WorldWideScience

Sample records for chrysophyte poterioochromonas malhamensis

  1. Quantitative Proteomics Reveals Ecophysiological Effects of Light and Silver Stress on the Mixotrophic Protist Poterioochromonas malhamensis.

    Directory of Open Access Journals (Sweden)

    Daniela Beisser

    Full Text Available Aquatic environments are heavily impacted by human activities including climate warming and the introduction of xenobiotics. Due to the application of silver nanoparticles as bactericidal agent the introduction of silver into the environment strongly has increased during the past years. Silver ions affect the primary metabolism of algae, in particular photosynthesis. Mixotrophic algae are an interesting test case as they do not exclusively rely on photosynthesis which may attenuate the harmful effect of silver. In order to study the effect of silver ions on mixotrophs, cultures of the chrysophyte Poterioochromonas malhamensis were treated in a replicate design in light and darkness with silver nitrate at a sub-lethal concentration. At five time points samples were taken for the identification and quantitation of proteins by mass spectrometry. In our analysis, relative quantitative protein mass spectrometry has shown to be a useful tool for functional analyses in conjunction with transcriptome reference sequences. A total of 3,952 proteins in 63 samples were identified and quantified, mapping to 4,829 transcripts of the sequenced and assembled transcriptome. Among them, 720 and 104 proteins performing various cellular functions were differentially expressed after eight days in light versus darkness and after three days of silver treatment, respectively. Specifically pathways of the energy and primary carbon metabolism were differentially affected by light and the utilization of expensive reactions hints to an energy surplus of P. malhamensis under light conditions. The excess energy is not invested in growth, but in the synthesis of storage metabolites. The effects of silver were less explicit, observable especially in the dark treatments where the light effect could not mask coinciding but weaker effects of silver. Photosynthesis, particularly the light harvesting complexes, and several sulphur containing enzymes were affected presumably due to

  2. Silica-scaled chrysophytes of Lake Baikal

    Directory of Open Access Journals (Sweden)

    A. Yu. Bessudova

    2017-12-01

    Full Text Available The list of silica-scaled chrysophytes of Lake Baikal has been enlarged using electron microscopy. It has been supplemented with 12 species and 2 forms. Spiniferomonas takahashii has been observed for the first time in the water bodies of Russia. According to our data, the list of silica-scaled chrysophytes of Lake Baikal includes 25 species and intra-species taxa: Chrysosphaerella – 3, Paraphysomonas – 2, Clathromonas – 1, Spiniferomonas – 7, Mallomonas – 8 and Synura – 4. We have also analyzed their seasonal dynamics and observed algal species that are dominant in spring, summer and autumn.

  3. Chrysophyte cysts as potential environmental indicators

    Science.gov (United States)

    Adam, David P.; Mahood, Albert D.

    1981-01-01

    Many Chrysophyte algae produce morphologically distinctive, siliceous, microscopic cysts during a resting stage of their life cycles; these cysts are often preserved in sediments. Scanning electron microscopy and Nomarski optics permit much more detailed observation of these cysts than was heretofore possible. We have used an ecologic and biogeographic approach to study the distribution of cyst forms in sediments and have established that many cyst types are found only in specific habitats, such as montane lakes, wet meadows, ephemeral ponds, and Sphagnum bogs. In the samples we have studied, cysts seem to be most common in fluctuating fresh-water habitats of low to moderate pH and some winter freezing. Numerous taxonomic problems have yet to be resolved. We believe that chrysophyte cysts have the potential to become a useful tool for both modern environmental assessments and paleoecological studies of Cenozoic fresh-water lacustrine deposits.

  4. Life history response of Daphnia magna to a mixotrophic golden alga, Poterioochromonas sp., at different food levels

    DEFF Research Database (Denmark)

    Zhang, Xue; Hu, Hong-Ying; Perlt, Trine Warming

    2011-01-01

    The toxicity of Poterioochromonas to Daphnia magna was investigated at different food (Scenedesmus acutus) levels. Poterioochromonas alone of 0.4–20 mg C L-1 was not acutely toxic to D. magna, but did not support D. magna growth, either. When fed mixed diets (2 mg C L-1 in total), D. magna...

  5. Kinetics of polychlorinated biphenyl partitioning to marine Chrysophyte Isochrysis galbana

    International Nuclear Information System (INIS)

    Ko, Fung-Chi; Baker, Joel E.; Tew, Kwee S.

    2012-01-01

    This study focused on the uptake kinetics of polychlorinated biphenyl (PCB) congeners by the Chrysophyte, Isochrysis galbana. A gas-purging experimental system was used to maintain constant dissolved PCB concentrations. Three phases of absorption were observed: first, a rapid absorption phase within the first 15 min, second, a first order process reaching the maximum concentration within 48 h of exposure, and third, a plateau phase as yet to be determined with very slight increases in concentration. In this study, the percentage of the maximum concentration reached within the first phase varied from 10% to 67%, depending on the size of the PCB (as determined by molecular weight and total surface area), whereas the uptake rate (k u ) during the second phase was more comparable across different PCBs. In addition, for the first phase, the bioconcentration factor (BCF) of PCBs deviated from its expected relationship with hydrophobicity, as determined by K ow , and was instead related to the molecular structure of the compound.

  6. The effect of mixotrophic chrysophyte on toxic and colony-forming cyanobacteria

    NARCIS (Netherlands)

    Van Donk, E.; Cerbin, S.; Wilken, S.; Helmsing, N.R.; Ptacnik, R.; Verschoor, A.M.

    2009-01-01

    1. In order to test the effect of Ochromonas sp., a mixotrophic chrysophyte, on cyanobacteria, grazing experiments were performed under controlled conditions. We studied grazing on three Microcystis aeruginosa strains, varying in toxicity and morphology, as well as on one filamentous cyanobacterium,

  7. Comprehensive transcriptome analysis provides new insights into nutritional strategies and phylogenetic relationships of chrysophytes

    Directory of Open Access Journals (Sweden)

    Daniela Beisser

    2017-01-01

    Full Text Available Background Chrysophytes are protist model species in ecology and ecophysiology and important grazers of bacteria-sized microorganisms and primary producers. However, they have not yet been investigated in detail at the molecular level, and no genomic and only little transcriptomic information is available. Chrysophytes exhibit different trophic modes: while phototrophic chrysophytes perform only photosynthesis, mixotrophs can gain carbon from bacterial food as well as from photosynthesis, and heterotrophs solely feed on bacteria-sized microorganisms. Recent phylogenies and megasystematics demonstrate an immense complexity of eukaryotic diversity with numerous transitions between phototrophic and heterotrophic organisms. The question we aim to answer is how the diverse nutritional strategies, accompanied or brought about by a reduction of the plasmid and size reduction in heterotrophic strains, affect physiology and molecular processes. Results We sequenced the mRNA of 18 chrysophyte strains on the Illumina HiSeq platform and analysed the transcriptomes to determine relations between the trophic mode (mixotrophic vs. heterotrophic and gene expression. We observed an enrichment of genes for photosynthesis, porphyrin and chlorophyll metabolism for phototrophic and mixotrophic strains that can perform photosynthesis. Genes involved in nutrient absorption, environmental information processing and various transporters (e.g., monosaccharide, peptide, lipid transporters were present or highly expressed only in heterotrophic strains that have to sense, digest and absorb bacterial food. We furthermore present a transcriptome-based alignment-free phylogeny construction approach using transcripts assembled from short reads to determine the evolutionary relationships between the strains and the possible influence of nutritional strategies on the reconstructed phylogeny. We discuss the resulting phylogenies in comparison to those from established approaches

  8. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis

    Science.gov (United States)

    Terrado, Ramon; Pasulka, Alexis L; Lie, Alle A-Y; Orphan, Victoria J; Heidelberg, Karla B; Caron, David A

    2017-01-01

    Collectively, phagotrophic algae (mixotrophs) form a functional continuum of nutritional modes between autotrophy and heterotrophy, but the specific physiological benefits of mixotrophic nutrition differ among taxa. Ochromonas spp. are ubiquitous chrysophytes that exhibit high nutritional flexibility, although most species generally fall towards the heterotrophic end of the mixotrophy spectrum. We assessed the sources of carbon and nitrogen in Ochromonas sp. strain BG-1 growing mixotrophically via short-term stable isotope probing. An axenic culture was grown in the presence of either heat-killed bacteria enriched with 15N and 13C, or unlabeled heat-killed bacteria and labeled inorganic substrates (13C-bicarbonate and 15N-ammonium). The alga exhibited high growth rates (up to 2 divisions per day) only until heat-killed bacteria were depleted. NanoSIMS and bulk IRMS isotope analyses revealed that Ochromonas obtained 84–99% of its carbon and 88–95% of its nitrogen from consumed bacteria. The chrysophyte assimilated inorganic 13C-carbon and 15N-nitrogen when bacterial abundances were very low, but autotrophic (photosynthetic) activity was insufficient to support net population growth of the alga. Our use of nanoSIMS represents its first application towards the study of a mixotrophic alga, enabling a better understanding and quantitative assessment of carbon and nutrient acquisition by this species. PMID:28524870

  9. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis.

    Science.gov (United States)

    Terrado, Ramon; Pasulka, Alexis L; Lie, Alle A-Y; Orphan, Victoria J; Heidelberg, Karla B; Caron, David A

    2017-09-01

    Collectively, phagotrophic algae (mixotrophs) form a functional continuum of nutritional modes between autotrophy and heterotrophy, but the specific physiological benefits of mixotrophic nutrition differ among taxa. Ochromonas spp. are ubiquitous chrysophytes that exhibit high nutritional flexibility, although most species generally fall towards the heterotrophic end of the mixotrophy spectrum. We assessed the sources of carbon and nitrogen in Ochromonas sp. strain BG-1 growing mixotrophically via short-term stable isotope probing. An axenic culture was grown in the presence of either heat-killed bacteria enriched with 15 N and 13 C, or unlabeled heat-killed bacteria and labeled inorganic substrates ( 13 C-bicarbonate and 15 N-ammonium). The alga exhibited high growth rates (up to 2 divisions per day) only until heat-killed bacteria were depleted. NanoSIMS and bulk IRMS isotope analyses revealed that Ochromonas obtained 84-99% of its carbon and 88-95% of its nitrogen from consumed bacteria. The chrysophyte assimilated inorganic 13 C-carbon and 15 N-nitrogen when bacterial abundances were very low, but autotrophic (photosynthetic) activity was insufficient to support net population growth of the alga. Our use of nanoSIMS represents its first application towards the study of a mixotrophic alga, enabling a better understanding and quantitative assessment of carbon and nutrient acquisition by this species.

  10. A mineral magnetic and scaled-chrysophyte paleolimnological study of two northeastern Pennsylvania lakes: records of fly ash deposition, land-use change and paleorainfall variation

    International Nuclear Information System (INIS)

    Kodama, K.P.; Lyons, J.C.; Silver, P.A.; Lott, A.M.

    1997-01-01

    A combined mineral magnetic and scaled chrysophyte study of lake sediments from Lake Lacawac and Lake Giles in northeastern Pennsylvania was conducted to determined the effects of land-use and sediment source changes on the variation of pH, conductivity, and alkalinity inferred from biotic changes

  11. Influence of inter-annual environmental variability on chrysophyte cyst assemblages: insight from a 2-years sediment trap study in lakes from northern Poland

    Directory of Open Access Journals (Sweden)

    Iván Hernández-Almeida

    2017-02-01

    Full Text Available Quantitative paleonvironmental studies using transfer functions are developed from training sets. However, changes in some variables (e.g., climatic can be difficult to identify from short-term monitoring (e.g., less than one year. Here, we present the study of the chrysophyte cyst assemblages from sediment traps deployed during two consecutive years (November 2011-November 2013 in 14 lakes from Northern Poland. The studied lakes are distributed along a W-E climatological gradient, with very different physical, chemical and morphological characteristics, and land-uses. Field surveys were carried out to recover the sediment trap material during autumn, along with the measurement of several environmental variables (nutrients, major water ions, conductivity, pH, dissolved oxygen and chlorophyll-a. During the study, one year experienced mild seasonal changes in air temperature (November 2011-November 2012; TS1, typical of oceanic climate, while the other year was characterized by colder winter and spring (November 2012-November 2013; TS2, and higher summer temperatures, more characteristic of continental climate. Other environmental variables (e.g., nutrients did not show great changes between both years. Multivariate statistical analyses (RDA and DCA were performed on individual TS1 and TS2 datasets. Water chemistry and nutrients (pH, TN and TP explained the largest portion of the variance of the chrysophyte data for the individual years. However, analyses of the combined TS1 and TS2 datasets show that strong changes between summer and autumn (warm period, ice-free period with thermal stratification and winter and spring (cold period, ice-cover period play the most important role in the inter-annual variability in the chrysophyte assemblages. We show how inter-annual sampling maximizes ecological gradients of interest, particularly in regions with large environmental diversity, and low climatic variability. This methodology could help to identify

  12. Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene

    Energy Technology Data Exchange (ETDEWEB)

    Pla, Sergi [Queen' s University, PEARL, Department of Biology, Kingston, ON (Canada); Catalan, Jordi [CSIC, CSIC-UB Limnology Group, Centre for Advanced Studies of Blanes (CEAB), Blanes (Spain)

    2005-02-01

    In the last decade, much effort was dedicated to the reconstruction of past climate at high temporal resolution. Here, we show the suitability of chrysophyte cysts from lake sediments for revealing continental climate variability when used in sensitive sites, such as those in high mountains. We demonstrate that altitude is a main factor influencing the present distribution of chrysophytes and develop a transfer function to evaluate the local ''altitude anomaly'' on a lake site throughout time. Based on our knowledge of chrysophyte ecology, the altitude anomalies are interpreted as winter/spring climate signatures. The method was applied to a Holocene record from a lake in the Pyrenees showing submillennial climatic variability in this northwestern Mediterranean zone. A warming trend was present from the early Holocene to 4 kyear BP. Comparison with pollen-based reconstructions of summer temperatures denoted a contrasting decrease in continentality between the two parts of the Holocene. Oscillations of 1 cycle per ca. 2,000 years appeared throughout the record. The warmest Holocene winters were recorded during the Medieval Warm Period at ca. AD900 and 450 and the Roman Warm Period (2.7-2.4 kyear BP). Winters in the period AD1,050-1,175 were inferred to be as cold as in the Little Ice Age. The period between 3 and 7 kyear BPshowed lower intensity in the fluctuations than in early and late Holocene. The cold event, 8,200 years ago, appeared embedded in a warm fluctuation. Another cold fluctuation was recorded around 9 kyear BP, which is in agreement with Irish and Greenland records. (orig.)

  13. A 900-Year Diatom and Chrysophyte Record of Spring Mixing and Summer Stratification From Varved Lake Mina, West-Central Minnesota, USA

    Science.gov (United States)

    St. Jacques, J.; Cumming, B. F.; Smol, J. P.

    2009-05-01

    A high-resolution, independent pollen-inferred paleoclimate record and direct algal seasonality data from the actual time of sediment deposition are used to interpret the high-resolution diatom and chrysophyte record of varved Lake Mina, west-central Minnesota, USA during AD 1116-2002. This direct algal seasonality information was obtained by a new technique of splitting varves into constituent winter-spring and summer lamina, and separately analyzing the siliceous algae in each layer. Analyses of integrated, continuous four-year diatom and chrysophyte samples from a sedimentary sequence show that the time period AD 1116-1478 (i.e. the Atlantic- centered Medieval Climate Anomaly (MCA)) was characterized by periods of vigorous and prolonged spring mixing, suggesting that ice-out occurred early. However, the warm summer temperatures in the MCA, particularly in a massive drought spanning AD 1300-1400, frequently caused the lake to stratify strongly, leading to nutrient depletion. During AD 1478-1870 (i.e. the Atlantic-centered Little Ice Age (LIA)), Lake Mina was characterized by weak spring circulation and increasing nutrient depletion, suggesting late ice-out conditions. Strong summer stratification and/or nutrient depletion in both time periods is shown by the occurrence of the nutrient-poor oligotrophic taxon Cyclotella pseudostelligera. The diatom and chrysophyte assemblages of the period of Euro-American settlement AD 1870-2002 show higher nutrient availability and increased spring mixing intensity, due to forest clearance and increasingly earlier ice-out (documented in regional historical records).

  14. A tale of two mixotrophic chrysophytes: Insights into the metabolisms of two Ochromonas species (Chrysophyceae through a comparison of gene expression.

    Directory of Open Access Journals (Sweden)

    Alle A Y Lie

    Full Text Available Ochromonas spp. strains CCMP1393 and BG-1 are phagotrophic phytoflagellates with different nutritional strategies. Strain CCMP1393 is an obligate phototroph while strain BG-1 readily grows in continuous darkness in the presence of bacterial prey. Growth and gene expression of strain CCMP1393 were investigated under conditions allowing phagotrophic, mixotrophic, or phototrophic nutrition. The availability of light and bacterial prey led to the differential expression of 42% or 45-59% of all genes, respectively. Data from strain CCMP1393 were compared to those from a study conducted previously on strain BG-1, and revealed notable differences in carbon and nitrogen metabolism between the 2 congeners under similar environmental conditions. Strain BG-1 utilized bacterial carbon and amino acids through glycolysis and the tricarboxylic acid cycle, while downregulating light harvesting and carbon fixation in the Calvin cycle when both light and bacteria were available. In contrast, the upregulation of genes related to photosynthesis, light harvesting, chlorophyll synthesis, and carbon fixation in the presence of light and prey for strain CCMP1393 implied that this species is more phototrophic than strain BG-1, and that phagotrophy may have enhanced phototrophy. Cellular chlorophyll a content was also significantly higher in strain CCMP1393 supplied with bacteria compared to those without prey. Our results thus point to very different physiological strategies for mixotrophic nutrition in these closely related chrysophyte species.

  15. Dispersal and biogeography of silica-scaled chrysophytes

    DEFF Research Database (Denmark)

    Kristiansen, Jørgen

    2008-01-01

    The silica-scaled chrysophytes—here mainly represented by the freshwater genera Mallomonas and Synura—have special problems in dispersal from one habitat to another because they cannot tolerate desiccation. Their dispersal is limited by the fragile construction and aquatic habit. Dispersal from one...... water body to another involves dangerous changes of the environment, and the ability to avoid desiccation during transport is crucial. So, air-borne and ectozoic dispersal by birds or mammals can only work at short distances. This danger may be avoided by endozoic dispersal of thick-walled cysts; as far....... The distribution of a species at a given time depends on several factors: dispersal capacity—available vectors—suitable available habitats—and most important: sufficient time for dispersal. It is remarkable that the chrysophytes—in spite of their fragile cell construction and apparently low dispersal capacity...

  16. Assembly-history dynamics of a pitcher-plant protozoan community in experimental microcosms.

    Directory of Open Access Journals (Sweden)

    Kohmei Kadowaki

    Full Text Available History drives community assembly through differences both in density (density effects and in the sequence in which species arrive (sequence effects. Density effects arise from predictable population dynamics, which are free of history, but sequence effects are due to a density-free mechanism, arising solely from the order and timing of immigration events. Few studies have determined how components of immigration history (timing, number of individuals, frequency alter local dynamics to determine community assembly, beyond addressing when immigration history produces historically contingent assembly.We varied density and sequence effects independently in a two-way factorial design to follow community assembly in a three-species aquatic protozoan community. A superior competitor, Colpoda steinii, mediated alternative community states; early arrival or high introduction density allowed this species to outcompete or suppress the other competitors (Poterioochromonas malhamensis and Eimeriidae gen. sp.. Multivariate analysis showed that density effects caused greater variation in community states, whereas sequence effects altered the mean community composition.A significant interaction between density and sequence effects suggests that we should refine our understanding of priority effects. These results highlight a practical need to understand not only the "ingredients" (species in ecological communities but their "recipes" as well.

  17. Molecular characterization of two microalgal strains in Egypt and investigation of the antimicrobial activity of their extracts

    Directory of Open Access Journals (Sweden)

    El Semary, NA.

    2013-01-01

    Full Text Available The emergence of new pathogens and the increasing drug-resistance of recognized ones pose a difficult challenge. One way that this challenge is being addressed is through the discovery of new cost-effective drug resources in the form of bioactive compounds. Algae represent a promising source of bioactive compounds in this regard. In the present research, we used molecular and phylogenetic analysis to isolate and identify two microalgal strains. We found that one strain belonged to the phylum chrysophyta and the other to the cyanobacteria. We also investigated the antimicrobial activity of some of the lipophilic extracts of the two microalgal strains. Several fractions showed high individual antimicrobial bioactivity against multidrug-resistant Salmonella sp., Citrobacter sp., Aspergillus niger and Aspergillus flavus. Fraction III from Poterioochromonas malhamensis showed the highest level of activity against two multidrug-resistant bacterial pathogens. The inhibition zone diameter was 1.4 cm for Salmonella and 1.4 cm for Citrobacter. Meanwhile, another lipophilic fraction from the cyanobacterium Synechocystis salina showed broad-spectrum bioactivity (inhibition zone diameter of 0.9 cm for Aspergillus niger, 1 cm for Citrobacter and 0.9 cm for Salmonella. One lipophilic fraction from Aphanizomenon showed antifungal bioactivity against Aspergillus niger and Aspergillus flavus, where the inhibition zone diameter was 1.1 cm and 1.0 cm, respectively. The study highlights the antimicrobial bioactivity of extracts from local microalgae and emphasizes the importance of carrying out screening programs for those microorganisms.

  18. Do mixotrophs grow as photoheterotrophs? Photophysiological acclimation of the chrysophyte Ochromonas danica after feeding

    NARCIS (Netherlands)

    Wilken, Susanne; Schuurmans, Merijn; Matthijs, Hans C. P.

    2014-01-01

    Mixotrophy is increasingly recognized as an important and widespread nutritional strategy in various taxonomic groups ranging from protists to higher plants. We hypothesize that the availability of alternative carbon and energy sources during mixotrophy allows a switch to photoheterotrophic growth,

  19. Biological control of toxic cyanobacteria by mixotrophic predators: an experimental test of intraguild predation theory

    NARCIS (Netherlands)

    Wilken, S.; Verspagen, J.M.H.; Naus-Wiezer, S.M.H.; Van Donk, E.; Huisman, Jef

    2014-01-01

    Intraguild predators both feed on and compete with their intraguild prey. In theory, intraguild predators can therefore be very effective as biological control agents of intraguild prey species, especially in productive environments. We investigated this hypothesis using the mixotrophic chrysophyte

  20. Silica-scaled chrysophyceae and synurophyceae (chrysophyta) from ...

    African Journals Online (AJOL)

    A total of 20 silica-scaled chrysophytes (Chrysophyceae: two Paraphysomonas spp. and one Spiniferomonas sp.; Synurophyceae: 10 Mallomonas spp. and seven Synura spp.) was recorded from samples collected from Lekki Lagoon, Nigeria, over a period of 12 months in 2003-2004 based on transmission and scanning ...

  1. Utilizing the effective xanthophyll cycle for blooming of Ochromonas smithii and O. itoi (Chrysophyceae on the snow surface.

    Directory of Open Access Journals (Sweden)

    Yukiko Tanabe

    Full Text Available Snow algae inhabit unique environments such as alpine and high latitudes, and can grow and bloom with visualizing on snow or glacier during spring-summer. The chrysophytes Ochromonas smithii and Ochromonas itoi are dominant in yellow-colored snow patches in mountainous heavy snow areas from late May to early June. It is considered to be effective utilizing the xanthophyll cycle and holding sunscreen pigments as protective system for snow algae blooming in the vulnerable environment such as low temperature and nutrients, and strong light, however the study on the photoprotection of chrysophytes snow algae has not been shown. To dissolve how the chrysophytes snow algae can grow and bloom under such an extreme environment, we studied with the object of light which is one point of significance to this problem. We collected the yellow snows and measured photosynthetically active radiation at Mt. Gassan in May 2008 when the bloom occurred, then tried to establish unialgal cultures of O. smithii and O. itoi, and examined their photosynthetic properties by a PAM chlorophyll fluorometer and analyzed the pigment compositions before and after illumination with high-light intensities to investigate the working xanthophyll cycle. This experimental study using unialgal cultures revealed that both O. smithii and O. itoi utilize only the efficient violaxanthin cycle for photoprotection as a dissipation system of surplus energy under prolonged high-light stress, although they possess chlorophyll c with diadinoxanthin.

  2. Twentieth-century warming revives the world's northernmost lake

    DEFF Research Database (Denmark)

    Perren, Bianca B.; Wolfe, Alexander P.; Cooke, Colin A.

    2012-01-01

    lake to explore this question. Microfossils indicate that siliceous diatoms and chrysophytes were abundant initially, but disappeared 2400 yr ago in concert with Neoglacial cooling. Microfossils reappear in 20th-century sediments and reach unprecedented concentrations in sediments deposited after ca. A.......D. 1980, tracking increasing summer temperatures in the absence of evidence for atmospheric nutrient subsidies. These results indicate that current warming in northern Greenland is unprecedented in the context of the past 2400 yr, and that climate change alone is responsible for the marked biological...

  3. Vertical distribution of major photosynthetic picoeukaryotic groups in stratified marine waters

    KAUST Repository

    Cabello, Ana M.

    2016-03-14

    Photosynthetic picoeukaryotes (PPEs) are fundamental contributors to oceanic primary production and form diverse communities dominated by prymnesiophytes, chlorophytes, pelagophytes and chrysophytes. Here, we studied the vertical distribution of these major groups in two offshore regions of the northern Iberian Peninsula during summer stratification. We performed a fine-scale vertical sampling (every ∼2 m) across the DCM and used fluorescence in situ hybridization (FISH) to determine the PPE composition and to explore the possible segregation of target groups in the light, nutrient and temperature gradients. Chlorophytes, pelagophytes and prymnesiophytes, in this order of abundance, accounted for the total PPEs recorded by flow cytometry in the Avilés canyon, and for more than half in the Galicia Bank, whereas chrysophytes were undetected. Among the three detected groups, often the prymnesiophytes were dominant in biomass. In general, all groups were present throughout the water column with abundance peaks around the DCM, but their distributions differed: pelagophytes were located deeper than the other two groups, chlorophytes presented two peaks and prymnesiophytes exhibited surface abundances comparable to those at the DCM. This study offers first indications that the vertical distribution of different PPE groups is heterogeneous within the DCM. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Diversity of protists and bacteria determines predation performance and stability.

    Science.gov (United States)

    Saleem, Muhammad; Fetzer, Ingo; Harms, Hauke; Chatzinotas, Antonis

    2013-10-01

    Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity-functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.

  5. Cold-season temperature in the Swiss Alps from AD 1100-1500; trends, intra-annual variability and forcing factors

    Science.gov (United States)

    de Jong, Rixt; Kamenik, Christian; Grosjean, Martin

    2010-05-01

    To fully understand past climatic changes and their forcing factors, detailed reconstructions of past summer and winter temperatures are required. Winter temperature reconstructions are scarce, however, because most biological proxies are biased towards the growing season. This study presents a detailed reconstruction of winter temperatures based on Chrysophyte stomatocysts, silicious scales formed by so-called 'golden algae'. Previous studies (Kamenik and Schmidt, 2005; Pla and Catalan, 2005) have demonstrated the sensitivity of these algae to cold-season temperatures. Chrysophyte stomatocyst analysis was carried out on varved sediments from Lake Silvaplana (1791 m a.s.l.) at annual to near-annual resolution for two periods; AD 1100-1500 and AD 1870-2004. For both periods the reference date 'date of spring mixing' (Smix) was reconstructed using a transfer function developed for the Austrian Alps (Kamenik and Schmidt, 2005). In the Austrian Alps, Smix was primarily driven by air temperature in the cold season. The strength of stomatocysts as a proxy for winter temperature was tested by directly comparing reconstructed Smix with measured temperatures from nearby meteostation Sils Maria for the period AD 1870 - 2004. Correlation was highest (R = -0.6; p number of eruptions during the much shorter instrumental period (Fischer et al., 2007). References: T. Crowley. Science 289, 270-277 (2000) E. Fischer et al. Geophys. Res. Lett. 34, L05707 (2007) C. Kamenik and R. Schmidt. Boreas 34, 477-489 (2005) I. Larocque-Tobler et al. Quat. Sci. Rev., accepted. S. Pla and J. Catalan. Clim. Dyn. 24, 263-278 (2005) M. Trachsel et al. Manuscript in review

  6. Insight into protist diversity in Arctic sea ice and melt-pond aggregate obtained by pyrosequencing

    Directory of Open Access Journals (Sweden)

    Estelle Silvia Kilias

    2014-11-01

    Full Text Available Protists in the central Arctic Ocean are adapted to the harsh environmental conditions of its various habitats. During the Polarstern cruise ARK-XXVI/3 in 2011, at one sea-ice station, large aggregates accumulated at the bottom of the melt ponds. In this study, the protist assemblages of the bottom layer of the sea-ice and melt-pond aggregate were investigated using flow cytometry and 454-pyrosequencing. The objective is to provide a first molecular overview of protist biodiversity in these habitats and to consider the overlaps and/or differences in the community compositions. Results of flow cytometry pointed to a cell size distribution that was dominated by 3–10 µm nanoflagellates. The phylogenetic classification of all sequences was conducted at a high taxonomic level, while a selection of abundant (≥1% of total reads sequences was further classified at a lower level. At a high taxonomic level, both habitats showed very similar community structures, dominated by chrysophytes and chlorophytes. At a lower taxonomic level, dissimilarities in the diversity of both groups were encountered in the abundant biosphere. While sea-ice chlorophytes and chrysophytes were dominated by Chlamydomonas/Chloromonas spp. and Ochromonas spp., the melt-pond aggregate was dominated by Carteria sp., Ochromonas spp. and Dinobryon faculiferum. We suppose that the similarities in richness and community structure are a consequence of melt-pond freshwater seeping through porous sea ice in late summer. Differences in the abundant biosphere nevertheless indicate that environmental conditions in both habitats vary enough to select for different dominant species.

  7. Assessing niche separation among coexisting Limnohabitans strains through interactions with a competitor, viruses, and a bacterivore.

    Science.gov (United States)

    Simek, Karel; Kasalický, Vojtech; Hornák, Karel; Hahn, Martin W; Weinbauer, Markus G

    2010-03-01

    We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans. The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality. Batch-type cocultures, designated B4+FL and D5+FL, were initiated with a similar biomass ratio among the strains. The proportion of each cell type present in the cocultures was monitored based on clear differences in cell sizes. Following exponential growth for 28 h, the cocultures were amended by the addition of two different concentrations of live or heat-inactivated viruses concentrated from the reservoir. Half of virus-amended treatments were inoculated immediately with an axenic flagellate predator, Poterioochromonas sp. The presence of the predator, of live viruses, and of competition between the strains significantly affected their population dynamics in the experimentally manipulated treatments. While strains B4 and FL appeared vulnerable to environmental viruses, strain D5 did not. Predator-induced mortality had the greatest impact on FL, followed by that on D5 and then B4. The virus-vulnerable B4 strain had smaller cells and lower biomass yield, but it was less subject to grazing. In contrast, the seemingly virus-resistant D5, with slightly larger grazing-vulnerable cells, was competitive with FL. Overall, our data suggest contrasting ecophysiological capabilities and partial niche separation in two coexisting Limnohabitans strains.

  8. Isolation and Selection of Microalgal Strains from Natural Water Sources in Viet Nam with Potential for Edible Oil Production.

    Science.gov (United States)

    Thao, Tran Yen; Linh, Dinh Thi Nhat; Si, Vo Chi; Carter, Taylor W; Hill, Russell T

    2017-06-23

    Industrial vegetable oil production in Viet Nam depends on oil seeds and crude plant oils that are currently more than 90% imported. As the first step in investigating the feasibility of using microalgae to provide Viet Nam with a domestic source of oil for food and edible oil industries, fifty lipid-producing microalgae were isolated and characterized. The microalgae were isolated from water sources ranging from freshwater to brackish and marine waters from a wide geographic distribution in Viet Nam. Initial analyses showed that 20 of the 50 strains had good growth rates, produced high biomass and had high lipid content, ranging up to 50% of dry weight biomass. 18S rRNA gene sequence analyses of the 50 strains showed a great diversity in this assemblage of microalgae, comprising at least 38 species and representatives of 25 genera : Chlamydomonas , Poterioochromonas , Scenedesmus , Desmodesmus , Chlorella , Bracteacoccus , Monoraphidium , Selenastrum , Acutodesmus , Mychonastes , Ankistrodesmus , Kirchneriella , Raphidocelis , Dictyosphaerium , Coelastrella , Schizochlamydella , Oocystidium , Nannochloris , Auxenochlorella , Chlorosarcinopsis , Stichococcus , Picochlorum , Prasinoderma , Chlorococcum , and Marvania. Some of the species are closely related to well-known lipid producers such as Chlorella sorokiniana , but some other strains are not closely related to the strains found in public sequence databases and likely represent new species. Analysis of oil quality showed that fatty acid profiles of the microalgal strains were very diverse and strain-dependent. Fatty acids in the microalgal oils comprised saturated fatty acids (SFAs), poly-unsaturated fatty acids (PUFAs), and mono-unsaturated fatty acids (MUFAs). The main SFA was palmitic acid. MUFAs and PUFAs were dominated by oleic acid, and linoleic and linolenic acids, respectively. Some strains were especially rich in the essential fatty acid α-linolenic acid (ALA), which comprised more than 20% of the

  9. Large variability of bathypelagic microbial eukaryotic communities across the world's oceans.

    Science.gov (United States)

    Pernice, Massimo C; Giner, Caterina R; Logares, Ramiro; Perera-Bel, Júlia; Acinas, Silvia G; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon

    2016-04-01

    In this work, we study the diversity of bathypelagic microbial eukaryotes (0.8-20 μm) in the global ocean. Seawater samples from 3000 to 4000 m depth from 27 stations in the Atlantic, Pacific and Indian Oceans were analyzed by pyrosequencing the V4 region of the 18S ribosomal DNA. The relative abundance of the most abundant operational taxonomic units agreed with the results of a parallel metagenomic analysis, suggesting limited PCR biases in the tag approach. Although rarefaction curves for single stations were seldom saturated, the global analysis of all sequences together suggested an adequate recovery of bathypelagic diversity. Community composition presented a large variability among samples, which was poorly explained by linear geographic distance. In fact, the similarity between communities was better explained by water mass composition (26% of the variability) and the ratio in cell abundance between prokaryotes and microbial eukaryotes (21%). Deep diversity appeared dominated by four taxonomic groups (Collodaria, Chrysophytes, Basidiomycota and MALV-II) appearing in different proportions in each sample. Novel diversity amounted to 1% of the pyrotags and was lower than expected. Our study represents an essential step in the investigation of bathypelagic microbial eukaryotes, indicating dominating taxonomic groups and suggesting idiosyncratic assemblages in distinct oceanic regions.

  10. Assessing trends in fishery resources and lake-water aluminum from paleolimnological analyses of siliceous algae

    International Nuclear Information System (INIS)

    Kingston, J.C.; Birks, H.J.B.; Uutala, A.J.; Cummings, B.F.; Smol, J.P.

    1992-01-01

    Lake water aluminum concentrations have a significant influence on the composition of microfossil assemblages of diatoms and chrysophytes deposited in lake sediments. With the paleolimnological approach of multilake datasets in the Adirondack region of New York, USA, the authors use canonical correspondence analysis to describe past trends in lake water Al. Four lakes, previously investigated regarding acidification and fishery trends, are used to demonstrate that paleolimnological assessment can also provide direction, timing, and magnitude of trends for both toxic metals and fish resources. Additionally, the authors use weighted average regression and calibration to obtain quantitative reconstructions of past lake water Al concentrations. Such reconstructions provide further insight into fishery resource damage and can be compared with modelling results. According to paleolimnological reconstructions, some of the naturally most acidic lakes in the Adirondack region had preindustrial lake water concentrations of inorganic monomeric Al near 4/micromol times L. Although these high concentrations are surprising from a geochemical point of view, they may partially explain the preindustrial absence of fish, as has been independently determined by paleolimnological analysis of phantom midges (Chaoborus). Fishery resource deterioration in acidified Adirondack lakes was coincident with major increases in lake water Al concentrations

  11. Toxicity of lead and cadmium to tropical marine phytoplankton

    DEFF Research Database (Denmark)

    Jensen, Susanne Dal; Panutrakul, Suwanna; Nyholm, Niels

    2000-01-01

    Toxicity of Pb and Cd to three tropical, marine phytoplankton species isolated from the Andaman Sea off Phuket Thailand were determined. The phytoplankton species included one diatom, Chaetoceros calcitrans, one green alga, Chlorella sp., and one chrysophyte, Dunaliella tertiolecta. The test method...... white fluorescent light of a 10 to 12 klux intensity, and a 48 h test duration. Concentrations resulting in 50 percent reduced growth rate (EC50) were for C. calcitrans, Chlorella sp. and D. tertiolecta, respectively: Cd in artificial seawater: 3.28, 0.74, and 25.6 mg /L, and in natural seawater: 3.......02, 0.32, and 34.6 mg /L . EC50 values for Pb in artificial seawater were 1.4, 0.12, and 5.25 mg/L d and in natural seawater 0.18, 0.4 and 6.77 mg/L. Pb was consistently more toxic to the algae than Cd, and Chlorella sp was generally most sensitive followed by C. calcitrans while D. teriolecta...

  12. Silicon utilizing microorganisms in the sea act as the environmental bellwether which foretell future trends in weather fluctuations

    Science.gov (United States)

    Das, S.

    2012-12-01

    It is well known that the southerly shift of the Gulf Stream is associated with major storms, heavy rains and mudslide in the adjoining northern part of the globe. Phytoplanktons particularly their silicon utilizing members like diatoms were found to play a major part in this phenomenon. A decrease in silicon utilizing phytoplanktons and chlorophyll-a , which sometimes occurs even more than 10 fold was found associated with a parallel significant decrease of zooplanktons as reflected in the CPR survey, leads to fall of sea temperature causing a shift of the Gulf Stream. This sea temperature changes is also associated with cooling of the adjoining atmosphere in a remarkable way which leads to weather changes. The association of silicon utilizing diatoms and the ocean currents guides the future trends in the climatic swing known as NAO, one of the great fluctuations that occur in the global climate, the largest of which is the ENSO phenomenon in the Pacific Ocean, which cause destruction all around the tropics. When total density and biovolume of phytoplanktons were studied it was found that the changes of pennate diatoms was unique and occurred in an opposite way in comparison to green algae, blue green algae, chrysophyte, cryptophytes, dinoflagellates and green flagellates.

  13. Geographic Variability and Anti-Staphylococcal Activity of the Chrysophaentins and Their Synthetic Fragments

    Directory of Open Access Journals (Sweden)

    Jared T. Hammill

    2012-05-01

    Full Text Available Drug-resistant Staphylococcus aureus is a continuing public health concern, both in the hospital and community settings. Antibacterial compounds that possess novel structural scaffolds and are effective against multiple S. aureus strains, including current drug-resistant ones, are needed. Previously, we have described the chrysophaentins, a family of bisdiarylbutene macrocycles from the chrysophyte alga Chrysophaeum taylori that inhibit the growth of S. aureus and methicillin-resistant S. aureus (MRSA. In this study we have analyzed the geographic variability of chrysophaentin production in C. taylori located at different sites on the island of St. John, U.S. Virgin Islands, and identified two new linear chrysophaentin analogs, E2 and E3. In addition, we have expanded the structure activity relationship through synthesis of fragments comprising conserved portions of the chrysophaentins, and determined the antimicrobial activity of natural chrysophaentins and their synthetic analogs against five diverse S. aureus strains. We find that the chrysophaentins show similar activity against all S. aureus strains, regardless of their drug sensitivity profiles. The synthetic chrysophaentin fragments indeed mimic the natural compounds in their spectrum of antibacterial activity, and therefore represent logical starting points for future medicinal chemistry studies of the natural products and their analogs.

  14. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans

    KAUST Repository

    Pernice, Massimo C.

    2015-10-09

    In this work, we study the diversity of bathypelagic microbial eukaryotes (0.8–20 μm) in the global ocean. Seawater samples from 3000 to 4000 m depth from 27 stations in the Atlantic, Pacific and Indian Oceans were analyzed by pyrosequencing the V4 region of the 18S ribosomal DNA. The relative abundance of the most abundant operational taxonomic units agreed with the results of a parallel metagenomic analysis, suggesting limited PCR biases in the tag approach. Although rarefaction curves for single stations were seldom saturated, the global analysis of all sequences together suggested an adequate recovery of bathypelagic diversity. Community composition presented a large variability among samples, which was poorly explained by linear geographic distance. In fact, the similarity between communities was better explained by water mass composition (26% of the variability) and the ratio in cell abundance between prokaryotes and microbial eukaryotes (21%). Deep diversity appeared dominated by four taxonomic groups (Collodaria, Chrysophytes, Basidiomycota and MALV-II) appearing in different proportions in each sample. Novel diversity amounted to 1% of the pyrotags and was lower than expected. Our study represents an essential step in the investigation of bathypelagic microbial eukaryotes, indicating dominating taxonomic groups and suggesting idiosyncratic assemblages in distinct oceanic regions.

    The ISME Journal advance online publication, 9 October 2015; doi:10.1038/ismej.2015.170

  15. How much acidification has occurred in Adirondack region lakes (New York, USA) since preindustrial times

    International Nuclear Information System (INIS)

    Cumming, B.F.; Smol, J.P.; Kingston, J.C.; Charles, D.F.; Birks, H.J.B.

    1992-01-01

    Preindustrial and present-day lake water pH, acid neutralizing capacity (ANC), total monomeric aluminum Al(sub m), and dissolved organic carbon (DOC) were inferred from the species composition of diatom and chrysophyte microfossils in the tops (present-day inferences) and bottoms (pre-1850 inferences) of sediment cores collected from a statistically selected set of Adirondack lakes. Results from the study lakes were extrapolated to a predefined target population of 675 low-alkalinity Adirondack region lakes. Estimates of preindustrial to present-day changes in lake water chemistry show that approximately 25-35% of the target population has acidified. The magnitude of acidification was greatest in the low-alkalinity lakes of the southwestern Adirondacks, an area with little geological ability to neutralize acidic deposition and receives the highest annual average rainfall in the region. The authors estimate that approximately 80% of the target population lakes with present-day measured pH = or < 5.2 and 30-45% of lakes with pH between 5.2 and 6.0 have undergone large declines in pH and ANC, and concomitant increases in Al(sub m). Estimated changes in (DOC) were small and show no consistent pattern in the acidified lakes. The study provides the first statistically based regional evaluation of the extent of lake acidification in the Adirondacks

  16. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-01-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  17. Richness and distribution of unicellular eukaryotes in three streams under anthropic influence, Ivinhema City, Mato Grosso do Sul State, Brazil

    Directory of Open Access Journals (Sweden)

    Emílio Colzani

    2013-08-01

    Full Text Available Unicellular eukaryotes are abundant in most aquatic environments and contribute in several ways to ecosystems. For example, they act as producers, as primary and secondary consumers, and they aid in the decrease and control of bacteria communities and in nutrient cycling. The aim of this study was to describe the abundance and distribution of unicellular eukaryotes in Ponta Porã stream and in its main tributary streams, as well as possible relationships between their presence and water quality on the sampled sites. We selected six sites (locals, considering headwaters (L1 and L2, downstreams (L5 and L6 and the main pollution source (L3. We used similarity and canonical correspondence analysis to evaluate relationships between microorganism abundance and distribution to abiotic variables (dissolved oxygen, pH, temperature, turbidity and conductivity. Abundance was related to the increase of organic and inorganic sediment due to decomposition and erosion. We had a variation on the genera distribution, with slight predominance of ciliates, and some genera used as eutrophicated environmental indicators. The presence of Vorticella, Saprodinium, Paramecium, Metopus and Chilodonella suggests an environment ranging from polysaprobic to olygosaprobic. Urostyla, that has been used as water quality indicators, the flagellate Cercomonas, that has broad dispersion in aquatic environments, Didinium, a ciliate predator widely dispersed, Synura, a chrysophyte sensitive to basic pH and high temperatures, and Amoeba, frequently found in clean or in depuration process waters, may suggest a recuperating environment, since they are also found on lesser impacted sites.

  18. Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    Science.gov (United States)

    Mezek, Tadej; Sverko, Ed; Ruddy, Martina D.; Zaruk, Donna; Capretta, Alfredo; Hebert, Craig E.; Fisk, Aaron T.; McGoldrick, Daryl J.; Newton, Teresa J.; Sutton, Trent M.; Koops, Marten A.; Muir, Andrew M.; Johnson, Timothy B.; Ebener, Mark P.; Arts, Michael T.

    2011-01-01

    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton–zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.

  19. Winds and the distribution of nearshore phytoplankton in a stratified lake.

    Science.gov (United States)

    Cyr, Hélène

    2017-10-01

    The distribution of phytoplankton in lakes is notoriously patchy and dynamic, but wind-driven currents and algal buoyancy/motility are thought to determine where algae accumulate. In this study, nearshore phytoplankton were sampled from different parts of a lake basin twice a day for 4-5 consecutive days, in the spring and in late summer, to test whether short-term changes in phytoplankton biomass and community composition can be predicted from wind-driven currents. On windy days, phytoplankton biomass was higher at downwind than at upwind nearshore sites, and the magnitude of this difference increased linearly with increasing wind speed. However, contrary to the generally assumed downwind phytoplankton aggregations, these differences were mostly due to upwelling activity and the dilution of phytoplankton at upwind nearshore sites. The distribution of individual taxa was also related to wind speed, but only during late stratification (except for cryptophytes), and these relationships were consistent with the buoyancy and motility of each group. On windy days, large diatoms and cyanobacteria concentrated upwind, neutrally buoyant taxa (green algae, small diatoms) were homogeneously distributed, and motile taxa (cryptophytes, chrysophytes, dinoflagellates) concentrated downwind. Predictable differences in the biomass and composition of phytoplankton communities could affect the efficiency of trophic transfers in nearshore areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Culturing Heterotrophic Protists from the Baltic Sea: Mostly the "Usual Suspects" but a Few Novelties as Well.

    Science.gov (United States)

    Weber, Felix; Mylnikov, Alexander P; Jürgens, Klaus; Wylezich, Claudia

    2017-03-01

    The study of cultured strains has a long tradition in protistological research and has greatly contributed to establishing the morphology, taxonomy, and ecology of many protist species. However, cultivation-independent techniques, based on 18S rRNA gene sequences, have demonstrated that natural protistan assemblages mainly consist of hitherto uncultured protist lineages. This mismatch impedes the linkage of environmental diversity data with the biological features of cultured strains. Thus, novel taxa need to be obtained in culture to close this knowledge gap. In this study, traditional cultivation techniques were applied to samples from coastal surface waters and from deep oxygen-depleted waters of the Baltic Sea. Based on 18S rRNA gene sequencing, 126 monoclonal cultures of heterotrophic protists were identified. The majority of the isolated strains were affiliated with already cultured and described taxa, mainly chrysophytes and bodonids. This was likely due to "culturing bias" but also to the eutrophic nature of the Baltic Sea. Nonetheless, ~ 12% of the isolates in our culture collection showed highly divergent 18S rRNA gene sequences compared to those of known organisms and thus may represent novel taxa, either at the species level or at the genus level. Moreover, we also obtained evidence that some of the isolated taxa are ecologically relevant, under certain conditions, in the Baltic Sea. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  1. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing

    Science.gov (United States)

    Martinez-Garcia, Manuel; Brazel, David; Poulton, Nicole J; Swan, Brandon K; Gomez, Monica Lluesma; Masland, Dashiell; Sieracki, Michael E; Stepanauskas, Ramunas

    2012-01-01

    Heterotrophic protists are a highly diverse and biogeochemically significant component of marine ecosystems, yet little is known about their species-specific prey preferences and symbiotic interactions in situ. Here we demonstrate how these previously unresolved questions can be addressed by sequencing the eukaryote and bacterial SSU rRNA genes from individual, uncultured protist cells collected from their natural marine environment and sorted by flow cytometry. We detected Pelagibacter ubique in association with a MAST-4 protist, an actinobacterium in association with a chrysophyte and three bacteroidetes in association with diverse protist groups. The presence of identical phylotypes among the putative prey and the free bacterioplankton in the same sample provides evidence for predator–prey interactions. Our results also suggest a discovery of novel symbionts, distantly related to Rickettsiales and the candidate divisions ZB3 and TG2, associated with Cercozoa and Chrysophyta cells. This study demonstrates the power of single cell sequencing to untangle ecological interactions between uncultured protists and prokaryotes. PMID:21938022

  2. Monitoring the formation of clastic-biogenic varves to improve the quality of paleoclimate reconstructions

    Science.gov (United States)

    Ojala, A.; Kosonen, E.; Weckstrom, J.; Korkonen, S.

    2013-12-01

    accumulation rates of diatoms and chrysophyte cysts suggest these algal groups are more dependent on seasonal processes (e.g. spring and autumnal overturn) than on rapid, short-lived environmental episodes such as the spring discharge peak.

  3. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure.

    Directory of Open Access Journals (Sweden)

    Anna Kozak

    Full Text Available In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR. Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment.

  4. Evolution of the protists and protistan parasites from the perspective of molecular systematics.

    Science.gov (United States)

    Sogin, M L; Silberman, J D

    1998-01-01

    Unlike prokaryotes, the Protista are rich in morphological and ultrastructure information. Their amazing phenotypic diversity permits assignment of many protists to cohesive phyletic assemblages but sometimes blurs relationships between major lineages. With the advent of molecular techniques, it became possible to test evolutionary hypotheses that were originally formulated according to shared phenotypic traits. More than any other gene family, studies of rRNAs changed our understanding of protist evolution. Stramenopiles (oomycetes, chrysophytes, phaeophytes, synurophytes, diatoms, xanthophytes, bicosoecids, slime nets) and alveolates (dinoflagellates, apicomplexans, ciliates) are two novel, complex evolutionary assemblages which diverged nearly simultaneously with animals, fungi, plants, rhodophytes, haptophytes and a myriad of independent amoeboid lineages. Their separation may have occurred one billion years ago and collectively these lineages make up the "crown" of the eukaryotic tree. Deeper branches in the eukaryotic tree show 16S-like rRNA sequence variation that is much greater than that observed within the Archaea and the Bacteria. A progression of independent protist branches, some as ancient as the divergence between the two prokaryotic domains, preceded the sudden radiation of "crown" groups. Trichomonads, diplomonads and Microsporidia are basal to all other eukaryotes included in rRNA studies. Together with pelobionts, oxymonads, retortamonads and hypermastigids, these amitochondriate taxa comprise the Archaezoa. This skeletal phylogeny suggested that early branching eukaryotes lacked mitochondria, peroxisomes and typical stacked Golgi dictyosomes. However, recent studies of heat shock proteins indicate that the first eukaryotes may have had mitochondria. When evaluated in terms of evolution of ultrastructure, lifestyles and other phenotypic traits, the rRNA phylogenies provide the most consistent of molecular trees. They permit identification of the

  5. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations.

    Science.gov (United States)

    Jeppesen, Erik; Kronvang, Brian; Meerhoff, Mariana; Søndergaard, Martin; Hansen, Kristina M; Andersen, Hans E; Lauridsen, Torben L; Liboriussen, Lone; Beklioglu, Meryem; Ozen, Arda; Olesen, Jørgen E

    2009-01-01

    Climate change may have profound effects on phosphorus (P) transport in streams and on lake eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and arid climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In lakes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankton biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm arid lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.

  6. Alterations in Location, Magnitude, and Community Composition of Discrete Layers of Phytoplankton in Cold, Deep Waters Near the 1% Isolume of the Laurentian Great Lake Michigan Among Years With Dramatically Different Meteorological Conditions

    Science.gov (United States)

    Cuhel, R. L.; Aguilar, C.

    2016-02-01

    Phytoplankton deep populations have dominated both biomass and productivity in deep basins of Lake Michigan for much of the anthropocene. In recent decades, chronically phosphorus-deficient waters have progressed from lower thermocline diatom assemblages in the 2000s to much deeper picocyanobacterial dominance in the late 2000s. Overwhelming establishment of benthic filter-feeding quagga mussels was instrumental in selection for picoplankton in the 2003-2007 time frame, but in 2008 a return to diatom dominance occurred in conjunction with monumental runoff from the Storm of the Century. Picoplankton gradually returned to significance in ensuing years, but suffered after lakewide ice cover and extremely slow spring warming of winters 2013-2015. Extremely calm summer conditions favored the picoplankton, and a decade of 1% light penetration of 50-60m has consistently enabled very deep productivity by several different divisions of algae. An unusual persistent south wind with basin-scale upwelling stimulated a return of fall diatom bloom for the first time in 2015. Repeated expeditions to offshore deep stations (100-150m) with detailed water sampling based on hydrographic observations often include thin peaks of biogenic silica (diatoms, chrysophytes) offset from one or more distinct layers of picocyanobacteria and mixed eucaryotic phytoplankton. In 2014 large, stable populations of the diatom Tabellaria sp. flourished at 50-60m with highly shade-adapted photosynthetic characteristics but assimilation numbers >1. In 2014-2015, picocyanobacterial maxima moved up in the water column and were dissociated from signals in either in vivo fluorescence or transmission. Physical structure, within-year basin physics sequence timing, and now seemingly ammonium availability may each contribute to phytoplankton ecology in this ocean-scale freshwater ecosystem.

  7. Spatio-temporal changes in the distribution of phytopigments and phytoplanktonic groups at the Porcupine Abyssal Plain (PAP) site

    Science.gov (United States)

    Smythe-Wright, Denise; Boswell, Stephen; Kim, Young-Nam; Kemp, Alan

    2010-08-01

    We have made a comprehensive study of pigment distributions and microscopically determined phytoplankton abundances within the Porcupine Abyssal Plain (PAP) location in the North Atlantic to better understand phytoplankton variability, and make some suggestions regarding the composition of the material falling to the sea bed and its impacts on benthic organisms such as Amperima rosea. The area has been the focus of many studies of ocean fluxes and benthic communities over recent years, but little attention has been given to the spatio-temporal variability in the surface waters. Dawn casts over a 12-day period at the PAP mooring site (48.83°N 16.5°W) revealed the presence of only one species, the diatom Actinocyclus exiguus, at bloom concentrations for just 5 days. Smaller populations of other diatoms and the dinoflagellates Gymnodinium and Gyrodinium were also present at this time. Following this 5-day interval, a mixed population of small-sized dinoflagellates, prymnesiophytes, prasinophytes, chrysophytes and cyanobacteria occurred. It is clear from concomitant CTD/bottle surveys that rapid changes in phytoplankton community structure at a fixed time series position do not necessarily reflect a degradation or manifestation of one particular species but rather represent the movement of eddies and other water masses within very short timescales. These cause substantial variability in the species class and size fraction that may explain the variability in carbon export that has been seen at the PAP site. We also make some suggestions on the variable composition of the material falling to the seabed and its impact on benthic organisms such as Amperima rosea.

  8. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure

    Science.gov (United States)

    Kozak, Anna; Gołdyn, Ryszard; Dondajewska, Renata

    2015-01-01

    In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment. PMID:25906352

  9. Experimental additions of aluminum sulfate and ammonium nitrate to in situ mesocosms to reduce cyanobacterial biovolume and microcystin concentration

    Science.gov (United States)

    Harris, Ted D.; Wilhelm, Frank M.; Graham, Jennifer L.; Loftin, Keith A.

    2014-01-01

    Recent studies suggest that nitrogen additions to increase the total nitrogen:total phosphorus (TN:TP) ratio may reduce cyanobacterial biovolume and microcystin concentration in reservoirs. In systems where TP is >100 μg/L, however, nitrogen additions to increase the TN:TP ratio could cause ammonia, nitrate, or nitrite toxicity to terrestrial and aquatic organisms. Reducing phosphorus via aluminum sulfate (alum) may be needed prior to nitrogen additions aimed at increasing the TN:TP ratio. We experimentally tested this sequential management approach in large in situ mesocosms (70.7 m3) to examine effects on cyanobacteria and microcystin concentration. Because alum removes nutrients and most seston from the water column, alum treatment reduced both TN and TP, leaving post-treatment TN:TP ratios similar to pre-treatment ratios. Cyanobacterial biovolume was reduced after alum addition, but the percent composition (i.e., relative) cyanobacterial abundance remained unchanged. A single ammonium nitrate (nitrogen) addition increased the TN:TP ratio 7-fold. After the TN:TP ratio was >50 (by weight), cyanobacterial biovolume and abundance were reduced, and chrysophyte and cryptophyte biovolume and abundance increased compared to the alum treatment. Microcystin was not detectable until the TN:TP ratio was <50. Although both treatments reduced cyanobacteria, only the nitrogen treatment seemed to stimulate energy flow from primary producers to zooplankton, which suggests that combining alum and nitrogen treatments may be a viable in-lake management strategy to reduce cyanobacteria and possibly microcystin concentrations in high-phosphorus systems. Additional studies are needed to define best management practices before combined alum and nitrogen additions are implemented as a reservoir management strategy.

  10. Testing a new multigroup inference approach to reconstructing past environmental conditions

    Directory of Open Access Journals (Sweden)

    Maria RIERADEVALL

    2008-08-01

    Full Text Available A new, quantitative, inference model for environmental reconstruction (transfer function, based for the first time on the simultaneous analysis of multigroup species, has been developed. Quantitative reconstructions based on palaeoecological transfer functions provide a powerful tool for addressing questions of environmental change in a wide range of environments, from oceans to mountain lakes, and over a range of timescales, from decades to millions of years. Much progress has been made in the development of inferences based on multiple proxies but usually these have been considered separately, and the different numeric reconstructions compared and reconciled post-hoc. This paper presents a new method to combine information from multiple biological groups at the reconstruction stage. The aim of the multigroup work was to test the potential of the new approach to making improved inferences of past environmental change by improving upon current reconstruction methodologies. The taxonomic groups analysed include diatoms, chironomids and chrysophyte cysts. We test the new methodology using two cold-environment training-sets, namely mountain lakes from the Pyrenees and the Alps. The use of multiple groups, as opposed to single groupings, was only found to increase the reconstruction skill slightly, as measured by the root mean square error of prediction (leave-one-out cross-validation, in the case of alkalinity, dissolved inorganic carbon and altitude (a surrogate for air-temperature, but not for pH or dissolved CO2. Reasons why the improvement was less than might have been anticipated are discussed. These can include the different life-forms, environmental responses and reaction times of the groups under study.

  11. Liming the acid lake Hovvatn, Norway: a whole-ecosystem study

    Energy Technology Data Exchange (ETDEWEB)

    Raddum, G G; Brettum, P; Matzow, D; Nilssen, J P; Skov, A; Sveaelv, T; Wright, R F

    1986-12-01

    Hovvatn, a 1 sq. km. chronically-acidified lake in southernmost Norway, was treated with 200 tonne of powdered limestone in March 1981. An additional 40 tonne were added to a 0.046 sq km pond (Pollen) draining into Hovvatn. The lakes were stocked with brown trout in June 1981 and in each subsequent year. At ice-out pH rose from 4.4 to 6.3 (Hovvatn) and 7.5 (Pollen), Ca and alkalinity increased, and total Al decreased by 120 ..mu..g/l. None of the other major ions exhibited significant changes in concentration. Total organic C and P increased after liming. The phytoplankton community was dominated by chrysophytes and did not change significantly following liming. The zooplankton community was typical of acid lakes prior to liming. There was a clear succession in species dominance following treatment, although no new species immigrated to the lakes. Zoobenthos changed from a community characterized by low abundance and reduced number of species to increased abundance of oligochaetes, mayflies and chironomids. Hovvatn and Pollen were barren of fish prior to stocking. The stocked fish showed remarkably high growth rate during the first years. Liming apparently improved conditions for zoobenthos, enhancing the processing of fine detritus which in turn resulted in elevated levels of TOC and P in the lakewaters during the first year after liming. The oligotrophication process typical of acid lakes was temporarily reversed by liming. The interactions between groups of organisms in Hovvatn and Pollen indicates that many years are required before a new steady-state can be attained following liming. 61 references.

  12. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change

    Directory of Open Access Journals (Sweden)

    Sophie eCharvet

    2012-12-01

    Full Text Available High Arctic meromictic lakes are extreme environments characterized by cold temperatures, low nutrient inputs from their polar desert catchments and prolonged periods of low irradiance and darkness. These lakes are permanently stratified with an oxygenated freshwater layer (mixolimnion overlying a saline, anoxic water column (monimolimnion. The physical and chemical properties of the deepest known lake of this type in the circumpolar Arctic, Lake A, on the far northern coast of Ellesmere Island, Canada, have been studied over the last 15 years, but little is known about the lake’s biological communities. We applied high-throughput sequencing of the V4 region of the 18S ribosomal RNA gene to investigate the protist communities down the water column at three sampling times: under the ice at the end of winter in 2008, during an unusual period of warming and ice-out the same year, and again under the ice in mid-summer 2009. Sequences of many protist taxa occurred throughout the water column at all sampling times, including in the deep anoxic layer where growth is highly unlikely. Furthermore, there were sequences for taxonomic groups including diatoms and marine taxa, which have never been observed in Lake A by microscopic analysis. However the sequences of other taxa such as ciliates, chrysophytes, Cercozoa and Telonema varied with depth, between years and during the transition to ice-free conditions. These results imply that there are seasonally active taxa in the surface waters of the lake that are sensitive to depth and change with time. DNA from these taxa is superimposed upon background DNA from multiple internal and external sources that is preserved in the deep, cold, largely anoxic water column.

  13. Holocene and Late Glacial sedimentation near steep slopes in southern Lake Baikal

    Directory of Open Access Journals (Sweden)

    Michael Sturm

    2015-07-01

    . They contain terrestrial (deltaic material, low amounts of biological material (diatoms, spiculae, chrysophyte cysts, low concentrations of Sibio, Corg and Ntot and occur at approximate recurrence rates of 300 years. 

  14. About rehabilitation of vegetation of disturbed ecosystems of the Semipalatinsk test sites

    International Nuclear Information System (INIS)

    Plisak, R.P.; Plisak, S.V.

    2005-01-01

    areas is characterized by: 1. slight influence of zonal conditions and steppe vegetation on primary stages of restorative succession; 2. under PED of γ-irradiation of 20-200 μR/h vegetation rehabilitation begins with invasion of weed species; 3. under high levels of chronic ionizing irradiation (PED of γ-irradiation 800-5000 μR/h and higher) vegetation rehabilitation is limited by level of radiation pollution; 4. on primary stages of vegetation rehabilitation leading role belongs to annuals, biennials, perennial rhizome herbs and cespitosehemi chrysophyte; 5. besides eurytopic weed plants species of local flora (xerophyte-steppe cespitose grasses, shrubs-petrophytes, in valleys of rivers and springs-mesophytes) participate in restoration of vegetation of technogene ecotopes; 6. great importance in the process of vegetation restoration belongs to herbs, role of shrubs is insignificant; 7. radiation pollution of damaged areas provokes decrease of specie diversity. 8. For restoration of vegetation of Semipalatinsk Test Sites it is necessary to conduct out; 9. rehabilitation of its territory (remove poured polluted material, remains of debris, fragments of military and technical objects, surface layer of polluted soils); 10. technical preparation of ground of the dumps (laying out, terracing), its biological re-cultivation (restoration of soils, fixing of fine earth on slopes of the dumps) and phyto melioration; 11. phyto remediation of soils of polluted areas

  15. Ecophysiological strategies in response to UV-B radiation stress in cultures of temperate microalgae isolated from the Pacific coast of South America Estrategias ecofisiológicas en respuesta a la radiación ultravioleta-B en cultivos de microalgas templadas aisladas de la costa sudamericana del Pacífico

    Directory of Open Access Journals (Sweden)

    VIVIAN MONTECINO

    2001-06-01

    Full Text Available Marine microalgae exposed to ultraviolet radiation (UV have complex adaptive responses provided by a series of protection and repair mechanisms. Interspecific differences in UV sensibility could result in differential selection of the more tolerant species, having consequences for the structure of phytoplankton assemblages. The relative importance of protection and photorepair mechanisms of microalgal cells exposed to potential UV-B stress was studied in monocultures with different taxonomic, ecological and size characteristics obtained from the Chilean coast. Differences in photosynthesis and growth rates were predicted, since the ability to effectively acclimate to UV is not universal between microalgal species. The dinoflagellate Alexandrium catenella Whedon et Kofoid Balech, the diatom Phaeodactylum tricornutum Bohlin, the chrysophyte Aureococcus sp. and the cyanobacterium Spirulina subsalsa Oersted were acclimated during exponential cell growth under PAR + UV-A radiation (365 nm, 140-240 kJ m-2 d-1 and thereafter exposed 2 h d-1 to high and low UV-B radiation (312 nm, maximum 3.1 kJ m-2 d-1 at the center of the 16 h light period. Measured parameters were growth rates (µ, in vivo spectral absorption, cellular fluorescence capacity, pigment concentration, photosynthesis and photoreactivation during three cycles in controls and treatment samples. Growth rates diminished less than 35 % in Phaeodactylum and Aureococcus compared to 80-100 % decrease in Alexandrium and Spirulina. In these two last species, a significant increase in UV absorbing substances was observed, probably related to the presence of mycosporine-like aminoacids (MAAs and scytonemin, respectively, and also lower photoreactivation efficiency compared to Phaeodactylum and Aureococcus. The analysis of photosynthetic performance under different PAR/UV-A ratios for Alexandrium and Phaeodactylum, could also explain the differences in µ. These results suggest that in time, species

  16. Kootenay Lake Fertilization Experiment, Year 15 (North Arm) and Year 3 (South Arm) (2006) Report

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, E.U.; Sebastian, D.; Andrusak, G.F. [Fish and Wildlife Science and Allocation, Ministry of Environment, Province of British Columbia

    2009-07-01

    that is required for optimal phytoplankton growth discrete depth water sampling occurred in 2006 to measure more accurately changes in the nitrate concentrations. As expected there was a seasonal decline in nitrate concentrations, thus supporting the strategy of increasing the nitrogen loading in both arms. These in-season changes emphasize the need for an adaptive management approach to ensure the nitrogen to phosphorus (N:P) ratio does not decrease below 15:1 (weight:weight) during the fertilizer application period. Phytoplankton composition determined from the integrated samples (0-20m) was dominated by diatoms, followed by cryptophytes and chrysophytes. The contribution of cryptophytes to total biomass was higher in 2006 than in 2005. Cryptophytes, considered being edible biomass for zooplankton and Daphnia spp., increased in 2006. Phytoplankton in the discrete depth samples (2, 5, 10, 15 and 20m) demonstrated a clear north to south gradient in average phytoplankton density and biomass among the three stations sampled, with highest values at the North Arm station (KLF 2) and lowest values in the most southern station in the South Arm (KLF 7). Populations were dominated by flagellates at all stations and depths in June and July, then dominated by diatoms in August and September in the North and South arms of the lake. There were no large bluegreen (cyanobacteria) populations in either arm of the lake in 2006. Seasonal average zooplankton abundance and biomass in both the main body of the lake and in the West Arm increased in 2006 compared to 2005. Zooplankton density was numerically dominated by copepods and biomass was dominated by Daphnia spp. The annual average mysid biomass data at deep stations indicated that the North Arm of Kootenay Lake was more productive than the South Arm in 2006. Mysid densities increased through the summer and declined in the winter; mean whole lake values remain within prefertilization densities. Kokanee escapement to Meadow Creek

  17. Climate, vegetation and lake development at Sokli (northern Finland) during early MIS 3 at approx50 kyr: Revising earlier concepts on climate, glacial and vegetation dynamics in Fennoscandia during the Weichselian

    Energy Technology Data Exchange (ETDEWEB)

    Helmens, Karin F. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2009-08-15

    Long sediment records that register environmental changes in formerly glaciated regions such as Fennoscandia in the period preceding the Last Glacial Maximum (LGM) at approx 20 kyr are rare. The Weichselian history of Fennoscandia is based on the long-distance correlation of poorly dated stratigraphic fragmentary evidence and studies on glacial geomorphology. Environmental conditions during ice-free intervals have been mostly reconstructed based on low resolution palynological analysis only. Here we present the results of a detailed study of a for Fennoscandia unusually long and continuous sediment sequence that has been recovered from the Sokli basin in northern Finland. The Sokli sequence consists of tills, glacio-fluvial beds, and fluvial beds, interlayered with fossil-rich lacustrine sediments that according to multiple accelerator mass spectrometer (AMS) 14C and optically stimulated luminescence (OSL) datings extend from the present into the Penultimate Glacial representing the last approx130 kyr. This report focuses on the youngest Weichselian interstadial interval with ice-free conditions at Sokli dated to approx50 kyr in the early part of Marine Isotope Stage (MIS) 3. A comprehensive environmental reconstruction is made based on multi-proxy analysis on a two meter thick laminated, lacustrine clay-silt sequence, including lithological characteristics; organic content (loss-on-ignition, LOI); plant microfossils (pollen, spores, algal and fungal remains); macrofossils of plants (e.g. seeds, moss remains) and of aquatic animals (e.g. statoblasts of Bryozoa); head-capsules of chironomids (i.e. aquatic insects); and diatoms and other siliceous microfossils (e.g. phytolits, chrysophyte stomatocysts). Additionally, geomorphic evidence and analysis of Digital Elevation Model (DEM) data are employed in the environmental reconstruction. Mean July temperatures are reconstructed by applying transfer functions to the pollen, chironomid and diatom records. The results

  18. Climate, vegetation and lake development at Sokli (northern Finland) during early MIS 3 at ∼50 kyr: Revising earlier concepts on climate, glacial and vegetation dynamics in Fennoscandia during the Weichselian

    International Nuclear Information System (INIS)

    Helmens, Karin F.

    2009-08-01

    Long sediment records that register environmental changes in formerly glaciated regions such as Fennoscandia in the period preceding the Last Glacial Maximum (LGM) at ∼ 20 kyr are rare. The Weichselian history of Fennoscandia is based on the long-distance correlation of poorly dated stratigraphic fragmentary evidence and studies on glacial geomorphology. Environmental conditions during ice-free intervals have been mostly reconstructed based on low resolution palynological analysis only. Here we present the results of a detailed study of a for Fennoscandia unusually long and continuous sediment sequence that has been recovered from the Sokli basin in northern Finland. The Sokli sequence consists of tills, glacio-fluvial beds, and fluvial beds, interlayered with fossil-rich lacustrine sediments that according to multiple accelerator mass spectrometer (AMS) 14 C and optically stimulated luminescence (OSL) datings extend from the present into the Penultimate Glacial representing the last ∼130 kyr. This report focuses on the youngest Weichselian interstadial interval with ice-free conditions at Sokli dated to ∼50 kyr in the early part of Marine Isotope Stage (MIS) 3. A comprehensive environmental reconstruction is made based on multi-proxy analysis on a two meter thick laminated, lacustrine clay-silt sequence, including lithological characteristics; organic content (loss-on-ignition, LOI); plant microfossils (pollen, spores, algal and fungal remains); macrofossils of plants (e.g. seeds, moss remains) and of aquatic animals (e.g. statoblasts of Bryozoa); head-capsules of chironomids (i.e. aquatic insects); and diatoms and other siliceous microfossils (e.g. phytolits, chrysophyte stomatocysts). Additionally, geomorphic evidence and analysis of Digital Elevation Model (DEM) data are employed in the environmental reconstruction. Mean July temperatures are reconstructed by applying transfer functions to the pollen, chironomid and diatom records. The results have been