is deposited by sputtering requiring expensive vacuum equipment. A non-vacuum deposition of transparent conductive oxide (TCO) relying on simpler equipment with lower investment costs will be more economically attractive, and could increase competitiveness of CIGS-based modules with the mainstream silicon-based technologies. In the frame of Novazolar project, we have developed a low-cost aqueous solution photo assisted electrodeposition process of the ZnO-based window layer for high efficiency CIGS-based solar cells. The window layer deposition have been first optimized on classical CdS buffer layer leading to cells with efficiencies similar to those measured with the sputtered references on the same absorber (15%). The the optimized ZnO doped layer has been adapted to cadmium free devices where the CdS is replaced by chemical bath deposited zinc oxysulfide Zn(S,O) buffer layer. The effect of different growth parameters has been studied on CBD-Zn(S,O)-plated co-evaporated Cu(In,Ga)Se2 substrates provided by the Zentrum für Sonnenenergie-und Wasserstoff-Forschung (ZSW). This optimization of the electrodeposition of ZnO:Cl on CIGS/Zn(S,O) stacks led to record efficiency of 14%, while the reference cell with a sputtered (Zn,Mg)O/ZnO:Al window layer has an efficiency of 15.2%.

  17. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  18. Economical photovoltaic power generation with heat recovery

    Science.gov (United States)

    Ascher, G.

    1977-01-01

    Three designs for conversion of solar radiation to electricity and thermal energy are analyzed. The objective of these converters is to increase the electric and thermal output for each photovoltaic array so as to lower the cell cost relative to the amount of energy delivered. An analysis of the economical aspects of conversion by photovoltaic cells with heat recovery is carried out in terms of hypothetical examples. Thus, it is shown that the original cost of say $40,000 per generated kilowat can be reduced to $572.00 per kilowatt by increasing the original electric output of 1 kW to 10 kW in electricity and 60 kW in thermal energy. The newly derived specific cost is only 1.4 percent of the original one. It is expected that a cost reduction of roughly 2% of the present specific cost per kilowatt will greatly stimulate public acceptance of photovoltaic terrestrial conversion to electricity.

  19. Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing

    International Nuclear Information System (INIS)

    Van Delft, J A; Garcia-Alonso, D; Kessels, W M M

    2012-01-01

    Atomic layer deposition (ALD) is a vapour-phase deposition technique capable of depositing high quality, uniform and conformal thin films at relatively low temperatures. These outstanding properties can be employed to face processing challenges for various types of next-generation solar cells; hence, ALD for photovoltaics (PV) has attracted great interest in academic and industrial research in recent years. In this review, the recent progress of ALD layers applied to various solar cell concepts and their future prospects are discussed. Crystalline silicon (c-Si), copper indium gallium selenide (CIGS) and dye-sensitized solar cells (DSSCs) benefit from the application of ALD surface passivation layers, buffer layers and barrier layers, respectively. ALD films are also excellent moisture permeation barriers that have been successfully used to encapsulate flexible CIGS and organic photovoltaic (OPV) cells. Furthermore, some emerging applications of the ALD method in solar cell research are reviewed. The potential of ALD for solar cells manufacturing is discussed, and the current status of high-throughput ALD equipment development is presented. ALD is on the verge of being introduced in the PV industry and it is expected that it will be part of the standard solar cell manufacturing equipment in the near future. (paper)

  20. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers.

    Science.gov (United States)

    Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P

    2014-03-10

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.

  1. Preliminary Demonstration of Power Beaming With Non-Coherent Laser Diode Arrays

    National Research Council Canada - National Science Library

    Kare, Jordin

    1999-01-01

    A preliminary demonstration of free-space electric power transmission has been conducted using non-coherent laser diode arrays as the transmitter and standard silicon photovoltaic cell arrays as the receiver...

  2. 600 Volt Stretched Lens Array for Solar Electric Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past six years, ENTECH, Auburn, NASA, and other organizations have developed a new space photovoltaic array called the Stretched Lens Array (SLA), which...

  3. Design optimization of photovoltaic powered water pumping systems

    International Nuclear Information System (INIS)

    Ghoneim, A.A.

    2006-01-01

    The use of photovoltaics as the power source for pumping water is one of the most promising areas in photovoltaic applications. With the increased use of water pumping systems, more attention has been paid to their design and optimum utilization in order to achieve the most reliable and economical operation. This paper presents the results of performance optimization of a photovoltaic powered water pumping system in the Kuwait climate. The direct coupled photovoltaic water pumping system studied consists of the PV array, DC motor, centrifugal pump, a storage tank that serves a similar purpose to battery storage and a maximum power point tracker to improve the efficiency of the system. The pumped water is desired to satisfy the domestic needs of 300 persons in a remote area in Kuwait. Assuming a figure of 40 l/person/day for water consumption, a volume of 12 m 3 should be pumped daily from a deep well throughout the year. A computer simulation program is developed to determine the performance of the proposed system in the Kuwait climate. The simulation program consists of a component model for the PV array with maximum power point tracker and component models for both the DC motor and the centrifugal pump. The five parameter model is adapted to simulate the performance of amorphous silicon solar cell modules. The size of the PV array, PV array orientation and the pump-motor-hydraulic system characteristics are varied to achieve the optimum performance for the proposed system. The life cycle cost method is implemented to evaluate the economic feasibility of the optimized photovoltaic powered water pumping system. At the current prices of PV modules, the cost of the proposed photovoltaic powered water pumping system is found to be less expensive than the cost of the conventional fuel system. In addition, the expected reduction in the prices of photovoltaic modules in the near future will make photovoltaic powered water pumping systems more feasible

  4. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  5. CIGS J-V distortion in the absence of blue photons

    International Nuclear Information System (INIS)

    Pudov, A.O.; Sites, J.R.; Contreras, M.A.; Nakada, T.; Schock, H.-W.

    2005-01-01

    Common buffer materials used with CuInGaSe 2 (CIGS) absorbers produce conduction-band barriers that may significantly distort the current-voltage (J-V) curves, especially when short-wavelength photons are excluded from the illumination spectrum. Earlier work documented this effect for CuInSe 2 (CIS) absorbers (band gap near 1.0 eV) with CdS buffers. Higher band-gap (no. approxno. 1.15 eV) CIGS absorbers show little or no distortion with CdS buffer layers. However, wider band gap (lower electron affinity) ZnS(O,OH) or InS(O,OH) buffers, prepared by chemical-bath deposition (CBD), clearly show the J-V distortion. The distortions have a turn-on time constant the order of a minute and turn-off time constant the order of a day, and they correlate with major variations in apparent quantum efficiency (QE) measured with varying intensity and spectral content of bias light. The results are consistent with a conduction-band spike barrier that increases with buffer band gap and is larger when the electron concentration in the buffer is small

  6. Method of manufacturing a large-area segmented photovoltaic module

    Science.gov (United States)

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  7. Design and Implementation of a Simulator for Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Kuang-Hui Tang

    2012-01-01

    Full Text Available Proposed in this paper is the development of a photovoltaic module simulator, one capable of running an output characteristic simulation under normal operation according to various electrical parameters specified and exhibiting multiple advantages of being low cost, small sized, and easy to implement. In comparison with commercial simulation tools, Pspice and Solar Pro, the simulator developed demonstrates a comparable I-V as well as a P-V output characteristic curve. In addition, a series-parallel configuration of individual modules constitutes a photovoltaic module array, which turns into a photovoltaic power generation system with an integrated power conditioner.

  8. Update of the database of photovoltaic installations in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.; Bruhns, H.

    1999-07-01

    The article describes an updated database of photovoltaic (PV) installations in the UK. The database contains more than 300 records representing over 40,000 photovoltaic installations with more than 100 buildings that use photovoltaic arrays. Figures show: (i) a chart of cumulative PV applications to date; (ii) a chart of cumulative installations in the database; (iii) the growth of Building Integrated PV installed to date; (iv) the cumulative growth of peak power of PV for buildings installed every year since 1985; (v) the distribution by application of all PV installations in the database and (vi) the various applications of PV installations.

  9. Photovoltaic systems engineering

    CERN Document Server

    Messenger, Roger A

    2010-01-01

    BackgroundPopulation and Energy DemandEnergy UnitsCurrent World Energy Use PatternsExponential GrowthHubbert's Gaussian ModelNet Energy, Btu Economics, and the Test for SustainabilityDirect Conversion of Sunlight to Electricity with PhotovoltaicsThe SunThe Solar SpectrumThe Effect of Atmosphere on SunlightSunlight SpecificsCapturing SunlightIntroduction to PV SystemsThe PV CellThe PV ModuleThe PV ArrayEnergy StoragePV System LoadsPV System AvailabilityAssociated System Electronic ComponentsGeneratorsBalance of System (BOS) ComponentsGrid-Connected Utility-Interactive PV SystemsApplicable Codes and StandardsDesign Considerations for Straight Grid-Connected PV SystemsDesign of a System Based on Desired Annual System PerformanceDesign of a System Based on Available Roof SpaceDesign of a Microinverter-Based SystemDesign of a Nominal 21 kW System that Feeds a Three-Phase Distribution PanelDesign of a Nominal 250 kW SystemSystem Performance MonitoringMechanical ConsiderationsImportant Properties of MaterialsEstabli...

  10. SAM Photovoltaic Model Technical Reference 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DiOrio, Nicholas A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Freeman, Janine M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dobos, Aron [No longer NREL employee; Ryberg, David [No longer NREL employee

    2018-03-19

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM) software, Version 2016.3.14 Revision 4 (SSC Version 160). It is an update to the 2015 edition of the manual, which describes the photovoltaic model in SAM 2015.1.30 (SSC 41). This new edition includes corrections of errors in the 2015 edition and descriptions of new features introduced in SAM 2016.3.14, including: 3D shade calculator Battery storage model DC power optimizer loss inputs Snow loss model Plane-of-array irradiance input from weather file option Support for sub-hourly simulations Self-shading works with all four subarrays, and uses same algorithm for fixed arrays and one-axis tracking Linear self-shading algorithm for thin-film modules Loss percentages replace derate factors. The photovoltaic performance model is one of the modules in the SAM Simulation Core (SSC), which is part of both SAM and the SAM SDK. SAM is a user-friedly desktop application for analysis of renewable energy projects. The SAM SDK (Software Development Kit) is for developers writing their own renewable energy analysis software based on SSC. This manual is written for users of both SAM and the SAM SDK wanting to learn more about the details of SAM's photovoltaic model.

  11. Fuzzy Logic-Based Perturb and Observe Algorithm with Variable Step of a Reference Voltage for Solar Permanent Magnet Synchronous Motor Drive System Fed by Direct-Connected Photovoltaic Array

    Directory of Open Access Journals (Sweden)

    Mohamed Redha Rezoug

    2018-02-01

    Full Text Available Photovoltaic pumping is considered to be the most used application amongst other photovoltaic energy applications in isolated sites. This technology is developing with a slow progression to allow the photovoltaic system to operate at its maximum power. This work introduces the modified algorithm which is a perturb and observe (P&O type to overcome the limitations of the conventional P&O algorithm and increase its global performance in abrupt weather condition changes. The most significant conventional P&O algorithm restriction is the difficulty faced when choosing the variable step of the reference voltage value, a good compromise between the swift dynamic response and the stability in the steady state. To adjust the step reference voltage according to the location of the operating point of the maximum power point (MPP, a fuzzy logic controller (FLC block adapted to the P&O algorithm is used. This allows the improvement of the tracking pace and the steady state oscillation elimination. The suggested method was evaluated by simulation using MATLAB/SimPowerSystems blocks and compared to the classical P&O under different irradiation levels. The results obtained show the effectiveness of the technique proposed and its capacity for the practical and efficient tracking of maximum power.

  12. Economic optimization of photovoltaic water pumping systems for irrigation

    International Nuclear Information System (INIS)

    Campana, P.E.; Li, H.; Zhang, J.; Zhang, R.; Liu, J.; Yan, J.

    2015-01-01

    Highlights: • A novel optimization procedure for photovoltaic water pumping systems for irrigation is proposed. • An hourly simulation model is the basis of the optimization procedure. • The effectiveness of the new optimization approach has been tested to an existing photovoltaic water pumping system. - Abstract: Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availability of groundwater resources and the effect of water supply on crop yield, but also the investment cost of photovoltaic water pumping system and the revenue from crop sale. A simulation model, which combines the dynamics of photovoltaic water pumping system, groundwater level, water supply, crop water demand and crop yield, is employed during the optimization. To prove the effectiveness of the new optimization approach, it has been applied to an existing photovoltaic water pumping system. Results show that the optimal configuration can guarantee continuous operations and lead to a substantial reduction of photovoltaic array size and consequently of the investment capital cost and the payback period. Sensitivity studies have been conducted to investigate the impacts of the prices of photovoltaic modules and forage on the optimization. Results show that the water resource is a determinant factor

  13. The exposure of CIGS solar cells to different electrical biases in a damp-heat illumination environment

    NARCIS (Netherlands)

    Theelen, M.; Steijvers, H.; Bakker, K.; Vink, J.; Mortazavi, S.; Mulder, A.; Barreau, N.; Roosen, D.; Haverkamp, E.

    2016-01-01

    Two hybrid degradation setups, allowing exposure of solar cells and modules to elevated temperatures and humidity as well as illumination have been built. CIGS solar cells were placed in the degradation setups, allowing real time monitoring of their electrical properties. Under open circuit

  14. Thermal Effect on a CIGS Thin-Film Solar Cell P2 Layer by Using a UV Laser

    Directory of Open Access Journals (Sweden)

    Dyi-Cheng Chen

    2014-07-01

    Full Text Available This study used ANSYS simulation software for analyzing an ultraviolet (UV (355 nm laser processing system. The laser apparatus was used in a stainless steel CIGS solar cell P2 layer for simulation analysis. CIGS films process order according to SiO2 layer, molybdenum electrode, CIGS absorbed layer, CdS buffered layer, i-ZnO penetrate light layer, TCO front electrode, MgF resist reflected materials, andelectrode materials. The simulation and experimental results were compared to obtain a laser-delineated P2 laser with a low melting and vaporization temperature. According to the simulation results, the laser function time was 135 μs, the UV laser was 0.5 W, and the P2 layer thin films were removed. The experimental results indicated that the electrode pattern of the experiment was similar to that of the simulation result, and the laser process did not damage the base plate. The analysis results confirm that the laser apparatus is effective when applied to a stainless steel CIGS solar cell P2 layer.

  15. Enhancement of the CIGS solar cell's efficiency by anti-reflection coating with teflon AF

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong-Sub; Kim, Chan; Rhee, Il-Su [Kyungpook National University, Daegu (Korea, Republic of); Jo, Hyun-Jun; Kim, Dae-Hwan [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Hong, Sung-Wook [Daegu University, Gyeongsan (Korea, Republic of)

    2014-11-15

    An anti-reflection (AR) layer of Teflon AF was deposited on the front surface of a Cu(In,Ga)Se{sub 2} (CIGS) solar cell with a structure of grid/TCO/ZnO/CdS/Cu(In,Ga)Se{sub 2}/Mo/glass by using the spin coating method. This AR layer reduced the front-surface reflection, which resulted in high efficiency for the CIGS solar cell. The thickness of the Teflon AF layer was varied to determine the thickness that gave the highest transmittance of incident light into the active absorber of the CIGS solar cell. The optimum thickness of the Teflon AF layer was found to be 105 nm. CIGS solar cells with a Teflon AF layer of 105 nm were constructed, and their efficiencies were compared with those of solar cells without a Teflon AF layer. The average increase in the relative efficiency of the solar cells was 2.63% due to the inclusion of an anti-reflection layer of Teflon AF.

  16. The effect of damp heat-illumination exposure on CIGS solar cells: A combined XRD and electrical characterization study

    NARCIS (Netherlands)

    Theelen, M.; Hendrikx, R.; Barreau, N.; Steijvers, H.; Böttger, A.

    2016-01-01

    Unencapsulated CIGS solar cells were simultaneously exposed to damp heat and illumination. In-situ monitoring of their electrical parameters demonstrated a rapid decrease of the efficiency, mainly driven by changes in the series and shunt resistances. The non-degraded and degraded solar cells were

  17. A photovoltaic module

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photovoltaic module comprising a carrier substrate, said carrier substrate carrying a purely printed structure comprising printed positive and negative module terminals, a plurality of printed photovoltaic cell units each comprising one or more printed...... photovoltaic cells, wherein the plurality of printed photovoltaic cell units are electrically connected in series between the positive and the negative module terminals such that any two neighbouring photovoltaic cell units are electrically connected by a printed interconnecting electrical conductor....... The carrier substrate comprises a foil and the total thickness of the photovoltaic module is below 500 [mu]m. Moreover, the nominal voltage level between the positive and the negative terminals is at least 5 kV DC....

  18. Photovoltaic systems in agriculture

    International Nuclear Information System (INIS)

    Corba, Z.; Katic, V.; Milicevic, D.

    2009-01-01

    This paper presents the possibility of using one of the renewable energy resources in agriculture. Specifically, the paper shows the possibility of converting solar energy into electricity through photovoltaic panels. The paper includes the analysis of the energy potential of solar radiation in the AP Vojvodina (Serbia). The results of the analysis can be used for the design of photovoltaic energy systems. The amount of solar energy on the territory of the province is compared with the same data from some European countries, in order to obtain a clear picture of the possibilities of utilization of this type of renewable sources. Three examples of possible application of photovoltaic systems are presented. The first relates to the consumer who is away from the electric distribution network - photovoltaic system in island mode. The remaining two examples relate to the application of photovoltaic power sources in manufacturing plants, flowers or vegetables. Applying photovoltaic source of electrical energy to power pumps for irrigation is highlighted

  19. Photovoltaic applications of Compound Parabolic Concentrator (CPC)

    Science.gov (United States)

    Winston, R.

    1975-01-01

    The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.

  20. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  1. Modeling Photovoltaic Power

    OpenAIRE

    Mavromatakis, F.; Franghiadakis, Y.; Vignola, F.

    2016-01-01

    A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV) facilit...

  2. Systematic procedures for sizing photovoltaic pumping system, using water tank storage

    International Nuclear Information System (INIS)

    Hamidat, A.; Benyoucef, B.

    2009-01-01

    In this work, the performances of the photovoltaic pumping destined to supply drinking water in remote and scattered small villages have been studied. The methodology adopted proposes various procedures based on the water consumption profiles, total head, tank capacity and photovoltaic array peak power. A method of the load losses probability (LLP) has been used to optimize sizing of the photovoltaic pumping systems with a similarity between the storage energy in batteries and water in tanks. The results were carried out using measured meteorological data for four localities in Algeria: Algiers and Oran in the north, Bechar and Tamanrasset in the south. The results show that the performance of the photovoltaic pumping system depends deeply on the pumping total head and the peak power of the photovoltaic array. Also, for the southern localities, the LLP method shows that the size of the photovoltaic array varies versus LLP on a small scale. On the other hand, for the northern localities, the sizing of the photovoltaic array is situated on a large scale power. Because of the current high crud-oil price, the photovoltaic pumping still to be the best adopted energy resource to supply drinking water in remote and scattered villages

  3. Prediction of power fluctuation classes for photovoltaic installations and potential benefits of dynamic reserve allocation

    NARCIS (Netherlands)

    Nijhuis, M.; Rawn, B.G.; Gibescu, M.

    2014-01-01

    During partly cloudy conditions, the power delivered by a photovoltaic array can easily fluctuate by three quarters of its rated power in 10 s. Fluctuations from photovoltaics of this size and on this time scale may necessitate adding an additional component to power system secondary and primary

  4. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  5. Catalyst-free, III-V nanowire photovoltaics

    Science.gov (United States)

    Davies, D. G.; Lambert, N.; Fry, P. W.; Foster, A.; Krysa, A. B.; Wilson, L. R.

    2014-05-01

    We report on room temperature, photovoltaic operation of catalyst-free GaAs p-i-n junction nanowire arrays. Growth studies were first performed to determine the optimum conditions for controlling the vertical and lateral growth of the nanowires. Following this, devices consisting of axial p-i-n junctions were fabricated by planarising the nanowire arrays with a hard baked polymer. We discuss the photovoltaic properties of this proof-of-concept device, and significant improvements to be made during the growth.

  6. Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study.

    Science.gov (United States)

    Rezaei, Nasim; Isabella, Olindo; Vroon, Zeger; Zeman, Miro

    2018-01-22

    A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer with low refractive index and proper thickness can significantly reduce absorption in Mo in the long wavelength regime and improve the device's rear reflectance, thus leading to enhanced light absorption in the CIGS layer. Therefore, we optimized a realistic two-layer MgF 2 / Al 2 O 3 dielectric spacer to exploit (i) the passivation properties of ultra-thin Al 2 O 3 on the CIGS side for potential high open-circuit voltage and (ii) the low refractive index of MgF 2 on the Mo side to reduce its optical losses. Combining our realistic spacer with optically-optimized point contacts increases the implied photocurrent density of a 750 nm-thick CIGS layer by 10% for the wavelengths between 700 and 1150 nm with respect to the reference cell. The elimination of plasmonic resonances in the new structure leads to a higher electric field magnitude at the bottom of CIGS layer and justifies the improved optical performance.

  7. Photovoltaic energy barometer

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    The european photovoltaic market once again reached the heights in 2006, thanks to the dynamism of the German market. White paper objectives have thus been fulfilled four years ahead of schedule. The european photovoltaic sector remains however very heterogeneous with both an ultra-dominant German market (estimated at 1150 MWp in 2006) and other countries of the European Union that vary from a few kWP to a few dozen MWp. This analysis provides statistical data on the market, the capacity installed during 2005 and 2006, the photovoltaic parks and the evolution of the photovoltaic cell production. (A.L.B.)

  8. Cation Substitution in Earth‐Abundant Kesterite Photovoltaic Materials

    Science.gov (United States)

    Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu

    2018-01-01

    Abstract As a promising candidate for low‐cost and environmentally friendly thin‐film photovoltaics, the emerging kesterite‐based Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se2 (CIGS) and CdTe thin‐film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open‐circuit voltage (V OC) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth‐abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe‐based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending. PMID:29721421

  9. Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials.

    Science.gov (United States)

    Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu; Zhang, Yi

    2018-04-01

    As a promising candidate for low-cost and environmentally friendly thin-film photovoltaics, the emerging kesterite-based Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se 2 (CIGS) and CdTe thin-film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open-circuit voltage ( V OC ) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth-abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe-based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending.

  10. Efficiency of solar radiation conversion in photovoltaic panels

    Directory of Open Access Journals (Sweden)

    Kurpaska Sławomir

    2018-01-01

    Full Text Available This paper included analysis the conversion efficiency in photovoltaic panels. The tests were done between February and June at a test stand equipped with three commonly used types of photovoltaic panels: poly- and monocrystalline silicon and with semi-conductive layer made of copper (Cu, indium (In, gallium (Ga and selenium (Se (CIGS. Five days of each month were selected for a detailed analysis. They were close to the so-called recommended day for calculations in solar power engineering. Efficiency, calculated as the yield of electrical energy in relation to solar radiation energy reaching the panels was made conditional upon solar radiation intensity and ambient temperature. It was found that as solar radiation intensity and ambient temperature increase, the efficiency of solar radiation conversion into electricity is reduced. Correlation dependence was determined for the test data obtained, describing temperature change of panels depending on climatic conditions. It was found that as panel temperature increases, the conversion efficiency is reduced. Within the tested scope of experiment conditions, the efficiency was reduced in the range between 20.1 and 22.8%. The authors also determined the average efficiency values in individual test months together with average ambient conditions of the environment where the process of solar radiation conversion took place.

  11. Temperature Dependences on Various Types of Photovoltaic (PV) Panel

    International Nuclear Information System (INIS)

    Audwinto, I A; Leong, C S; Sopian, K; Zaidi, S H

    2015-01-01

    Temperature is one of the key roles in PV technology performance, since with the increases of temperature the open-circuit voltage will drop accordingly so do the electrical efficiency and power output generation. Different types of Photovoltaic (PV) panels- silicon solar panels and thin film solar panels; mono-crystalline, poly-crystalline, CIS, CIGS, CdTe, back-contact, and bi-facial solar panel under 40°C to 70°C approximately with 5°C interval have been comparatively analyzed their actual performances with uniformly distribution of light illumination from tungsten halogen light source, ±500W/m 2 . DC-Electronic Load and Data Logger devices with “Lab View” data program interface were used to collect all the necessary parameters in this study. Time needed to achieve a certain degree of temperature was recorded. Generally, each of the panels needed 15 minutes to 20 minutes to reach 70°C. Halogen based light source is not compatible in short wave-length in response to thin-film solar cell. Within this period of times, all the panels are facing a performance loss up to 15%. Other parameters; P max , V max , I max , V oc , I sc , R serries , R shunt , Fillfactor were collected as study cases. Our study is important in determining Photovoltaic type selection and system design as for study or industrial needed under different temperature condition. (paper)

  12. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    KAUST Repository

    Bailie, Colin D.

    2015-01-01

    © 2015 The Royal Society of Chemistry. A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. This work paves the way for integrating perovskites into a low-cost and high-efficiency (>25%) tandem cell.

  13. Raster Scan Computer Image Generation (CIG) System Based On Refresh Memory

    Science.gov (United States)

    Dichter, W.; Doris, K.; Conkling, C.

    1982-06-01

    A full color, Computer Image Generation (CIG) raster visual system has been developed which provides a high level of training sophistication by utilizing advanced semiconductor technology and innovative hardware and firmware techniques. Double buffered refresh memory and efficient algorithms eliminate the problem of conventional raster line ordering by allowing the generated image to be stored in a random fashion. Modular design techniques and simplified architecture provide significant advantages in reduced system cost, standardization of parts, and high reliability. The major system components are a general purpose computer to perform interfacing and data base functions; a geometric processor to define the instantaneous scene image; a display generator to convert the image to a video signal; an illumination control unit which provides final image processing; and a CRT monitor for display of the completed image. Additional optional enhancements include texture generators, increased edge and occultation capability, curved surface shading, and data base extensions.

  14. Operation and maintenance cost data for residential photovoltaic modules/panels

    Science.gov (United States)

    Oster, J. R., Jr.; Zaremski, D. R., Jr.; Albert, E. M.; Hawkins, S. L.

    1980-01-01

    Costs associated with the operation and maintenance of residential photovoltaic modules and arrays are studied. Six basic topics related to operation and maintenance to photovoltaic arrays are investigated: maintenance; cleaning; panel replacement; gasket repair/replacement; wiring repair/replacement; and termination repair/replacement. The effects of the mounting types (rack mount, stand off mount, direct mount and integral mount) and the installation/replacement type (sequential, partial interruption and independent) are identified and described. Methods of reducing maintenance costs are suggested.

  15. Charge-carrier dynamics in polycrystalline thin-film CuIn{sub 1−x}Ga{sub x}Se{sub 2} photovoltaic devices after pulsed laser excitation: Interface and space-charge region analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuciauskas, Darius; Li, Jian V.; Kanevce, Ana; Guthrey, Harvey; Contreras, Miguel; Pankow, Joel; Dippo, Pat; Ramanathan, Kannan [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401-3305 (United States)

    2015-05-14

    We used time-resolved photoluminescence (TRPL) spectroscopy to analyze time-domain and spectral-domain charge-carrier dynamics in CuIn{sub 1−x}Ga{sub x}Se{sub 2} (CIGS) photovoltaic (PV) devices. This new approach allowed detailed characterization for the CIGS/CdS buffer interface and for the space-charge region. We find that dynamics at the interface is dominated by diffusion, where the diffusion rate is several times greater than the thermionic emission or interface recombination rate. In the space-charge region, the electric field of the pn junction has the largest effect on the carrier dynamics. Based on the minority-carrier (electron) drift-rate dependence on the electric field strength, we estimated drift mobility in compensated CuIn{sub 1−x}Ga{sub x}Se{sub 2} (with x ≈ 0.3) as 22 ± 2 cm{sup 2}(Vs){sup −1}. Analysis developed in this study could be applied to evaluate interface and junction properties of PV and other electronic devices. For CIGS PV devices, TRPL spectroscopy could contribute to understanding effects due to absorber compositional grading, which is one of the focus areas in developing record-efficiency CIGS solar cells.

  16. Photovoltaic Programme Edition 2007. Summary Report, Project List, Annual Project Reports 2006 (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This 2007 edition summary report for the Swiss Federal Office of Energy (SFOE), reports on the work done within the framework of the Swiss Photovoltaics Program in 2006. The document contains 46 abstracts on work done in the photovoltaics area. The subjects reported on in the thin-film photovoltaics sector include advanced processing and characterisation of thin film silicon solar cells, high-rate deposition of micro-crystalline silicon, a new large-area VHF reactor for high-rate deposition of micro-crystalline silicon, the stability of zinc oxide in encapsulated thin film silicon solar cells, spectral photocurrent measurement, roll-to-roll technology for the production of thin film silicon modules, advanced thin film technologies, ultra thin silicon wafer cutting, bifacial thin industrial multi-crystalline silicon solar cells, flexible CIGS solar cells and mini-modules, large-area CIS-based thin-film solar modules and advanced thin-film technologies. In the area of dye-sensitised modules, the following projects are reported on: Dye-sensitised nano-crystalline solar cells, voltage enhancement of dye solar cells and molecular orientation as well as low band-gap and new hybrid device concepts for the improvement of flexible organic solar cells. Other projects reported on include a new PV wave making more efficient use of the solar spectrum, photovoltaic textiles, organic photovoltaic devices, photo-electrochemical and photovoltaic conversion and storage of solar energy, PV modules with antireflex glass, improved integration of PV into existing buildings, the seventh program at the LEEE-TISO, the 'PV enlargement' and 'Performance' programs, efficiency and annual electricity production of PV modules, photovoltaics system technology 2005-2006, an update on photovoltaics in view of the 'ecoinvent' v.2.0 tool and environmental information services for solar energy industries. The contributions to four Swiss IEA PVPS tasks and the Swiss interdepartmental platform for

  17. Output characteristics of 40 kW photovoltaic power generation system in ICT; Ibaraki kosen ni okeru 40 kW taiyoko hatsuden shisutemu no shutsuryoku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, N. [Ibaraki National College of Tech., Ibaraki (Japan); Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1999-11-25

    The photovoltaic power generation system consists of photovoltaic array and power conditioner of the utility connected system. The photovoltaic array parallelly constitutes 18 serial 30 of the modules of 540 sheets, and there is the generating capacity of largest 40 kW. The power conditioner uses 10 kW four units, and it is tracking with function of the maximum output point. This report examined the unconformable rate of photovoltaic array maximum output operating voltage, current and power in simulation and power conditioner input. (author)

  18. Photovoltaic research and development

    CSIR Research Space (South Africa)

    Cummings, F

    2009-09-01

    Full Text Available Photovoltaic (PV) is the direct conversion of sunlight into electrical energy through a solar cell. This presentation consists of an introduction to photovoltaics, the South African PV research roadmap, a look at the CSIR PV research and development...

  19. Characterization of Photovoltaic Generators

    Science.gov (United States)

    Boitier, V.; Cressault, Y.

    2011-01-01

    This paper discusses photovoltaic panel systems and reviews their electrical properties and use in several industrial fields. We explain how different photovoltaic panels may be characterized by undergraduate students at university using simple methods to retrieve their electrical properties (power, current and voltage) and compare these values…

  20. Photovoltaic Bias Generator

    Science.gov (United States)

    2018-02-01

    Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an... Interior view of the photovoltaic bias generator showing wrapped-wire side of circuit board...3 Fig. 4 Interior view of the photovoltaic bias generator showing component side of circuit board

  1. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  2. Urban photovoltaic electricity policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban photovoltaic electricity policies. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The goal of the study presented was to evaluate a standardised basis for urban policies regarding photovoltaic integration in a set of cities in the countries participating in the IEA's Task 10, Urban Scale PV. The investigation was focused on three topics: the present state of the policies, the prospects for future policies fostering photovoltaic deployment and the prospects for future policies to cope with large-scale photovoltaic integration. The first section analyses the state of the policies; this analysis is then confirmed in section 2, which deals with present obstacles to PV deployment and solutions to overcome them. The third section investigates future prospects for PV deployment with the question of mastering large scale integration. The report concludes that cities could formulate urban solutions by developing integrated, specific provisions for PV deployment in their urban infrastructure planning.

  3. Photovoltaics in Poland

    International Nuclear Information System (INIS)

    Pietruszko, Stanislaw M.

    2003-01-01

    The legislative framework and financing possibilities for photovoltaics (PV) in Poland are presented. Barriers that exist or can be encountered in implementing PV technology in Poland are identified. This paper also discusses future prospects and possibilities for developing photovoltaics in Poland. Finally, the paper suggests ways to promote, disseminate, and deploy PV technology in Poland. (Author)

  4. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  5. Flexo-photovoltaic effect.

    Science.gov (United States)

    Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin

    2018-04-19

    It is highly desirable to discover photovoltaic mechanisms that enable a higher efficiency of solar cells. Here, we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We introduce strain gradients using either an atomic force microscope or a micron-scale indentation system, creating giant photovoltaic currents from centrosymmetric single crystals of SrTiO 3 , TiO 2 , and Si. This strain-gradient-induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p - n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors. Copyright © 2018, American Association for the Advancement of Science.

  6. Applications of photovoltaics

    International Nuclear Information System (INIS)

    Pearsall, N.

    1999-01-01

    The author points out that although photovoltaics can be used for generating electricity for the same applications as many other means of generation, they really come into their own where disadvantages associated with an intermittent unpredictable supply are not severe. The paper discusses the advantages and disadvantages to be taken into account when considering a photovoltaic power system. Five main applications, based on the system features, are listed and explained. They are: consumer, professional, rural electrification, building-integrated, centralised grid connected and space power. A brief history of the applications of photovoltaics is presented with statistical data on the growth of installed capacity since 1992. The developing market for photovoltaics is discussed together with how environmental issues have become a driver for development of building-integrated photovoltaics

  7. ParaSol - A Novel Deployable Approach for Very Large Ultra-lightweight Solar Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High power solar arrays with capabilities of >100kW are needed for projected NASA missions. Photovoltaic arrays using deployable membranes with thin cells have...

  8. CIGS Thin Film Solar Cells, phase 2 Uppsala University Final report 2006-01-01 - 2007-06-14

    Energy Technology Data Exchange (ETDEWEB)

    Edoff, Marika (Thin Film Solar Cell group, Dep. Technical Sciences, Uppsala Univ., P.O. Box 534, SE-751 21 Uppsala (Sweden)) (and others)

    2007-06-15

    The project CIGS Thin Film Solar Cells, phase 2 has been going on for 18,5 months and was interrupted in advance on the 14th of June, 2007. The decision to shorten the period was taken by the board of the Swedish Energy Agency the 14th of February. It was decided to reevaluate and re-direct the financial support to the group. A new project, CIGS Thin Film Solar Cells, phase 3, superseded this project and will go on for the initially planned project period (until 2009-12-31). During the project much of the focus has been on research on Cd-free buffer layers, with an emphasis on the interface properties between the CIGS and the buffer layer. (CIGS is a commonly used acronym for Cu(In,Ga)Se{sub 2}, which is the active absorption layer in this type of solar cells) The combination of high quality CIGS and the new buffer layers has been another field of interest. CIGS solar cell module development and computer modelling of solar cells and modules has been the third major research area. The results show that the group still holds a position as one of the leaders in the world in this field. The 18.5 % efficient Cd-free solar cell, which was obtained and independently confirmed is only one percent away from the world record and in addition it is Cd-free using a Zn(O,S) buffer layer (the world record from NREL contains Cd). By alloying ZnO with MgO instead of ZnS almost equally good results can be achieved. During the last half year an 18.1 % cell has been measured with a (Zn,Mg)O buffer layer. Solar cell module technology includes several research issues, both fundamental as e.g. modelling of cell voltage and losses as a function of distance from interconnect to interconnect, but also more development as e.g. encapsulation routines. The harsh environment test (damp heat test) run at 85 deg C and 85 % relative humidity for 1000 hours was passed for both a small (12.5x12.5 cm2) and a large (27.5x30 cm2) module within the degradation limits stated by the IEC standards, using

  9. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  10. Design and Flood Control Assessment of 5MWp Fishing and Photovoltaic Power Project in Xinghua City

    Science.gov (United States)

    Guo, Liuchao; Hu, Xiaodong; Su, Yuyan; Wu, Peipei; Weng, Songgan

    2017-12-01

    In order to reduce coal consumption in Jiangsu Province and develop new energy sources, considering on the distribution of geology, solar energy resources, traffic and grid connection in Xinghua City, the aim is to determine the configuration of photovoltaic modules and photovoltaic array tracking mode, design photovoltaic array and layout scheme. But the project is a wading project, it is built in Dong Tan Lake polder I115, it needs scientific and reasonable evaluation to the effect of Dong Tan Lake’s flood storage and discharge. The results can provide guidance for similar engineering’s design.

  11. Notas sobre Feral y las cigüeñas, de Fernando Alonso, y la "Historia del califa cigüeña" (Wilhelm Hauff, Sara Cone Bryant

    Directory of Open Access Journals (Sweden)

    Hans Christian Hagedorn

    2011-01-01

    Full Text Available En el presente estudio se analizan las fuentes de la versión de la "Historia del califa cigüeña", incluida en la narración Feral y las cigüeñas (1971, de Fernando Alonso. Para ello se tienen en cuenta el cuento original del autor postromántico alemán Wilhelm Hauff ("Die Geschichte von Kalif Storch", 1825, y la adaptación de este cuento que Sara Cone Bryant realizó para su libro How to tell stories to children (1905, traducción española: El arte de contar cuentos, 1965.

  12. Microcomputer control of a residential photovoltaic power conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, B.K.; Steigerwald, R.L.; Szczesny, P.M.

    1984-01-01

    Microcomputer-based control of a residential photovoltaic power conditioning system is described. The microcomputer is responsible for array current feedback control, maximum power tracking control, array safe zone steering control, phase-locked reference wave synthesis, sequencing control, and some diagnostics. The control functions are implemented using Intel 8751 single-chip microcomputer-based hardware and software. The controller has been tested in the laboratory with the prototype power conditioner and shows excellent performance.

  13. Microcomputer control of a residential photovoltaic power conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, B.K.; Steigerwald, R.L.; Szczesny, P.M.

    1985-09-01

    Microcomputer-based control of a residential photovoltaic power conditioning system is described. The microcomputer is responsible for array current feedback control, maximum power tracking control, array safe zone steering control, phase-locked reference wave synthesis, sequencing control, and some diagnostics. The control functions are implemented using Intel 8751 single-chip microcomputer-based hardware and software. The controller has been tested in the laboratory with the prototype power conditioner and shows excellent performance.

  14. Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    David M. Dean

    2012-10-30

    Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is the key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.

  15. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of

  16. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  17. Survey of photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    In developing this survey of photovoltaic systems, the University of Alabama in Huntsville assembled a task team to perform an extensive telephone survey of all known photovoltaic manufacturers. Three US companies accounted for 77% of the total domestic sales in 1978. They are Solarex Corporation, Solar Power Croporation, and ARCO Solar, Inc. This survey of solar photovoltaic (P/V) manufacturers and suppliers consists of three parts: a catalog of suppliers arranged alphabetically, data sheets on specific products, and typical operating, installation, or maintenance instructions and procedures. This report does not recommend or endorse any company product or information presented within as the results of this survey.

  18. Clean electricity from photovoltaics

    CERN Document Server

    Green, Martin A

    2015-01-01

    The second edition of Clean Electricity from Photovoltaics , first published in 2001, provides an updated account of the underlying science, technology and market prospects for photovoltaics. All areas have advanced considerably in the decade since the first edition was published, which include: multi-crystalline silicon cell efficiencies having made impressive advances, thin-film CdTe cells having established a decisive market presence, and organic photovoltaics holding out the prospect of economical large-scale power production. Contents: The Past and Present (M D Archer); Limits to Photovol

  19. Materials for Photovoltaic Applications

    Science.gov (United States)

    Dimova-Malinovska, Doriana

    Energy priorities are changing nowadays. As mankind will probably have to face energy crisis, factors such as energy independence, energy security, stability of energy supply and the variety of energy sources become much more vital these days. Photovoltaics is exceptional compared to other renewable sources of energy due to its wide opportunity to gain energetic and environmental benefits. An overview of the present state of knowledge of the materials aspects of photovoltaic cells will be given, and new semiconductor materials, including nanomaterials, with potential for application in photovoltaic devices will be identified.

  20. Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium

    Science.gov (United States)

    Albin, David S.; Noufi, Rommel

    2015-06-09

    Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium are provided. In one embodiment, a method for fabricating a thin film device comprises: providing a semiconductor film comprising indium (In) and selenium (Se) upon a substrate; heating the substrate and the semiconductor film to a desired temperature; and performing a mass transport through vapor transport of a copper chloride vapor and se vapor to the semiconductor film within a reaction chamber.

  1. Process parameter impact on properties of sputtered large-area Mo bilayers for CIGS thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Badgujar, Amol C.; Dhage, Sanjay R., E-mail: dhage@arci.res.in; Joshi, Shrikant V.

    2015-08-31

    Copper indium gallium selenide (CIGS) has emerged as a promising candidate for thin film solar cells, with efficiencies approaching those of silicon-based solar cells. To achieve optimum performance in CIGS solar cells, uniform, conductive, stress-free, well-adherent, reflective, crystalline molybdenum (Mo) thin films with preferred orientation (110) are desirable as a back contact on large area glass substrates. The present study focuses on cylindrical rotating DC magnetron sputtered bilayer Mo thin films on 300 mm × 300 mm soda lime glass (SLG) substrates. Key sputtering variables, namely power and Ar gas flow rates, were optimized to achieve best structural, electrical and optical properties. The Mo films were comprehensively characterized and found to possess high degree of thickness uniformity over large area. Best crystallinity, reflectance and sheet resistance was obtained at high sputtering powers and low argon gas flow rates, while mechanical properties like adhesion and residual stress were found to be best at low sputtering power and high argon gas flow rate, thereby indicating a need to arrive at a suitable trade-off during processing. - Highlights: • Sputtering of bilayer molybdenum thin films on soda lime glass • Large area deposition using rotating cylindrical direct current magnetron • Trade of sputter process parameters power and pressure • High uniformity of thickness and best electrical properties obtained • Suitable mechanical and optical properties of molybdenum are achieved for CIGS application.

  2. The photovoltaic industry between growth and difficulties

    International Nuclear Information System (INIS)

    2013-01-01

    This article proposes an overview of the situation and trends of the photovoltaic industry sector. If half of the market was shared among few German, Chinese and American companies in 2010, it appears that half of photovoltaic cells and arrays were designed and manufactured in China in 2013. The European Union and the USA therefore introduced taxes on these products. As this sector appears to be a strategic one, this resulted in a new support for this industry by the Chinese government. The article then comments the French market: slow development in terms of energy production as well as in terms of equipment manufacturing. Thus, measures taken by the French government resulted in a diversification of products, but cost of production of electricity remains high. Perspectives are finally evoked, notably in Japan after the Fukushima accident

  3. Si Wire-Array Solar Cells

    Science.gov (United States)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  4. Photovoltaic module and interlocked stack of photovoltaic modules

    Science.gov (United States)

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  5. Photovoltaic engineering handbook

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, F; Ang, T G [Asian Institute of Technolgoy, Bangkok (TH)

    1990-01-01

    The Photovoltaic Engineering Handbook is a comprehensive 'nuts and bolts' guide to photovoltaic technology and systems engineering aimed at engineers and designers in the field. It is the first book to look closely at the practical problems involved in evaluating and setting up a PV power system. The authors' comprehensive insight into the different procedures and decisions that a designer needs to make. The book is unique in its coverage and the technical information is presented in a concise and simple way to enable engineers from a wide range of backgrounds to initiate, assess, analyse and design a PV system. Energy planners making decisions on the most appropriate system for specific needs will also benefit from reading this book. Topics covered include technological processes, including solar cell technology, the photovoltaic generator, photovoltaic systems engineering; characterization and testing methods, sizing procedure; economic analysis and instrumentation. (author).

  6. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  7. Organic Semiconductor Photovoltaics

    Science.gov (United States)

    Sariciftci, Niyazi Serdar

    2005-03-01

    Recent developments on organic photovoltaic elements are reviewed. Semiconducting conjugated polymers and molecules as well as nanocrystalline inorganic semiconductors are used in composite thin films. The photophysics of such photoactive devices is based on the photoinduced charge transfer from donor type semiconducting molecules onto acceptor type molecules such as Buckminsterfullerene, C60 and/or nanoparticles. Similar to the first steps in natural photosynthesis, this photoinduced electron transfer leads to a number of potentially interesting applications which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are discussed with their potential in terrestrial solar energy conversion. Several materials are introduced and discussed for their photovoltaic activities. Furthermore, nanomorphology has been investigated with AFM, SEM and TEM. The morphology/property relationship for a given photoactive system is found to be a major effect.

  8. GD-OES and XPS coupling: A new way for the chemical profiling of photovoltaic absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, Dimitri, E-mail: dimitri.mercier@uvsq.fr [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Bouttemy, Muriel; Vigneron, Jackie [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chapon, Patrick [HORIBA Jobin Yvon SAS, F-91165 Longjumeau (France); Etcheberry, Arnaud [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France)

    2015-08-30

    Highlights: • The coupling between GD-OES and XPS analysis is a promising way for fine characterization of thin layers. • Crater surface modifications obtained after GD-OES sputtering depend to the plasma gas. • Inversion of the gas flow improves the surface of the crater. • The modified layer is totally eliminated a few seconds after restarting GD-OES sputtering. - Abstract: In this paper, we examine the complementarity of Glow Discharge Optical Emission Spectroscopy (GD-OES) and X Ray Photoelectron Spectroscopy (XPS) for the realization of fine chemical depth profiling of photovoltaic absorbers using Cu(In,Ga)Se{sub 2} (CIGS) materials. The possibility to use sequentially these two techniques is discussed in this paper. We have evaluated the chemical modifications of the crater after GD-OES analyses which depend on the manner of finishing the plasma etching sequence; and we propose different ways to limit or eliminate this effect. For the moment, an intermediate step (wet chemical etching or weak sputtering) is required to obtain a CIGS phase in the crater. Finally, we have demonstrated the possibility to restart the GD-OES analyses of the materials after XPS quantification or GD-OES breaking without modifying the profile shape.

  9. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    Krawczak Ewelina

    2017-01-01

    Full Text Available The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  10. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    Science.gov (United States)

    Krawczak, Ewelina; Gułkowski, Sławomir

    2017-10-01

    The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS) devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC) magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  11. Expanding thermal plasma chemical vapour deposition of ZnO:Al layers for CIGS solar cells

    NARCIS (Netherlands)

    Sharma, K.; Williams, B.L.; Mittal, A.; Knoops, H.C.M.; Kniknie, B.J.; Bakker, N.J.; Kessels, W.M.M.; Schropp, R.E.I.; Creatore, M.

    2014-01-01

    Aluminium-doped zinc oxide (ZnO:Al) grown by expanding thermal plasma chemical vapour deposition (ETP-CVD) has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing

  12. Plastic photovoltaic devices

    OpenAIRE

    Niyazi Serdar Sariciftci

    2004-01-01

    The development of organic, polymer-based photovoltaic elements has introduced the possibility of obtaining cheap and easy-to-produce energy from light. Photoinduced electron transfer from donor-type semiconducting polymers onto acceptor-type polymers or molecules, such as C60, is the basic phenomenon utilized in these photovoltaic devices. This process mimics the early photo-effects in natural photosynthesis. The polymeric semiconductors combine the photoelectrical properties of inorganic se...

  13. Photovoltaic energy barometer

    International Nuclear Information System (INIS)

    Anon

    2006-01-01

    The european market showed all of its strength and soundness in 2005. The 2005 installed cells growth could have been even greater if the market had not been continually curbed by a lack of raw materials. Germany remained the leading photovoltaic market in the world in 2005, positioned far ahead of Japan and the USA. This unabashed success inspired both Spain and Italy, which set up conditions in order to rapidly develop their photovoltaic sectors. (A.L.B.)

  14. Special issue photovoltaic

    International Nuclear Information System (INIS)

    2004-01-01

    In this letter of the INES (french National Institute of the Solar Energy), a special interest is given to photovoltaic realizations in Europe. Many information are provided on different topics: the China future fifth world producer of cells in 2005, batteries and hydrogen to storage the solar energy and a technical sheet on a photovoltaic autonomous site installation for electric power production. (A.L.B.)

  15. Improving Performance of CIGS Solar Cells by Annealing ITO Thin Films Electrodes

    Directory of Open Access Journals (Sweden)

    Chuan Lung Chuang

    2015-01-01

    Full Text Available Indium tin oxide (ITO thin films were grown on glass substrates by direct current (DC reactive magnetron sputtering at room temperature. Annealing at the optimal temperature can considerably improve the composition, structure, optical properties, and electrical properties of the ITO film. An ITO sample with a favorable crystalline structure was obtained by annealing in fixed oxygen/argon ratio of 0.03 at 400°C for 30 min. The carrier concentration, mobility, resistivity, band gap, transmission in the visible-light region, and transmission in the near-IR regions of the ITO sample were -1.6E+20 cm−3, 2.7E+01 cm2/Vs, 1.4E-03 Ohm-cm, 3.2 eV, 89.1%, and 94.7%, respectively. Thus, annealing improved the average transmissions (400–1200 nm of the ITO film by 16.36%. Moreover, annealing a copper-indium-gallium-diselenide (CIGS solar cell at 400°C for 30 min in air improved its efficiency by 18.75%. The characteristics of annealing ITO films importantly affect the structural, morphological, electrical, and optical properties of ITO films that are used in solar cells.

  16. Customized color patterning of photovoltaic cells

    Science.gov (United States)

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat; Lentine, Anthony L.; Resnick, Paul J.; Gupta, Vipin P.

    2016-11-15

    Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.

  17. Photovoltaic mounting/demounting unit

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a photovoltaic arrangement comprising a photovoltaic assembly comprising a support structure defining a mounting surface onto which a photovoltaic module is detachably mounted; and a mounting/demounting unit comprising at least one mounting/demounting apparatus...... which when the mounting/demounting unit is moved along the mounting surface, causes the photovoltaic module to be mounted or demounted to the support structure; wherein the photovoltaic module comprises a carrier foil and wherein a total thickness of the photo voltaic module is below 500 muiotaeta....... The present invention further relates to an associated method for mounting/demounting photovoltaic modules....

  18. Efficiency enhancement of CIGS compound solar cell fabricated using homomorphic thin Cr{sub 2}O{sub 3} diffusion barrier formed on stainless steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jae-Kwan; Lee, Seung-Kyu; Kim, Jin-Soo; Jeong, Kwang-Un; Ahn, Haeng-Keun; Lee, Cheul-Ro, E-mail: crlee7@jbnu.ac.kr

    2016-12-15

    Highlights: • A chromium oxide layer is formed as diffusion barrier by thermal oxidation process on STS substrate. • A Cr{sub 2}O{sub 3} layer effectively reduces impurities diffusion into the CIGS absorber layer. • The Cr{sub 2}O{sub 3} layer plays an important role in increasing the efficiency by reduction of impurity diffusion. - Abstract: It is known that the efficiency of flexible Cu(In,Ga)Se{sub 2} (CIGS) solar cells fabricated on stainless-steel (STS) substrates deteriorates due to iron (Fe) and Cr impurities diffusing into the CIGS absorber layer. To overcome this problem, a nanoscale homomorphic chromium oxide layer was formed as a diffusion barrier by thermal oxidation on the surface of STS substrates for 1 min at 600 °C in oxygen atmosphere. By TEM and grazing-incidence X-ray diffraction (GIXRD), it was confirmed that the formed oxide layer on surface of STS substrates was a Cr{sub 2}O{sub 3} layer. It was found that the formed homomorphic Cr{sub 2}O{sub 3} thin layer of about 15 nm thickness was an effective diffusion barrier to reduce impurity diffusion into the CIGS layer by secondary ion mass spectroscopy (SIMS). In contrast to the efficiency of CIGS solar cell without homomorphic Cr{sub 2}O{sub 3} diffusion layer is 8.6%, whereas with diffusion barrier it increases to 10.6% because of impurities such as Fe and Cr from the STS substrate into the CIGS layer. It reveals that the layer formed on the surface of STS substrate by thermal oxidation process plays an important role in increasing the performance of CIGS solar cells.

  19. Photovoltaic restoration of sight with high visual acuity

    Science.gov (United States)

    Lorach, Henri; Goetz, Georges; Smith, Richard; Lei, Xin; Mandel, Yossi; Kamins, Theodore; Mathieson, Keith; Huie, Philip; Harris, James; Sher, Alexander; Palanker, Daniel

    2015-01-01

    Patients with retinal degeneration lose sight due to gradual demise of photoreceptors. Electrical stimulation of the surviving retinal neurons provides an alternative route for delivery of visual information. We demonstrate that subretinal arrays with 70 μm photovoltaic pixels provide highly localized stimulation, with electrical and visual receptive fields of comparable sizes in rat retinal ganglion cells. Similarly to normal vision, retinal response to prosthetic stimulation exhibits flicker fusion at high frequencies, adaptation to static images and non-linear spatial summation. In rats with retinal degeneration, these photovoltaic arrays provide spatial resolution of 64 ± 11 μm, corresponding to half of the normal visual acuity in pigmented rats. Ease of implantation of these wireless and modular arrays, combined with their high resolution opens the door to functional restoration of sight. PMID:25915832

  20. An inverter/controller subsystem optimized for photovoltaic applications

    Science.gov (United States)

    Pickrell, R. L.; Merrill, W. C.; Osullivan, G.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. This paper discusses the optimization of the inverter/controller design as part of an overall Photovoltaic Power System (PPS) designed for maximum energy extraction from the solar array. The special design requirements for the inverter/controller include: (1) a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and (2) an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy. It must be capable of operating connected to the utility line at a level set by an external controller (PSC).

  1. A New Approach for Optimal Sizing of Standalone Photovoltaic Systems

    OpenAIRE

    Khatib, Tamer; Mohamed, Azah; Sopian, K.; Mahmoud, M.

    2012-01-01

    This paper presents a new method for determining the optimal sizing of standalone photovoltaic (PV) system in terms of optimal sizing of PV array and battery storage. A standalone PV system energy flow is first analysed, and the MATLAB fitting tool is used to fit the resultant sizing curves in order to derive general formulas for optimal sizing of PV array and battery. In deriving the formulas for optimal sizing of PV array and battery, the data considered are based on five sites in Malaysia...

  2. Interim performance criteria for photovoltaic energy systems. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  3. A Method of Maximum Power Control in Single-phase Utility Interactive Photovoltaic Generation System by using PWM Current Source Inverter

    Science.gov (United States)

    Neba, Yasuhiko

    This paper deals with a maximum power point tracking (MPPT) control of the photovoltaic generation with the single-phase utility interactive inverter. The photovoltaic arrays are connected by employing the PWM current source inverter to the utility. The use of the pulsating dc current and voltage allows the maximum power point to be searched. The inverter can regulate the array voltage and keep the arrays to the maximum power. This paper gives the control method and the experimental results.

  4. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov (United States)

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed

  5. The second section of Delphos photovoltaic plant

    Energy Technology Data Exchange (ETDEWEB)

    Barra, L; Li Causi, S; Calogero, D; Sarno, A

    1989-03-01

    The 300 kWp photovoltaic (PV) system that will constitute the second section of the Delphos plant is made up by three 100 kWp modular standard units (PLUG), parallel connected to the grid. In this paper, the PV array, the power conditioning unit and the overall architecture of the standard unit are described and the relevant differences with respect to the first Delphos section are discussed. It is explained how the use of modular standardized units allows a substantial reduction of construction, installation and operations costs. Finally, a short evaluation of the expected energy cost is presented.

  6. Nanostructured Photovoltaics for Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA NSTRF proposal entitled Nanostructured Photovoltaics for Space Power is targeted towards research to improve the current state of the art photovoltaic...

  7. Solar photovoltaic water pumping system using a new linear actuator

    OpenAIRE

    Andrada Gascón, Pedro; Castro, Javier

    2007-01-01

    In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...

  8. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  9. Performance characteristics of solar-photovoltaic flywheel-storage systems

    Science.gov (United States)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  10. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Peter F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sekulic, William R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dreifuerst, Gary [Lawrence Livermore National Laboratory - retired

    2018-04-02

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can and do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.

  11. Can photovoltaic replace nuclear?

    International Nuclear Information System (INIS)

    2017-01-01

    As the French law on energy transition for a green growth predicts that one third of nuclear energy production is to be replaced by renewable energies (wind and solar) by 2025, and while the ADEME proposes a 100 per cent renewable scenario for 2050, this paper proposes a brief analysis of the replacement of nuclear energy by solar photovoltaic energy. It presents and discusses some characteristics of photovoltaic production: production level during a typical day for each month (a noticeable lower production in December), evolution of monthly production during a year, evolution of the rate between nuclear and photovoltaic production. A cost assessment is then proposed for energy storage and for energy production, and a minimum cost of replacement of nuclear by photovoltaic is assessed. The seasonal effect is outlined, as well as the latitude effect. Finally, the authors outline the huge cost of such a replacement, and consider that public support to new photovoltaic installations without an at least daily storage mean should be cancelled

  12. International Photovoltaic Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    The International Photovoltaics Program Plan is in direct response to the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (PL 95-590). As stated in the Act, the primary objective of the plan is to accelerate the widespread use of photovoltaic systems in international markets. Benefits which could result from increased international sales by US companies include: stabilization and expansion of the US photovoltaic industry, preparing the industry for supplying future domestic needs; contribution to the economic and social advancement of developing countries; reduced world demand for oil; and improvements in the US balance of trade. The plan outlines programs for photovoltaic demonstrations, systems developments, supplier assistance, information dissemination/purchaser assistance, and an informaion clearinghouse. Each program element includes tactical objectives and summaries of approaches. A program management office will be established to coordinate and manage the program plan. Although the US Department of Energy (DOE) had the lead responsibility for preparing and implementing the plan, numerous federal organizations and agencies (US Departments of Commerce, Justice, State, Treasury; Agency for International Development; ACTION; Export/Import Bank; Federal Trade Commission; Small Business Administration) were involved in the plan's preparation and implementation.

  13. Effect of wind speed on performance of a solar-pv array

    Science.gov (United States)

    Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...

  14. Preparation and optimization of a molybdenum electrode for CIGS solar cells

    Directory of Open Access Journals (Sweden)

    Feng Jingxue

    2016-11-01

    Full Text Available Molybdenum (Mo films were deposited by radio frequency (RF, direct current (DC and mixed magnetron sputtering, respectively. With changing the deposition parameters including deposition pressure and power, the films show different surface morphology and crystallinity. Lower resistivity of the films is obtained in the DC mode and better reflectivity of the films is obtained in the RF mode. It is shown that the crystallinity increases when the deposition pressure decreases. The crystallinity and the grain size both increase as the deposition power increasing. The lowest resistivity of the single Mo film is 34×10-6 Ω·cm when the deposition pressure is 0.1 Pa and the deposition power is 300 W in the DC mode. In order to obtain lower resistivity, better adhesion and better reflectivity, bilayer films and tri-layer films were both deposited in different mode. They all show good adhesion and low resistivity. The Mo films deposited in mixed mode show better reflectivity. It is demonstrated that the resistivity of about 65×10-6 Ω·cm is achieved in DC/RF mode and the resistivity of about 61×10-6 Ω·cm is achieved in RF/DC/RF mode. And the tri-layer films achieved in RF/DC/RF mode have better reflectivity than bilayer films achieved in DC/RF mode. The tri-layer films achieved in RF/DC/RF mode is appropriate for using as the electrode of CIGS solar cells.

  15. Indium tin oxide with titanium doping for transparent conductive film application on CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Sheng; Cheng, Huai-Ming; Hu, Hung-Chun; Li, Ying-Tse; Huang, Shi-Da; Yu, Hau-Wei [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan (China); Pu, Nen-Wen, E-mail: nwpuccit@gmail.com [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan (China); Liang, Shih-Chang [Materials & Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Lung Tan 32599, Taiwan (China)

    2015-11-01

    Highlights: • Ti-doped indium tin oxide (ITO) films were deposited by DC magnetron sputtering. • Optimal optoelectronic properties were achieved at a sputtering power of 100 W. • Resistivity = 3.2 × 10{sup −4} Ω-cm without substrate heating or post growth annealing. • Mean visible and NIR transmittances of 83 and 80%, respectively, were achieved. • Efficient batteries (11.3%) were fabricated by applying ITO:Ti to CIGS solar cells. - Abstract: In this study, Ti-doped indium tin oxide (ITO:Ti) thin films were fabricated using a DC-magnetron sputtering deposition method. The thin films were grown without introducing oxygen or heating the substrate, and no post-growth annealing was performed after fabrication. The thickness of the ITO:Ti thin films (350 nm) was controlled while increasing the sputtering power from 50 to 150 W. According to the results, the optimal optoelectronic properties were observed in ITO:Ti thin films grown at a sputtering power of 100 W, yielding a reduced resistivity of 3.2 × 10{sup −4} Ω-cm and a mean high transmittance of 83% at wavelengths ranging from 400 to 800 nm. The optimal ITO:Ti thin films were used to fabricate a Cu(In,Ga)Se{sub 2} solar cell that exhibited a photoelectric conversion efficiency of 11.3%, a short-circuit current density of 33.1 mA/cm{sup 2}, an open-circuit voltage of 0.54 V, and a fill factor of 0.64.

  16. Photovoltaic Subcontract Program

    Energy Technology Data Exchange (ETDEWEB)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  17. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  18. Photovoltaic barometer; Barometre photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-04-15

    The photovoltaic sector is continuing on track, just as the extent of solar energy's electricity-generating potential is dawning on the public mind. The annual global installation figure was up more than twofold in 2010 (rising from just short of 7000 MWp in 2009). It leapt to over 16000 MWp, bringing worldwide installed photovoltaic capacity close to 38000 MWp. The photovoltaic power generated in the European Union at the end of 2010 reached 22.5 TWh which means an additional capacity of 13023 MWp during 2010. Concerning the cumulated installed capacity, Germany and Spain rank first and second in the European Union with respectively 17370 MWp and 3808 MWp

  19. The 2009 photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The global photovoltaic market expanded again in 2009. Germany set a new system installation record while the capacity build-up of the major solar photovoltaic markets contained the fallout generated by the Iberian market derailment. The European Union has the highest photovoltaic plant capacity, with almost 5.5 GWp installed in 2009. Italy is the third European Union country to pass the symbolic 1000 MWp installed mark, following Germany and Spain. France ranks 6 with 185 MWp installed in 2009. The decrease in the price of silicon reached 80% in 2009. The industry is facing a coming-of-age crisis with prices falling and over-production. Most of the major cell manufacturers are located in Asia. The European industry is still well represented with Q-Cells, the German leading cell manufacturer in addition with hefty industry players. (A.C.)

  20. Photovoltaic policy is questioned

    International Nuclear Information System (INIS)

    Piro, P.; Cessac, M.

    2011-01-01

    The French government has decided a freeze and a reassessment of the measures taken to support the photovoltaic sector. Only the installations with a power output over 3 kWc are concerned so the market of solar roofs for homes is spared. The main reasons for this reversal is the quick and chaotic development of photovoltaic projects, a lot of projects are only motivated by the lure of high purchase prices of the electricity produced imposed by the law on EDF. Another reason is that 90% of the solar panels installed in France come from China, the photovoltaic sector retorts that 75% of the price of a complete installation pays for services produced in France. (A.C.)

  1. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  2. White butterflies as solar photovoltaic concentrators

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  3. Physics of Quantum Structures in Photovoltaic Devices

    Science.gov (United States)

    Raffaelle, Ryne P.; Andersen, John D.

    2005-01-01

    There has been considerable activity recently regarding the possibilities of using various nanostructures and nanomaterials to improve photovoltaic conversion of solar energy. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of three-dimensional arrays of zero-dimensional conductors (i.e., quantum dots) in an ordinary p-i-n solar cell structure. Quantum dots and other nanostructured materials may also prove to have some benefits in terms of temperature coefficients and radiation degradation associated with space solar cells. Two-dimensional semiconductor superlattices have already demonstrated some advantages in this regard. It has also recently been demonstrated that semiconducting quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. Improvement in thin film cells utilizing conjugated polymers has also be achieved through the use of one-dimensional quantum structures such as carbon nanotubes. It is believed that carbon nanotubes may contribute to both the disassociation as well as the carrier transport in the conjugated polymers used in certain thin film photovoltaic cells. In this paper we will review the underlying physics governing some of the new photovoltaic nanostructures being pursued, as well as the the current methods being employed to produce III-V, II-VI, and even chalcopyrite-based nanomaterials and nanostructures for solar cells.

  4. White butterflies as solar photovoltaic concentrators.

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  5. Performance of Photovoltaic Modules of Different Solar Cells

    Directory of Open Access Journals (Sweden)

    Ankita Gaur

    2013-01-01

    Full Text Available In this paper, an attempt of performance evaluation of semitransparent and opaque photovoltaic (PV modules of different generation solar cells, having the maximum efficiencies reported in the literature at standard test conditions (STC, has been carried out particularly for the months of January and June. The outdoor performance is also evaluated for the commercially available semitransparent and opaque PV modules. Annual electrical energy, capitalized cost, annualized uniform cost (unacost, and cost per unit electrical energy for both types of solar modules, namely, semitransparent and opaque have also been computed along with their characteristics curves. Semitransparent PV modules have shown higher efficiencies compared to the opaque ones. Calculations show that for the PV modules made in laboratory, CdTe exhibits the maximum annual electrical energy generation resulting into minimum cost per unit electrical energy, whereas a-Si/nc-Si possesses the maximum annual electrical energy generation giving minimum cost per unit electrical energy when commercially available solar modules are concerned. CIGS has shown the lowest capitalized cost over all other PV technologies.

  6. Inorganic materials for photovoltaics: Status and futures challenges

    Directory of Open Access Journals (Sweden)

    Slaoui A.

    2017-01-01

    Full Text Available This paper review the present technologies for the fabrication of solar cells and modules based on the most common semiconductors namely silicon, CuInGaSe(S and CdTe materials as well as on III-V concentrated photovoltaic cells and modules. For silion technology, we give insights on the growth of monocrystalline and multicrystalline silicon wafers and then we describe the most common solar cells designs and how to fabricate them. We also provide information about the fabrication of silicon modules and their performances. As for the thin-films solar cells, we present the structurale and optical properties of the CIGS and CdTe materials as well as the solar cell structures. The multi-junction concept cell that involves several III-V materials of different bandgaps is also described, and data on their fabrication, performances and mounting as modules are presented. Finally, a short outlook on the coming materials for solar cells is provided.

  7. SISGR: Defect Studies of CZTSSe & Related Thin Film Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Scarpulla, Michael [Univ. of Utah, Salt Lake City, UT (United States)

    2017-03-30

    The research objectives of this project centered around investigations of the basic properties of Cu2ZnSn(S,Se)4 especially the electronic defects in the bulk, at the interface with heterojunction partners used in solar cells, and at the polycrystalline grain boundaries. In the course of the project we addressed many specific sub-areas in 17 peer reviewed publications listed at the end of this report (2 more are also in preparation). The impact of this research is to generate basic but critical materials knowledge about this emerging alloy system that may be capable of photovoltaic efficiency on par with CdTe and CIGS but at lower cost and having the benefit of avoiding constraints on scale-up from rare and expensive elements using earth abundant elements. In the final phase of this project, Prof. Scarpulla worked with Dr. Kirstin Alberi at NREL and rigorously solved a theoretical problem that is general across all semiconductors – the prediction of point defect concentrations in the presence of excess carriers.

  8. Asphaltene based photovoltaic devices

    Science.gov (United States)

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.

    2016-03-22

    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.

  9. Photovoltaic System in Progress

    DEFF Research Database (Denmark)

    Shoro, Ghulam Mustafa; Hussain, Dil Muhammad Akbar; Sera, Dezso

    2013-01-01

    This paper provides a comprehensive update on photovoltaic (PV) technologies and the materials. In recent years, targeted research advancement has been made in the photovoltaic cell technologies to reduce cost and increase efficiency. Presently, several types of PV solar panels are commercially...... falls in the third generation PV technologies. However, Multi-junction Cells are still considered new and have not yet achieved commercialization status. The fundamental change observed among all generations has been how the semiconductor material is employed and the development associated with crystal...

  10. Concentrating photovoltaic solar panel

    Science.gov (United States)

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  11. Photovoltaics and the environment

    International Nuclear Information System (INIS)

    Baumann, A.E.

    1994-01-01

    This paper considers the impact of photovoltaics on the environment and its application and role in the energy supply sector. It discusses the environmental and health impacts associated with photovoltaics by using Life Cycle Analysis as an instrument to determine its environmental effects. Recent Life Cycle studies have shown that PV can be considered an environmentally low risk technology, with its major environmental impacts occurring at the module manufacturing and waste disposal stages. The employment of environmental control mechanisms and statutory health and safety regulations at PV production facilities have helped to further reduce occupational and public health hazards. (author)

  12. Photovoltaic roofing tile systems

    Science.gov (United States)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  13. Distributed photovoltaic grid transformers

    CERN Document Server

    Shertukde, Hemchandra Madhusudan

    2014-01-01

    The demand for alternative energy sources fuels the need for electric power and controls engineers to possess a practical understanding of transformers suitable for solar energy. Meeting that need, Distributed Photovoltaic Grid Transformers begins by explaining the basic theory behind transformers in the solar power arena, and then progresses to describe the development, manufacture, and sale of distributed photovoltaic (PV) grid transformers, which help boost the electric DC voltage (generally at 30 volts) harnessed by a PV panel to a higher level (generally at 115 volts or higher) once it is

  14. Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems

    Science.gov (United States)

    Mazmuder, R. K.; Haidar, S.

    1992-12-01

    An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.

  15. MPPT for Photovoltaic System Using Nonlinear Controller

    Directory of Open Access Journals (Sweden)

    Ramsha Iftikhar

    2018-01-01

    Full Text Available Photovoltaic (PV system generates energy that varies with the variation in environmental conditions such as temperature and solar radiation. To cope up with the ever increasing demand of energy, the PV system must operate at maximum power point (MPP, which changes with load as well as weather conditions. This paper proposes a nonlinear backstepping controller to harvest maximum power from a PV array using DC-DC buck converter. A regression plane is formulated after collecting the data of the PV array from its characteristic curves to provide the reference voltage to track MPP. Asymptotic stability of the system is proved using Lyapunov stability criteria. The simulation results validate the rapid tracking and efficient performance of the controller. For further validation of the results, it also provides a comparison of the proposed controller with conventional perturb and observe (P&O and fuzzy logic-based controller (FLBC under abrupt changes in environmental conditions.

  16. Photovoltaics fundamentals, technology and practice

    CERN Document Server

    Mertens, Konrad

    2013-01-01

    Concise introduction to the basic principles of solar energy, photovoltaic systems, photovoltaic cells, photovoltaic measurement techniques, and grid connected systems, overviewing the potential of photovoltaic electricity for students and engineers new to the topic After a brief introduction to the topic of photovoltaics' history and the most important facts, Chapter 1 presents the subject of radiation, covering properties of solar radiation, radiation offer, and world energy consumption. Chapter 2 looks at the fundamentals of semiconductor physics. It discusses the build-up of semiconducto

  17. Energy requirement for the production of silicon solar arrays

    Science.gov (United States)

    Lindmayer, J.; Wihl, M.; Scheinine, A.; Rosenfield, T.; Wrigley, C. Y.; Morrison, A.; Anderson, J.; Clifford, A.; Lafky, W.

    1977-01-01

    The results of a study to investigate the feasibility of manufacturing photovoltaic solar array modules by the use of energy obtained from similar or identical photovoltaic sources are presented. The primary objective of this investigation was the characterization of the energy requirements of current and developing technologies which comprise the photovoltaic field. For cross-checking the energies of prevailing technologies data were also used and the wide-range assessment of alternative technologies included different refinement methods, various ways of producing light sheets, semicrystalline cells, etc. Energy data are utilized to model the behavior of a future solar breeder plant under various operational conditions.

  18. Flexible CIGS solar cells on large area polymer foils with in-line deposition methods and application of alternative back contacts - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A. N.

    2009-08-15

    This illustrated report for the Swiss Federal Office of Energy (SFOE) summarises the work performed within this project and also reports on synergies with other projects that helped to make a significant contribution to the development of CIGS thin film solar cells on flexible substrates such as polymer foils. The project's aims were to learn more about up-scaling issues and to demonstrate the abilities required for the processing of layers on large area polyimide foils for flexible CIGS solar cells. Custom-built evaporators that were designed and constructed in-house are described. A CIGS system for in-line deposition was also modified for roll-to-roll deposition and alternative electrical back contacts to conventional ones were evaluated on flexible polyimide foils. The objectives of the project and the results obtained are looked at and commented on in detail.

  19. Emergence of highly transparent photovoltaics for distributed applications

    Science.gov (United States)

    Traverse, Christopher J.; Pandey, Richa; Barr, Miles C.; Lunt, Richard R.

    2017-11-01

    Solar energy offers a viable solution to our growing energy need. While adoption of conventional photovoltaics on rooftops and in solar farms has grown rapidly in the last decade, there is still plenty of opportunity for expansion. See-through solar technologies with partial light transmission developed over the past 30 years have initiated methods of integration not possible with conventional modules. The large-scale deployment necessary to offset global energy consumption could be further accelerated by developing fully invisible solar cells that selectively absorb ultraviolet and near-infrared light, allowing many of the surfaces of our built environment to be turned into solar harvesting arrays without impacting the function or aesthetics. Here, we review recent advances in photovoltaics with varying degrees of visible light transparency. We discuss the figures of merit necessary to characterize transparent photovoltaics, and outline the requirements to enable their widespread adoption in buildings, windows, electronic device displays, and automobiles.

  20. Commercial Application of a Photovoltaic Concentrator system. Phase I. Final report, 1 June 1978-28 February 1979

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.J.; Anderson, E.R.; Bardwell, K.M.

    1980-04-01

    This report documents the design and analysis of the BDM CAPVC (Commercial Application of a Photovoltaic Concentrator) system. The preliminary design, prototype test and evaluation, system analysis, and final design of a large-scale concentrating photovoltaic system are described. The application is on an attractive new office building which represents a large potential market. The photovoltaic concentrating array is a roof-mounted, single-axis linear parabolic trough, using single crystalline silicon photovoltaic cells. A total of 6720 square feet of aperture is focussed on 13,944 PV cells. The photovoltaic system operates in parallel with the local utility in an augmentary loadsharing operating mode. The array is actively cooled and the thermal energy utilized for building heat during winter months. (WHK)