WorldWideScience

Sample records for chronically fed high

  1. Basis of aggravated hepatic lipid metabolism by chronic stress in high-fat diet-fed rat.

    Science.gov (United States)

    Han, Ying; Lin, Min; Wang, Xiaobin; Guo, Keke; Wang, Shanshan; Sun, Mengfei; Wang, Jiao; Han, Xiaoyu; Fu, Ting; Hu, Yang; Fu, Jihua

    2015-03-01

    Our previous study has demonstrated that long-term stress, known as chronic stress (CS), can aggravate nonalcoholic fatty liver disease in high-fat diet (HFD)-fed rat. In this study, we tried to figure out which lipid metabolic pathways were impacted by CS in the HFD-fed rat. Male Sprague-Dawley rats (6 weeks of age, n = 8 per group) were fed with either standard diet or HFD with or without CS exposure for 8 weeks. Hepatic lipidosis, biochemical, hormonal, and lipid profile markers in serum and liver, and enzymes involved in de novo lipogenesis (DNL) of fatty acids (FAs) and cholesterol, β-oxidation, FAs uptake, triglycerides synthesis, and very low-density lipoprotein (VLDL) assembly in the liver were detected. CS exposure reduced hepatic lipidosis but further elevated hepatic VLDL content with aggravated dyslipidemia in the HFD-fed rats. There was a synergism between CS and HFD on VLDL production and dyslipidemia. PCR and western blot assays showed that CS exposure significantly promoted hepatic VLDL assembly in rats, especially in the HFD-fed rats, while it had little impact on DNL, β-oxidation, FAs uptake, and triglycerides synthesis in the HFD-fed rats. This phenomenon was in accordance with elevated serum glucocorticoid level. The critical influence of CS exposure on hepatic lipid metabolism in the HFD-fed rats is VLDL assembly which might be regulated by glucocorticoid.

  2. Chronic blood pressure and appetite responses to central leptin infusion in rats fed a high fat diet.

    Science.gov (United States)

    Dubinion, John H; da Silva, Alexandre A; Hall, John E

    2011-04-01

    Obesity has been suggested to induce selective leptin resistance whereby leptin's anorexic effects are attenuated, whereas the effects to increase sympathetic nervous system activity and blood pressure remain intact. Most studies, however, have tested only the acute responses to leptin administration. This study tested whether feeding a high-fat diet causes resistance to the appetite and cardiovascular responses to chronic central leptin infusion. Sprague-Dawley rats were fed high-fat diet (40% kcal from fat, n=5) or normal-fat diet (13% kcal from fat, n=5) for a year. Radiotelemeters were implanted for continuous monitoring of mean arterial pressure (MAP) and heart rate (HR). A 21G steel cannula was implanted in the lateral cerebral ventricle [intracerebroventricular (ICV)]. After recovery, leptin was infused ICV at 0.02 μg/kg per min for 10 days. High-fat rats were heavier than normal-fat rats (582±12 vs. 511±19 g) and exhibited significantly higher MAP (114±3 vs. 96±7 mmHg). Although the acute (24 h) effects of leptin were attenuated in high-fat rats, chronic ICV leptin infusion decreased caloric intake in both groups similarly (50±8 vs. 40±10%) by day 5. Despite decreased food intake and weight loss, leptin infusion significantly increased MAP and HR in both high-fat and normal-fat rats (7±2 and 5±1 mmHg; 18±11 and 21±10 b.p.m., respectively). These results suggest that obesity induced by feeding a high-fat diet blunts the acute anorexic effects of leptin but does not cause significant resistance to the chronic central nervous system effects of leptin on appetite, MAP, or HR.

  3. The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standard or high-fat diet.

    Science.gov (United States)

    Meireles, Manuela; Marques, Cláudia; Norberto, Sónia; Fernandes, Iva; Mateus, Nuno; Rendeiro, Catarina; Spencer, Jeremy P E; Faria, Ana; Calhau, Conceição

    2015-11-01

    Neuroinflammation has been suggested as a central mediator of central nervous system dysfunction, including in dementia and neurodegenerative disease. Flavonoids have emerged as promising candidates for the prevention of neurodegenerative diseases and are thought to be capable of antiinflammatory effects in the brain. In the present study, the impact of a chronic intake of an anthocyanin extract from blackberry (BE) on brain inflammatory status in the presence or absence of a high-fat diet was investigated. Following intake of the dietary regimes for 17 weeks neuroinflammatory status in Wistar rat cortex, hippocampus and plasma were assessed using cytokine antibody arrays. In the cortex, intake of the high-fat diet resulted in an increase of at least 4-fold, in expression of the cytokine-induced neutrophil chemoattractant CINC-3, the ciliary neurotrophic factor CNTF, the platelet-derived growth factor PDGF-AA, IL-10, the tissue inhibitor of metalloproteinase TIMP-1 and the receptor for advanced glycation end products RAGE. BE intake partially decreased the expression of these mediators in the high-fat challenged brain. In standard-fed animals, BE intake significantly increased cortical levels of fractalkine, PDGF-AA, activin, the vascular endothelial growth factor VEGF and agrin expression, suggesting effects as neuronal growth and synaptic connection modulators. In hippocampus, BE modulates fractalkine and the thymus chemokine TCK-1 expression independently of diet intake and, only in standard diet, increased PDGF-AA. Exploring effects of anthocyanins on fractalkine transcription using the neuronal cell line SH-SY5Y suggested that other cell types may be involved in this effect. This is the first evidence, in in vivo model, that blackberry extract intake may be capable of preventing the detrimental effects of neuroinflammation in a high-fat challenged brain. Also, fractalkine and TCK-1 expression may be specific targets of anthocyanins and their metabolites on

  4. Influence of chronic stress on the compositions of hepatic cholesterol and triglyceride in male Wistar rats fed a high fat diet.

    Science.gov (United States)

    Gao, Siyuan; Han, Xue; Fu, Jihua; Yuan, Xiaoling; Sun, Xing; Li, Qiang

    2012-07-01

      We determined the influence of chronic stress (CS) on the compositions of hepatic cholesterol and triglyceride (TG) in rats fed a high fat diet (HFD).   Male Wistar rats were fed either a standard diet or a HFD and half of the HFD fed rats were given CS (electric foot shock assisted with noise) for 8 weeks.   Compared with the control group, the levels of hepatic total cholesterol (TC) and TG were significantly elevated in the HFD and HFD with chronic stress (HFD+CS) groups, and the more severe elevations of them were found in the HFD group. Inversely, the more severe elevations of hepatic water-soluble parts of TC and TG were found in the HFD+CS group, as the elevations of low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol in liver and serum, tumor necrosis factor-α, interleukin-1β and malondialdehyde in liver. Meanwhile, downregulated mRNA expressions of hepatic liver X receptor-α (LXR-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were also more severe in the HFD+CS group.   CS can aggravate the high levels of water-soluble compositions of hepatic TC and TG induced by HFD as it aggravates hepatic inflammation and oxidative stress; in spite of that, however, it cannot further promote hepatic lipidosis. This is consistent with the downregulated mRNA expressions of LXR-α and PPAR-γ. © 2012 The Japan Society of Hepatology.

  5. Chronic aerobic exercise associated to dietary modification improve endothelial function and eNOS expression in high fat fed hamsters.

    Directory of Open Access Journals (Sweden)

    Beatriz C S Boa

    reactivity was similar between groups, suggesting that only endothelial damage had occurred. Our results indicate that an aerobic routine and/or dietary modification may cause significant improvements to high fat fed animals, diminishing visceral depots, increasing eNOS expression and reducing microcirculatory dysfunction.

  6. Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose-high-fat diet.

    Science.gov (United States)

    Liao, Hsiang; Chou, Liang-Mao; Chien, Yi-Wen; Wu, Chi-Hao; Chang, Jung-Su; Lin, Ching-I; Lin, Shyh-Hsiang

    2017-05-01

    Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose-high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Chronic benzylamine administration in the drinking water improves glucose tolerance, reduces body weight gain and circulating cholesterol in high-fat diet-fed mice.

    Science.gov (United States)

    Iffiú-Soltész, Zsuzsa; Wanecq, Estelle; Lomba, Almudena; Portillo, Maria P; Pellati, Federica; Szöko, Eva; Bour, Sandy; Woodley, John; Milagro, Fermin I; Alfredo Martinez, J; Valet, Philippe; Carpéné, Christian

    2010-04-01

    Benzylamine is found in Moringa oleifera, a plant used to treat diabetes in traditional medicine. In mammals, benzylamine is metabolized by semicarbazide-sensitive amine oxidase (SSAO) to benzaldehyde and hydrogen peroxide. This latter product has insulin-mimicking action, and is involved in the effects of benzylamine on human adipocytes: stimulation of glucose transport and inhibition of lipolysis. This study examined whether chronic, oral administration of benzylamine could improve glucose tolerance and the circulating lipid profile without increasing oxidative stress in overweight and pre-diabetic mice. The benzylamine diffusion across the intestine was verified using everted gut sacs. Then, glucose handling and metabolic markers were measured in mice rendered insulin-resistant when fed a high-fat diet (HFD) and receiving or not benzylamine in their drinking water (3600micromol/(kgday)) for 17 weeks. HFD-benzylamine mice showed lower body weight gain, fasting blood glucose, total plasma cholesterol and hyperglycaemic response to glucose load when compared to HFD control. In adipocytes, insulin-induced activation of glucose transport and inhibition of lipolysis remained unchanged. In aorta, benzylamine treatment partially restored the nitrite levels that were reduced by HFD. In liver, lipid peroxidation markers were reduced. Resistin and uric acid, surrogate plasma markers of metabolic syndrome, were decreased. In spite of the putative deleterious nature of the hydrogen peroxide generated during amine oxidation, and in agreement with its in vitro insulin-like actions found on adipocytes, the SSAO-substrate benzylamine could be considered as a potential oral agent to treat metabolic syndrome. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Greg M., E-mail: greg.kowalski@deakin.edu.au [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); De Souza, David P. [Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Burch, Micah L. [Brigham and Women' s Hospital, Department of Medicine, Boston, MA (United States); Hamley, Steven [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Kloehn, Joachim [Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Selathurai, Ahrathy [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Tull, Dedreia; O' Callaghan, Sean; McConville, Malcolm J. [Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Bruce, Clinton R. [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia)

    2015-06-19

    Rationale: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). Methods and results: In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-{sup 13}C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring {sup 13}C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography–mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. Conclusions: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle. - Highlights: • Dynamic metabolomics was used to investigate muscle glucose metabolism in vivo. • Mitochondrial TCA cycle metabolism is altered in muscle of HFD mice. • This defect was not pyruvate dehydrogenase mediated, as has been previously thought. • Mitochondrial TCA cycle anaplerosis in muscle is virtually absent during the OGTT.

  9. Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse

    International Nuclear Information System (INIS)

    Kowalski, Greg M.; De Souza, David P.; Burch, Micah L.; Hamley, Steven; Kloehn, Joachim; Selathurai, Ahrathy; Tull, Dedreia; O'Callaghan, Sean; McConville, Malcolm J.; Bruce, Clinton R.

    2015-01-01

    Rationale: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). Methods and results: In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U- 13 C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring 13 C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography–mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. Conclusions: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle. - Highlights: • Dynamic metabolomics was used to investigate muscle glucose metabolism in vivo. • Mitochondrial TCA cycle metabolism is altered in muscle of HFD mice. • This defect was not pyruvate dehydrogenase mediated, as has been previously thought. • Mitochondrial TCA cycle anaplerosis in muscle is virtually absent during the OGTT

  10. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization.

    Science.gov (United States)

    Blevins, James E; Thompson, Benjamin W; Anekonda, Vishwanath T; Ho, Jacqueline M; Graham, James L; Roberts, Zachary S; Hwang, Bang H; Ogimoto, Kayoko; Wolden-Hanson, Tami; Nelson, Jarrell; Kaiyala, Karl J; Havel, Peter J; Bales, Karen L; Morton, Gregory J; Schwartz, Michael W; Baskin, Denis G

    2016-04-01

    Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity.

  11. Moderate chronic administration of Vineatrol-enriched red wines improves metabolic, oxidative, and inflammatory markers in hamsters fed a high-fat diet.

    Science.gov (United States)

    Romain, Cindy; Bresciani, Letizia; Gaillet, Sylvie; Feillet-Coudray, Christine; Calani, Luca; Bonafos, Béatrice; Vidé, Joris; Rugani, Nathalie; Ramos, Jeanne; Del Rio, Daniele; Cristol, Jean-Paul; Rouanet, Jean-Max

    2014-06-01

    High-fat (HF) diets contribute to the development of cardiovascular diseases and the metabolic syndrome. This study was undertaken to investigate the beneficial effects of Vineatrol®-enriched red wines on blood lipids, oxidative stress and inflammation, and the role of some metabolic pathway regulatory proteins. Golden Syrian hamsters received an HF diet for 13 wk, in the presence or absence of red wines supplemented with Vineatrol® (RWV) or not. The HF diet increased plasma cholesterol, triglycerides, glucose, and insulin, which were attenuated by RWV treatment. RWV protected against the HF-induced increase in liver nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and spared antioxidant enzyme activities. RWV did not reduce either liver steatosis or increased plasma leptin due to the HF diet, but greatly improved adiponectinemia. In the liver, RWV affected the inflammatory response by decreasing polymorphonuclear cell number and lowering TNF-α and IL-6 levels. Moreover, the increase in NF-κB activity in the HF group liver was prevented by RWV. Finally, RWV partially corrected low SIRT1 levels due to the HF diet but had no influence on SIRT3 or p-AMPK protein levels. Our studies suggest that RWV is capable of reversing the atherogenic process induced by an HF diet in hamster tissues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. FEDS

    DEFF Research Database (Denmark)

    Venable, John; Pries-Heje, Jan; Baskerville, Richard

    2016-01-01

    Evaluation of design artefacts and design theories is a key activity in Design Science Research (DSR), as it provides feedback for further development and (if done correctly) assures the rigour of the research. However, the extant DSR literature provides insufficient guidance on evaluation...... to enable Design Science Researchers to effectively design and incorporate evaluation activities into a DSR project that can achieve DSR goals and objectives. To address this research gap, this research paper develops, explicates, and provides evidence for the utility of a Framework for Evaluation in Design...... Science (FEDS) together with a process to guide design science researchers in developing a strategy for evaluating the artefacts they develop within a DSR project. A FEDS strategy considers why, when, how, and what to evaluate. FEDS includes a two-dimensional characterisation of DSR evaluation episodes...

  13. Selenium status in adult cats and dogs fed high levels of dietary inorganic and organic selenium

    NARCIS (Netherlands)

    Todd, S.E.; Thomas, D.G.; Bosch, G.; Hendriks, W.H.

    2012-01-01

    Cats maintain higher blood Se concentrations compared to dogs and, unlike dogs, show no signs of chronic Se toxicity (selenosis) when fed dietary organic Se (selenomethionine) concentrations of 10 µg/g DM. This study investigated the response of cats and dogs to high dietary concentrations of sodium

  14. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets.

    Science.gov (United States)

    Lee, Yun Jung; Choi, Deok Ho; Cho, Guk Hyun; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-08-06

    Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). EAL-I (100 mg·kg-1/day), EAL-II (200 mg·kg-1/day), and fluvastatin (3 mg·kg-1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  15. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets

    Directory of Open Access Journals (Sweden)

    Lee Yun

    2012-08-01

    Full Text Available Abstract Background Arctium lappa L. (Asteraceae, burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD. Method EAL-I (100 mg·kg−1/day, EAL-II (200 mg·kg−1/day, and fluvastatin (3 mg·kg−1/day groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Results Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM-1, vascular cell adhesion molecule (VCAM-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. Conclusion The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  16. Increased Autolysis of μ-Calpain in Skeletal Muscles of Chronic Alcohol-Fed Rats.

    Science.gov (United States)

    Gritsyna, Yulia V; Salmov, Nikolay N; Bobylev, Alexander G; Ulanova, Anna D; Kukushkin, Nikolay I; Podlubnaya, Zoya A; Vikhlyantsev, Ivan M

    2017-10-01

    Proteolysis can proceed via several distinct pathways such as the lysosomal, calcium-dependent, and ubiquitin-proteasome-dependent pathways. Calpains are the main proteases that cleave a large variety of proteins, including the giant sarcomeric proteins, titin and nebulin. Chronic ethanol feeding for 6 weeks did not affect the activities of μ-calpain and m-calpain in the m. gastrocnemius. In our research, changes in μ-calpain activity were studied in the m. gastrocnemius and m. soleus of chronically alcohol-fed rats after 6 months of alcohol intake. SDS-PAGE analysis was applied to detect changes in titin and nebulin contents. Titin phosphorylation analysis was performed using the fluorescent dye Pro-Q Diamond. Western blotting was used to determine μ-calpain autolysis as well as μ-calpain and calpastatin contents. The titin and nebulin mRNA levels were assessed by real-time PCR. The amounts of the autolysed isoform (78 kDa) of full-length μ-calpain (80 kDa) increased in the m. gastrocnemius and m. soleus of alcohol-fed rats. The calpastatin content increased in m. gastrocnemius. Decreased intact titin-1 (T1) and increased T2-proteolytic fragment contents were found in the m. gastrocnemius and m. soleus of the alcohol-fed rats. The nebulin content decreased in the rat gastrocnemius muscle of the alcohol-fed group. The phosphorylation levels of T1 and T2 were increased in the m. gastrocnemius and m. soleus, and decreased titin and nebulin mRNA levels were observed in the m. gastrocnemius. The nebulin mRNA level was increased in the soleus muscle of the alcohol-fed rats. In summary, our data suggest that prolonged chronic alcohol consumption for 6 months resulted in increased autolysis of μ-calpain in rat skeletal muscles. These changes were accompanied by reduced titin and nebulin contents, titin hyperphosphorylation, and development of hindlimb muscle atrophy in the alcohol-fed rats. Copyright © 2017 by the Research Society on Alcoholism.

  17. Apple Polysaccharide inhibits microbial dysbiosis and chronic inflammation and modulates gut permeability in HFD-fed rats.

    Science.gov (United States)

    Wang, Sheng; Li, Qian; Zang, Yue; Zhao, Yang; Liu, Nan; Wang, Yifei; Xu, Xiaotao; Liu, Li; Mei, Qibing

    2017-06-01

    The saying "An apple a day keeps the doctor away" has been known for over 150 years, and numerous studies have shown that apple consumption is closely associated with reduced risks of chronic diseases. It has been well accepted that dysbiosis is the reflection of various chronic diseases. Therefore, this study investigates the effects of apple polysaccharides (AP) on gut dysbiosis. High-fat diet (HFD) fed rats were treated for 14 weeks with AP. The microbiota composition, microbiota-generated short chain fatty acids (SCFAs), gut permeability and chronic inflammation were analyzed. AP treatment showed higher abundance of Bacteroidetes and Lactobacillus while lower Firmicutes and Fusobacteium. AP significantly increased total SCFAs level that contributed by acetic acid and isobutyric acid. Moreover, AP dramatically alleviated dysbiosis-associated gut permeability and chronic inflammation with decreased plasma LBP, up-regulation of Occludin, down-regulation of tumor necrosis factor a (TNF-a), monocyte chemotactic protein 1 (MCP-1), chemokine ligand 1 (CXCL-1) and interleukin 1 beta (IL-1β). The potential mechanism is due to the fact that AP reduces gut permeability, which involves the induction of autophagy in goblet cells. Therefore, AP exerts health benefits through inhibiting gut dysbiosis and chronic inflammation and modulating gut permeability in HFD-induced dysbiosis rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Very-low-density lipoprotein triglyceride kinetics in acute and chronic carbohydrate-fed rats

    International Nuclear Information System (INIS)

    Hirano, T.; Mamo, J.; Poapst, M.; Steiner, G.

    1988-01-01

    Very-low-density lipoprotein (VLDL)-triglyceride (TG) kinetics were examined in rats maintained on either chow and water (control) or chow and a 10% carbohydrate drinking solution (fructose or glucose). The hexose solutions were available for an acute (16 h) or chronic (14 day) period. The acute fructose (AF), acute glucose (AG), and chronic fructose (CF) groups were hypertriglyceridemic (HTG) compared with control. Plasma TG concentration in chronic glucose (CG)-fed rats was similar to control. VLDL-TG was endogenously radiolabeled in donor rats with [2-3H]-glycerol. The fractional catabolic rate (FCR) was then determined by monitoring the clearance of plasma [3H]VLDL-TG in recipient animals. Donors and recipients were treated in an identical manner. AF and CF groups had an FCR significantly lower than rats given glucose for comparable periods. Both fructose groups and the AG group also had a lower FCR than control. In contrast, FCR in the CG group was significantly higher than controls. TG production rate (TGPR) in both AF and CF fed rats did not significantly differ from controls, suggesting that the HTG observed in these animals was solely from a catabolic defect. AG- and CG-treated glucose animals both had TGPR significantly higher than controls. Therefore, overproduction of VLDL-TG contributed to the HTG associated with this carbohydrate

  19. Effect of forage quality in faeces from different ruminant species fed high and low quality forage

    DEFF Research Database (Denmark)

    Jalali, A R; Nørgaard, P; Nielsen, M O

    2010-01-01

    Effect of forage quality in faeces from different ruminant species fed high and low quality forage......Effect of forage quality in faeces from different ruminant species fed high and low quality forage...

  20. Alveolar wound healing in rats fed on high sucrose diet.

    Science.gov (United States)

    Baró, María A; Rocamundi, Marina R; Viotto, Javier O; Ferreyra, Ruth S

    2013-01-01

    The potential for bone repair is influenced by various biochemical, biomechanical, hormonal, and pathological mechanisms and factors such as diet and its components, all of which govern the behavior and function of the cells responsible for forming new bone. Several authors suggest that a high sucrose diet could change the calcium balance and bone composition in animals, altering hard tissue mineralization. The mechanism by which it occurs is unclear. Alveolar healing following tooth extraction has certain characteristics making this type of wound unique, in both animals and humans. The general aim of this study was to evaluate and quantify the biological response during alveolar healing following tooth extraction in rats fed on high sucrose diets, by means of osteocyte lacunae histomorphometry, counting empty lacunae and measuring areas of bone quiescence, formation and resorption. Forty-two Wistar rats of both sexes were divided into two groups: an experimental group fed on modified Stephan Harris diet (43% sucrose) and a control group fed on standard balanced diet. The animals were anesthetized and their left and right lower molars extracted. They were killed at 0 hours, 14, 28, 60 and 120 days. Samples were fixed, decalcified in EDTA and embedded in paraffin to prepare sections for optical microscopy which were stained with hematoxylin/eosin. Histomorphometric analysis showed significant differences in the size of osteocyte lacunae between groups at 28 and 60 days, with the experimental group having larger lacunae. There were more empty lacunae in the experimental group at 14 days, and no significant difference in the areas of bone activity. A high sucrose diet could modify the morphology and quality of bone tissue formed in the alveolus following tooth extraction.

  1. PV source based high voltage gain current fed converter

    Science.gov (United States)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  2. Anti-inflammatory and antioxidant effects of umbelliferone in chronic alcohol-fed rats

    Science.gov (United States)

    Sim, Mi-Ok; Lee, Hae-In; Ham, Ju Ri; Seo, Kwon-Il; Kim, Myung-Joo

    2015-01-01

    BACKGROUND/OBJECTIVES Inflammation is associated with various types of acute and chronic alcohol liver diseases. In this study, we examined whether umbelliferone (7-hydroxycoumarin, UF) ameliorates chronic alcohol-induced liver damage by modulating inflammatory response and the antioxidant system. METHODS Rats were fed a Liber-Decarli liquid diet containing 5% alcohol with or without UF (0.05 g/L) for 8 weeks, while normal rats received an isocaloric carbohydrate liquid diet. RESULTS Chronic alcohol intake significantly increased serum tumor necrosis factor-α (TNF-α) and interleukin 6 levels and decreased interleukin 10 level; however, UF supplementation reversed the cytokines related to liver damage. UF significantly suppressed hepatic lipopolysaccharide binding protein, toll-like receptor 4 (TLR4), nuclear factor kappa B, and TNF-α gene expression increases in response to chronic alcohol intake. Masson's trichrome staining revealed that UF improved mild hepatic fibrosis caused by alcohol, and UF also significantly increased the mRNA expressions and activities of superoxide dismutase and catalase in liver, and thus, decreased lipid peroxide and mitochondrial hydrogen peroxide levels. CONCLUSIONS The findings of this study indicate that UF protects against alcohol-induced liver damage by inhibiting the TLR4 signaling pathway and activating the antioxidant system. PMID:26244074

  3. Decreased reproductive rates in sheep fed a high selenium diet

    Science.gov (United States)

    High Se-containing forages grow on seleniferous soils in many parts of the United States and throughout the world. Selenium is an essential trace element that is required for many physiological processes but can also be either acutely or chronically toxic to livestock. Anecdotal reports of decrease...

  4. Hepatic toxicity assessment of cationic liposome exposure in healthy and chronic alcohol fed mice

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Jacobsen, Nicklas R.; Roursgaard, Martin

    2017-01-01

    or chronically alcohol fed mice. Additionally, the in vitro material-induced adverse effects (cytotoxicity, inflammation or albumin secretion) were all also minimal. The data from this study demonstrated that the intravenous injection of cationic liposomes does not cause hepatic toxicity. This investigation......, the question of potential toxicological effects needs to be addressed. In the present investigation, a cationic liposome with prospective for medical applications was constructed and thoroughly assessed for any material-induced hepatic adverse effects in vivo − in healthy and alcoholic hepatic disease models...... is important as it investigates the toxicity of a nano-sized material in a model of alcoholic hepatic disease in vitro and in vivo. This is an area of research in the field of nanotoxicology that is currently almost entirely overlooked....

  5. Kefiran reduces atherosclerosis in rabbits fed a high cholesterol diet.

    Science.gov (United States)

    Uchida, Masashi; Ishii, Itsuko; Inoue, Chika; Akisato, Yoshie; Watanabe, Kenta; Hosoyama, Saori; Toida, Toshihiko; Ariyoshi, Noritaka; Kitada, Mitsukazu

    2010-09-30

    Kefiran is an exopolysaccharide produced by Lactobacillus kefiranofaciens, and has been proposed to have many health-promoting properties. We investigated the antiatherogenic effect of kefiran on rabbits fed a high-cholesterol diet. Male New Zealand White rabbits were fed a 0.5% cholesterol diet without (control group, n = 7) or with kefiran (kefiran group, n = 8) for eight weeks. The aorta was analyzed by histochemistry and atherosclerotic lesions were quantified. Lipids and sugars in serum were measured. Foam cell formation of RAW264.7 by βVLDL derived from both groups of rabbits was also investigated. Cholesterol, triglyceride and phospholipids levels of serum and lipoprotein fractions were not significantly different between these groups. Atherosclerotic lesions of the aorta in the kefiran group were statistically lower than those of the control group, with marked differences in the abdominal aorta. T-lymphocytes were not detectable in the aorta of the kefiran group. Cholesterol contents in stools were almost identical in both groups. Cholesterol content in the liver of the kefiran group was statistically lower than in the control group. Galactose content of βVLDL derived from the kefiran group was higher, and the lipid peroxidation level was much lower than in the control group. RAW264.7 macrophages treated with βVLDL from the kefiran group showed a more spherical shape and accumulated statistically lower cholesterol than macrophages treated with βVLDL from the control group. Orally derived kefiran is absorbed in the blood. Kefiran prevents the onset and development of atherosclerosis in hypercholesterolemic rabbits by anti-inflammatory and anti-oxidant actions.

  6. Growth rate of sheep fed high fat ration

    Directory of Open Access Journals (Sweden)

    Darwinsyah Lubis

    1998-10-01

    Full Text Available Incorporating high amount of fats into the ration for ruminants will affect the rumen microbes adversely and will reducefiber digestion potential. To correct such negative effects, the free fatty acids used for feed should be bond with Ca++, so it canpassing through the rumen savely (rumen by-pass fat. To test the Ca-fat utilization biologically, 20 growing male Garut shee pwere used and fed with 4 type of isocaloric-isoprotein concentrate feed which were allotted based on a randomized block desig nwith 5 replications. The concentrate (C-A was a positive control diet, while C-B was substituted with 10% free fatty acids (negative control, C-C was substituted with 10% Ca-fat, and C-D with 15% Ca-fat. The concentrate feed was fed at 500 g/d, while forage (King grass was 4 kg/d. Results of the experiment showed that the negative effect of free fatty acids can be corrected if it was given in the form of Ca-fat. Growth rate curve indicating a good growing pattern, with average daily gain was 100.18, 87.68, 112.86, and 115.00 g/d (P0.05. Carcass production was relatively good, where for C-A, C-B, C-C, and C-D were 14.84, 14.68, 16.34, and 15.72 kg (P<0.05 respectively, with final live weights of 34.00, 31.74, 34.58, and 34.30 kg (P<0.05. It can be concluded that Ca-fat (rumen by-pass fat can be used as an energy source component for growing sheep diet, and give the best result at 10% substitution rate in concentrate feed.

  7. Distribution of orally administered and chronically fed sup(95m)Tc in Japanese quail tissues and eggs

    International Nuclear Information System (INIS)

    Thomas, J.M.; Cadwell, L.L.; Cataldo, D.A.; Garland, T.R.

    1986-01-01

    In the present study, male and female Japanese quail were chronically fed alfalfa grown on solutions containing TcO 4 which was mixed into a commercial turkey starter. The objective was to estimate concentration ratios and transfer coefficients from Tc incorporated into alfalfa tissue to quail eggs, edible tissues and other organs. (author)

  8. Selenium status in adult cats and dogs fed high levels of dietary inorganic and organic selenium

    NARCIS (Netherlands)

    Todd, S.E.; Ugarte, S.E.; Thomas, D.G.; Bosch, Guido; Hendriks, W.H.

    2012-01-01

    Cats (Felis catus) maintain greater blood Se concentrations compared with dogs (Canis familiaris) and, unlike dogs, show no signs of chronic Se toxicity (selenosis) when fed dietary organic Se (selenomethionine) concentrations of 10 μg/g DM. This study investigated the response of cats and dogs to

  9. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    Science.gov (United States)

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  10. Are agrochemicals present in high fructose corn syrup fed to honey bees (Apis mellifera L.)?

    Science.gov (United States)

    Honey bee colonies are commonly fed high fructose corn syrup (HFCS) as a nectar substitute. Many agrochemicals are applied to corn during cultivation including systemic neonicotinoids. Whether agrochemicals are present in HFCS fed to bees is unknown. Samples from the major manufacturers and distri...

  11. Effect of inulin supplementation in male mice fed with high fat diet on ...

    African Journals Online (AJOL)

    Purpose: To evaluate the preventive and therapeutic effects of inulin supplementation in Naval Medical Research Institute (NMRI) male mice fed with high fat diet. Methods: NMRI male mice (n = 36) were divided into three groups. Control (C1), obese (O1) and experimental mice (E1) were fed during 8 weeks as follows: C1 ...

  12. Tea decoctions prevent body weight gain in rats fed high-fat diet; black tea being more efficient than green tea

    Directory of Open Access Journals (Sweden)

    Mohamed Hédi Hamdaoui

    2016-12-01

    Conclusion: Chronic GTD and BTD prevent fat storage in the liver, lowering blood lipids and glucose, increasing fecal excretion of TG, decreasing AT and weight gains in rats fed HFD, with a strong effect of BTD compared to GTD. Therefore, these beverages containing high amounts of TPC and caffeine could constitute a natural alternative in the prevention of obesity.

  13. Pump-Fed, Compact, High Performance Green Propulsion System for Secondary Payloads, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its micropump-fed propulsion technology to the development of a low cost, compact, low tank pressure, high performance LPM-103S...

  14. OMASAL MORPHOLOGY OF DAIRY COWS FED WITH HIGH OR LOW GRAIN CONTENT DIET PRIOR PARTURITION

    Directory of Open Access Journals (Sweden)

    Danilo de Oliveira Rocha Bhering Santoro

    2015-12-01

    Full Text Available ABSTRACT Little is known about the morphological response of the omasum in dairy cows that consume a high-energy diet pre-partum. The aim of this study was to investigate whether a transitional diet with high grain content is able to induce changes in omasum morphology. Six weeks before the expected calving, four Holstein cows were fed a standardization diet, and four weeks before delivery, the cows were fed a diet with high grain content (HGC or low (LGC grain content. After calving, all of the cows were fed a high energy lactation diet. The cows that were fed the HGC diet pre-partum had higher dry matter and nutrient intake than the cows that were fed the LGC diet. The mitotic index of the omasum epithelium was higher than the mitotic index in the rumen, but apparently the response to the diet stimuli was slower. In the cows that were fed the HGC diet, the omasum papillae were taller one week before parturition and two weeks post-partum. Cows that were fed the HGC diet had a thinner epithelium due to thinner non-keratinized layers of the omasum epithelium. We conclude that the omasum mucosa of dairy cows responds to the stimuli of a pre-partum HGC diet, which was indicated by the greater height of the omasum papillae and by the reduced thickness of the omasum epithelium. It seems that the mitotic index responds a little more slowly, but the response to the diet stimuli is stronger in the omasum epithelium than in the rumen.

  15. Biological response of rats fed with tofu treated with high hydrostatic pressure.

    Science.gov (United States)

    Préstamo, G; Arroyo, G

    2000-10-01

    Emerging technologies for food preservation have arisen in recent years, such as high-pressure (HP) hydrostatic treatment, and the biological response for this kind of food preservation is not well-known. Forty female rats (six weeks old) were used in the experiment to evaluate the biological effects of HP treatment of tofu. The animals were divided into groups that were fed with tofu (untreated), tofu treated with HP, and conventional food (as control) for 28 days. The glucose level, mineral content (calcium, potassium, zinc, and magnesium), shinbone maximum shear force, weight of the body, and weight of organs (heart, liver, spleen, and kidneys) were analyzed. The biological response for the rats was that significant differences were found in the calcium amount determined on the serum of the rats fed with untreated tofu and those fed with tofu treated with HP, and the calcium amount was lower on the rats fed with tofu treated with HP. Also, there were significant differences in the weight of the liver, and it was lower in the rats fed with tofu treated with HP. It was quite remarkable how the weight of the body and organs were smaller in the rats fed with tofu in comparison to the weight of the control rats. In the other components assayed no significant differences were found. HP produces a potential effect on tofu as it is observed in the rats response to the tofu treated with HP.

  16. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota...

  17. [Co-composting high moisture vegetable waste and flower waste in a sequential fed operation].

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-11-01

    Co-composting of high moisture vegetable wastes (celery and cabbage) and flower wastes (carnation) were studied in a sequential fed bed. The preliminary materials of composting were celery and carnation wastes. The sequential fed materials of composting were cabbage wastes and were fed every 4 days. Moisture content of mixture materials was between 60% and 70%. Composting was done in an aerobic static bed of composting based temperature feedback and control via aeration rate regulation. Aeration was ended when temperature of the pile was about 40 degrees C. Changes of composting of temperature, aeration rate, water content, organic matter, ash, pH, volume, NH4(+)-N, and NO3(-)-N were studied. Results show that co-composting of high moisture vegetable wastes and flower wastes, in a sequential fed aerobic static bed based temperature feedback and control via aeration rate regulation, can stabilize organic matter and removal water rapidly. The sequential fed operation are effective to overcome the difficult which traditional composting cannot applied successfully where high moisture vegetable wastes in more excess of flower wastes, such as Dianchi coastal.

  18. Metabolic and cardiac changes in high cholesterol-fructose-fed rats

    DEFF Research Database (Denmark)

    Axelsen, Lene N; Pedersen, Henrik D; Petersen, Jørgen S

    2010-01-01

    Introduction: High cholesterol-fructose (HCF) fed rats have previously been described as an animal model of impaired cardiac insulin signaling and decreased contractile performance. In this study, we evaluated the metabolic and cardiac effects of a HCF diet in rats. Methods: Male Sprague-Dawley r......Introduction: High cholesterol-fructose (HCF) fed rats have previously been described as an animal model of impaired cardiac insulin signaling and decreased contractile performance. In this study, we evaluated the metabolic and cardiac effects of a HCF diet in rats. Methods: Male Sprague...

  19. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

    Science.gov (United States)

    Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H

    2013-04-01

    An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. High solid fed-batch butanol fermentation with simultaneous product recovery: part II - process integration.

    Science.gov (United States)

    In these studies liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed-batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level o...

  1. Hypolipidemic effect of fruit fibers in rats fed with high dietary fat.

    Science.gov (United States)

    Esmael, O A; Sonbul, S N; Kumosani, T A; Moselhy, S S

    2015-03-01

    The hypolipidemic effect of 10% fruit fibers in rats fed with high-fat diet (HFD) was evaluated. This study was conducted on a total of 50 male Albino rats divided into 10 equal groups fed with different types of dietary fruits. The feeding period lasted for 24 weeks. Fasting blood samples were collected and sera separated and subjected to lipid profile assay and atherogenic index. In addition, total antioxidant activity of different fruits was determined. The results obtained showed that pomegranate had higher content of antioxidants followed by apple, strawberry and guava compared with other fruits. Rats fed with 20% coconut oil showed a highly significant elevation in the levels of serum total cholesterol, low-density lipoprotein cholesterol and atherogenic factor while the level of high-density lipoprotein cholesterol was significantly decreased when compared with control rats. Histological examination revealed that there was a large lipid and cholesterol deposition in the livers of rats fed with HFD. The potential in lowering the levels of plasma total cholesterol and triglyceride is in the following order: pomegranate > apple > strawberry > guava > papaya > mandarin and orange. Accumulation of hepatic lipid droplets was diminished when compared with the HFD group. Also, antiatherogenic is better than the untreated groups. Accordingly these hypolipidemic effects may be due to high-fiber content and antioxidant activity of these fruits. © The Author(s) 2012.

  2. Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats

    Directory of Open Access Journals (Sweden)

    Alireza Sadeghipour

    2014-01-01

    Full Text Available Many herbal medicines have been recommended for the treatment of dyslipidemia. The antilipidemic effect of hydroethanolic extract of pomegranate peel (Punica granatum L. was investigated in high lipid diet fed male rats. Intraperitoneally administration of pomegranate peel extract (50, 100, 200, and 300 mg/kg body weight for 23 days on the levels of serum cholesterol, triglycerides, LDL, HDL, alkaline phosphatase (AP, aspartate aminotransferase (AST, and alanine aminotransferase (ALT in high lipid diet fed male rats was evaluated. Treatment of pomegranate extract decreased body weight in treated rats, significantly. Administration of the plant extract significantly decreased serum total cholesterol, triglycerides, LDL-C, alkaline phosphatise, AST, and ALT levels, whereas it increased serum HDL-C in high lipid diet fed rats in comparison to saline control group. Also, histopathological study showed that treatment of pomegranate peel extract attenuates liver damage in high lipid diet fed rats in comparison to saline group. It is concluded that the plant should be considered as an excellent candidate for future studies on dyslipidemia.

  3. Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats

    Science.gov (United States)

    Sadeghipour, Alireza; Ilchizadeh Kavgani, Ali; Ghahramani, Reza; Shahabzadeh, Saleh; Anissian, Ali

    2014-01-01

    Many herbal medicines have been recommended for the treatment of dyslipidemia. The antilipidemic effect of hydroethanolic extract of pomegranate peel (Punica granatum L.) was investigated in high lipid diet fed male rats. Intraperitoneally administration of pomegranate peel extract (50, 100, 200, and 300 mg/kg body weight) for 23 days on the levels of serum cholesterol, triglycerides, LDL, HDL, alkaline phosphatase (AP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in high lipid diet fed male rats was evaluated. Treatment of pomegranate extract decreased body weight in treated rats, significantly. Administration of the plant extract significantly decreased serum total cholesterol, triglycerides, LDL-C, alkaline phosphatise, AST, and ALT levels, whereas it increased serum HDL-C in high lipid diet fed rats in comparison to saline control group. Also, histopathological study showed that treatment of pomegranate peel extract attenuates liver damage in high lipid diet fed rats in comparison to saline group. It is concluded that the plant should be considered as an excellent candidate for future studies on dyslipidemia. PMID:25295067

  4. High Order Sliding Mode Control of Doubly-fed Induction Generator under Unbalanced Grid Faults

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2013-01-01

    This paper deals with a doubly-fed induction generator-based (DFIG) wind turbine system under grid fault conditions such as: unbalanced grid voltage, three-phase grid fault, using a high order sliding mode control (SMC). A second order sliding mode controller, which is robust with respect...

  5. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Weng-Yew Wong

    2012-10-01

    Full Text Available Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome.

  6. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters.

    Science.gov (United States)

    Lecomte, Virginie; Kaakoush, Nadeem O; Maloney, Christopher A; Raipuria, Mukesh; Huinao, Karina D; Mitchell, Hazel M; Morris, Margaret J

    2015-01-01

    The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (Pdevelopment of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.

  7. High Temperature- and High Pressure-Processed Garlic Improves Lipid Profiles in Rats Fed High Cholesterol Diets

    Science.gov (United States)

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong

    2012-01-01

    Abstract Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague–Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (Pgarlic may be useful as a functional food to improve lipid profiles. PMID:22404600

  8. Extract of mangosteen increases high density lipoprotein levels in rats fed high lipid

    Directory of Open Access Journals (Sweden)

    Dwi Laksono Adiputro

    2013-04-01

    Full Text Available Background In cardiovascular medicine, Garcinia mangostana has been used as an antioxidant to inhibit oxidation of low density lipoproteins and as an antiobesity agent. The effect of Garcinia mangostana on hyperlipidemia is unknown. The aim of this study was to evaluate the effect of an ethanolic extract of Garcinia mangostana pericarp on lipid profile in rats fed a high lipid diet. Methods A total of 40 rats were divided into five groups control, high lipid diet, and high lipid diet + ethanolic extract of Garcinia mangostana pericarp at dosages of 200, 400, and 800 mg/kg body weight. The control group received a standard diet for 60 days. The high lipid diet group received standard diet plus egg yolk, goat fat, cholic acid, and pig fat for 60 days with or without ethanolic extract of Garcinia mangostana pericarp by the oral route. After 60 days, rats were anesthesized with ether for collection of blood by cardiac puncture. Analysis of blood lipid profile comprised colorimetric determination of cholesterol, triglyceride, low density lipoprotein (LDL, and high density lipoprotein (HDL. Results From the results of one-way ANOVA it was concluded that there were significant between-group differences in cholesterol, trygliceride, LDL, and HDL levels (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly decreased cholesterol, trygliceride, and LDL levels, starting at 400 mg/kg body weight (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly increased HDL level starting at 200 mg/kg body weight (p=0.000. Conclusion Ethanolic extract of Garcinia mangostana pericarp has a beneficial effect on lipid profile in rats on a high lipid diet.

  9. Extract of mangosteen increases high density lipoprotein levels in rats fed high lipid

    Directory of Open Access Journals (Sweden)

    Dwi Laksono Adiputro

    2015-12-01

    Full Text Available BACKGROUND In cardiovascular medicine, Garcinia mangostana has been used as an antioxidant to inhibit oxidation of low density lipoproteins and as an antiobesity agent. The effect of Garcinia mangostana on hyperlipidemia is unknown. The aim of this study was to evaluate the effect of an ethanolic extract of Garcinia mangostana pericarp on lipid profile in rats fed a high lipid diet. METHODS A total of 40 rats were divided into five groups control, high lipid diet, and high lipid diet + ethanolic extract of Garcinia mangostana pericarp at dosages of 200, 400, and 800 mg/kg body weight. The control group received a standard diet for 60 days. The high lipid diet group received standard diet plus egg yolk, goat fat, cholic acid, and pig fat for 60 days with or without ethanolic extract of Garcinia mangostana pericarp by the oral route. After 60 days, rats were anesthesized with ether for collection of blood by cardiac puncture. Analysis of blood lipid profile comprised colorimetric determination of cholesterol, triglyceride, low density lipoprotein (LDL, and high density lipoprotein (HDL. RESULTS From the results of one-way ANOVA it was concluded that there were significant between-group differences in cholesterol, trygliceride, LDL, and HDL levels (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly decreased cholesterol, trygliceride, and LDL levels, starting at 400 mg/kg body weight (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly increased HDL level starting at 200 mg/kg body weight (p=0.000. CONCLUSION Ethanolic extract of Garcinia mangostana pericarp has a beneficial effect on lipid profile in rats on a high lipid diet.

  10. Effects of Shiitake Intake on Serum Lipids in Rats Fed Different High-Oil or High-Fat Diets.

    Science.gov (United States)

    Asada, Norihiko; Kairiku, Rumi; Tobo, Mika; Ono, Akifumi

    2018-04-27

    Shiitake (Lentinula edodes) extract, eritadenine, has been shown to reduce cholesterol levels, and its hypocholesterolemic actions are involved in the metabolism of methionine. However, the mechanisms by which eritadenine affects cholesterol metabolism in animals fed a high-fat diet containing different sources of lipids have not yet been elucidated in detail. This study was conducted to investigate the effects of shiitake supplementation on serum lipid concentrations in rats fed a diet including a high amount of a plant oil (HO [high oil] and HOS [high oil with shiitake] groups), animal fat (HF [high fat] and HFS [high fat with shiitake] groups), or MCT- (medium-chain triglyceride-) rich plant oil (HM [high MCT] and HMS [high MCT with shiitake] groups). Rats in the HOS, HFS, and HMS groups were fed shiitake. When rats were fed a diet containing shiitake, serum triglyceride, cholesterol levels, and LCAT (lecithin-cholesterol acyltransferase) activities were lower in rats given MCT-rich plant oil than in those that consumed lard. The lipid type in the diet with shiitake also affected serum cholesterol levels and LCAT activities. The diet containing MCT-rich plant oil showed the greatest rates of decrease in all serum lipid profiles and LCAT activities. These results suggest that shiitake and MCT-rich plant oil work together to reduce lipid profiles and LCAT activity in serum.

  11. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets.

    Science.gov (United States)

    Sadowska, Julita; Gębczyński, Andrzej K; Konarzewski, Marek

    2017-01-01

    Factors affecting contribution of spontaneous physical activity (SPA; activity associated with everyday tasks) to energy balance of humans are not well understood, as it is not clear whether low activity is related to dietary habits, precedes obesity or is a result of thereof. In particular, human studies on SPA and basal metabolic rates (BMR, accounting for >50% of human energy budget) and their associations with diet composition, metabolic thrift and obesity are equivocal. To clarify these ambiguities we used a unique animal model-mice selected for divergent BMR rates (the H-BMR and L-BMR line type) presenting a 50% between-line type difference in the primary selected trait. Males of each line type were divided into three groups and fed either a high fat, high carb or a control diet. They then spent 4 months in individual cages under conditions emulating human "sedentary lifestyle", with SPA followed every month and measurements of metabolic risk indicators (body fat mass %, blood lipid profile, fasting blood glucose levels and oxidative damage in the livers, kidneys and hearts) taken at the end of study. Mice with genetically determined high BMR assimilated more energy and had higher SPA irrespective of type of diet. H-BMR individuals were characterized by lower dry body fat mass %, better lipid profile and lower fasting blood glucose levels, but higher oxidative damage in the livers and hearts. Genetically determined high BMR may be a protective factor against diet-induced obesity and most of the metabolic syndrome indicators. Elevated spontaneous activity is correlated with high BMR, and constitutes an important factor affecting individual capability to sustain energy balance even under energy dense diets.

  12. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  13. 75 FR 70289 - Certain Coated Paper Suitable For High-Quality Print Graphics Using Sheet-Fed Presses From China...

    Science.gov (United States)

    2010-11-17

    ...)] Certain Coated Paper Suitable For High-Quality Print Graphics Using Sheet-Fed Presses From China and... paper suitable for high-quality print graphics using sheet-fed presses (``certain coated paper'') from... paper industry is materially injured by reason of imports of the subject merchandise from China and...

  14. Niacin increases adiponectin and decreases adipose tissue inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Desiree Wanders

    Full Text Available To determine the effects of niacin on adiponectin and markers of adipose tissue inflammation in a mouse model of obesity.Male C57BL/6 mice were placed on a control or high-fat diet (HFD and were maintained on such diets for the duration of the study. After 6 weeks on the control or high fat diets, vehicle or niacin treatments were initiated and maintained for 5 weeks. Identical studies were conducted concurrently in HCA2 (-/- (niacin receptor(-/- mice.Niacin increased serum concentrations of the anti-inflammatory adipokine, adiponectin by 21% in HFD-fed wild-type mice, but had no effect on lean wild-type or lean or HFD-fed HCA2 (-/- mice. Niacin increased adiponectin gene and protein expression in the HFD-fed wild-type mice only. The increases in adiponectin serum concentrations, gene and protein expression occurred independently of changes in expression of PPARγ C/EBPα or SREBP-1c (key transcription factors known to positively regulate adiponectin gene transcription in the adipose tissue. Further, niacin had no effect on adipose tissue expression of ERp44, Ero1-Lα, or DsbA-L (key ER chaperones involved in adiponectin production and secretion. However, niacin treatment attenuated HFD-induced increases in adipose tissue gene expression of MCP-1 and IL-1β in the wild-type HFD-fed mice. Niacin also reduced the expression of the pro-inflammatory M1 macrophage marker CD11c in HFD-fed wild-type mice.Niacin treatment attenuates obesity-induced adipose tissue inflammation through increased adiponectin and anti-inflammatory cytokine expression and reduced pro-inflammatory cytokine expression in a niacin receptor-dependent manner.

  15. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  16. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats.

    Science.gov (United States)

    Liu, Yixuan; Song, An; Zang, Shasha; Wang, Chao; Song, Guangyao; Li, Xiaoling; Zhu, Yajun; Yu, Xian; Li, Ling; Wang, Yun; Duan, Liyuan

    2015-03-13

    Jinlida (JLD) is a compound preparation formulated on the basis of traditional Chinese medicine and is officially approved for the treatment of type 2 diabetes (T2DM) in China. We aimed to elucidate the mechanism of JLD treatment, in comparison to metformin treatment, on ameliorating insulin sensitivity in insulin resistant rats and to reveal its anti-oxidant properties. Rats were fed with standard or high-fat diet for 6 weeks. After 6 weeks, the high-fat fed rats were subdivided into five groups and orally fed with JLD or metformin for 8 weeks. Fasting blood glucose (FBG), fasting blood insulin, blood lipid and antioxidant enzymes were measured. Intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic euglycemic clamp technique were carried out to measure insulin sensitivity. Gene expression of the major signaling pathway molecules that regulate glucose uptake, including insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT), and glucose transporter type 2 (GLUT2), were assessed by quantitative RT-PCR. The totle and phosphorylation expression of IRS-1, AKT, JNK and p38MAPK were determined by Western blot. Treatment with JLD effectively ameliorated the high-fat induced hyperglycemia, hyperinsulinemia and hyperlipidemia. Similar to metformin, the high insulin resistance in high-fat fed rats was significantly decreased by JLD treatment. JLD displayed anti-oxidant effects, coupled with up-regulation of the insulin signaling pathway. The attenuation of hepatic oxidative stress by JLD treatment was associated with reduced phosphorylation protein levels of JNK and p38MAPK. Treatment with JLD could moderate glucose and lipid metabolism as well as reduce hepatic oxidative stress, most likely through the JNK and p38MAPK pathways. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P

  18. Equisetum sylvaticum base reduces atherosclerosis risk factors in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Cheng-He Lin

    2014-08-01

    Full Text Available We identify an Equisetum sylvaticum alkaloid (ESA derived from E. hyemale, which has robust antihyperlipidemic effects in rats fed a high-fat diet. ESA was isolated from E. hyemale and identified by IR, 13C NMR and 1H NMR. Rats were induced to hyperlipidemia and subjected to ESA treatment. In hyperlipidemic model, fed with a high-fat diet, the blood levels of TC, TG and LDL-C were increased. The administration of ESA (20 or 40 mg/kg to those rats significantly improved the HDL-C level and reduced the levels of TC, TG, LDL-C. The atherosclerosis index and atherosclerosis risk of these rats were significantly reduced by ESA. In addition, the administration of ESA in rats increased the activity of SOD and decreased the level of MDA. These results reveal the antihyperlipidemic and anti-oxidative effects of ESA in vivo.

  19. Chronic high-sucrose diet increases fibroblast growth factor 21 production and energy expenditure in mice.

    Science.gov (United States)

    Maekawa, Ryuya; Seino, Yusuke; Ogata, Hidetada; Murase, Masatoshi; Iida, Atsushi; Hosokawa, Kaori; Joo, Erina; Harada, Norio; Tsunekawa, Shin; Hamada, Yoji; Oiso, Yutaka; Inagaki, Nobuya; Hayashi, Yoshitaka; Arima, Hiroshi

    2017-11-01

    Excess carbohydrate intake causes obesity in humans. On the other hand, acute administration of fructose, glucose or sucrose in experimental animals has been shown to increase the plasma concentration of anti-obesity hormones such as glucagon-like peptide 1 (GLP-1) and Fibroblast growth factor 21 (FGF21), which contribute to reducing body weight. However, the secretion and action of GLP-1 and FGF21 in mice chronically fed a high-sucrose diet has not been investigated. To address the role of anti-obesity hormones in response to increased sucrose intake, we analyzed mice fed a high-sucrose diet, a high-starch diet or a normal diet for 15 weeks. Mice fed a high-sucrose diet showed resistance to body weight gain, in comparison with mice fed a high-starch diet or control diet, due to increased energy expenditure. Plasma FGF21 levels were highest among the three groups in mice fed a high-sucrose diet, whereas no significant difference in GLP-1 levels was observed. Expression levels of uncoupling protein 1 (UCP-1), FGF receptor 1c (FGFR1c) and β-klotho (KLB) mRNA in brown adipose tissue were significantly increased in high sucrose-fed mice, suggesting increases in FGF21 sensitivity and energy expenditure. Expression of carbohydrate responsive element binding protein (ChREBP) mRNA in liver and brown adipose tissue was also increased in high sucrose-fed mice. These results indicate that FGF21 production in liver and brown adipose tissue is increased in high-sucrose diet and participates in resistance to weight gain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Mehendale, Harihara M.

    2008-01-01

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD 10 dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen led to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-α, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 ± 14.0 nmol/min/g heart in ND versus 400.2 ± 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-α2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating the JAK/STAT3

  1. Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes.

    Science.gov (United States)

    Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun

    2015-10-10

    Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    Science.gov (United States)

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  3. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats.

    Science.gov (United States)

    Kumar, Senthil A; Ward, Leigh C; Brown, Lindsay

    2016-11-01

    Prebiotics alter bacterial content in the colon, and therefore could be useful for obesity management. We investigated the changes following addition of inulin oligofructose (IO) in the food of rats fed either a corn starch (C) diet or a high-carbohydrate, high-fat (H) diet as a model of diet-induced metabolic syndrome. IO did not affect food intake, but reduced body weight gain by 5·3 and 12·3 % in corn starch+inulin oligofructose (CIO) and high-carbohydrate, high-fat with inulin oligofructose (HIO) rats, respectively. IO reduced plasma concentrations of free fatty acids by 26·2 % and TAG by 75·8 % in HIO rats. IO increased faecal output by 93·2 %, faecal lipid excretion by 37·9 % and weight of caecum by 23·4 % and colon by 41·5 % in HIO rats. IO improved ileal morphology by reducing inflammation and improving the density of crypt cells in HIO rats. IO attenuated H diet-induced increases in abdominal fat pads (C 275 (sem 19), CIO 264 (sem 40), H 688 (sem 55), HIO 419 (sem 32) mg/mm tibial length), fasting blood glucose concentrations (C 4·5 (sem 0·1), CIO 4·2 (sem 0·1), H 5·2 (sem 0·1), HIO 4·3 (sem 0·1) mmol/l), systolic blood pressure (C 124 (sem 2), CIO 118 (sem 2), H 152 (sem 2), HIO 123 (sem 3) mmHg), left ventricular diastolic stiffness (C 22·9 (sem 0·6), CIO 22·9 (sem 0·5), H 27·8 (sem 0·5), HIO 22·6 (sem 1·2)) and plasma alanine transaminase (C 29·6 (sem 2·8), CIO 32·1 (sem 3·0), H 43·9 (sem 2·6), HIO 33·6 (sem 2·0) U/l). IO attenuated H-induced increases in inflammatory cell infiltration in the heart and liver, lipid droplets in the liver and plasma lipids as well as impaired glucose and insulin tolerance. These results suggest that increasing soluble fibre intake with IO improves signs of the metabolic syndrome by decreasing gastrointestinal carbohydrate and lipid uptake.

  4. Utility and reliability of non-invasive muscle function tests in high-fat-fed mice.

    Science.gov (United States)

    Martinez-Huenchullan, Sergio F; McLennan, Susan V; Ban, Linda A; Morsch, Marco; Twigg, Stephen M; Tam, Charmaine S

    2017-07-01

    What is the central question of this study? Non-invasive muscle function tests have not been validated for use in the study of muscle performance in high-fat-fed mice. What is the main finding and its importance? This study shows that grip strength, hang wire and four-limb hanging tests are able to discriminate the muscle performance between chow-fed and high-fat-fed mice at different time points, with grip strength being reliable after 5, 10 and 20 weeks of dietary intervention. Non-invasive tests are commonly used for assessing muscle function in animal models. The value of these tests in obesity, a condition where muscle strength is reduced, is unclear. We investigated the utility of three non-invasive muscle function tests, namely grip strength (GS), hang wire (HW) and four-limb hanging (FLH), in C57BL/6 mice fed chow (chow group, n = 48) or a high-fat diet (HFD group, n = 48) for 20 weeks. Muscle function tests were performed at 5, 10 and 20 weeks. After 10 and 20 weeks, HFD mice had significantly reduced GS (in newtons; mean ± SD: 10 weeks chow, 1.89 ± 0.1 and HFD, 1.79 ± 0.1; 20 weeks chow, 1.99 ± 0.1 and HFD, 1.75 ± 0.1), FLH [in seconds per gram body weight; median (interquartile range): 10 weeks chow, 2552 (1337-4964) and HFD, 1230 (749-1994); 20 weeks chow, 2048 (765-3864) and HFD, 1036 (717-1855)] and HW reaches [n; median (interquartile range): 10 weeks chow, 4 (2-5) and HFD, 2 (1-3); 20 weeks chow, 3 (1-5) and HFD, 1 (0-2)] and higher falls [n; median (interquartile range): 10 weeks chow, 0 (0-2) and HFD, 3 (1-7); 20 weeks chow, 1 (0-4) and HFD, 8 (5-10)]. Grip strength was reliable in both dietary groups [intraclass correlation coefficient (ICC) = 0.5-0.8; P tests are valuable and reliable tools for assessment of muscle strength and function in high-fat-fed mice. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  5. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Guodong Zheng

    Full Text Available In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD, and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK, carnitine acyltransferase (CAT and hormone-sensitive lipase (HSL were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2 was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases.

  6. Inverter fed high-speed solid-rotor induction motors for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Huppunen, J.; Pyrhoenen, J. [Lappeenranta Univ. of Technology (LUT) (Finland); Alamaeki, J. [Rotatek Finland Oy, Lappeenranta (Finland)

    2000-07-01

    An inverter fed 250 kW, 9000 min{sup -1} solid-rotor induction motor drive for an industrial compressor application is introduced. New designing methods for the electric motor have made it possible to create a high efficiency high-speed solid-rotor induction motor. The results of the research work are new motor structures that are also easy and economical to manufacture. This technology is very reliable and economical for compressor and pump applications in power range from 100 kW to 1000 kW. (orig.)

  7. Effect of equipotent doses of bupivacaine and ropivacaine in high-fat diet fed neonatal rodent model.

    Science.gov (United States)

    Lian, Ying-Dong; Chen, Zong-Xiang; Zhu, Kang-Ru; Sun, Shu-Yin; Zhu, Li-Ping

    The increase in the prevalence of obesity presents a significant health and economic problem. Obesity has been reported to be a major contributor to variety of chronic diseases. Childhood obesity has been rising over the past decades leading to various complications in health. Millions of infants and children undergo surgery every year on various health grounds. The present investigation was undertaken to evaluate the effect of spinal anesthesia of equipotent doses of ropivacaine and bupivacaine on over-weight neonatal rats. The Sprague-Dawley rat pups were overfed on high fat diet to induce obesity. Behavioral assessments for sensory and motor blockade was made by evaluating thermal and mechanical withdrawal latencies at various time intervals following intrathecal injections of bupivacaine (5.0mg·kg -1 ) and ropivacaine (7.5mg·kg -1 ) in P14 rats. Spinal tissue was analyzed for apoptosis by determination of activated caspase-3 using monoclonal anti-activated caspase-3 and Fluoro-Jade C staining. Long-term spinal function in P30 rat pups was evaluated. Exposure to intrathecal anesthesia in P14 increased thermal and mechanical latencies and was observed to increase apoptosis as presented by increase in activated caspase-3 and Fluro-Jade C positive cells. Significant alterations in spinal function were observed in high fat diet-fed pups as against non-obese control pups that were on standard diet. Bupivacaine produced more pronounced apoptotic effects on P14 pups; ropivacaine however produced long lasting effects as evidenced in motor function tests at P30. Ropivacaine and bupivacaine induced spinal toxicity that was more pronounced in over-fed rat pups as against normal controls. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. Effect of equipotent doses of bupivacaine and ropivacaine in high-fat diet fed neonatal rodent model

    Directory of Open Access Journals (Sweden)

    Ying-Dong Lian

    Full Text Available Abstract Objectives: The increase in the prevalence of obesity presents a significant health and economic problem. Obesity has been reported to be a major contributor to variety of chronic diseases. Childhood obesity has been rising over the past decades leading to various complications in health. Millions of infants and children undergo surgery every year on various health grounds. The present investigation was undertaken to evaluate the effect of spinal anesthesia of equipotent doses of ropivacaine and bupivacaine on over-weight neonatal rats. Methods: The Sprague-Dawley rat pups were overfed on high fat diet to induce obesity. Behavioral assessments for sensory and motor blockade was made by evaluating thermal and mechanical withdrawal latencies at various time intervals following intrathecal injections of bupivacaine (5.0 mg·kg-1 and ropivacaine (7.5 mg·kg-1 in P14 rats. Spinal tissue was analyzed for apoptosis by determination of activated caspase-3 using monoclonal anti-activated caspase-3 and Fluoro-Jade C staining. Long-term spinal function in P30 rat pups was evaluated. Results: Exposure to intrathecal anesthesia in P14 increased thermal and mechanical latencies and was observed to increase apoptosis as presented by increase in activated caspase-3 and Fluro-Jade C positive cells. Significant alterations in spinal function were observed in high fat diet-fed pups as against non-obese control pups that were on standard diet. Bupivacaine produced more pronounced apoptotic effects on P14 pups; ropivacaine however produced long lasting effects as evidenced in motor function tests at P30. Conclusion: Ropivacaine and bupivacaine induced spinal toxicity that was more pronounced in over-fed rat pups as against normal controls.

  9. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters.

    Directory of Open Access Journals (Sweden)

    Virginie Lecomte

    Full Text Available The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001, this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.

  10. EGb761, an extract of Ginkgo biloba leaves, reduces insulin resistance in a high-fat-fed mouse model

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    2011-06-01

    Full Text Available EGb761, a standardized and well-defined product extract of Ginkgo biloba leaves, has beneficial effects on the treatment of multiple diseases, including diabetes and dyslipidemia. However, it is still unclear whether EGb761 can increase insulin sensitivity. The objectives of the present study are to evaluate the effects of EGb761 on insulin sensitivity in an obese and insulin-resistant mouse model, established through chronic feeding of C57BL/6J mice with a high-fat diet (HFD, and to explore potential mechanisms. Mice fed with HFD for 18 weeks (starting from 4 weeks of age developed obesity, dyslipidemia (as indicated by biochemical measurements of blood glucose, triglyceride (TG, total cholesterol (TC, and free fatty acids (FFA, and insulin resistance (as determined by the oral glucose tolerance test (OGTT and the homeostasis model assessment of insulin resistance (HOMA-IR index, compared to control mice fed with a standard laboratory chow. Oral treatment of the HFD-fed mice with EGb761, at low (100 mg/kg, medium (200 mg/kg, or high (400 mg/kg doses, via oral gavage (once daily for 8 weeks (starting from 26 weeks of age dose-dependently enhanced glucose tolerance in OGTT, and decreased both the insulin levels (by 29%, 55%, and 70%, respectively, and the HOMA-IR index values (by 50%, 69%, and 80%, respectively. EGb761 treatment also ameliorated HFD-induced obesity, dyslipidemia, and liver injury, as indicated by decreases in body weight (by 4%, 11%, and 16%, respectively, blood TC levels (by 23%, 32%, and 37%, respectively, blood TG levels (by 17%, 23%, and 33%, respectively, blood FAA levels (by 35%, 38%, and 46%, respectively, and liver index (liver weight/body weight values (by 12.8%, 25%, and 28%, respectively in the low, medium, and high EGb761 dose groups, respectively. In further mechanism studies, EGb761 was found to protect hepatic insulin receptor β and insulin receptor substrate 1 from HFD-induced degradation, and to keep the AMP

  11. High serum enalaprilat in chronic renal failure

    DEFF Research Database (Denmark)

    Elung-Jensen, T; Heisterberg, J; Kamper, A L

    2001-01-01

    renal failure. METHODS: Fifty nine out-patients with plasma creatinine >150 micromol/L and chronic antihypertensive treatment with enalapril were investigated, in a cross-sectional design. RESULTS: Median glomerular filtration rate (GFR) was 23(range 6-60) ml/minute/1.73 m2. The daily dose of enalapril......-68) ml/minute and correlated linearly with GFR (r=0.86, p=0.003). Intra-subject day-to-day variation in trough concentrations was 19.7%. CONCLUSION: Patients with chronic renal failure given small or moderately high doses of enalapril may thus have markedly elevated levels of serum enalaprilat. Whether...

  12. Whey Protein Reduces Early Life Weight Gain in Mice Fed a High-Fat Diet

    Science.gov (United States)

    Tranberg, Britt; Hellgren, Lars I.; Lykkesfeldt, Jens; Sejrsen, Kristen; Jeamet, Aymeric; Rune, Ida; Ellekilde, Merete; Nielsen, Dennis S.; Hansen, Axel Kornerup

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (Pwhey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, Pwhey group (Pwhey compared to casein (Pwhey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey. PMID:23940754

  13. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.

  14. Prolonged decrease of adipocyte size after rosiglitazone treatment in high- and low-fat-fed rats.

    Science.gov (United States)

    Johnson, Julia A; Trasino, Steven E; Ferrante, Anthony W; Vasselli, Joseph R

    2007-11-01

    The anti-diabetic thiazolidinediones (TZDs) stimulate adipocyte differentiation and decrease mean adipocyte size. However, whether these smaller, more insulin-sensitive adipocytes maintain their size after TZD therapy is discontinued has not been studied. Adult female Sprague-Dawley rats were fed a low-fat (10% fat) diet or, to elevate body weight (BW), a high-fat (HF) diet (45% fat) for 6 weeks. Rats were initially randomized to groups (n = 12) fed either low-fat or HF diets, with or without the TZD rosiglitazone (ROSI; 5 mg/kg per day), for 6 weeks. ROSI was then discontinued, and all animals were fed HF for another 6 weeks before sacrifice. Retroperitoneal (RP) adipose tissue morphology was determined from tissue collected by serial biopsies before and after 6 weeks of ROSI treatment and at sacrifice. Measures of BW and adiposity did not differ among groups 6 weeks after stopping ROSI treatment. However, during treatment, ROSI in both diets significantly decreased RP adipocyte size and increased RP DNA content, and these effects continued to be observed after discontinuing treatment. ROSI administration also decreased circulating insulin, leptin, and triglycerides and increased circulating adiponectin levels; however, these effects were reversed on stopping treatment. These results demonstrated that TZD-induced effects on adipocyte size and number were maintained after discontinuing treatment, even with consumption of an obesigenic diet. However, additional studies are needed to determine whether TZD-treated animals eventually achieve an adipocyte size similar to that of untreated animals at the expense of a higher BW.

  15. Lipoprotein lipase activity and chylomicron clearance in rats fed a high fat diet

    International Nuclear Information System (INIS)

    Brown, C.M.; Layman, D.K.

    1988-01-01

    The relationships of tissue and plasma lipoprotein lipase (LPL) activities to tissue uptake and plasma clearance of 14 C-labeled chylomicron-triglyceride ( 14 C-CM-TG) were studied in female rats fed isoenergetic and isonitrogenous control (12% kJ from fat) or high fat diets (72% kJ from fat) for 8 wk. Animals fed the high-fat diet had higher levels of fasting plasma triglycerides and lower LPL activities in heart, renal adipose tissue and post-heparin plasma. Changes in LPL activities of skeletal muscles varied among muscles with higher values in the soleus and plantaris (32-61%) and no differences in the gastrocnemius. The lower LPL activity in renal adipose tissue was associated with lower uptake of fatty acids from 14 C-CM-TG by adipose. Fatty-acid uptake from labeled TG was not associated with tissue LPL activity in other tissues. Clearance of 14 C-CM-TG from plasma and the half-lives of 14 C-CM-TG were similar in both dietary groups. These data indicate that tissue and plasma LPL activities are not a direct index of uptake of fatty acids by tissues or clearance of chylomicron triglycerides

  16. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  17. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.

  18. Curcumin suppresses intestinal polyps in APC Min mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2011-06-01

    Full Text Available Colorectal cancer (CRC is a leading cause of cancer deaths in the United States. Various risk factors have been associated with CRC including increasing age and diet. Epidemiological and experimental studies have implicated a diet high in fat as an important risk factor for colon cancer. High fat diets can promote obesity resulting in insulin resistance and inflammation and the development of oxidative stress, increased cell proliferation, and suppression of apoptosis. Because of the high consumption of dietary fats, especially saturated fats, by Western countries, it is of interest to see if non-nutrient food factors might be effective in preventing or delaying CRC in the presence of high saturated fat intake. Curcumin (Curcuma longa, the main yellow pigment in turmeric, was selected to test because of its reported anti-tumor activity. APC Min mice, which develop intestinal polyps and have many molecular features of CRC, were fed a diet containing 35% pork fat, 33% sucrose, and a protein and vitamin mineral mixture (HFD with or without 0.5% curcumin. These cohorts were compared to APC Min mice receiving standard rodent chow (RC with 8% fat. APC Min mice fed the HFD for 3 months had a 23% increase in total number of polyps compared to APC Min mice on RC. Curcumin was able to significantly reverse the accelerated polyp development associated with the HFD suggesting it may be effective clinically in helping prevent colon cancer even when ingesting high amounts of fatty foods. The anti-tumor effect of curcumin was shown to be associated with enhanced apoptosis and increased efficiency of DNA repair. Since curcumin prevented the gain in body weight seen in APC Min mice ingesting the HFD, modulation of energy metabolism may also be a factor.

  19. Spirulina improves antioxidant status by reducing oxidative stress in rabbits fed a high-cholesterol diet.

    Science.gov (United States)

    Kim, Mi Yeon; Cheong, Sun Hee; Lee, Jeung Hee; Kim, Min Ji; Sok, Dai-Eun; Kim, Mee Ree

    2010-04-01

    The beneficial effect of Spirulina (Spirulina platensis) on tissue lipid peroxidation and oxidative DNA damage was tested in the hypercholesterolemic New Zealand White rabbit model. After hypercholesterolemia was induced by feeding a high cholesterol (0.5%) diet (HCD) for 4 weeks, then HCD supplemented with 1% or 5% Spirulina (SP1 or SP5, respectively) was provided for an additional 8 weeks. Spirulina supplementation significantly reduced the increased lipid peroxidation level in HCD-fed rabbits, and levels recovered to control values. Oxidative stress biomarkers such as glutathione, glutathione peroxidase, glutathione reductase, and glutathione S-transferase were significantly improved in the liver and red blood cells of rabbits fed SP1. Furthermore, SP5 induced antioxidant enzyme activity by 3.1-fold for glutathione, 2.5-fold for glutathione peroxidase, 2.7-fold for glutathione reductase, and 2.3-fold for glutathione S-transferase in liver, compared to the HCD group. DNA damage in lymphocytes was significantly reduced in both the SP1 and SP5 groups, based on the comet assay. Findings from the present study suggest that dietary supplementation with Spirulina may be useful to protect the cells from lipid peroxidation and oxidative DNA damage.

  20. Parallel and series FED microstrip array with high efficiency and low cross polarization

    Science.gov (United States)

    Huang, John (Inventor)

    1995-01-01

    A microstrip array antenna for vertically polarized fan beam (approximately 2 deg x 50 deg) for C-band SAR applications with a physical area of 1.7 m by 0.17 m comprises two rows of patch elements and employs a parallel feed to left- and right-half sections of the rows. Each section is divided into two segments that are fed in parallel with the elements in each segment fed in series through matched transmission lines for high efficiency. The inboard section has half the number of patch elements of the outboard section, and the outboard sections, which have tapered distribution with identical transmission line sections, terminated with half wavelength long open-circuit stubs so that the remaining energy is reflected and radiated in phase. The elements of the two inboard segments of the two left- and right-half sections are provided with tapered transmission lines from element to element for uniform power distribution over the central third of the entire array antenna. The two rows of array elements are excited at opposite patch feed locations with opposite (180 deg difference) phases for reduced cross-polarization.

  1. Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis.

    Science.gov (United States)

    Kwon, Eun-Yeong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Beom Soo

    2011-09-01

    Bacillus subtilis was cultivated to high cell density for nattokinase production by pH-stat fed-batch culture. A concentrated mixture solution of glucose and peptone was automatically added by acid-supplying pump when culture pH rose above high limit. Effect of the ratio of glucose to peptone in feeding solution was investigated on cell growth and nattokinase production by changing the ratio from 0.2 to 5 g glucose/g peptone. The highest cell concentration was 77 g/L when the ratio was 0.2 g glucose/g peptone. Cell concentration decreased with increasing the ratio of glucose to peptone in feeding solution, while the optimum condition existed for nattokinase production. The highest nattokinase activity was 14,500 unit/mL at a ratio of 0.33 g glucose/g peptone, which was 4.3 times higher than that in batch culture.

  2. Characteristics of Fluid Composition of Left Displaced Abomasum in Beef Cattle Fed High-Starch Diets

    Science.gov (United States)

    ICHIJO, Toshihiro; SATOH, Hiroshi; YOSHIDA, Yuki; MURAYAMA, Isao; KIKUCHI, Tomoko; SATO, Shigeru

    2014-01-01

    ABSTRACT To clarify the pathophysiology of left displaced abomasum (LDA), beef cattle fed high-starch diets were examined. The abomasal pH in beef cattle with LDA was lower than that in non-LDA reference animals (data from beef cattle at an abattoir), suggesting that it facilitated acidity. Bacteriological examinations of the abomasal fluid in cattle with LDA revealed the presence of Pseudomonas spp., Clostridium spp. and Candida spp., presumably reflecting the accelerated influx of ruminal fluid into the abomasum. Biochemical analyses of serum revealed that LDA cattle had higher lactic acid and lower vitamin A and E levels than non-LDA reference animals. These results indicate that beef cattle with LDA may suffer from vitamin A and E deficiencies due to maldigestion of starch and the high acidity of abomasal fluid. PMID:24813464

  3. Whey protein reduces early life weight gain in mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Britt Tranberg

    Full Text Available An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001-0.05. Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001. Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01 and glucose clearance was improved after an oral glucose challenge (P<0.05. Plasma cholesterol was lowered by whey compared to casein (P<0.001. The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05 whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey.

  4. Sea cucumber saponin liposomes ameliorate obesity-induced inflammation and insulin resistance in high-fat-diet-fed mice.

    Science.gov (United States)

    Chen, Cheng; Han, Xiuqing; Dong, Ping; Li, Zhaojie; Yanagita, Teruyoshi; Xue, Changhu; Zhang, Tiantian; Wang, Yuming

    2018-02-21

    Obesity has become a worldwide concern in recent years, which may cause many diseases. Much attention has been paid to food components that are considered to be beneficial in preventing chronic metabolic diseases. The present study was conducted to investigate the effects of sea cucumber saponin liposomes on certain metabolic markers associated with obesity. C57/BL6 mice fed with high-fat diet were treated with different forms of sea cucumber saponins for eight weeks. The results showed that liposomes exhibited better effects on anti-obesity and anti-hyperlipidemia activities than the common form of sea cucumber saponins. Sea cucumber saponin liposomes could also effectively alleviate adipose tissue inflammation by reducing pro-inflammatory cytokine releases and macrophage infiltration. Moreover, sea cucumber saponin liposomes improved insulin resistance by altering the uptake and utilization of glucose. Taken together, our results indicated that the intake of sea cucumber saponin liposomes might be able to ameliorate obesity-induced inflammation and insulin resistance.

  5. Ketoprofen and antinociception in hypo-oestrogenic Wistar rats fed on a high sucrose diet.

    Science.gov (United States)

    Jaramillo-Morales, Osmar Antonio; Espinosa-Juárez, Josué Vidal; García-Martínez, Betzabeth Anali; López-Muñoz, Francisco Javier

    2016-10-05

    Non-steroidal anti-inflammatory drugs such as ketoprofen are the most commonly used analgesics for the treatment of pain. However, no studies have evaluated the analgesic response to ketoprofen in conditions of obesity. The aim of this study was to analyse the time course of nociceptive pain in Wistar rats with and without hypo-oestrogenism on a high sucrose diet and to compare the antinociceptive response using ketoprofen. Hypo-oestrogenic and naïve rats received a hyper caloric diet (30% sucrose) or water ad libitum for 17 weeks, the thermal nociception ("plantar test" method) and body weight were tested during this period. A biphasic response was observed: thermal latency decreased in the 4th week (hyperalgesia), while from 12th to 17th week, thermal latency increased (hypoalgesia) in hypo-oestrogenic rats fed with high sucrose diet compared with the hypo-oestrogenic control group. At 4th and 17th weeks, different doses of ketoprofen (1.8-100mg/kg p.o.), were evaluated in all groups. The administration of ketoprofen at 4th and 17th weeks showed dose-dependent effects in the all groups; however, a greater pharmacological efficacy was observed in the 4th week in the hypo-oestrogenic animals that received sucrose. Nevertheless, in all the groups significantly diminish the antinociceptive effects in the 17th week. Our data showed that nociception was altered in the hypo-oestrogenic animals that were fed sucrose (hyperalgesia and hypoalgesia). Ketoprofen showed a dose-dependent antinociceptive effect at both time points. However, hypo-oestrogenism plus high-sucrose diet modifies the antinociceptive effect of ketoprofen. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Rutin ameliorates glycemic index, lipid profile and enzymatic activities in serum, heart and liver tissues of rats fed with a combination of hypercaloric diet and chronic ethanol consumption.

    Science.gov (United States)

    Chuffa, Luiz Gustavo A; Fioruci-Fontanelli, Beatriz A; Bordon, Juliana G; Pires, Rafaelle B; Braga, Camila P; Seiva, Fábio R F; Fernandes, Ana Angélica H

    2014-06-01

    Alcoholism and obesity are strongly associated with several disorders including heart and liver diseases. This study evaluated the effects of rutin treatment in serum, heart and liver tissues of rats subjected to a combination of hypercaloric diet (HD) and chronic ethanol consumption. Rats were divided into three groups: Control: rats fed a standard diet and drinking water ad libitum; G1: rats fed the HD and receiving a solution of 10% (v/v) ethanol; and G2: rats fed the HD and ethanol solution, followed by injections of 50 mg/kg(-1) rutin as treatment. After 53 days of HD and ethanol exposure, the rutin was administered every three days for nine days. At the end of the experimental period (95 days), biochemical analyses were carried out on sera, cardiac and hepatic tissues. Body weight gain and food consumption were reduced in both the G1 and G2 groups compared to control animals. Rutin effectively reduced the total lipids (TL), triglycerides (TG), total cholesterol (TC), VLDL, LDL-cholesterol and glucose levels, while it increased the HDL-cholesterol in the serum of G2 rats, compared to G1. Although rutin had no effect on total protein, albumin, uric acid and cretinine levels, it was able to restore serum activities of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatine kinase (CK) in animals fed HD and receiving ethanol. Glycogen stores were replenished in both hepatic and cardiac tissues after rutin treatment. Moreover, rutin consistently reduced hepatic levels of TG and TC and cardiac AST, ALT and CK activities. Thus, rutin treatment was effective in reducing the risk factors for cardiac and hepatic disease caused by both HD and chronic ethanol consumption.

  7. IMM-H007, a new therapeutic candidate for nonalcoholic fatty liver disease, improves hepatic steatosis in hamsters fed a high-fat diet.

    Science.gov (United States)

    Shi, Huijie; Wang, Qingchun; Yang, Liu; Xie, Shouxia; Zhu, Haibo

    2017-09-01

    Nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease in humans, is characterized by the accumulation of triacylglycerols (TGs) in hepatocytes. We tested whether 2',3',5'-tri-acetyl-N6-(3-hydroxylaniline) adenosine (IMM-H007) can eliminate hepatic steatosis in hamsters fed a high-fat diet (HFD), as a model of NAFLD. Compared with HFD-only controls, IMM-H007 treatment significantly lowered serum levels of TG, total cholesterol, and free fatty acids (FFAs) in hamsters fed the HFD, with a prominent decrease in levels of serum transaminases and fasting insulin, without affecting fasting glucose levels. Moreover, 1 H-MRI and histopathological analyses revealed that hepatic lipid accumulation and fibrosis were improved by IMM-H007 treatment. These changes were accompanied by improvement of insulin resistance and oxidative stress, and attenuation of inflammation. IMM-H007 reduced expression of proteins involved in uptake of hepatic fatty acids and lipogenesis, and increased very low density lipoprotein secretion and expression of proteins responsible for fatty acid oxidation and autophagy. In studies in vivo , IMM-H007 inhibited fatty acid import into hepatocytes and liver lipogenesis, and concomitantly stimulated fatty acid oxidation, autophagy, and export of hepatic lipids. These data suggest that IMM-H007 resolves hepatic steatosis in HFD-fed hamsters by the regulation of lipid metabolism. Thus, IMM-H007 has therapeutic potential for NAFLD.

  8. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets.

    Science.gov (United States)

    Philippeau, C; Lettat, A; Martin, C; Silberberg, M; Morgavi, D P; Ferlay, A; Berger, C; Nozière, P

    2017-04-01

    This study investigated the effects of bacterial direct-fed microbials (DFM) on ruminal fermentation and microbial characteristics, methane (CH 4 ) emission, diet digestibility, and milk fatty acid (FA) composition in dairy cows fed diets formulated to induce different ruminal volatile fatty acid (VFA) profiles. Eight ruminally cannulated dairy cows were divided into 2 groups based on parity, days in milk, milk production, and body weight. Cows in each group were fed either a high-starch (38%, HS) or a low-starch (2%, LS) diet in a 55:45 forage-to-concentrate ratio on a dry matter (DM) basis. For each diet, cows were randomly assigned to 1 of 4 treatments in a Latin square design of (1) control (CON); (2) Propionibacterium P63 (P63); (3) P63 plus Lactobacillus plantarum 115 (P63+Lp); (4) P63 plus Lactobacillus rhamnosus 32 (P63+Lr). Strains of DFM were administered at 10 10 cfu/d. Methane emission (using the sulfur hexafluoride tracer technique), total-tract digestibility, dry matter intake, and milk production and composition were quantified in wk 3. Ruminal fermentation and microbial characteristics were measured in wk 4. Data were analyzed using the mixed procedure of SAS (SAS Institute Inc., Cary, NC). The 2 diets induced different ruminal VFA profiles, with a greater proportion of propionate at the expense of acetate and butyrate for the HS diet. Greater concentrations of total bacteria and selected bacterial species of methanogenic Archaea were reported for the HS diet, whereas the protozoa concentration in HS decreased. For both diets, bacterial DFM supplementation raised ruminal pH (+0.18 pH units, on average) compared with CON. Irrespective of diet, P63+Lp and P63+Lr increased ruminal cellulase activity (3.8-fold, on average) compared with CON, but this effect was not associated with variations in ruminal microbial numbers. Irrespective of diet, no effect of bacterial DFM on ruminal VFA was observed. For the LS diet, supplementing cows with P63+Lr tended

  9. Dietary supplementation of chinese ginseng prevents obesity and metabolic syndrome in high-fat diet-fed mice.

    Science.gov (United States)

    Li, Xiaoxiao; Luo, Jing; Anandh Babu, Pon Velayutham; Zhang, Wei; Gilbert, Elizabeth; Cline, Mark; McMillan, Ryan; Hulver, Matthew; Alkhalidy, Hana; Zhen, Wei; Zhang, Haiyan; Liu, Dongmin

    2014-12-01

    Obesity and diabetes are growing health problems worldwide. In this study, dietary provision of Chinese ginseng (0.5 g/kg diet) prevented body weight gain in high-fat (HF) diet-fed mice. Dietary ginseng supplementation reduced body fat mass gain, improved glucose tolerance and whole body insulin sensitivity, and prevented hypertension in HF diet-induced obese mice. Ginseng consumption led to reduced concentrations of plasma insulin and leptin, but had no effect on plasma adiponectin levels in HF diet-fed mice. Body temperature was higher in mice fed the ginseng-supplemented diet but energy expenditure, respiration rate, and locomotive activity were not significantly altered. Dietary intake of ginseng increased fatty acid oxidation in the liver but not in skeletal muscle. Expression of several transcription factors associated with adipogenesis (C/EBPα and PPARγ) were decreased in the adipose tissue of HF diet-fed mice, effects that were mitigated in mice that consumed the HF diet supplemented with ginseng. Abundance of fatty acid synthase (FASN) mRNA was greater in the adipose tissue of mice that consumed the ginseng-supplemented HF diet as compared with control or un-supplemented HF diet-fed mice. Ginseng treatment had no effect on the expression of genes involved in the regulation of food intake in the hypothalamus. These data suggest that Chinese ginseng can potently prevent the development of obesity and insulin resistance in HF diet-fed mice.

  10. Anti-hyperglycemic and anti-hyperlipidaemic effect of Arjunarishta in high-fat fed animals

    Directory of Open Access Journals (Sweden)

    Sushant A. Shengule

    2018-01-01

    Full Text Available Background: Arjunarishta (AA, a formulation used as cardiotonic is a hydroalcoholic formulation of Terminalia arjuna (Roxb. Wight and Arn. (TA belonging to family Combretaceae. Objective: To evaluate the anti-hyperglycemic and anti-hyperlipidemic effect of Arjunarishta on high-fat diet fed animals. Materials and methods: High-fat diet fed (HFD Wistar rats were randomly divided into three groups and treated with phytochemically standardized Arjunarishta (1.8 ml/kg, and hydroalcoholic extract of T. arjuna (TAHA (250 mg/kg and rosuvastatin (10 mg/kg, for 3 months. Intraperitoneal glucose tolerance test, blood biochemistry, liver triglyceride and systolic blood pressure were performed in all the groups. Effect of these drugs on the expression of tumor necrosis factor-α (TNF-α and insulin receptor substrate-1 (IRS-1 and peroxisome proliferators activated receptor γ coactivator 1-α (PGC-1α were studied in liver tissue using Quantitative Real-time PCR. Results: HFD increased fasting blood glucose, liver triglyceride, systolic blood pressure and gene expression of TNF-α, IRS-1 and PGC-1α. Treatment of AA and TAHA significantly reduced fasting blood glucose, systolic blood pressure, total cholesterol and triglyceride levels. These treatments significantly decreased gene expression of TNF-α (2.4, 2.2 and 2.6 fold change; increased IRS-1 (2.8, 2.9 and 2.8 fold change and PGC-1α (2.9, 3.7 and 3.3 fold change as compared to untreated HFD. Conclusion: Anti-hyperglycemic, anti-hyperlipidemic effect of Arjunarishta may be mediated by decreased TNF-α and increased PGC-1α and IRS-1. Keywords: Rosuvastatin, Type 2 diabetes, Insulin sensitizer genes, Arjunarishta

  11. Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats.

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-02-02

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330-340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  12. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Directory of Open Access Journals (Sweden)

    Senthil Arun Kumar

    2015-02-01

    Full Text Available Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO and Derbesia tenuissima (DT, in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  13. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium. PMID:25648511

  14. Hypothyroidism Exacerbates Thrombophilia in Female Rats Fed with a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Harald Mangge

    2015-07-01

    Full Text Available Clotting abnormalities are discussed both in the context with thyroid dysfunctions and obesity caused by a high fat diet. This study aimed to investigate the impact of hypo-, or hyperthyroidism on the endogenous thrombin potential (ETP, a master indicator of clotting activation, on Sprague Dawley rats fed a normal or high fat diet. Female Sprague Dawley rats (n = 66 were grouped into normal diet (ND; n = 30 and high-fat diet (HFD; n = 36 groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3 treatment, respectively. After 12 weeks of treatment ETP, body weight and food intake were analyzed. Successfully induced thyroid dysfunction was shown by T3 levels, both under normal and high fat diet. Thyroid dysfunction was accompanied by changes in calorie intake and body weight. In detail, compared to euthyroid controls, hypothyroid rats showed significantly increased—and hyperthyroid animals significantly decreased—ETP levels. High fat diet potentiated these effects in both directions. In summary, we are the first to show that hypothyroidism and high fat diet potentiate the thrombotic capacity of the clotting system in Sprague Dawley rats. This effect may be relevant for cardiovascular disease where thyroid function is poorly understood as a pathological contributor in the context of clotting activity and obesogenic nutrition.

  15. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    International Nuclear Information System (INIS)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-01-01

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  16. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Li, Yue, E-mail: ly99ly@vip.163.com [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, Heilongjiang Province (China)

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  17. PRODUCTIVE PERFORMANCES OF TWO ITALIAN CROSSBRED PIGS FED HIGH ENERGY DIET

    Directory of Open Access Journals (Sweden)

    R. FORTINA

    2009-05-01

    Full Text Available The aim of the trial was to compare the average daily gain (ADG, the carcass characteristics, and the meat and fat quality of 18 Italian crossbred pigs fed high energy diets formulated for improved genotypes (digestible energy: DE >14 MJ/kg DM. Nine “Fumati” crossbreds (Large White x Mora Romagnola; average initial live weight: 84 kg and nine “Borghigiana” (Large White x Nera di Parma; average initial live weight: 90 kg, reared under similar environmental and nutritional conditions, were slaughtered at the average final weight of 180 kg (285 days. Calculated dry matter intake (DMI and feed conversion index (FCI were similar; no significant differences were observed with respect to average daily gain (ADG: 679 vs. 658 g/d. At slaughtering, the dressing percentage of the Fumati was significantly lower than that of the Borghigiana (80.9 vs. 84.5. The Fumati seemed more prone to fattening than the Borghigiana, as confirmed by the statistically higher percentage of belly (14.9 vs.12.2, and fat (3.9 vs. 2.4 and marbling of M. longissimus dorsi (2.7 vs. 1.4. On colour analysis, the Fumati had statistically higher L* and hue values, and lower a* of M. longissimus dorsi. The fatty acid composition of meat was similar between crossbreds; backfat fatty acid composition of the Fumati showed a significantly higher percentage of saturated fatty acids (SFA, and lower amounts of monounsaturated and polyunsaturated fatty acids (MUFA and PUFA than in the Borghigiana. Results showed that performances and meat quality of local crossbreeds still bred in semi-intensive systems, like Fumati and Borghigiana, can be positively influenced when fed diets considered suitable for improved pig genotypes.

  18. Increased plasma ghrelin suppresses insulin release in wethers fed with a high-protein diet.

    Science.gov (United States)

    Takahashi, T; Sato, K; Kato, S; Yonezawa, T; Kobayashi, Y; Ohtani, Y; Ohwada, S; Aso, H; Yamaguchi, T; Roh, S G; Katoh, K

    2014-06-01

    Ghrelin is a multifunctional peptide that promotes an increase of food intake and stimulates GH secretion. Ghrelin secretion is regulated by nutritional status and nutrients. Although a high-protein (HP) diet increases plasma ghrelin secretion in mammals, the mechanisms and the roles of the elevated ghrelin concentrations due to a HP diet have not been fully established. To clarify the roles of elevated acylated ghrelin upon intake of a HP diet, we investigated the regulation of ghrelin concentrations in plasma and tissues in wethers fed with either the HP diet or the control (CNT) diet for 14 days, and examined the action of the elevated plasma ghrelin by using a ghrelin-receptor antagonist. The HP diet gradually increased the plasma acylated-ghrelin concentrations, but the CNT diet did not. Although the GH concentrations did not vary significantly across the groups, an injection of ghrelin-receptor antagonist enhanced insulin levels in circulation in the HP diet group. In the fundus region of the stomach, the ghrelin levels did not differ between the HP and CNT diet groups, whereas ghrelin O-acyltransferase mRNA levels were higher in the group fed with HP diet than those of the CNT diet group were. These results indicate that the HP diet elevated the plasma ghrelin levels by increasing its synthesis; this elevation strongly suppresses the appearance of insulin in the circulation of wethers, but it is not involved in GH secretion. Overall, our findings indicate a role of endogenous ghrelin action in secretion of insulin, which acts as a regulator after the consumption of a HP diet. © 2014 Society for Endocrinology.

  19. Effect of potato on acid-base and mineral homeostasis in rats fed a high-sodium chloride diet.

    Science.gov (United States)

    Narcy, Agnès; Robert, Laetitia; Mazur, Andrzej; Demigné, Christian; Rémésy, Christian

    2006-05-01

    Excessive dietary NaCl in association with a paucity of plant foods, major sources of K alkaline salts, is a common feature in Western eating habits which may lead to acid-base disorders and to Ca and Mg wasting. In this context, to evaluate the effects of potato, rich in potassium citrate, on acid-base homeostasis and mineral retention, Wistar rats were fed wheat starch (WS) or cooked potato (CP) diets with a low (0.5 %) or a high (2 %) NaCl content during 3 weeks. The replacement of WS by CP in the diets resulted in a significant urinary alkalinisation (pH from 5.5 to 7.3) parallel to a rise in citrate and K excretion. Urinary Ca and Mg elimination represented respectively 17 and 62 % of the daily absorbed mineral in rats fed the high-salt WS diet compared with 5 and 28 % in rats fed the high-salt CP diet. The total SCFA concentration in the caecum was 3-fold higher in rats fed the CP diets compared with rats fed the WS diets, and it led to a significant rise in Ca and Mg intestinal absorption (Ca from 39 to 56 %; Mg from 37 to 60 %). The present model of low-grade metabolic acidosis indicates that CP may be effective in alkalinising urine, enhancing citrate excretion and ameliorating Ca and Mg balance.

  20. Cardiac Hypertrophy and Brain Natriuretic Peptide Levels in an Ovariectomized Rat Model Fed a High-Fat Diet

    Science.gov (United States)

    Goncalves, Gleisy Kelly; de Oliveira, Thiago Henrique Caldeira; de Oliveira Belo, Najara

    2017-01-01

    Background Heart failure in women increases around the time of menopause when high-fat diets may result in obesity. The heart produces brain natriuretic peptide (BNP), also known as B-type natriuretic peptide. This aims of this study were to assess cardiac hypertrophy and BNP levels in ovariectomized rats fed a high-fat diet. Material/Methods Forty-eight female Wistar rats were divided into four groups: sham-operated rats fed a control diet (SC) (n=12); ovariectomized rats fed a control diet (OC) (n=12); sham-operated rats fed a high-fat diet (SF) (n=12); and ovariectomized rats fed a high-fat diet (OF) (n=12). Body weight and blood pressure were measured weekly for 24 weeks. Rats were then euthanized, and plasma samples and heart tissue were studied for gene expression, hydroxyproline levels, and histological examination. Results A high-fat diet and ovariectomy (group OF) increased the weight body and the systolic blood pressure after three months and five months, respectively. Cardiomyocyte hypertrophy was associated with increased expression of ventricular BNP, decreased natriuretic peptide receptor (NPR)-A and increased levels of hydroxyproline and transforming growth factor (TGF)-β. The plasma levels of BNP and estradiol were inversely correlated; expression of estrogen receptor (ER)β and ERα were reduced. Conclusions The findings of this study showed that, in the ovariectomized rats fed a high-fat diet, the BNP-NPR-A receptor complex was involved in cardiac remodeling. BNP may be a marker of cardiac hypertrophy in this animal model. PMID:29249795

  1. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice.

    Science.gov (United States)

    Hsieh, You-Liang; Shibu, Marthandam Asokan; Lii, Chong-Kuei; Viswanadha, Vijaya Padma; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Lin, Kuan-Ho; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-11-04

    Andrographis paniculata (Burm. f.) Nees (Acanthaceae) has a considerable medicinal reputation in most parts of Asia as a potent medicine in the treatment of Endocrine disorders, inflammation and hypertension. Water extract of A. paniculata and its active constituent andrographolide are known to possess anti-inflammatory and anti-apoptotic effects. Our aim is to identify whether A. paniculata extract could protect myocardial damage in high-fat diet induced obese mice. The test mice were divided into three groups fed either with normal chow or with high fat diet (obese) or with high fat diet treated with A. paniculata extract (2g/kg/day, through gavage, for a week). We found that the myocardial inflammation pathway related proteins were increased in the obese mouse which potentially contributes to cardiac hypertrophy and myocardial apoptosis. But feeding with A. paniculata extract showed significant inhibition on the effects of high fat diet. Our study strongly suggests that supplementation of A. paniculata extract can be used for prevention and treatment of cardiovascular disease in obese patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Guarana (Paullinia cupana Stimulates Mitochondrial Biogenesis in Mice Fed High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Natália da Silva Lima

    2018-01-01

    Full Text Available The aim of this study was to evaluate the effects of guarana on mitochondrial biogenesis in a high-fat diet (HFD-fed mice. C57BL6J mice were divided in two groups: high-fat diet HFD and high-fat diet + guarana (HFD-GUA. Both groups received HFD and water ad libitum and the HFD-GUA group also received a daily gavage of guarana (1 g/kg weight. Body weight and food intake was measured weekly. Glycemic, triglyceride, and cholesterol levels were determined. VO2 and energy expenditure (EE were determined by indirect calorimetry. Gene expression was evaluated by real-time PCR and protein content by western blotting. The HFD-GUA group presented lower body weight, subcutaneous, retroperitoneal, visceral, and epididyimal adipose tissue depots, and glycemic and triglyceride levels, with no change in food intake and cholesterol levels. Furthermore, the HFD-GUA group presented an increase in VO2 and basal energy expenditure (EE, as well as Pgc1α, Creb1, Ampka1, Nrf1, Nrf2, and Sirt1 expression in the muscle and brown adipose tissue. In addition, the HFD-GUA group presented an increase in mtDNA (mitochondrial deoxyribonucleic acid content in the muscle when compared to the HFD group. Thus, our data showed that guarana leads to an increase in energetic metabolism and stimulates mitochondrial biogenesis, contributing to control of weight gain, even when associated with high-fat diet.

  3. Nitrogen utilization and digestibility of amino acids by lambs fed a high-concentrate diet with limestone or magnesium oxide.

    Science.gov (United States)

    Christiansen, M L; Webb, K E

    1990-07-01

    Effects were evaluated of high dietary levels of magnesium oxide (MgO) or limestone on DM, OM and CP digestibility, N balance and intestinal absorption of amino acids by lambs fed a high concentrate diet. Twelve wether lambs equipped with abomasal and ileal cannulas were blocked by weight and breeding and allotted to treatments in a randomized block design in two consecutive trials. Diets were control (800 g), control plus 1.5% MgO (812 g), control plus 1.5% limestone (812 g) and control plus 3.0% limestone (824 g) fed in two equal portions at 12-h intervals. Ruminal fluid pH differences were small. The pH of ileal digesta was greater (P less than .05) with MgO than with limestone (8.23 vs 7.73). Fecal pH was higher (P less than .01) for lambs fed all mineral treatments (avg 8.75) than for lambs fed the control (7.61) and was higher (P less than .01) when MgO (9.53) rather than limestone (8.36) was fed. Ruminal NH3N was lower (P less than .01) when lambs were fed MgO (11.9 mg/dl) compared with limestone (avg 31.2 mg/dl). Preintestinal DM digestibility was greatest (P less than .10) with limestone (avg 49.5%) feeding compared with feeding MgO (31.2%) or the control (35.4%). About 41.5% more essential (P less than .05) and 48% more nonessential (P less than .03) amino acids reached the small intestine when MgO was fed than when limestone was fed. Partial digestibility of amino acids in the small intestine was reduced (P less than .03) an average of 5 percentage units when MgO or limestone was fed. Feeding high levels of MgO or limestone to lambs did not improve the overall digestibility of DM, OM or CP. In fact, feeding high levels of MgO or limestone appeared to be detrimental, reducing intestinal absorption of amino acids.

  4. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Science.gov (United States)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  5. 75 FR 70205 - Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From...

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-560-823] Certain Coated Paper... paper suitable for high-quality print graphics using sheet-fed presses (certain coated paper) from... duty investigation of certain coated paper from Indonesia. See Certain Coated Paper Suitable for High...

  6. Effects of α-lipoic acid on endothelial function in aged diabetic and high-fat fed rats

    Science.gov (United States)

    Sena, C M; Nunes, E; Louro, T; Proença, T; Fernandes, R; Boarder, M R; Seiça, R M

    2007-01-01

    Background and purpose: This study was conducted to investigate the effects of α-lipoic acid (α-LA) on endothelial function in diabetic and high-fat fed animal models and elucidate the potential mechanism underlying the benefits of α-LA. Experimental approach: Plasma metabolites reflecting glucose and lipid metabolism, endothelial function, urinary albumin excretion (UAE), plasma and aortic malondialdehyde (MDA) and urinary 8-hydroxydeoxyguanosine (8-OHdG) were assessed in non-diabetic controls (Wistar rats), untreated Goto-Kakizaki (GK) diabetic and high-fat fed GK rats (fed with atherogenic diet only, treated with α-LA and treated with vehicle, for 3 months). Vascular eNOS, nitrotyrosine, carbonyl groups and superoxide anion were also assessed in the different groups. Key results: α-LA and soybean oil significantly reduced both total and non-HDL serum cholesterol and triglycerides induced by atherogenic diet. MDA, carbonyl groups, vascular superoxide and 8-OHdG levels were higher in GK and high-fat fed GK groups and fully reversed with α-LA treatment. High-fat fed GK diabetic rats showed significantly reduced endothelial function and increased UAE, effects ameliorated with α-LA. This endothelial dysfunction was associated with decreased NO production, decreased expression of eNOS and increased vascular superoxide production and nitrotyrosine expression. Conclusions and implications: α-LA restores endothelial function and significantly improves systemic and local oxidative stress in high-fat fed GK diabetic rats. Improved endothelial function due to α-LA was at least partially attributed to recoupling of eNOS and increased NO bioavailability and represents a pharmacological approach to prevent major complications associated with type 2 diabetes. PMID:17906683

  7. House dust mite allergen causes certain features of steroid resistant asthma in high fat fed obese mice.

    Science.gov (United States)

    Singh, Vijay Pal; Mabalirajan, Ulaganathan; Pratap, Kunal; Bahal, Devika; Maheswari, Deepanshu; Gheware, Atish; Bajaj, Aabha; Panda, Lipsa; Jaiswal, Ashish; Ram, Arjun; Agrawal, Anurag

    2018-02-01

    Obesity is a high risk factor for diseases such as cardiovascular, metabolic syndrome and asthma. Obese-asthma is another emerging phenotype in asthma which is typically refractive to steroid treatment due to its non-classical features such as non-eosinophilic cellular inflammation. The overall increased morbidity, mortality and economical burden in asthma is mainly due to steroid resistant asthma. In the present study, we used high fat diet induced obese mice which when sensitized with house dust mite (HDM) showed steroid resistant features. While the steroid, dexamethasone (DEX), treatment to high fat fed naïve mice could not reduce the airway hyperresponsiveness (AHR) induced by high fat, DEX treatment to high fat fed allergic mice could not reduce the HDM allergen induced airway remodeling features though it reduced airway inflammation. Further, these HDM induced high fat fed mice with or without DEX treatment had shown the increased activity and expression of arginase as well as the inducible nitric oxide synthase (iNOS) expression. However, DEX treatment had reduced the expressions of high iNOS and arginase I in control chow diet fed mice. Thus, we speculate that the steroid resistance seen in human obese asthmatics could be stemming from altered NO metabolism and its induced airway remodeling and with further investigations, it would encourage new treatments specific to obese-asthma phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats.

    Directory of Open Access Journals (Sweden)

    Sofia Moran-Ramos

    Full Text Available Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6 and oxidative stress (ROS, modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA, and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism.

  9. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats.

    Science.gov (United States)

    Moran-Ramos, Sofia; He, Xuan; Chin, Elizabeth L; Tovar, Armando R; Torres, Nimbe; Slupsky, Carolyn M; Raybould, Helen E

    2017-01-01

    Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa) rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF) diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6) and oxidative stress (ROS), modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA), and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG) levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism.

  10. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  11. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  12. The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits

    Science.gov (United States)

    2013-01-01

    Background Atherosclerosis has been widely accepted as an inflammatory disease of vascular, adhesion molecules play an important role in the early progression of it. The aim of the present study was to evaluate the effect of kaempferol on the inflammatory molecules such as E-selectin (E-sel), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesionmolecule-1 (VCAM-1) and monocyte chemotactic protein-1 (MCP-1) in high cholesterol induced atherosclerosis rabbit models. Methods Thirty male New Zealand white (NZW) rabbits were randomly divided into five groups, control group, model group, fenofibrate (12mg/kg) group and kaempferol groups (150 mg/kg and 30 mg/kg). The rabbits were fed with a normal diet or a high cholesterol diet for 10 weeks. Levels of blood lipids, serum tumour-necrosis factor-alpha (TNF-α) and serum interleukin-1beta (IL-1β) were detected at the end of the sixth and tenth week. Malonaldehyde (MDA) level and superoxide dismutase (SOD) activity in serum were also determined. Lesion areas of the aorta were measured with morphometry analysis after ten weeks. Gene expression of E-sel, ICAM-1, VCAM-1 and MCP-1 in aortas was determined by RT-PCR (reverse transcription-polymerase chain reaction). Immunohistochemical staining was employed to measure protein expression of E-sel, ICAM-1, VCAM-1 and MCP-1. Results Model rabbits fed with ten weeks of high-cholesterol diet developed significant progression of atherosclerosis. Compared with the control, levels of blood lipids, TNF-α, IL-1β and MDA increased markedly in serum of model rabbits, while SOD levels decreased. Gene and protein expressions of E-sel, ICAM-1, VCAM-1 and MCP-1 in atherosclerotic aortas increased remarkably in model group. However, comparing to the model rabbits, levels of TNF-α, IL-1β and MDA decreased significantly and serum SOD activity increased, gene and protein expressions of E-sel, ICAM-1, VCAM-1 and MCP-1 in aortas decreased significantly with the treatment of

  13. Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats.

    Science.gov (United States)

    Ríos-Lugo, María J; Jiménez-Ortega, Vanesa; Cano-Barquilla, Pilar; Mateos, Pilar Fernández; Spinedi, Eduardo J; Cardinali, Daniel P; Esquifino, Ana I

    2015-03-01

    Previous studies indicate that the administration of melatonin caused body weight and abdominal visceral fat reductions in rodent models of hyperadiposity. The objective of the present study performed in high-fat fed rats was to evaluate the activity of melatonin on gene expression of some medial basal hypothalamus (MBH) signals involved in feeding behavior regulation, including neuropeptide Y (NPY), proopiomelanocortin (POMC), prolactin-releasing peptide (PrRP), leptin- and insulin-receptors (R) and insulin-R substrate (IRS)-1 and -2. Blood levels of leptin and adiponectin were also measured. Adult Wistar male rats were divided into four groups (n=16 per group): (i) control diet (3% fat); (ii) high-fat (35%) diet; (iii) high-fat diet+melatonin; (iv) control diet+melatonin. Rats had free access to high-fat or control chow and one of the following drinking solutions: (a) tap water; (b) 25 μg/mL of melatonin. After 10 weeks, the high-fat fed rats showed augmented MBH mRNA levels of NPY, leptin-R, PrRP, insulin-R, IRS-1 and IRS-2. The concomitant administration of melatonin counteracted this increase. Feeding of rats with a high-fat diet augmented expression of the MBH POMC gene through an effect insensitive to melatonin treatment. The augmented levels of circulating leptin and adiponectin seen in high-fat fed rats were counteracted by melatonin as was the augmented body weight: melatonin significantly attenuated a body weight increase in high-fat fed rats without affecting chow or water consumption. Melatonin augmented plasma leptin and adiponectin in control rats. The results indicate that an effect on gene expression of feeding behavior signals at the central nervous system (CNS) may complement a peripheral rise of the energy expenditure produced by melatonin to decrease body weight in high-fat fed rats.

  14. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    Science.gov (United States)

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  15. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits.

    Science.gov (United States)

    El-Awady, Mohammed S; Suddek, Ghada M

    2014-06-01

    The aim of this work was to explore possible effects of agmatine, an endogenous inhibitor of inducible nitric oxide synthase (iNOS), against hypercholesterolemia-induced lipid profile changes and endothelial dysfunction. Hypercholesterolemia was induced by feeding rabbits with a high-cholesterol diet (HCD, 0.5%) for 8 weeks. Another HCD-fed group was orally administered agmatine (10 mg/kg/day) during weeks 5 through 8. Serum lipid profile, malondialdehyde (MDA), nitric oxide (NO) and lactate dehydrogenase (LDH) were determined. Aorta was isolated to analyse vascular reactivity, atherosclerotic lesions and intima/media (I/M) ratio. HCD induced a significant increase in serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides and high-density lipoprotein cholesterol (HDL-C). Agmatine administration significantly decreased HCD-induced elevations in serum TC and LDL-C, MDA, LDH and NO while significantly increased HDL-C levels. Additionally, agmatine significantly protected against HCD-induced attenuation of rabbit aortic endothelium-dependent relaxation to acetylcholine. HCD and agmatine did not significantly influence aortic endothelium-independent relaxation to sodium nitroprusside. Moreover, agmatine significantly reduced the elevation in aortic atherosclerotic lesion area and I/M ratio. This study is the first to reveal that agmatine has the ability to ameliorate hypercholesterolemia-induced lipemic-oxidative and endothelial function injuries possibly by its antioxidant potential and/or iNOS inhibition. © 2014 Royal Pharmaceutical Society.

  16. Antihyperlipidemic Effects of Sesamum indicum L. in Rabbits Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Sedigheh Asgary

    2013-01-01

    Full Text Available The present study aimed to investigate the anti-hyperlipidemic effects of sesame in a high-fat fed rabbit model. Animals were randomly divided into four groups of eight animals each for 60 days as follows: normal diet, hypercholesterolemic diet (1% cholesterol, hypercholesterolemic diet (1% cholesterol + sesame seed (10%, and hypercholesterolemic diet (1% cholesterol + sesame oil (5%. Serum concentrations of total cholesterol, LDL-C, HDL-C, triglycerides, apoA and apoB, SGOT, SGPT, glucose and insulin were measured at the end of supplementation period in all studied groups. Hypercholesterolemic feeding resulted in a significant elevation of TC, TG, LDL-C, HDL-C, SGOT and SGPT as compared to the normocholesterolemic diet group (P0.05. In contrast, rabbits supplemented with sesame oil were found to have lower circulating concentrations of TC, LDL-C, HDL-C, SGOT and SGPT (P0.05. Supplementation with sesame oil, but not sesame seed, can ameliorate serum levels of lipids and hepatic enzymes in rabbits under a high-fat diet.

  17. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent

    OpenAIRE

    Tetri, Laura H.; Basaranoglu, Metin; Brunt, Elizabeth M.; Yerian, Lisa M.; Neuschwander-Tetri, Brent A.

    2008-01-01

    The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fr...

  18. Effects of Food Based Yeast on Oxidant-Antioxidant Systems in Rats fed by High Cholesterol Diet

    OpenAIRE

    Savaş, Hasan Basri; Yüksel, Özlem; Şanlıdere Aloğlu, Hatice; Öner, Zübeyde; Demir Özer, Ezgi; Gültekin, Fatih

    2013-01-01

    In living organisms, oxidant and antioxidant systems are in a balance. In the present study, our aim was to study the effects of Cryptococcus humicola, which is a food based yeast whose cholesterol lowering activity is under investigation, on oxidant and antioxidant systems.31 adult male, Wistar albino rats weighing 200-250 gr were included in the study. Rats were divided into four groups based on their diets. Group 1(Control Group) was fed a normal diet, Group 2 was fed a high cholesterol di...

  19. High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process.

    Science.gov (United States)

    Yang, Maohua; Li, Wangliang; Liu, Binbin; Li, Qiang; Xing, Jianmin

    2010-07-01

    In this paper, high-concentration sugars were produced from pretreated corn stover. The raw corn stover was pretreated in a process combining steam explosion and alkaline hydrogen-peroxide. The hemicellulose and lignin were removed greatly. The cellulose content increased to 73.2%. Fed-batch enzymatic hydrolysis was initiated with 12% (w/v) solids loading and 20 FPU/g solids. Then, 6% solids were fed consecutively at 12, 36 and 60 h. After 144 h, the final concentrations of reducing sugar, glucose, cellobiose and xylose reached 220, 175, 22 and 20 g/L, respectively. The final total biomass conversion was 60% in fed-batch process. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production.

    Science.gov (United States)

    Gao, Yueshu; Xu, Jingliang; Yuan, Zhenhong; Zhang, Yu; Liu, Yunyun; Liang, Cuiyi

    2014-09-01

    Fed-batch enzymatic hydrolysis process from alkali-pretreated sugarcane bagasse was investigated to increase solids loading, produce high-concentration fermentable sugar and finally to reduce the cost of the production process. The optimal initial solids loading, feeding time and quantities were examined. The hydrolysis system was initiated with 12% (w/v) solids loading in flasks, where 7% fresh solids were fed consecutively at 6h, 12h, 24h to get a final solids loading of 33%. All the requested cellulase loading (10 FPU/g substrate) was added completely at the beginning of hydrolysis reaction. After 120 h of hydrolysis, the maximal concentrations of cellobiose, glucose and xylose obtained were 9.376 g/L, 129.50 g/L, 56.03 g/L, respectively. The final total glucan conversion rate attained to 60% from this fed-batch process. Copyright © 2014. Published by Elsevier Ltd.

  1. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet.

    Science.gov (United States)

    Prior, Ronald L; E Wilkes, Samuel; R Rogers, Theodore; Khanal, Ramesh C; Wu, Xianli; Howard, Luke R

    2010-04-14

    Male C57BL/6J mice (25 days of age) were fed either a low-fat diet (10% kcal from fat) (LF) or a high-fat diet (45% kcal from fat) (HF45) for a period of 72 days. Blueberry juice or purified blueberry anthocyanins (0.2 or 1.0 mg/mL) in the drinking water were included in LF or HF45 treatments. Sucrose was added to the drinking water of one treatment to test if the sugars in blueberry juice would affect development of obesity. Total body weights (g) and body fat (%) were higher and body lean tissue (%) was lower in the HF45 fed mice compared to the LF fed mice after 72 days, but in mice fed HF45 diet plus blueberry juice or blueberry anthocyanins (0.2 mg/mL), body fat (%) was not different from those mice fed the LF diet. Anthocyanins (ACNs) decreased retroperitoneal and epididymal adipose tissue weights. Fasting serum glucose concentrations were higher in mice fed the HF45 diet. However, it was reduced to LF levels in mice fed the HF45 diet plus 0.2 mg of ACNs/mL in the drinking water, but not with blueberry juice. beta cell function (HOMA-BCF) score was lowered with HF45 feeding but returned to normal levels in mice fed the HF45 diet plus purified ACNs (0.2 mg/mL). Serum leptin was elevated in mice fed HF45 diet, and feeding either blueberry juice or purified ACNs (0.2 mg/mL) decreased serum leptin levels relative to HF45 control. Sucrose in drinking water, when consumption was restricted to the volume of juice consumed, produced lower serum leptin and insulin levels, leptin/fat, and retroperitoneal and total fat (% BW). Blueberry juice was not as effective as the low dose of anthocyanins in the drinking water in preventing obesity. Additional studies are needed to determine factors responsible for the differing responses of blueberry juice and whole blueberry in preventing the development of obesity.

  2. SOCS2 deletion protects against hepatic steatosis but worsens insulin resistance in high-fat-diet-fed mice

    DEFF Research Database (Denmark)

    Zadjali, Fahad; Santana-Farre, Ruyman; Vesterlund, Mattias

    2012-01-01

    in the development of diet-induced hepatic steatosis and insulin resistance. SOCS2-knockout (SOCS2(-/-)) mice and wild-type littermates were fed for 4 mo with control or high-fat diet, followed by assessment of insulin sensitivity, hepatic lipid content, and expression of inflammatory cytokines. SOCS2(-/-) mice...

  3. Effects of medium-chain triglycerides on gluconeogenesis and ureagenesis in weaned rats fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Chitose Sugiyama

    2015-12-01

    Full Text Available We explored the effects of Medium-chain triglycerides (MCT on gluconeogenesis and ureagenesis in the liver of weaned male rats fed high fat, carbohydrate-free diets. The rats of three experimental groups and control were fed for 10 days. The diets were high fat, carbohydrate-free diets consisting either of a corn oil or MCT, and high protein carbohydrate-free diet and a control (high carbohydrate diet. The hepatic glucose-6-phosphatase (G6Pase activity increased in the experimental groups. Despite the elevated G6Pase activity in these groups, hepatic activities of glutamic alanine transaminase (GAT, pyruvate carboxylase (PC and arginase differed among the experimental groups. The HF-corn oil rats showed elevation of PC activity, but no elevation of GAT activity, and the lowest arginase activity among the three groups. The HF-MCT diet-fed rats showed higher GAT and arginase activities than the HF-corn oil group. In the HP diet-fed rats, GAT and arginase activities enhanced, PC did not.

  4. 75 FR 70206 - Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From...

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-560-824] Certain Coated Paper... paper suitable for high-quality print graphics using sheet-fed presses (certain coated paper) from... Department published its final determination in the countervailing duty investigation of certain coated paper...

  5. 75 FR 75663 - Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From the...

    Science.gov (United States)

    2010-12-06

    ... suitable for high quality print graphics using sheet-fed presses; coated on one or both sides with kaolin... square meter; whether gloss grade, satin grade, matte grade, dull grade, or any other grade of finish... distinguish it from `text.' \\2\\ One of the key measurements of any grade of paper is brightness. Generally...

  6. Salicornia Extract Ameliorates Salt-Induced Aggravation of Nonalcoholic Fatty Liver Disease in Obese Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Kim, Jae Hwan; Suk, Sujin; Jang, Woo Jung; Lee, Chang Hyung; Kim, Jong-Eun; Park, Jin-Kyu; Kweon, Mee-Hyang; Kim, Jong Hun; Lee, Ki Won

    2017-07-01

    High-fat and high-salt intakes are among the major risks of chronic diseases including obesity, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Salicornia is a halophytic plant known to exert antioxidant, antidiabetic, and hypolipidemic effects, and Salicornia-extracted salt (SS) has been used as a salt substitute. In this study, the effects of SS and purified salt (PS) on the aggravation of NAFLD/NASH were compared. C57BL/6J male mice (8-wk-old) were fed a high-fat diet (HFD) for 6 mo and divided into 3 dietary groups, which were additionally fed HFD, HFD + SS, and HFD + PS for 13 wk. PS induced aggravation of NAFLD/NASH in HFD-fed mice. Although the actual salt intake was same between the PS and SS groups as 1% of the diet (extrapolated from the World Health Organization [WHO] guideline), SS induced less liver injury and hepatic steatosis compared to PS. The hepatic mRNA expressions of inflammatory cytokines and fibrosis marker were significantly lower in the SS group than the PS group. Oxidative stress is one of the major causes of inflammation in NAFLD/NASH. Results of the component analysis showed that the major polyphenols that exhibited antioxidant activity in the Salicornia water extract were ferulic acid, caffeic acid, and isorhamnetin. These results suggest that even the level of salt intake recommended by WHO can accelerate the progression of liver disease in obese individuals consuming HFD. It is proposed that SS can be a salt substitute for obese individuals who consume HFD. © 2017 Institute of Food Technologists®.

  7. Regressive Effect of Myricetin on Hepatic Steatosis in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Shu-Fang Xia

    2016-12-01

    Full Text Available Myricetin is an effective antioxidant in the treatment of obesity and obesity-related metabolic disorders. The objective of this study was to explore the regressive effect of myricetin on pre-existing hepatic steatosis induced by high-fat diet (HFD. C57BL/6 mice were fed either a standard diet or a HFD for 12 weeks and then half of the mice were treated with myricetin (0.12% in the diet, w/w while on their respective diets for further 12 weeks. Myricetin treatment significantly alleviated HFD-induced steatosis, decreased hepatic lipid accumulation and thiobarbituric acid reactive substance (TBARS levels, and increased antioxidative enzyme activities, including catalase (CAT, superoxide dismutase (SOD, and glutathione peroxidase (GPx activities. Microarray analysis of hepatic gene expression profiles showed that myricetin significantly altered the expression profiles of 177 genes which were involved in 12 biological pathways, including the peroxisome proliferator activated receptor (PPAR signaling pathway and peroxisome. Further research indicated that myricetin elevated hepatic nuclear Nrf2 translocation, increased the protein expression of heme oxygenase-1 (HO-1 and NAD(PH quinone dehydrogenase 1 (NQO1, reduced the protein expression of PPARγ, and normalized the expressions of genes that were involved in peroxisome and the PPAR signaling pathway. Our data indicated that myricetin might represent an effective therapeutic agent to treat HFD-induced hepatic steatosis via activating the Nrf2 pathway and the PPAR signaling pathway.

  8. Effect of thymol and carvacrol on nutrient digestibility in rams fed high or low concentrate diets.

    Science.gov (United States)

    Zamiri, M J; Azizabadi, E; Momeni, Z; Rezvani, M R; Atashi, H; Akhlaghi, A

    2015-01-01

    Published data on the effects of essential oils (EO) on in vivo nutrient digestibility in sheep are contradictory. In 2 experiments, the effect of thymol and carvacrol on nutrient digestibility was studied in sheep fed with high (70%) or low (52%) concentrate diets, using incomplete Latin Square designs. The essential oils were mixed with the concentrate portion of the diet at the rate of 0.0, 0.3, or 0.6 g per kg dry matter (DM) diet. Supplementation of thymol had no significant effect on digestibility of dry matter (DM), organic matter (OM), crude protein (CP) and acid detergent fiber (ADF). The main effect of thymol on neutral detergent fiber (NDF) and ether extract (EE) digestibility and on nitrogen balance (NB) was significant (Pdigestibility. The main effect of carvacrol on ruminal ammonia levels and NB was significant, but within each level of dietary concentrate no significant differences were observed in ammonia levels and NB. Inclusion of 0.3 g/kg diet DM of carvacrol or thyme was more effective than 0.6 g/kg diet DM in terms of NB but neither dose affected nutrient digestibility. Future research should determine the long-term effects of essential oils on digestibility and performance in sheep, before recommendation can be made for their use under practical husbandry conditions.

  9. Effects of herbal mixture extracts on obesity in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chien

    2016-07-01

    Full Text Available The aim of this study was to investigate and compare the effects of three herbal mixture extracts on obesity induced by high-fat diet (HFD in rats. The prescriptions—Pericarpium citri reticulatae and Fructus crataegi—were used as matrix components and mixed with Ampelopsis grossedentata, Salvia miltiorrhiza, and epigallocatechin-3-gallate (EGCG to form T1, T2, and T3 complexes, respectively. Results revealed that HFD feeding significantly increased body weight gain, fat deposition, plasma lipid profiles, hepatic lipid accumulation, and hepatic vacuoles formation, but decreased plasma levels of adiponectin in rats. Only the T1 complex showed the tendency, although not significantly so, for decreased HFD-induced body weight gain. T1 and T3 complexes significantly reduced HFD-induced fat deposition, and plasma levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol. Only the T1 complex significantly increased HFD-reduced adiponectin levels in plasma, but decreased HFD-increased triglyceride content in liver tissues. All complexes effectively inhibited HFD-induced vacuoles formation. The content of dihydromyricetin, salvianolic acid B, and EGCG in T1, T2, and T3 complexes was 18.25 ± 0.07%, 22.20 ± 0.10%, and 18.86 ± 0.04%, respectively. In summary, we demonstrated that herbal mixture extracts, especially T1 complex, exhibit antiobesity activity in HFD-fed rats.

  10. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats.

    Science.gov (United States)

    Murakami, Shigeru; Fujita, Michiko; Nakamura, Masakazu; Sakono, Masanobu; Nishizono, Shoko; Sato, Masao; Imaizumi, Katsumi; Mori, Mari; Fukuda, Nobuhiro

    2016-03-01

    This study was designed to investigate the effects of dietary taurine on cholesterol metabolism in high-cholesterol-fed rats. Male Sprague-Dawley rats were randomly divided into two dietary groups (n = 6 in each group): a high-cholesterol diet containing 0.5% cholesterol and 0.15% sodium cholate, and a high-cholesterol diet with 5% (w/w) taurine. The experimental diets were given for 2 weeks. Taurine supplementation reduced the serum and hepatic cholesterol levels by 37% and 32%, respectively. Faecal excretion of bile acids was significantly increased in taurine-treated rats, compared with untreated rats. Biliary bile acid concentrations were also increased by taurine. Taurine supplementation increased taurine-conjugated bile acids by 61% and decreased glycine-conjugated bile acids by 53%, resulting in a significant decrease in the glycine/taurine (G/T) ratio. Among the taurine-conjugated bile acids, cholic acid and deoxycholic acid were significantly increased. In the liver, taurine supplementation increased the mRNA expression and enzymatic activity of hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme for bile acid synthesis, by three- and two-fold, respectively. Taurine also decreased the enzymatic activity of acyl-CoA:cholesterol acyltransferase (ACAT) and microsomal triglyceride transfer protein (MTP). These observations suggest that taurine supplementation increases the synthesis and excretion of taurine-conjugated bile acids and stimulates the catabolism of cholesterol to bile acid by elevating the expression and activity of CYP7A1. This may reduce cholesterol esterification and lipoprotein assembly for very low density lipoprotein (VLDL) secretion, leading to reductions in the serum and hepatic cholesterol levels. © 2016 John Wiley & Sons Australia, Ltd.

  11. Effect of High Phytase Inclusion Rates on Performance of Broilers Fed Diets Not Severely Limited in Available Phosphorus

    Directory of Open Access Journals (Sweden)

    T. T. dos Santos

    2013-02-01

    Full Text Available Phytate is not only an unavailable source of phosphorus (P for broilers but it also acts as an anti-nutrient, reducing protein and mineral absorption, increasing endogenous losses and reducing broiler performance. The objective of this study was to investigate the anti-nutritional effects of phytate by including high levels of phytase in diets not severely limited in available P. A total of 768 male Arbor Acres broilers were distributed in six treatments of eight replicate pens of 16 birds each consisting of a positive control diet (PC, positive control with 500 FTU/kg phytase, negative control (NC diet with lower available P and calcium (Ca levels and the same NC diet with 500, 1,000 or 1,500 FTU/kg phytase. Body weight gain (BWG, feed intake (FI, feed conversion ratio (FCR and mortality were determined at 21 and 35 d of age while foot ash was determined in four birds per pen at 21 d of age. FI, FCR and foot ash where not affected by the lower mineral diets at 21 d of age nor by the enzyme inclusion but broilers fed lower Ca and available P diets had lower BWG. At 35 d of age no difference was observed between broilers fed the positive or NC diets but broilers fed 500, 1,000 and 1,500 FTU/kg on top of the NC diet had better FCR than broilers fed the positive control diet. When compared to birds fed a diet adequate in P, birds fed the same diet included with 500, 1,000 and 1,500 FTU/kg of phytase in marginally deficient available P and Ca diets had an improvement of performance. These results support the concept that hydrolysing phytate and reducing the anti-nutritional effects of phytate improves bird performance on marginally deficient diets that were not covering the P requirement of birds.

  12. Effect of Regular Exercise on the Histochemical Changes of d-Galactose-Induced Oxidative Renal Injury in High-Fat Diet-Fed Rats

    International Nuclear Information System (INIS)

    Park, Sok; Kim, Chan-Sik; Lee, Jin; Suk Kim, Jung; Kim, Junghyun

    2013-01-01

    Renal lipid accumulation exhibits slowly developing chronic kidney disease and is associated with increased oxidative stress. The impact of exercise on the obese- and oxidative stress-related renal disease is not well understood. The purpose of this study was to investigate whether a high-fat diet (HFD) would accelerate d-galactose-induced aging process in rat kidney and to examine the preventive effect of regular exercise on the obese- and oxidative stress-related renal disease. Oxidative stress was induced by an administration of d-galactose (100 mg/kg intraperitoneally injected) for 9 weeks, and d-galactose-treated rats were also fed with a high-fat diet (60% kcal as fat) for 9 weeks to induce obesity. We investigated the efficacy of regular exercise in reducing renal injury by analyzing Nε-carboxymethyllysine (CML), 8-hydroxygluanine (8-OHdG) and apoptosis. When rats were fed with a HFD for 9 weeks in d-galactose-treated rats, an increased CML accumulation, oxidative DNA damage and renal podocyte loss were observed in renal glomerular cells and tubular epithelial cells. However, the regular exercise restored all these renal changes in HFD plus d-galactose-treated rats. Our data suggested that long-term HFD may accelerate the deposition of lipoxidation adducts and oxidative renal injury in d-galactose-treated rats. The regular exercise protects against obese- and oxidative stress-related renal injury by inhibiting this lipoxidation burden

  13. Effects of 3,5-diiodo-L-thyronine on the liver of high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    Marco Giammanco

    2016-06-01

    Full Text Available Experimental studies have highlighted that the administration of 3,5-diiodo-L-thyronine (T2 to rats fed diets rich in lipids induces a decrease of cholesterol and triglycerides plasma levels and body weight (BW without inducing liver steatosis. On the basis of these observations we carried out some experimental in vivo studies to assess the effects of multiple high doses of T2 on the pituitary thyroid axis of rats fed diet rich in lipids. Fifteen male Wistar rats were divided into three groups of five animals each. The first group (N group received standard diet, the second group was fed with a high fat diet (HFD group, while the third group (HFDT2 group was additionally given T2 intraperitoneally at a dose level of 70 µg/100 g of BW three times a week up to four weeks. At the end of the treatment, blood sample from each animal was collected, centrifuged and the serum was stored at -20°C. The serum concentrations of thyroidstimulating hormone (TSH, triiodothyronine, thyroxine, adrenocorticotropic hormone, triglycerides, cholesterol, glucose, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase were then determined. In addition, liver of rats was examined by histology in order to assess the presence and degree of steatosis. The administration of T2 to rats fed with a high fat diet suppressed TSH secretion (P=0.013 while no steatosis was observed in the liver of these animals. Our data show that multiple administrations of high doses of T2 to rats fed diets rich in lipid inhibit TSH secretion and prevent the onset of liver steatosis in these animals.

  14. Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats.

    Science.gov (United States)

    Khosravani, M; Azarbayjani, M A; Abolmaesoomi, M; Yusof, A; Zainal Abidin, N; Rahimi, E; Feizolahi, F; Akbari, M; Seyedjalali, S; Dehghan, F

    2016-04-01

    Obesity, hyperglycemia and dyslipidemia, are major risk factors. However, natural therapies, dietary components, and physical activity may effect on these concerns. The aim of this study was to examine the effect of aerobic exercise and consumption of liquid ginger extract on lipid profile of Male rats with a high-fat fed diet. 32 rats were randomly divided into 4 groups: 1) aerobic exercise, 2) Ginger extract, 3) combined aerobic exercise and Ginger extract, and 4) the control. Subjects of the first three groups received ginger extract via gavage feeding of 250 mg/kg. The exercise program was 3 sessions per week on 3 different days over 4 weeks. Total cholesterol (TC), Triglyceride (TG), HDL and LDL were measured 24-h before the first session and 24-h after the final training session. The concentration of TG in the control group was significantly higher than other groups. In addition, the mean concentration of TG in the aerobic exercise group was significantly lower than Ginger extract group but there was no significant difference as compared to combined aerobic exercise and ginger extract group. The combination of aerobic exercise and ginger consumption significantly reduced the TG level compared to ginger group. TC and LDL concentrations were significantly decreased in all groups compare to control. The combination of aerobic exercise and ginger extract feeding caused a significant increase in HDL levels. The finding of this study suggests that the combination of aerobic exercise and liquid ginger extract consumption might be an effective method of reducing lipid profiles, which will reduce the risk of cardiovascular diseases caused by high-fat diets.

  15. The organ specificity in pathological damage of chronic intermittent hypoxia: an experimental study on rat with high-fat diet.

    Science.gov (United States)

    Wang, Hui; Tian, Jian-li; Feng, Shu-zhi; Sun, Ning; Chen, Bao-yuan; Zhang, Yun

    2013-09-01

    It is known today that sleep apnea hypopnea syndrome and its characteristic chronic intermittent hypoxia can cause damages to multiple organs, including the cardiovascular system, urinary system, and liver. It is still unclear, however, whether the damage caused by sleep apnea hypopnea syndrome and the severity of the damage are organ-specific. This research observed the pathological effects of chronic intermittent hypoxia on rat's thoracic aorta, myocardium, liver, and kidney, under the condition of lipid metabolism disturbance, through establishing the rat model of chronic intermittent hypoxia with high-fat diet by imitating the features of human sleep apnea hypopnea syndrome. In this model, 24 male Wistar rats were randomly divided into three groups: a control group fed by regular diet, a high-fat group fed by high-fat diet, and a high-fat plus intermittent hypoxia group fed by high-fat diet and treated with intermittent hypoxia 7 h a day. At the end of the ninth week, the pathological changes of rat's organs, including the thoracic aorta, myocardium, liver, and kidney are observed (under both optical microscopy and transmission electron microscopy). As the result of the experiment shows, while there was no abnormal effect observed on any organs of the control group, slight pathological changes were found in the organs of the high-fat group. For the high-fat plus intermittent hypoxia group, however, remarkably severer damages were found on all the organs. It also showed that the severity of the damage varies by organ in the high-fat plus intermittent hypoxia group, with the thoracic aorta being the worst, followed by the liver and myocardium, and the kidney being the slightest. Chronic intermittent hypoxia can lead to multiple-organ damage to rat with high-fat diet. Different organs appear to have different sensitivity to chronic intermittent hypoxia.

  16. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet.

    Science.gov (United States)

    Wang, Jun; Ryu, Ho Kyung

    2015-10-01

    The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism.

  17. Oat beta-glucan ameliorates insulin resistance in mice fed on high-fat and high-fructose diet

    Directory of Open Access Journals (Sweden)

    Jie Zheng

    2013-12-01

    Full Text Available Methods: This study sought to evaluate the impact of oat beta-glucan on insulin resistance in mice fed on high-fat and high-fructose diet with fructose (10%, w/v added in drinking water for 10 weeks. Results: The results showed that supplementation with oat beta-glucan could significantly reduce the insulin resistance both in low-dose (200 mg/kg−1 body weight and high-dose (500 mg/kg−1 body weight groups, but the high-dose group showed a more significant improvement in insulin resistance (P<0.01 compared with model control (MC group along with significant improvement in hepatic glycogen level, oral glucose, and insulin tolerance. Moreover, hepatic glucokinase activity was markedly enhanced both in low-dose and high-dose groups compared with that of MC group (P<0.05. Conclusion: These results suggested that supplementation of oat beta-glucan alleviated insulin resistance and the effect was dose dependent.

  18. Antioxidant and anti hyperglycemic role of wine grape powder in rats fed with a high fructose diet

    Directory of Open Access Journals (Sweden)

    Romina Hernández-Salinas

    2015-01-01

    Full Text Available BACKGROUND: Metabolic syndrome is a growing worldwide health problem. We evaluated the effects of wine grape powder (WGP, rich in antioxidants and fiber, in a rat model of metabolic syndrome induced by a high fructose diet. We tested whether WGP supplementation may prevent glucose intolerance and decrease oxidative stress in rats fed with a high fructose diet. METHODS: Male Sprague-Dawley rats weighing 180 g were divided into four groups according to their feeding protocols. Rats were fed with control diet (C, control plus 20 % WGP (C + WGP, 50 % high fructose (HF or 50 % fructose plus 20 % WGP (HF + WGP for 16 weeks. Blood glucose, insulin and triglycerides, weight, and arterial blood pressure were measured. Homeostasis model assessment (HOMA index was calculated using insulin and glucose values. A glucose tolerance test was performed 2 days before the end of the experiment. As an index of oxidative stress, thio-barbituric acid reactive substances (TBARS level was measured in plasma and kidney, and superoxide dismutase was measured in the kidney. RESULTS: Thiobarbituric acid reactive substances in plasma and renal tissue were significantly higher when compared to the control group. In addition, the area under the curve of the glucose tolerance test was higher in HF fed animals. Furthermore, fasting blood glucose, plasma insulin levels, and the HOMA index, were also increased. WGP supplementation prevented these alterations in rats fed with the HF diet. We did not find any significant difference in body weight or systolic blood pressure in any of the groups. CONCLUSIONS: Our results show that WGP supplementation prevented hyperglycemia, insulin resistance and reduced oxidative stress in rats fed with HF diet. We propose that WGP may be used as a supplement in human food as well.

  19. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice.

    Science.gov (United States)

    Rodriguez-Navas, Carlos; Morselli, Eugenia; Clegg, Deborah J

    2016-08-01

    In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD) for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.

  20. Decaffeinated coffee consumption induces expression of tight junction proteins in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    Mazzone G

    2016-09-01

    Full Text Available Background: Recent evidence indicates that gut microbiota plays a key role in the development of NAFLD through the gut-liver axis. An altered gut permeability induced by alterations of tight junction (TJ proteins allows the passage of bacteria and substances leading to liver inflammation, hepatocyte damage and fibrosis. This study aims to evaluate the influence of decaffeinated coffee on gut permeability in a rat model of fat liver damage induced by a high fat diet (HFD. Methods: Twelve male Wistar rats were assigned to 3 groups. The first group received HFD for 5 months and drank water. The second group received HFD for 5 months and drank water added with 1.2mL decaffeinated coffee/day starting from the 4th month. The third group received standard diet (SD and drank water. Protein and mRNA expression levels of Toll-Like Receptor- 4 (TLR-4, Occludin and Zonula occludens-1 (ZO-1 were assessed in rat intestines. Results: A significant reduction of Occludin and ZO-1 was observed in HFD fed rats (0.97±0.05 vs 0.15±0.08 p˂0.01, and 0.97±0.05 vs 0.57±0.14 p˂0.001 respectively. This reduction was reverted in HFD+COFFEE rats (0.15±0.08 vs 0.83±0.27 p˂0.01 and 0.57±0.14 vs 0.85±0.12 p˂0.01 respectively. The TLR-4 expression up-regulated by HFD was partially reduced by coffee administration. Conclusions: HFD impairs the intestinal TJ barrier integrity. Coffee increases the expression of TJ proteins, reverting the altered gut permeability and reducing TLR-4 expression.

  1. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice

    Directory of Open Access Journals (Sweden)

    Carlos Rodriguez-Navas

    2016-08-01

    Full Text Available Objective: In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Methods: Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Results: Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Conclusions: Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD. Keywords: Obesity, N43, Palmitic acid, Linoleic acid, Central nervous system, Western diet, ω6-fatty acids

  2. Immobilization of high-level defense waste in a slurry-fed electric glass melter

    International Nuclear Information System (INIS)

    Brouns, R.A.; Mellinger, G.B.; Nelson, T.A.; Oma, K.H.

    1980-11-01

    Scoping studies have been performed at the Pacific Northwest Laboratory related to the direct liquid-feeding of a generic high-level defense waste to a joule-heated ceramic melter. Tests beginning on the laboratory scale and progressing to full-scale operation are reported. Laboratory work identified the need for a reducing agent in the feed to help control the foaming tendencies of the waste glass. These tests also indicated that suspension agents were helpful in reducing the tendency of solids to settle out of the liquid feed. Testing was then moved to a larger pilot-scale melter (designed for approx. 2.5 kg/h) where verification of the flowsheet examined in the lab was accomplished. It was found that the reducing agent controlled foaming and did not result in the precipitation of metals. Pumping problems were encountered when slurries with higher than normal solids content were fed. A demonstration (designed for approx. 50 kg/h) in a full-scale melter was then made with the tested flowsheet; however, the amount of reducing agent had to be increased. In addition, it was found that feed control needed further development; however, steady-state operation was achieved giving encouraging results on process capacities. During steady-state operation, ruthenium losses to the offgas system averaged less than 0.16%, while cesium losses were somewhat higher, ranging from 0.91 to 24% and averaging 13%. Particulate decontamination factors from feed to offgas in the melter ranged from 5 x 10 2 to greater than 10 3 without any filtration or treatment. Approximately 1050 kg of glass was produced from 2900 L of waste at rates up to 40 kg/h

  3. Fatty liver accompanies an increase in lactobacillus species in the hind gut of C57BL/6 mice fed a high-fat diet.

    Science.gov (United States)

    Zeng, Huawei; Liu, Jun; Jackson, Matthew I; Zhao, Feng-Qi; Yan, Lin; Combs, Gerald F

    2013-05-01

    High-fat (HF) diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease and changes in the gut microbiome. To test the hypothesis that HF feeding increases certain predominant hind gut bacteria and development of steatohepatitis, C57BL/6 mice were fed an HF (45% energy) or low-fat (LF) (10% energy) diet for 10 wk. At the end of the feeding period, body weights in the HF group were 34% greater than those in the LF group (P < 0.05). These changes were associated with dramatic increases in lipid droplet number and size, inflammatory cell infiltration, and inducible nitric oxide (NO) synthase protein concentration in the livers of mice fed the HF diet. Consistent with the fatty liver phenotype, plasma leptin and tumor necrosis factor-α concentrations were also elevated in mice fed the HF diet, indicative of chronic inflammation. Eight of 12 pairs of polymerase chain reaction (PCR) primers for bacterial species that typically predominate hind gut microbial ecology generated specific PCR products from the fecal DNA samples. The amount of DNA from Lactobacillus gasseri and/or Lactobacillus taiwanensis in the HF group was 6900-fold greater than that in the LF group. Many of these bacteria are bile acid resistant and are capable of bile acid deconjugation. Because bile acids are regulators of hepatic lipid metabolism, the marked increase of gut L. gasseri and/or L. taiwanensis species bacteria with HF feeding may play a role in development of steatohepatitis in this model.

  4. Fatty Liver Accompanies an Increase in Lactobacillus Species in the Hind Gut of C57BL/6 Mice Fed a High-Fat Diet123

    Science.gov (United States)

    Zeng, Huawei; Liu, Jun; Jackson, Matthew I.; Zhao, Feng-Qi; Yan, Lin; Combs, Gerald F.

    2013-01-01

    High-fat (HF) diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease and changes in the gut microbiome. To test the hypothesis that HF feeding increases certain predominant hind gut bacteria and development of steatohepatitis, C57BL/6 mice were fed an HF (45% energy) or low-fat (LF) (10% energy) diet for 10 wk. At the end of the feeding period, body weights in the HF group were 34% greater than those in the LF group (P < 0.05). These changes were associated with dramatic increases in lipid droplet number and size, inflammatory cell infiltration, and inducible nitric oxide (NO) synthase protein concentration in the livers of mice fed the HF diet. Consistent with the fatty liver phenotype, plasma leptin and tumor necrosis factor-α concentrations were also elevated in mice fed the HF diet, indicative of chronic inflammation. Eight of 12 pairs of polymerase chain reaction (PCR) primers for bacterial species that typically predominate hind gut microbial ecology generated specific PCR products from the fecal DNA samples. The amount of DNA from Lactobacillus gasseri and/or Lactobacillus taiwanensis in the HF group was 6900-fold greater than that in the LF group. Many of these bacteria are bile acid resistant and are capable of bile acid deconjugation. Because bile acids are regulators of hepatic lipid metabolism, the marked increase of gut L. gasseri and/or L. taiwanensis species bacteria with HF feeding may play a role in development of steatohepatitis in this model. PMID:23486979

  5. Chronic leptin infusion advances, and immunoneutralization of leptin postpones puberty onset in normally fed and feed restricted female rats

    NARCIS (Netherlands)

    Zeinoaldini, S.; Swarts, J.J.M.; Heijning, van de B.J.M.

    2006-01-01

    Does leptin play a vital role in initiating puberty in female rats and can it overrule a nutrionally imposed (i.e. a 30% feed restriction, FR) delay in puberty onset? Prepubertal female rats were chronically infused for 14 days with leptin (icv or sc) or leptin-antiserum (icv) while puberty onset

  6. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High Fat Diets

    Directory of Open Access Journals (Sweden)

    Laurence B Lindenmaier

    2016-08-01

    Full Text Available Low bone mass is often associated with increased bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Genetic (e.g., leptin deficiency and high fat diet-induced (e.g., leptin resistance obesity are associated with increased marrow adipose tissue (MAT and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice using recombinant adeno-associated virus (rAAV gene therapy. In a first study, eight- to ten-week-old male ob/ob mice were randomized into 4 groups: (1 untreated, (2 rAAV-Lep, (3 rAAV-green fluorescent protein (rAAV-GFP, or (4 pair-fed to rAAV-Lep. For vector administration, mice were placed in a Kopf stereotaxic apparatus, and injected intracerebroventricularly with either rAAV-Lep or rAAV-GFP (9 × 107 particles in 1.5 µl. The mice were maintained for 30 weeks following vector administration. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high fat diets. Eight- to ten-week-old male ob/ob mice were randomized into 2 groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high fat diet for 8 weeks. Wild type (WT controls included age-matched mice fed regular or high fat diet. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high fat diet to values similar to WT mice fed regular diet. These

  7. The effects of Mucuna pruriens on the renal oxidative stress and transcription factors in high-fructose-fed rats.

    Science.gov (United States)

    Ulu, Ramazan; Gozel, Nevzat; Tuzcu, Mehmet; Orhan, Cemal; Yiğit, İrem Pembegül; Dogukan, Ayhan; Telceken, Hafize; Üçer, Özlem; Kemeç, Zeki; Kaman, Dilara; Juturu, Vijaya; Sahin, Kazim

    2018-05-31

    In the present study, we evaluated the effects of M. pruriens administration on metabolic parameters, oxidative stress and kidney nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathways in high-fructose fed rats. Male rats (n = 28) were divided into 4 groups as control, M. pruriens, fructose, and M. pruriens plus fructose. All rats were fed a standard diet supplemented or no supplemented with M. pruriens (200 mg/kg/d by gavage). Fructose was given in drinking water for 8 weeks. High fructose consumption led to an increase in the serum level of glucose, triglyceride, urea and renal malondialdehyde (MDA) levels. Although M. pruriens treatment reduced triglyceride and MDA levels, it did not affect other parameters. M. pruriens supplementation significantly decreased the expression of NF-ҡB and decreased expression of Nrf2 and HO-1 proteins in the kidney. This study showed that the adverse effects of high fructose were alleviated by M. pruriens supplementation via modulation of the expression of kidney nuclear transcription factors in rats fed high fructose diet. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effect of Ethanolic Extract of Emblica officinalis (Amla on Glucose Homeostasis in Rats Fed with High Fat Diet

    Directory of Open Access Journals (Sweden)

    Pallavi S. Kanthe

    2017-07-01

    Full Text Available Background: Emblica officinalis contains many biological active components which are found to have some medicinal properties against diseases. Aim and Objectives: To assess hypolipidemic and glucose regulatory actions of Ethanolic Extract of Emblica officinalis (EEO on High Fat Diet (HFD fed experimental rats. Material and Methods: Twenty four rats were divided into four groups, having six rats in each group as following; Group I- Control (20% fat; Group II (EEO 100 mg/kg/b w; Group III (30% fat and Group IV (30% fat + EEO 100 mg/kg/b w. The treatment was continued for 21 days. Gravimetric parameters and lipid profiles of all the groups were measured. Oral Glucose Tolerance Test (OGTT, fasting and postprandial glucose and fasting insulin levels were estimated. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR was calculated. Statistical analysis was done. Results: Significant alteration in serum lipid profile, fasting and post prandial blood glucose levels and fasting insulin level were observed in rats of Group III fed with high fat diet. Supplementation of EEO improved both of glycemic and lipid profiles in rats of Group IV fed with high fat diet. Conclusion: Results from the study indicate the beneficial role of EEO on dyslipidemia and glucose homeostasis in rats treated with high fat diet.

  9. Chronic High Fat Diet Consumption Impairs Metabolic Health of Male Mice.

    Science.gov (United States)

    Morselli, Eugenia; Criollo, Alfredo; Rodriguez-Navas, Carlos; Clegg, Deborah J

    We show that chronic high fat diet (HFD) feeding affects the hypothalamus of male but not female mice. In our study we demonstrate that palmitic acid and sphingolipids accumulate in the central nervous system of HFD-fed males. Additionally, we show that HFD-feeding reduces proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) thus reducing estrogen receptor α (ERα) and driving hypothalamic inflammation in male but not female mice. Hypothalamic inflammation correlates with markers of metabolic dysregulation as indicated by dysregulation in glucose intolerance and myocardial function. Lastly, we demonstrate that there are blockages in mitophagy and lipophagy in hypothalamic tissues in males. Our data suggest there is a sexually dimorphic response to chronic HDF exposure, females; despite gaining the same amount of body weight following HFD-feeding, appear to be protected from the adverse metabolic effects of the HFD.

  10. Docosapentaenoic acid and docosahexaenoic acid are positively associated with insulin sensitivity in rats fed high-fat and high-fructose diets.

    Science.gov (United States)

    Huang, Jiung-Pang; Cheng, Mei-Ling; Hung, Cheng-Yu; Wang, Chao-Hung; Hsieh, Po-Shiuan; Shiao, Ming-Shi; Chen, Jan-Kan; Li, Dai-Er; Hung, Li-Man

    2017-10-01

    The aim of the present study was to compare insulin resistance and metabolic changes using a global lipidomic approach. Rats were fed a high-fat diet (HFD) or a high-fructose diet (HFrD) for 12 weeks to induce insulin resistance (IR) syndrome. After 12 weeks feeding, physiological and biochemical parameters were examined. Insulin sensitivity and plasma metabolites were evaluated using a euglycemic-hyperinsulinemic clamp and mass spectrometry, respectively. Pearson's correlation coefficient was used to investigate the strength of correlations. Rats on both diets developed IR syndrome, characterized by hypertension, hyperlipidemia, hyperinsulinemia, impaired fasting glucose, and IR. Compared with HFrD-fed rats, non-esterified fatty acids were lower and body weight and plasma insulin levels were markedly higher in HFD-fed rats. Adiposity and plasma leptin levels were increased in both groups. However, the size of adipocytes was greater in HFD- than HFrD-fed rats. Notably, the lipidomic heat map revealed metabolites exhibiting greater differences in HFD- and HFrD-fed rats compared with controls. Plasma adrenic acid levels were higher in HFD- than HFrD-fed rats. Nevertheless, linoleic and arachidonic acid levels decreased in HFrD-fed rats compared with controls. Plasma concentrations of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) were significantly reduced after feeding of both diets, particularly the HFrD. There was a strong positive correlation between these two fatty acids and the insulin sensitivity index. The systemic lipidomic analysis indicated that a reduction in DHA and DPA was strongly correlated with IR in rats under long-term overnutrition. These results provide a potential therapeutic target for IR and metabolic syndrome. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  11. Hypolipidaemic and anti-oxidative potential of encapsulated herb (Terminalia arjuna) added vanilla chocolate milk in high cholesterol fed rats.

    Science.gov (United States)

    Sawale, Pravin Digambar; Pothuraju, Ramesh; Abdul Hussain, Shaik; Kumar, Anuj; Kapila, Suman; Patil, Girdhari Ramdas

    2016-03-15

    Atherosclerosis is associated with coronary artery disease and occurs in developing as well as developed countries. In the present investigation, hypolipidaemic and anti-oxidative properties of encapsulated herb (Terminalia arjuna, 1.8%) added vanilla chocolate dairy drink was evaluated in high cholesterol fed Wistar rats for 60 days. At the end of the experimental period, a significant decrease in the body weight gain by rats receiving the encapsulated herb extract was noted as compared to high cholesterol fed rats. Administration of microencapsulated herb showed a statistically significant decrease in organ weights (epididymal fat and liver). Moreover, a significant decrease in serum lipids such as triglycerides, total cholesterol, low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol and atherogenic index was observed with encapsulated Terminalia arjuna extract in high cholesterol fed group. Increases in reduced glutathione and decreases in TBARS levels were also reported in both liver and red blood cell lysates with encapsulated herb supplementation. The results demonstrated that the bioactive components (phytosterols, flavanoids, saponins and tannins etc.) which are present in the encapsulated T. arjuna not only withstand the processing conditions but also are effectively released in the intestine and show their effects, such as hypolipidaemic and antioxidant activities, for better treating cardiovascular disease. © 2015 Society of Chemical Industry.

  12. Effects of Yogurt Containing Fermented Pepper Juice on the Body Fat and Cholesterol Level in High Fat and High Cholesterol Diet Fed Rat.

    Science.gov (United States)

    Yeon, Su-Jung; Hong, Go-Eun; Kim, Chang-Kyu; Park, Woo Joon; Kim, Soo-Ki; Lee, Chi-Ho

    2015-01-01

    This experiment investigated whether yogurt containing fermented pepper juice (FPJY) affects cholesterol level in high fat and high cholesterol diet (HFCD) fed rat. Twenty five Sprague-Dawley male rats of 7 wk were divided into 5 groups, and fed following diets for 9 wk; CON (control diet), HFCD (HFCD), PY (HFCD supplemented with 2% of plain yogurt), LFY (HFCD supplemented with 2% of FPJY), and HFY (HFCD supplemented with 5% of FPJY). In the LFY group, hepatic total lipid level decreased significantly compared to the HFCD group (p0.05). In HFY group, body weight and hepatic total lipid level significantly decreased over the HFCD group (p0.05). Liver weight decreased as FPJY content was increased. Results suggested FPJY would inhibit organ hypertrophy and accumulation of body fat, hepatic lipid, and cholesterol in HFCD fed rat.

  13. The Efficiency of Irradiated Garlic Powder in Mitigation of Hypercholesterolemic Risk Factor in High cholesterol Fed Rats

    International Nuclear Information System (INIS)

    El-Neily, H.F.G.; El-Shennawy, H.M.

    2011-01-01

    The present study was conducted to explore the efficiency of radiation processed dried garlic powder at 10, 15 and 20 kGy on the average daily body gain, internal organ weights, certain hematological and biochemical parameters; including total plasma protein, albumin, globulin, total cholesterol, low and high density lipoprotein cholesterol (LDL-C and HDL-C), triglyceride levels, and aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities in rats fed with a high-cholesterol diet. Experimental rats were fed a high cholesterol diet (10 g kg -1 ) with and without raw or radiation processed dried garlic powder at the above-mentioned doses for 6 weeks. Control rats were fed a casein diet (C). 20 g kg -1 dietary raw or irradiated dried garlic powder was used to supplemented cholesterol diet (Ch). It was observed that cholesterol-fed (Ch) animals had a significant increase in relative liver weight, plasma total cholesterol, LDL-C, triglyceride levels, LDL/HDL ratio, AST and ALT activities and a significant decrease in HDL-C level compared to the control group of rats fed on a Casein diet (C). However, when the rats were fed with a high cholesterol diet mixed with 20 g kg -1 raw (ChRG) or irradiated dried garlic powder at 10 (ChG10), 15 (ChG15), and 20 kGy (ChG20), there was a significant reduction in their relative liver weight, hemoglobin, haematocrit, plasma total cholesterol, LDL-C, triglyceride levels, LDL/HDL ratio, and increased HDL level and amended AST and ALT activities levels as compared with the group which was on a diet containing high cholesterol without garlic powder (Ch). No significant changes were observed in relative spleen, kidney, lung, heart and testes weights, as well as, the total plasma protein, albumin, globulin concentrations in all of treated groups. These results show that the dietary 20 g kg -1 irradiated dried garlic powder at 10, 15 and 20 kGy are beneficial in reducing plasma cholesterol, triglycerides, LDL-C levels, El

  14. High density lipoproteins improve insulin sensitivity in high-fat diet-fed mice by suppressing hepatic inflammation[S

    Science.gov (United States)

    McGrath, Kristine C.; Li, Xiao Hong; Whitworth, Phillippa T.; Kasz, Robert; Tan, Joanne T.; McLennan, Susan V.; Celermajer, David S.; Barter, Philip J.; Rye, Kerry-Anne; Heather, Alison K.

    2014-01-01

    Obesity-induced liver inflammation can drive insulin resistance. HDL has anti-inflammatory properties, so we hypothesized that low levels of HDL would perpetuate inflammatory responses in the liver and that HDL treatment would suppress liver inflammation and insulin resistance. The aim of this study was to investigate the effects of lipid-free apoAI on hepatic inflammation and insulin resistance in mice. We also investigated apoAI as a component of reconstituted HDLs (rHDLs) in hepatocytes to confirm results we observed in vivo. To test our hypothesis, C57BL/6 mice were fed a high-fat diet (HFD) for 16 weeks and administered either saline or lipid-free apoAI. Injections of lipid-free apoAI twice a week for 2 or 4 weeks with lipid-free apoAI resulted in: i) improved insulin sensitivity associated with decreased systemic and hepatic inflammation; ii) suppression of hepatic mRNA expression for key transcriptional regulators of lipogenic gene expression; and iii) suppression of nuclear factor κB (NF-κB) activation. Human hepatoma HuH-7 cells exposed to rHDLs showed suppressed TNFα-induced NF-κB activation, correlating with decreased NF-κB target gene expression. We conclude that apoAI suppresses liver inflammation in HFD mice and improves insulin resistance via a mechanism that involves a downregulation of NF-κB activation. PMID:24347528

  15. Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice.

    Science.gov (United States)

    Zeng, Huawei; Ishaq, Suzanne L; Zhao, Feng-Qi; Wright, André-Denis G

    2016-09-01

    Consumption of an obesigenic/high-fat diet (HFD) is associated with a high colon cancer risk and may alter the gut microbiota. To test the hypothesis that long-term high-fat (HF) feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed HFD (45% energy) or a low-fat (LF) diet (10% energy) for 36 weeks. At the end of the study, body weights in the HF group were 35% greater than those in the LF group. These changes were associated with dramatic increases in body fat composition, inflammatory cell infiltration, inducible nitric oxide synthase protein concentration and cell proliferation marker (Ki67) in ileum and colon. Similarly, β-catenin expression was increased in colon (but not ileum). Consistent with gut inflammation phenotype, we also found that plasma leptin, interleukin 6 and tumor necrosis factor α concentrations were also elevated in mice fed the HFD, indicative of chronic inflammation. Fecal DNA was extracted and the V1-V3 hypervariable region of the microbial 16S rRNA gene was amplified using primers suitable for 454 pyrosequencing. Compared to the LF group, the HF group had high proportions of bacteria from the family Lachnospiraceae/Streptococcaceae, which is known to be involved in the development of metabolic disorders, diabetes and colon cancer. Taken together, our data demonstrate, for the first time, that long-term HF consumption not only increases inflammatory status but also accompanies an increase of colonic β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of C57BL/6 mice. Published by Elsevier Inc.

  16. Appearance of infused 15N-ammonia in urinary nitrogenous compounds in chickens fed low and high protein diets

    International Nuclear Information System (INIS)

    Karasawa, Yutaka

    1984-01-01

    The chickens fed a high protein diet responded to the intraportal administration of ammonia with a remarkable increase in urinary uric acid as well as an appreciable increase in urinary ammonia, while in those fed a low protein diet, the increase was appreciable in tissue glutamine and in urinary ammonia, but a little amount in urinary uric acid in response to the ammonia load. It was demonstrated by the present study that the increases in urinary ammonia and uric acid excretion in response to intraportal ammonia load were the adaptive response to remove the exogenous ammonia from the body. The mode of disposal of the intraportally loaded ammonia was changeable depending on protein intake. (Mori, K.)

  17. Liver glycogen reduces food intake and attenuates obesity in a high-fat diet-fed mouse model.

    Science.gov (United States)

    López-Soldado, Iliana; Zafra, Delia; Duran, Jordi; Adrover, Anna; Calbó, Joaquim; Guinovart, Joan J

    2015-03-01

    We generated mice that overexpress protein targeting to glycogen (PTG) in the liver (PTG(OE)), which results in an increase in liver glycogen. When fed a high-fat diet (HFD), these animals reduced their food intake. The resulting effect was a lower body weight, decreased fat mass, and reduced leptin levels. Furthermore, PTG overexpression reversed the glucose intolerance and hyperinsulinemia caused by the HFD and protected against HFD-induced hepatic steatosis. Of note, when fed an HFD, PTG(OE) mice did not show the decrease in hepatic ATP content observed in control animals and had lower expression of neuropeptide Y and higher expression of proopiomelanocortin in the hypothalamus. Additionally, after an overnight fast, PTG(OE) animals presented high liver glycogen content, lower liver triacylglycerol content, and lower serum concentrations of fatty acids and β-hydroxybutyrate than control mice, regardless of whether they were fed an HFD or a standard diet. In conclusion, liver glycogen accumulation caused a reduced food intake, protected against the deleterious effects of an HFD, and diminished the metabolic impact of fasting. Therefore, we propose that hepatic glycogen content be considered a potential target for the pharmacological manipulation of diabetes and obesity. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Effect of L-Carnitine on Skeletal Muscle Lipids and Oxidative Stress in Rats Fed High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Panchamoorthy Rajasekar

    2007-01-01

    Full Text Available There is evidence that high-fructose diet induces insulin resistance, alterations in lipid metabolism, and oxidative stress in rat tissues. The purpose of this study was to evaluate the effect of L-carnitine (CAR on lipid accumulation and peroxidative damage in skeletal muscle of rats fed high-fructose diet. Fructose-fed animals (60 g/100 g diet displayed decreased glucose/insulin (G/I ratio and insulin sensitivity index (ISI0,120 indicating the development of insulin resistance. Rats showed alterations in the levels of triglycerides, free fatty acids, cholesterol, and phospholipids in skeletal muscle. The condition was associated with oxidative stress as evidenced by the accumulation of lipid peroxidation products, protein carbonyls, and aldehydes along with depletion of both enzymic and nonenzymic antioxidants. Simultaneous intraperitoneal administration of CAR (300 mg/kg/day to fructose-fed rats alleviated the effects of fructose. These rats showed near-normal levels of the parameters studied. The effects of CAR in this model suggest that CAR supplementation may have some benefits in patients suffering from insulin resistance.

  19. Vagus nerve contributes to metabolic syndrome in high-fat diet-fed young and adult rats.

    Science.gov (United States)

    Barella, Luiz F; Miranda, Rosiane A; Franco, Claudinéia C S; Alves, Vander S; Malta, Ananda; Ribeiro, Tatiane A S; Gravena, Clarice; Mathias, Paulo C F; de Oliveira, Júlio C

    2015-01-01

    What is the central question of this study? Different nerve contributes periods of life are known for their differential sensitivity to interventions, and increased parasympathetic activity affects the development and maintenance of obesity. Thus, we evaluated the involvement of the vagus nerve by performing a vagotomy in young or adult rats that were offered an obesogenic high-fat diet. What is the main finding and its importance? Although the accumulation of adipose tissue decreased in both younger and older groups, the younger rats showed a greater response to the effects of vagotomy in general. In addition to the important role of the parasympathetic activity, we suggest that the vagus nerve contributes to the condition of obesity. Obesity has become a global problem, and this condition develops primarily because of an imbalance between energy intake and expenditure. The high complexity involved in the regulation of energy metabolism results from several factors besides endocrine factors. It has been suggested that obesity could be caused by an imbalance in the autonomous nervous system, which could lead to a condition of high parasympathetic activity in counterpart to low sympathetic tonus. High-fat (HF) diets have been used to induce obesity in experimental animals, and their use in animals leads to insulin resistance, hyperinsulinaemia and high parasympathetic activity, among other disorders. The aim of this work was to evaluate the effects of a vagotomy performed at the initiation of a HF diet at two different stages of life, weaning and adulthood. The vagotomy reduced parasympathetic activity (-32 and -51% in normal fat-fed rats and -43 and -55% in HF diet-fed rats; P fat depots (-17 and -33%, only in HF diet-fed rats; P fat diet-fed rats exhibited fasting hyperinsulinaemia (fivefold higher in young rats and threefold higher in older rats; P diet-fed groups was not altered in the vagotomized rats. We suggest that the vagus nerve, in addition to the

  20. Lack of effect of dietary fiber on serum lipids, glucose, and insulin in healthy young men fed high starch diets.

    Science.gov (United States)

    Ullrich, I H; Albrink, M J

    1982-07-01

    Eight healthy young men were fed a 72% carbohydrate high starch diet either high or low in dietary fiber for 4 days in a double cross-over design. Both groups showed a slight transient increase in plasma triglyceride level and a decrease in total and high-density lipoprotein cholesterol. There were few differences in glucose and insulin levels after glucose and meal tolerance tests after each diet. Fasting triglycerides and high-density lipoprotein cholesterol were inversely related at base-line; insulin response to oral glucose was inversely related to high-density lipoprotein cholesterol levels at the end of the study. We conclude that a high carbohydrate high starch diet, whether high or low in fiber, caused little increase in triglycerides, with little difference between the high and low fiber diets. Dietary fiber did not influence the fall in plasma cholesterol or high-density lipoprotein cholesterol concentrations over and above that seen after the low fiber diet.

  1. Methyl donor supplementation alters cognitive performance and motivation in female offspring from high-fat diet-fed dams.

    Science.gov (United States)

    McKee, Sarah E; Grissom, Nicola M; Herdt, Christopher T; Reyes, Teresa M

    2017-06-01

    During gestation, fetal nutrition is entirely dependent on maternal diet. Maternal consumption of excess fat during pregnancy has been linked to an increased risk of neurologic disorders in offspring, including attention deficit/hyperactivity disorder, autism, and schizophrenia. In a mouse model, high-fat diet (HFD)-fed offspring have cognitive and executive function deficits as well as whole-genome DNA and promoter-specific hypomethylation in multiple brain regions. Dietary methyl donor supplementation during pregnancy or adulthood has been used to alter DNA methylation and behavior. Given that extensive brain development occurs during early postnatal life-particularly within the prefrontal cortex (PFC), a brain region critical for executive function-we examined whether early life methyl donor supplementation ( e.g., during adolescence) could ameliorate executive function deficits observed in offspring that were exposed to maternal HFD. By using operant testing, progressive ratio, and the PFC-dependent 5-choice serial reaction timed task (5-CSRTT), we determined that F1 female offspring (B6D2F1/J) from HFD-fed dams have decreased motivation (decreased progressive ratio breakpoint) and require a longer stimulus length to complete the 5-CSRTT task successfully, whereas early life methyl donor supplementation increased motivation and shortened the minimum stimulus length required for a correct response in the 5-CSRTT. Of interest, we found that expression of 2 chemokines, CCL2 and CXCL10, correlated with the median stimulus length in the 5-CSRTT. Furthermore, we found that acute adult supplementation of methyl donors increased motivation in HFD-fed offspring and those who previously received supplementation with methyl donors. These data point to early life as a sensitive time during which dietary methyl donor supplementation can alter PFC-dependent cognitive behaviors.-McKee, S. E., Grissom, N. M., Herdt, C. T., Reyes, T. M. Methyl donor supplementation alters

  2. Methyl donor supplementation alters cognitive performance and motivation in female offspring from high-fat diet–fed dams

    Science.gov (United States)

    McKee, Sarah E.; Grissom, Nicola M.; Herdt, Christopher T.; Reyes, Teresa M.

    2017-01-01

    During gestation, fetal nutrition is entirely dependent on maternal diet. Maternal consumption of excess fat during pregnancy has been linked to an increased risk of neurologic disorders in offspring, including attention deficit/hyperactivity disorder, autism, and schizophrenia. In a mouse model, high-fat diet (HFD)–fed offspring have cognitive and executive function deficits as well as whole-genome DNA and promoter-specific hypomethylation in multiple brain regions. Dietary methyl donor supplementation during pregnancy or adulthood has been used to alter DNA methylation and behavior. Given that extensive brain development occurs during early postnatal life—particularly within the prefrontal cortex (PFC), a brain region critical for executive function—we examined whether early life methyl donor supplementation (e.g., during adolescence) could ameliorate executive function deficits observed in offspring that were exposed to maternal HFD. By using operant testing, progressive ratio, and the PFC-dependent 5-choice serial reaction timed task (5-CSRTT), we determined that F1 female offspring (B6D2F1/J) from HFD-fed dams have decreased motivation (decreased progressive ratio breakpoint) and require a longer stimulus length to complete the 5-CSRTT task successfully, whereas early life methyl donor supplementation increased motivation and shortened the minimum stimulus length required for a correct response in the 5-CSRTT. Of interest, we found that expression of 2 chemokines, CCL2 and CXCL10, correlated with the median stimulus length in the 5-CSRTT. Furthermore, we found that acute adult supplementation of methyl donors increased motivation in HFD-fed offspring and those who previously received supplementation with methyl donors. These data point to early life as a sensitive time during which dietary methyl donor supplementation can alter PFC-dependent cognitive behaviors.—McKee, S. E., Grissom, N. M., Herdt, C. T., Reyes, T. M. Methyl donor supplementation

  3. Allomyrina dichotoma (Arthropoda: Insecta Larvae Confer Resistance to Obesity in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Young-Il Yoon

    2015-03-01

    Full Text Available To clarify the anti-obesity effect of Allomyrina dichotoma larvae (ADL, we previously reported that ADL block adipocyte differentiation on 3T3-L1 cell lines through downregulation of transcription factors, such as peroxisome proliferator-activated receptor-γ (PPARG and CCAAT/enhancer binding protein-α (CEBPA. In this study, we tested whether ADL prevent obesity in mice fed a high-fat diet (HFD and further investigated the mechanism underlying the effects of ADL. All mice were maintained on a normal-fat diet (NFD for 1 week and then assigned to one of five treatment groups: (1 NFD; (2 HFD; (3 HFD and 100 mg·kg−1·day−1 ADL; (4 HFD and 3000 mg·kg−1·day−1ADL; or (5 HFD and 3000 mg·kg−1·day−1 yerba mate (Ilex paraguariensis, positive control. ADL and yerba mate were administered orally daily. Mice were fed experimental diets and body weight was monitored weekly for 6 weeks. Our results indicated that ADL reduced body weight gain, organ weight and adipose tissue volume in a dose-dependent manner. Body weight gain was approximately 22.4% lower compared to mice fed only HFD, but the difference did not reach the level of statistical significance. Real-time polymerase chain reaction (PCR analysis revealed that gene expression levels of PPARG, CEBPA and lipoprotein lipase (LPL in the epididymal fat tissue of HFD-fed mice receiving 3000 mg·kg−1·day−1 ADL were reduced by 12.4-, 25.7-, and 12.3-fold, respectively, compared to mice fed HFD only. Moreover, mice administered ADL had lower serum levels of triglycerides and leptin than HFD-fed mice that did not receive ADL. Taken together our results suggest that ADL and its constituent bioactive compounds hold potential for the treatment and prevention of obesity.

  4. Isoflavone and Protein Constituents of Lactic Acid-Fermented Soy Milk Combine to Prevent Dyslipidemia in Rats Fed a High Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    Maki Kobayashi

    2014-12-01

    Full Text Available A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet, a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet, a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavone-poor diet, or a high cholesterol diet containing 23.2% intact LFS (intact LFS diet for five weeks. The plasma total cholesterol (TC level was increased in the rats fed the LFS extract diet compared with those fed the high cholesterol diet. The TC level was decreased by the intact LFS and ethanol-washed LFS diets. The cholesterol-lowering effect was stronger in the rats fed the intact LFS diet than those fed the ethanol-washed LFS diet. The plasma triglyceride (TG level was unchanged in the rats fed the LFS extract diet, but it decreased in rats fed the intact LFS and ethanol-washed LFS diets. Although, compared with the high cholesterol diet, the LFS extract and ethanol-washed LFS diets did not reduce hepatic cholesterol and TG, both levels were remarkably lowered by the intact LFS diet. These results suggest that the improvement in lipid metabolism of rats fed a high-cholesterol diet containing LFS isoflavone aglycones is not due to an independent effect but due to a cooperative effect with soy protein.

  5. Isoflavone and Protein Constituents of Lactic Acid-Fermented Soy Milk Combine to Prevent Dyslipidemia in Rats Fed a High Cholesterol Diet

    Science.gov (United States)

    Kobayashi, Maki; Egusa, Shintaro; Fukuda, Mitsuru

    2014-01-01

    A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS) improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet), a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet), a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavone-poor diet), or a high cholesterol diet containing 23.2% intact LFS (intact LFS diet) for five weeks. The plasma total cholesterol (TC) level was increased in the rats fed the LFS extract diet compared with those fed the high cholesterol diet. The TC level was decreased by the intact LFS and ethanol-washed LFS diets. The cholesterol-lowering effect was stronger in the rats fed the intact LFS diet than those fed the ethanol-washed LFS diet. The plasma triglyceride (TG) level was unchanged in the rats fed the LFS extract diet, but it decreased in rats fed the intact LFS and ethanol-washed LFS diets. Although, compared with the high cholesterol diet, the LFS extract and ethanol-washed LFS diets did not reduce hepatic cholesterol and TG, both levels were remarkably lowered by the intact LFS diet. These results suggest that the improvement in lipid metabolism of rats fed a high-cholesterol diet containing LFS isoflavone aglycones is not due to an independent effect but due to a cooperative effect with soy protein. PMID:25514389

  6. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Lorena Gimenez da Silva-Santi

    2016-10-01

    Full Text Available Both high-carbohydrate diet (HCD and high-fat diet (HFD modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets, and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1, ∆-6 desaturase (D6D, elongases and de novo lipogenesis (DNL were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1 was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO production, and mRNA expressions of F4/80, type I collagen, interleukin (IL-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs and monounsaturated fatty acids (MUFAs. This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs and had a lower omega-6/omega-3 fatty acid (n-6/n-3 ratio. In conclusion, liver lipid accumulation, fatty acids (FA composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD.

  7. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet.

    Science.gov (United States)

    da Silva-Santi, Lorena Gimenez; Antunes, Marina Masetto; Caparroz-Assef, Silvana Martins; Carbonera, Fabiana; Masi, Laureane Nunes; Curi, Rui; Visentainer, Jesuí Vergílio; Bazotte, Roberto Barbosa

    2016-10-29

    Both high-carbohydrate diet (HCD) and high-fat diet (HFD) modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA) composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets), and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1), ∆-6 desaturase (D6D), elongases and de novo lipogenesis (DNL) were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO) production, and mRNA expressions of F4/80, type I collagen, interleukin (IL)-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α) were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs) and had a lower omega-6/omega-3 fatty acid ( n -6/ n -3) ratio. In conclusion, liver lipid accumulation, fatty acids (FA) composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD.

  8. Urinary excretion of 15N during intraportal infusion of 15N-ammonia in chickens fed low or high protein diet

    International Nuclear Information System (INIS)

    Karasawa, Yutaka; Koh, Katsuki; Takahashi, Akira; Sumiya, Ryuta

    1985-01-01

    The purpose of this study is to examine time courses of 15 N in urinary ammonia and total N when 15 N-labeled ammonium acetate was continuously infused for 1 hour into chickens fed a 5 or 20 % protein diet. 15 N-enrichment of urinary nitrogen in the two dietary groups increased sharply in ammonia for the first 20 minutes and to a less extent linearly in total N for the first 30 minutes, and then gradually in both ammonia and total N. Through the ammonia infusion, the 15 N-enrichment of urinary ammonia was higher in the chickens fed the low protein diet than in those fed the high protein diet; both of them were higher than 15 N-enrichments of urinary N, which were almost the same in the two dietary groups. The urinary total N from the infused ammonia rose linearly for the first 40 minutes but thereafter did not rise further in the two dietary groups, whereas the endogenous urinary total N tended to decrease a little in the chichens fed the high protein diet but unchanged in those fed the low protein diet. The urinary ammonia from the infused ammonia increased sharply for the first 20 minutes, then linearly but at a lower rate in the chickens fed the high protein diet, whereas that in the chickens fed the low protein diet rose linearly throughout ammonia infusion. In contrast, the endogenous urinary ammonia showed no change in the chickens fed the high protein diet while it showed a tendency to increase a little in these fed the low protein diet. These results indicate that the increased urinary ammonia and total N during ammonia infusion are derived mostly from the infused ammonia in chickens fed 5 and 20% protein diets. (author)

  9. Silymarin alleviates hepatic oxidative stress and protects against metabolic disorders in high-fat diet-fed mice.

    Science.gov (United States)

    Feng, Bin; Meng, Ran; Huang, Bin; Shen, Shanmei; Bi, Yan; Zhu, Dalong

    2016-01-01

    Silymarin is a potent antioxidant medicine and has been widely used for the treatment of liver diseases over 30 years. Recent studies suggest that silymarin may benefit patients with glucose intolerance. However, the mechanism underlying the action of silymarin is not clarified. The aim of this work was to assess the impact of silymarin on glucose intolerance in high-fat diet (HFD)-fed mice, and explore the potential therapeutic mechanisms. C57BL/6 mice were fed with HFD for 12 weeks, randomized, and treated orally with vehicle saline or silymarin (30 mg/kg) daily for 30 days. We found that silymarin significantly improved HFD-induced body weight gain, glucose intolerance, and insulin resistance in mice. Silymarin treatment reduced HFD-increased oxidative stress indicators (reactive oxygen species, lipid peroxidation, protein oxidation) and restored HFD-down-regulated activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in the plasma and/or liver of the HFD-fed mice. Furthermore, silymarin decreased HFD-up-regulated hepatic NADPH oxidase expression and NF-κB activation in mice. Additionally, silymarin treatment mitigated HFD-increased plasma IL-1β, TNF-α levels, and HFD-enhanced hepatic NO, TLR4, and iNOS expression in mice. These novel data indicate that silymarin has potent anti-diabetic actions through alleviating oxidative stress and inflammatory response, partially by inhibiting hepatic NADPH oxidase expression and the NF-κB signaling.

  10. Haloperidol and Rimonabant Increase Delay Discounting in Rats Fed High-Fat and Standard-Chow Diets

    Science.gov (United States)

    Boomhower, Steven R.; Rasmussen, Erin B.

    2016-01-01

    The dopamine and endocannabinoid neurotransmitter systems have been implicated in delay discounting, a measure of impulsive choice, and obesity. The current study was designed to determine the extent to which haloperidol and rimonabant affected delay discounting in rats fed standard-chow and high-fat diets. Sprague-Dawley rats were allowed to free-feed under a high-fat diet (4.73 kcal/g) or a standard-chow diet (3.0 kcal/g) for three months. Then, operant sessions began in which rats (n = 9 standard chow; n = 10 high-fat) chose between one sucrose pellet delivered immediately vs. three sucrose pellets after a series of delays. In another condition, carrot-flavored pellets replaced sucrose pellets. After behavior stabilized, acute injections of rimonabant (0.3-10 mg/kg) and haloperidol (0.003-0.1 mg/kg) were administered i.p. before some choice sessions in both pellet conditions. Haloperidol and rimonabant increased discounting in both groups of rats by decreasing percent choice for the larger reinforcer and area-under-the-curve (AUC) values. Rats in the high-fat diet condition demonstrated increased sensitivity to haloperidol compared to chow-fed controls: haloperidol increased discounting in both dietary groups in the sucrose condition,, but only in the high-fat-fed rats in the carrot-pellet condition. These findings indicate that blocking D2 and CB1 receptors results in increased delay discounting, and that a high-fat diet may alter sensitivity to dopaminergic compounds using the delay-discounting task. PMID:25000488

  11. Dietary n-3 long-chain polyunsaturated fatty acids modify phosphoenolpyruvate carboxykinase activity and lipid synthesis from glucose in adipose tissue of rats fed a high-sucrose diet.

    Science.gov (United States)

    Londero, Lisiane G; Rieger, Débora K; Hansen, Fernanda; Silveira, Simone L; Martins, Tiago L; Lulhier, Francisco; da Silva, Roselis S; Souza, Diogo O; Perry, Marcos L S; de Assis, Adriano M

    2013-12-01

    Long-chain polyunsaturated n-3 fatty acids (n-3 LCPUFAs) have hypolipidemic effects and modulate intermediary metabolism to prevent or reverse insulin resistance in a way that is not completely elucidated. Here, effects of these fatty acids on the lipid profile, phosphoenolpyruvate carboxykinase (PEPCK) activity, lipid synthesis from glucose in epididymal adipose tissue (Ep-AT) and liver were investigated. Male rats were fed a high-sucrose diet (SU diet), containing either sunflower oil or a mixture of sunflower and fish oil (SU-FO diet), and the control group was fed a standard diet. After 13 weeks, liver, adipose tissue and blood were harvested and analysed. The dietary n-3 LCPUFAs prevented sucrose-induced increase in adiposity and serum free fat acids, serum and hepatic triacylglycerol and insulin levels. Furthermore, these n-3 LCPUFAs decreased lipid synthesis from glucose and increased PEPCK activity in the Ep-AT of rats fed the SU-FO diet compared to those fed the SU diet, besides reducing lipid synthesis from glucose in hepatic tissue. Thus, the inclusion of n-3 LCPUFAs in the diet may be beneficial for the prevention or attenuation of dyslipidemia and insulin resistance, and for reducing the risk of related chronic diseases. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Modulation of the Gut Microbiota by Krill Oil in Mice Fed a High-Sugar High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Chenyang Lu

    2017-05-01

    Full Text Available Multiple lines of evidence suggest that the gut microbiota plays vital roles in metabolic diseases such as hyperlipidemia. Previous studies have confirmed that krill oil can alleviate hyperlipidemia, but the underlying mechanism remains unclear. To discern whether krill oil changes the structure of the gut microbiota during the hyperlipidemia treatment, 72 mice were acclimatized with a standard chow diet for 2 weeks and then randomly allocated to receive a standard chow diet (control group, n = 12 or a high-sugar-high-fat (HSHF diet supplemented with a low (100 μg/g·d, HSHF+LD group, n = 12, moderate (200 μg/g·d, HSHF+MD group, n = 12 or high dosage of krill oil (600 μg/g·d, HSHF+HD group, n = 12, simvastatin (HSHF+S group, n = 12 or saline (HSHF group, n = 12 continuously for 12 weeks. The resulting weight gains were attenuated, the liver index and the low-density lipoprotein, total cholesterol and triglyceride concentrations showed a stepwise reduction in the treated groups compared with those of the control group. A dose-dependent modulation of the gut microbiota was observed after treatment with krill oil. Low- and moderate- doses of krill oil increased the similarity between the composition of the HSHF diet-induced gut microbiota and that of the control, whereas the mice fed the high-dose exhibited a unique gut microbiota structure that was different from that of the control and HSHF groups. Sixty-five key operational taxonomic units (OTUs that responded to the krill oil treatment were identified using redundancy analysis, of which 26 OTUs were increased and 39 OTUs were decreased compared with those of the HSHF group. In conclusion, the results obtained in this study suggest that the structural alterations in the gut microbiota induced by krill oil treatment were dose-dependent and associated with the alleviation of hyperlipidemia. Additionally, the high-dose krill oil treatment showed combined effects on the alleviation of

  13. Do Danes enjoy a high performing chronic care system?

    DEFF Research Database (Denmark)

    Hernández-Quevedo, Christina; Olejaz, Maria; Juul, Annegrete

    2012-01-01

    The trends in population health in Denmark are similar to those in most Western European countries. Major health issues include, among others, the high prevalence of chronic illnesses and lifestyle related risk factors such as obesity, tobacco, physical inactivity and alcohol. This has pressed...... the health system towards a model of provision of care based on the management of chronic care conditions. While the Chronic Care Model was introduced in 2005, the Danish health system does not fulfil the ten key preconditions that would characterise a high-performing chronic care system. As revealed...... in a recent report, the fragmented structure of the Danish health system poses challenges in providing effectively coordinated care to patients with chronic diseases....

  14. Intrauterine growth retarded progeny of pregnant sows fed high protein:low carbohydrate diet is related to metabolic energy deficit.

    Directory of Open Access Journals (Sweden)

    Cornelia C Metges

    Full Text Available High and low protein diets fed to pregnant adolescent sows led to intrauterine growth retardation (IUGR. To explore underlying mechanisms, sow plasma metabolite and hormone concentrations were analyzed during different pregnancy stages and correlated with litter weight (LW at birth, sow body weight and back fat thickness. Sows were fed diets with low (6.5%, LP, adequate (12.1%, AP, and high (30%, HP protein levels, made isoenergetic by adjusted carbohydrate content. At -5, 24, 66, and 108 days post coitum (dpc fasted blood was collected. At 92 dpc, diurnal metabolic profiles were determined. Fasted serum urea and plasma glucagon were higher due to the HP diet. High density lipoprotein cholesterol (HDLC, %HDLC and cortisol were reduced in HP compared with AP sows. Lowest concentrations were observed for serum urea and protein, plasma insulin-like growth factor-I, low density lipoprotein cholesterol, and progesterone in LP compared with AP and HP sows. Fasted plasma glucose, insulin and leptin concentrations were unchanged. Diurnal metabolic profiles showed lower glucose in HP sows whereas non-esterified fatty acids (NEFA concentrations were higher in HP compared with AP and LP sows. In HP and LP sows, urea concentrations were 300% and 60% of AP sows, respectively. Plasma total cholesterol was higher in LP than in AP and HP sows. In AP sows, LW correlated positively with insulin and insulin/glucose and negatively with glucagon/insulin at 66 dpc, whereas in HP sows LW associated positively with NEFA. In conclusion, IUGR in sows fed high protein:low carbohydrate diet was probably due to glucose and energy deficit whereas in sows with low protein:high carbohydrate diet it was possibly a response to a deficit of indispensable amino acids which impaired lipoprotein metabolism and favored maternal lipid disposal.

  15. Effect of Saffron on Metabolic Profile and Retina in Apolipoprotein E-Knockout Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Doumouchtsis, Evangelos K; Tzani, Aspasia; Doulamis, Ilias P; Konstantopoulos, Panagiotis; Laskarina-Maria, Korou; Agrogiannis, Georgios; Agapitos, Emmanouil; Moschos, Marilita M; Kostakis, Alkiviadis; Perrea, Despina N

    2017-09-22

    Saffron is a spice that has been traditionally used as a regimen for a variety of diseases due to its potent antioxidant attributes. It is well documented that impaired systemic oxidative status is firmly associated with diverse adverse effects including retinal damage. The aim of this study was to investigate the role of saffron administration against the retinal damage in apoE -/- mice fed a high-fat diet, since they constitute a designated experimental model susceptible to oxidative stress. Twenty-one mice were allocated into three groups: Group A (control, n = 7 c57bl/6 mice) received standard chow diet; Group B (high-fat, n = 7 apoE -/- mice) received a high-fat diet; and Group C (high-fat and saffron, n = 7 apoE -/- mice) received a high-fat diet and saffron (25 mg/kg/d) through their drinking water. The duration of the study was 20 weeks. Lipidemic profile, glucose, C-reactive protein (CRP), and total oxidative capacity (PerOX) were measured in blood serum. Histological analysis of retina was also conducted. Administration of saffron resulted in enhanced glycemic control and preservation of retinal thickness when compared with apoE -/- mice fed a high-fat diet. The outcomes of the study suggest the potential protective role of saffron against retinal damage induced by oxidative stress. Nevertheless, verification of these results in humans is required before any definite conclusions can be drawn.

  16. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet.

    Science.gov (United States)

    Wada, Tsutomu; Miyashita, Yusuke; Sasaki, Motohiro; Aruga, Yusuke; Nakamura, Yuto; Ishii, Yoko; Sasahara, Masakiyo; Kanasaki, Keizo; Kitada, Munehiro; Koya, Daisuke; Shimano, Hitoshi; Tsuneki, Hiroshi; Sasaoka, Toshiyasu

    2013-12-01

    Because the renin-angiotensin-aldosterone system has been implicated in the development of insulin resistance and promotion of fibrosis in some tissues, such as the vasculature, we examined the effect of eplerenone, a selective mineralocorticoid receptor (MR) antagonist, on nonalcoholic steatohepatitis (NASH) and metabolic phenotypes in a mouse model reflecting metabolic syndrome in humans. We adopted liver-specific transgenic (Tg) mice overexpressing the active form of sterol response element binding protein-1c (SREBP-1c) fed a high-fat and fructose diet (HFFD) as the animal model in the present study. When wild-type (WT) C57BL/6 and liver-specific SREBP-1c Tg mice grew while being fed HFFD for 12 wk, body weight and epididymal fat weight increased in both groups with an elevation in blood pressure and dyslipidemia. Glucose intolerance and insulin resistance were also observed. Adipose tissue hypertrophy and macrophage infiltration with crown-like structure formation were also noted in mice fed HFFD. Interestingly, the changes noted in both genotypes fed HFFD were significantly ameliorated with eplerenone. HFFD-fed Tg mice exhibited the histological features of NASH in the liver, including macrovesicular steatosis and fibrosis, whereas HFFD-fed WT mice had hepatic steatosis without apparent fibrotic changes. Eplerenone effectively ameliorated these histological abnormalities. Moreover, the direct suppressive effects of eplerenone on lipopolysaccharide-induced TNFα production in the presence and absence of aldosterone were observed in primary-cultured Kupffer cells and bone marrow-derived macrophages. These results indicated that eplerenone prevented the development of NASH and metabolic abnormalities in mice by inhibiting inflammatory responses in both Kupffer cells and macrophages.

  17. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  18. Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets.

    Science.gov (United States)

    Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung

    2016-10-01

    Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.

  19. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent.

    Science.gov (United States)

    Tetri, Laura H; Basaranoglu, Metin; Brunt, Elizabeth M; Yerian, Lisa M; Neuschwander-Tetri, Brent A

    2008-11-01

    The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fructose corn syrup (HFCS) equivalent for 1-16 wk were compared with mice fed standard chow or mice with trans fats or HFCS omitted. Cage racks were removed from western diet mice to promote sedentary behavior. By 16 wk, trans fat-fed mice became obese and developed severe hepatic steatosis with associated necroinflammatory changes. Plasma alanine aminotransferase levels increased, as did liver TNF-alpha and procollagen mRNA, indicating an inflammatory and profibrogenic response to injury. Glucose intolerance and impaired fasting glucose developed within 2 and 4 wk, respectively. Plasma insulin, resistin, and leptin levels increased in a profile similar to that seen in patients with NASH. The individual components of this diet contributed to the phenotype independently; isocaloric replacement of trans fats with lard established that trans fats played a major role in promoting hepatic steatosis and injury, whereas inclusion of HFCS promoted food consumption, obesity, and impaired insulin sensitivity. Combining risk factors for the metabolic syndrome by feeding mice trans fats and HFCS induced histological features of NASH in the context of a metabolic profile similar to patients with this disease. Because dietary trans fats promoted liver steatosis and injury, their role in the epidemic of NASH needs further evaluation.

  20. Chronic diseases are not being managed effectively in either high ...

    African Journals Online (AJOL)

    Chronic diseases are not being managed effectively in either high-risk or low-risk populations in South Africa. M Brand, AJ Woodiwiss, F Michel, HL Booysen, OHI Majane, MJ Maseko, MG Veller, GR Norton ...

  1. Triple-Notched Band CPW fed UWB Antenna with Metallic Reflector for High Gain Performance

    Directory of Open Access Journals (Sweden)

    K. G. Jangid

    2017-10-01

    Full Text Available This paper exhibits the design and performance of a coplanar waveguide (CPW fed triple notched band ultra-wide band (UWB antenna. Proposed prototype has two U-shaped slots on the patch and an inverted U slot in feed line with a metal reflector beneath the radiating element. Proposed structure renders wider impedance bandwidth extended between frequencies 2.71GHz to 12.92 GHz for VSWR 2. The utmost simulated gain of proposed antenna with reflector is close to 9.9dBi at 7.4GHz. A sharp reduction observed in the efficiency values of the proposed structure at stop bands. Perhaps, this structure proved as a useful tool for various applications in modern communication systems including UWB.

  2. Nutrient Intake and Digestibility of Cynomolgus Monkey (Macaca fascicularis Fed with High Soluble Carbohydrate Diet: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    DEWI APRI ASTUTI

    2009-12-01

    Full Text Available High carbohydrate as obese diet is not yet available commercially for monkeys. Therefore, this preliminary study was to carry out nutrient intake and digestibility of cynomolgus monkeys (Macaca fascicularis fed with high soluble carbohydrate diet compared to monkey chow. Five adult female macaques (average body weight 2.67 kg were made to consume freshly diet. Commercial monkey chows (contains 3500 cal/g energy and 35% starch were fed to three adult females (average body weight 3.62 kg. Nutrient intakes and digestibility parameters were measured using modified metabolic cages. Result showed that average of protein, fat, starch, and energy intakes in treatment diet were higher than control diet (T-test. Fat intake in the treatment diet was three times higher, while starch and energy intakes were almost two times higher than monkey chow. Digestibility percentage of all nutrients were the same in both diets except for the protein. The study concludes that the freshly prepared high sugar diet was palatable and digestible for the cynomolgus monkeys. Further studies are in progress to develop obese diet high in energy content based on fat and source of starch treatments.

  3. EFFECT OF ASCORBIC ACID ON THE RIGHT AND LEFT CORONARY ARTERIES OF MALE RABBITS FED WITH HIGH-CHOLESTEROL DIET

    Directory of Open Access Journals (Sweden)

    Gholamreza Dashti

    2010-12-01

    Full Text Available   Abstract INTRODUCTION: Atherosclerosis and cardiovascular diseases are the most common causes of death in western countries. The beneficial effect of ascorbic acid on various organs has been reported. The present study was conducted to determine the effect of ascorbic acid on the right and left coronary arteries of male rabbits fed with high-cholesterol diet. methods: Twenty white male rabbits (mean weight: 950 g were weighed and randomly divided into two groups. For 40 days, group 1 (n=10 was given a high-cholesterol (1% diet, group 2 (n=10 was fed with a high-cholesterol diet and ascorbic acid (100 mg/kg. Then both of the groups were weighed and the animals were sacrificed. The right and left coronary arteries were dissected and then fixation, tissue processing, histological sectioning and H & E staining were carried out and sections were studied by light microscopy. The results were analyzed by using the Mann Whitney test. results: Group 2 which received ascorbic acid had no fatty streaks in their coronary arteries. Significant difference in mean weight was observed before and after the diet in both groups (P<0.05. CONCLUSIONS: Histopathological study of the coronary arteries showed that the rabbits which received ascorbic acid diet did not develop fatty streaks. Thus ascorbic acid exerts an apparently inhibitory effect on fatty streak formation and may slow down or prevent atherosclerosis by countering the side effects of a high-fat meal.     Keywords: Ascorbic acid, cholesterol, coronary arteries.

  4. Energy metabolism and methane production in llamas, sheep and goats fed high- and low-quality grass-based diets

    DEFF Research Database (Denmark)

    Nielsen, Mette O.; Kiani, Ali; Tejada, Einstein

    2014-01-01

    goats and six Shropshire sheep, were used in a crossover design study. The experiment lasted for two periods of three weeks. Half of the animals were fed either high-quality grass hay (HP) or low-quality grass seed straw (LP) during each period. Animals were placed in metabolic cages during the last 5 d......, and gaseous exchange was measured by open-circuit indirect calorimetry for 22 h. Metabolisable energy for maintenance (MEm) and fasting energy expenditure (FEExp) were estimated by regression approach. Dry matter (DM) intake per kg0.75 was substantially reduced in llamas and sheep, but not in goats, on the LP...

  5. The theory and implementation of a high quality pulse width modulated waveform synthesiser applicable to voltage FED inverters

    Science.gov (United States)

    Lower, Kim Nigel

    1985-03-01

    Modulation processes associated with the digital implementation of pulse width modulation (PWM) switching strategies were examined. A software package based on a portable turnkey structure is presented. Waveform synthesizer implementation techniques are reviewed. A three phase PWM waveform synthesizer for voltage fed inverters was realized. It is based on a constant carrier frequency of 18 kHz and a regular sample, single edge, asynchronous PWM switching scheme. With high carrier frequencies, it is possible to utilize simple switching strategies and as a consequence, many advantages are highlighted, emphasizing the importance to industrial and office markets.

  6. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet

    OpenAIRE

    Andriamihaja, Mireille; Davila-Gay, Anne-Marie; Eklou, Mamy; Petit, Nathalie; Delpal, Serge; Allek, Fadhila; Blais, Anne; Delteil, Corine; Tomé, Daniel; Blachier, Francois

    2010-01-01

    Andriamihaja M, Davila A, Eklou-Lawson M, Petit N, Delpal S, Allek F, Blais A, Delteil C, Tome D, Blachier F. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet. Am J Physiol Gastrointest Liver Physiol 299: G1030-G1037, 2010. First published August 5, 2010; doi: 10.1152/ajpgi.00149.2010.-Hyperproteic diets are used in human nutrition to obtain body weight reduction. Although increased protein ingestion results in an increased transf...

  7. Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Jide Tian

    Full Text Available Adipocyte and β-cell dysfunction and macrophage-related chronic inflammation are critical for the development of obesity-related insulin resistance and type 2 diabetes mellitus (T2DM, which can be negatively regulated by Tregs. Our previous studies and those of others have shown that activation of γ-aminobutyric acid (GABA receptors inhibits inflammation in mice. However, whether GABA could modulate high fat diet (HFD-induced obesity, glucose intolerance and insulin resistance has not been explored. Here, we show that although oral treatment with GABA does not affect water and food consumption it inhibits the HFD-induced gain in body weights in C57BL/6 mice. Furthermore, oral treatment with GABA significantly reduced the concentrations of fasting blood glucose, and improved glucose tolerance and insulin sensitivity in the HFD-fed mice. More importantly, after the onset of obesity and T2DM, oral treatment with GABA inhibited the continual HFD-induced gain in body weights, reduced the concentrations of fasting blood glucose and improved glucose tolerance and insulin sensitivity in mice. In addition, oral treatment with GABA reduced the epididymal fat mass, adipocyte size, and the frequency of macrophage infiltrates in the adipose tissues of HFD-fed mice. Notably, oral treatment with GABA significantly increased the frequency of CD4(+Foxp3(+ Tregs in mice. Collectively, our data indicated that activation of peripheral GABA receptors inhibited the HFD-induced glucose intolerance, insulin resistance, and obesity by inhibiting obesity-related inflammation and up-regulating Treg responses in vivo. Given that GABA is safe for human consumption, activators of GABA receptors may be valuable for the prevention of obesity and intervention of T2DM in the clinic.

  8. Endoplasmic reticulum stress does not contribute to steatohepatitis in obese and insulin-resistant high-fat-diet-fed foz/foz mice.

    Science.gov (United States)

    Legry, Vanessa; Van Rooyen, Derrick M; Lambert, Barbara; Sempoux, Christine; Poekes, Laurence; Español-Suñer, Regina; Molendi-Coste, Olivier; Horsmans, Yves; Farrell, Geoffrey C; Leclercq, Isabelle A

    2014-10-01

    Non-alcoholic fatty liver (steatosis) and steatohepatitis [non-alcoholic steatohepatitis (NASH)] are hepatic complications of the metabolic syndrome. Endoplasmic reticulum (ER) stress is proposed as a crucial disease mechanism in obese and insulin-resistant animals (such as ob/ob mice) with simple steatosis, but its role in NASH remains controversial. We therefore evaluated the role of ER stress as a disease mechanism in foz/foz mice, which develop both the metabolic and histological features that mimic human NASH. We explored ER stress markers in the liver of foz/foz mice in response to a high-fat diet (HFD) at several time points. We then evaluated the effect of treatment with an ER stress inducer tunicamycin, or conversely with the ER protectant tauroursodeoxycholic acid (TUDCA), on the metabolic and hepatic features. foz/foz mice are obese, glucose intolerant and develop NASH characterized by steatosis, inflammation, ballooned hepatocytes and apoptosis from 6 weeks of HFD feeding. This was not associated with activation of the upstream unfolded protein response [phospho-eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α) activity and spliced X-box-binding protein 1 (Xbp1)]. Activation of c-Jun N-terminal kinase (JNK) and up-regulation of activating transcription factor-4 (Atf4) and CCAAT/enhancer-binding protein-homologous protein (Chop) transcripts were however compatible with a 'pathological' response to ER stress. We tested this by using intervention experiments. Induction of chronic ER stress failed to worsen obesity, glucose intolerance and NASH pathology in HFD-fed foz/foz mice. In addition, the ER protectant TUDCA, although reducing steatosis, failed to improve glucose intolerance, hepatic inflammation and apoptosis in HFD-fed foz/foz mice. These results show that signals driving hepatic inflammation, apoptosis and insulin resistance are independent of ER stress in obese diabetic mice with steatohepatitis.

  9. Effects of bixin in high-fat diet-fed-induced fatty liver in C57BL/6J mice

    Institute of Scientific and Technical Information of China (English)

    Rosa Martha Perez Gutierrez; Rita Valadez Romero

    2016-01-01

    Objective: To evaluate the anti-obesity activity of bixin (BIX) on C57BL/6J mice which were fed a high-fat diet (HFD) and to determine the mechanism of this effect. Methods: C57BL/6J mice were separately fed a high-calorie diet or a normal diet for 8 weeks, then they were treated with BIX for another 13 weeks. After administration for 13 weeks, the animals were sacrificed. Body adiposity, serum lipid level, and insulin resistance were evaluated. In addition, a histological assay of pancreas and liver, an evaluation of the inhibitory properties on pancreatic lipase, and a-amylase were conducted. Results: Administration of BIX significantly decreased the body weight gain, adipocyte size, fat pad weights, hepatic lipid levels in HFD-induced obese mice. In addition, reduced liver weight exhibited decreased serum leptin levels, malic enzyme, glucose-6-phosphate dehydrogenase, hepatic fatty acid synthase, aspartate aminotransferase, alanine aminotransferase and hepatic phosphatidate phosphohydrolase activity. However, superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels were increased in hepatic tissue. BIX also decreased lipid and carbohydrates absorption due to inhibition of pancreatic lipase and a-amylase. Long term supplementation of BIX significantly decreased hyperlipidemia, insulin resistance and glucose level. Decreased levels of hepatic steatosis and the islets of Langerhans appeared less shrunken in HFD-fed mice. Conclusions: The antiobesity effect of BIX appears to be associated at least in part, to its inhibitory effect on lipids and carbohydrate digestion enzymes such as pancreatic lipase, a-glucosidase, and a-amylase. The results suggested that BIX also act as an antioxidant and may treat visceral obesity normalizing glucose levels, improving insulin resistance and increasing energy expenditure. Therefore, achiote which has a main component, the carotenoid BIX, could be a viable food for the treatment of obesity and diabetes.

  10. Transplantation of Normal Adipose Tissue Improves Blood Flow and Reduces Inflammation in High Fat Fed Mice With Hindlimb Ischemia

    Directory of Open Access Journals (Sweden)

    Liyuan Chen

    2018-03-01

    Full Text Available Background: Fat deposition is associated with peripheral arterial disease. Adipose tissue has recently been implicated in vascular remodeling and angiogenic activity. We hypothesized that the transplantation of adipose tissues from normal mice improves blood flow perfusion and neovascularization in high-fat diet fed mice.Methods: After 14 weeks of high-fat diet (HFD-fed mice, unilateral hind limb ischemia was performed. Subcutaneous white adipose tissue (WAT and brown adipose tissue (BAT fat pads were harvested from normal EGFP mice, and subcutaneously transplanted over the region of the adductor muscles of HFD mice. Blood flow was measured using Laser Doppler Scanner. Vascular density, macrophages infiltration, and macrophage polarization were examined by RT-qPCR, and immunohistochemistry.Results: We found that the transplantation of WAT derived from normal mice improved functional blood flow in HFD-fed mice compared to mice transplanted with BAT and sham-treated mice. WAT transplantation increased the recruitment of pericytes associated with nascent blood vessels, but did not affect capillary formation. Furthermore, transplantation of WAT ameliorated HFD-induced insulin resistance, M2 macrophage predominance and the release of arteriogenic factors in ischemic muscles. Mice receiving WAT also displayed a marked reduction in several proinflammatory cytokines. In contrast, mice transplanted with BAT were glucose intolerant and demonstrated increased IL-6 levels in ischemic muscles.Conclusion: These results indicate that transplantation of adipose tissue elicits improvements in blood perfusion and beneficial effects on systemic glucose homeostasis and could be a promising therapeutic option for the treatment of diabetic peripheral arterial disease.

  11. Effects of grape wine and apple cider vinegar on oxidative and antioxidative status in high cholesterol-fed rats

    Directory of Open Access Journals (Sweden)

    Atıf Can Seydim

    2016-09-01

    Full Text Available Background: Oxidative stress is the result of an imbalance between the rates of free radical production and elimination via endogenous antioxidant mechanisms such as antioxidant enzymes, which include glutathione peroxidase (GSH-Px, superoxide dismutase (SOD, and catalase (CAT. There are mainly two vinegar production methods. The first is the surface method which is also known as the traditional method. The second method is known as the industrial method or submerged method which involves the use of a submerged culture with supplemented aeration. Objective: The aim of this study is to determine the effects of grape and apple cider vinegar consumption against oxidative stress in rats fed a high cholesterol diet. Methods: Fifty-four male, adult Wistar albino rats were included in this study. Rats were fed for 7 weeks by oral gavage as given in the experimental procedure. Rats were sacrificed at the end of the experiment and blood samples were collected. Catalase (CAT activity, malondialdehyde level (MDA, glutathione peroxidase (GSH-Px activity, superoxide dismutase (SOD activity were analyzed. Grape and apple vinegar fermentation products prepared using both the surface culture method and submerged methods were prepared. The total antioxidant activity of vinegar samples were measured by Oxygen Radical Absorbance Capacity (ORAC and 2,2’-azinobis (3- ethlybenzthiazoline-6- sulfonic acid (ABTS methods. Results: Levels of CAT, GSH-Px, SOD in high cholesterol diet group (CHCNT were significantly decreased while MDA levels were significantly increased when compared to control-diet group (CNT (P<0.05. Levels of MDA, which is the end-product of lipid peroxidation, were significantly decreased in the apple cider vinegar administered groups when compared to the CHCNT (P<0.05. GSH-Px levels were significantly increased in rat groups, which were fed with the vinegars produced by traditional surface methods (P=0.03, P=0.001 respectively as compared to the

  12. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats

    Science.gov (United States)

    Nugroho, Agung Endro; Andrie, Mohamad; Warditiani, Ni Kadek; Siswanto, Eka; Pramono, Suwidjiyo; Lukitaningsih, Endang

    2012-01-01

    Objectives: Andrographis paniculata (Burm. f.) Nees originates from India and grows widely in many areas in Southeast Asian countries. Andrographis paniculata (Burm. f.) Nees has shown an antidiabetic effect in type 1 DM rats. The present study investigates the purified extract of the plant and its active compound andrographolide for antidiabetic and antihyperlipidemic effects in high-fructose-fat-fed rats, a model of type 2 DM rats. Materials and Methods: Hyperglycemia in rats was induced by high-fructose-fat diet containing 36% fructose, 15% lard, and 5% egg yolks in 0.36 g/200 gb.wt. 55 days. The rats were treated with the extract or test compound on the 50th day. Antidiabetic activity was measured by estimating mainly the pre– and postprandial blood glucose levels and other parameters such as cholesterol, LDL, triglyceride, and body weight. Results: The purified extract and andrographolide significantly (PAndrographis paniculata (Burm. f.) Nees or its active compound andrographolide showed hypoglycemic and hypolipidemic effects in high-fat-fructose-fed rat. PMID:22701250

  13. Antihyperlipidemic effect of Acanthopanax senticosus (Rupr. et Maxim) Harms leaves in high-fat-diet fed mice.

    Science.gov (United States)

    Nishida, Miyako; Kondo, Momoko; Shimizu, Taro; Saito, Tetsuo; Sato, Shinji; Hirayama, Masao; Konishi, Tetsuya; Nishida, Hiroshi

    2016-08-01

    Metabolic syndrome is a major risk factor for a variety of obesity-related diseases. Recently, the effects of functional foods have been investigated on lipid metabolism as a means to reduce lipid content in the blood, liver and adipose tissues associated with carnitine O-palmitoyltransferase (CPT) activity. Acanthopanax senticosus (Rupr. et Maxim) Harms (AS) is a medicinal herb possessing a wide spectra of functions including antioxidant, anti-inflammatory and anti-fatigue actions. Despite much research being focused on the cortical roots of AS, little information is available regarding its leaves, which are also expected to promote human health, for example by improving abnormal lipid metabolism. Here, we explored whether AS leaves affect lipid metabolism in mice fed a high-fat diet. The administration of AS to BALB/c mice fed a high-fat diet significantly decreased plasma triglycerides (TG). CPT activity in the liver of these mice was significantly enhanced by AS treatment. These findings indicate that AS leaves have the potential to alleviate increase in plasma TG levels due to high-fat diet intake in mice, possibly by increasing mitochondrial fatty acid β-oxidation, especially via CPT activation. Consequently, daily intake of AS leaves could promote beneficial health effects including the prevention of metabolic syndrome. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet.

    Science.gov (United States)

    Hadri, Zouheyr; Rasoamanana, Rojo; Fromentin, Gilles; Azzout-Marniche, Dalila; Even, Patrick C; Gaudichon, Claire; Darcel, Nicolas; Bouras, Abdelkader Dilmi; Tomé, Daniel; Chaumontet, Catherine

    2017-12-01

    The ingestion of low or high lipid diets enriched with fructo-oligosaccharide (FOS) affects energy homeostasis. Ingesting protein diets also induces a depression of energy intake and decreases body weight. The goal of this study was to investigate the ability of FOS, combined or not with a high level of protein (P), to affect energy intake and body composition when included in diets containing different levels of lipids (L). We performed two studies of similar design over a period of 5weeks. During the first experiment (exp1), after a 3-week period of adaptation to a normal protein-low fat diet, the rats received one of the following four diets for 5weeks (6 rats per group): (i) normal protein (14% P/E (Energy) low fat (10% L/E) diet, (ii) normal protein, low fat diet supplemented with 10% FOS, (iii) high protein (55%P/E) low fat diet, and (iv) high protein, low fat diet supplemented with 10% FOS. In a second experiment (exp2) after the 3-week period of adaptation to a normal protein-high fat diet, the rats received one of the following 4 diets for 5weeks (6 rats per group): (i) normal protein, high fat diet (35% of fat), (ii) normal protein, high fat diet supplemented with 10% FOS, (iii) high protein high fat diet and (iv) high protein high fat diet supplemented with 10% FOS. In low-fat fed rats, FOS did not affect lean body mass (LBM) and fat mass but the protein level reduced fat mass and tended to reduce adiposity. In high-fat fed rats, FOS did not affect LBM but reduced fat mass and adiposity. No additive or antagonistic effects between FOS and the protein level were observed. FOS reduced energy intake in low-fat fed rats, did not affect energy intake in normal-protein high-fat fed rats but surprisingly, and significantly, increased energy intake in high-protein high-fat fed rats. The results thus showed that FOS added to a high-fat diet reduced body fat and body adiposity. Published by Elsevier Inc.

  15. Beneficial effects of (pGlu-Gln)-CCK-8 on energy intake and metabolism in high fat fed mice are associated with alterations of hypothalamic gene expression.

    Science.gov (United States)

    Montgomery, I A; Irwin, N; Flatt, P R

    2013-06-01

    Cholecystokinin (CCK) is a gastrointestinal hormone with potential therapeutic promise for obesity-diabetes. The present study examined the effects of twice daily administration of the N-terminally modified stable CCK-8 analogue, (pGlu-Gln)-CCK-8, on metabolic control and hypothalamic gene expression in high fat fed mice. Sub-chronic twice daily injection of (pGlu-Gln)-CCK-8 for 16 days significantly decreased body weight (penergy intake (pcontrols. Furthermore, (pGlu-Gln)-CCK-8 markedly improved glucose tolerance (p<0.05) and insulin sensitivity (p<0.05). Assessment of hypothalamic gene expression on day 16 revealed significantly elevated NPY (p<0.05) and reduced POMC (p<0.05) and MC4R (p<0.05) mRNA expression in (pGlu-Gln)-CCK-8 treated mice. High fat feeding or (pGlu-Gln)-CCK-8 treatment had no significant effects on hypothalamic gene expression of receptors for leptin, CCK₁ and GLP-1. These studies underscore the potential of (pGlu-Gln)-CCK-8 for the treatment of obesity-diabetes and suggest modulation of NPY and melanocortin related pathways may be involved in the observed beneficial effects. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Glucose homeostasis in rainbow trout fed a high-carbohydrate diet: metformin and insulin interact in a tissue-dependent manner.

    Science.gov (United States)

    Polakof, S; Moon, T W; Aguirre, P; Skiba-Cassy, S; Panserat, S

    2011-01-01

    Carnivorous fish species such as the rainbow trout (Oncorhynchus mykiss) are considered to be "glucose intolerant" because of the prolonged hyperglycemia experienced after intake of a carbohydrate-enriched meal. In the present study, we use this species to study glucose homeostasis in fish chronically infused with the hypoglycemic agents, insulin, and metformin, and fed with a high proportion of carbohydrates (30%). We analyzed liver, skeletal muscle, and white adipose tissue (WAT), which are insulin- and metformin-specific targets at both the biochemical and molecular levels. Trout infused with the combination of insulin and metformin can effectively utilize dietary glucose at the liver, resulting in lowered glycemia, increased insulin sensitivity, and glucose storage capacity, combined with reduced glucose output. However, in both WAT and skeletal muscle, we observed decreased insulin sensitivity with the combined insulin + metformin treatment, resulting in the absence of changes at the metabolic level in the skeletal muscle and an increased potential for glucose uptake and storage in the WAT. Thus, the poor utilization by rainbow trout of a diet with a high proportion of carbohydrate can at least be partially improved by a combined treatment with insulin and metformin, and the glucose intolerance observed in this species could be, in part, due to some of the downstream components of the insulin and metformin signaling pathways. However, the predominant effects of metformin treatment on the action of insulin in these three tissues thought to be involved in glucose homeostasis remain exclusive in this species.

  17. Intensive trapping of blood-fed Anopheles darlingi in Amazonian Peru reveals unexpectedly high proportions of avian blood-meals.

    Directory of Open Access Journals (Sweden)

    Marta Moreno

    2017-02-01

    Full Text Available Anopheles darlingi, the main malaria vector in the Neotropics, has been considered to be highly anthropophilic. However, many behavioral aspects of this species remain unknown, such as the range of blood-meal sources. Barrier screens were used to collect resting Anopheles darlingi mosquitoes from 2013 to 2015 in three riverine localities (Lupuna, Cahuide and Santa Emilia in Amazonian Peru. Overall, the Human Blood Index (HBI ranged from 0.58-0.87, with no significant variation among years or sites. Blood-meal analysis revealed that humans are the most common blood source, followed by avian hosts (Galliformes-chickens and turkeys, and human/Galliforme mixed-meals. The Forage Ratio and Selection Index both show a strong preference for Galliformes over humans in blood-fed mosquitoes. Our data show that 30% of An. darlingi fed on more than one host, including combinations of dogs, pigs, goats and rats. There appears to be a pattern of host choice in An. darlingi, with varying proportions of mosquitoes feeding only on humans, only on Galliformes and some taking mixed-meals of blood (human plus Galliforme, which was detected in the three sites in different years, indicating that there could be a structure to these populations based on blood-feeding preferences. Mosquito age, estimated in two localities, Lupuna and Cahuide, ranged widely between sites and years. This variation may reflect the range of local environmental factors that influence longevity or possibly potential changes in the ability of the mosquito to transmit the parasite. Of 6,204 resting An. darlingi tested for Plasmodium infection, 0.42% were infected with P. vivax. This study provides evidence for the first time of the usefulness of barrier screens for the collection of blood-fed resting mosquitoes to calculate the Human Blood Index (HBI and other blood-meal sources in a neotropical malaria endemic setting.

  18. Effect of methanolic extract of Piper sarmentosum leaves on neointimal foam cell infiltration in rabbits fed with high cholesterol diet

    Science.gov (United States)

    Amran, Adel A.; Zakaria, Zaiton; Othman, Faizah; Das, Srijit; Al-Mekhlafi, Hesham M.; Raj, Santhana; Nordin, Nor-Anita MM

    2012-01-01

    Previous research has shown the beneficial effects of aqueous extract of Piper sarmentosum (P.s) on atherosclerosis. The first stage in atherosclerosis is the formation of foam cell. The aim of this study was to investigate the effect of the methanol extract of P.s on fatty streaks by calculating neointimal foam cell infiltration in rabbits fed with high cholesterol diet. Thirty six male New Zealand white rabbits were divided equally into six groups: (i) C: control group fed normal rabbit chow; (ii) CH: cholesterol diet (1 % cholesterol); (iii) PM1: 1 % cholesterol with methanol extract of P.s (62.5 mg/kg); (iv) PM2: 1 % cholesterol with methanol extract of P.s (125 mg/kg); (v) PM3: 1 % cholesterol with methanol extract of P.s (250 mg/kg); (vi) SMV group fed 1 % cholesterol supplemented with Simvistatin drug (1.2 mg/kg). All animals were treated for 10 weeks. At the end of the treatment, the rabbits were fasted and sacrificed and the aortic tissues were collected for histological studies to measure the area of the neointimal foam cell infiltration using software. The thickening of intima ratio of atherosclerosis and morphological changes by scanning electron microscope were measured. The results showed that the atherosclerotic group had significantly bigger area of fatty streak compared to the control group. The area of fatty streak in the abdominal aorta was significantly reduced in the treatment groups which were similar with the SMV group. Similarly, there was a reduction in the number of foam cell in the treatment groups compared to the atherosclerotic group as seen under scanning microscope. In conclusion, histological study demonstrated that the methanol extract of the P.s could reduce the neointimal foam cell infiltration in the lumen of the aorta and the atherosclerotic lesion. PMID:27366140

  19. Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast.

    Science.gov (United States)

    Soares, Jimmy; Demeke, Mekonnen M; Van de Velde, Miet; Foulquié-Moreno, Maria R; Kerstens, Dorien; Sels, Bert F; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2017-11-01

    The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Effect of Exercise on the Skeletal Muscle Phospholipidome of Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Jong Sam Lee

    2010-10-01

    Full Text Available The aim of this study was to examine the effect of endurance training on skeletal muscle phospholipid molecular species from high-fat fed rats. Twelve female Sprague-Dawley rats were fed a high-fat diet (78.1% energy. The rats were randomly divided into two groups, a sedentary control group and a trained group (125 min of treadmill running at 8 m/min, 4 days/wk for 4 weeks. Forty-eight hours after their last training bout phospholipids were extracted from the red and white vastus lateralis and analyzed by electrospray-ionization mass spectrometry. Exercise training was associated with significant alterations in the relative abundance of a number of phospholipid molecular species. These changes were more prominent in red vastus lateralis than white vastus lateralis. The largest observed change was an increase of ~30% in the abundance of 1-palmitoyl-2-linoleoyl phosphatidylcholine ions in oxidative fibers. Reductions in the relative abundance of a number of phospholipids containing long-chain n-3 polyunsaturated fatty acids were also observed. These data suggest a possible reduction in phospholipid remodeling in the trained animals. This results in a decrease in the phospholipid n-3 to n-6 ratio that may in turn influence endurance capacity.

  1. Inhibition of serum cholesterol oxidation by dietary vitamin C and selenium intake in high fat fed rats.

    Science.gov (United States)

    Menéndez-Carreño, M; Ansorena, D; Milagro, F I; Campión, J; Martínez, J A; Astiasarán, I

    2008-04-01

    Cholesterol oxidation products (COPs) have been considered as specific in vivo markers of oxidative stress. In this study, an increased oxidative status was induced in Wistar rats by feeding them a high-fat diet (cafeteria diet). Another group of animals received the same diet supplemented with a combination of two different antioxidants, ascorbic acid (100 mg/kg rat/day) and sodium selenite (200 microg/kg rat/day) and a third group fed on a control diet. Total and individual COPs analysis of the different diets showed no differences among them. At the end of the experimental trial, rats were sacrificed and serum cholesterol, triglycerides and COPs were measured. None of the diets induced changes in rats body weight, total cholesterol and triglycerides levels. Serum total COPs in rats fed on the high-fat diet were 1.01 microg/ml, two times the amount of the control rats (0.47 microg/ml). When dietary antioxidant supplementation was given, serum total COPs concentration (0.44 microg/ml) showed the same levels than those of the rats on control diet. 7beta-hydroxycholesterol, formed non-enzymatically via cholesterol peroxidation in the presence of reactive oxygen species, showed slightly lower values in the antioxidant-supplemented animals compared to the control ones. This study confirms the importance of dietary antioxidants as protective factors against the formation of oxysterols.

  2. Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch

    International Nuclear Information System (INIS)

    Fourcault, A.; Marias, F.; Michon, U.

    2010-01-01

    The thermal degradation of tars in a chamber fed by a non-transferred plasma torch is theoretically examined in this study. The input of this reactor is a product gas coming from a gasification unit with a temperature of about 800 o C. According to literature, naphthalene and toluene are chosen as model compounds to represent the behaviour of their classes. According to this choice and to the data available in the literature, a reaction pathway for the thermal degradation of tars and its associated kinetics are proposed in this study. This mechanism is introduced in a CSTR model in order to check the influence of the operating parameters of the reactor on the degradation efficiency. These computations clearly show that a complete conversion of toluene (>99.9%) and an important conversion of naphthalene (96.7%) can be reached in the reactor, with concentration levels compatible with the further use of gas engines for electricity production. This theoretical study requires to be validated by comparison with experimental results.

  3. Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch

    Energy Technology Data Exchange (ETDEWEB)

    Fourcault, A. [Laboratoire Thermique Energetique et Procedes, LaTEP-ENSGTI, rue Jules Ferry, BP 7511, 64075 Pau Cedex (France); Europlasma, 21 rue Daugere, 33520 Bruges (France); Marias, F. [Laboratoire Thermique Energetique et Procedes, LaTEP-ENSGTI, rue Jules Ferry, BP 7511, 64075 Pau Cedex (France); Michon, U. [Europlasma, 21 rue Daugere, 33520 Bruges (France)

    2010-09-15

    The thermal degradation of tars in a chamber fed by a non-transferred plasma torch is theoretically examined in this study. The input of this reactor is a product gas coming from a gasification unit with a temperature of about 800 C. According to literature, naphthalene and toluene are chosen as model compounds to represent the behaviour of their classes. According to this choice and to the data available in the literature, a reaction pathway for the thermal degradation of tars and its associated kinetics are proposed in this study. This mechanism is introduced in a CSTR model in order to check the influence of the operating parameters of the reactor on the degradation efficiency. These computations clearly show that a complete conversion of toluene (>99.9%) and an important conversion of naphthalene (96.7%) can be reached in the reactor, with concentration levels compatible with the further use of gas engines for electricity production. This theoretical study requires to be validated by comparison with experimental results. (author)

  4. Goat Milk Kefir Supplemented with Porang Glucomannan Improves Lipid Profile and Haematological Parameter in Rat Fed High Fat and High Fructose Diet

    Directory of Open Access Journals (Sweden)

    Nurliyani

    2018-03-01

    Full Text Available Background and Aims: Diet with a high fat and high sugar is associated with an increased incindence of the metabolic syndrome. Kefir has been known as a natural probiotic, while glucomannan from porang (Amorphophallus oncophyllus tuber was demonstrated as prebiotic in vivo. Probiotics and prebiotics can be used adjuvant nutritional therapy for metabolic syndrome. The aim of this study was to evaluate the effect of goat milk kefir supplemented with porang glucomannan on the lipid profile and haematological parameters in rats fed with a high-fat/high-fructose (HFHF diet.

  5. Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats.

    Science.gov (United States)

    Maithilikarpagaselvi, Nachimuthu; Sridhar, Magadi Gopalakrishna; Swaminathan, Rathinam Palamalai; Sripradha, Ramalingam

    2016-06-01

    The present study investigated the beneficial effects of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed male Wistar rats. Five-month-old male Wistar rats (n=20) were divided into two groups (10 rats in each group). Among the two groups, one group received 30 % high-fat diet (HFD) and another group received 30 % HFD with curcumin (200 mg/kg body weight). Food intake, body weight and biochemical parameters were measured at the beginning and at the end of the study. After 10 weeks, oxidative stress parameters in skeletal muscle and hepatic triacylglycerol (TAG) content were estimated. Histological examinations of the liver samples were performed at the end of the experiment. High-fat feeding caused increase in body weight, liver and adipose tissue mass. Rats fed with HFD showed increased levels of fasting plasma glucose, insulin, Homeostasis Model Assessment for Insulin resistance (HOMA-IR), total cholesterol (TC), TAG, very low density lipoprotein cholesterol (VLDL-c) and decreased high-density lipoprotein cholesterol (HDL-c). There was also increase in the plasma inflammatory markers [tumor necrosis factor-α (TNF-α), C-reactive protein (CRP)] and skeletal muscle oxidative stress parameters [malondialdehyde (MDA), total oxidant status (TOS)] in these rats. In addition, high-fat feeding increased liver TAG content and caused fat accumulation in the liver. Treatment with curcumin significantly reduced body weight, relative organ weights (liver, adipose tissue), glucose, insulin and HOMA-IR. Curcumin supplementation decreased plasma levels of TC, TAG, VLDL-c, TNF-α and increased HDL-c. Administration of curcumin also reduced MDA, TOS in skeletal muscle, hepatic TAG content and liver fat deposition. Curcumin supplementation improved HFD-induced dyslipidemia, oxidative stress, inflammation and insulin resistance.

  6. Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet.

    Science.gov (United States)

    Estrada-Luna, D; Martínez-Hinojosa, E; Cancino-Diaz, J C; Belefant-Miller, H; López-Rodríguez, G; Betanzos-Cabrera, G

    2018-02-01

    Studies have found that pomegranate juice (PJ) consumption increases the binding of high-density lipoproteins (HDL) to paraoxonase 1 (PON1), thus increasing the catalytic activity of this enzyme. PON1 is an antioxidant arylesterase synthesized in the liver and transported in plasma in association with HDL. Decreased levels of PON1 are associated with higher levels of cholesterol. We determined the effects of PJ on body weight, cholesterol, and triacylglycerols through 5 months of supplementation. In addition, the effect of PJ on pon1 gene expression in the liver was also measured by RT-qPCR as well as the activity in serum by a semiautomated method using paraoxon as a substrate. CD-1 mice were either fed a control diet or were fed a high-fat diet 1.25% (wt/wt) cholesterol, 0.5% (wt/wt) sodium cholate, and 15% (wt/wt) saturated fat. 300 μL of PJ containing 0.35 mmol total polyphenols was administered by oral gavage to half of the high fat mice daily. The rest of the high fat mice and the control mice were administered with 300 μL of water. PJ-supplemented animals had significantly higher levels of expression of pon1 compared to the unsupplemented group. PJ-supplemented animals had twice the PON1 activity of the unsupplemented group. In addition, PJ-supplemented animals had the lowest body weight and significantly reduced cholesterol and triacylglycerol levels, although the tricylglycerol levels were not consistently decreased. These results suggest that PJ protects against the effects of a high-fat diet in body weight, and cholesterol levels.

  7. Red algae (Gelidium amansii) hot-water extract ameliorates lipid metabolism in hamsters fed a high-fat diet.

    Science.gov (United States)

    Yang, Tsung-Han; Yao, Hsien-Tsung; Chiang, Meng-Tsan

    2017-10-01

    The purpose of this study was to investigate the effects of Gelidium amansii (GA) hot-water extracts (GHE) on lipid metabolism in hamsters. Six-week-old male Syrian hamsters were used as the experimental animals. Hamsters were divided into four groups: (1) control diet group (CON); (2) high-fat diet group (HF); (3) HF with GHE diet group (HF + GHE); (4) HF with probucol diet group (HF + PO). All groups were fed the experimental diets and drinking water ad libitum for 6 weeks. The results showed that GHE significantly decreased body weight, liver weight, and adipose tissue (perirenal and paraepididymal) weight. The HF diet induced an increase in plasma triacylglycerol (TG), total cholesterol (TC), low-density lipoprotein cholesterol and very-low-density lipoprotein cholesterol levels. However, GHE supplementation reversed the increase of plasma lipids caused by the HF diet. In addition, GHE increased fecal cholesterol, TG and bile acid excretion. Lower hepatic TC and TG levels were found with GHE treatment. GHE reduced hepatic sterol regulatory element-binding proteins (SREBP) including SREBP 1 and SREBP 2 protein expressions. The phosphorylation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) protein expression in hamsters was decreased by the HF diet; however, GHE supplementation increased the phosphorylation of AMPK protein expression. Our results suggest that GHE may ameliorate lipid metabolism in hamsters fed a HF diet. Copyright © 2017. Published by Elsevier B.V.

  8. Red algae (Gelidium amansii hot-water extract ameliorates lipid metabolism in hamsters fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Tsung-Han Yang

    2017-10-01

    Full Text Available The purpose of this study was to investigate the effects of Gelidium amansii (GA hot-water extracts (GHE on lipid metabolism in hamsters. Six-week-old male Syrian hamsters were used as the experimental animals. Hamsters were divided into four groups: (1 control diet group (CON; (2 high-fat diet group (HF; (3 HF with GHE diet group (HF + GHE; (4 HF with probucol diet group (HF + PO. All groups were fed the experimental diets and drinking water ad libitum for 6 weeks. The results showed that GHE significantly decreased body weight, liver weight, and adipose tissue (perirenal and paraepididymal weight. The HF diet induced an increase in plasma triacylglycerol (TG, total cholesterol (TC, low-density lipoprotein cholesterol and very-low-density lipoprotein cholesterol levels. However, GHE supplementation reversed the increase of plasma lipids caused by the HF diet. In addition, GHE increased fecal cholesterol, TG and bile acid excretion. Lower hepatic TC and TG levels were found with GHE treatment. GHE reduced hepatic sterol regulatory element-binding proteins (SREBP including SREBP 1 and SREBP 2 protein expressions. The phosphorylation of adenosine monophosphate (AMP-activated protein kinase (AMPK protein expression in hamsters was decreased by the HF diet; however, GHE supplementation increased the phosphorylation of AMPK protein expression. Our results suggest that GHE may ameliorate lipid metabolism in hamsters fed a HF diet.

  9. Effects of dietary starch and protein levels on milk production and composition of dairy cows fed high concentrate diet

    Directory of Open Access Journals (Sweden)

    Mustafa Güçlü Sucak

    2017-07-01

    Full Text Available Abstract Twenty eight Holstein cows (averaged 41±31.5 and 82±24 days in milk, and 30.4±3.49 and 29.0±2.22 kg/d milk yield were fed a high concentrate diet (70:30 concentrate to forage to examine effects on milk production and composition. The cows were randomly assigned to receive four dietary treatments according to a 2 x 2 factorial arrangement. Factors were starch (14% and 22% and protein (15% and 18%. Wheat straw was used as forage source. The study lasted 6 weeks. Dry matter intake was not affected (P> 0.05 by the dietary treatments in the study. Milk yield increased with increased dietary protein level (P< 0.01. Milk urea nitrogen concentrations were affected by dietary protein and starch levels, but there was no interaction effect. Nitrogen efficiency (Milk N/N intake was decreased by increasing in dietary protein level (P< 0.01. In conclusion, the cows fed total mixed ration (TMR containing low level of wheat straw responded better when dietary protein increased. But, efficiency of N use and N excretion to the environment were worsened. Key words: Dairy cattle, milk composition, protein, starch, wheat straw

  10. Effects of Enzymatically Synthesized Glycogen and Exercise on Abdominal Fat Accumulation in High-Fat Diet-Fed Mice.

    Science.gov (United States)

    Tamura, Shohei; Honda, Kazuhisa; Morinaga, Ryoji; Saneyasu, Takaoki; Kamisoyama, Hiroshi

    2017-01-01

    The combination of diet and exercise is the first choice for the treatment of obesity and metabolic syndrome. We previously reported that enzymatically synthesized glycogen (ESG) suppresses abdominal fat accumulation in obese rats. However, the effect of the combination of ESG and exercise on abdominal fat accumulation has not yet been investigated. Our goal in this study was therefore to evaluate the effects of dietary ESG and its combination with exercise on abdominal fat accumulation in high-fat diet (HFD)-fed mice. Male ICR mice were assigned to four groups: HFD, HFD containing 20% ESG, HFD with exercise, HFD containing 20% ESG with exercise. Treadmill exercise was performed for 3 wk (25 m/min, 30 min/d, 3 d/wk) after 5-d adaption to running at that speed. Both ESG and exercise significantly reduced the weights of abdominal adipose tissues. In addition, the combination of ESG and exercise significantly suppressed abdominal fat accumulation, suggesting that ESG and exercise showed an additive effect. Exercise significantly increased the mRNA levels of lipid metabolism-related genes such as lipoprotein lipase, peroxisome proliferator-activated receptor delta; factor-delta (PPARδ), carnitin palmitoyltransferase b, adipose triglyceride lipase (ATGL), and uncoupling protein-3 in the gastrocnemius muscle. On the other hand, dietary ESG significantly decreased the mRNA levels of PPARδ and ATGL in the gastrocnemius muscle. These results suggest that the combined treatment of ESG and exercise effectively suppresses abdominal fat accumulation in HFD-fed mice by different mechanisms.

  11. Endothelial dysfunction in high fructose containing diet fed rats: Increased nitric oxide and decreased endothelin-1 levels in liver tissue

    Directory of Open Access Journals (Sweden)

    Zeki Arı

    2010-09-01

    Full Text Available Objectives: Dietary high fructose consumption which is closely associated with endothelial dysfunction via insulin re-sistance has recently increased in developed countries. Insulin resistance has a promoter effect on many metabolic disorders such as syndrome X, polycystic ovary syndrome, Type 2 diabetes mellitus etc. Our aim in this study is to understand the impact of increased fructose intake on metabolisms of glucose, insulin and endothelial dysfunction by measuring nitric oxide (NO and endothelin-1 (ET-1 levels in hepatic tissue which is crucial in fructose metabolism.Materials and Methods: We designed an animal study to understand increased fructose intake on hepatic endothe-lium. Twenty adult male albino rats were divided into two groups; the study group (group 1, n=10 received isocaloric fructose enriched diet (fructose-fed rats, containing 18.3% protein, 60.3% fructose and 5.2% fat while the control group received purified regular chow (group 2, n=10 for 2 weeks. After feeding period, blood and hepatic tissue samples were collected and glucose, insulin, NO and ET-1 levels were analysed.Results: We found increased fasting glucose and insulin levels and impaired glucose tolerance in fructose fed rats. Higher NO and lower ET–1 levels were also detected in hepatic tissue samples of the group 1.Conclusion: Increased fructose consumption has deleterious effects on glucose tolerance, insulin resistance and may cause to endothelial dysfunction.

  12. Polyphenol-Rich Fraction of Ecklonia cava Improves Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice

    Directory of Open Access Journals (Sweden)

    Eun-Young Park

    2015-11-01

    Full Text Available Ecklonia cava (E. cava; CA is an edible brown alga with beneficial effects in diabetes via regulation of various metabolic processes such as lipogenesis, lipolysis, inflammation, and the antioxidant defense system in liver and adipose tissue. We investigated the effect of the polyphenol-rich fraction of E. cava produced from Gijang (G-CA on nonalcoholic fatty liver disease (NAFLD in high-fat diet (HFD-fed mice. C57BL6 mice were fed a HFD for six weeks and then the HFD group was administered 300 mg/kg of G-CA extracts by oral intubation for 10 weeks. Body weight, fat mass, and serum biochemical parameters were reduced by G-CA extract treatment. MRI/MRS analysis showed that liver fat and liver volume in HFD-induced obese mice were reduced by G-CA extract treatment. Further, we analyzed hepatic gene expression related to inflammation and lipid metabolism. The mRNA expression levels of inflammatory cytokines and hepatic lipogenesis-related genes were decreased in G-CA-treated HFD mice. The mRNA expression levels of cholesterol 7 alpha-hydroxylase 1 (CYP7A1, the key enzyme in bile acid synthesis, were dramatically increased by G-CA treatment in HFD mice. We suggest that G-CA treatment ameliorated hepatic steatosis by inhibiting inflammation and improving lipid metabolism.

  13. Effect of berberine on the ratio of high-molecular weight adiponectin to total adiponectin and adiponectin receptors expressions in high-fat diet fed rats.

    Science.gov (United States)

    Wu, Yue-Yue; Zha, Ying; Liu, Jun; Wang, Fang; Xu, Jiong; Chen, Zao-Ping; Ding, He-Yuan; Sheng, Li; Han, Xiao-Jie

    2016-11-17

    To assess the effects of berberine (BBR) on high-molecular weight (HMW) adiponectin and adiponectin receptors (adipoR1/adipoR2) expressions in high-fat (HF) diet fed rats. Forty Wistar male rats were randomly assigned into a normal diet fed group and three HF diet (fat for 45% calories) fed groups (n=10 for each group). All rats underwent 12 weeks of feeding. After 4 weeks feeding, rats in the two of three HF diet fed groups were treated with 150 mg·kg -1 ·day -1 BBR (HF+LBBR group) and 380 mg·kg -1 ·day -1 BBR (HF+HBBR group) by gavage once a day respectively for the next 8 weeks while the rats in other groups treated with vehicle (NF+Veh and HF+Veh). Body weight and food intake were observed and recorded on daily basis. At the end of 12 weeks, the blood, liver, epididymal fat tissues and quadriceps femoris muscles were collected. Fasting insulin, plasma fasting glucose, serum free fatty acid (FFA), total adiponectin and HMW adiponectin levels were measured by enzyme linked immunosorbent assay method. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to determine the insulinsensitizing. Meanwhile the homeostasis model assessment (HOMA) method was used to determine insulin resistance (HOMA-IR). The expressions of adipoR1, adipoR2 and adenosine monophophate activated protein kinase (AMPK) phosphorylation level in skeletal muscle and liver tissue were detected by Western blot. Liver and kidney toxicity were evaluated during treatment. The body weight of rats in high- or low-dose BBR group reduced as well as HOMA-IR, FFA concentrations and fasting insulin levels decreased compared with HF+Veh group (Pinsulin resistance by increasing the expression of adiponectin receptors and the ratio of HMW to total adiponectin.

  14. Rice bran protein hydrolysates reduce arterial stiffening, vascular remodeling and oxidative stress in rats fed a high-carbohydrate and high-fat diet.

    Science.gov (United States)

    Senaphan, Ketmanee; Sangartit, Weerapon; Pakdeechote, Poungrat; Kukongviriyapan, Veerapol; Pannangpetch, Patchareewan; Thawornchinsombut, Supawan; Greenwald, Stephen E; Kukongviriyapan, Upa

    2018-02-01

    Rice bran protein hydrolysates (RBPH) contain highly nutritional proteins and antioxidant compounds which show benefits against metabolic syndrome (MetS). Increased arterial stiffness and the components of MetS have been shown to be associated with an increased risk of cardiovascular disease. This study aimed to investigate whether RBPH could alleviate the metabolic disorders, arterial stiffening, vascular remodeling, and oxidative stress in rats fed a high-carbohydrate and high-fat (HCHF) diet. Male Sprague-Dawley rats were fed either a standard chow and tap water or a HCHF diet and 15 % fructose solution for 16 weeks. HCHF rats were treated orally with RBPH (250 or 500 mg/kg/day) for the final 6 weeks of the experimental period. Rats fed with HCHF diet had hyperglycemia, insulin resistance, dyslipidemia, hypertension, increased aortic pulse wave velocity, aortic wall hypertrophy and vascular remodeling with increased MMP-2 and MMP-9 expression. RBPH supplementation significantly alleviated these alterations (P stress was also alleviated after RBPH treatment by decreasing plasma malondialdehyde, reducing superoxide production and suppressing p47 phox NADPH oxidase expression in the vascular tissues of HCHF rats. RBPH increased plasma nitrate/nitrite level and up-regulated eNOS expression in the aortas of HCHF-diet-fed rats, indicating that RBPH increased NO production. RBPH mitigate the deleterious effects of HCHF through potential mechanisms involving enhanced NO bioavailability, anti-ACE, anti-inflammatory and antioxidant properties. RBPH could be used as dietary supplements to minimize oxidative stress and vascular alterations triggered by MetS.

  15. Isoflavone and Protein Constituents of Lactic Acid-Fermented Soy Milk Combine to Prevent Dyslipidemia in Rats Fed a High Cholesterol Diet

    OpenAIRE

    Kobayashi, Maki; Egusa, Shintaro; Fukuda, Mitsuru

    2014-01-01

    A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS) improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet), a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet), a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavon...

  16. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet

    DEFF Research Database (Denmark)

    Zhang, Li; Andersen, Daniel; Roager, Henrik Munch

    2017-01-01

    of an obesogenic diet. Mice were fed either a defined high-fat diet (HFD) containing 4% gliadin (n = 20), or a gliadin-free, isocaloric HFD (n = 20) for 23 weeks. Combined analysis of several parameters including insulin resistance, histology of liver and adipose tissue, intestinal microbiota in three gut...... that gliadin disturbs the intestinal environment and affects metabolic homeostasis in obese mice, suggesting a detrimental effect of gluten intake in gluten-tolerant subjects consuming a high-fat diet.......Dietary gluten causes severe disorders like celiac disease in gluten-intolerant humans. However, currently understanding of its impact in tolerant individuals is limited. Our objective was to test whether gliadin, one of the detrimental parts of gluten, would impact the metabolic effects...

  17. Ruminal, Intestinal, and Total Digestibilities of Nutrients in Cows Fed Diets High in Fat and Undegradable Protein

    DEFF Research Database (Denmark)

    Palmquist, D.L.; Weisbjerg, Martin Riis; Hvelplund, Torben

    1993-01-01

    To study relationships of high undegradable intake protein and dietary fat on intestinal AA supply, the ruminal, intestinal, and total digestibilities of diets with or without added fat (5% of DM) and animal protein (blood meal: hydrolyzed feather meal, 1:1; 8% of DM) were examined with four cows...... with cows cannulated 100-cm distal to the pylorus, but only when cows were fed protein-supplemented diets; the estimates from those diets caused calculated microbial protein efficiency to exceed theoretical values. We postulated that blood meal and feather meal segregated near the pylorus, yielding high...... estimates of duodenal AA N flow. Removal of data for protein-supplemented diets obtained from cows cannulated at the pylorus yielded estimates of microbial protein synthetic efficiency consistent with literature values. Microbial synthesis of AA N was related linearly to ruminal digestion of carbohydrate...

  18. Utilization of [1-14C]carbon of glycine of high glycine diet fed young and old rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Medovar, B.Ya.; Pisarczuk, K.L.; Grigorov, Yu.G.

    1987-01-01

    The incorporation of radioactivity from [1- 14 C]glycine was studied in various organ (serum, liver, muscle) fractions (acid soluble, proteins, lipids, liver glycogen) and carbon dioxide in rats fed with isonitrogenous isocaloric purfied diets. The diets contained 30% casein (control), gelatin (exchange of half of the 30% casein) or glycine (corresponding level of glycine in relation to the gelatin diet). The incorporation of radioactivity into proteins was reduced by feeding high glycine diets in young (20-weeks-old) and old (18-month-old) rats in relation to the control diet. The modifications of the results for old animals may be partially explained on the base of a reduced protein turnover rate and adaptation to a high gelatin (glycine) diet. (author)

  19. A Truncated Waveguide Fed by a Microstrip as a Radiating Element for High-Performance Automotive Anticollision Radars

    Directory of Open Access Journals (Sweden)

    Giovanni Andrea Casula

    2012-01-01

    Full Text Available A small truncated waveguide fed by a microstrip line through a transverse coupling slot is proposed and assessed as a high-performance antenna and array element in the K band and above. This antenna allows to obtain a high radiated power, with a very low cross-polar component in the radiated field. It is therefore particularly suitable for application in automotive anticollision radars. The proposed radiating element has been analyzed by a numerical code based on an in-house method of moments, and the microstrip feeding line has been modeled by its equivalent magnetic-wall waveguide. A linear array of such elements has been designed and matched with a BPF-inspired matching network allowing an in-band behavior suitable for anti-collision radar use, with an out-of-band rejection large enough to avoid the first receiving BPF.

  20. Maternal High Folic Acid Supplement Promotes Glucose Intolerance and Insulin Resistance in Male Mouse Offspring Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Yifan Huang

    2014-04-01

    Full Text Available Maternal nutrition may influence metabolic profiles in offspring. We aimed to investigate the effect of maternal folic acid supplement on glucose metabolism in mouse offspring fed a high-fat diet (HFD. Sixty C57BL/6 female mice were randomly assigned into three dietary groups and fed the AIN-93G diet containing 2 (control, 5 (recommended folic acid supplement, RFolS or 40 (high folic acid supplement, HFolS mg folic acid/kg of diet. All male offspring were fed HFD for eight weeks. Physiological, biochemical and genetic variables were measured. Before HFD feeding, developmental variables and metabolic profiles were comparable among each offspring group. However, after eight weeks of HFD feeding, the offspring of HFolS dams (Off-HFolS were more vulnerable to suffer from obesity (p = 0.009, glucose intolerance (p < 0.001 and insulin resistance (p < 0.001, compared with the controls. Off-HFolS had reduced serum adiponectin concentration, accompanied with decreased adiponectin mRNA level but increased global DNA methylation level in white adipose tissue. In conclusion, our results suggest maternal HFolS exacerbates the detrimental effect of HFD on glucose intolerance and insulin resistance in male offspring, implying that HFolS during pregnancy should be adopted cautiously in the general population of pregnant women to avoid potential deleterious effect on the metabolic diseases in their offspring.

  1. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice.

    Science.gov (United States)

    Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran

    2014-11-14

    Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  2. Metabolic effects of intermittent access to caloric or non-caloric sweetened solutions in mice fed a high-caloric diet.

    Science.gov (United States)

    Soto, Marion; Chaumontet, Catherine; Even, Patrick C; Azzout-Marniche, Dalila; Tomé, Daniel; Fromentin, Gilles

    2017-06-01

    Human consumption of obesogenic diets and soft drinks, sweetened with different molecules, is increasing worldwide, and increases the risk of metabolic diseases. We hypothesized that the chronic consumption of caloric (sucrose, high-fructose corn syrup (HFCS), maltodextrin) and non-caloric (sucralose) solutions under 2-hour intermittent access, alongside the consumption of a high-fat high-sucrose diet, would result in differential obesity-associated metabolic abnormalities in mice. Male C57BL/6 mice had ad libitum access to an HFHS diet and to water (water control group). In addition, some mice had access, 2h/day, 5days/week (randomly chosen) for 12weeks, to different solutions: i) a sucrose solution (2.1kJ/ml), ii) an HFCS solution (2.1kJ/ml), iii) a maltodextrin solution (2.1kJ/ml) and a sucralose solution (60mM) (n=15/group). Despite no changes in total caloric intake, 2h-intermittent access to the sucrose, HFCS or maltodextrin solutions led to increased body weight and accumulation of lipids in the liver when compared to the group consuming water only. The HFCS and sucrose solutions induced a higher fat mass in various fat depots, glucose intolerance, increased glucose oxidation at the expense of lipid oxidation, and a lower hypothalamic expression of NPY in the fasted state. HFCS also reduced proopiomelanocortin expression in the hypothalamus. 2h-intermittent access to sucralose did not result in significant changes in body composition, but caused a stronger expression of CART in the hypothalamus. Finally, sucrose intake showed a trend to increase the expression of various receptors in the nucleus accumbens, linked to dopamine, opioid and endocannabinoid signaling. In conclusion, 2h-intermittent access to caloric solutions (especially those sweetened with sucrose and HFCS), but not sucralose, resulted in adverse metabolic consequences in high-fat high-sucrose-fed mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Glucose Tolerance, Lipids, and GLP-1 Secretion in JCR:LA-cp Rats Fed a High Protein Fiber Diet

    Science.gov (United States)

    Reimer, Raylene A.; Russell, James C.

    2013-01-01

    Background We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1). Objective Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP-1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA-cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP-1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP-1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP-1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion Overall, combining HP with HF in the diet increased GLP-1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet-induced vs. genetic obesity with overt hyperleptinemia. PMID:18223610

  4. The effects of chromium complex and level on glucose metabolism and memory acquisition in rats fed high-fat diet.

    Science.gov (United States)

    Sahin, Kazim; Tuzcu, Mehmet; Orhan, Cemal; Agca, Can A; Sahin, Nurhan; Guvenc, Mehmet; Krejpcio, Zbigniew; Staniek, Halina; Hayirli, Armagan

    2011-11-01

    Conditions in which glucose metabolism is impaired due to insulin resistance are associated with memory impairment. It was hypothesized that supplemental chromium (Cr) may alleviate insulin resistance in type 2 diabetes and consequently improve memory acquisition, depending upon its source and level. In a complete randomized design experiment, male Wistar rats (n=60; weighing 200-220 g) were fed either normal (8%, normal diet (ND)) or high-fat (40%, high-fat diet (HFD)) diet and supplemented with Cr as either chromium-glycinate (CrGly) or chromium-acetate (CrAc) at doses of 0, 40, or 80 μg/kg body weight (BW) via drinking water from 8 to 20 weeks of age. Feeding HFD induced type 2 diabetes, as reflected by greater glucose/insulin ratio (2.98 vs. 2.74) comparing to feeding ND. Moreover, HFD rats had greater BW (314 vs. 279 g) and less serum (53 vs. 68 μg/L) and brain (14 vs. 24 ng/g) Cr concentrations than ND rats. High-fat diet caused a 32% reduction in expressions of glucose transporters 1 and 3 (GLUTs) in brain tissue and a 27% reduction in mean percentage time spent in the target quadrant and a 38% increase in spatial memory acquisition phase (SMAP) compared with ND. Compared with supplemental Cr as CrAc, CrGly was more effective to ameliorate response variables (i.e., restoration of tissue Cr concentration, enhancement of cerebral GLUTs expressions, and reduction of the glucose/insulin ratio and SMAP) in a dose-response manner, especially in rats fed HFD. Supplemental Cr as CrGly may have therapeutic potential to enhance insulin action and alleviate memory acquisition in a dose-dependent manner, through restoring tissue Cr reserve and enhancing cerebral GLUTs expressions.

  5. Effects of bixin in high-fat diet-fed-induced fatty liver in C57BL/6J mice

    Institute of Scientific and Technical Information of China (English)

    Rosa; Martha; Perez; Gutierrez; Rita; Valadez; Romero

    2016-01-01

    Objective:To evaluate the anti-obesity activity of bixin(BIX) on C57BL/6J mice which were fed a high-fat diet(HFD) and to determine the mechanism of this effect.Methods:C57BL/6J mice were separately fed a high-calorie diet or a normal diet for 8weeks,then they were treated with BIX for another 13 weeks.After administration for 13 weeks,the animals were sacrificed.Body adiposity,serum lipid level,and insulin resistance were evaluated.In addition,a histological assay of pancreas and liver,an evaluation of the inhibitory properties on pancreatic lipase,and a-amylase were conducted.Results:Administration of BIX significantly decreased the body weight gain,adipocyte size,fat pad weights,hepatic lipid levels in HFD-induced obese mice.In addition,reduced liver weight exhibited decreased serum leptin levels,malic enzyme,glucose-6-phosphate dehydrogenase,hepatic fatty acid synthase,aspartate aminotransferase,alanine aminotransferase and hepatic phosphatidate phosphohydrolase activity.However,superoxide dismutase,catalase,glutathione peroxidase,and glutathione levels were increased in hepatic tissue.BIX also decreased lipid and carbohydrates absorption due to inhibition of pancreatic lipase and a-amylase.Long term supplementation of BIX significantly decreased hyperlipidemia,insulin resistance and glucose level.Decreased levels of hepatic steatosis and the islets of Langerhans appeared less shrunken in HFD-fed mice.Conclusions:The antiobesity effect of BIX appears to be associated at least in part,to its inhibitory effect on lipids and carbohydrate digestion enzymes such as pancreatic lipase,a-glucosidase,and a-amylase.The results suggested that BIX also act as an antioxidant and may treat visceral obesity normalizing glucose levels,improving insulin resistance and increasing energy expenditure.Therefore,achiote which has a main component,the carotenoid BIX,could be a viable food for the treatment of obesity and diabetes.

  6. Inhibition of angiotensin-1-converting enzyme activity by two varieties of ginger (Zingiber officinale) in rats fed a high cholesterol diet.

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Ademiluyi, Adedayo Oluwaseun; Oboh, Ganiyu

    2014-03-01

    Angiotensin-1-converting enzyme (ACE) inhibitors are widely used in the treatment of cardiovascular diseases. This study sought to investigate the inhibitory effect of two varieties of ginger (Zingiber officinale) commonly consumed in Nigeria on ACE activity in rats fed a high cholesterol diet. The inhibition of ACE activity of two varieties of ginger (Z. officinale) was investigated in a high cholesterol (2%) diet fed to rats for 3 days. Feeding high cholesterol diets to rats caused a significant (Pginger varieties. Rats that were fed 4% white ginger had the greatest inhibitory effect as compared with a control diet. Furthermore, there was a significant (Pginger (either 2% or 4%) caused a significant (Pginger had the greatest reduction as compared with control diet. In conclusion, both ginger varieties exhibited anti-hypercholesterolemic properties in a high cholesterol diet fed to rats. This activity of the gingers may be attributed to its ACE inhibitory activity. However, white ginger inhibited ACE better in a high cholesterol diet fed to rats than red ginger. Therefore, both gingers could serve as good functional foods/nutraceuticals in the management/treatment of hypertension and other cardiovascular diseases.

  7. Biochemical Effects of Aqueous Extract of Persea americana (Mill) on the Myocardium of Left Ventricle of High Salt-Fed Adult Wistar Rats.

    Science.gov (United States)

    Olushola, Ayoola I; Aderibigbe, Komolafe O; Stephen, Saka O; Ayodeji, Odukoya S

    2017-10-01

    The cardioprotective effects of Persea americana extract was investigated on biochemical activities of high salt-fed adult Wistar rats in this study. Forty healthy Wistar rats of both sexes weighing 120 to 150 g were randomly assigned into 8 groups of 5 rats each (groups A, B, C, D, E, F, G, and H). Rats in groups A, F, G, and H were fed with standard laboratory pellets, while groups B, C, D, and E were fed on the high-salt diet for 4 weeks. Concomitantly, daily administration of 50, 100, and 150 mg/kg of the P americana extract were given orally to groups C and F, D and G, and E and H, respectively, while rats in groups A and B were administered distilled water. Blood samples were taken by cardiac puncture; concentration of sodium ion, potassium ion, nitric oxide, and activity of lactate dehydrogenase were determined. One-way analysis of variance was used to analyze data, followed by Student-Newman-Keuls (SNK) test for multiple comparison. Results revealed that concentration of potassium ion and nitric oxide was significantly lower ( P < .05) in high salt-fed groups. Sodium ion concentration and activity of lactate dehydrogenase were higher in high salt-fed group while P americana prevented biochemical perturbations in other experimental groups. In conclusion, high salt-diet induced biochemical alterations which were significantly protected by oral administration of P americana extract.

  8. Gliadin affects glucose homeostasis and intestinal metagenome in C57BL6 mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Zhang, Li; Hansen, Axel Kornerup; Bahl, Martin Iain

    limited. The aim of this study was to investigate the effect of gliadin on glucose homeostasis and intestinal ecology in the mouse. Forty male C57BL/6 mice were fed a high-fat diet containing either 4% gliadin or no gliadin for 22 weeks. Gliadin consumption significantly increased the HbA1c level over......Dietary gluten and its component gliadin are well-known environmental triggers of celiac disease and important actors in type-1 diabetes, and are reported to induce alterations in the intestinal microbiota. However, research on the impact of gluten on type-2 diabetes in non-celiac subjects is more...... time, with a borderline significance of higher HOMA-IR (homeostasis model assessment of insulin resistance) after 22 weeks. Sequencing of the V3 region of the bacterial 16S rRNA genes showed that gliadin altered the abundance of 81 bacterial taxa, separating the intestinal microbial profile...

  9. Pectin penta-oligogalacturonide reduces cholesterol accumulation by promoting bile acid biosynthesis and excretion in high-cholesterol-fed mice.

    Science.gov (United States)

    Zhu, Ru-Gang; Sun, Yan-Di; Hou, Yu-Ting; Fan, Jun-Gang; Chen, Gang; Li, Tuo-Ping

    2017-06-25

    Haw pectin penta-oligogalacturonide (HPPS) has important role in improving cholesterol metabolism and promoting the conversion of cholesterol to bile acids (BA) in mice fed high-cholesterol diet (HCD). However, the mechanism is not clear. This study aims to investigate the effects of HPPS on cholesterol accumulation and the regulation of hepatic BA synthesis and transport in HCD-fed mice. Results showed that HPPS significantly decreased plasma and hepatic TC levels but increased plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) levels, compared to HCD. BA analysis showed that HPPS markedly decreased hepatic and small intestine BA levels but increased the gallbladder BA levels, and finally decreased the total BA pool size, compared to HCD. Studies of molecular mechanism revealed that HPPS promoted hepatic ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor BI (SR-BI) expression but did not affect ATB binding cassette transporter G5/G8 (ABCG5/8) expression. HPPS inactivated hepatic farnesoid X receptor (FXR) and target genes expression, which resulted in significant increase of cholesterol 7α-hydroxylase 1 (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) expression, with up-regulations of 204.2% and 33.5% for mRNA levels, respectively, compared with HCD. In addition, HPPS markedly enhanced bile salt export pump (BSEP) expression but didn't affect the sodium/taurocholate co-transporting polypeptide (NTCP) expression. In conclusion, the study revealed that HPPS reduced cholesterol accumulation by promoting BA synthesis in the liver and excretion in the feces, and might promote macrophage-to-liver reverse cholesterol transport (RCT) but did not liver-to-fecal RCT. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Interaction of dietary sucrose and fiber on serum lipids in healthy young men fed high carbohydrate diets.

    Science.gov (United States)

    Albrink, M J; Ullrich, I H

    1986-03-01

    High sucrose diets may cause increased serum triglycerides and decreased high density lipoprotein concentration. To determine whether dietary fiber protects against these effects, four groups of six healthy young men were assigned to one of four very high carbohydrate diets providing 0, 18, 36, or 52% of calories as sucrose. Each diet was fed in both low (less than 14 g) and high (greater than 34 g) levels of dietary fiber for 10 days each. Triglycerides increased during the 36 and 52% sucrose diets compared to 0 and 18% sucrose diets, and fiber protected partially against this rise. Serum cholesterol and LDL cholesterol were lower during the 0 and 18% sucrose diets than the 36 or 52% sucrose diets but fiber had no effect. HDL cholesterol decreased during all low fat diets, with a trend toward a greater decrease during the high sucrose diets. The results suggest that fiber protects against carbohydrate-induced lipemia but has no effect on cholesterol during very high carbohydrate diets.

  11. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    Science.gov (United States)

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-07

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  12. Hypocholesterolaemic effect of whole-grain highland hull-less barley in rats fed a high-fat diet.

    Science.gov (United States)

    Xia, Xuejuan; Li, Guannan; Song, Jiaxin; Zheng, Jiong; Kan, Jianquan

    2018-05-01

    Whole-grain highland hull-less barley (WHLB) contains high amounts of bioactive compounds that potentially exhibit cholesterol-lowering effects. This study investigated the hypocholesterolaemic effect of WHLB. A total of seventy-two male Sprague-Dawley rats were divided into four groups and were fed with the normal control diet, high-fat diet (HFD) and HFD containing low or high dose (10 or 48·95 %) of WHLB. High dose of WHLB significantly decreased the organ indexes of liver and abdominal fat and lipid levels of plasma and liver in HFD rats. The lipid regulation effect of WHLB, which was reconfirmed through hepatocyte morphologic observation, was accompanied by a large excretion of bile acids in the small intestinal contents and the faeces. Real-time PCR analyses, which were further reconfirmed through Western blot analyses, revealed that a high dose of WHLB significantly enhanced the hepatic expressions of AMP-activated protein kinase α, cholesterol 7α-hydroxylase, LDL receptor, liver X receptor, and PPARα and decreased the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase. It also enhanced the ileal expression of farnesoid X receptor and resulted in the decrease of expression of apical sodium-dependent bile acid transporter. WHLB exhibited hypocholesterolaemic effects mainly by inhibiting cholesterol synthesis, cholesterol accumulation in peripheral tissue, and bile acid reabsorption and by stimulating bile acid synthesis.

  13. Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a safflower oil diet or a linseed oil diet.

    Science.gov (United States)

    Takeuchi, H; Matsuo, T; Tokuyama, K; Shimomura, Y; Suzuki, M

    1995-04-01

    The objectives of the present study were to examine the effects of dietary fats differing in fatty acid composition on diet-induced thermogenesis, sympathetic activity in brown adipose tissue and body fat accumulation in rats. Rats were meal-fed for 12 wk an isoenergetic diet based on lard, high oleic acid safflower oil, safflower oil or linseed oil, and norepinephrine turnover rates in brown adipose tissue were then estimated. Whole-body oxygen consumption after the meal indicated that diet-induced thermogenesis was significantly lower in rats fed the lard diet than in those fed the other diets. The norepinephrine turnover rate in the interscapular brown adipose tissue was also significantly lower in the lard diet group than in the other diet groups. The carcass fat content was significantly higher in the lard diet group than in the other diet groups, whereas the abdominal adipose tissue weights were the same in all diet groups. These results suggest that the intake of animal fats rich in saturated fatty acids, compared with the intake of vegetable oils rich in monounsaturated or polyunsaturated fatty acids, decreases diet-induced thermogenesis by a decline of sympathetic activity in brown adipose tissue, resulting in the promotion of body fat accumulation.

  14. Bacteria-foraging based-control of high-performance railway level-crossing safety drives fed from photovoltaic array

    Directory of Open Access Journals (Sweden)

    Essamudin A. Ebrahim

    2016-12-01

    Full Text Available In the past ten years, railway level-crossing accidents have noticeably escalated in an indisputably preposterous manner, this devastating snag opened the floodgates for the frustrating death of a numerous number of the third world’s citizens, especially in Egypt. To tackle with this problem, a fully intelligent control system is required, which must be automated without human intervention. So, in this research, a new proposed level-crossing tracking system is designed and introduced. The system comprises a high-performance induction motor (IM fed from photovoltaic (PV array, the boom barrier (gate with its mechanism – as a load – buck–boost converter, inverter, and two smart PI-controllers. The first one is designed to regulate the duty cycle of the converter to its optimum value required to balance between maximum power point tracking (MPPT and keeping dc-link voltage of the inverter at a minimum level needed to maintain the motor internal torque at rated value. The second PI-controller is designed for speed control of indirect field-oriented vector-control (IFO-VC IM. The proposed design problems of MPPT, dc-link voltage and speed controllers are solved as optimization problems by bacteria-foraging optimization (BFO algorithm to search for the optimal PI-parameters. The simulation test results are acquired when using the battery-less PV-array with and without the proposed controllers. Also, results are obtained when applying several prescribed speed trajectories to test the robustness against PV-irradiance fluctuations and motor-dynamic disturbances. From these results, the proposed intelligent controllers are robust compared to classical Ziegler–Nichols (ZN PI-controllers and also when the motor is directly fed from PV generator without converter.

  15. Effects of telmisartan and olmesartan on insulin sensitivity and renal function in spontaneously hypertensive rats fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Hayato Yanagihara

    2016-07-01

    Full Text Available Although telmisartan, an angiotensin II receptor blocker (ARB, has an agonistic action for proliferator-activated receptor (PPAR-γ in vitro, it remains to be determined whether telmisartan exerts such an action in vivo using a non-toxic dose (<5 mg/kg in rats. To address the issue, telmisartan (2 mg/kg and olmesartan (2 mg/kg, another ARB without PPAR-γ agonistic action, were given to spontaneously hypertensive rats (SHR fed a high fat diet (HFD. HFD decreased plasma adiponectin, and caused insulin resistance, hypertriglyceridemia and renal damage, which were improved by ARBs. Protective effects of telmisartan and olmesartan did not significantly differ. In addition, in vitro study showed that 1 μM of telmisartan did not elevate the mRNA expression of adipose protein 2, which is a PPAR-γ-stimulated adipogenic marker gene, in preadipocytes with 3% albumin. To obtain 1 μM of plasma concentration, oral dose of telmisartan was calculated to be 6 mg/kg, which indicates that PPAR-γ agonistic action is negligible with a non-toxic dose of telmisartan (<5 mg/kg in rats. This study showed that 2 mg/kg of telmisartan and olmesartan ameliorated insulin resistance, hypertriglyceridemia and renal damage in SHR fed a HFD. As beneficial effects of telmisartan and olmesartan did not significantly differ, these were mediated through the PPAR-γ-independent actions.

  16. Performance and metabolite profile of dairy cows fed tropical grasses and concentrates containing crude protein with low or high degradability

    Directory of Open Access Journals (Sweden)

    Raphael dos Santos Gomes

    Full Text Available ABSTRACT Ten Holstein-Zebu crossbred cows distributed into two simultaneous Latin squares (5 × 5 as a 2 × 2 factorial arrangement formed by chopped sugarcane or elephant grass silage, both with high or low protein degradability supplements and a corn silage as a control treatment, were compared using orthogonal contrasts. The studied variables were the performance, plasma concentrations of urea-N, glucose, and creatinine, urine-N and milk urea-N, and the nychthemeral variation in NH3-N in the rumen fluid of dairy cows. Nutrient intake, milk production, and milk composition were affected by the treatments. The total mixed ration containing elephant grass silage combined with rumen undegradable protein (RUP provided balanced amounts of carbon and nitrogen in the rumen. This effect may explain the 18% increase in milk yield compared with the other treatments. The diurnal pattern of ruminal NH3-N was interpreted with a sinusoid model. In general, cows fed elephant grass silage exhibited higher concentrations of blood plasma and milk urea-N than animals fed sugarcane. The cows that consumed elephant grass silage with rumen degradable protein concentrate showed a higher milk urea-N compared with animals that consumed elephant grass silage with the RUP concentrate. The use of diets based on corn silage leads to a better use of nitrogen compounds because these diets resulted in lower levels of urea-N in the plasma, urine, and milk at the same level of milk production compared with diets containing elephant grass silage or chopped sugarcane as roughages. In sugarcane-based diets, even greater nitrogen losses in the urine are observed, despite the presence of readily fermentable carbohydrates in the diet.

  17. Effects of carbohydrate mouth rinse and caffeine on high-intensity interval running in a fed state.

    Science.gov (United States)

    Devenney, Simon; Mangan, Shane; Shortall, Marcus; Collins, Kieran

    2018-05-01

    The current study aims to identify if mouth rinsing with a 6% carbohydrate mouth-rinse (CMR) solution and mouth rinsing and ingestion of caffeine (CMR+CAFF) can affect exercise performance during steady-state (SS) running and high-intensity intervals (HIIT) in comparison with a 0% control solution (PLA) when in a fed state. Eight recreationally trained males completed 3 trials (CMR, CMR+CAFF, and PLA) of 45 min SS running and an HIIT protocol (90% peak treadmill velocity) until fatigue in a double blinded, repeated-measures study. Participants ingested a capsule of either CAFF or PLA before and after SS. Participants received a 25-mL bolus of carbohydrate solution (CMR and CMR+CAFF trials) or taste-matched PLA (PLA trial) prior to HIIT protocol and after every second effort. Heart rate and lactate responses were recorded throughout the SS and HIIT protocol. CMR+CAFF was significantly different when compared with PLA (p = 0.001; Cohens d = 1.34) and CMR (p = 0.031; Cohens d = 0.87) in relation to distance covered before fatigue. Although there was no significant difference between CMR and PLA, there was a small benefit for CMR (p = 0.218; Cohens d = 0.46). Results indicate that CMR and ingestion of CAFF leads to improvements in performance during interval sessions while participants were in a fed state. These findings indicate that the regular use of CMR can decrease the risk of gastrointestinal distress reported by athletes, which can be applicable to athletes in a real-world setting.

  18. Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier.

    Science.gov (United States)

    Benoit, Bérengère; Plaisancié, Pascale; Géloën, Alain; Estienne, Monique; Debard, Cyrille; Meugnier, Emmanuelle; Loizon, Emmanuelle; Daira, Patricia; Bodennec, Jacques; Cousin, Olivier; Vidal, Hubert; Laugerette, Fabienne; Michalski, Marie-Caroline

    2014-08-28

    Dairy products derived from the milk of cows fed in pastures are characterised by higher amounts of conjugated linoleic acid and α-linolenic acid (ALA), and several studies have shown their ability to reduce cardiovascular risk. However, their specific metabolic effects compared with standard dairy in a high-fat diet (HFD) context remain largely unknown; this is what we determined in the present study with a focus on the metabolic and intestinal parameters. The experimental animals were fed for 12 weeks a HFD containing 20 % fat in the form of a pasture dairy cream (PDC) or a standard dairy cream (SDC). Samples of plasma, liver, white adipose tissue, duodenum, jejunum and colon were analysed. The PDC mice, despite a higher food intake, exhibited lower fat mass, plasma and hepatic TAG concentrations, and inflammation in the adipose tissue than the SDC mice. Furthermore, they exhibited a higher expression of hepatic PPARα mRNA and adipose tissue uncoupling protein 2 mRNA, suggesting an enhanced oxidative activity of the tissues. These results might be explained, in part, by the higher amounts of ALA in the PDC diet and in the liver and adipose tissue of the PDC mice. Moreover, the PDC diet was found to increase the proportions of two strategic cell populations involved in the protective function of the intestinal epithelium, namely Paneth and goblet cells in the small intestine and colon, compared with the SDC diet. In conclusion, a PDC HFD leads to improved metabolic outcomes and to a stronger gut barrier compared with a SDC HFD. This may be due, at least in part, to the protective mechanisms induced by specific lipids.

  19. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice

    Science.gov (United States)

    Wang, Jingjing; Tang, Huang; Zhang, Chenhong; Zhao, Yufeng; Derrien, Muriel; Rocher, Emilie; van-Hylckama Vlieg, Johan ET; Strissel, Katherine; Zhao, Liping; Obin, Martin; Shen, Jian

    2015-01-01

    Structural disruption of gut microbiota and associated inflammation are considered important etiological factors in high fat diet (HFD)-induced metabolic syndrome (MS). Three candidate probiotic strains, Lactobacillus paracasei CNCM I-4270 (LC), L. rhamnosus I-3690 (LR) and Bifidobacterium animalis subsp. lactis I-2494 (BA), were individually administered to HFD-fed mice (108 cells day−1) for 12 weeks. Each strain attenuated weight gain and macrophage infiltration into epididymal adipose tissue and markedly improved glucose–insulin homeostasis and hepatic steatosis. Weighted UniFrac principal coordinate analysis based on 454 pyrosequencing of fecal bacterial 16S rRNA genes showed that the probiotic strains shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean mice fed a normal (chow) diet. Redundancy analysis revealed that abundances of 83 operational taxonomic units (OTUs) were altered by probiotics. Forty-nine altered OTUs were significantly correlated with one or more host MS parameters and were designated ‘functionally relevant phylotypes'. Thirteen of the 15 functionally relevant OTUs that were negatively correlated with MS phenotypes were promoted, and 26 of the 34 functionally relevant OTUs that were positively correlated with MS were reduced by at least one of the probiotics, but each strain changed a distinct set of functionally relevant OTUs. LC and LR increased cecal acetate but did not affect circulating lipopolysaccharide-binding protein; in contrast, BA did not increase acetate but significantly decreased adipose and hepatic tumor necrosis factor-α gene expression. These results suggest that Lactobacillus and Bifidobacterium differentially attenuate obesity comorbidities in part through strain-specific impacts on MS-associated phylotypes of gut microbiota in mice. PMID:24936764

  20. Highly Capable Micropump-fed Propulsion System for Proximity Operations, Landing and Ascent, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its work in micro-gear-pumps for propulsion applications in order to provide a highly capable propulsion and attitude control...

  1. High Efficiency Power Converter for a Doubly-fed SOEC/SOFC System

    DEFF Research Database (Denmark)

    Tomas Manez, Kevin; Anthon, Alexander; Zhang, Zhe

    2016-01-01

    Regenerative fuel cells (RFC) have become an attractive technology for energy storage systems due to their high energy density and lower end-of-life disposal concerns. However, high efficiency design of power conditioning unit (PCU) for RFC becomes challenging due to their asymmetrical currentpow...... operating range of the RFC as well as the utilization of the same control strategy design for the two RFC operating modes....

  2. Silicon Alleviates Nonalcoholic Steatohepatitis by Reducing Apoptosis in Aged Wistar Rats Fed a High-Saturated Fat, High-Cholesterol Diet.

    Science.gov (United States)

    Garcimartín, Alba; López-Oliva, M Elvira; Sántos-López, Jorge A; García-Fernández, Rosa A; Macho-González, Adrián; Bastida, Sara; Benedí, Juana; Sánchez-Muniz, Francisco J

    2017-06-01

    Background: Lipoapoptosis has been identified as a key event in the progression of nonalcoholic fatty liver disease (NAFLD), and hence, antiapoptotic agents have been recommended as a possible effective treatment for nonalcoholic steatohepatitis (NASH). Silicon, included in meat as a functional ingredient, improves lipoprotein profiles and liver antioxidant defenses in aged rats fed a high-saturated fat, high-cholesterol diet (HSHCD). However, to our knowledge, the antiapoptotic effect of this potential functional meat on the liver has never been tested. Objective: This study was designed to evaluate the effect of silicon on NASH development and the potential antiapoptotic properties of silicon in aged rats. Methods: One-year-old male Wistar rats weighing ∼500 g were fed 3 experimental diets containing restructured pork (RP) for 8 wk: 1 ) a high-saturated fat diet, as an NAFLD control, with 16.9% total fat, 0.14 g cholesterol/kg diet, and 46.8 mg SiO 2 /kg (control); 2 ) the HSHCD as a model of NASH, with 16.6% total fat, 16.3 g cholesterol/kg diet, and 46.8 mg SiO 2 /kg [high-cholesterol diet (Chol-C)]; and 3 ) the HSHCD with silicon-supplemented RP with amounts of fat and cholesterol identical to those in the Chol-C diet, but with 750 mg SiO 2 /kg (Chol-Si). Detailed histopathological assessments were performed, and the NAFLD activity score (NAS) was calculated. Liver apoptosis and damage markers were evaluated by Western blotting and immunohistochemical staining. Results: Chol-C rats had a higher mean NAS (7.4) than did control rats (1.9; P silicon substantially affects NASH development in aged male Wistar rats fed an HSHCD by partially blocking apoptosis. These results suggest that silicon-enriched RP could be used as an effective nutritional strategy in preventing NASH. © 2017 American Society for Nutrition.

  3. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Seung Hwan Hwang

    2017-01-01

    Full Text Available The objective of the present study was to evaluate α-glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE and Nopal dry power (NADP in low-dose streptozotocin- (STZ- induced diabetic rats fed a high-fat diet (HFD. The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1 nondiabetic rats fed a regular diet (RD-Control; (2 low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control; (3 low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE; and (4 low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone. In results, NPWE and NADP had IC50 values of 67.33 and 86.68 μg/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05 μg/mL while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model (P<0.05. Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower (P<0.05 than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement.

  4. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica) in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Hwang, Seung Hwan; Kang, Il-Jun; Lim, Soon Sung

    2017-01-01

    The objective of the present study was to evaluate α -glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC 50 values of 67.33 and 86.68  μ g/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05  μ g/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model ( P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower ( P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement.

  5. Chronic administration of mitochondrion-targeted peptide SS-31 prevents atherosclerotic development in ApoE knockout mice fed Western diet.

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    Full Text Available Oxidative stress and inflammatory factors are deeply involved in progression of atherosclerosis. Mitochondrion-targeted peptide SS-31, selectively targeting to mitochondrial inner membrane reacting with cardiolipin, has been reported to inhibit ROS generation and mitigate inflammation. The present study was designed to investigate whether SS-31 could suppress the development of atherosclerosis in vivo.Male ApoE-/- mice (8 weeks old fed with Western diet were treated with normal saline or SS-31 (1 mg/kg/d or 3 mg/kg/d through subcutaneous injection for 12 weeks. Oil Red O staining was performed to evaluate area and sizes of the plaques. DHE staining and immunohistochemical staining of 8-OHDG was performed to assess the oxidative stress. The aorta ATP contents were assessed by the ATP bioluminescence assay kit. Immunohistochemical staining of CD68 and α-SMA and Masson's trichrome staining were performed to evaluate the composition of atherosclerotic plaque. Biochemical assays were performed to determine the protein level and activity of superoxide dismutase (SOD. The levels of CD36, LOX-1 and ABCA1 were immunohistochemically and biochemically determined to evaluate the cholesterol transport in aorta and peritoneal macrophages. Inflammatory factors, including ICAM-1, MCP-1, IL-6 and CRP in serum, were detected through ELISA.SS-31 administration reduced the area and sizes of western diet-induced atherosclerotic plaques and changed the composition of the plaques in ApoE-/- mice. Oxidative stress was suppressed, as evidenced by the reduced DHE stain, down-regulated 8-OHDG expression, and increased SOD activity after chronic SS-31 administration. Moreover, systemic inflammation was ameliorated as seen by decreasing serum ICAM-1, MCP-1, and IL-6 levels. Most importantly, SS-31 administration inhibited cholesterol influx by down-regulating expression of CD36 and LOX-1 to prevent lipid accumulation to further suppress the foam cell formation and

  6. Expression of recombinant Pseudomonas stutzeri di-heme cytochrome c(4) by high-cell-density fed-batch cultivation of Pseudomonas putida

    DEFF Research Database (Denmark)

    Thuesen, Marianne Hallberg; Nørgaard, Allan; Hansen, Anne Merete

    2003-01-01

    The gene of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri was expressed in Pseudomonas putida. High-yield expression of the protein was achieved by high-cell-density fed-batch cultivation using an exponential glucose feeding strategy. The recombinant cytochrome c(4) protein...

  7. Hepatoprotective and Antioxidant Potential of Organic and Conventional Grape Juices in Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Iselde Buchner

    2014-04-01

    Full Text Available The objective of this study was to investigate the antioxidant and hepatoprotective effect of the chronic use of conventional (CGJ or organic (OGJ grape juice from the Bordeaux variety grape on oxidative stress and cytoarchitecture in the liver of rats supplemented with a high-fat diet (HFD for three months. The results demonstrated that HFD induced an increase in thiobarbituric acid-reactive substances (TBARS, catalase (CAT activity and 2′,7′-dihydrodichlorofluorescein (DCFH oxidation and a decrease in sulfhydryl content and superoxide dismutase (SOD and glutathione peroxidase (GPx activities. HFD also induced hepatocellular degeneration and steatosis. These alterations were prevented by CGJ and OGJ, where OGJ was more effective. Therefore, it was concluded that HFD induced oxidative stress and liver damage and that the chronic use of grape juice was able to prevent these alterations.

  8. Long-term performance and behavior of sows fed high levels of non-starch polysaccharides

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.

    2004-01-01

    The main objective of this thesis was to investigate the long-term effects of feeding sows high levels of dietary fermentable non-starch polysaccharides CNSP) (i.e., NSP from sugar beet pulp) restrictedly or ad libitum during gestation or ad libitum during lactation on behavior, reproductive

  9. Effect of inulin supplementation in male mice fed with high fat diet on ...

    African Journals Online (AJOL)

    A slight decrease in hepatic α-amylase gene expression was observed only in. E1. Conclusion: Besides its sweetening properties, inulin may also find use as a potential anti-obesity compound. Keywords: High-fat diet, Inulin, Obesity, Blood glucose, Biochemical profile. Tropical Journal of Pharmaceutical Research is ...

  10. Relationship between residual feed intake and digestibility for lactating Holstein cows fed high and low starch diets.

    Science.gov (United States)

    Potts, S B; Boerman, J P; Lock, A L; Allen, M S; VandeHaar, M J

    2017-01-01

    We determined if differences in digestibility among cows explained variation in residual feed intake (RFI) in 4 crossover design experiments. Lactating Holstein cows (n=109; 120±30d in milk; mean ± SD) were fed diets high (HS) or low (LS) in starch. The HS diets were 30% (±1.8%) starch and 27% (±1.2%) neutral detergent fiber (NDF); LS diets were 14% (±2.2%) starch and 40% (±5.3%) NDF. Each experiment consisted of two 28-d treatment periods, with apparent total-tract digestibility measured using indigestible NDF as an internal marker during the last 5d of each period. Individual cow dry matter (DM) intake and milk yield were recorded daily, body weight was measured 3 to 5 times per week, and milk components were analyzed 2 d/wk. Individual DM intake was regressed on milk energy output, metabolic body weight, body energy gain, and fixed effects of parity, experiment, cohort (a group of cows that received treatments in the same sequence) nested within experiment, and diet nested within cohort and experiment, with the residual being RFI. High RFI cows ate more than expected and were deemed less efficient. Residual feed intake correlated negatively with digestibility of starch for both HS (r=-0.31) and LS (r=-0.23) diets, and with digestibilities of DM (r=-0.30) and NDF (r=-0.23) for LS diets but was not correlated with DM or NDF digestibility for HS diets. For each cohort within an experiment, cows were classified as high RFI (HRFI; >0.5 SD), medium RFI (MRFI; ±0.5 SD), and low RFI (LRFI; Digestibility of DM was similar (~66%) among HRFI and LRFI for HS diets but greater for LRFI when fed LS diets (64 vs. 62%). For LS diets, digestibility of DM could account for up to 31% of the differences among HRFI and LRFI for apparent diet energy density, as determined from individual cow performance, indicating that digestibility explains some of the between-animal differences for the ability to convert gross energy into net energy. Some of the differences in digestibility

  11. Comparison of purple carrot juice and β-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome.

    Science.gov (United States)

    Poudyal, Hemant; Panchal, Sunil; Brown, Lindsay

    2010-11-01

    Anthocyanins, phenolic acids and carotenoids are the predominant phytochemicals present in purple carrots. These phytochemicals could be useful in treatment of the metabolic syndrome since anthocyanins improve dyslipidaemia, glucose tolerance, hypertension and insulin resistance; the phenolic acids may also protect against CVD and β-carotene may protect against oxidative processes. In the present study, we have compared the ability of purple carrot juice and β-carotene to reverse the structural and functional changes in rats fed a high-carbohydrate, high-fat diet as a model of the metabolic syndrome induced by diet. Cardiac structure and function were defined by histology, echocardiography and in isolated hearts and blood vessels; liver structure and function, oxidative stress and inflammation were defined by histology and plasma markers. High-carbohydrate, high-fat diet-fed rats developed hypertension, cardiac fibrosis, increased cardiac stiffness, endothelial dysfunction, impaired glucose tolerance, increased abdominal fat deposition, altered plasma lipid profile, liver fibrosis and increased plasma liver enzymes together with increased plasma markers of oxidative stress and inflammation as well as increased inflammatory cell infiltration. Purple carrot juice attenuated or reversed all changes while β-carotene did not reduce oxidative stress, cardiac stiffness or hepatic fat deposition. As the juice itself contained low concentrations of carotenoids, it is likely that the anthocyanins are responsible for the antioxidant and anti-inflammatory properties of purple carrot juice to improve glucose tolerance as well as cardiovascular and hepatic structure and function.

  12. Characterization of starter kimchi fermented with Leuconostoc kimchii GJ2 and its cholesterol-lowering effects in rats fed a high-fat and high-cholesterol diet.

    Science.gov (United States)

    Jo, Se Yeon; Choi, Eun A; Lee, Jae Joon; Chang, Hae Choon

    2015-10-01

    The hypocholesterolemic effects of lactic acid bacteria and kimchi have been demonstrated previously. However, the kimchi fermentation process still relies on naturally present microorganisms. To obtain functional kimchi with consistent quality, we validated the capacity of Leuconostoc kimchii GJ2 as a starter culture to control kimchi fermentation. Moreover, cholesterol-lowering effects of starter kimchi as a health-promoting product were explored. Bacteriocin production by Lc. kimchii GJ2 was highly enhanced in the presence of 5% Lactobacillus sakei NJ1 cell fractions. When kimchi was fermented with bacteriocin-enhanced Lc. kimchii GJ2, Lc. kimchii GJ2 became overwhelmingly predominant (98.3%) at the end of fermentation and maintained its dominance (up to 82%) for 84 days. Growing as well as dead cells of Lc. kimchii GJ2 showed high cholesterol assimilation (in vitro). Rats were fed a high-fat and high-cholesterol diet supplemented with starter kimchi. The results showed that feeding of starter kimchi significantly reduced serum total cholesterol, triglyceride and low-density lipoprotein cholesterol levels. Additionally, atherogenic index, cardiac risk factor and triglyceride and total cholesterol levels in liver and epididymal adipose tissue decreased significantly in rats fed starter kimchi. Kimchi fermented with Lc. kimchii GJ2 as a starter culture has efficient cholesterol-lowering effects. © 2014 Society of Chemical Industry.

  13. STEPVfISE ADAPTATION OF SHEEP FED AD LIBITUM TO A HIGH ...

    African Journals Online (AJOL)

    All dicts contained a mxed buttbr and l5% Cp. Samples of ruminal in- gesta ucre takcn at short intervals dunng thc llrst l4 h of the t-eeding c:ycle until Day 7 on the finaldiet when it was continued over the .... fuged at 4 000 g for 20 min and the supernatant stored ..... diets would give rise to an alkaline urine high in HPO4=.

  14. Investigation of Ozone Yield of Air Fed Ozonizer by High Pressure Homogeneous Dielectric Barrier Discharge

    Science.gov (United States)

    2013-07-01

    around 2 ms and 12 ms in this figure, and during the discharge period, the current was continuous without any pulse . Once a discharge generated in...electron avalanches [10]. Fig. 1. High pressure ozone generator. (a) Top view (b) Side view Fig. 2. Barrier discharge device. Table 1... discharge N. Osawa P1 P, UY. Yoshioka UP2 P, R. Hanaoka P1 P 1 Center for Electric, Optic and Energy applications, Department of Electric and

  15. Antiatherogenic Effect of Camellia japonica Fruit Extract in High Fat Diet-Fed Rats

    OpenAIRE

    Lee, Hyun-Ho; Paudel, Keshav Raj; Jeong, Jieun; Wi, An-Jin; Park, Whoa-Shig; Kim, Dong-Wook; Oak, Min-Ho

    2016-01-01

    Hypercholesterolemia is a well-known etiological factor for cardiovascular disease and a common symptom of most types of metabolic disorders. Camellia japonica is a traditional garden plant, and its flower and seed have been used as a base oil of traditional cosmetics in East Asia. The present study was carried out to evaluate the effect of C. japonica fruit extracts (CJF) in a high fat diet- (HFD-) induced hypercholesterolemic rat model. CJF was administered orally at three different doses: ...

  16. Metagenomic analysis of rumen microbial population in dairy heifers fed a high grain diet supplemented with dicarboxylic acids or polyphenols.

    Science.gov (United States)

    De Nardi, Roberta; Marchesini, Giorgio; Li, Shucong; Khafipour, Ehsan; Plaizier, Kees J C; Gianesella, Matteo; Ricci, Rebecca; Andrighetto, Igino; Segato, Severino

    2016-02-19

    The aim of this study was to investigate the effects of two feed supplements on rumen bacterial communities of heifers fed a high grain diet. Six Holstein-Friesian heifers received one of the following dietary treatments according to a Latin square design: no supplement (control, C), 60 g/day of fumarate-malate (organic acid, O) and 100 g/day of polyphenol-essential oil (P). Rumen fluid was analyzed to assess the microbial population using Illumina sequencing and quantitative real time PCR. The P treatment had the highest number of observed species (P PCoA with unweighted Unifrac distance showed a separation among dietary treatments (P = 0.09), above all between the C and P (P = 0.05). The O and P treatments showed a significant increase of the family Christenenellaceae and a decline of Prevotella brevis compared to C. Additionally, the P treatment enhanced the abundance of many taxa belonging to Bacteroidetes, Firmicutes and Tenericutes phyla due to a potential antimicrobial activity of flavonoids that increased competition among bacteria. Organic acid and polyphenols significantly modified rumen bacterial populations during high-grain feeding in dairy heifers. In particular the polyphenol treatment increased the richness and diversity of rumen microbiota, which are usually high in conditions of physiological rumen pH and rumen function.

  17. Dietary Shiitake Mushroom (Lentinus edodes Prevents Fat Deposition and Lowers Triglyceride in Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    D. Handayani

    2011-01-01

    Full Text Available High-fat diet (HFD induces obesity. This study examined the effects of Shiitake mushroom on the prevention of alterations of plasma lipid profiles, fat deposition, energy efficiency, and body fat index induced by HFD. Rats were given a low, medium, and high (7, 20, 60 g/kg = LD-M, MD-M, HD-M Shiitake mushroom powder in their high-fat (50% in kcal diets for 6 weeks. The results showed that the rats on the HD-M diet had the lowest body weight gain compared to MD-M and LD-M groups (P<0.05. The total fat deposition was significantly lower (−35%, P<0.05 in rats fed an HD-M diet than that of HFD group. Interestingly, plasma triacylglycerol (TAG level was significantly lower (−55%, P<0.05 in rats on HD-M than HFD. This study also revealed the existence of negative correlations between the amount of Shiitake mushroom supplementation and body weight gain, plasma TAG, and total fat masses.

  18. Swimming exercise increases serum irisin level and reduces body fat mass in high-fat-diet fed Wistar rats.

    Science.gov (United States)

    Lu, Yun; Li, Hongwei; Shen, Shi-Wei; Shen, Zhen-Hai; Xu, Ming; Yang, Cheng-Jian; Li, Feng; Feng, Yin-Bo; Yun, Jing-Ting; Wang, Ling; Qi, Hua-Jin

    2016-05-13

    It has been shown that irisin levels are reduced in skeletal muscle and plasma of obese rats; however, the effect of exercise training on irisin level remains controversial. We aim to evaluate the association of swimming exercise with serum irisin level and other obesity-associated parameters. Forty healthy male Wistar rats were randomly assigned to 4 groups: a normal diet and sedentary group (ND group), normal diet and exercise group (NDE group), high-fat diet and sedentary group (HFD group), and high-fat diet and exercise group (HFDE group. After 8 consecutive weeks of swimming exercise, fat mass and serum irisin level was determined. Higher serum irisin levels were detected in the HFDE group (1.15 ± 0.28 μg/L) and NDE group (1.76 ± 0.17 μg/L) than in the HFD group (0.84 ± 0.23 μg/L) or the ND group (1.24 ± 0.29 μg/L), respectively (HFDE group vs. HFD group, P mass (r = -0.68, P mass (r = -0.576, P mass (r = -0.439, P mass, visceral fat mass and percentage fat mass were lower in the HFDE group than the HFD group (all P values mass in high-fat-fed Wistar rats, which may be attributable to elevated irisin levels induced by swimming exercise.

  19. Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice.

    Science.gov (United States)

    Wang, Zhi; Li, Liaoliao; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2015-08-01

    Obesity can cause pathological changes in organs. We determined the effects of chronic high fat diet (HFD) and intermittent fasting, a paradigm providing organ protection, on mouse heart. Seven-week old CD1 male mice were randomly assigned to control, HFD and intermittent fasting groups. Control mice had free access to regular diet (RD). RD was provided every other day to mice in the intermittent fasting group. Mice in HFD group had free access to HFD. Their left ventricles were harvested 11 months after they had been on these diet regimens. HFD increased cardiomyocyte cross-section area and fibrosis. HFD decreased active caspase 3, an apoptosis marker, and the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3) II/LC3I, an autophagy marker. HFD increased the phospho-glycogen synthase kinase-3β (GSK-3β) at Ser9, a sign of GSK-3β inhibition. Nuclear GATA binding protein 4 and yes-associated protein, two GSK-3β targeting transcription factors that can induce hypertrophy-related gene expression, were increased in HFD-fed mice. Mice on intermittent fasting did not have these changes except for the increased active caspase 3 and decreased ratio of LC3II/LC3I. These results suggest that chronic HFD induces myocardial hypertrophy and fibrosis, which may be mediated by GSK-3β inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet.

    Science.gov (United States)

    Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia

    2015-11-01

    The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.

  1. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Frédéric Raymond

    Full Text Available Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF diet that has a high (H or a low (L protein-to-carbohydrate (P/C ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words.

  2. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Science.gov (United States)

    Raymond, Frédéric; Wang, Long; Moser, Mireille; Metairon, Sylviane; Mansourian, Robert; Zwahlen, Marie-Camille; Kussmann, Martin; Fuerholz, Andreas; Macé, Katherine; Chou, Chieh Jason

    2012-01-01

    Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words).

  3. DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Pili Zhang

    2017-04-01

    Full Text Available Objective: Overnutrition can alter gene expression patterns through epigenetic mechanisms that may persist through generations. However, it is less clear if overnutrition, for example a high fat diet, modifies epigenetic control of gene expression in adults, or by what molecular mechanisms, or if such mechanisms contribute to the pathology of the metabolic syndrome. Here we test the hypothesis that a high fat diet alters hepatic DNA methylation, transcription and gene expression patterns, and explore the contribution of such changes to the pathophysiology of obesity. Methods: RNA-seq and targeted high-throughput bisulfite DNA sequencing were used to undertake a systematic analysis of the hepatic response to a high fat diet. RT-PCR, chromatin immunoprecipitation and in vivo knockdown of an identified driver gene, Phlda1, were used to validate the results. Results: A high fat diet resulted in the hypermethylation and decreased transcription and expression of Phlda1 and several other genes. A subnetwork of genes associated with Phlda1 was identified from an existing Bayesian gene network that contained numerous hepatic regulatory genes involved in lipid and body weight homeostasis. Hepatic-specific depletion of Phlda1 in mice decreased expression of the genes in the subnetwork, and led to increased oil droplet size in standard chow-fed mice, an early indicator of steatosis, validating the contribution of this gene to the phenotype. Conclusions: We conclude that a high fat diet alters the epigenetics and transcriptional activity of key hepatic genes controlling lipid homeostasis, contributing to the pathophysiology of obesity. Author Video: Author Video Watch what authors say about their articles Keywords: DNA methylation, RNA-seq, Transcription, High fat diet, Liver, Phlda1

  4. Antiatherogenic Effect of Camellia japonica Fruit Extract in High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Lee

    2016-01-01

    Full Text Available Hypercholesterolemia is a well-known etiological factor for cardiovascular disease and a common symptom of most types of metabolic disorders. Camellia japonica is a traditional garden plant, and its flower and seed have been used as a base oil of traditional cosmetics in East Asia. The present study was carried out to evaluate the effect of C. japonica fruit extracts (CJF in a high fat diet- (HFD- induced hypercholesterolemic rat model. CJF was administered orally at three different doses: 100, 400, and 800 mg·kg−1·day−1 (CJF 100, 400, and 800, resp.. Our results showed that CJF possessed strong cholesterol-lowering potency as indicated by the decrease in serum total cholesterol (TC, triglyceride (TG, and low-density lipoprotein (LDL, accompanied by an increase in serum high-density lipoprotein (HDL. Furthermore, CJF reduced serum lipid peroxidation by suppressing the formation of thiobarbituric acid reactive substance. In addition, oil red O (ORO staining of rat arteries showed decreased lipid-positive staining in the CJF-treated groups compared to the control HFD group. Taken together, these results suggest that CJF could be a potent herbal therapeutic option and source of a functional food for the prevention and treatment of atherosclerosis and other diseases associated with hypercholesterolemia.

  5. Oral insulin improves metabolic parameters in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    LEANDRO C. LIPINSKI

    2017-08-01

    Full Text Available ABSTRACT Introduction/Aim: The gut has shown to have a pivotal role on the pathophysiology of metabolic disease. Food stimulation of distal intestinal segments promotes enterohormones secretion influencing insulin metabolism. In diabetic rats, oral insulin has potential to change intestinal epithelium behavior. This macromolecule promotes positive effects on laboratorial metabolic parameters and decreases diabetic intestinal hypertrophy. This study aims to test if oral insulin can influence metabolic parameters and intestinal weight in obese non-diabetic rats. Methods: Twelve weeks old Wistar rats were divided in 3 groups: control (CTRL standard chow group; high fat diet low carbohydrates group (HFD and HFD plus daily oral 20U insulin gavage (HFD+INS. Weight and food consumption were weekly obtained. After eight weeks, fasting blood samples were collected for laboratorial analysis. After euthanasia gut samples were isolated. Results: Rat oral insulin treatment decreased body weight gain (p<0,001, fasting glucose and triglycerides serum levels (p<0,05 an increased intestinal weight of distal ileum (P<0,05. Animal submitted to high fat diet presented higher levels of HOMA-IR although significant difference to CT was not achieved. HOMA-beta were significantly higher (p<0.05 in HFD+INS. Visceral fat was 10% lower in HFD+INS but the difference was not significant. Conclusions: In non-diabetic obese rats, oral insulin improves metabolic malfunction associated to rescue of beta-cell activity.

  6. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion.

    Science.gov (United States)

    Turner, J L; Beck, S C; Benford, D J; Consiglio, S M; Ho, P T P; Kovács, A; Meier, D S; Zhao, J-H

    2015-03-19

    Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.

  7. Effect of skim milk and dahi (yogurt) on blood glucose, insulin, and lipid profile in rats fed with high fructose diet.

    Science.gov (United States)

    Yadav, Hariom; Jain, Shalini; Sinha, P R

    2006-01-01

    In the present study, the effect of skim milk and the fermented milk product named dahi (yogurt) on plasma glucose, insulin, and lipid levels as well as on liver glycogen and lipid contents in rats fed with high fructose diet has been investigated. Rats were fed with high fructose diet (21%) supplemented with skim milk, dahi (10 g/day each), or no milk product (control group) for 6 weeks. After 6 weeks of high fructose diet administration, the plasma glucose became significantly higher in control animals (246 mg/dL), whereas it was lower in skim milk (178 mg/dL)- and dahi (143 mg/dL)-fed rats. The glucose tolerance became impaired at the third week of feeding of high fructose diet in control animals, whereas in skim milk- and dahi-fed animals achievement of glucose intolerance was delayed until the fourth and fifth week, respectively. Blood glycosylated hemoglobin and plasma insulin were significantly lower in skim milk (10% and 34%, respectively)- and dahi (17%, and 48%, respectively)-fed animals than those of the control group. Plasma total cholesterol, triglycerides, low-density lipoprotein-cholesterol, and very-low-density lipoprotein-cholesterol and blood free fatty acids were significantly lower in skim milk (13%, 14%, 14%, 19%, and 14%, respectively)- and dahi (22%, 33%, 30%, 33%, and 29%, respectively)-fed animals as compared with control animals. Moreover, the total cholesterol, triglyceride, and glycogen contents in liver tissues were also lower in skim milk (55%, 50%, and 36%, respectively)- and dahi (64%, 27%, and 4%, respectively)-fed animals as compared with control animals. In contrast, high-density lipoprotein-cholesterol in plasma was higher in skim milk (14%)- and dahi (29%)-fed animals as compared with control animals. These results indicate that skim milk and its fermented milk product, dahi, delay the progression of fructose-induced diabetes and dyslipidemia in rats and that these may be useful as antidiabetic food supplements that can be

  8. Fluvial sediment transport in a glacier-fed high-mountain river (Riffler Bach, Austrian Alps)

    Science.gov (United States)

    Morche, David; Weber, Martin; Faust, Matthias; Schuchardt, Anne; Baewert, Henning

    2017-04-01

    High-alpine environments are strongly affected by glacier retreat since the Little Ice Age (LIA). Due to ongoing climate change the hydrology of proglacial rivers is also influenced. It is expected that the growing proportions of snow melt and rainfall events will change runoff characteristics of proglacial rivers. Additionally, the importance of paraglacial sediment sources in recently deglaciating glacier forefields is increasing, while the role of glacial erosion is declining. Thus complex environmental conditions leading to a complex pattern of fluvial sediment transport in partly glaciated catchments of the European Alps. Under the umbrella of the joint PROSA-project the fluvial sediment transport of the river Riffler Bach (Kaunertal, Tyrol, Austria) was studied in 3 consecutive ablation seasons in order to quantify sediment yields. In June 2012 a probe for water level and an automatic water sampler (AWS) were installed at the outlet of the catchment (20km2). In order to calculate annual stage-discharge-relations by the rating-curve approach, discharge (Q) was repeatedly measured with current meters and by salt dilution. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In total 564 (2012: 154, 2013: 209, 2014: 201) water samples were collected and subsequently filtered to quantify suspended sediment concentrations (SSC). Q-SSC-relations were calculated for single flood events due to the high variability of suspended sediment transport. The results show a high inter- and intra-annual variability of solid fluvial sediment transport, which can be explained by the characteristics of suspended sediment transport. Only 13 of 22 event-based Q-SSC-relations show causal dependency. In 2012, during a period with multiple pluvial-induced peak discharges most sediment was transported. On the

  9. Transcriptome analysis of the effects of chitosan on the hyperlipidemia and oxidative stress in high-fat diet fed mice.

    Science.gov (United States)

    Wang, Bin; Zhang, Sicong; Wang, Xiaoya; Yang, Shuo; Jiang, Qixing; Xu, Yanshun; Xia, Wenshui

    2017-09-01

    Transcriptome analysis was performed to investigate the alterations in gene expression after chitosan (CS) treatment on the liver of mice fed with high-fat diet (HFD). The results showed that the body weight, the liver weight and the epididymal fat mass of HFD mice, which were 62.98%, 46.51% and 239.37%, respectively, higher than those of control mice, could be significantly decreased by chitosan supplementation. Also, high-fat diet increased both plasma lipid and liver lipid as compared with the control mice. Chitosan supplementation decreased the plasma lipid and liver lipid, increased the lipoprotein lipase (LPL) and hepatic lipase (HL) activity, increased T-AOC and decreased MDA in the liver and the epididymis adipose as compared with the HFD mice. Transcriptome analysis indicated that increased Mups, Lcn2, Gstm3 and CYP2E1 expressions clearly indicated HFD induced lipid metabolism disorder and oxidative damage. Especially, chitosan treatment decreased the Mup17 and Lcn2 expressions by 64.32% and 82.43% respectively as compared with those of HFD mice. These results indicated that chitosan possess the ability to improve the impairment of lipid metabolism as strongly associated with increased Mups expressions and gene expressions related to oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Moderately Low Magnesium Intake Impairs Growth of Lean Body Mass in Obese-Prone and Obese-Resistant Rats Fed a High-Energy Diet

    Directory of Open Access Journals (Sweden)

    Jesse Bertinato

    2016-04-01

    Full Text Available The physical and biochemical changes resulting from moderately low magnesium (Mg intake are not fully understood. Obesity and associated co-morbidities affect Mg metabolism and may exacerbate Mg deficiency and physiological effects. Male rats selectively bred for diet-induced obesity (OP, obese-prone or resistance (OR, obese-resistant were fed a high-fat, high-energy diet containing moderately low (LMg, 0.116 ± 0.001 g/kg or normal (NMg, 0.516 ± 0.007 g/kg Mg for 13 weeks. The growth, body composition, mineral homeostasis, bone development, and glucose metabolism of the rats were examined. OP and OR rats showed differences (p < 0.05 in many physical and biochemical measures regardless of diet. OP and OR rats fed the LMg diet had decreased body weight, lean body mass, decreased femoral size (width, weight, and volume, and serum Mg and potassium concentrations compared to rats fed the NMg diet. The LMg diet increased serum calcium (Ca concentration in both rat strains with a concomitant decrease in serum parathyroid hormone concentration only in the OR strain. In the femur, Mg concentration was reduced, whereas concentrations of Ca and sodium were increased in both strains fed the LMg diet. Plasma glucose and insulin concentrations in an oral glucose tolerance test were similar in rats fed the LMg or NMg diets. These results show that a moderately low Mg diet impairs the growth of lean body mass and alters femoral geometry and mineral metabolism in OP and OR rats fed a high-energy diet.

  11. HO-1 Upregulation Attenuates Adipocyte Dysfunction, Obesity, and Isoprostane Levels in Mice Fed High Fructose Diets

    Directory of Open Access Journals (Sweden)

    Zeid Khitan

    2014-01-01

    Full Text Available Background. Fructose metabolism is an unregulated metabolic pathway and excessive fructose consumption is known to activate ROS. HO-1 is a potent antioxidant gene that plays a key role in decreasing ROS and isoprostanes. We examined whether the fructose-mediated increase in adipocyte dysfunction involves an increase in isoprostanes and that pharmacological induction of HO-1 would decrease both isoprostane levels and adipogenesis. Methods and Results. We examined the effect of fructose, on adipogenesis in human MSCs in the presence and absence of CoPP, an inducer of HO-1. Fructose increased adipogenesis and the number of large lipid droplets while decreasing the number of small lipid droplets (P<0.05. Levels of heme and isoprostane in fructose treated MSC-derived adipocytes were increased. CoPP reversed these effects and markedly increased HO-1 and the Wnt signaling pathway. The high fructose diet increased heme levels in adipose tissue and increased circulating isoprostane levels (P<0.05 versus control. Fructose diets decreased HO-1 and adiponectin levels in adipose tissue. Induction of HO-1 by CoPP decreased isoprostane synthesis (P<0.05 versus fructose. Conclusion. Fructose treatment resulted in increased isoprostane production and adipocyte dysfunction, which was reversed by the increased expression of HO-1.

  12. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    Science.gov (United States)

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  13. Investigation of carryover effect of prior fibre consumption on growth, serum and tissue metabolic markers in Ossabaw pigs fed a high-fat diet.

    Science.gov (United States)

    Almeida, V V; Yan, H; Nakatsu, C H; Ajuwon, K M

    2018-04-14

    Carryover effect of prior fibre consumption on metabolic markers was investigated. Treatments were arranged in 2 × 2 factorial with 2 fibre sources, 4% inulin or cellulose (Solka-Floc®) and fat levels (5 or 15%) for the low-fat diet (LFD) and high-fat diet (HFD) respectively. Pigs were fed the two fibre diets for the first 56d (nursery phase), and thereafter fed either the LFD or HFD containing no added fibre source from d56 to 140 (growing phase). Pigs on the HFD were heavier (p = .05) than those on LF (64.61 vs. 68.38 kg), regardless of prior fibre type consumed. Pigs that were fed cellulose during the nursery and later fed the HFD had the highest ADG (p Inulin increased (p ≤ .02) jejunal expression of SREBP-1c and CL-4, but reduced (p inulin and cellulose fed pigs at the end of the nursery and finishing phases. Therefore, inulin feeding before a HFD may lead to reduction in ADG and inflammatory markers in the small intestine of pigs, and thus prevent future metabolic disorders. © 2018 Blackwell Verlag GmbH.

  14. Effects of Mucuna pruriens on Free Fatty Acid Levels and Histopathological Changes in the Brains of Rats Fed a High Fructose Diet.

    Science.gov (United States)

    Akgun, Bekir; Sarı, Aysel; Ozturk, Sait; Erol, Fatih Serhat; Ozercan, Ibrahim Hanifi; Ulu, Ramazan

    2017-01-01

    To investigate free fatty acid levels and histopathological changes in the brain of rats fed a high fructose diet (HFrD) and to evaluate the effects of Mucuna pruriens, known to have antidiabetic activity, on these changes. The study comprised 28 mature female Wistar rats. The rats were divided into 4 groups, each included 7 rats. Group 1: control; group 2: fed an HFrD; group 3: fed normal rat chow and M. pruriens; group 4: fed an HFrD and M. pruriens for 6 weeks. At the end of 6 weeks, the rats were decapitated, blood and brain tissues were obtained. Serum glucose and triglyceride levels were measured. Free fatty acid levels were measured in 1 cerebral hemisphere of each rat and histopathological changes in the other. The Mann-Whitney U test was used to compare quantitative continuous data between 2 independent groups, and the Kruskal-Wallis test was used to compare quantitative continuous data between more than 2 independent groups. Arachidonic acid and docosahexaenoic acid levels were significantly higher in group 2 than in group 1 (p pruriens could have therapeutic effects on free fatty acid metabolism and local inflammatory responses in the brains of rats fed an HFrD. © 2017 The Author(s) Published by S. Karger AG, Basel.

  15. Voluntary running of defined distances reduces body adiposity and its associated inflammation in C57BL/6 mice fed a high-fat diet.

    Science.gov (United States)

    Yan, Lin; Sundaram, Sneha; Nielsen, Forrest H

    2017-11-01

    This study investigated the effect of voluntary running of defined distances on body adiposity in male C57BL/6 mice fed a high-fat diet. Mice were assigned to 6 groups and fed a standard AIN93G diet (sedentary) or a modified high-fat AIN93G diet (sedentary; unrestricted running; or 75%, 50%, or 25% of unrestricted running) for 12 weeks. The average running distance was 8.3, 6.3, 4.2, and 2.1 km/day for the unrestricted, 75%, 50%, and 25% of unrestricted runners, respectively. Body adiposity was 46% higher in sedentary mice when fed the high-fat diet instead of the standard diet. Running decreased adiposity in mice fed the high-fat diet in a dose-dependent manner but with no significant difference between sedentary mice and those running 2.1 km/day. In sedentary mice, the high-fat instead of the standard diet increased insulin resistance, hepatic triacylglycerides, and adipose and plasma concentrations of leptin and monocyte chemotactic protein-1 (MCP-1). Running reduced these variables in a dose-dependent manner. Adipose adiponectin was lowest in sedentary mice fed the high-fat diet; running raised adiponectin in both adipose tissue and plasma. Running 8.3 and 6.3 km/day had the greatest, but similar, effects on the aforementioned variables. Running 2.1 km/day did not affect these variables except, when compared with sedentariness, it significantly decreased MCP-1. The findings showed that running 6.3 kg/day was optimal for reducing adiposity and associated inflammation that was increased in mice by feeding a high-fat diet. The findings suggest that voluntary running of defined distances may counteract the obesogenic effects of a high-fat diet.

  16. 75 FR 29364 - Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From China...

    Science.gov (United States)

    2010-05-25

    ... sheet-fed presses; coated on one or both sides with kaolin (China or other clay), calcium carbonate... of 80 or higher; weighing not more than 340 grams per square meter; whether gloss grade, satin grade...

  17. Chronic pneumonitis of infancy: high-resolution CT findings

    International Nuclear Information System (INIS)

    Olsen, Oeystein E.; Owens, Catherine M.; Sebire, Neil J.; Jaffe, Adam

    2004-01-01

    Chronic pneumonitis of infancy (CPI) is a very rare entity. We report the chest radiography and high-resolution CT (HRCT) findings in an infant with histopathologically confirmed CPI. The child was admitted for intensive care 18 h after birth and died at 39 days of age. On HRCT there was diffuse ground-glass change, interlobular septal thickening and discrete centrilobular nodules. An accurate diagnosis is crucial for correct management; however, several entities with the same HRCT findings are recognized. (orig.)

  18. Trigonella foenum-graecum water extract improves insulin sensitivity and stimulates PPAR and γ gene expression in high fructose-fed insulin-resistant rats

    Directory of Open Access Journals (Sweden)

    Abbas Mohammadi

    2016-01-01

    Conclusion: This study demonstrates the beneficial effects of trigonella foenum-graecum extract on insulin resistance in rats fed on a high-fructose diet. At least three mechanisms are involved, including direct insulin-like effect, increase in adiponectin levels, and PPARγ protein expression.

  19. Gut microbiota are linked to increased susceptibility to hepatic steatosis in low aerobic capacity rats fed an acute high fat diet

    Science.gov (United States)

    Poor aerobic fitness is linked to nonalcoholic fatty liver disease and increased all-cause mortality. We previously found that low capacity running (LCR) rats fed acute high fat diet (HFD; 45% kcal from fat) for 3 days resulted in positive energy balance and increased hepatic steatosis compared with...

  20. Growth performance and total tract nutrient digestion for Holstein heifers limit-fed diets high in distillers grains with different forage particle sizes

    Science.gov (United States)

    This study evaluated dairy heifer growth performance and total tract nutrient digestion when fed diets high in dried distillers grains with solubles (DDGS) with different forage particle size. An 8-wk randomized complete block design study was conducted utilizing twenty-two Holstein heifers (123 ±...

  1. Comparison of the rotary calciner-metallic melter and the slurry-fed ceramic melter technologies for vitrifying West Valley high-level wastes

    International Nuclear Information System (INIS)

    Chapman, C.C.

    1983-01-01

    Two processes which are believed applicable and available for vitrification of West Valley's high-level (HLW) wastes were technically evaluated and compared. The rotary calciner-metallic melter (AVH) and the slurry-fed ceramic melter (SFCM) were evaluated under the following general categories: process flow sheet, remote operability, safety and environmental considerations, and estimated cost and schedules

  2. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate

    KAUST Repository

    Rao, Hari Ananda

    2016-03-03

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57–96 %) was the largest electron sink and methane (0–2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.

  3. Hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia in sucrose-fed obese rats via two pathways.

    Science.gov (United States)

    Uebanso, Takashi; Taketani, Yutaka; Fukaya, Makiko; Sato, Kazusa; Takei, Yuichiro; Sato, Tadatoshi; Sawada, Naoki; Amo, Kikuko; Harada, Nagakatsu; Arai, Hidekazu; Yamamoto, Hironori; Takeda, Eiji

    2009-07-01

    The mechanism by which replacement of some dietary carbohydrates with protein during weight loss favors lipid metabolism remains obscure. In this study, we investigated the effect of an energy-restricted, high-protein/low-carbohydrate diet on lipid metabolism in obese rats. High-sucrose-induced obese rats were assigned randomly to one of two energy-restricted dietary interventions: a carbohydrate-based control diet (CD) or a high-protein diet (HPD). Lean rats of the same age were assigned as normal control. There was significantly greater improvement in fatty liver and hypertriglyceridemia with the HPD diet relative to the CD diet. Expression of genes regulated by fibroblast growth factor-21 (FGF21) and involved in liver lipolysis and lipid utilitization, such as lipase and acyl-CoA oxidase, increased in obese rats fed the HPD. Furthermore, there was an inverse correlation between levels of FGF21 gene expression (regulated by glucagon/insulin balance) and increased triglyceride concentrations in liver from obese rats. Expression of hepatic stearoyl-CoA desaturase-1 (SCD1), regulated primarily by the dietary carbohydrate, was also markedly reduced in the HPD group (similar to plasma triglyceride levels in fasting animals) relative to the CD group. In conclusion, a hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia effectively relative to a carbohydrate diet. The two cellular pathways at work behind these benefits include stimulation of hepatic lipolysis and lipid utilization mediated by FGF21 and reduction of hepatic VLDL-TG production by SCD1 regulation.

  4. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    Directory of Open Access Journals (Sweden)

    Swee Keong Yeap

    2014-01-01

    Full Text Available Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA, higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR. In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA.

  5. Effect of supplementation of lecithin and carnitine on growth performance and nutrient digestibility in pigs fed high-fat diet

    Directory of Open Access Journals (Sweden)

    Arathy Saseendran

    2017-02-01

    Full Text Available Aim: To study the effect of dietary supplementation of lecithin and carnitine on growth performance and nutrient digestibility in pigs fed high-fat diet. Materials and Methods: A total of 30 weaned female large white Yorkshire piglets of 2 months of age were selected and randomly divided into three groups allotted to three dietary treatments, T1 - Control ration as per the National Research Council nutrient requirement, T2 - Control ration plus 5% fat, and T3 - T2 plus 0.5% lecithin plus 150 mg/kg carnitine. The total dry matter (DM intake, fortnightly body weight of each individual animal was recorded. Digestibility trial was conducted toward the end of the experiment to determine the digestibility coefficient of various nutrients. Results: There was a significant improvement (p0.05 among the three treatments on average daily gain, feed conversion efficiency, and nutrient digestibility during the overall period. Conclusion: It was concluded that the dietary inclusion of animal fat at 5% level or animal fat along with lecithin (0.5% and carnitine (150 mg/kg improved the growth performance in pigs than non-supplemented group and from the economic point of view, dietary incorporation of animal fat at 5% would be beneficial for improving growth in pigs without dietary modifiers.

  6. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    Science.gov (United States)

    Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Hussin, Aminuddin bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah

    2014-01-01

    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606

  7. High level expression of Glomerella cingulata cutinase in dense cultures of Pichia pastoris grown under fed-batch conditions.

    Science.gov (United States)

    Seman, W M K Wan; Bakar, S A; Bukhari, N A; Gaspar, S M; Othman, R; Nathan, S; Mahadi, N M; Jahim, J; Murad, A M A; Bakar, F D Abu

    2014-08-20

    A Pichia pastoris transformant carrying the cutinase cDNA of Glomerella cingulata was over-expressed in a 5L bioreactor (2.0L working volume) under fed-batch conditions. Bioreactor experiments rely on varying selected parameters in repeated rounds of optimisation: here these included duration of induction, pH and temperature. Highest cell densities (320gL(-1) wet cell weight) with a cutinase production of 3800mgL(-1) and an activity of 434UmL(-1) were achieved 24h after induction with methanol in basal salt medium (at pH 5 and 28°C). Characterisation of the cutinase showed that it was stable between pH 6 and pH 11, had an optimum pH of 8.0 and retained activity for 30min at 50°C (optimum temperature 25°C).The preferred substrates of G. cingulata cutinase were the medium- to long-chain ρ-nitrophenyl esters of ρ-nitrophenylcaprylate (C8), ρ-nitrophenyllaurate (C12) and ρ-nitrophenylmyristate (C14), with the highest catalytic efficiency, kcat/Km of 7.7±0.7mM(-1)s(-1) for ρ-nitrophenylcaprylate. Microscopic analyses showed that the G. cingulata cutinase was also capable of depolymerising the high molecular weight synthetic polyester, polyethylene terephthalate. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Su-Kyung Shin

    2016-02-01

    Full Text Available Obesity, along with its related complications, is a serious health problem worldwide. Many studies reported the anti-diabetic effect of phlorizin, while little is known about its anti-obesity effect. We investigated the beneficial effects of phlorizin on obesity and its complications, including diabetes and inflammation in obese animal. Male C57BL/6J mice were divided into three groups and fed their respective experimental diets for 16 weeks: a normal diet (ND, 5% fat, w/w, high-fat diet (HFD, 20% fat, w/w, or HFD supplemented with phlorizin (PH, 0.02%, w/w. The findings revealed that the PH group had significantly decreased visceral and total white adipose tissue (WAT weights, and adipocyte size compared to the HFD. Plasma and hepatic lipids profiles also improved in the PH group. The decreased levels of hepatic lipids in PH were associated with decreased activities of enzymes involved in hepatic lipogenesis, cholesterol synthesis and esterification. The PH also suppressed plasma pro-inflammatory adipokines levels such as leptin, adipsin, tumor necrosis factor-α, monocyte chemoattractant protein-1, interferon-γ, and interleukin-6, and prevented HFD-induced collagen accumulation in the liver and WAT. Furthermore, the PH supplementation also decreased plasma glucose, insulin, glucagon, and homeostasis model assessment of insulin resistance levels. In conclusion, phlorizin is beneficial for preventing diet-induced obesity, hepatic steatosis, inflammation, and fibrosis, as well as insulin resistance.

  9. Resveratrol Increases Nephrin and Podocin Expression and Alleviates Renal Damage in Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Qing-Rong Pan

    2014-07-01

    Full Text Available Resveratrol is well known for its anti-inflammation and anti-oxidant properties, and has been shown to be effective in alleviating the development of obesity. The purpose of this investigation was to analyze the effect of resveratrol on renal damage in obese rats induced by a high-fat diet (HFD and its possible mechanisms. Male Sprague-Dawley rats were divided into three groups: control, HFD, and HFD plus resveratrol (treated with 100 mg/kg/day resveratrol. Body weight, serum and urine metabolic parameters, and kidney histology were measured. Meanwhile, the activities of nuclear factor-κB (NF-κB and superoxide dismutase (SOD, the content of malondialdehyde (MDA, and the protein levels of tumor necrosis factor (TNF-α, monocyte chemotactic protein-1 (MCP-1, nephrin and podocin in kidney were detected. Our work showed that resveratrol alleviated dyslipidemia and renal damage induced by HFD, decreased MDA level and increased SOD activity. Furthermore, the elevated NF-κB activity, increased TNF-α and MCP-1 levels, and reduced expressions of nephrin and podocin induced by HFD were significantly reversed by resveratrol. These results suggest resveratrol could ameliorate renal injury in rats fed a HFD, and the mechanisms are associated with suppressing oxidative stress and NF-κB signaling pathway that in turn up-regulate nephrin and podocin protein expression.

  10. Apricot and pumpkin oils reduce plasma cholesterol and triacylglycerol concentrations in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Ramadan, Mohamed F.

    2011-12-01

    Full Text Available Non-conventional oilseeds are being taken into greater consideration because their constituents have unique chemical properties and may increase the supply of edible oils. The purpose of the present study was to investigate the effect of apricot kernel oil (AO and pumpkin kernel oil (PO on the lipid profiles and liver functions of rats fed high fat diets. The high fat diet resulted in great alterations in plasma lipid profiles and liver functions. Twenty-four male albino rats were used over a 28 day period. The animals were divided into 4 groups, where group 1 represents the negative control which were a fed basal diet, while group 2 received a high fat diet to serve as the hypercholesterolemic group (positive control. The other two groups were given a high fat diet supplemented with AO and PO. Group 3 was treated daily with AO (1g/Kg body weight, while group 4 was treated with PO (1g/Kg body weight. The plasma lipid profile and liver functions in the different groups were determined after 14 and 28 days. The rats in the treated groups (AO and PO showed significantly lower levels of total cholesterol (TC, total triglycerides (TG, low density lipoprotein-cholesterol (LDL-C, alanine-aminotransferase (ALT and aspartateaminotransferase (AST activities as well as high levels of high density lipoprotein-cholesterol (HDL-C and total protein in comparison with the hypercholesterolemic group. It could be concluded that AO and PO under study are useful for the treatment of hypercholesterolemia.

    Las semillas oleaginosas no convencionales están siendo consideradas debido a que sus componentes tienen propiedades químicas únicas y pueden aumentar la oferta de los aceites comestibles. El propósito del presente estudio fue investigar el efecto de los aceites de semilla de albaricoque (AO y de calabaza (PO sobre los perfiles de lípidos y las funciones del hígado de ratas alimentadas con una dieta rica en grasas. Las dietas ricas en grasas dan lugar

  11. Effects of Persian leek (Allium ampeloprasum) on hepatic lipids and the expression of proinflammatory gene in hamsters fed a high-fat/ high-cholesterol diet.

    Science.gov (United States)

    Fatoorechi, Vahideh; Rismanchi, Marjan; Nasrollahzadeh, Javad

    2016-01-01

    Persian leek is one of the most widely used herbal foods among Iranians. In this study, effects of oral administration of Persian leek on plasma and liver lipids were examined in hamster. Male Syrian hamsters were randomly divided into three groups: control (standard diet), high fat control (high-fat/high-cholesterol diet), Persian leek (high-fat/high-cholesterol diet + 1% per weight of diet from dried powdered Persian leek) for 14 weeks. High fat diet increased plasma and liver lipids as compared to standard diet. Adding Persian leek to the high-fat/high-cholesterol diet resulted in no significant changes in the concentration of the plasma lipids or liver cholesterol. However, liver triglycerides (TG), plasma Alanine aminotransferase and gene expression of tumor necrosis factor- α were decreased in hamsters fed high-fat diet containing Persian leek as compared to high-fat diet only. Persian leek might be considered as a herbal food that can reduce liver TG accumulation induced by high fat diets.

  12. Dietary creatine supplementation lowers hepatic triacylglycerol by increasing lipoprotein secretion in rats fed high-fat diet.

    Science.gov (United States)

    da Silva, Robin P; Leonard, Kelly-Ann; Jacobs, René L

    2017-12-01

    Recent studies have shown that dietary creatine supplementation can prevent lipid accumulation in the liver. Creatine is a small molecule that plays a large role in energy metabolism, but since the enzyme creatine kinase is not present in the liver, the classical role in energy metabolism does not hold in this tissue. Fat accumulation in the liver can lead to the development of nonalcoholic fatty liver disease (NAFLD), a progressive disease that is prevalent in humans. We have previously reported that creatine can directly influence lipid metabolism in cell culture to promote lipid secretion and oxidation. Our goal in the current study was to determine whether similar mechanisms that occur in cell culture were present in vivo. We also sought to determine whether dietary creatine supplementation could be effective in reversing steatosis. Sprague-Dawley rats were fed a high-fat diet or a high-fat diet supplemented with creatine for 5 weeks. We found that rats supplemented with creatine had significantly improved rates of lipoprotein secretion and alterations in mitochondrial function that were consistent with greater oxidative capacity. We also find that introducing creatine into a high-fat diet halted hepatic lipid accumulation in rats with fatty liver. Our results support our previous report that liver cells in culture with creatine secrete and oxidize more oleic acid, demonstrating that dietary creatine can effectively change hepatic lipid metabolism by increasing lipoprotein secretion and oxidation in vivo. Our data suggest that creatine might be an effective therapy for NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Glucose and lipid metabolism in rats supplemented with glycyrrhizic acid exposed to short- or long- term stress and fed on a high-calorie diet

    OpenAIRE

    Yaw, Hui Ping

    2017-01-01

    Stress and consumption of high-calorie diet are well-recognized as the primary contributor to various metabolic diseases such as the metabolic syndrome. Glycyrrhizic acid (GA), an active compound in the root extract of the licorice plant, Glycyrrhiza glabra has been shown to improve hyperglycaemia and dyslipidaemia in rats fed on a high- calorie diet. However, the effect of GA on glucose and lipid metabolism in rats under stress in combination with high- calorie diet has yet to be expl...

  14. Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation.

    Science.gov (United States)

    Dhahri, Wahiba; Drolet, Marie-Claude; Roussel, Elise; Couet, Jacques; Arsenault, Marie

    2014-09-24

    The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility.

  15. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    Science.gov (United States)

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  16. Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice

    Directory of Open Access Journals (Sweden)

    Cohn Jeffrey S

    2011-07-01

    Full Text Available Abstract Background Omega-3 polyunsaturated fatty acids (ω-3-PUFA are known to ameliorate several metabolic risk factors for cardiovascular disease, and an association between elevated peripheral levels of endogenous ligands of cannabinoid receptors (endocannabinoids and the metabolic syndrome has been reported. We investigated the dose-dependent effects of dietary ω-3-PUFA supplementation, given as krill oil (KO, on metabolic parameters in high fat diet (HFD-fed mice and, in parallel, on the levels, in inguinal and epididymal adipose tissue (AT, liver, gastrocnemius muscle, kidneys and heart, of: 1 the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG, 2 two anandamide congeners which activate PPARα but not cannabinoid receptors, N-oleoylethanolamine and N-palmitoylethanolamine, and 3 the direct biosynthetic precursors of these compounds. Methods Lipids were identified and quantified using liquid chromatography coupled to atmospheric pressure chemical ionization single quadrupole mass spectrometry (LC-APCI-MS or high resolution ion trap-time of flight mass spectrometry (LC-IT-ToF-MS. Results Eight-week HFD increased endocannabinoid levels in all tissues except the liver and epididymal AT, and KO reduced anandamide and/or 2-AG levels in all tissues but not in the liver, usually in a dose-dependent manner. Levels of endocannabinoid precursors were also generally down-regulated, indicating that KO affects levels of endocannabinoids in part by reducing the availability of their biosynthetic precursors. Usually smaller effects were found of KO on OEA and PEA levels. Conclusions Our data suggest that KO may promote therapeutic benefit by reducing endocannabinoid precursor availability and hence endocannabinoid biosynthesis.

  17. Effect of Seyoeum on Obesity, Insulin Resistance, and Nonalcoholic Fatty Liver Disease of High-Fat Diet-Fed C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Hyun-Young Na

    2017-01-01

    Full Text Available Background. This study was performed to evaluate the effect of Seyoeum (SYE, a novel herbal meal replacement, on insulin resistance and nonalcoholic fatty liver disease (NAFLD in obese mice fed with a high-fat diet (HFD. Methods. SYE contained six kinds of herbal powder such as Coix lacryma-jobi, Oryza sativa, Sesamum indicum, Glycine max, Liriope platyphylla, and Dioscorea batatas. Male C57BL/6 mice were divided into four groups: normal chow (NC, HFD, SYE, and HFD plus SYE (HFD + SYE. The mice in groups other than NC were fed HFD for 9 weeks to induce obesity and then were fed each diet for 6 weeks. Clinical markers related to obesity, diabetes, and NAFLD were examined and gene expressions related to inflammation and insulin receptor were determined. Results. Compared with HFD group, body weight, serum glucose, serum insulin, HOMA-IR, total cholesterol, triglyceride, epididymal fat pad weight, liver weight, and inflammatory gene expression were significantly reduced in SYE group. Insulin receptor gene expression increased in SYE group. Conclusions. Based on these results, we conclude that SYE improved obesity and insulin resistance in high-fat fed obese mice. Our findings suggest that SYE could be a beneficial meal replacement through these antiobesity and anti-insulin resistance effects.

  18. Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in high-fat diet-fed mice.

    Science.gov (United States)

    Katsumura, Masanori; Takagi, Shoko; Oya, Hana; Tamura, Shohei; Saneyasu, Takaoki; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2017-08-01

    Animal by-products can be recycled and used as sources of essential nutrients. Water-soluble heme iron (WSHI), a functional food additive for supplementing iron, is produced by processing animal blood. In this study, we investigated the effects of dietary supplementation of 3% WSHI and exercise training for 4 weeks on the accumulation of abdominal fat and lipid metabolism in mice fed high-fat diet. Exercise-trained mice had significantly less perirenal adipose tissue, whereas WSHI-fed mice tended to have less epididymal adipose tissue. In addition, total weight of abdominal adipose tissues was significantly decreased in the Exercise + WSHI group. Dietary WSHI significantly increased the messenger RNA (mRNA) levels of lipoprotein lipase and hormone-sensitive lipase. WSHI-fed mice also tended to show increased mRNA levels of adipose triglyceride lipase in their epididymal adipose tissue. Dietary WSHI also significantly decreased the mRNA levels of fatty acid oxidation-related enzymes in the liver, but did not influence levels in the Gastrocnemius muscle. Exercise training did not influence the mRNA levels of lipid metabolism-related enzymes in the epididymal adipose tissue, liver or the Gastrocnemius muscle. These findings suggest that the accumulation of abdominal fat can be efficiently decreased by the combination of dietary WSHI and exercise training in mice fed high-fat diet. © 2016 Japanese Society of Animal Science.

  19. Fish Oil and Microalga Omega-3 as Dietary Supplements: A Comparative Study on Cardiovascular Risk Factors in High-Fat Fed Rats.

    Science.gov (United States)

    Haimeur, Adil; Mimouni, Virginie; Ulmann, Lionel; Martineau, Anne-Sophie; Messaouri, Hafida; Pineau-Vincent, Fabienne; Tremblin, Gérard; Meskini, Nadia

    2016-09-01

    Dietary supplementation with marine omega-3 polyunsaturated fatty acids (n-3 PUFA) can have beneficial effects on a number of risk factors for cardiovascular disease (CVD). We compared the effects of two n-3 PUFA rich food supplements (freeze-dried Odontella aurita and fish oil) on risk factors for CVD. Male rats were randomly divided into four groups of six animals each and fed with the following diets: control group (C) received a standard diet containing 7 % lipids; second group (HF high fat) was fed with a high-fat diet containing 40 % lipids; third group (HFFO high fat+fish oil) was fed with the high-fat diet supplemented with 0.5 % fish oil; and fourth group (HFOA high fat+O. aurita) received the high-fat diet supplemented with 12 % of freeze-dried O. aurita. After 8 weeks rats fed with the high-fat diet supplemented with O. aurita displayed a significantly lower bodyweight than those in the other groups. Both the microalga and the fish oil significantly reduced insulinemia and serum lipid levels. O. aurita was more effective than the fish oil in reducing hepatic triacyglycerol levels and in preventing high-fat diet-induced steatosis. O. aurita and fish oil also reduced platelet aggregation and oxidative status induced by high fat intake. After an OA supplementation, the adipocytes in the HFOA group were smaller than those in the HF group. Freeze-dried O. aurita showed similar or even greater biological effects than the fish oil. This could be explained by a potential effect of the n-3 PUFA but also other bioactive compounds of the microalgae.

  20. Treating chronic arsenic toxicity with high selenium lentil diets

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Shweta [Department of Ecosystem and Public Health, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4Z6 (Canada); Vandenberg, Albert [Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8 (Canada); Smits, Judit, E-mail: judit.smits@ucalgary.ca [Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6 (Canada)

    2013-10-01

    Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we compare diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0 ppm As) or As (40 ppm As) water while consuming SK lentils (0.3 ppm Se) or northwestern USA lentils (< 0.01 ppm Se) diets for 14 weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14 weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans. - Highlights: • We reduce chronic arsenic toxicity in rats with a whole food solution. • High selenium lentils decrease liver damage and increase blood glutathione levels. • High selenium lentil diets increase urinary and fecal arsenic excretion. • High selenium lentil diets decrease arsenic levels in kidney, the storage organ. • High selenium lentil diets reverse arsenic suppression of the B cell

  1. Treating chronic arsenic toxicity with high selenium lentil diets

    International Nuclear Information System (INIS)

    Sah, Shweta; Vandenberg, Albert; Smits, Judit

    2013-01-01

    Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we compare diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0 ppm As) or As (40 ppm As) water while consuming SK lentils (0.3 ppm Se) or northwestern USA lentils (< 0.01 ppm Se) diets for 14 weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14 weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans. - Highlights: • We reduce chronic arsenic toxicity in rats with a whole food solution. • High selenium lentils decrease liver damage and increase blood glutathione levels. • High selenium lentil diets increase urinary and fecal arsenic excretion. • High selenium lentil diets decrease arsenic levels in kidney, the storage organ. • High selenium lentil diets reverse arsenic suppression of the B cell

  2. Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process

    Directory of Open Access Journals (Sweden)

    Nevoigt Elke

    2010-05-01

    Full Text Available Abstract Background Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH. Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP fed-batch process. Results The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g

  3. Chronic high-sodium diet increases aortic wall endothelin-1 expression in a blood pressure-independent fashion in rats.

    Science.gov (United States)

    Tsai, Yu-Hwai; Ohkita, Mamoru; Gariepy, Cheryl E

    2006-06-01

    Vascular endothelin (ET)-1 is upregulated in several forms of salt-induced hypertension. It is unclear to what extent these effects are primary or secondary to endothelial damage. We hypothesized that a high-sodium diet (HNa) increases vascular ET-1 production independent of arterial blood pressure changes. We investigated the effect of chronic HNa with and without ET(A) blockade on circulating and aortic ET-1 protein levels as well as aortic expression of ET-1 and ET(A) messenger RNA (mRNA) in inbred Wistar-Kyoto (WKY) and congenic ET(B)-deficient rats. Comparing WKY rats fed a low-sodium diet (LNa) with those fed HNa for 3 weeks, aortic wall ET-1 protein is significantly increased in response to HNa (331 +/- 43 pg/g tissue for LNa vs. 557 +/- 34 pg/gm tissue for HNa). HNa also increased aortic wall ET-1 mRNA levels by 40%, as determined by quantitative reverse transcriptase polymerase chain reaction. We then compared rats chronically treated with the ET(A)-selective antagonist, ABT-627, while receiving either LNa or HNa. There were no differences in arterial blood pressure (mean arterial pressure 89 +/- 1 mm Hg for WKY on LNa; 90 +/- 3 for WKY on HNa; 91 +/- 2 for ET(B)-deficient/ABT-627-treated on HNa) or heart rate. However, aortic wall ET-1 protein levels were 4-fold higher in the HNa group. Further, HNa increased aortic wall ET-1 mRNA (approximately 1.5- to 3-fold) and ET(A) mRNA (approximately 2- to 7-fold), independent of activation of ET(B). Therefore, the expression of ET-1 mRNA by the aortic wall is increased in response to chronic high dietary sodium in WKY rats in the absence of changes in arterial blood pressure.

  4. Anticholesterolemic effect of 3,4-di(OH)-phenylpropionic amides in high-cholesterol fed rats

    International Nuclear Information System (INIS)

    Kim, Soon-Ja; Bok, Song-Hae; Lee, Sangku; Kim, Hye-Jin; Lee, Mi-Kyung; Park, Yong Bok; Choi, Myung-Sook

    2005-01-01

    Two amide synthetic derivatives of 3,4-di(OH)-hydrocinnamate (HC), 3,4-dihydroxyphenylpropionic (L-serine methyl ester) amide (E030) and 3,4-dihydroxyphenylpropionic (L-aspartic acid) amide (E076), were investigated to compare their lipid-lowering efficacy with HC. Male rats were fed a 1 g/100 g high-cholesterol diet for 6 weeks with supplements of either clofibrate (0.02%, w/w), HC (0.025%, w/w), E030 (0.039%, w/w) or E076 (0.041%, w/w). The clofibrate supplement was used as a positive control for the lipid-lowering efficacy. The food intakes and body weight gains were not significantly different among the groups. The plasma and hepatic cholesterol and triglyceride levels were lower in clofibrate, HC, E030, and E076-supplemented groups compared to the control group. The supplementation of HC and its amide derivatives was as effective as clofibrate in increasing the ratio of HDL-cholesterol to total plasma cholesterol and reducing the atherogenic index (AI). The hepatic cholesterol level in the HC and E076 groups was significantly lower than that in the clofibrate group. The hepatic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA reductase) and acyl-CoA:cholesterol acyltransferase (ACAT) activities were significantly lower in the all test groups than in the control group. The excretion of neutral sterol was significantly higher in the HC, E030, and E076-supplemented groups compared to the control group. The plasma AST and ALT activities, indirect indexes of hepatic toxicity, were significantly lower in the HC, E030, and E076-supplemented groups than in the control group. Accordingly, the current results suggest that E030 and E076, two amide synthetic derivatives of HC, are effective in lowering lipid activity

  5. Islet inflammation, hemosiderosis, and fibrosis in intrauterine growth-restricted and high fat-fed Sprague-Dawley rats.

    Science.gov (United States)

    Delghingaro-Augusto, Viviane; Madad, Leili; Chandra, Arin; Simeonovic, Charmaine J; Dahlstrom, Jane E; Nolan, Christopher J

    2014-05-01

    Prenatal and postnatal factors such as intrauterine growth restriction (IUGR) and high-fat (HF) diet contribute to type 2 diabetes. Our aim was to determine whether IUGR and HF diets interact in type 2 diabetes pathogenesis, with particular attention focused on pancreatic islet morphology including assessment for inflammation. A surgical model of IUGR (bilateral uterine artery ligation) in Sprague-Dawley rats with sham controls was used. Pups were fed either HF or chow diets after weaning. Serial measures of body weight and glucose tolerance were performed. At 25 weeks of age, rat pancreases were harvested for histologic assessment. The birth weight of IUGR pups was 13% lower than that of sham pups. HF diet caused excess weight gain, dyslipidemia, hyperinsulinemia, and mild glucose intolerance, however, this was not aggravated further by IUGR. Markedly abnormal islet morphology was evident in 0 of 6 sham-chow, 5 of 8 sham-HF, 4 of 8 IUGR-chow, and 8 of 9 IUGR-HF rats (chi-square, P = 0.007). Abnormal islets were characterized by larger size, irregular shape, inflammation with CD68-positive cells, marked fibrosis, and hemosiderosis. β-Cell mass was not altered by IUGR. In conclusion, HF and IUGR independently contribute to islet injury characterized by inflammation, hemosiderosis, and fibrosis. This suggests that both HF and IUGR can induce islet injury via converging pathways. The potential pathogenic or permissive role of iron in this process of islet inflammation warrants further investigation. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice

    Directory of Open Access Journals (Sweden)

    Lovisa Heyman-Lindén

    2016-04-01

    Full Text Available Background: The gut microbiota plays an important role in the development of obesity and obesity-associated impairments such as low-grade inflammation. Lingonberries have been shown to prevent diet-induced obesity and low-grade inflammation. However, it is not known whether the effect of lingonberry supplementation is related to modifications of the gut microbiota. The aim of the present study was to describe whether consumption of different batches of lingonberries alters the composition of the gut microbiota, which could be relevant for the protective effect against high fat (HF-induced metabolic alterations. Methods: Three groups of C57BL/6J mice were fed HF diet with or without a supplement of 20% lingonberries from two different batches (Lingon1 and Lingon2 during 11 weeks. The composition and functionality of the cecal microbiota were assessed by 16S rRNA sequencing and PICRUSt. In addition, parameters related to obesity, insulin sensitivity, hepatic steatosis, inflammation and gut barrier function were examined. Results: HF-induced obesity was only prevented by the Lingon1 diet, whereas both batches of lingonberries reduced plasma levels of markers of inflammation and endotoxemia (SAA and LBP as well as modified the composition and functionality of the gut microbiota, compared to the HF control group. The relative abundance of Akkermansia and Faecalibacterium, genera associated with healthy gut mucosa and anti-inflammation, was found to increase in response to lingonberry intake. Conclusions: Our results show that supplementation with lingonberries to an HF diet prevents low-grade inflammation and is associated with significant changes of the microbiota composition. Notably, the anti-inflammatory properties of lingonberries seem to be independent of effects on body weight gain.

  7. Dietary phytic acid modulates characteristics of the colonic luminal environment and reduces serum levels of proinflammatory cytokines in rats fed a high-fat diet.

    Science.gov (United States)

    Okazaki, Yukako; Katayama, Tetsuyuki

    2014-12-01

    Dietary phytic acid (PA; myo-inositol [MI] hexaphosphate) is known to inhibit colon carcinogenesis in rodents. Dietary fiber, which is a negative risk factor of colon cancer, improves characteristics of the colonic environment, such as the content of organic acids and microflora. We hypothesized that dietary PA would improve the colonic luminal environment in rats fed a high-fat diet. To test this hypothesis, rats were fed diets containing 30% beef tallow with 2.04% sodium PA, 0.4% MI, or 1.02% sodium PA + 0.2% MI for 3 weeks. Compared with the control diet, the sodium PA diet up-regulated cecal organic acids, including acetate, propionate, and n-butyrate; this effect was especially prominent for cecal butyrate. The sodium PA + MI diet also significantly increased cecal butyrate, although this effect was less pronounced when compared with the sodium PA diet. The cecal ratio of Lactobacillales, cecal and fecal mucins (an index of intestinal barrier function), and fecal β-glucosidase activity were higher in rats fed the sodium PA diet than in those fed the control diet. The sodium PA, MI, and sodium PA + MI diets decreased levels of serum tumor necrosis factor α, which is a proinflammatory cytokine. Another proinflammatory cytokine, serum interleukin-6, was also down-regulated by the sodium PA and sodium PA + MI diets. These data showed that PA may improve the composition of cecal organic acids, microflora, and mucins, and it may decrease the levels of serum proinflammatory cytokines in rats fed a high-fat, mineral-sufficient diet. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Effects of disturbed liver growth and oxidative stress of high-fat diet-fed dams on cholesterol metabolism in offspring mice.

    Science.gov (United States)

    Kim, Juyoung; Kim, Juhae; Kwon, Young Hye

    2016-08-01

    Changes in nutritional status during gestation and lactation have detrimental effects on offspring metabolism. Several animal studies have shown that maternal high-fat diet (HFD) can predispose the offspring to development of obesity and metabolic diseases, however the mechanisms underlying these transgenerational effects are poorly understood. Therefore, we examined the effect of maternal HFD consumption on metabolic phenotype and hepatic expression of involved genes in dams to determine whether any of these parameters were associated with the metabolic outcomes in the offspring. Female C57BL/6 mice were fed a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD: 45% calories from fat) for three weeks before mating, and during pregnancy and lactation. Dams and their male offspring were studied at weaning. Dams fed an HFD had significantly higher body and adipose tissue weights and higher serum triglyceride and cholesterol levels than dams fed an LFD. Hepatic lipid levels and mRNA levels of genes involved in lipid metabolism, including LXRα, SREBP-2, FXR, LDLR, and ABCG8 were significantly changed by maternal HFD intake. Significantly lower total liver DNA and protein contents were observed in dams fed an HFD, implicating the disturbed liver adaptation in the pregnancy-related metabolic demand. HFD feeding also induced significant oxidative stress in serum and liver of dams. Offspring of dams fed an HFD had significantly higher serum cholesterol levels, which were negatively correlated with liver weights of dams and positively correlated with hepatic lipid peroxide levels in dams. Maternal HFD consumption induced metabolic dysfunction, including altered liver growth and oxidative stress in dams, which may contribute to the disturbed cholesterol homeostasis in the early life of male mice offspring.

  9. Urine and Serum Metabolite Profiling of Rats Fed a High-Fat Diet and the Anti-Obesity Effects of Caffeine Consumption

    Directory of Open Access Journals (Sweden)

    Hyang Yeon Kim

    2015-02-01

    Full Text Available In this study, we investigated the clinical changes induced by a high fat diet (HFD and caffeine consumption in a rat model. The mean body weight of the HFD with caffeine (HFDC-fed rat was decreased compared to that of the HFD-fed rat without caffeine. The levels of cholesterol, triglycerides (TGs, and free fatty acid, as well as the size of adipose tissue altered by HFD, were improved by caffeine consumption. To investigate the metabolites that affected the change of the clinical factors, the urine and serum of rats fed a normal diet (ND, HFD, and HFDC were analyzed using ultra performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-Q-TOF-MS, gas chromatography (GC-TOF-MS, and linear trap quadruple mass spectrometry (LTQ-XL-MS combined with multivariate analysis. A total of 68 and 52 metabolites were found to be different in urine and serum, respectively. After being fed caffeine, some glucuronide-conjugated compounds, lysoPCs, CEs, DGs, TGs, taurine, and hippuric acid were altered compared to the HFD group. In this study, caffeine might potentially inhibit HFD-induced obesity and we suggest possible biomarker candidates using MS-based metabolite profiling.

  10. Weaning age of calves fed a high milk allowance by automated feeders: effects on feed, water, and energy intake, behavioral signs of hunger, and weight gains.

    Science.gov (United States)

    de Passillé, A M; Borderas, T F; Rushen, J

    2011-03-01

    Dairy calves are increasingly fed large volumes of milk, which reduces feeding motivation and improves weight gain. However, calves often show signs of hunger and lose weight when weaned off milk due to low starter intake. We examined whether delaying the age at weaning would reduce responses to weaning. Calves were raised in groups of 9 and fed milk, starter, hay, and water with automated feeders. In each group, 3 calves were randomly assigned to 1 of 3 treatments: (1) low-milk, early-weaned: fed 6 L/d of milk and weaned at 47 d of age; (2) high-milk early-weaned: fed 12 L/d of milk and weaned at 47 d; (3) high-milk later-weaned: fed 12 L/d of milk and weaned at 89 d of age. Milk, starter, and hay intakes were recorded daily and digestible energy (DE) intake estimated. Feeder visits were recorded. Before weaning, the high-milk calves drank more milk, ate less starter and hay, but had higher DE intakes, gained more weight, and made fewer visits to the milk feeder than the low-milk, early-weaned calves. During and immediately after weaning, the high-fed, early-weaned calves ate less starter and hay, had lower DE intakes, and gained less weight than the low-milk, early-weaned calves and lost their body weight advantage 7 d after weaning. During and immediately after weaning, the high-milk, later-weaned calves ate more starter and hay and had higher DE intakes, higher weight gains, and made fewer visits to the milk feeder than the high-milk, early-weaned calves. They were still heavier than the low-milk, early-weaned calves 18 d after weaning. Delaying the age at which calves are weaned off milk reduces the drop in energy intake and behavioral signs of hunger that result from weaning. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Dietary Carnitine maintains energy reserves and delays fatigue of exercised African catfish (Clarias Gariepinus) fed high fat diets

    NARCIS (Netherlands)

    Ozorio, R.; Ginneken, van V.J.T.; Thillart, van den G.; Verstegen, M.W.A.; Verreth, J.A.J.

    2005-01-01

    Lipids, together with proteins, are traditionally considered as primary fuels during aerobic swimming. The effects of dietary fat and carnitine supplements and exercise on the energy metabolism of juvenile fish were investigated. One hundred African catfish (Clarias gariepinus) were fed four

  12. 75 FR 70203 - Certain Coated Paper Suitable for High-Quality Print Graphics Using Sheet-Fed Presses From the...

    Science.gov (United States)

    2010-11-17

    ... Error Memo. In addition, one of the ministerial errors affected the calculation of the labor rate, which... quality print graphics using sheet-fed presses; coated on one or both sides with kaolin (china or other...; whether gloss grade, satin grade, matte grade, dull grade, or any other grade of finish; whether or not...

  13. 75 FR 30370 - Certain Coated Paper Suitable For High-Quality Print Graphics Using Sheet-Fed Presses from the...

    Science.gov (United States)

    2010-06-01

    ... using sheet-fed presses; coated on one or both sides with kaolin (China or other clay), calcium... brightness level of 80 or higher;\\2\\ weighing not more than 340 grams per square meter; whether gloss grade... typically is referred to as [revaps]cover,' to distinguish it from [revaps]text.''' \\2\\ One of the key...

  14. The study of breast milk IGF-1, leptin, ghrelin and adiponectin levels as possible reasons of high weight gain in breast-fed infants.

    Science.gov (United States)

    Kon, Igor Ya; Shilina, Natalia M; Gmoshinskaya, Maria V; Ivanushkina, Tatiana A

    2014-01-01

    Excessive consumption of protein that leads to increased blood levels of insulin-like growth factor-1 (IGF-1) is an important risk factor for high growth velocity and obesity in formula-fed infants. However, it is not clear whether these factors can explain the high growth velocity in breast-fed infants. To study the possible links between the growth velocity in breast-fed infants and the levels of protein, IGF-1 and other hormones, which regulate energy homeostasis, in mothers' breast milk. We studied 103 mother-infant pairs. Their daily breast milk intake and level of IGF-1, leptin, ghrelin, adiponectin, protein and fat in breast milk were measured at 1, 2 and 3 months of lactation. The infant group was divided into three subgroups of low, normal and high weight gain tertiles. The breast milk consumed by the infants with high weight gain contained higher levels of IGF-1 than that consumed by those with low weight gain at all periods studied (p = 0.032 at 3 months of lactation), and ghrelin levels were higher at 1 and 2 months and leptin levels at 2 and 3 months of lactation (p milk IGF-1 level and infant weight gain (r = 0.294, p = 0.043). Total daily breast milk, fat and hormone intake was also higher in the high weight gain group compared to the low weight gain group. One of the reasons for the high growth velocity in breast-fed infants may be the enhanced levels of the studied hormones in breast milk.

  15. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure

    DEFF Research Database (Denmark)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth

    2014-01-01

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without...... arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous...... adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic...

  16. An integrative transcriptomic approach to identify depot differences in genes and microRNAs in adipose tissues from high fat fed mice.

    Science.gov (United States)

    Wijayatunga, Nadeeja N; Pahlavani, Mandana; Kalupahana, Nishan S; Kottapalli, Kameswara Rao; Gunaratne, Preethi H; Coarfa, Cristian; Ramalingam, Latha; Moustaid-Moussa, Naima

    2018-02-06

    Obesity contributes to metabolic disorders such as diabetes and cardiovascular disease. Characterization of differences between the main adipose tissue depots, white (WAT) [including subcutaneous (SAT) and visceral adipose tissue (VAT)] and brown adipose tissue (BAT) helps to identify their roles in obesity. Thus, we studied depot-specific differences in whole transcriptome and miRNA profiles of SAT, VAT and BAT from high fat diet (HFD/45% of calories from fat) fed mice using RNA sequencing and small RNA-Seq. Using quantitative real-time polymerase chain reaction, we validated depot-specific differences in endoplasmic reticulum (ER) stress related genes and miRNAs using mice fed a HFD vs. low fat diet (LFD/10% of calories from fat). According to the transcriptomic analysis, lipogenesis, adipogenesis, inflammation, endoplasmic reticulum (ER) stress and unfolded protein response (UPR) were higher in VAT compared to BAT, whereas energy expenditure, fatty acid oxidation and oxidative phosphorylation were higher in BAT than in VAT of the HFD fed mice. In contrast to BAT, ER stress marker genes were significantly upregulated in VAT of HFD fed mice than the LFD fed mice. For the first time, we report depot specific differences in ER stress related miRNAs including; downregulation of miR-125b-5p, upregulation miR-143-3p, and miR-222-3p in VAT following HFD and upregulation of miR-30c-2-3p only in BAT following a HFD in mice than the LFD mice. In conclusion, HFD differentially regulates miRNAs and genes in different adipose depots with significant induction of genes related to lipogenesis, adipogenesis, inflammation, ER stress, and UPR in WAT compared to BAT.

  17. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-13

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats ( n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  18. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae.

    Science.gov (United States)

    Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul

    2016-03-01

    An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.

  19. Effect of dietary supplementation with olive and sunflower oils on lipid profile and liver histology in rats fed high cholesterol diet.

    Science.gov (United States)

    Duavy, Sandra Mara Pimentel; Salazar, Gerson Javier Torres; Leite, Gerlânia de Oliveira; Ecker, Assis; Barbosa, Nilda Vargas

    2017-06-01

    To compare the effects of high-monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) against the metabolic disorders elicited by a high-cholesterol diet (HC) in rats. Using in vivo dietary manipulation, rats were fed with different diets containing 4% soybean oil (cholesterol free diet) and 1% HC containing 12% olive oil (HC + OO) enriched with MUFA and 12% sunflower oil (HC + SO) enriched with PUFA for 60 d. Serum lipid levels and hepatic steatosis were evaluated after the treatment period. Comparatively, rats treated with HC + OO diet experienced a decrease in the serum LDL-C, VLDL-C and CT levels compared to those fed with HC + SO diet (P blood. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  20. Whey-reduced weight gain is associated with a temporary growth reduction in young mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Madsen, Andreas N.; Hansen, Axel K.

    2015-01-01

    Whey protein consumption reportedly alleviates parameters of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in young mice fed a high-fat diet. We hypothesized that whey as the sole protein source reduced early weight gain associated with retarded growth...... and decreased concentration of insulin-like growth factor-1. Moreover, we hypothesized that these changes were explained by increased nitrogen loss via elevated urea production and/or increased energy expenditure. Male 5-week-old C57BL/6 mice were fed high-fat diets with the protein source being either whey......, casein or a combination of both for 5 weeks. After 1, 3 or 5 weeks, respectively, the mice were subjected to a meal challenge with measurements of blood and urinary urea before and 1 and 3 h after eating a weighed meal of their respective diets. In a subset of mice, energy expenditure was measured...

  1. Prenatal nicotine exposure induces poor articular cartilage quality in female adult offspring fed a high-fat diet and the intrauterine programming mechanisms.

    Science.gov (United States)

    Tie, Kai; Tan, Yang; Deng, Yu; Li, Jing; Ni, Qubo; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2016-04-01

    Prenatal nicotine exposure (PNE) induces skeletal growth retardation and dyslipidemia in offspring displaying intrauterine growth retardation (IUGR). Cholesterol accumulation resulting from cholesterol efflux dysfunction may reduce the quality of articular cartilage through fetal programming. This study evaluated the quality of articular cartilage of female adult offspring fed a high-fat diet and explored the mechanisms using a rat IUGR model established by the administration of 2.0mg/kg/d of subcutaneous nicotine from gestational days 11-20. The results demonstrated an increased OARSI (Osteoarthritis Research Society International) score and total cholesterol content, decreased serum corticosterone, and increased IGF1 and dyslipidemia with catch-up growth in PNE adult offspring. Cartilage matrix, IGF1 and cholesterol efflux pathway expression were reduced in PNE fetuses and adult offspring. Therefore, PNE induced poor articular cartilage quality in female adult offspring fed a high-fat diet via a dual programming mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice

    Directory of Open Access Journals (Sweden)

    Margarita Vida

    2015-07-01

    Full Text Available Interleukin-6 (IL-6 has emerged as an important mediator of fatty acid metabolism with paradoxical effects in the liver. Administration of IL-6 has been reported to confer protection against steatosis, but plasma and tissue IL-6 concentrations are elevated in chronic liver diseases, including fatty liver diseases associated with obesity and alcoholic ingestion. In this study, we further investigated the role of IL-6 on steatosis induced through a high-fat diet (HFD in wild-type (WT and IL-6-deficient (IL-6−/− mice. Additionally, HFD-fed IL-6−/− mice were also chronically treated with recombinant IL-6 (rIL-6. Obesity in WT mice fed a HFD associated with elevated serum IL-6 levels, fatty liver, upregulation of carnitine palmitoyltransferase 1 (CPT1 and signal transducer and activator of transcription-3 (STAT3, increased AMP kinase phosphorylation (p-AMPK, and downregulation of the hepatic lipogenic enzymes fatty acid synthase (FAS and stearoyl-CoA desaturase 1 (SCD1. The HFD-fed IL-6−/− mice showed severe steatosis, no changes in CPT1 levels or AMPK activity, no increase in STAT3 amounts, inactivated STAT3, and marked downregulation of the expression of acetyl-CoA carboxylase (ACCα/β, FAS and SCD1. The IL-6 chronic replacement in HFD-fed IL-6−/− mice restored hepatic STAT3 and AMPK activation but also increased the expression of the lipogenic enzymes ACCα/β, FAS and SCD1. Furthermore, rIL-6 administration was associated with aggravated steatosis and elevated fat content in the liver. We conclude that, in the context of HFD-induced obesity, the administration of rIL-6 might contribute to the aggravation of fatty liver disease through increasing lipogenesis.

  3. Elevated activation of ERK1 and ERK2 accompany enhanced liver injury following alcohol binge in chronically ethanol-fed rats.

    Science.gov (United States)

    Aroor, Annayya R; Jackson, Daniel E; Shukla, Shivendra D

    2011-12-01

    Binge drinking after chronic ethanol consumption is one of the important factors contributing to the progression of steatosis to steatohepatitis. The molecular mechanisms of this effect remain poorly understood. We have therefore examined in rats the effect of single and repeat ethanol binge superimposed on chronic ethanol intake on liver injury, activation of mitogen-activated protein kinases (MAPKs), and gene expression. Rats were chronically treated with ethanol in liquid diet for 4 weeks followed by single ethanol binge (5 gm/kg body weight) or 3 similar repeated doses of ethanol. Serum alcohol and alanine amino transferase (ALT) levels were determined by enzymatic methods. Steatosis was assessed by histology and hepatic triglycerides. Activation of MAPK, 90S ribosomal kinase (RSK), and caspase 3 were evaluated by Western blot. Levels of mRNA for tumor necrosis factor alpha (TNFα), early growth response-1 (egr-1), and plasminogen activator inhibitor-1 (PAI-1) were measured by real-time qRT-PCR. Chronic ethanol treatment resulted in mild steatosis and necrosis, whereas chronic ethanol followed by binge group exhibited marked steatosis and significant increase in necrosis. Chronic binge group also showed significant increase (compared with chronic ethanol alone) in the phosphorylation of extracellular regulated kinase 1 (ERK1), ERK2, and RSK. Phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK did not increase by the binge. Ethanol binge, after chronic ethanol intake, caused increase in mRNA for egr-1 and PAI-1, but not TNFα. Chronic ethanol exposure increases the susceptibility of rat liver to increased injury by 1 or 3 repeat binge. Among other alterations, the activated levels of ERK1, and more so ERK2, were remarkably amplified by binge suggesting a role of these isotypes in the binge amplification of the injury. In contrast, p38 MAPK and JNK1/2 activities were not amplified. These binge-induced changes were also reflected in the increases in the

  4. Low-carbohydrate diets reduce lipid accumulation and arterial inflammation in guinea pigs fed a high-cholesterol diet.

    Science.gov (United States)

    Leite, Jose O; DeOgburn, Ryan; Ratliff, Joseph; Su, Randy; Smyth, Joan A; Volek, Jeff S; McGrane, Mary M; Dardik, Alan; Fernandez, Maria Luz

    2010-04-01

    Low-carbohydrate diets (LCD) efficiently induce weight loss and favorably affect plasma lipids, however, the effect of LCD on atherosclerosis is still argued. To evaluate the effect of LCD on the prevention of atherosclerosis. Twenty guinea pigs were fed either a LCD or a low-fat diet (LFD) in combination with high-cholesterol (0.25g/100g) for 12 weeks. The percentage energy of macronutrient distribution was 10:65:25 for carbohydrate:fat:protein for the LCD, and 55:20:25 for the LFD. Plasma lipids were measured using colorimetric assays. Plasma and aortic oxidized (oxLDL) were quantified using ELISA methods. Inflammatory cytokines were measured in aortic homogenates using an immunoassay. H&E stained sections of aortic sinus and Schultz stained sections of carotid arteries were examined. LDL cholesterol was lower in the LCD compared to the LFD group (71.9+/-34.8 vs. 81.7+/-26.9mg/dL; p=0.039). Aortic cholesterol was also lower in the LCD (4.98+/-1.3mg/g) compared to the LFD group (6.68+/-2.0mg/g); p<0.05. The Schultz staining method confirmed less aortic cholesterol accumulation in the LCD group. Plasma oxLDL did not differ between groups, however, aortic oxLDL was 61% lower in the LCD compared to the LFD group (p=0.045). There was a positive correlation (r=0.63, p=0.03) between oxLDL and cholesterol concentration in the aorta of LFD group, which was not observed in LCD group (r=-0.05, p=0.96). Inflammatory markers were reduced in guinea pigs from the LCD group (p<0.05) and they were correlated with the decreases in oxLDL in aorta. These results suggest that LCD not only decreases lipid deposition, but also prevents the accumulation of oxLDL and reduces inflammatory cytokines within the arterial wall and may prevent atherosclerosis. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  5. Nitrogen utilization, preweaning nutrient digestibility, and growth effects of Holstein dairy calves fed 2 amounts of a moderately high protein or conventional milk replacer.

    Science.gov (United States)

    Chapman, C E; Hill, T M; Elder, D R; Erickson, P S

    2017-01-01

    Studies have shown that calves fed milk replacers (MR) with crude protein (CP) concentrations greater than 20%, as typically found in conventional MR, have higher dry matter intakes (DMI) and greater average daily gains (ADG) but consume less starter, which can lead to stress during weaning and reduced rumen development. The greater amount of CP being fed to preweaned calves may alter their nitrogen (N) balance, and excess N may be excreted in the urine. The objective of this study was to determine N utilization in preweaned calves fed diets varying in the amount of CP and MR fed. This study used 24 newborn dairy heifer calves blocked by birth and randomly assigned to 1 of 3 treatments: (1) 446g dry matter (DM) of a conventional MR (CON; 20% CP, 20% fat), (2) 669g DM of a moderately high protein MR (moderate; MOD; 26% CP, 18% fat), or (3) 892g DM of a moderately high protein MR (aggressive; AGG; 26% CP, 18% fat). All calves had ad libitum access to starter and water. Both MR and starter were medicated with decoquinate. During weaning (d 43-49), the morning MR feeding ceased. On d 50, all MR feedings ended; however, starter and water intakes were continuously recorded until d 56. At 5wk of age, urine was collected using urinary catheters for 3d and chromium oxide was administered by bolus at 2g/d for 7d to estimate N efficiency. Calves fed MOD and AGG had similar starter intakes, feed efficiencies, and ADG, with the combined treatments having reduced starter intakes (258 vs. 537g/d), greater ADG (674 vs. 422g/d), and improved feed efficiency (0.57 vs. 0.45 gain:feed) compared with CON calves preweaning. However, DMI and water intake were similar across all treatments. Results from the N utilization phase showed that MOD and AGG treatments had similar but lower N efficiency compared with CON calves (45.5 vs. 52.7%). This could be due to MOD- and AGG-fed calves having greater urine volume and thereby, greater combined urine N output compared with CON calves (17.6 vs

  6. Effects of acute exposure to chlorpyrifos on cholinergic and non-cholinergic targets in normal and high-fat fed male C57BL/6J mice.

    Science.gov (United States)

    Kondakala, Sandeep; Lee, Jung Hwa; Ross, Matthew K; Howell, George E

    2017-12-15

    The prevalence of obesity is increasing at an alarming rate in the United States with 36.5% of adults being classified as obese. Compared to normal individuals, obese individuals have noted pathophysiological alterations which may alter the toxicokinetics of xenobiotics and therefore alter their toxicities. However, the effects of obesity on the toxicity of many widely utilized pesticides has not been established. Therefore, the present study was designed to determine if the obese phenotype altered the toxicity of the most widely used organophosphate (OP) insecticide, chlorpyrifos (CPS). Male C57BL/6J mice were fed normal or high-fat diet for 4weeks and administered a single dose of vehicle or CPS (2.0mg/kg; oral gavage) to assess cholinergic (acetylcholinesterase activities) and non-cholinergic (carboxylesterase and endocannabinoid hydrolysis) endpoints. Exposure to CPS significantly decreased red blood cell acetylcholinesterase (AChE) activity, but not brain AChE activity, in both diet groups. Further, CPS exposure decreased hepatic carboxylesterase activity and hepatic hydrolysis of a major endocannabinoid, anandamide, in a diet-dependent manner with high-fat diet fed animals being more sensitive to CPS-mediated inhibition. These in vivo studies were corroborated by in vitro studies using rat primary hepatocytes, which demonstrated that fatty acid amide hydrolase and CES activities were more sensitive to CPS-mediated inhibition than 2-arachidonoylglycerol hydrolase activity. These data demonstrate hepatic CES and FAAH activities in high-fat diet fed mice were more potently inhibited than those in normal diet fed mice following CPS exposure, which suggests that the obese phenotype may exacerbate some of the non-cholinergic effects of CPS exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats.

    Science.gov (United States)

    Ding, Shibin; Jiang, Jinjin; Zhang, Guofu; Bu, Yongjun; Zhang, Guanghui; Zhao, Xiangmei

    2017-01-01

    Studies have demonstrated that resveratrol (a natural polyphenol) and caloric restriction activate Sirtuin-1 (SIRT1) and induce autophagy. Furthermore, autophagy is induced by the SIRT1-FoxO signaling pathway and was recently shown to be a critical protective mechanism against non-alcoholic fatty liver disease (NAFLD) development. We aimed to compare the effects of resveratrol and caloric restriction on hepatic lipid metabolism and elucidate the mechanism by which resveratrol supplementation and caloric restriction alleviate hepatosteatosis by examining the molecular interplay between SIRT1 and autophagy. Eight-week-old male Wistar rats (40) were divided into four groups: the STD group, which was fed a standard chow diet; the HFD group, which was fed a high-fat diet; HFD-RES group, which was fed a high-fat diet plus resveratrol (200 mg/kg.bw); and the HFD-CR group, which was fed a high-fat diet in portions containing 70% of the mean intake of the HFD group rats. The groups were maintained for 18 weeks. Metabolic parameters, Oil Red O and hematoxylin-eosin staining of the liver, and the mRNA and protein expression of SIRT1, autophagy markers and endoplasmic reticulum(ER) stress-associated genes in the liver were assessed after the 18-week treatment. We found that resveratrol (200 mg/kg bw) and caloric restriction (30%) partially prevented hepatic steatosis and hepatocyte ballooning, increased the expression of SIRT1 and autophagy markers while decreasing ER stress markers in the liver and alleviated lipid metabolism disorder. Moreover, caloric restriction provided superior protection against HFD-induced hepatic fatty accumulation compared with resveratrol and the effects were associated with decreased total energy intake and body weight. We conclude that the SIRT1-autophagy pathway and decreased ER stress are universally required for the protective effects of moderate caloric restriction (30%) and resveratrol (a pharmacological SIRT1 activator) supplementation

  8. Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats.

    Directory of Open Access Journals (Sweden)

    Shibin Ding

    Full Text Available Studies have demonstrated that resveratrol (a natural polyphenol and caloric restriction activate Sirtuin-1 (SIRT1 and induce autophagy. Furthermore, autophagy is induced by the SIRT1-FoxO signaling pathway and was recently shown to be a critical protective mechanism against non-alcoholic fatty liver disease (NAFLD development. We aimed to compare the effects of resveratrol and caloric restriction on hepatic lipid metabolism and elucidate the mechanism by which resveratrol supplementation and caloric restriction alleviate hepatosteatosis by examining the molecular interplay between SIRT1 and autophagy.Eight-week-old male Wistar rats (40 were divided into four groups: the STD group, which was fed a standard chow diet; the HFD group, which was fed a high-fat diet; HFD-RES group, which was fed a high-fat diet plus resveratrol (200 mg/kg.bw; and the HFD-CR group, which was fed a high-fat diet in portions containing 70% of the mean intake of the HFD group rats. The groups were maintained for 18 weeks. Metabolic parameters, Oil Red O and hematoxylin-eosin staining of the liver, and the mRNA and protein expression of SIRT1, autophagy markers and endoplasmic reticulum(ER stress-associated genes in the liver were assessed after the 18-week treatment. We found that resveratrol (200 mg/kg bw and caloric restriction (30% partially prevented hepatic steatosis and hepatocyte ballooning, increased the expression of SIRT1 and autophagy markers while decreasing ER stress markers in the liver and alleviated lipid metabolism disorder. Moreover, caloric restriction provided superior protection against HFD-induced hepatic fatty accumulation compared with resveratrol and the effects were associated with decreased total energy intake and body weight.We conclude that the SIRT1-autophagy pathway and decreased ER stress are universally required for the protective effects of moderate caloric restriction (30% and resveratrol (a pharmacological SIRT1 activator

  9. Differential metabolic effects of constant moderate versus high intensity interval training in high-fat fed mice: possible role of muscle adiponectin.

    Science.gov (United States)

    Martinez-Huenchullan, Sergio F; Maharjan, Babu Raja; Williams, Paul F; Tam, Charmaine S; Mclennan, Susan V; Twigg, Stephen M

    2018-02-01

    Exercise regimens may have differing effects in the presence of obesity. In addition to being fat derived, adiponectin has recently been described as a myokine that regulates insulin sensitivity, which may link to exercise-related metabolic benefits in obesity. Whether skeletal muscle adiponectin varies in different exercise modalities is unclear. This study investigated the comparative effects of 10 weeks of endurance constant-moderate intensity exercise (END) with high intensity interval training (HIIT), on metabolic outcomes, including muscle adiponectin in a mouse model of diet-induced obesity. Ten-week-old male C57BL/6 mice were fed a high-fat diet (HFD) (45% FAT) or standard CHOW diet ab libitum and underwent one of three training regimes: (1) no exercise, (2) END, or (3) HIIT (8 bouts of 2.5 min with eight periods of rest of 2.5 min) for 10 weeks (3 × 40 min sessions/week). Chow-fed mice acted as controls. Compared with HFD alone, both training programs similarly protected against body weight gain (HFD = 45 ± 2; END = 37 ± 2; HIIT = 36 ± 2 g), preserved lean/fat tissue mass ratio (HFD = 0.64 ± 0.09; END = 0.34 ± 0.13; HIIT = 0.33 ± 0.13), and improved blood glucose excursion during an insulin tolerance test (HFD = 411 ± 54; END = 350 ± 57; HIIT = 320 ± 66 arbitrary units [AU]). Alterations in fasting glycemia, insulinemia, and AST/ALT ratios were prevented only by END. END, but not HIIT increased skeletal muscle adiponectin mRNA (14-fold; P HIIT induced a milder increase (2.4-fold). Compared with HFD, neither END nor HIIT altered circulating low (LMW) or high (HMW) molecular weight adiponectin forms. Furthermore, only END prevented the HFD downregulation of PGC1α (P < 0.05) mRNA levels downstream of muscle adiponectin. These data show that different training programs affect muscle adiponectin to differing degrees. Together these results suggest that END is a more effective regimen to prevent HFD

  10. Comparative evaluation of anti-obesity effect of Aloe vera and Gymnema sylvestre supplementation in high-fat diet fed C57BL/6J mice.

    Science.gov (United States)

    Pothuraju, Ramesh; Sharma, Raj Kumar; Rather, Sarver Ahmed; Singh, Satvinder

    2016-01-01

    The aim of the present study was to investigate, anti-obesity effect of Aloe vera (AV), and Gymnema sylvestre (GS) whole extract powders administration to high-fat diet (HFD) fed C57BL/6J mice for 12 weeks. At the end of experiment, different parameters such as body weight, feed intake, organ weights, fasting blood glucose, oral glucose tolerance test, plasma lipid levels, and expression analysis of adipocytokines were evaluated. At the end of experimental period, oral administration of both herbs showed a significant ( P E. fat) weight in the HFD group was significantly ( P E. fat tissue of HFD fed group. The anti-obesity and other metabolic studies depend on the type of diet, different parts of herbal extractions, and animal models used. Further studies are required in this area to strengthen the anti-obesity effects of herbs with active component, and it can be used a pro-drug instead of whole extract.

  11. Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet.

    Science.gov (United States)

    Sánchez-Tapia, Mónica; Aguilar-López, Miriam; Pérez-Cruz, Claudia; Pichardo-Ontiveros, Edgar; Wang, Mei; Donovan, Sharon M; Tovar, Armando R; Torres, Nimbe

    2017-07-05

    Current efforts are directed to reducing the gut dysbiosis and inflammation produced by obesity. The purpose of this study was to investigate whether consuming nopal, a vegetable rich in dietary fibre, vitamin C, and polyphenols can reduce the metabolic consequences of obesity by modifying the gut microbiota and preventing metabolic endotoxemia in rats fed a high fat and sucrose diet. With this aim, rats were fed a high fat diet with 5% sucrose in the drinking water (HFS) for 7 months and then were fed for 1 month with HFS + 5% nopal (HFS + N). The composition of gut microbiota was assessed by sequencing the 16S rRNA gene. Nopal modified gut microbiota and increased intestinal occludin-1 in the HFS + N group. This was associated with a decrease in metabolic endotoxemia, glucose insulinotropic peptide, glucose intolerance, lipogenesis, and metabolic inflexibility. These changes were accompanied by reduced hepatic steatosis and oxidative stress in adipose tissue and brain, and improved cognitive function, associated with an increase in B. fragilis. This study supports the use of nopal as a functional food and prebiotic for its ability to modify gut microbiota and to reduce metabolic endotoxemia and other obesity-related biochemical abnormalities.

  12. Comparative evaluation of flavone from Mucuna pruriens and coumarin from Ionidium suffruticosum for hypolipidemic activity in rats fed with high fat diet.

    Science.gov (United States)

    Dharmarajan, Satheesh Kumar; Arumugam, Kottai Muthu

    2012-10-02

    The objective of the study is a comparative evaluation of flavone isolated from Mucuna pruriens and coumarin isolated from Ionidium suffruticosum was assessed for the hypolipidemic activity in rats fed with high fat diet. The acute toxicity study was found that flavone (M.pruriens) and coumarin (I.suffruticosum) are safe up to 100 mg/kg, so one tenth of this dose (10 mg/kg) was consider as a evaluation dose. High fat diet group of rats showed significant (ppruriens) and coumarin isolated from (I.suffruticosum) at the dose of 10mg/kg b.wt/day along with high fat diet significantly (ppruriens).

  13. Excessive Vitamin E Intake Does Not Cause Bone Loss in Male or Ovariectomized Female Mice Fed Normal or High-Fat Diets.

    Science.gov (United States)

    Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko

    2017-10-01

    Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD). Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD. Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography. Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice ( P vitamin E/kg. Conclusions: The results suggest that excess vitamin E intake does not cause bone loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.

  14. Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet.

    Directory of Open Access Journals (Sweden)

    Sonja N Heinritz

    Full Text Available The intestinal microbiota and its metabolites appear to be an important factor for gastrointestinal function and health. However, research is still needed to further elaborate potential relationships between nutrition, gut microbiota and host's health by means of a suitable animal model. The present study examined the effect of two different diets on microbial composition and activity by using the pig as a model for humans. Eight pigs were equally allotted to two treatments, either fed a low-fat/high-fiber (LF, or a high-fat/low-fiber (HF diet for 7 weeks. Feces were sampled at day 7 of every experimental week. Diet effects on fecal microbiota were assessed using quantitative real-time PCR, DNA fingerprinting and metaproteomics. Furthermore, fecal short-chain fatty acid (SCFA profiles and ammonia concentrations were determined. Gene copy numbers of lactobacilli, bifidobacteria (P0.05. Results provide evidence that beginning from the start of the experiment, the LF diet stimulated beneficial bacteria and SCFA production, especially butyrate (P<0.05, while the HF diet fostered those bacterial groups which have been associated with a negative impact on health conditions. These findings correspond to results in humans and might strengthen the hypothesis that the response of the porcine gut microbiota to a specific dietary modulation is in support of using the pig as suitable animal model for humans to assess diet-gut-microbiota interactions. Data are available via ProteomeXchange with identifier PXD003447.

  15. Isocaloric pair-fed high-carbohydrate diet induced more hepatic steatosis and inflammation than high-fat diet mediated by miR- 34a/SIRT1 axis in mice

    Science.gov (United States)

    To investigate the different effects of isocaloric high-fat diet (HFD) and high-carbohydrate diet (HCD) on hepatic steatosis and the underlying mechanisms, especially the role of microRNA- 34a/silent information regulator T1 (SIRT1) axis, C57BL/6J mice (n = 12/group) were isocaloric pair-fed with Li...

  16. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.

    Science.gov (United States)

    Li, Feng; Yin, Changji; Sun, Liming; Li, Yuanxiu; Guo, Xuewu; Song, Hao

    2018-05-01

    Microbial fuel cell (MFC) is an eco-friendly bio-electrochemical sys-tem that uses microorganism as biocatalyst to convert biomass into electricity. Glycerol, as a waste in the biodiesel refinery processes, is an appealing substrate for MFC. Nevertheless, glycerol cannot be utilized as carbon source by well-known exoelectrogens such as Shewanella oneidensis. Herein, to generate electricity by rapidly harnessing glycerol, the authors rationally constructed a Klebsiella pneumoniae-Shewanella oneidensis microbial consortium to efficiently harvest electricity from glyc-erol, in which K. pneumoniae converted glycerol into lactate, fed to S. oneidensis as carbon source and electron donor. To improve electricity output, the authors systematically engineered the consortium in terms of carbon flux distribution and efficiency of extracellular electron transfer (EET). To direct more carbon flux to lactate biosynthesis in K. pneumoniae, the authors eliminated the ethanol pathway by knocking out the alcohol dehydrogenase gene (adhE), and enhanced lactate biosynthesis by heterologously expressing a lactate dehydrogen-ase gene (ldhD) from Lactobacillus bulgaricus and a lactate transporter gene (lldP) from Escherichia coli. To facilitate EET between S. oneidensis and anode surfaces, a biosynthetic flavins pathway from Bacillus subtilis is introduced into S. oneidensis. The author further optimized the glycerol concentration, thus S. oneidensis could be continuously fed with lactate synthesized from K. pneumoniae at a constant rate. Our glycerol-fed MFC generated a maximum power density of 19.9 mW/m 2 , significantly higher than that of the wild-type consor-tium. This work suggested that engineering microbial consortia is an effi-cient strategy to expand the spectrum of usable carbon sources and promote electricity power production in MFCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Voluntary exercise and green tea enhance the expression of genes related to energy utilization and attenuate metabolic syndrome in high fat fed mice.

    Science.gov (United States)

    Sae-Tan, Sudathip; Rogers, Connie J; Lambert, Joshua D

    2014-05-01

    Obesity and metabolic syndrome are growing public health problems. We investigated the effects of decaffeinated green tea extract (GTE) and voluntary running exercise (Ex) alone or in combination against obesity and metabolic syndrome in high fat (HF) fed C57BL/6J mice. After 16 wk, GTE + Ex treatment reduced final body mass (27.1% decrease) and total visceral fat mass (36.6% decrease) compared to HF-fed mice. GTE + Ex reduced fasting blood glucose (17% decrease), plasma insulin (65% decrease), and insulin resistance (65% decrease) compared to HF-fed mice. GTE or Ex alone had less significant effects. In the skeletal muscle, the combination of Ex and GTE increased the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (Ppargc1a), mitochondrial NADH dehydrogenase 5 (mt-Nd5), mitochondrial cytochrome b (mt-Cytb), and mitochondrial cytochrome c oxidase III (mt-Co3). An increase in hepatic expression of peroxisome proliferator-activated receptor-α (Ppara) and liver carnitine palmitoyl transferase-1α (Cpt1a) and a decrease in hepatic expression of stearoyl-CoA desaturase 1 (Scd1) mRNA was observed in GTE + Ex mice. GTE + Ex was more effective than either treatment alone in reducing diet-induced obesity. These effects are due in part to modulation of genes related to energy metabolism and de novo lipogenesis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice.

    Science.gov (United States)

    Shih, Chun-Ching; Shlau, Min-Tzong; Lin, Cheng-Hsiu; Wu, Jin-Bin

    2014-03-01

    Momordica charantia Linn. (Cucurbitaceae) fruit is commonly known as bitter melon. C57BL/6J mice were firstly divided randomly into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed a 45% high-fat (HF) diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and still on HF diet and was given orally M. charantia extract (MCE) or rosiglitazone (Rosi) or not for 4 weeks. M. charantia decreased the weights of visceral fat and caused glucose lowering. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. MCE significantly increases the hepatic protein contents of AMPK phosphorylation by 126.2-297.3% and reduces expression of phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Most importantly, MCE decreased expression of hepatic 11beta hydroxysteroid dehydroxygenase (11beta-HSD1) gene, which contributed in attenuating diabetic state. Furthermore, MCE lowered serum triglycerides (TGs) by inhibition of hepatic fatty acid synthesis by dampening sterol response element binding protein 1c and fatty acid synthase mRNA leading to reduction in TGs synthesis. This study demonstrates M. charantia ameliorates diabetic and hyperlipidemic state in HF-fed mice occurred by regulation of hepatic PEPCK, 11beta-HSD1 and AMPK phosphorylation. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Adzuki bean ameliorates hepatic lipogenesis and proinflammatory mediator expression in mice fed a high-cholesterol and high-fat diet to induce nonalcoholic fatty liver disease.

    Science.gov (United States)

    Kim, Sera; Hong, Jihye; Jeon, Raok; Kim, Hyun-Sook

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a simple steatosis, in which fat accumulates more than 5% in the liver, and regarded as most common liver diseases worldwide. Because NAFLD can be developed to severe liver disease and correlated with metabolic disease, its importance is currently emphasized. Occurrence of NAFLD is strongly related to dietary patterns and lifestyles; therefore, the suggestion of physiologically beneficial food is essential. Based on these, adzuki beans containing anthocyanin, catechin, and adzukisaponin are suggested as a health-beneficial food. Moreover, the effects of adzuki beans on metabolic improvement are not well established through the in vivo studies. Therefore, this study hypothesized that adzuki beans can alleviate lipid accumulation and oxidative stress-mediated inflammation in high-cholesterol and high-fat diet-induced NALFD mice. To demonstrate its effects, 6-week-old C57BL/6 male mice were allocated into 4 groups and fed a normal diet (ND), a high-cholesterol and high-fat diet (HCD), and HCD with 10% and 20% adzuki bean for 10 weeks. The result shows that fasting blood glucose, serum and hepatic triglyceride and cholesterol levels, and antioxidative enzyme activity ameliorated in the adzuki bean groups (P hepatic lipogenesis, such as adiponectin, AMP-activated protein kinase α, sterol regulatory element-binding protein 1c, fatty acid synthase, carnitine palmitoyltransferase 1, 3-hydroxy-3-methyl-glutaryl-CoA reductase, and apolipoprotein B, as well as proinflammatory mediators, such as tumor necrosis factor α, nuclear factor κB, and caspase-3, improved in both experimental groups (P hepatic messenger RNA expression of lipogenic and inflammatory mediators in NAFLD. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Molecular factors involved in the hypolipidemic- and insulin-sensitizing effects of a ginger (Zingiber officinale Roscoe) extract in rats fed a high-fat diet.

    Science.gov (United States)

    de Las Heras, Natalia; Valero-Muñoz, María; Martín-Fernández, Beatriz; Ballesteros, Sandra; López-Farré, Antonio; Ruiz-Roso, Baltasar; Lahera, Vicente

    2017-02-01

    Hypolipidemic and hypoglycemic properties of ginger in animal models have been reported. However, information related to the mechanisms and factors involved in the metabolic effects of ginger at a hepatic level are limited. The aim of the present study was to investigate molecular factors involved in the hypoglycemic and hypolipidemic effects of a hydroethanolic ginger extract (GE) in the liver of rats fed a high-fat diet (HFD). The study was conducted in male Wistar rats divided into the following 3 groups: (i) Rats fed a standard diet (3.5% fat), the control group; (ii) rats fed an HFD (33.5% fat); and (iii) rats fed an HFD treated with GE (250 mg·kg -1 ·day -1 ) for 5 weeks (HFD+GE). Plasma levels of glucose, insulin, lipid profile, leptin, and adiponectin were measured. Liver expression of glycerol phosphate acyltransferase (GPAT), cholesterol 7 alpha-hydroxylase, peroxisome proliferator-activated receptors (PPAR), PPARα and PPARγ, glucose transporter 2 (GLUT-2), liver X receptor, sterol regulatory element-binding protein (SREBP1c), connective tissue growth factor (CTGF), and collagen I was measured. Data were analyzed using a 1-way ANOVA, followed by a Newman-Keuls test if differences were noted. The study showed that GE improved lipid profile and attenuated the increase of plasma levels of glucose, insulin, and leptin in HFD rats. This effect was associated with a higher liver expression of PPARα, PPARγ, and GLUT-2 and an enhancement of plasma adiponectin levels. Furthermore, GE reduced liver expression of GPAT, SREBP1c, CTGF, and collagen I. The results suggest that GE might be considered as an alternative therapeutic strategy in the management of overweight and hepatic and metabolic-related alterations.

  1. Postprandial changes in methanogenic and acidogenic bacteria in the rumens of steers fed high- or low-forage diets once daily.

    OpenAIRE

    Leedle, J A; Greening, R C

    1988-01-01

    Four ruminally fistulated Hereford steers (400 kg) were fed two isocaloric diets at 1.5 x maintenance once daily in a repeated measurement crossover experiment. Postprandial changes in hydrogen-oxidizing, carbon dioxide-reducing bacterial groups were monitored. The methanogenic bacterial populations were present at densities of 4 x 10(8) to 8 x 10(8)/g of ruminal contents on either the high- or low-forage diet. Numbers remained constant postprandially on the high-forage diet but showed a dist...

  2. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice

    International Nuclear Information System (INIS)

    Tan, Min; Schmidt, Robin H.; Beier, Juliane I.; Watson, Walter H.; Zhong, Hai; States, J. Christopher; Arteel, Gavin E.

    2011-01-01

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a ‘2-hit’ paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet (± arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations. -- Highlights: ► Characterizes a mouse model of arsenic enhanced NAFLD. ► Arsenic synergistically enhances experimental fatty liver disease at concentrations that cause no overt hepatotoxicity alone. ► This effect is associated with increased inflammation.

  3. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats

    Directory of Open Access Journals (Sweden)

    Haimeur Adil

    2012-10-01

    Full Text Available Abstract Background Dietary changes are a major factor in determining cardiovascular risk. n-3 polyunsaturated fatty acids modulate the risk factors for metabolic syndrome via multiple mechanisms, including the regulation of the lipid metabolism. We therefore investigated the effect of Odontella aurita, a microalga rich in EPA, which is already used as a food supplement, on the risk factors for high-fat diet induced metabolic syndrome in rats. Methods Male Wistar rats were divided into 4 groups and were fed with a standard diet (control; with the standard diet supplemented with 3% freeze-dried O. aurita (COA; with a high-fat diet (HF; or with the high-fat diet supplemented with 3% of freeze-dried O. aurita (HFOA for 7 weeks. In this study we evaluated the impact of these different diets on the risk factors for metabolic syndrome, such as hyperlipidemia, platelet aggregation, thromboxane B2 production, and oxidative stress. Results After 7 weeks of treatment, high fat feeding had increased final body weight, glycemia, triacylglycerol, and total cholesterol levels in plasma and liver compared to the control diet. Collagen-induced platelet aggregation and basal platelet thromboxane B2 were also higher in the high-fat fed rats than in those in the control group. In the liver, oxidative stress was greater in the HF group than in the control group. O. aurita intake in HFOA-fed rats resulted in lower glycemia and lipid levels in the plasma and liver relative than in the HF group. Thus, in the HFOA group, n-3 polyunsaturated fatty acid levels in the tissues studied (plasma, liver, and platelets were higher than in the HF group. Platelet hyper-aggregability tended to decrease in HFOA-fed rats as basal platelet thromboxane B2 production decreased. Finally, O. aurita reduced oxidative stress in the liver, with lower malondialdehyde levels and increased glutathione peroxidase activity. Conclusions O. aurita is a marine diatom rich in EPA as well as in other

  4. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats.

    Science.gov (United States)

    Haimeur, Adil; Ulmann, Lionel; Mimouni, Virginie; Guéno, Frédérique; Pineau-Vincent, Fabienne; Meskini, Nadia; Tremblin, Gérard

    2012-10-31

    Dietary changes are a major factor in determining cardiovascular risk. n-3 polyunsaturated fatty acids modulate the risk factors for metabolic syndrome via multiple mechanisms, including the regulation of the lipid metabolism. We therefore investigated the effect of Odontella aurita, a microalga rich in EPA, which is already used as a food supplement, on the risk factors for high-fat diet induced metabolic syndrome in rats. Male Wistar rats were divided into 4 groups and were fed with a standard diet (control); with the standard diet supplemented with 3% freeze-dried O. aurita (COA); with a high-fat diet (HF); or with the high-fat diet supplemented with 3% of freeze-dried O. aurita (HFOA) for 7 weeks. In this study we evaluated the impact of these different diets on the risk factors for metabolic syndrome, such as hyperlipidemia, platelet aggregation, thromboxane B2 production, and oxidative stress. After 7 weeks of treatment, high fat feeding had increased final body weight, glycemia, triacylglycerol, and total cholesterol levels in plasma and liver compared to the control diet. Collagen-induced platelet aggregation and basal platelet thromboxane B2 were also higher in the high-fat fed rats than in those in the control group. In the liver, oxidative stress was greater in the HF group than in the control group. O. aurita intake in HFOA-fed rats resulted in lower glycemia and lipid levels in the plasma and liver relative than in the HF group. Thus, in the HFOA group, n-3 polyunsaturated fatty acid levels in the tissues studied (plasma, liver, and platelets) were higher than in the HF group. Platelet hyper-aggregability tended to decrease in HFOA-fed rats as basal platelet thromboxane B2 production decreased. Finally, O. aurita reduced oxidative stress in the liver, with lower malondialdehyde levels and increased glutathione peroxidase activity. O. aurita is a marine diatom rich in EPA as well as in other bioactive molecules, such as pigments. The synergistic effect

  5. Supplementary heat-killed Lactobacillus reuteri GMNL-263 ameliorates hyperlipidaemic and cardiac apoptosis in high-fat diet-fed hamsters to maintain cardiovascular function.

    Science.gov (United States)

    Ting, Wei-Jen; Kuo, Wei-Wen; Kuo, Chia-Hua; Yeh, Yu-Lan; Shen, Chia-Yao; Chen, Ya-Hui; Ho, Tsung-Jung; Viswanadha, Vijaya Padma; Chen, Yi-Hsing; Huang, Chih-Yang

    2015-09-14

    Obesity and hyperlipidaemia increase the risk of CVD. Some strains of probiotics have been suggested to have potential applications in cardiovascular health by lowering serum LDL-cholesterol. In this work, high-fat diet-induced hyperlipidaemia in hamsters was treated with different doses (5×108 and 2·5×109 cells/kg per d) of heat-killed Lactobacillus reuteri GMNL-263 (Lr263) by oral gavage for 8 weeks. The serum lipid profile analysis showed that LDL-cholesterol and plasma malondialdehyde (P-MDA) were reduced in the GMNL-263 5×108 cells/kg per d treatment group. Total cholesterol and P-MDA were reduced in the GMNL-263 2·5×109 cells/kg per d treatment group. In terms of heart function, the GMNL-263 2·5×109 cells/kg per d treatments improved the ejection fraction from 85·71 to 91·81 % and fractional shortening from 46·93 to 57·92 % in the high-fat diet-fed hamster hearts. Moreover, the GMNL-263-treated, high-fat diet-fed hamster hearts exhibited reduced Fas-induced myocardial apoptosis and a reactivated IGF1R/PI3K/Akt cell survival pathway. Interestingly, the GMNL-263 treatments also enhanced the heat-shock protein 27 expression in a dose-dependent manner, but the mechanism for this increase remains unclear. In conclusion, supplementary heat-killed L. reuteri GMNL-263 can slightly reduce serum cholesterol. The anti-hyperlipidaemia effects of GMNL-263 may reactivate the IGF1R/PI3K/Akt cell survival pathway and reduce Fas-induced myocardial apoptosis in high-fat diet-fed hamster hearts.

  6. Antidiabetic and Antihyperlipidemic Effects of Clitocybe nuda on Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Mei-Hsing Chen

    2014-01-01

    Full Text Available The objective of this study was to evaluate the antihyperlipidemic and antihyperglycemic effects and mechanism of the extract of Clitocybe nuda (CNE, in high-fat- (HF- fed mice. C57BL/6J was randomly divided into two groups: the control (CON group was fed with a low-fat diet, whereas the experimental group was fed with a HF diet for 8 weeks. Then, the HF group was subdivided into five groups and was given orally CNE (including C1: 0.2, C2: 0.5, and C3: 1.0 g/kg/day extracts or rosiglitazone (Rosi or vehicle for 4 weeks. CNE effectively prevented HF-diet-induced increases in the levels of blood glucose, triglyceride, insulin (P<0.001, P<0.01, P<0.05, resp. and attenuated insulin resistance. By treatment with CNE, body weight gain, weights of white adipose tissue (WAT and hepatic triacylglycerol content were reduced; moreover, adipocytes in the visceral depots showed a reduction in size. By treatment with CNE, the protein contents of glucose transporter 4 (GLUT4 were significantly increased in C3-treated group in the skeletal muscle. Furthermore, CNE reduces the hepatic expression of glucose-6-phosphatase (G6Pase and glucose production. CNE significantly increases protein contents of phospho-AMP-activated protein kinase (AMPK in the skeletal muscle and adipose and liver tissues. Therefore, it is possible that the activation of AMPK by CNE leads to diminished gluconeogenesis in the liver and enhanced glucose uptake in skeletal muscle. It is shown that CNE exhibits hypolipidemic effect in HF-fed mice by increasing ATGL expression, which is known to help triglyceride to hydrolyze. Moreover, antidiabetic properties of CNE occurred as a result of decreased hepatic glucose production via G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic states by CNE in HF-fed mice occurred by regulation of GLUT4, G6Pase, ATGL, and AMPK phosphorylation.

  7. Carrot Juice Administration Decreases Liver Stearoyl-CoA Desaturase 1 and Improves Docosahexaenoic Acid Levels, but Not Steatosis in High Fructose Diet-Fed Weanling Wistar Rats.

    Science.gov (United States)

    Mahesh, Malleswarapu; Bharathi, Munugala; Reddy, Mooli Raja Gopal; Kumar, Manchiryala Sravan; Putcha, Uday Kumar; Vajreswari, Ayyalasomayajula; Jeyakumar, Shanmugam M

    2016-09-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases associated with an altered lifestyle, besides genetic factors. The control and management of NAFLD mostly depend on lifestyle modifications, due to the lack of a specific therapeutic approach. In this context, we assessed the effect of carrot juice on the development of high fructose-induced hepatic steatosis. For this purpose, male weanling Wistar rats were divided into 4 groups, fed either a control (Con) or high fructose (HFr) diet of AIN93G composition, with or without carrot juice (CJ) for 8 weeks. At the end of the experimental period, plasma biochemical markers, such as triglycerides, alanine aminotransferase, and β-hydroxy butyrate levels were comparable among the 4 groups. Although, the liver injury marker, aspartate aminotransferase, levels in plasma showed a reduction, hepatic triglycerides levels were not significantly reduced by carrot juice ingestion in the HFr diet-fed rats (HFr-CJ). On the other hand, the key triglyceride synthesis pathway enzyme, hepatic stearoyl-CoA desaturase 1 (SCD1), expression at mRNA level was augmented by carrot juice ingestion, while their protein levels showed a significant reduction, which corroborated with decreased monounsaturated fatty acids (MUFA), particularly palmitoleic (C16:1) and oleic (C18:1) acids. Notably, it also improved the long chain n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA; C22:6) content of the liver in HFr-CJ. In conclusion, carrot juice ingestion decreased the SCD1-mediated production of MUFA and improved DHA levels in liver, under high fructose diet-fed conditions. However, these changes did not significantly lower the hepatic triglyceride levels.

  8. Effects of black adzuki bean (Vigna angularis, Geomguseul extract on body composition and hypothalamic neuropeptide expression in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Mina Kim

    2015-10-01

    Full Text Available Background: Obesity is often considered to result from either excessive food intake or insufficient physical activity. Adzuki beans have been evaluated as potential remedies for various health conditions, and recent studies have reported their effects on the regulation of lipid metabolism, but it remains to be determined whether they may be effective in overcoming obesity by regulating appetite and satiety. Objective: This study investigated the effect of black adzuki bean (BAB extract on body composition and hypothalamic neuropeptide expression in Sprague Dawley rats (Rattus norvegicus fed a high-fat diet. Design: The rats were fed for 8 weeks with a control diet containing 10 kcal% from fat (CD, a high-fat diet containing 60 kcal% from fat (HD, or a high-fat diet with 1% or 2% freeze-dried ethanolic extract powder of BAB (BAB-1 and BAB-2. Results: The body weights and epididymal fat weights were significantly reduced and the serum lipid profiles were improved in the group fed the diet containing BAB compared to the HD group. The expression of AGRP mRNA significantly decreased in the BAB groups, and treatment with BAB-2 resulted in a marked induction of the mRNA expression of POMC and CART, which are anorexigenic neuropeptides that suppress food intake. Furthermore, mRNA expression levels of ObRb, a gene related to leptin sensitivity in the hypothalamus, were significantly higher in the BAB groups than in the HD group. Conclusions: These results suggest that supplementation with BAB has a significant effect on body weight via regulation of hypothalamic neuropeptides.

  9. Polyphenolic compounds of red wine: relationship with the antioxidant properties and effects on the metabolic syndrome induced in high-fructose fed rats

    Directory of Open Access Journals (Sweden)

    D. Di Majo

    2009-01-01

    Full Text Available Epidemiologists have observed that a diet rich in polyphenolic compounds may provide a positive effects due to their antioxidant properties. Red wine is an excellent source of polyphenolic compounds. Objective of this work is a review of the polyphenolic compounds of red wine. The first study evaluates the antioxidant properties of Sicilian red wines in relationship with their polyphenolic composition; the second investigates the corrective offects of some phenolic molecules on the metabolic syndrome induced in high-fructose fed rats.

  10. Determination of nitrous oxide and dinitrogen pentoxide concentrations in the output of air-fed ozone generators of high power density

    International Nuclear Information System (INIS)

    Kogelschatz, U.; Baessler, P.

    1987-01-01

    Infrared absorption spectroscopy is utilized to identify and measure different nitrogen oxide species in the output of air-fed ozone generators. The concentrations of nitrous oxide (N 2 O) and dinitrogen pentoxide (N 2 O 5 ) were determined over a wide parameter range of modern high power medium-frequency ozone generators. With a typical ozonation dose of 1 mg ozone per liter of drinking water, less than 10 μ N 2 O and about 20 μ N 2 O 5 are introduced into one liter of drinking water

  11. Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague–Dawley rats

    Science.gov (United States)

    Heden, Timothy D.; Morris, E. Matthew; Kearney, Monica L.; Liu, Tzu-Wen; Park, Young-min; Kanaley, Jill A.; Thyfault, John P.

    2015-01-01

    The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague–Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ~27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ~39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h−1) than in LF- (7.60 ± 0.57 mmol·h−1) fed animals. Hepatic TAG content was ~2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g−1 tissue) than in LF- (0.50 ± 0.16 nmol·g−1 tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression. PMID:24669989

  12. Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague-Dawley rats.

    Science.gov (United States)

    Heden, Timothy D; Morris, E Matthew; Kearney, Monica L; Liu, Tzu-Wen; Park, Young-Min; Kanaley, Jill A; Thyfault, John P

    2014-04-01

    The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague-Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ∼27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ∼39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h(-1)) than in LF- (7.60 ± 0.57 mmol·h(-1)) fed animals. Hepatic TAG content was ∼2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g(-1) tissue) than in LF- (0.50 ± 0.16 nmol·g(-1) tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression.

  13. Effect of concentrate feeder design on performance, eating and animal behavior, welfare, ruminal health, and carcass quality in Holstein bulls fed high-concentrate diets.

    Science.gov (United States)

    Verdú, M; Bach, A; Devant, M

    2015-06-01

    A total of 240 Holstein bulls (121 ± 2.0 kg initial BW; 99 ± 1.0 d of age), from 2 consecutive fattening cycles, were randomly allocated in 1 of 6 pens and assigned to 1 of the 3 treatments consisting of different concentrate feeder designs: a control feeder with 4 feeding spaces (CF), a feeder with less concentrate capacity (CFL), and a single-space feeder with lateral protections (SF). Each pen had a straw feeder and a drinker. All animals were fed a high-concentrate diet for ad libitum intake. Concentrate consumption was recorded daily using a computerized feeder, straw consumption was recorded weekly, and BW was recorded every 14 d. Animal behavior was registered on d 1, 3, 5, 8, and 14 and every 28 d by scan sampling. Eating behavior at concentrate feeders was filmed on d 12, 125, and 206. On d 7, 120, and 204, samples of rumen contents were collected for measurement of pH and VFA and blood samples were obtained to analyze NEFA, haptoglobin, glucose, and insulin. Animals were slaughtered after 223 d, and HCW and lesions of the rumen wall and liver were recorded. The accumulative concentrate consumption per animal tended (P = 0.09) to be greater with CF than with CFL and SF. Also, CV of concentrate consumption was greater (P carcass data. Also, no differences among treatments in rumen wall evaluation and liver abscesses were observed. At 7 and 204 d of study, SF bulls had greater (P animal welfare in Holstein bulls fed high-concentrate diets. However, at the beginning, there was evidence that animals fed using SF had problems with adaptation.

  14. Krill protein hydrolysate reduces plasma triacylglycerol level with concurrent increase in plasma bile acid level and hepatic fatty acid catabolism in high-fat fed mice

    Directory of Open Access Journals (Sweden)

    Marie S. Ramsvik

    2013-11-01

    Full Text Available Background: Krill powder, consisting of both lipids and proteins, has been reported to modulate hepatic lipid catabolism in animals. Fish protein hydrolysate diets have also been reported to affect lipid metabolism and to elevate bile acid (BA level in plasma. BA interacts with a number of nuclear receptors and thus affects a variety of signaling pathways, including very low density lipoprotein (VLDL secretion. The aim of the present study was to investigate whether a krill protein hydrolysate (KPH could affect lipid and BA metabolism in mice. Method: C57BL/6 mice were fed a high-fat (21%, w/w diet containing 20% crude protein (w/w as casein (control group or KPH for 6 weeks. Lipids and fatty acid composition were measured from plasma, enzyme activity and gene expression were analyzed from liver samples, and BA was measured from plasma. Results: The effect of dietary treatment with KPH resulted in reduced levels of plasma triacylglycerols (TAG and non-esterified fatty acids (NEFAs. The KPH treated mice had also a marked increased plasma BA concentration. The increased plasma BA level was associated with induction of genes related to membrane canalicular exporter proteins (Abcc2, Abcb4 and to BA exporters to blood (Abcc3 and Abcc4. Of note, we observed a 2-fold increased nuclear farnesoid X receptor (Fxr mRNA levels in the liver of mice fed KPH. We also observed increased activity of the nuclear peroxiosme proliferator-activated receptor alpha (PPARα target gene carnitine plamitoyltransferase 2 (CPT-2. Conclusion: The KPH diet showed to influence lipid and BA metabolism in high-fat fed mice. Moreover, increased mitochondrial fatty acid oxidation and elevation of BA concentration may regulate the plasma level of TAGs and NEFAs.

  15. Short communication: Effect of the feed presentation form on the intake pattern, productive traits and rumen pH of beef cattle fed high concentrate diets

    Directory of Open Access Journals (Sweden)

    Antonio Gimeno

    2014-10-01

    Full Text Available Nutritional disorders like ruminal acidosis are common in Spanish beef production system, in which animals are fed diets with a high content in starch. This experiment studied the effect of feed presentation form (concentrate and straw offered separately, CD, or mixed in form of briquettes, BR on the pattern of intake, growth and rumen pH of beef cattle fed high concentrate diets. The experiment was performed with 40 Holstein male calves, 32 of them for determining feed intake pattern and productive rates, and the remaining 8, which were previously provided with a ruminal cannula, to monitor rumen pH in two 21-day consecutive periods following a change-over design. Animals fed BR reduced feed intake rate during the first hour after feeding (18.6 vs. 24.0% of daily intake p<0.001, but this diet promoted a lower rumen pH at all sampling times compared with CD (daily average of 5.98 vs. 6.33; p<0.001 and tended to promote a lower total feed intake (7.08 vs. 9.77 kg DM/d; p<0.001 and daily weight gain (1.43 vs. 1.76 kg/d; p=0.056. Offering the concentrate and the straw mixed in form of briquettes is not useful to prevent ruminal acidosis and improve growth, probably due to both a reduced particle size of straw and avoided self-regulation of straw intake along the day.

  16. Cannabinoid receptor 2 agonist attenuates pain related behavior in rats with chronic alcohol/high fat diet induced pancreatitis.

    Science.gov (United States)

    Zhang, Liping; Kline, Robert H; McNearney, Terry A; Johnson, Michael P; Westlund, Karin N

    2014-11-17

    Chronic Pancreatitis (CP) is a complex and multifactorial syndrome. Many contributing factors result in development of dysfunctional pain in a significant number of patients. Drugs developed to treat a variety of pain states fall short of providing effective analgesia for patients with chronic pancreatitis, often providing minimal to partial pain relief over time with significant side effects. Recently, availability of selective pharmacological tools has enabled great advances in our knowledge of the role of the cannabinoid receptors in pathophysiology. In particular, cannabinoid receptor 2 (CB2) has emerged as an attractive target for management of chronic pain, as demonstrated in several studies with inflammatory and neuropathic preclinical pain models. In this study, the analgesic efficacy of a novel, highly selective CB2 receptor agonist, LY3038404 HCl, is investigated in a chronic pancreatitis pain model, induced with an alcohol/high fat (AHF) diet. Rats fed the AHF diet developed visceral pain-like behaviors detectable by week 3 and reached a maximum at week 5 that persists as long as the diet is maintained. Rats with AHF induced chronic pancreatitis were treated with LY3038404 HCl (10 mg/kg, orally, twice a day for 9 days). The treated animals demonstrated significantly alleviated pain related behaviors after 3 days of dosing, including increased paw withdrawal thresholds (PWT), prolonged abdominal withdrawal latencies (ABWL), and decreased nocifensive responses to noxious 44°C hotplate stimuli. Terminal histological analysis of pancreatic tissue sections from the AHF chronic pancreatitis animals demonstrated extensive injury, including a global pancreatic gland degeneration (cellular atrophy), vacuolization (fat deposition), and fibrosis. After the LY3038404 HCl treatment, pancreatic tissue was significantly protected from severe damage and fibrosis. LY3038404 HCl affected neither open field exploratory behaviors nor dark/light box preferences as measures

  17. High prevalence of autoimmune urticaria in children with chronic urticaria

    DEFF Research Database (Denmark)

    Brunetti, Luigia; Francavilla, Ruggiero; Miniello, Vito L

    2004-01-01

    The etiology of chronic urticaria (CU) in childhood often remains unrecognized. Recently, in adults it has been shown that approximately 40% of patients with CU have autoimmune urticaria (AU); however, no data are available in children.......The etiology of chronic urticaria (CU) in childhood often remains unrecognized. Recently, in adults it has been shown that approximately 40% of patients with CU have autoimmune urticaria (AU); however, no data are available in children....

  18. Characteristics of carcass and of non-carcass components of lambs and hoggets fed high-concentrate corn or sorghum diets

    Directory of Open Access Journals (Sweden)

    Rafael Sanches Venturini

    Full Text Available ABSTRACT The objective of this study was to evaluate the characteristics of carcass and non-carcass components of lambs and hoggets finished in the feedlot with high-concentrate corn or sorghum grain-based diets. Thirty-two animals were finished, comprising 16 lambs (milk teeth and 16 hoggets (two teeth, which were distributed in a completely randomized design in a 2 × 2 factorial arrangement (two sheep categories × two grains. For the variables final live weight, live weight at slaughter, hot carcass weight, cold carcass weight, hot carcass yield, cold carcass yield, carcass compactness index, subjective color, loin-eye area, fasting losses, external organs, internal organs, and for the weights, in kilograms, of neck, shoulder, ribs, and leg, there was a significant difference between categories. In the variables studied for the high-concentrate diets, significant differences were found for the ribs, expressed in relative values. Lambs have much higher fasting losses, a greater proportion of internal organs, and lighter-colored meat compared with hoggets. Hot and cold carcass yields, meat subjective color, and percentage of ribs are higher in feedlot-finished lambs and hoggets fed high-concentrate sorghum-based diets compared with those fed corn-based diets.

  19. Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers.

    Science.gov (United States)

    Zhao, Xuebing; Dong, Lei; Chen, Liang; Liu, Dehua

    2013-05-01

    Formiline pretreatment pertains to a biomass fractionation process. In the present work, Formiline-pretreated sugarcane bagasse was hydrolyzed with cellulases by batch and multi-step fed-batch processes at 20% solid loading. For wet pulp, after 144 h incubation with cellulase loading of 10 FPU/g dry solid, fed-batch process obtained ~150 g/L glucose and ~80% glucan conversion, while batch process obtained ~130 g/L glucose with corresponding ~70% glucan conversion. Solid loading could be further increased to 30% for the acetone-dried pulp. By fed-batch hydrolysis of the dried pulp in pH 4.8 buffer solution, glucose concentration could be 247.3±1.6 g/L with corresponding 86.1±0.6% glucan conversion. The enzymatic hydrolyzates could be well converted to ethanol by a subsequent fermentation using Saccharomices cerevisiae with ethanol titer of 60-70 g/L. Batch and fed-batch SSF indicated that Formiline-pretreated substrate showed excellent fermentability. The final ethanol concentration was 80 g/L with corresponding 82.7% of theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. High-level expression of a fungal pyranose oxidase in high cell-density fed-batch cultivations of Escherichia coli using lactose as inducer

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Kočanová, Marcela; Marešová, Helena; Kyslík, Pavel

    2004-01-01

    Roč. 36, - (2004), s. 61-69 ISSN 1046-5928 Institutional research plan: CEZ:AV0Z5020903 Keywords : fed-batch * lactose * inclusion bodies Subject RIV: EE - Microbiology, Virology Impact factor: 1.336, year: 2004

  1. Fatty acid composition in serum correlates with that in the liver and non-alcoholic fatty liver disease activity scores in mice fed a high-fat diet.

    Science.gov (United States)

    Wang, Xing-He; Li, Chun-Yan; Muhammad, Ishfaq; Zhang, Xiu-Ying

    2016-06-01

    In this study, we investigated the correlation between the serum fatty acid composition and hepatic steatosis, inflammation, hepatocellular ballooning scores, and liver fatty acids composition in mice fed a high-fat diet. Livers were collected for non-alcoholic fatty liver disease score analysis. Fatty acid compositions were analysed by gas chromatography. Correlations were determined by Pearson correlation coefficient. Exposed to a high-fat diet, mice developed fatty liver disease with varying severity without fibrosis. The serum fatty acid variation became more severe with prolonged exposure to a high-fat diet. This variation also correlated significantly with the variation in livers, with the types of fatty acids corresponding to liver steatosis, inflammation, and hepatocellular ballooning scores. Results of this study lead to the following hypothesis: the extent of serum fatty acid variation may be a preliminary biomarker of fatty liver disease caused by high-fat intake. Copyright © 2016. Published by Elsevier B.V.

  2. Effects of N,N-dimethylglycine sodium salt on apparent digestibility, vitamin E absorption, and serum proteins in broiler chickens fed a high- or low-fat diet.

    Science.gov (United States)

    Prola, L; Nery, J; Lauwaerts, A; Bianchi, C; Sterpone, L; De Marco, M; Pozzo, L; Schiavone, A

    2013-05-01

    The objective of this study was to assess the effect of supplementation with sodium salt of N,N-dimethylglycine (DMG-Na) on apparent digestibility (AD) in broiler chickens fed low- and high-fat diets. Twenty-eight 1-d-old broiler chickens were fed one of the dietary treatments: a low-fat diet (LF) or a high-fat diet (HF) supplemented with or without 1,000 mg/kg of DMG-Na. Body weight and feed consumption were recorded at 14 and 35 d of age. Average daily growth, daily feed intake, and feed conversion ratio were calculated. The AD of DM, organic matter (OM), CP, total fat (TF), and α-tocopheryl-acetate were assessed by 2 digestibility trials (at 18-21 and 32-35 d, respectively). Serum protein and plasma α-tocopherol concentrations were assessed at 35 d of age. Final BW, feed intake, carcass, breast, and spleen weight were higher in groups fed LF than HF diets (P = 0.048, P = 0.002, P = 0.039, P DMG-Na-unsupplemented groups (P = 0.011) for both fat levels. During the first digestibility trial (18-21 d), the AD of DM (P = 0.023), OM (P = 0.033), CP (P = 0.030), and α-tocopheryl-acetate (P = 0.036) was higher in the DMG-Na-supplemented group than control. Digestibility of total fat was increased by DMG-Na supplementation in the LF groups (P = 0.038). A trend for improvement of digestibility was observed during the second digestibility trial (32-35 d) for DM (P = 0.089), OM (P = 0.051), and CP (P = 0.063) in DMG-Na groups. Total serum proteins (and relative fractions) were positively influenced by DMG-Na supplementation both in LF and HF diets (P = 0.029). Plasma α-tocopherol concentration was higher in groups fed LF than HF diets (P < 0.001).

  3. Monensin and a blend of castor oil and cashew nut shell liquid used in a high-concentrate diet abruptly fed to Nellore cattle.

    Science.gov (United States)

    Zotti, C A; Silva, A P; Carvalho, R; Marino, C T; Rodrigues, P H M; Silva, L F P; McAllister, T A; Leme, P R

    2017-09-01

    Monensin and functional oils (FO) were supplemented to a high-concentrate diet abruptly fed to 12 ruminally cannulated Zebu steers to study their effects on rumen fermentation, blood metabolites, and , , and relative population. A randomized complete block design with repeated measures over time within 2 experimental periods of 21 d each was used. Treatments were a control (CTR; with no additives), FO (included at 400 mg/kg), and monensin included at 30 mg/kg (M30) or 40 mg/kg (M40). All steers were fed the same high-concentrate basal diet, which consisted of 92.25% concentrate. The first 60 h after transition showed a treatment and hour interaction for ruminal propionate proportion ( = 0.028), and no change in acetate molar proportion ( = 0.633), rumen pH ( = 0.370), and time the rumen pH remained below 5.6 ( = 0.242) were observed. The acetate:propionate ratio decreased ( = 0.020) when monensin was fed in both concentrations (2.30 for the M30 treatment and 2.32 for the M40 treatment) compared with when the CTR was fed (2.85), without being different when the FO (2.71) treatment was fed. Only the M30 treatment did not show pH below 5.2 (P=0.047) over the 60 h after the abrupt transition. Within the entire period, DMI ( = 0.008) and mean ruminal pH ( = 0.040) as well as molar proportions of propionate ( = 0.034) and valerate ( = 0.031) had significant interactions between treatment and day. Total VFA concentration was greater ( = 0.017) for the M30 (117.36 m) and CTR treatments (115.77 m) compared with the M40 treatment (105.02 m), without being different for the FO treatment (111.55 m). Treatments did not change feed behavior parameters. Blood HCO ( = 0.006) and total carbon dioxide ( = 0.003) were greater for the M30 (27.8 and 29.3 mmol/L, respectively) and FO treatments (28.3 and 29.7 mmol/L, respectively) compared with the CTR treatment (25.7 and 26.9 mmol/L, respectively). ( protozoa genera, the greatest ( protozoa counts were observed for the CTR treatment

  4. Effect of feed type and method of presentation on feeding behavior, intake, and growth of dairy calves fed a high level of milk.

    Science.gov (United States)

    Overvest, M A; Bergeron, R; Haley, D B; DeVries, T J

    2016-01-01

    The objective of this study was to assess the effect of different feed types and method of feed presentation in the first 12 wk of life on the feeding behavior, intake, and growth of calves fed a high milk level. Forty-eight neonatal Holstein calves were individually housed and randomly assigned to 1 of 4 treatments and fed solid feed ad libitum: silage-based total mixed ration (TMR), concentrate (CON), and chopped hay and concentrate presented in 2 manners: mixed (MIX) or separate (SEP). All calves were offered 12 L/d of acidified milk replacer (1.8 kg of dry matter) until d 38 at which time step-down weaning by 1 L/d began. At d 50 calves no longer received milk, and all calves on SEP and CON treatments were offered the MIX diet until the end of the trial, whereas TMR and MIX calves did not change feeds. Feed intakes were recorded daily, and calves were weighed twice per week. Rumination time was observed on the last 3 d of alternate weeks (wk 3, 5, 7, 9, and 11) for 1h beginning at 1500 h. Time spent feeding was determined for the last 2 d of alternate weeks. In the preweaning stage (d 1-37) average daily gain was similar for all calves (1.1 kg/d). The TMR calves had lower average daily gain than calves on the other 3 treatments during both the weaning (d 38-49; 0.2 vs. 0.7 kg/d) and postweaning (d 50-84; 0.5 vs. 1.2 kg/d) stages. This result is related to the lower dry matter intake of calves fed TMR in comparison with MIX, SEP, and CON calves in the weaning (0.2 vs. 0.5 kg/d) and postweaning (1.8 vs. 2.8 kg/d) stages. Given dry matter content of the feeds (TMR=52%, other diets=89%), the as-fed intake of the calves was similar across treatments in all 3 stages. Calves offered hay in addition to concentrate showed no difference in concentrate intake in the first 7 wk of life. Interestingly, TMR calves spent more time feeding during the postweaning stage than MIX, SEP, and CON calves (308 vs. 194 min/d) and exhibited a slower feeding rate postweaning (5.9 vs. 14

  5. Attenuation of liver pro-inflammatory responses by Zingiber officinale via inhibition of NF-kappa B activation in high-fat diet-fed rats.

    Science.gov (United States)

    Li, Xiao-Hong; McGrath, Kristine C-Y; Nammi, Srinivas; Heather, Alison K; Roufogalis, Basil D

    2012-03-01

    The aim of this study was to investigate whether treatment with a ginger (Zingiber officinale) extract of high-fat diet (HFD)-fed rats suppresses Nuclear factor-kappa B (NF-κB)-driven hepatic inflammation and to subsequently explore the molecular mechanisms in vitro. Adult male Sprague-Dawley rats were treated with an ethanolic extract of Zingiber officinale (400 mg/kg) along with a HFD for 6 weeks. Hepatic cytokine mRNA levels, cytokine protein levels and NF-κB activation were measured by real-time PCR, Western blot and an NF-κB nuclear translocation assay, respectively. In vitro, cell culture studies were carried out in human hepatocyte (HuH-7) cells by treatment with Zingiber officinale (100 μg/mL) for 24 hr prior to interleukin-1β (IL-1β, 8 ng/mL)-induced inflammation. We showed that Zingiber officinale treatment decreased cytokine gene TNFα and IL-6 expression in HFD-fed rats, which was associated with suppression of NF-κB activation. In vitro, Zingiber officinale treatment decreased NF-κB-target inflammatory gene expression of IL-6, IL-8 and serum amyloid A1 (SAA1), while it suppressed NF-κB activity, IκBα degradation and IκB kinase (IKK) activity. In conclusion, Zingiber officinale suppressed markers of hepatic inflammation in HFD-fed rats, as demonstrated by decreased hepatic cytokine gene expression and decreased NF-κB activation. The study demonstrates that the anti-inflammatory effect of Zingiber officinale occurs at least in part through the NF-κB signalling pathway. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  6. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats.

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    Full Text Available Berberine, a major pharmacological component of the Chinese herb Coptis chinensis, which was originally used to treat bacterial diarrhea, has recently been demonstrated to be clinically effective in alleviating type 2 diabetes. In this study, we revealed that berberine effectively prevented the development of obesity and insulin resistance in high-fat diet (HFD-fed rats, which showed decreased food intake. Increases in the levels of serum lipopolysaccharide-binding protein, monocyte chemoattractant protein-1, and leptin and decrease in the serum level of adiponectin corrected for body fat in HFD-fed rats were also significantly retarded by the co-administration of berberine at 100 mg/kg body weight. Bar-coded pyrosequencing of the V3 region of 16S rRNA genes revealed a significant reduction in the gut microbiota diversity of berberine-treated rats. UniFrac principal coordinates analysis revealed a marked shift of the gut microbiota structure in berberine-treated rats away from that of the controls. Redundancy analysis identified 268 berberine-responding operational taxonomic units (OTUs, most of which were essentially eliminated, whereas a few putative short-chain fatty acid (SCFA-producing bacteria, including Blautia and Allobaculum, were selectively enriched, along with elevations of fecal SCFA concentrations. Partial least square regression models based on these 268 OTUs were established (Q(2>0.6 for predicting the adiposity index, body weight, leptin and adiponectin corrected for body fat, indicating that these discrete phylotypes might have a close association with the host metabolic phenotypes. Taken together, our findings suggest that the prevention of obesity and insulin resistance by berberine in HFD-fed rats is at least partially mediated by structural modulation of the gut microbiota, which may help to alleviate inflammation by reducing the exogenous antigen load in the host and elevating SCFA levels in the intestine.

  7. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats.

    Science.gov (United States)

    Zhang, Xu; Zhao, Yufeng; Zhang, Menghui; Pang, Xiaoyan; Xu, Jia; Kang, Chaoying; Li, Meng; Zhang, Chenhong; Zhang, Zhiguo; Zhang, Yifei; Li, Xiaoying; Ning, Guang; Zhao, Liping

    2012-01-01

    Berberine, a major pharmacological component of the Chinese herb Coptis chinensis, which was originally used to treat bacterial diarrhea, has recently been demonstrated to be clinically effective in alleviating type 2 diabetes. In this study, we revealed that berberine effectively prevented the development of obesity and insulin resistance in high-fat diet (HFD)-fed rats, which showed decreased food intake. Increases in the levels of serum lipopolysaccharide-binding protein, monocyte chemoattractant protein-1, and leptin and decrease in the serum level of adiponectin corrected for body fat in HFD-fed rats were also significantly retarded by the co-administration of berberine at 100 mg/kg body weight. Bar-coded pyrosequencing of the V3 region of 16S rRNA genes revealed a significant reduction in the gut microbiota diversity of berberine-treated rats. UniFrac principal coordinates analysis revealed a marked shift of the gut microbiota structure in berberine-treated rats away from that of the controls. Redundancy analysis identified 268 berberine-responding operational taxonomic units (OTUs), most of which were essentially eliminated, whereas a few putative short-chain fatty acid (SCFA)-producing bacteria, including Blautia and Allobaculum, were selectively enriched, along with elevations of fecal SCFA concentrations. Partial least square regression models based on these 268 OTUs were established (Q(2)>0.6) for predicting the adiposity index, body weight, leptin and adiponectin corrected for body fat, indicating that these discrete phylotypes might have a close association with the host metabolic phenotypes. Taken together, our findings suggest that the prevention of obesity and insulin resistance by berberine in HFD-fed rats is at least partially mediated by structural modulation of the gut microbiota, which may help to alleviate inflammation by reducing the exogenous antigen load in the host and elevating SCFA levels in the intestine.

  8. Comparison of Antiobesity Effects Between Gochujangs Produced Using Different Koji Products and Tabasco Hot Sauce in Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Son, Hee-Kyoung; Shin, Hye-Won; Jang, Eun-Seok; Moon, Byoung-Seok; Lee, Choong-Hwan; Lee, Jae-Joon

    2018-03-01

    In this study, we compared the antiobesity effects between gochujangs prepared using different koji products and Tabasco hot sauce in rats fed a high-fat diet (HFD). Male Sprague-Dawley rats were fed HFD containing four different types of 10% gochujang powder or 0.25% commercial Tabasco sauce powder for 8 weeks. The body weight gain, liver and epididymal and mesenteric fat pad weights, serum leptin levels, and lipogenesis-related mRNA levels of HFD-gochujang supplementation groups were significantly decreased compared with those of the HFD group. In addition, gochujang supplement significantly reduced adipocyte size; hepatic triglyceride and total cholesterol levels; the occurrence of fatty liver deposits and steatosis by inhibiting lipogenesis through downregulation of fatty acid synthase, acetly-CoA carboxylase, and glucose-6-phosphate-dehydrogenase. These effects were greater in the gochujang-supplemented groups than the Tabasco hot sauce-supplemented group. The gochujang prepared by nutritious giant embryo rice koji and soybean koji was most effective in terms of antiobesity effects, compared with the other tested gochujangs. In gochujangs, the antiobesity effects are mediated by high levels of secondary metabolites such as isoflavone, soyasaponin, capsaicin, and lysophosphatidylcholine. The current results indicated that the gochujang products have the potential to reduce fat accumulation and obesity.

  9. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet.

    Science.gov (United States)

    Andriamihaja, Mireille; Davila, Anne-Marie; Eklou-Lawson, Mamy; Petit, Nathalie; Delpal, Serge; Allek, Fadhila; Blais, Anne; Delteil, Corine; Tomé, Daniel; Blachier, François

    2010-11-01

    Hyperproteic diets are used in human nutrition to obtain body weight reduction. Although increased protein ingestion results in an increased transfer of proteins from the small to the large intestine, there is little information on the consequences of the use of such diets on the composition of large intestine content and on epithelial cell morphology and metabolism. Rats were fed for 15 days with either a normoproteic (NP, 14% protein) or a hyperproteic isocaloric diet (HP, 53% protein), and absorptive colonocytes were observed by electron microscopy or isolated for enzyme activity studies. The colonic luminal content was recovered for biochemical analysis. Absorbing colonocytes were characterized by a 1.7-fold reduction in the height of the brush-border membranes (P = 0.0001) after HP diet consumption when compared with NP. This coincided in the whole colon content of HP animals with a 1.8-fold higher mass content (P = 0.0020), a 2.2-fold higher water content (P = 0.0240), a 5.2-fold higher protease activity (P = 0.0104), a 5.5-fold higher ammonia content (P = 0.0008), and a more than twofold higher propionate, valerate, isobutyrate, and isovalerate content (P hyperproteic diet ingestion causes marked changes both in the luminal environment of colonocytes and in the characteristics of these cells, demonstrating that hyperproteic diet interferes with colonocyte metabolism and morphology. Possible causal relationships between energy metabolism, reduced height of colonocyte brush-border membranes, and reduced water absorption are discussed.

  10. Expression profiles of miRNA-122 and its target CAT1 in minipigs (Sus scrofa) fed a high-cholesterol diet

    DEFF Research Database (Denmark)

    Cirera Salicio, Susanna; Birck, Malene Muusfeldt; Busk, Peter Kamp

    2010-01-01

    The Göttingen minipig is an excellent model for studying effects of dietary high-fat intake on obesity. In this study, we analyzed the expression level of microRNA-122 (miRNA-122) and its target mRNA, CAT1, in intact young male minipigs fed either high-cholesterol or standard diet for 11 wk. Mi...... with a decrease in the expression of miRNA-122, confirming the implication of this microRNA in obesity. Gene expression levels of CAT1 did not differ between groups.......RNA-122 and CAT1 are known to be important regulators of lipid metabolism. The weight of the young minipigs was monitored once a week during the feeding period; measurements of total cholesterol, triglycerides, high-density lipoproteins, and low-density lipoproteins were recorded at 4 time points (8, 14...

  11. Bovine α-Lactalbumin Hydrolysates (α-LAH Ameliorate Adipose Insulin Resistance and Inflammation in High-Fat Diet-Fed C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Jing Gao

    2018-02-01

    Full Text Available Obesity-induced adipose inflammation has been demonstrated to be a key cause of insulin resistance. Peptides derived from bovine α-lactalbumin have been shown to inhibit the activities of dipeptidyl peptidase IV (DPP-IV and angiotensin converting enzyme (ACE, scavenge 2,2′-azinobis [3-ethylbenzothiazoline-6-sulfonate] (ABTS+ radical and stimulate glucagon-like peptide-2 secretion. In the present study, the effects of bovine α-lactalbumin hydrolysates (α-LAH on adipose insulin resistance and inflammation induced by high-fat diet (HFD were investigated. The insulin resistance model was established by feeding C57BL/6J mice with HFD (60% kcal from fat for eight weeks. Then, the mice were fed with HFD and bovine α-LAH of different doses (100 mg/kg b.w., 200 mg/kg b.w. and 400 mg/kg b.w. for another 12 weeks to evaluate its protective effects against HFD-induced insulin resistance. The oral glucose tolerance test (OGTT and intraperitoneal insulin tolerance test (ipITT were conducted after intervention with α-LAH for 10 weeks and 11 weeks, respectively. Results showed that bovine α-LAH significantly reduced body weight, blood glucose, serum insulin, and HOMA-IR (homeostatic model assessment of insulin resistance levels, lowered the area-under-the-curve (AUC during OGTT and ipITT, and downregulated inflammation-related gene [tumor necrosis factor (TNF-α, interleukin (IL-6, monocyte chemoattractant protein (MCP-1] expression in adipose tissues of HFD-fed C57BL/6J mice. Furthermore, bovine α-LAH also suppressed insulin receptor substrate 1 (IRS-1 serine phosphorylation (Ser307, Ser612, enhanced protein kinase B (known as Akt phosphorylation, and inhibited the activation of inhibitor of kappaB kinase (IKK and mitogen activated protein kinase (MAPK signaling pathways in adipose tissues of HFD-fed C57BL/6J mice. These results suggested that bovine α-LAH could ameliorate adipose insulin resistance and inflammation through IKK and MAPK signaling

  12. Effects of dietary inulin, statin, and their co-treatment on hyperlipidemia, hepatic steatosis and changes in drug-metabolizing enzymes in rats fed a high-fat and high-sucrose diet

    Directory of Open Access Journals (Sweden)

    Sugatani Junko

    2012-03-01

    Full Text Available Abstract Background Rats fed a high-fat and high-sucrose (HF diet develop hepatic steatosis and hyperlipidemia. There are several reports that a change in nutritional status affects hepatic levels of drug-metabolizing enzymes. Synthetic inulin is a dietary component that completely evades glucide digestion. Supplementing a HF diet with inulin ameliorates hypertriglycemia and hepatic steatosis, but not hypercholesterolemia. This study aimed at distinguishing the effects of synthetic inulin and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor (statin, which inhibit cholesterol biosynthesis. Methods We examined effects of co-treatment with synthetic inulin (5% and fluvastatin (0, 4, and 8 mg/kg, per os on body weight, epidydimal white adipose tissue weight, serum and hepatic lipid profiles, and hepatic cytochrome P450 (CYP mRNA and protein profiles in rats fed a standard diet or a HF diet for 3 weeks. Results Treatment with the synthetic inulin (5% or fluvastatin at 4 mg/kg (lethal dose in rats fed the HF diet, 8 mg/kg ameliorated the elevation in hepatic triacylglycerol and total cholesterol levels in rats fed the HF diet. Whereas co-treatment with the inulin (5% and fluvastatin (4 mg/kg had a tendency to more strongly suppress the elevation in serum levels of very low density lipoprotein triacylglycerol than either treatment alone, no additive or synergistic effect was found in decrease in hepatic lipid levels. Hepatic levels of CYP1A1/2 and CYP2E1 mRNA and protein and methoxyresorufin O-demethylase and ethoxyresorufin O-deethylase activities were reduced in rats fed the HF diet. The synthetic inulin alleviated the reduction in hepatic levels of CYP1A1/2 and CYP2E1 mRNA and protein more strongly than fluvastatin, and no synergistic effects were observed on co-treatment. Furthermore, hepatic levels of aryl hydrocarbon receptor mRNA were decreased in rats fed the HF diet and recovered to near normal values with the intake of dietary inulin

  13. The effects of selected dietary bioflavonoid supplementation on dental caries in young rats fed a high-sucrose diet.

    Science.gov (United States)

    Wood, Nelson

    2007-12-01

    Recent evidence suggests that certain bioflavonoids reduce dental caries and cariogenic bacteria incidence. The present study evaluates two separate, but related, dietary trials -- trial 1, 0.09%, 0.18%, 0.36%, and 0.72% dietary naringenin (NAR) supplementation; and trial 2, 0.57% dietary rutin (R), quercetin (Q), and naringin (N) supplementation-on dental caries formation in 40 different male albino rats, at the expense of dextrose, for periods of 42 days. All rats were fed 40% sucrose. In dietary trial 1, rats were evaluated for dental caries, dental plaque accumulation, and saliva flow rates using oneway analysis of variance, post hoc Tukey's test, Kruskal-Wallis test, and Spearman's correlations. In dietary trial 2, rats were evaluated for occlusal dental caries only using a Kruskal-Wallis H test and analysis of variance. A 5% level of statistical significance was adopted throughout. In dietary trial 1, NAR showed a statistically significant effect on dental caries, plaque, and saliva flow rate reduction compared with the control group (P < .05-.01). An inverse dose-dependent relationship was established among the NAR experimental groups and control group. Dietary NAR supplementation significantly reduced dental caries formation, possibly because of reduced dental plaque accumulation. In dietary trial 2, statistically significant reductions in occlusal caries were observed for R, Q, and N in the maxillary molars and for Q and N in the mandibular molars compared with the control group (P < .05). Significant associations were observed among the experimental groups and maxillary (P < .05) and mandibular (P < .01) occlusal dental caries. Hence, selected bioflavonoids may show promise as an alternative means of reducing dental caries.

  14. Effects of chocolate supplementation on metabolic and cardiovascular parameters in ApoE3L mice fed a high-cholesterol atherogenic diet.

    Science.gov (United States)

    Yakala, Gopala K; Wielinga, Peter Y; Suarez, Manuel; Bunschoten, Annelies; van Golde, Jolanda M; Arola, Lluis; Keijer, Jaap; Kleemann, Robert; Kooistra, Teake; Heeringa, Peter

    2013-11-01

    Dietary intake of cocoa and/or chocolate has been suggested to exhibit protective cardiovascular effects although this is still controversial. The aim of this study was to investigate the effects of chocolate supplementation on metabolic and cardiovascular parameters. Four groups of ApoE*3Leiden mice were exposed to the following diet regimens. Group 1: cholesterol-free control diet (CO). Group 2: high-dose (1.0% w/w) control cholesterol (CC). Group 3: CC supplemented chocolate A (CCA) and Group 4: CC supplemented chocolate B (CCB). Both chocolates differed in polyphenol and fiber content, CCA had a relatively high-polyphenol and low-fiber content compared to CCB. Mice fed a high-cholesterol diet showed increased plasma-cholesterol and developed atherosclerosis. Both chocolate treatments, particularly CCA, further increased plasma-cholesterol and increased atherosclerotic plaque formation. Moreover, compared to mice fed a high-cholesterol diet, both chocolate-treated groups displayed increased liver injury. Mice on high-cholesterol diet had elevated plasma levels of sVCAM-1, sE-selectin and SAA, which was further increased in the CCB group. Similar effects were observed for renal inflammation markers. The two chocolate preparations showed unfavorable, but different effects on cardiometabolic health in E3L mice, which dissimilarities may be related to differences in chocolate composition. We conclude that discrepancies reported on the effects of chocolate on cardiometabolic health may at least partly be due to differences in chocolate composition. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High doses of garlic extract significantly attenuated the ratio of serum LDL to HDL level in rat-fed with hypercholesterolemia diet.

    Science.gov (United States)

    Ebrahimi, Tahereh; Behdad, Behnoosh; Abbasi, Maryam Agha; Rabati, Rahman Ghaffarzadegan; Fayyaz, Amir Farshid; Behnod, Vahid; Asgari, Ali

    2015-06-20

    Hypercholesterolemia is associated with an increased risk of heart disease. In this study, we investigated the antihyperlipidemic effects of garlic (Allium sativum L.) in rat models of hypercholesterolemic. Wistar male rats were randomly divided into 4 diet groups with garlic supplementation. Male Wistar rats were fed by standard pellet diet (group I), standard diet supplemented with 4% garlic (group II), lipogenic diet (containing sunflower oil, cholesterol and ethanol) equivalent to 200 mg raw garlic/kg body weight (raw) (group III) and lipogenic diet equivalent to 400 mg raw garlic/kg body weight (raw) (group IV). Rats fed 400 g/kg garlic extract(GE), had a significantly lower concentration of serum low-density lipoprotein cholesterol (LDL-C) cholesterol and elevated HDL -C cholesterol at day 28 (P garlic supplementation (P garlic in reducing lateral side effects of hyperlipidemia. Our data demonstrate that GE has protective effects on HDL in rats with high LDL intake. Therefore, it could be used to remedy hypercholesterolemia with help reduce risk of coronary heart disease The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1834155749171141.

  16. Metabolic effects of the iodothyronine functional analogue TRC150094 on the liver and skeletal muscle of high-fat diet fed overweight rats: an integrated proteomic study.

    Science.gov (United States)

    Silvestri, Elena; Glinni, Daniela; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; de Lange, Pieter; Senese, Rosalba; Ceccarelli, Michele; Salzano, Anna Maria; Scaloni, Andrea; Lanni, Antonia; Goglia, Fernando

    2012-07-06

    A novel functional iodothyronine analogue, TRC150094, which has a much lower potency toward thyroid hormone receptor (α1/β1) activation than triiodothyronine, has been shown to be effective at reducing adiposity in rats simultaneously receiving a high-fat diet (HFD). Here, by combining metabolic, functional and proteomic analysis, we studied how the hepatic and skeletal muscle phenotypes might respond to TRC150094 treatment in HFD-fed overweight rats. Drug treatment increased both the liver and skeletal muscle mitochondrial oxidative capacities without altering mitochondrial efficiency. Coherently, in terms of individual respiratory in-gel activity, blue-native analysis revealed an increased activity of complex V in the liver and of complexes II and V in tibialis muscle in TCR150094-treated animals. Subsequently, the identification of differentially expressed proteins and the analysis of their interrelations gave an integrated view of the phenotypic/metabolic adaptations occurring in the liver and muscle proteomes during drug treatment. TRC150094 significantly altered the expression of several proteins involved in key liver metabolic pathways, including amino acid and nitrogen metabolism, and fructose and mannose metabolism. The canonical pathways most strongly influenced by TRC150094 in tibialis muscle included glycolysis and gluconeogenesis, amino acid, fructose and mannose metabolism, and cell signaling. The phenotypic/metabolic influence of TRC150094 on the liver and skeletal muscle of HFD-fed overweight rats suggests the potential clinical application of this iodothyronine analogue in ameliorating metabolic risk parameters altered by diet regimens.

  17. Açai (Euterpe oleracea Mart. Upregulates Paraoxonase 1 Gene Expression and Activity with Concomitant Reduction of Hepatic Steatosis in High-Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Renata Rebeca Pereira

    2016-01-01

    Full Text Available Açai (Euterpe oleracea Mart., a fruit from the Amazon region, has emerged as a promising source of polyphenols. Açai consumption has been increasing owing to ascribed health benefits and antioxidant properties; however, its effects on hepatic injury are limited. In this study, we evaluated the antioxidant effect of filtered açai pulp on the expression of paraoxonase (PON isoforms and PON1 activity in rats with nonalcoholic fatty liver disease (NAFLD. The rats were fed a standard AIN-93M (control diet or a high-fat (HF diet containing 25% soy oil and 1% cholesterol with or without açai pulp (2 g/day for 6 weeks. Our results show that açai pulp prevented low-density lipoprotein (LDL oxidation, increased serum and hepatic PON1 activity, and upregulated the expression of PON1 and ApoA-I in the liver. In HF diet-fed rats, treatment with açai pulp attenuated liver damage, reducing fat infiltration and triglyceride (TG content. In rats receiving açai, increased serum PON1 activity was correlated with a reduction in hepatic steatosis and hepatic injury. These findings suggest the use of açai as a potential therapy for liver injuries, supporting the idea that dietary antioxidants are a promising approach to enhance the defensive systems against oxidative stress.

  18. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Si, Hongwei; Liu, Dongmin; Bassaganya-Riera, Josep

    2007-02-01

    Despite their efficacy in improving insulin sensitivity, thiazolidinediones (TZDs) are associated with a number of side effects (i.e. weight gain, hepatotoxicity, congestive heart failure) that have limited their use by millions of diabetic patients. We have investigated whether abscisic acid (ABA), a naturally occurring phytochemical with structural similarities to TZDs, could be used as an alternative to TZDs to improve glucose homeostasis. We first examined whether ABA, similar to TZDs, activates PPARgamma in vitro. We next determined the lowest effective dose of dietary ABA (100 mg/kg) and assessed its effect on glucose tolerance, obesity-related inflammation, and mRNA expression of PPARgamma and its responsive genes in white adipose tissue (WAT) of db/db mice fed high-fat diets. We found that ABA induced transactivation of PPARgamma in 3T3-L1 pre-adipocytes in vitro. Dietary ABA-supplementation for 36 days decreased fasting blood glucose concentrations, ameliorated glucose tolerance, and increased mRNA expression of PPARgamma and its responsive genes (i.e., adiponectin, aP2, and CD36) in WAT. We also found that adipocyte hypertrophy, tumor necrosis factor-alpha (TNF-alpha) expression, and macrophage infiltration in WAT were significantly attenuated in ABA-fed mice. These findings suggest that ABA could be used as a nutritional intervention against type II diabetes and obesity-related inflammation.

  19. Quantitative deviating effects of maple syrup extract supplementation on the hepatic gene expression of mice fed a high-fat diet.

    Science.gov (United States)

    Kamei, Asuka; Watanabe, Yuki; Shinozaki, Fumika; Yasuoka, Akihito; Shimada, Kousuke; Kondo, Kaori; Ishijima, Tomoko; Toyoda, Tsudoi; Arai, Soichi; Kondo, Takashi; Abe, Keiko

    2017-02-01

    Maple syrup contains various polyphenols and we investigated the effects of a polyphenol-rich maple syrup extract (MSXH) on the physiology of mice fed a high-fat diet (HFD). The mice fed a low-fat diet (LFD), an HFD, or an HFD supplemented with 0.02% (002MSXH) or 0.05% MSXH (005MSXH) for 4 weeks. Global gene expression analysis of the liver was performed, and the differentially expressed genes were classified into three expression patterns; pattern A (LFD 002MSXH = 005MSXH, LFD > HFD 005MSXH, LFD > HFD = 002MSXH 002MSXH HFD 005MSXH). Pattern A was enriched in glycolysis, fatty acid metabolism, and folate metabolism. Pattern B was enriched in tricarboxylic acid cycle while pattern C was enriched in gluconeogenesis, cholesterol metabolism, amino acid metabolism, and endoplasmic reticulum stress-related event. Our study suggested that the effects of MSXH ingestion showed (i) dose-dependent pattern involved in energy metabolisms and (ii) reversely pattern involved in stress responses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet.

    Science.gov (United States)

    Mu, Chunlong; Yang, Yuxiang; Luo, Zhen; Guan, Leluo; Zhu, Weiyun

    2016-03-01

    A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease. © 2016 American Society for Nutrition.

  1. Trend overtime of total haemoglobin, iron metabolism and trace minerals in veal calves fed high amounts of two different solid feeds

    Directory of Open Access Journals (Sweden)

    Anna-Lisa Stefani

    2010-01-01

    Full Text Available Fifty Polish Friesian veal calves were administrated high amounts of two different solid feeds (maize grain and a mix diet containing 10% of straw and 8% of soy in addition to the traditional milk replacer diet. Compared to the mix diet, maize grain had a lower content of iron, copper and zinc and a minor fibre level. Effects of the two diets on calves’ blood haemoglobin, iron, iron metabolism parameters, copper and zinc concentrations were studied. Haemoglobin concentration resulted higher at the end of the fattening for calves fed the mix diet, as expected. Values remained, however, within ranges that allowed acceptable carcass paleness. Haematic iron, unsaturated iron binding capacity (UIBC and total iron binding capacity (TIBC levels were not significantly different between the two solid feeds. Lower copper and zinc blood concentrations resulted for calves fed the mix diet were likely due to the feed fibre interfering with the bioavailability of the two minerals, according to what happens for iron.

  2. The neonicotinoid imidachloprid shows high chronic toxicity to mayfly nymphs

    NARCIS (Netherlands)

    Roessink, I.; Merga, L.B.; Zweers, A.J.; Brink, van den P.J.

    2013-01-01

    The present study evaluated the acute and chronic toxicity of imidacloprid to a range of freshwater arthropods. Mayfly and caddisfly species were most sensitive to short-term imidacloprid exposures (10 tests), whereas the mayflies showed by far the most sensitive response to long-term exposure of

  3. High-intensity lower limb endurance training in chronic respiratory disease

    OpenAIRE

    Tanaka, Takako; Arizono, Shinichi; Hanada, Masatoshi; Senjyu, Hideaki

    2015-01-01

    High-intensity endurance training is mainly undertaken during pulmonary rehabilitation for patients with chronic respiratory disease. High-intensity endurance training is recommended in many clinical management guidelines. High-intensity endurance training involves training generally at an intensity of at 60-80% of the patient’s peak work capacity or higher. The effects of high-intensity lower limb endurance training have mostly been investigated in chronic obstructive pulmonary disease (COPD...

  4. Dietary incorporation of whey proteins and galactooligosaccharides exhibits improvement in glucose homeostasis and insulin resistance in high fat diet fed mice

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Kavadi

    2017-09-01

    Full Text Available Background: The present study was planned to investigate the effectiveness of whey protein isolate (WPI of high purity and a galactooligosaccharides (GOS preparation on glucose homeostasis and insulin resistance under high fat diet (45.47% energy from fat fed conditions in C57BL/6 mice. The mRNA expression of genes related to gluconeogenesis was also examined. Methods: Fasting blood glucose level, serum insulin & GLP-1 (ELISA were measured; HOMA-IR determined in different treatment groups. mRNA expression of gluconeogenesis genes in liver and small intestine tissues analysed by qRT-PCR. Results: Dietary incorporation of WPI/GOS alone or in combination was observed to significantly resist (p [J Complement Med Res 2017; 6(3.000: 326-332

  5. Cardiovascular and metabolic consequences of the association between chronic stress and high-fat diet in rats.

    Science.gov (United States)

    Simas, Bruna B; Nunes, Everson A; Crestani, Carlos C; Speretta, Guilherme F

    2018-05-01

    Obesity and chronic stress are considered independent risk factors for the development of cardiovascular diseases and changes in autonomic system activity. However, the cardiovascular consequences induced by the association between high-fat diet (HFD) and chronic stress are not fully understood. We hypothesized that the association between HFD and exposure to a chronic variable stress (CVS) protocol for four weeks might exacerbate the cardiovascular and metabolic disturbances in rats when compared to these factors singly. To test this hypothesis, male Wistar rats were divided into four groups: control-standard chow diet (SD; n = 8); control-HFD (n = 8); CVS-SD (n = 8); and CVS-HFD (n = 8). The CVS consisted of repeated exposure of the rats to different inescapable and unpredictable stressors (restraint tress; damp sawdust, cold, swim stress and light cycle inversion). We evaluated cardiovascular function, autonomic activity, dietary intake, adiposity and metabolism. The HFD increased body weight, adiposity and blood glucose concentration (∼15%) in both control and CVS rats. The CVS-HFD rats showed decreased insulin sensitivity (25%) compared to CVS-SD rats. The control-HFD and CVS-HFD rats presented increased intrinsic heart rate (HR) values (∼8%). CVS increased cardiac sympathetic activity (∼65%) in both SD- and HFD-fed rats. The HFD increased basal HR (∼10%). Blood pressure and baroreflex analyzes showed no differences among the experimental groups. In conclusion, the present data indicate absence of interaction on autonomic imbalance evoked by either CVS or HFD. Additionally, HFD increased HR and evoked metabolic disruptions which are independent of stress exposure.

  6. Rice bran water extract attenuates pancreatic abnormalities in high ...

    African Journals Online (AJOL)

    105 on pancreatic abnormalities in high-fat diet (HFD)-induced obese rats. Methods: Male ... initiation of these metabolic disturbances [2]. Under physiological ..... injury in the zucker diabetic fatty rat fed a chronic high- fat diet. Pancreas 2014 ...

  7. Treatment of Chronic Refractory Neuropathic Pelvic Pain with High-Frequency 10-kilohertz Spinal Cord Stimulation.

    Science.gov (United States)

    Simopoulos, Thomas; Yong, Robert J; Gill, Jatinder S

    2017-11-06

    Chronic neuropathic pelvic pain remains a recalcitrant problem in the field of pain management. Case series on application of 10 kHz spinal cord stimulation is presented. High frequency stimulation can improve chronic neuropathic pain states that are known to be mediated at the conus medullaris and offers another avenue for the treatment of these patients. © 2017 World Institute of Pain.

  8. Ursodeoxycholic acid improves insulin sensitivity and hepatic steatosis by inducing the excretion of hepatic lipids in high-fat diet-fed KK-Ay mice.

    Science.gov (United States)

    Tsuchida, Takuma; Shiraishi, Muneshige; Ohta, Tetsuya; Sakai, Kaoru; Ishii, Shinichi

    2012-07-01

    Type 2 diabetes mellitus is frequently accompanied by fatty liver/nonalcoholic fatty liver disease. Hence, accumulation of lipids in the liver is considered to be one of the risk factors for insulin resistance and metabolic syndrome. Ursodeoxycholic acid (UDCA) is widely used for the treatment of liver dysfunction. We investigated the therapeutic effects of UDCA on type 2 diabetes mellitus exacerbating hepatic steatosis and the underlying mechanisms of its action using KK-A(y) mice fed a high-fat diet. KK-A(y) mice were prefed a high-fat diet; and 50, 150, and 450 mg/kg of UDCA was orally administered for 2 or 3 weeks. Administration of UDCA decreased fasting hyperglycemia and hyperinsulinemia. Hyperinsulinemic-euglycemic clamp analyses showed that UDCA improved hepatic (but not peripheral) insulin resistance. Hepatic triglyceride and cholesterol contents were significantly reduced by treatment with UDCA, although the genes involved in the synthesis of fatty acids and cholesterol, including fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, were upregulated. Fecal levels of bile acids, neutral sterols, fatty acids, and phospholipids were significantly increased by UDCA treatment. The gene expression levels and protein phosphorylation levels of endoplasmic reticulum stress markers were not changed by UDCA treatment. These results indicate that UDCA ameliorates hyperglycemia and hyperinsulinemia by improving hepatic insulin resistance and steatosis in high-fat diet-fed KK-A(y) mice. Reduction of hepatic lipids might be due to their excretion in feces, followed by enhanced utilization of glucose for the synthesis of fatty acids and cholesterol. Ursodeoxycholic acid should be effective for the treatment of type 2 diabetes mellitus accompanying hepatic steatosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P renal failure by facilitating pressure transmission to the microvasculature.

  10. Effect of different exercise protocols on metabolic profiles and fatty acid metabolism in skeletal muscle in high-fat diet-fed rats.

    Science.gov (United States)

    Shen, Youqing; Xu, Xiangfeng; Yue, Kai; Xu, Guodong

    2015-05-01

    To evaluate the efficacy of mild-intensity endurance, high-intensity interval, and concurrent exercise on preventing high-fat diet-induced obesity. Male rats were divided into five groups, control diet/sedentary group, high-fat diet/sedentary, high-fat diet/endurance exercise, high-fat diet/interval exercise (HI), and high-fat diet/concurrent exercise. All exercise groups were made to exercise for 10 weeks, with matched running distances. Body weight, fat content, blood metabolites, quantitative insulin sensitivity check index (QUICKI), and adipocyte and liver lipid droplet size were assessed, and the expression of fatty acid metabolism-related genes was quantified. All exercise protocols reduced body weight, adiposity, serum triglycerides, and fasting glucose and also improved QUICKI to some extent. However, only HI prevented obesity and its associated pathologies completely. The expression of stearoyl-coenzyme A desaturase-1 was elevated in all rats fed a high-fat diet whereas carnitine palmitoyltransferase 1 (CPT1) expression was increased with exercise. Rev-erbα expression was elevated only in the HI group, which also had the highest level of CPT1 expression. The HI-induced increase in Rev-erbα and CPT1 expression was associated with the complete prevention of diet-induced obesity. Moreover, the increased caloric expenditure achieved with this protocol was preferential over other exercise regimens, and might be used to improve lipid metabolism. © 2015 The Obesity Society.

  11. Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats.

    Science.gov (United States)

    Paśko, Paweł; Zagrodzki, Paweł; Bartoń, Henryk; Chłopicka, Joanna; Gorinstein, Shela

    2010-12-01

    The effect of Chenopodium quinoa seeds on lipid profile, glucose level, protein metabolism and selected essential elements (Na, K, Ca, Mg) level was determined in high-fructose fed male Wistar rats. Fructose decreased significantly LDL [42%, pquinoa indicated, that these seeds effectively reduced serum total cholesterol [26%, pQuinoa seeds also significantly reduced the level of glucose [10%, pquinoa seeds were added into the diet the decrease of HDL level was inhibited. Quinoa seeds did not prevent any adverse effect of increasing triglyceride level caused by fructose. It was shown in this study that quinoa seeds can reduce most of the adverse effects exerted by fructose on lipid profile and glucose level.

  12. Effects of salicylic acid-induced wine rich in anthocyanins on metabolic parameters and adipose insulin signaling in high-fructose fed rats.

    Science.gov (United States)

    Rodriguez Lanzi, Cecilia; de Rosas, Inés; Perdicaro, Diahann J; Ponce, María Teresa; Martinez, Liliana; Miatello, Roberto M; Cavagnaro, Bruno; Vazquez Prieto, Marcela A

    2016-12-01

    We evaluated the effects of Syrah red wine treated with salicylic acid (RW SA) and its control red wine (RW) on metabolic parameters, systolic blood pressure and adipose tissue insulin signaling in high-fructose (F) fed rats. Grape treated with SA increased the anthocyanin (ANTs) levels in RW. F induced increased systolic blood pressure, dislipidemia and insulin resistance (HOMA:IR). F rats treated with RW significantly prevented these alterations while RW SA partially attenuated triglycerides levels and HOMA:IR without modifications in HDL cholesterol levels. F impaired the adipose tissue response to insulin. Supplementation with RW and RW SA partially attenuated these alterations. Rats supplemented with RW SA had lesser beneficial effects on metabolic alterations than control RW, while both RW and RW SA attenuated altered adipose response to insulin. More studies are necessary to deeply evaluate the effect on SA-induced RW rich in ANTs levels on metabolic alterations associated to MetS.

  13. Saponins, especially platycodin D, from Platycodon grandiflorum modulate hepatic lipogenesis in high-fat diet-fed rats and high glucose-exposed HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Pil [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Department of Pharmaceutical Engineering, International University of Korea, Jinju (Korea, Republic of); Choi, Jae Ho; Kim, Hyung Gyun; Khanal, Tilak; Song, Gye Young [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Myoung Soo [College of Agriculture and Life Sciences, Chungnam National University, Daejeon (Korea, Republic of); Lee, Hyun-Sun [Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Chung, Young Chul; Lee, Young Chun [Division of Food Science, International University of Korea, Jinju (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2013-03-01

    AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and sterol regulatory element-binding protein-1c (SREBP-1c) pathway. Saponins, particularly platycodin D, from the roots of Platycodon grandiflorum (Changkil saponins, CKS) have a variety of pharmacological properties, including antioxidant and hepatoprotective properties. The aim of this study was to investigate the effects of CKS on hepatic lipogenesis and on the expression of genes involved in lipogenesis, and the mechanisms involved. CKS attenuated fat accumulation and the induction of the lipogenic genes encoding SREBP-1c and fatty acid synthase in the livers of HFD-fed rats and in steatotic HepG2 cells. Blood biochemical analyses and histopathological examinations showed that CKS prevented liver injury. CKS and platycodin D each increased the phosphorylation of AMPK and acetyl-CoA carboxylase in HFD-fed rats and HepG2 cells. The use of specific inhibitors showed that platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells. This study demonstrates that CKS or platycodin D alone can regulate hepatic lipogenesis via an AMPK-dependent signalling pathway. - Highlights: ► CKS attenuated fat accumulation in HFD-fed rats and in steatotic HepG2 cells. ► CKS and its major component, platycodin D, inhibited the levels of SREBP-1 and FAS. ► CKS and platycodin D increased the phosphorylation of AMPK and ACC. ► Platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells.

  14. Dietary High-Oleic Acid Soybean Oil Dose Dependently Attenuates Egg Yolk Content of n-3 Polyunsaturated Fatty Acids in Laying Hens Fed Supplemental Flaxseed Oil.

    Science.gov (United States)

    Elkin, Robert G; Kukorowski, Alexandra N; Ying, Yun; Harvatine, Kevin J

    2018-02-01

    Chickens can hepatically synthesize eicosapentaenoic acid (20:5 n-3) and docosahexaenoic acid (22:6 n-3) from α-linolenic acid (ALA; 18:3 n-3); however, the process is inefficient and competitively inhibited by dietary linoleic acid (LNA; 18:2 n-6). In the present study, the influence of dietary high-oleic acid (OLA; 18:1 n-9) soybean oil (HOSO) on egg and tissue deposition of ALA and n-3 polyunsaturated fatty acids (PUFA) synthesized from dietary ALA was investigated in laying hens fed a reduced-LNA base diet supplemented with high-ALA flaxseed oil (FLAX). We hypothesized that reducing the dietary level of LNA would promote greater hepatic conversion of ALA to very long-chain (VLC; >20C) n-3 PUFA, while supplemental dietary HOSO would simultaneously further enrich eggs with OLA without influencing egg n-3 PUFA contents. Nine 51-week-old hens each were fed 0, 10, 20, or 40 g HOSO/kg diet for 12 weeks. Within each group, supplemental dietary FLAX was increased every 3 weeks from 0 to 10 to 20 to 40 g/kg diet. Compared to controls, dietary FLAX maximally enriched the total n-3 and VLC n-3 PUFA contents in egg yolk by 9.4-fold and 2.2-fold, respectively, while feeding hens 40 g HOSO/kg diet maximally attenuated the yolk deposition of ALA, VLC n-3 PUFA, and total n-3 PUFA by 37, 15, and 32%, respectively. These results suggest that dietary OLA is not neutral with regard to the overall process by which dietary ALA is absorbed, metabolized, and deposited into egg yolk, either intact or in the form of longer-chain/more unsaturated n-3 PUFA derivatives. © 2018 AOCS.

  15. Effects of Diets Differing in Composition of 18-C Fatty Acids on Adipose Tissue Thermogenic Gene Expression in Mice Fed High-Fat Diets

    Directory of Open Access Journals (Sweden)

    Sunhye Shin

    2018-02-01

    Full Text Available Dietary fatty acids play important roles in the regulation of fat accumulation or metabolic phenotype of adipocytes, either as brown or beige fat. However, a systematic comparison of effects of diets with different composition of 18-C fatty acids on browning/beiging phenotype has not been done. In this study, we compared the effects of different dietary fats, rich in specific 18-carbon fatty acids, on thermogenesis and lipid metabolism. Male C57BL/6 mice were fed a control diet containing 5.6% kcal fat from lard and 4.4% kcal fat from soybean oil (CON or high-fat diets (HFD containing 25% kcal from lard and 20% kcal fat from shea butter (stearic acid-rich fat; SHB, olive oil (oleic acid-rich oil; OO, safflower oil (linoleic acid-rich oil; SFO, or soybean oil (mixed oleic, linoleic, and α-linolenic acids; SBO ad libitum for 12 weeks, with or without a terminal 4-h norepinephrine (NE treatment. When compared to SHB, feeding OO, SFO, and SBO resulted in lower body weight gain. The OO fed group had the highest thermogenesis level, which resulted in lower body fat accumulation and improved glucose and lipid metabolism. Feeding SFO downregulated expression of lipid oxidation-related genes and upregulated expression of lipogenic genes, perhaps due to its high n-6:n-3 ratio. In general, HFD-feeding downregulated Ucp1 expression in both subcutaneous and epididymal white adipose tissue, and suppressed NE-induced Pgc1a expression in brown adipose tissue. These results suggest that the position of double bonds in dietary fatty acids, as well as the quantity of dietary fat, may have a significant effect on the regulation of oxidative and thermogenic conditions in vivo.

  16. Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein.

    Science.gov (United States)

    Bielohuby, Maximilian; Menhofer, Dominik; Kirchner, Henriette; Stoehr, Barbara J M; Müller, Timo D; Stock, Peggy; Hempel, Madlen; Stemmer, Kerstin; Pfluger, Paul T; Kienzle, Ellen; Christ, Bruno; Tschöp, Matthias H; Bidlingmaier, Martin

    2011-01-01

    Low-carbohydrate/high-fat diets (LC-HFDs) in rodent models have been implicated with both weight loss and as a therapeutic approach to treat neurological diseases. LC-HFDs are known to induce ketosis; however, systematic studies analyzing the impact of the macronutrient composition on ketosis induction and weight loss success are lacking. Male Wistar rats were pair-fed for 4 wk either a standard chow diet or one of three different LC-HFDs, which only differed in the relative abundance of fat and protein (percentages of fat/protein in dry matter: LC-75/10; LC-65/20; LC-55/30). We subsequently measured body composition by nuclear magnetic resonance (NMR), analyzed blood chemistry and urine acetone content, evaluated gene expression changes of key ketogenic and gluconeogenic genes, and measured energy expenditure (EE) and locomotor activity (LA) during the first 4 days and after 3 wk on the respective diets. Compared with chow, rats fed with LC-75/10, LC-65/20, and LC-55/30 gained significantly less body weight. Reductions in body weight were mainly due to lower lean body mass and paralleled by significantly increased fat mass. Levels of β-hydroxybutyate were significantly elevated feeding LC-75/10 and LC-65/20 but decreased in parallel to reductions in dietary fat. Acetone was about 16-fold higher with LC-75/10 only (P ketosis. LC-HFDs must be high in fat, but also low in protein contents to be clearly ketogenic. Independent of the macronutrient composition, LC-HFD-induced weight loss is not due to increased EE and LA.

  17. Eicosapentaenoic acid (EPA) vs. Docosahexaenoic acid (DHA): Effects in epididymal white adipose tissue of mice fed a high-fructose diet.

    Science.gov (United States)

    Bargut, Thereza Cristina Lonzetti; Santos, Larissa Pereira; Machado, Daiana Guimarães Lopes; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to be beneficial for many diseases, including those associated with the metabolic syndrome (e.g. insulin resistance and hypertension). Nevertheless, not only their actions are not entirely understood, but also their only effects were not yet elucidated. Therefore, we aimed to compare the effects of EPA and DHA, alone or in combination, on the epididymal white adipose tissue (WAT) metabolism in mice fed a high-fructose diet. 3-mo-old C57Bl/6 mice were fed a control diet (C) or a high-fructose diet (HFru). After three weeks on the diets, the HFru group was subdivided into four new groups for another five weeks: HFru, HFru+EPA, HFru+DHA, and HFru-EPA+DHA (n=10/group). Besides evaluating biometric and metabolic parameters of the animals, we measured the adipocyte area and performed molecular analyses (inflammation and lipolysis) in the epididymal WAT. The HFru group showed adipocyte hypertrophy, inflammation, and uncontrolled lipolysis. The treated animals showed a reversion of adipocyte hypertrophy, inhibition of inflammation with activation of anti-inflammatory mediators, and regularization of lipolysis. Overall, the beneficial effects were more marked with DHA than EPA. Although the whole-body metabolic effects were similar between EPA and DHA, DHA appeared to be the central actor in WAT metabolism, modulating pro and anti-inflammatory pathways and alleviating adipocytes abnormalities. Therefore, when considering fructose-induced adverse effects in WAT, the most prominent actions were observed with DHA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Tocotrienol rich tocomin attenuates oxidative stress and improves endothelium-dependent relaxation in aortae from rats fed a high-fat western diet

    Directory of Open Access Journals (Sweden)

    Saher F Ali

    2016-10-01

    Full Text Available We have previously reported that tocomin, a mixture high in tocotrienol content and also containing tocopherol, acutely preserves endothelial function in the presence of oxidative stress. In this study we investigated whether tocomin treatment would preserve endothelial function in aortae isolated from rats fed a high fat diet known to cause oxidative stress. Wistar hooded rats were fed a western diet (WD, 21% fat or control rat chow (SD, 6% fat for 12 weeks. Tocomin (40 mg/kg/day sc or its vehicle (peanut oil was administered for the last 4 weeks of the feeding regime. Aortae from WD rats showed an impairment of endothelium-dependent relaxation that was associated with an increased expression of the NADPH oxidase Nox2 subunit and an increase in the vascular generation of superoxide measured using L-012 chemiluminescence. The increase in vascular oxidative stress was accompanied by a decrease in basal NO release and impairment of the contribution of NO to ACh-induced relaxation. The impaired relaxation is likely contributed to by a decreased expression of eNOS, calmodulin and phosphorylated Akt and an increase in caveolin-Tocotrienol rich tocomin, which prevented the diet-induced changes in vascular function, reduced vascular superoxide production and abolished the diet-induced changes in eNOS and other protein expression. Using selective inhibitors of nitric oxide synthase (NOS, soluble guanylate cyclase (sGC and calcium activated potassium (KCa channels we demonstrated that tocomin increased NO mediated relaxation, without affecting the contribution of endothelium-dependent hyperpolarization type relaxation to the endothelium-dependent relaxation. The beneficial actions of tocomin in this diet-induced model of obesity suggests that it may have potential to be used as a therapeutic agent to prevent vascular disease in obesity.

  19. Elicited soybean (Glycine max) extract effect on improving levels of Ter-119+Cd59+ in a mouse model fed a high fat-fructose diet

    Science.gov (United States)

    Safitri, Yunita Diyah; Widyarti, Sri; Rifa'i, Muhaimin

    2017-05-01

    People who have unbalanced lifestyles and habits such as consuming high fat and sugar foods, as well as the lack of physical activity, have an increased risk of obesity and related metabolic diseases. The condition of obesity occurs due to an excess of nutrients which leads to low-grade inflammation. Inflammation induced by obesity causes unstable bone marrow homeostasis which is associated with proliferation and differentiation of Hematopoietic Stem Cells (HSCs). This study aimed to observe the erythroid progenitor (TER-119) and complement regulator (CD59) on bone marrow cells in mouse models fed a high fat-fructose diet (HFFD). This research was conducted by modeling obese mice using high fat and fructose food for 20 weeks, and then treating them with elicited soybean extract (ESE) for four weeks with several doses: low dose (78 mg/kgBB), moderate dose (104 mg/kgBB) and high dose (130 mg/kgBB). Cell TER119+CD59+ expression decreased in the HFFD group compared to the normal group. In the low, moderate and high dose group, TER119+CD59+ expression significantly increased compared to the HFFD group. These results demonstrate that soybean elicited extract can improve the hematopoietic system by increasing TER119+CD59+ expression in a high fat and fructose diet mouse model.

  20. Endometriosis: a high-risk population for major chronic diseases?

    Science.gov (United States)

    Kvaskoff, Marina; Mu, Fan; Terry, Kathryn L.; Harris, Holly R.; Poole, Elizabeth M.; Farland, Leslie; Missmer, Stacey A.

    2015-01-01

    BACKGROUND Despite an estimated prevalence of 10% in women, the etiology of endometriosis remains poorly understood. Over recent decades, endometriosis has been associated with risk of several chronic diseases, such as cancer, autoimmune diseases, asthma/atopic diseases and cardiovascular diseases. A deeper understanding of these associations is needed as they may provide new leads into the causes or consequences of endometriosis. This review summarizes the available epidemiological findings on the associations between endometriosis and other chronic diseases and discusses hypotheses for underlying mechanisms, potential sources of bias and methodological complexities. METHODS We performed a comprehensive search of the PubMed/Medline and ISI Web of Knowledge databases for all studies reporting on the associations between endometriosis and other diseases published in English through to May 2014, using numerous search terms. We additionally examined the reference lists of all identified papers to capture any additional articles that were not identified through computer searches. RESULTS We identified 21 studies on the associations between endometriosis and ovarian cancer, 14 for breast cancer, 8 for endometrial cancer, 4 for cervical cancer, 12 for cutaneous melanoma and 3 for non-Hodgkin's lymphoma, as well as 9 on the links between endometriosis and autoimmune diseases, 6 on the links with asthma and atopic diseases, and 4 on the links with cardiovascular diseases. Endometriosis patients were reported to be at higher risk of ovarian and breast cancers, cutaneous melanoma, asthma, and some autoimmune, cardiovascular and atopic diseases, and at decreased risk of cervical cancer. CONCLUSIONS Increasing evidence suggests that endometriosis patients are at higher risk of several chronic diseases. Although the underlying mechanisms are not yet understood, the available data to date suggest that endometriosis is not harmless with respects to women's long-term health. If

  1. Red Cabbage Microgreens Lower Circulating Low-Density Lipoprotein (LDL), Liver Cholesterol, and Inflammatory Cytokines in Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Huang, Haiqiu; Jiang, Xiaojing; Xiao, Zhenlei; Yu, Lu; Pham, Quynhchi; Sun, Jianghao; Chen, Pei; Yokoyama, Wallace; Yu, Liangli Lucy; Luo, Yaguang Sunny; Wang, Thomas T Y

    2016-12-07

    Cardiovascular disease (CVD) is the leading cause of death in the United States, and hypercholesterolemia is a major risk factor. Population studies, as well as animal and intervention studies, support the consumption of a variety of vegetables as a means to reduce CVD risk through modulation of hypercholesterolemia. Microgreens of a variety of vegetables and herbs have been reported to be more nutrient dense compared to their mature counterparts. However, little is known about the effectiveness of microgreens in affecting lipid and cholesterol levels. The present study used a rodent diet-induced obesity (DIO) model to address this question. C57BL/6NCr mice (n = 60, male, 5 weeks old) were randomly assigned to six feeding groups: (1) low-fat diet; (2) high-fat diet; (3) low-fat diet + 1.09% red cabbage microgreens; (4) low-fat diet + 1.66% mature red cabbage; (5) high-fat diet + 1.09% red cabbage microgreens; (6) high-fat diet + 1.66% mature red cabbage. The animals were on their respective diets for 8 weeks. We found microgreen supplementation attenuated high-fat diet induced weight gain. Moreover, supplementation with microgreens significantly lowered circulating LDL levels in animals fed the high-fat diet and reduced hepatic cholesterol ester, triacylglycerol levels, and expression of inflammatory cytokines in the liver. These data suggest that microgreens can modulate weight gain and cholesterol metabolism and may protect against CVD by preventing hypercholesterolemia.

  2. Effects of chronic ethanol intake on metabolic conversions of 14C erucic acid by the livers of rat fed with rapeseed or ground nut oil

    International Nuclear Information System (INIS)

    Lecerf, J.; Bezard, J.

    1975-01-01

    The effects of addition of ethanol to diets containing rapeseed or ground nut oil on the metabolic conversion of 14 14 C erudic and 9-10 3 H oleic acid were studied in the rat liver. Whatever the diet more 14 C than 3 H radioactivity was recovered in liver lipids 2 and 19 hours after injection of labelled fatty acids. Ethanol has little effect on this incorporation. Only small amounts of 3 H oleic acid were converted. In all cases, the metabolic conversion of erucic acid was identical: the main part of 14 C was not recovered as erucic acid but was present in other mono unsaturated fatty acids n-9:oleic acid (18:1), which was the most labelled acid, 16:1, 20:1 and nervonic acid (24:1). The amount of erucic acid converted to shorter chain fatty acids was unchanged by addition of ethanol but the alcohol increased the proportion of 14 C radioactivity recovered as nervonic acid. This latter effect was opposite to the effect of rapeseed oil diet, which consisted in a decrease in the conversion of erucic to nervonic acid. A high amount of 14 C radioactivity was recovered in the F.F.A. fraction of the liver as an unknown compound (13 and 80% of 14 C radioacitivty respectively after 2 and 19h). Its identification is presently under investigation [fr

  3. Early adaptive response of the retina to a pro-diabetogenic diet: Impairment of cone response and gene expression changes in high-fructose fed rats.

    Science.gov (United States)

    Thierry, Magalie; Pasquis, Bruno; Buteau, Bénédicte; Fourgeux, Cynthia; Dembele, Doulaye; Leclere, Laurent; Gambert-Nicot, Ségolène; Acar, Niyazi; Bron, Alain M; Creuzot-Garcher, Catherine P; Bretillon, Lionel

    2015-06-01

    The lack of plasticity of neurons to respond to dietary changes, such as high fat and high fructose diets, by modulating gene and protein expression has been associated with functional and behavioral impairments that can have detrimental consequences. The inhibition of high fat-induced rewiring of hypothalamic neurons induced obesity. Feeding rodents with high fructose is a recognized and widely used model to trigger obesity and metabolic syndrome. However the adaptive response of the retina to short term feeding with high fructose is poorly documented. We therefore aimed to characterize both the functional and gene expression changes in the neurosensory retina of Brown Norway rats fed during 3 and 8 days with a 60%-rich fructose diet (n = 16 per diet and per time point). Glucose, insulin, leptin, triacylglycerols, total cholesterol, HDL-cholesterol, LDL-cholesterol and fructosamine were quantified in plasma (n = 8 in each group). Functionality of the inner retina was studied using scotopic single flash electroretinography (n = 8 in each group) and the individual response of rod and cone photoreceptors was determined using 8.02 Hz Flicker electroretinography (n = 8 in each group). Analysis of gene expression in the neurosensory retina was performed by Affymetrix genechips, and confirmed by RT-qPCR (n = 6 in each group). Elevated glycemia (+13%), insulinemia (+83%), and leptinemia (+172%) was observed after 8 days of fructose feeding. The cone photoreceptor response was altered at day 8 in high fructose fed rats (Δ = 0.5 log unit of light stimulus intensity). Affymetrix analysis of gene expression highlighted significant modulation of the pathways of eIF2 signaling and endoplasmic reticulum stress, regulation of eIF4 and p70S6K signaling, as well as mTOR signaling and mitochondrial dysfunction. RT-qPCR analysis confirmed the down regulation of Crystallins, Npy, Nid1 and Optc genes after 3 days of fructose feeding, and up regulation of End2. Meanwhile, a trend

  4. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet-fed mice.

    Science.gov (United States)

    Santos, Izabelle Barcellos; de Bem, Graziele Freitas; Cordeiro, Viviane Silva Cristino; da Costa, Cristiane Aguiar; de Carvalho, Lenize Costa Reis Marins; da Rocha, Ana Paula Machado; da Costa, Gisele França; Ognibene, Dayane Teixeira; de Moura, Roberto Soares; Resende, Angela Castro

    2017-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. The Vitis vinifera L. grape skin extract (ACH09) is an important source of polyphenols, which are related to its antioxidant and antihyperglycemic activities. We hypothesized that ACH09 could also exert beneficial effects on metabolic disorders associated with obesity and evaluated ACH09's influence on high-fat (HF) diet-induced hepatic steatosis and insulin resistance in C57BL/6 mice. The animals were fed a standard diet (10% fat, control) or an HF diet (60% fat, HF) with or without ACH09 (200mg/[kg d]) for 12weeks. Our results showed that ACH09 reduced HF diet-induced body weight gain, prevented hepatic lipid accumulation and steatosis, and improved hyperglycemia and insulin resistance. The underlying mechanisms of these beneficial effects of ACH09 may involve the activation of hepatic insulin-signaling pathway because the expression of phosphorylated insulin receptor substrate-1, phosphatidylinositol 3-kinase, phosphorylated Akt serine/threonine kinase 1, and glucose transporter 2 was increased by ACH09 and correlated with improvement of hyperglycemia, hyperinsulinemia, and insulin resistance. ACH09 reduced the expression of the lipogenic factor sterol regulatory-element binding protein-1c in the liver and upregulated the lipolytic pathway (phosphorylated liver kinase B1/phosphorylated adenosine-monophosphate-activated protein kinase), which was associated with normal hepatic levels of triglyceride and cholesterol and prevention of steatosis. ACH09 prevented the hepatic oxidative damage in HF diet-fed mice probably by restoration of antioxidant activity. In conclusion, ACH09 protected mice from HF diet-induced obesity, insulin resistance, and hepatic steatosis. The regulation of hepatic insulin signaling pathway, lipogenesis, and oxidative stress may contribute to ACH09's protective effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Beneficial Effect of Voluntary Exercise on Experimental Colitis in Mice Fed a High-Fat Diet: The Role of Irisin, Adiponectin and Proinflammatory Biomarkers

    Science.gov (United States)

    Mazur-Bialy, Agnieszka Irena; Bilski, Jan; Wojcik, Dagmara; Brzozowski, Bartosz; Surmiak, Marcin; Hubalewska-Mazgaj, Magdalena; Chmura, Anna; Magierowski, Marcin; Magierowska, Katarzyna; Mach, Tomasz; Brzozowski, Tomasz

    2017-01-01

    Inflammatory bowel diseases (IBDs) are a heterogeneous group of disorders exhibited by two major phenotypic forms: Crohn‘s disease and ulcerative colitis. Although the aetiology of IBD is unknown, several factors coming from the adipose tissue and skeletal muscles, such as cytokines, adipokines and myokines, were suggested in the pathogenesis of ulcerative colitis; however, it has not been extensively studied whether voluntary exercise can ameliorate that disorder. We explored the effect of moderate exercise (i.e., voluntary wheel running) on the disease activity index (DAI), colonic blood flow (CBF), plasma irisin and adiponectin levels and real-time PCR expression of proinflammatory markers in mesenteric fat in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis fed a high-fat diet (HFD) compared to those on a standard chow diet (SD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant fall in CBF, some increase in colonic tissue weight and a significant increase in the plasma levels of tumour necrosis factor-alpha (TNF-α), IL-6, monocyte chemotactic protein 1 (MCP-1) and IL-13 (p Exercise significantly decreased macroscopic and microscopic colitis, substantially increased CBF and attenuated the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels while raising the plasma irisin and the plasma and WAT concentrations of adiponectin in HFD mice (p < 0.05). We conclude that: (1) experimental colitis is exacerbated in HFD mice, possibly due to a fall in colonic microcirculation and an increase in the plasma and mesenteric fat content of proinflammatory biomarkers; and (2) voluntary physical activity can attenuate the severity of colonic damage in mice fed a HFD through the release of protective irisin and restoration of plasma adiponectin. PMID:28425943

  6. Digital Cushion Fatty Acid Composition and Lipid Metabolism Gene Network Expression in Holstein Dairy Cows Fed a High-Energy Diet.

    Directory of Open Access Journals (Sweden)

    Zeeshan Muhammad Iqbal

    Full Text Available The hoof digital cushion is a complex structure composed of adipose tissue beneath the distal phalanx, i.e. axial, middle and abaxial fat pad. The major role of these fat depots is dampening compression of the corium underneath the cushion. The study aimed to determine expression of target genes and fatty acid profiles in the hoof of non-pregnant dry Holstein cows fed low (CON or high-energy (OVE diets. The middle fat pad of the hoof digital cushion was collected soon after slaughter. Despite the lack of effect on expression of the transcription regulators SREBF1 and PPARG, the expression of the lipogenic enzymes ACACA, FASN, SCD, and DGAT2 was upregulated with OVE. Along with the upregulation of G6PD and IDH1, important for NADPH synthesis during lipogenesis, and the basal glucose transporter SLC2A1, these data indicated a pro-lipogenic response in the digital cushion with OVE. The expression of the lipid droplet-associated protein PLIN2 was upregulated while expression of lipolytic enzymes (ATGL, ABDH5, and LIPE only tended to be upregulated with OVE. Therefore, OVE induced lipogenesis, lipid droplet formation, and lipolysis, albeit to different extents. Although concentration of monounsaturated fatty acids (MUFA did not differ, among the polyunsaturated fatty acids (PUFA, the concentration of 20:5n3 was lower with OVE. Among the saturated fatty acids, 20:0 concentration was greater with OVE. Although data indicated that the hoof digital cushion metabolic transcriptome is responsive to higher-energy diets, this did not translate into marked differences in the fatty acid composition. The decrease in concentration of PUFA, which could contribute to synthesis of inflammatory molecules, in OVE-fed cows indicated that feeding higher-energy diets might be detrimental for the mediation of inflammation in digital cushion. This effect could be further exacerbated by physiologic and endocrine changes during the peripartal period that favor inflammation.

  7. Metabolomic and Lipidomic Analysis of Serum Samples following Curcuma longa Extract Supplementation in High-Fructose and Saturated Fat Fed Rats.

    Science.gov (United States)

    Tranchida, Fabrice; Shintu, Laetitia; Rakotoniaina, Zo; Tchiakpe, Léopold; Deyris, Valérie; Hiol, Abel; Caldarelli, Stefano

    2015-01-01

    We explored, using nuclear magnetic resonance (NMR) metabolomics and fatty acids profiling, the effects of a common nutritional complement, Curcuma longa, at a nutritionally relevant dose with human use, administered in conjunction with an unbalanced diet. Indeed, traditional food supplements have been long used to counter metabolic impairments induced by unbalanced diets. Here, rats were fed either a standard diet, a high level of fructose and saturated fatty acid (HFS) diet, a diet common to western countries and that certainly contributes to the epidemic of insulin resistance (IR) syndrome, or a HFS diet with a Curcuma longa extract (1% of curcuminoids in the extract) for ten weeks. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) on the serum NMR profiles and fatty acid composition (determined by GC/MS) showed a clear discrimination between HFS groups and controls. This discrimination involved metabolites such as glucose, amino acids, pyruvate, creatine, phosphocholine/glycerophosphocholine, ketone bodies and glycoproteins as well as an increase of monounsaturated fatty acids (MUFAs) and a decrease of n-6 and n-3 polyunsaturated fatty acids (PUFAs). Although the administration of Curcuma longa did not prevent the observed increase of glucose, triglycerides, cholesterol and insulin levels, discriminating metabolites were observed between groups fed HFS alone or with addition of a Curcuma longa extract, namely some MUFA and n-3 PUFA, glycoproteins, glutamine, and methanol, suggesting that curcuminoids may act respectively on the fatty acid metabolism, the hexosamine biosynthesis pathway and alcohol oxidation. Curcuma longa extract supplementation appears to be beneficial in these metabolic pathways in rats. This metabolomic approach highlights important serum metabolites that could help in understanding further the metabolic mechanisms leading to IR.

  8. Responses of dietary ileal amino acid digestibility to consumption of different cultivars of potatoes and conventional fibers in grower pigs fed a high-fat basal diet.

    Science.gov (United States)

    Wang, Q; Yang, X; Leonard, S; Archbold, T; Sullivan, J A; Duncan, A M; Ma, W D L; Bizimungu, B; Murphy, A; Htoo, J K; Fan, M Z

    2012-12-01

    Whereas dietary fibers are well recognized for nutritional management of human health issues, fiber is also known to be one of the dietary factors potentially affecting digestive use of dietary proteins. As a staple food, potato (Solanum tuberosum) may be a significant dietary fiber source. The objective of this study was to examine effects of dietary supplementation of six potato cultivar-genotype samples that differ in soluble fiber content and two conventional fiber components (i.e., cellulose and guar gum) on the apparent ileal AA digestibility in pigs fed a high-fat basal diet. The basal diet was formulated as a zero-fiber negative control (NC) to contain 41.5% poultry meal, 4% casein, 15% animal fat-oil blend, 2.8% sucrose, 31% corn (Zea mays) starch, 0.50% salt, and 0.40% trace mineral-vitamin supplement with fat contributing to 47% of the dietary GE. The two fiber diets were formulated by respectively diluting the basal diet with 10% guar gum and 10% cellulose at the expense of corn starch. Six other test diets were formulated by including 8.5% guar gum and further diluting the basal diet with 25.1% one of the six cultivar-genotype samples of dehydrated potato tuber powder to contain about 10% total dietary fiber at the expense of corn starch. Eighty-one 25-kg barrows were fitted with a simple T-cannula at the distal ileum and fed the diets according to a completely randomized block design with each block lasting 28 d. Compared with the NC, the ileal digestibility of Ala, Gly, and Pro were decreased (P guar gum whereas the digestibility of Gly was reduced (P guar gum compared with the NC. Our results suggest that dietary inclusion of fiber at 10% from guar gum and cellulose and contributed by potatoes may adversely affect digestive use of dietary protein.

  9. Dietary aloe vera gel powder and extract inhibit azoxymethane- induced colorectal aberrant crypt foci in mice fed a high- fat diet.

    Science.gov (United States)

    Chihara, Takeshi; Shimpo, Kan; Kaneko, Takaaki; Beppu, Hidehiko; Higashiguchi, Takashi; Sonoda, Shigeru; Tanaka, Miyuki; Yamada, Muneo; Abe, Fumiaki

    2015-01-01

    Aloe vera gel exhibits protective effects against insulin resistance as well as lipid-lowering and anti-diabetic effects. The anti-diabetic compounds in this gel were identified as Aloe-sterols. Aloe vera gel extract (AVGE) containing Aloe-sterols has recently been produced using a new procedure. We previously reported that AVGE reduced large-sized intestinal polyps in Apc-deficient Min mice fed a high fat diet (HFD), suggesting that Aloe vera gel may protect against colorectal cancer. In the present study, we examined the effects of Aloe vera gel powder (AVGP) and AVGE on azoxymethane-induced colorectal preneoplastic aberrant crypt foci (ACF) in mice fed a HFD. Male C57BL/6J mice were given a normal diet (ND), HFD, HFD containing 0.5% carboxymethyl cellulose solution, which was used as a solvent for AVGE (HFDC), HFD containing 3% or 1% AVGP, and HFDC containing 0.0125% (H-) or 0.00375% (L-) AVGE. The number of ACF was significantly lower in mice given 3% AVGP and H-AVGE than in those given HFD or HFDC alone. Moreover, 3% AVGP, H-AVGE and L-AVGE significantly decreased the mean Ki-67 labeling index, assessed as a measure of cell proliferation in the colonic mucosa. In addition, hepatic phase II enzyme glutathione S-transferase mRNA levels were higher in the H-AVGE group than in the HFDC group. These results suggest that both AVGP and AVGE may have chemopreventive effects on colorectal carcinogenesis under the HFD condition. Furthermore, the concentration of Aloe-sterols was similar between 3% AVGP and H-AVGE, suggesting that Aloe-sterols were the main active ingredients in this experiment.

  10. High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets.

    Science.gov (United States)

    de Oliveira Sá, Guilherme; Dos Santos Neves, Vívian; de Oliveira Fraga, Shyrlei R; Souza-Mello, Vanessa; Barbosa-da-Silva, Sandra

    2017-11-15

    HIIT (high-intensity interval training) has the potential to reduce cardiometabolic risk factors, but the effects on cardiac remodeling and local RAS (renin-angiotensin system) in mice fed high-fat or high-fructose diets still need to be fully addressed. Sixty male C57BL/6 mice (12weeks old) were randomly divided into three groups, control (C), High-fat (HF), or High-fructose diet (HRU) and were monitored for eight weeks before being submitted to the HIIT. Each group was randomly assigned to 2 subgroups, one subgroup was started on a 12-week HIIT protocol (T=trained group), while the other subgroup remained non-exercised (NT=not-trained group). HIIT reduced BM and systolic blood pressure in high-fat groups, while enhanced insulin sensitivity after high-fat or high-fructose intake. Moreover, HIIT reduced left ventricular hypertrophy in HF-T and HFRU-T. Notably, HIIT modulated key factors in the local left ventricular renin-angiotensin-system (RAS): reduced protein expression of renin, ACE (Angiotensin-converting enzyme), and (Angiotensin type 2 receptor) AT2R in HF-T and HFRU-T groups but reduced (Angiotensin type 1 receptor) AT1R protein expression only in the high-fat trained group. HIIT modulated ACE2/Ang (1-7)/Mas receptor axis. ACE2 mRNA gene expression was enhanced in HF-T and HFRU-T groups, complying with elevated Mas (Mas proto-oncogene, G protein-coupled receptor) receptor mRNA gene expression after HIIT. This study shows the effectiveness of HIIT sessions in producing improvements in insulin sensitivity and mitigating LV hypertrophy, though hypertension was controlled only in the high-fat-fed submitted to HIIT protocol. Local RAS system in the heart mediates these findings and receptor MAS seems to play a pivotal role when it comes to the amelioration of cardiac structural and functional remodeling due to HIIT. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Lipid droplet-associated proteins in high-fat fed mice with the effects of voluntary running and diet change.

    Science.gov (United States)

    Rinnankoski-Tuikka, Rita; Hulmi, Juha J; Torvinen, Sira; Silvennoinen, Mika; Lehti, Maarit; Kivelä, Riikka; Reunanen, Hilkka; Kujala, Urho M; Kainulainen, Heikki

    2014-08-01

    The relation between lipid accumulation and influence of exercise on insulin sensitivity is not straightforward. A proper balance between lipid droplet synthesis, lipolysis, and oxidative metabolism would ensure low local intramyocellular fatty acid levels, thereby possibly protecting against lipotoxicity-associated insulin resistance. This study investigated whether the accumulation of triglycerides and lipid droplets in response to high availability of fatty acids after high-fat feeding would parallel the abundance of intramyocellular perilipin proteins, especially PLIN5. The effects on these variables after diet change or voluntary running exercise intervention in skeletal muscle were also investigated. During a 19-week experiment, C57BL/6J mice were studied in six different groups: low-fat diet sedentary, low-fat diet active, high-fat diet sedentary, high-fat diet active and two groups which were high-fat sedentary for nine weeks, after which divided into low-fat sedentary or low-fat active groups. Myocellular triglyceride concentration and perilipin protein expression levels were assessed. We show that, concurrently with impaired insulin sensitivity, the expression level of PLIN5 and muscular triglyceride concentration increased dramatically after high-fat diet. These adaptations were reversible after the diet change intervention with no additional effect of exercise. After high-fat diet, lipid droplets become larger providing more surface area for PLIN5. We suggest that PLIN5 is an important regulator of lipid droplet turnover in altered conditions of fatty acid supply and consumption. Imbalances in lipid droplet metabolism and turnover might lead to lipotoxicity-related insulin resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Evaluation of Beneficial Metabolic Effects of Berries in High-Fat Fed C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Lovisa Heyman

    2014-01-01

    Full Text Available Objective. The aim of the study was to screen eight species of berries for their ability to prevent obesity and metabolic abnormalities associated with type 2 diabetes. Methods. C57BL/6J mice were assigned the following diets for 13 weeks: low-fat diet, high-fat diet or high-fat diet supplemented (20% with lingonberry, blackcurrant, bilberry, raspberry, açai, crowberry, prune or blackberry. Results. The groups receiving a high-fat diet supplemented with lingonberries, blackcurrants, raspberries or bilberries gained less weight and had lower fasting insulin levels than the control group receiving high-fat diet without berries. Lingonberries, and also blackcurrants and bilberries, significantly decreased body fat content, hepatic lipid accumulation, and plasma levels of the inflammatory marker PAI-1, as well as mediated positive effects on glucose homeostasis. The group receiving açai displayed increased weight gain and developed large, steatotic livers. Quercetin glycosides were detected in the lingonberry and the blackcurrant diets. Conclusion. Lingonberries were shown to fully or partially prevent the detrimental metabolic effects induced by high-fat diet. Blackcurrants and bilberries had similar properties, but to a lower degree. We propose that the beneficial metabolic effects of lingonberries could be useful in preventing obesity and related disorders.

  13. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet.

    Science.gov (United States)

    Raubenheimer, Peter J; Nyirenda, Moffat J; Walker, Brian R

    2006-07-01

    Liver fat accumulation is proposed to link obesity and insulin resistance. To dissect the role of liver fat in the insulin resistance of diet-induced obesity, we altered liver fat using a choline-deficient diet. C57Bl/6 mice were fed a low-fat (10% of calories) or high-fat (45% of calories) diet for 8 weeks; during the final 4 weeks, diets were either choline deficient or choline supplemented. In choline replete animals, high-fat feeding induced weight gain, elevated liver triglycerides (171%), hyperinsulinemia, and glucose intolerance. Choline deficiency did not affect body or adipose depot weights but amplified liver fat accumulation with high-fat diet (281%, P insulin (from 983 +/- 175 to 433 +/- 36 pmol/l, P phosphatidylcholine synthesis and of enzymes involved in free fatty acid esterification, without affecting those of de novo lipogenesis or fatty acid oxidation. We conclude that liver fat accumulation per se does not cause insulin resistance during high-fat feeding and that choline deficiency may shunt potentially toxic free fatty acids toward innocuous storage triglyceride in the liver.

  14. Diminished metabolic responses to centrally-administered apelin-13 in diet-induced obese rats fed a high-fat diet.

    Science.gov (United States)

    Clarke, K J; Whitaker, K W; Reyes, T M

    2009-02-01

    The central administration of apelin, a recently identified adipokine, has been shown to affect food and water intake. The present study investigated whether body weight could affect an animal's response to apelin. The effects of centrally-administered apelin-13 on food and water intake, activity and metabolic rate were investigated in adult male diet-induced obese (DIO) rats fed either a high fat (32%) or control diet. Rats were administered i.c.v. apelin-13, 15-30 min prior to lights out, and food and water intake, activity and metabolic rate were assessed. Intracerebroventricular administration of apelin-13 decreased food and water intake and respiratory exchange ratio in DIO rats on the control diet, but had no effect in DIO rats on the high-fat diet. In an effort to identify potential central mechanisms explaining the observed physiological responses, the mRNA level of the apelin receptor, APJ, was examined in the hypothalamus. A high-fat diet induced an up-regulation of the expression of the receptor. Apelin induced a down-regulation of the receptor, but only in the DIO animals on the high-fat diet. In conclusion, we have demonstrated a diminished central nervous system response to apelin that is coincident with obesity.

  15. Green Tea Extract Supplementation Induces the Lipolytic Pathway, Attenuates Obesity, and Reduces Low-Grade Inflammation in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Cláudio A. Cunha

    2013-01-01

    Full Text Available The aim of this study was to evaluate the effects of green tea Camellia sinensis extract on proinflammatory molecules and lipolytic protein levels in adipose tissue of diet-induced obese mice. Animals were randomized into four groups: CW (chow diet and water; CG (chow diet and water + green tea extract; HW (high-fat diet and water; HG (high-fat diet and water + green tea extract. The mice were fed ad libitum with chow or high-fat diet and concomitantly supplemented (oral gavage with 400 mg/kg body weight/day of green tea extract (CG and HG, resp.. The treatments were performed for eight weeks. UPLC showed that in 10 mg/mL green tea extract, there were 15 μg/mg epigallocatechin, 95 μg/mg epigallocatechin gallate, 20.8 μg/mg epicatechin gallate, and 4.9 μg/mg gallocatechin gallate. Green tea administered concomitantly with a high-fat diet increased HSL, ABHD5, and perilipin in mesenteric adipose tissue, and this was associated with reduced body weight and adipose tissue gain. Further, we observed that green tea supplementation reduced inflammatory cytokine TNFα levels, as well as TLR4, MYD88, and TRAF6 proinflammatory signalling. Our results show that green tea increases the lipolytic pathway and reduces adipose tissue, and this may explain the attenuation of low-grade inflammation in obese mice.

  16. A study of anti-hyperlipidemia, hypolipedimic and anti-atherogenic activity of fruit of emblica officinalis (amla in high fat fed albino rats

    Directory of Open Access Journals (Sweden)

    Jeevangi Santoshkumar, Manjunath S, Sakhare Pranavkumar M

    2013-01-01

    Full Text Available : Emblica Officinalis (Amla, belonging to the genus, Phyllanthus emblica is widely used for medicinal purpose. Its fruits have been used traditionally as a hypolipidemic. Objectives: The present study was aimed to evaluate hypolipedimic and anti-atherogenic activity of fruit of Emblica officinalis in high fat fed albino rats. Materials and Methods: For study of anti-hyperlipidemic, hypolipidemic, and anti-atherogenic activity. 5 groups of 6 animals in each received normal saline, E. Officinalis powder, high fat diet, High fat diet plus E. Officinalis powder both and Atorvastatin respectively for 8 weeks. Hyperlipidemia was induced by feeding animals with high fat diet per orally, consisting of coconut oil and vanaspati ghee, daily ad libitum. At the end of the study, blood samples of the animals were sent for the estimation of the lipid profile and effects of test drug studied by comparing levels of Total Cholesterol, Triglycerides, HDL, LDL, and Atherogenic index. The statistical significance between groups was analysed by using one way ANOVA, followed by Dunnet’s multiple comparison test. Results: Fruit of Amla showed significant anti-hyperlipidemic, hypolipidemic, and anti-atherogenic effect. All these effects may contribute to its anti-atherogenic activity. Conclusion: Present study revealed the antihyperlipidemic, hypolipidemic, and anti-atherogenic effect of Amla fruit powder and can be safely used in the treatment of mild to moderate cases of hyperlipidemia considering its easy availability, cost effectiveness, and other beneficial effects.

  17. Antiobesity and Hypoglycaemic Effects of Aqueous Extract of Ibervillea sonorae in Mice Fed a High-Fat Diet with Fructose

    Science.gov (United States)

    Rivera-Ramírez, Fabiola; Escalona-Cardoso, Gerardo N.; Garduño-Siciliano, Leticia; Galaviz-Hernández, Carlos; Paniagua-Castro, Norma

    2011-01-01

    Obesity, type II diabetes, and hyperlipidaemia, which frequently coexist and are strongly associated with oxidative stress, increase the risk of cardiovascular disease. An increase in carbohydrate intake, especially of fructose, and a high-fat diet are both factors that contribute to the development of these metabolic disorders. In recent studies carried out in diabetic rats, authors reported that Ibervillea sonorae had hypoglycaemic activity; saponins and monoglycerides present in the plant could be responsible for the effects observed. In the present study, we determined the effects of an aqueous I. sonorae extract on a murine model of obesity and hyperglycaemia, induced by a high-calorie diet, and the relationship of these effects with hepatic oxidation. A high-fat diet over a period of 8 weeks induced weight gain in the mice and increased triglycerides and blood glucose levels. Simultaneous treatment with I. sonorae aqueous extracts, at doses of 100, 200, and 400 mg/kg, decreased triglycerides and glycaemia levels, prevented an increase in body weight in a dose-dependent manner, and decreased hepatic lipid oxidation at a dose of 200 mg/kg. These data suggest that the aqueous extract from I. sonorae root prevents obesity, dyslipidaemia, and hyperglycaemia induced by a hypercaloric diet; however, high doses may induce toxicity. PMID:22174560

  18. High rate sulfate reduction at pH 6 in a Ph-auxostat submerged membrane bioreactor fed with formate

    NARCIS (Netherlands)

    Bijmans, M.F.M.; Peeters, T.W.T.; Lens, P.N.L.; Buisman, C.J.N.

    2008-01-01

    Many industrial waste and process waters contain high concentrations of sulfate, which can be removed by sulfate-reducing bacteria (SRB). This paper reports on mesophilic (30 °C) sulfate reduction at pH 6 with formate as electron donor in a membrane bioreactor with a pH-auxostat dosing system. A

  19. Anti-oxidant and anti-hyperlipidemic activity of Hemidesmus indicus in rats fed with high-fat diet

    Directory of Open Access Journals (Sweden)

    Suganya Venkateshan

    2016-08-01

    Full Text Available Objective: Dietary changes playmajor risk roles in oxidative stress andcardiovascular disease and modulate normal metabolic function. The present study was designed to investigate the ameliorative potential of different extracts of Hemidesmus indicus to experimental high-fat diet in wistar rats, and their possible mechanism of action.  Materials and Methods: Male wistar rats were divided into 6 groups (n=6/group andfed with a standard diet (control, high-fat diet (HFD, high-fat diet supplemented with different extracts and positive control for 9 weeks. High-fat diet induced changes in average body weight andoxidative stress and elevated levels of plasma lipid profilein rats. Results: Oral administration of methanolic extract of H. indicus(200 mg/kg offered a significant dose-dependent protection against HFD-induced oxidative stress, as reflected in the levels of catalase (pConclusion: The present study revealed that the methanolic extract of H.indicus protects against oxidative stress, hyperlipidemia and liver damage.

  20. Curcumin and salsalate suppresses colonic inflammation and procarcinogenic signaling in high-fat-fed, azoxymethane-treated mice

    Science.gov (United States)

    High-fat diets (HFDs) and excess adiposity increase proinflammatory cytokines in the colon, altering gene expression in a manner that promotes the development of colorectal cancer (CRC). Thus, compounds that reduce this biochemical inflammation are potential chemopreventive agents. Curcumin (CUR), a...

  1. Antiobesity and hypoglycaemic effects of aqueous extract of Ibervillea sonorae in mice fed a high-fat diet with fructose.

    Science.gov (United States)

    Rivera-Ramírez, Fabiola; Escalona-Cardoso, Gerardo N; Garduño-Siciliano, Leticia; Galaviz-Hernández, Carlos; Paniagua-Castro, Norma

    2011-01-01

    Obesity, type II diabetes, and hyperlipidaemia, which frequently coexist and are strongly associated with oxidative stress, increase the risk of cardiovascular disease. An increase in carbohydrate intake, especially of fructose, and a high-fat diet are both factors that contribute to the development of these metabolic disorders. In recent studies carried out in diabetic rats, authors reported that Ibervillea sonorae had hypoglycaemic activity; saponins and monoglycerides present in the plant could be responsible for the effects observed. In the present study, we determined the effects of an aqueous I. sonorae extract on a murine model of obesity and hyperglycaemia, induced by a high-calorie diet, and the relationship of these effects with hepatic oxidation. A high-fat diet over a period of 8 weeks induced weight gain in the mice and increased triglycerides and blood glucose levels. Simultaneous treatment with I. sonorae aqueous extracts, at doses of 100, 200, and 400 mg/kg, decreased triglycerides and glycaemia levels, prevented an increase in body weight in a dose-dependent manner, and decreased hepatic lipid oxidation at a dose of 200 mg/kg. These data suggest that the aqueous extract from I. sonorae root prevents obesity, dyslipidaemia, and hyperglycaemia induced by a hypercaloric diet; however, high doses may induce toxicity.

  2. Antiobesity and Hypoglycaemic Effects of Aqueous Extract of Ibervillea sonorae in Mice Fed a High-Fat Diet with Fructose

    Directory of Open Access Journals (Sweden)

    Fabiola Rivera-Ramírez

    2011-01-01

    Full Text Available Obesity, type II diabetes, and hyperlipidaemia, which frequently coexist and are strongly associated with oxidative stress, increase the risk of cardiovascular disease. An increase in carbohydrate intake, especially of fructose, and a high-fat diet are both factors that contribute to the development of these metabolic disorders. In recent studies carried out in diabetic rats, authors reported that Ibervillea sonorae had hypoglycaemic activity; saponins and monoglycerides present in the plant could be responsible for the effects observed. In the present study, we determined the effects of an aqueous I. sonorae extract on a murine model of obesity and hyperglycaemia, induced by a high-calorie diet, and the relationship of these effects with hepatic oxidation. A high-fat diet over a period of 8 weeks induced weight gain in the mice and increased triglycerides and blood glucose levels. Simultaneous treatment with I. sonorae aqueous extracts, at doses of 100, 200, and 400 mg/kg, decreased triglycerides and glycaemia levels, prevented an increase in body weight in a dose-dependent manner, and decreased hepatic lipid oxidation at a dose of 200 mg/kg. These data suggest that the aqueous extract from I. sonorae root prevents obesity, dyslipidaemia, and hyperglycaemia induced by a hypercaloric diet; however, high doses may induce toxicity.

  3. Effect of different intensities of physical activity on cardiometabolic markers and vascular and cardiac function in adult rats fed with a high-fat high-carbohydrate diet

    Directory of Open Access Journals (Sweden)

    Romeo B. Batacan, Jr

    2018-01-01

    Conclusion: LIT induced positive adaptations on fat accumulation and cardiac conduction, and HIIT induced a positive effect on fat accumulation, mesenteric artery contraction, and endothelium-dependent relaxation. No other differences were observed between groups. These findings suggest that few positive health effects can be achieved through LIT and HIIT when consuming a chronic and sustained HFHC diet.

  4. High resolution computed tomography of chronic otitis media

    International Nuclear Information System (INIS)

    Shirahata, Yuichi; Tachibana, Toshiro; Fukami, Masaya; Onishi, Toshiro; Doi, Osamu

    1986-01-01

    Seventy six patients with chronic otitis media were examined by CT. Using 3 dried skulls, the epitympanum was impacted with a piece of paraffin containing of 2 % iodine, and studied with CT-scan (Toshiba 60A-30) to clarify whether or not the paraffin could produce a soft tissue density on CT which was similar to that of cholesteatoma in the middle ear. The results showed that computed tomography was excellent in demonstrating a soft tissue mass in the middle ear with inflammatory disease. When the middle ear infection with granulation tissue or cholesteatoma existed, the resulting soft tissue mass was indistinguishable. CT scanning was useful for accurate determination of location of bone destruction in the middle ear as well as of the ossicles. (author)

  5. Caffeine prevents cognitive impairment induced by chronic psychosocial stress and/or high fat-high carbohydrate diet.

    Science.gov (United States)

    Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A

    2013-01-15

    Caffeine alleviates cognitive impairment associated with a variety of health conditions. In this study, we examined the effect of caffeine treatment on chronic stress- and/or high fat-high carbohydrate Western diet (WD)-induced impairment of learning and memory in rats. Chronic psychosocial stress, WD and caffeine (0.3 g/L in drinking water) were simultaneously administered for 3 months to adult male Wistar rats. At the conclusion of the 3 months, and while the previous treatments continued, rats were tested in the radial arm water maze (RAWM) for learning, short-term and long-term memory. This procedure was applied on a daily basis to all animals for 5 consecutive days or until the animal reaches days to criterion (DTC) in the 12th learning trial and memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Chronic stress and/or WD groups caused impaired learning, which was prevented by chronic caffeine administration. In the memory tests, chronic caffeine administration also prevented memory impairment during chronic stress conditions and/or WD. Furthermore, DTC value for caffeine treated stress, WD, and stress/WD groups indicated that caffeine normalizes memory impairment in these groups. These results showed that chronic caffeine administration prevented stress and/or WD-induced impairment of spatial learning and memory. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. High-NaCl Diet Aggravates Cardiac Injury in Rats with Adenine-Induced Chronic Renal Failure and Increases Serum Troponin T Levels

    DEFF Research Database (Denmark)

    Kashioulis, Pavlos; Hammarsten, Ola; Marcussen, Niels

    2016-01-01

    AIMS: To examine the effects of 2 weeks of high-NaCl diet on left ventricular (LV) morphology and serum levels of cardiac troponin T (cTnT) in rats with adenine-induced chronic renal failure (ACRF). METHODS: Male Sprague-Dawley rats either received chow containing adenine or were pair......-fed an identical diet without adenine [controls (C)]. Approximately 10 weeks after the beginning of the study, the rats were randomized to either remain on a normal NaCl diet (NNa; 0.6%) or to be switched to high-NaCl chow (HNa; 4%) for 2 weeks, after which acute experiments were performed. RESULTS: Rats with ACRF...... showed statistically significant increases (p rats (p

  7. Antiobesity and Hypoglycaemic Effects of Aqueous Extract of Ibervillea sonorae in Mice Fed a High-Fat Diet with Fructose

    OpenAIRE

    Rivera-Ram?rez, Fabiola; Escalona-Cardoso, Gerardo N.; Gardu?o-Siciliano, Leticia; Galaviz-Hern?ndez, Carlos; Paniagua-Castro, Norma

    2011-01-01

    Obesity, type II diabetes, and hyperlipidaemia, which frequently coexist and are strongly associated with oxidative stress, increase the risk of cardiovascular disease. An increase in carbohydrate intake, especially of fructose, and a high-fat diet are both factors that contribute to the development of these metabolic disorders. In recent studies carried out in diabetic rats, authors reported that Ibervillea sonorae had hypoglycaemic activity; saponins and monoglycerides present in the plant ...

  8. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet.

    Science.gov (United States)

    Pu, Peng; Gao, Dong-Mei; Mohamed, Salim; Chen, Jing; Zhang, Jing; Zhou, Xiao-Ya; Zhou, Nai-Jing; Xie, Jing; Jiang, Hong

    2012-02-01

    Metabolic syndrome is a low-grade inflammatory state in which oxidative stress is involved. Naringin, isolated from the Citrussinensis, is a phenolic compound with anti-oxidative and anti-inflammatory activities. The aim of this study was to explore the effects of naringin on metabolic syndrome in mice. The animal models, induced by high-fat diet in C57BL/6 mice, developed obesity, dyslipidemia, fatty liver, liver dysfunction and insulin resistance. These changes were attenuated by naringin. Further investigations revealed that the inhibitory effect on inflammation and insulin resistance was mediated by blocking activation of the MAPKs pathways and by activating IRS1; the lipid-lowering effect was attributed to inhibiting the synthesis way and increasing fatty acid oxidation; the hypoglycemic effect was due to the regulation of PEPCK and G6pase. The anti-oxidative stress of naringin also participated in the improvement of insulin resistance and lipogenesis. All of these depended on the AMPK activation. To confirm the results of the animal experiment, we tested primary hepatocytes exposed to high glucose system. Naringin was protective by phosphorylating AMPKα and IRS1. Taken together, these results suggested that naringin protected mice exposed to a high-fat diet from metabolic syndrome through an AMPK-dependent mechanism involving multiple types of intracellular signaling and reduction of oxidative damage. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Study on the effects of consumption of milk containing Lactobacillus acidophilus on serum lipid trends and weight gain of rats fed high lipid diet

    Directory of Open Access Journals (Sweden)

    H Mirzaei

    2008-02-01

    Full Text Available Despite the significant progresses made in the reduction of mortality due to cardiovascular diseases, they are still the primary cause of death in many countries and hyperlipidemia is an important causal agent of cardiovascular diseases. Probiotics are food supplements containing live microbes which balance the flora of the digestive system and produce positive effects in the host body. L.acidophilus is a beneficial bacterium used in the production of probiotic products .The aim of this study is to evaluate the effects of consumption of milk containing L.acidophilus on serum lipid trends of rats fed high lipid diet. This is an experimental study in which 30 male albino Wistar rats with a body weight of 200±15 gr. were randomly allocated to two groups of treatment and control each containing 15 rats which were adapted to a high lipid diet (11.74% and water containing 25% milk within a week. Rats in both groups received high lipid diet and water containing 25% milk for 60 days with the exception that rats in the treatment group received water containing L. acidophilus at a level of 109 CFU/rat/day throughout the experiment. Independent t-test revealed that at a level of α= 0.05, mean levels of total cholesterol and LDL-C of rats in the treatment group was significantly lower than the control group (p

  10. Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats.

    Science.gov (United States)

    Nammi, Srinivas; Sreemantula, Satyanarayana; Roufogalis, Basil D

    2009-05-01

    Metabolic syndrome, including obesity, dyslipidaemia, hyperglycaemia and insulin resistance that predisposes type 2 diabetes is a major disease problem around the world and a plethora of herbal medicines are claimed to be effective in controlling these disorders. The rhizome of Zingiber officinale (Zingiberaceae) is commonly used as a spice in various foods and beverages. Apart from its other traditional medical uses, Z. officinale has been used to control diabetes and dyslipidaemia. In the present study, the protective effects of an ethanolic extract of Z. officinale on the development of metabolic syndrome were investigated in a high-fat diet-fed rat model at doses of 100, 200 and 400 mg/kg body weight. The marked rise in body weights, glucose, insulin, total cholesterol, LDL cholesterol, triglycerides, free fatty acids and phospholipids in serum of the rats that followed 6 weeks of high-fat diet treatment were significantly reduced by Z. officinale treatment. However, no significant change in serum HDL cholesterol was observed either with high-fat diet or Z. officinale compared to both control groups. The present results provide scientific evidence to substantiate the traditional use of Z. officinale in preventing metabolic disorders.

  11. Nutritional value of high fiber co-products from the copra, palm kernel, and rice industries in diets fed to pigs.

    Science.gov (United States)

    Stein, Hans Henrik; Casas, Gloria Amparo; Abelilla, Jerubella Jerusalem; Liu, Yanhong; Sulabo, Rommel Casilda

    2015-01-01

    High fiber co-products from the copra and palm kernel industries are by-products of the production of coconut oil and palm kernel oil. The co-products include copra meal, copra expellers, palm kernel meal, and palm kernel expellers. All 4 ingredients are very high in fiber and the energy value is relatively low when fed to pigs. The protein concentration is between 14 and 22 % and the protein has a low biological value and a very high Arg:Lys ratio. Digestibility of most amino acids is less than in soybean meal but close to that in corn. However, the digestibility of Lys is sometimes low due to Maillard reactions that are initiated due to overheating during drying. Copra and palm kernel ingredients contain 0.5 to 0.6 % P. Most of the P in palm kernel meal and palm kernel expellers is bound to phytate, but in copra products less than one third of the P is bound to phytate. The digestibility of P is, therefore, greater in copra meal and copra expellers than in palm kernel ingredients. Inclusion of copra meal should be less than 15 % in diets fed to weanling pigs and less than 25 % in diets for growing-finishing pigs. Palm kernel meal may be included by 15 % in diets for weanling pigs and 25 % in diets for growing and finishing pigs. Rice bran contains the pericarp and aleurone layers of brown rice that is removed before polished rice is produced. Rice bran contains approximately 25 % neutral detergent fiber and 25 to 30 % starch. Rice bran has a greater concentration of P than most other plant ingredients, but 75 to 90 % of the P is bound in phytate. Inclusion of microbial phytase in the diets is, therefore, necessary if rice bran is used. Rice bran may contain 15 to 24 % fat, but it may also have been defatted in which case the fat concentration is less than 5 %. Concentrations of digestible energy (DE) and metabolizable energy (ME) are slightly less in full fat rice bran than in corn, but defatted rice bran contains less than 75 % of the DE and ME in

  12. The effects of leptin in combination with a cannabinoid receptor 1 antagonist, AM 251, or cannabidiol on food intake and body weight in rats fed a high-fat or a free-choice high sugar diet.

    Science.gov (United States)

    Wierucka-Rybak, M; Wolak, M; Bojanowska, E

    2014-08-01

    High intake of fats and sugars has prompted a rapid growth in the number of obese individuals worldwide. To further investigate whether simultaneous pharmacological intervention in the leptin and cannabinoid system might change food and water intake, preferences for palatable foods, and body weight, we have examined the effects of concomitant intraperitoneal administration of leptin and AM 251, a cannabinoid 1 (CB1) receptor antagonist, or cannabidiol (CBD), a plant cannabinoid, in rats maintained on either a high-fat (HF) diet (45% energy from fat) or free-choice (FC) diet consisting of high-sucrose and normal rat chow (83% and 61% energy from carbohydrates, respectively). Leptin at a dose of 100 μg/kg injected individually for 3 subsequent days to rats fed a HF diet reduced significantly the daily caloric intake and inhibited body weight gain. The hormone had no significant effects, however, on either caloric intake, body weight or food preferences in rats fed an FC diet. Co-injection of leptin and 1 mg/kg AM 251 resulted in a further significant decrease in HF diet intake and a profound reduction in body weight gain both in HF diet- and FC diet-fed rats. This drug combination, however, had no effect on the consumption of high-sucrose chow. In contrast, 3mg/kg of CBD co-injected with leptin did not modify leptin effects on food intake in rats maintained on an FC or HF diet. None of the drug combinations affected water consumption. It is concluded that the concomitant treatment with leptin and AM 251 attenuated markedly body weight gain in rats maintained on high-calorie diets rich in fat and carbohydrates but did not affect preferences for sweet food.

  13. Comparative nontargeted profiling of metabolic changes in tissues and biofluids in high-fat diet-fed Ossabaw pig

    DEFF Research Database (Denmark)

    Hanhineva, Kati; Barri, Thaer; Kolehmainen, Marjukka

    2013-01-01

    to reveal metabolite groups for generating new hypotheses of obesity-related metabolic disturbances produced in an animal model. A large spectrum of metabolites in the semi-polar region, including small water soluble molecules like betaine and dihydroxyindole, and a wide range of bile acids as well...... as various lipid species were detected. The high fat diet influenced metabolic homeostasis of Ossabaw pigs, especially the lipid metabolome, throughout all the analyzed sample types, including plasma, urine, bile, liver, pancreas, brain cortex, intestinal jejunum and proximal colon. However, even dramatic...... and lipids, thus pointing to the pathways of metabolism affected by the dietary treatment....

  14. Performance and metabolite profile of dairy cows fed tropical grasses and concentrates containing crude protein with low or high degradability

    OpenAIRE

    Gomes, Raphael dos Santos; Oliveira, Tadeu Silva de; Pereira, José Carlos; Vieira, Ricardo Augusto Mendonça; Henrique, Douglas Sampaio; Fernandes, Alberto Magno; Leonel, Fernando de Paula

    2016-01-01

    ABSTRACT Ten Holstein-Zebu crossbred cows distributed into two simultaneous Latin squares (5 × 5) as a 2 × 2 factorial arrangement formed by chopped sugarcane or elephant grass silage, both with high or low protein degradability supplements and a corn silage as a control treatment, were compared using orthogonal contrasts. The studied variables were the performance, plasma concentrations of urea-N, glucose, and creatinine, urine-N and milk urea-N, and the nychthemeral variation in NH3-N in th...

  15. [Management of high blood pressure in patients with chronic kidney disease : Summary of recent guidelines].

    Science.gov (United States)

    Hougardy, J M; Leeman, M

    Chronic kidney disease and high blood pressure are two common diseases that mutually maintain during their evolution. In the advanced stages of chronic kidney disease, most pat ients are hypertensive and show signs of vascular disease (coronary artery disease, cerebrovascular or peripheral). Almost one third of the patients with advanced chronic kidney disease exhibit resistant hypertension that requires complex therapeutic management. In chronic kidney disease, antihypertensive treatment is conditioned by comorbidities, but also by proteinuria, which is an independent cardiovascular risk factor in addition to the rate of glomerular filtration rate. The treatment of high blood pressure is a cornerstone of the management of the chronic kidney disease. It limits the risk of cardiovascular events (eg. myocardial infarction, stroke), but also slows the progression of chronic kidney disease. Various recommendations have been recently published on the subject in order to offer assistance to the therapeutic management of hypertension in the patient suffering from chronic kidney disease. The purpose of this article is to highlight these main key elements.

  16. Alterations in lipids & lipid peroxidation in rats fed with flavonoid rich fraction of banana (Musa paradisiaca) from high background radiation area.

    Science.gov (United States)

    Krishnan, Kripa; Vijayalakshmi, N R

    2005-12-01

    A group of villages in Kollam district of Kerala, southern part of India are exposed to a higher dose of natural radiation than global average. Yet no adverse health effects have been found in humans, animals and plants in these areas. The present study was carried out to understand whether radiation affects the quantity and quality of flavonoids in plants grown in this area of high radiation, and to assess the effect of feeding flavonoid rich fraction (FRF) of the two varieties of banana to rats on their biochemical parameters like lipids, lipid peroxides and antioxidant enzyme levels. A total of 42 albino rats were equally divided into 7 groups. Rats fed laboratory diet alone were grouped under group I (normal control). Groups II and V received flavonoid rich fraction (FRF) from the fruits of two varieties of Musa paradisiaca, Palayamkodan and Rasakadali respectively from normal background radiation area (Veli) and treated as controls. Rats of groups III and IV received FRF of Palayamkodan from high background radiation areas (HBRAs) - Neendakara and Karunagappally respectively while groups VI and VII received FRF of Rasakadali from HBRAs. At the end of the experimental period of 45 days, lipids, lipid peroxides and antioxidant enzymes from liver, heart and kidney were analyzed. FRF of Palayamkodan and Rasakadali varieties showed significant hypolipidaemic and antioxidant activities. But these activities were found to be lowered in plants grown in HBRAs, particularly in Karunagappally area. Of the two, Palayamkodan variety was more effective in reducing lipids and lipid peroxides. MDA and hydroperoxides were significantly diminished in rats given FRF of banana from Veli (control area) only. FRF from plants grown in HBRAs exerted inhibition in the activities of antioxidant enzymes in the liver of rats and this inhibitory effect was maximum in rats fed FRF from Karunagappally. Banana grown in HBRAs is of lower quality with less efficient antioxidant system

  17. Fibroblast growth factor 21 is required for beneficial effects of exercise during chronic high-fat feeding

    Science.gov (United States)

    Loyd, Christine; Magrisso, I. Jack; Haas, Michael; Balusu, Sowmya; Krishna, Radha; Itoh, Nobuyuki; Sandoval, Darleen A.; Perez-Tilve, Diego; Obici, Silvana

    2016-01-01

    Exercise is an effective therapy against the metabolic syndrome. However, the molecular pathways underlying the advantageous effects of exercise are elusive. Glucagon receptor signaling is essential for exercise benefits, and recent evidence indicates that a downstream effector of glucagon, fibroblast growth factor 21 (FGF21), is implicated in this response. Therefore, we tested the hypothesis that FGF21 action is necessary in mediating metabolic effects of exercise. We utilized acute exhaustive treadmill exercise in Wistar rats to identify a putative, concomitant increase in plasma glucagon and FGF21 with the increase in glucose and lactate following exercise. To test the necessity of FGF21 action in the exercise response, we exposed FGF21 congenitally deficient mice (Fgf21−/−) and their wild-type (Wt) littermates to chronic high-fat (HF) feeding and inoperable (sedentary) or operable (exercise) voluntary running wheels. Physiological tests were performed to assess the role of FGF21 in the beneficial effect of exercise on glucose metabolism. Wt and Fgf21−/− littermates exhibited similar running behavior, and exercise was effective in suppressing weight and fat mass gain and dyslipidemia independently of genotype. However, exercise failed to positively affect hepatic triglyceride content and glucose tolerance in HF diet-fed Fgf21−/− mice. Furthermore, Fgf21−/− mice exhibited an impaired adaptation to exercise training, including reduced AMP-activated protein kinase activity in skeletal muscle. This study demonstrates that FGF21 action is necessary to achieve the full metabolic benefits of exercise during chronic HF feeding. PMID:27445299

  18. Sediment mobility and bedload transport rates in a high-elevation glacier-fed stream (Saldur river, Eastern Italian Alps)

    Science.gov (United States)

    Dell'Agnese, A.; Mao, L.; Comiti, F.

    2012-04-01

    The assessment of bedload transport in high-gradient streams is necessary to evaluate and mitigate flood hazards and to understand morphological processes taking place in the whole river network. Bedload transport in steep channels is particularly difficult to predict due to the complex and varying types of flow resistance, the very coarse and heterogeneous sediments, and the activity and connections of sediment sources at the basin scale. Yet, bedload measurements in these environments are still relatively scarce, and long-term monitoring programs are highly valuable to explore spatial and temporal variability of bedload processes. Even fewer are investigations conducted in high-elevation glaciarized basins, despite their relevance in many regions worldwide. The poster will present bedload transport measurements in a newly established (spring 2011) monitoring station in the Saldur basin (Eastern Italian Alps), which presents a 3.3 km2 glacier in its upper part. At 2100 m a.s.l. (20 km2 drainage area), a pressure transducer measures flow stage and bedload transport is monitored continuously by means of a hydrophone (a cylindrical steel pipe with microphones registering particle collisions) and by 4 fixed antennas for tracing clasts equipped with PITs (Passive Integrated Transponders). At the same location bedload samples are collected by using both a "Bunte" bedload trap and a "Helley-Smith" sampler at 5 positions along a 5 m wide cross-section. Bedload was measured from June to August 2011 during daily discharge fluctuations due to snow- and ice- melt flows. Samples were taken at a large range of discharges (1.1 to 4.6 m3 s-1) and bedload rates (0.01 to 700 g s-1 m-1). As expected, samples taken using the two samplers are not directly comparable even if taken virtually at the same time and at the same location across the section. Results indicate that the grain size of the transported material increases with the shear stress acting on the channel bed and with the

  19. Conditionally Pathogenic Gut Microbes Promote Larval Growth by Increasing Redox-Dependent Fat Storage in High-Sugar Diet-Fed Drosophila.

    Science.gov (United States)

    Whon, Tae Woong; Shin, Na-Ri; Jung, Mi-Ja; Hyun, Dong-Wook; Kim, Hyun Sik; Kim, Pil Soo; Bae, Jin-Woo

    2017-12-01

    Changes in the composition of the gut microbiota contribute to the development of obesity and subsequent complications that are associated with metabolic syndrome. However, the role of increased numbers of certain bacterial species during the progress of obesity and factor(s) controlling the community structure of gut microbiota remain unclear. Here, we demonstrate the inter-relationship between Drosophila melanogaster and their resident gut microbiota under chronic high-sugar diet (HSD) conditions. Chronic feeding of an HSD to Drosophila resulted in a predominance of resident uracil-secreting bacteria in the gut. Axenic insects mono-associated with uracil-secreting bacteria or supplemented with uracil under HSD conditions promoted larval development. Redox signaling induced by bacterial uracil promoted larval growth by regulating sugar and lipid metabolism via activation of p38a mitogen-activated protein kinase. The present study identified a new redox-dependent mechanism by which uracil-secreting bacteria (previously regarded as opportunistic pathobionts) protect the host from metabolic perturbation under chronic HSD conditions. These results illustrate how Drosophila and gut microbes form a symbiotic relationship under stress conditions, and changes in the gut microbiota play an important role in alleviating deleterious diet-derived effects such as hyperglycemia. Antioxid. Redox Signal. 27, 1361-1380.

  20. The effect of sibutramine on platelet morphology of Spraque-Dawley rats fed a high energy diet.

    Science.gov (United States)

    Oberholzer, Hester Magdalena; Van Der Schoor, Ciska; Pretorius, Etheresia

    2013-06-01

    The aim of this study was to investigate the effect of Sibutramine on platelet ultrastructure and discuss the morphological observations in relation to known physiological effects of the compound. Six-week-old, female Spraque-Dawley rats were used in this study. The animals were placed on a high energy diet after which sibutramine administration followed. Blood was drawn on the day of termination and platelet rich plasma was obtained to prepare plasma smears for analysis. Scanning electron microscopy was used to investigate the ultrastructure of the platelets. Platelets of the Sibutramine-treated animals showed smooth surface with limited pseudopodia formation when compared with that of the control animals. Higher magnification of the platelet surface showed membrane tears and swelling, typically seen in necrotic cells. It can therefore be concluded from these results that Sibutramine alters the membrane morphology of platelets to that typical of necrotic cells. Copyright © 2013 Wiley Periodicals, Inc.

  1. Beneficial effects of Allium sativum L. stem extract on lipid metabolism and antioxidant status in obese mice fed a high-fat diet.

    Science.gov (United States)

    Kim, Inhye; Kim, Haeng-Ran; Kim, Jae-Hyun; Om, Ae-Son

    2013-08-30

    This study was designed to examine the potential health benefits of Allium sativum L. (garlic) stem extract (ASSE) on obesity and related disorders in high-fat diet-induced obese mice. Obese mice were orally administered ASSE at doses of 100, 250 and 500 mg kg(-1) body weight day(-1) for 4 weeks. Consumption of ASSE significantly suppressed body weight gain and white adipose tissue (WAT) weight regardless of daily food intake. Obese mice fed ASSE also exhibited a significant decrease in WAT cell size. The decreased level of adiponectin and increased level of leptin in obese mice reverted to near normal mice levels in ASSE-treated mice. ASSE administration significantly improved lipid parameters of the serum and liver and inhibited fat accumulation in the liver by modulating the activities of hepatic lipid-regulating enzymes in obese mice. Administration of ASSE also led to significant increases in antioxidant enzymes and suppressed glutathione depletion and lipid peroxidation in hepatic tissue. These results suggest that ASSE may ameliorate obesity, insulin resistance and oxidative damage in high-fat diet-induced obese mice. © 2013 Society of Chemical Industry.

  2. Monitoring the bacterial community dynamics in a petroleum refinery wastewater membrane bioreactor fed with a high phenolic load.

    Science.gov (United States)

    Silva, Cynthia C; Viero, Aline F; Dias, Ana Carolina F; Andreote, Fernando D; Jesus, Ederson C; De Paula, Sergio O; Torres, Ana Paula R; Santiago, Vania M J; Oliveira, Valeria M

    2010-01-01

    The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.

  3. Shugan Xiaozhi Decoction Attenuates Nonalcoholic Steatohepatitis by Enhancing PPARα and L-FABP Expressions in High-Fat-Fed Rats

    Directory of Open Access Journals (Sweden)

    Yu-feng Xing

    2016-01-01

    Full Text Available This study aimed to investigate the effects of Shugan Xiaozhi decoction (SX on nonalcoholic steatohepatitis (NASH induced by high-fat diet in rats. The rats were randomly divided into 6 groups, namely, control, model, fenofibrate, and three different dosage of SX (10, 20, and 40 g/kg/day, p.o.. After establishing the NASH model, at 8 weeks of the experiment, treatments were administrated intragastrically to the fenofibrate and SX groups. All rats were killed after 4 weeks of treatment. Compared with the model group, alanine aminotransferase (ALT, aspartate aminotransferase (AST, free fatty acid (FFA, total cholesterol (TC, triacylglycerol (TG, and low-density lipoprotein cholesterol (LDL serum in the serum were significantly reduced in all SX treatment groups in a dose-dependent manner. Evidence showed that SX could protect the liver by upregulating the gene and protein expressions of peroxisome proliferator-activated receptor alpha (PPARα and liver fatty acid binding protein (L-FABP in a dose-dependent manner. Chemical constituents of SX were further analyzed by ultraperformance liquid chromatography coupled with electrospray ionization mass spectrometry (UPLC-ESI-MS and 30 chemicals in the ethanolic extract were tentatively identified. To conclude, our results clearly indicated that SX could protect liver functions and relieve hepatic steatosis and inflammation.

  4. Attenuation of hyperglycemia and hyperlipidemia in high calorie fed/streptozotocin-treated rats by hydromethanolic extract of Padina tetrastromatica

    Directory of Open Access Journals (Sweden)

    Divya S. Mohan

    2014-03-01

    Full Text Available In the present study, the effect of defatted hydromethanolic extract of Padina tetrastromatica on carbohydrate metabolism and serum lipid profile were evaluated. Diabetes mellitus was induced in male Wistar rats by feeding high calorie/energy diet for two months followed by a single intraperitoneal injecttion of streptozotocin. Diabetic rats were administered with the extract intragastrically at doses of 150, 300, 450, and 600 mg/kg body weight daily for 45 days. Treatment with graded doses showed a dose dependent reduction in blood glucose and glycated hemoglobin levels. Treatment significantly increased the activity of hexokinase, glucose-6-phosphate dehydrogenase and glycogen content while there was significant reduction in the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase. Serum lipid profile was also brought back to near normal levels in a dose dependent manner. The present study clearly indicates the antihyperglycemic and hypolipidemic effects of P. tetrastromatica at an optimum dose of 450 mg/kg body weight.

  5. Galantamine Alleviates Inflammation and Other Obesity-Associated Complications in High-Fat Diet–Fed Mice

    Science.gov (United States)

    Satapathy, Sanjaya K; Ochani, Mahendar; Dancho, Meghan; Hudson, LaQueta K; Rosas-Ballina, Mauricio; Valdes-Ferrer, Sergio I; Olofsson, Peder S; Harris, Yael Tobi; Roth, Jesse; Chavan, Sangeeta; Tracey, Kevin J; Pavlov, Valentin A

    2011-01-01

    Obesity, a serious and growing health threat, is associated with low-grade inflammation that plays a role in mediating its adverse consequences. Previously, we have discovered a role for neural cholinergic signaling in controlling inflammation, and demonstrated that the cholinergic agent galantamine suppresses excessive proinflammatory cytokine release. The main objective of this study was to examine the efficacy of galantamine, a clinically-approved drug, in alleviating obesity-related inflammation and associated complications. After 8 wks on a high-fat diet, C57BL/6J mice were treated with either galantamine (4 mg/kg, intraperitoneally [i.p.]) or saline for 4 wks in parallel with mice on a low-fat diet and treated with saline. Galantamine treatment of obese mice significantly reduced body weight, food intake, abdominal adiposity, plasma cytokine and adipokine levels, and significantly improved blood glucose, insulin resistance and hepatic steatosis. In addition, galantamine alleviated impaired insulin sensitivity and glucose intolerance significantly. These results indicate a previously unrecognized potential of galantamine in alleviating obesity, inflammation and other obesity-related complications in mice. These findings are of interest for studying the efficacy of this clinically-approved drug in the context of human obesity and metabolic syndrome. PMID:21738953

  6. Effects of ingredients of Korean brown rice cookies on attenuation of cholesterol level and oxidative stress in high-fat diet-fed mice.

    Science.gov (United States)

    Hong, Sun Hee; Kim, Mijeong; Woo, Minji; Song, Yeong Ok

    2017-10-01

    Owing to health concerns related to the consumption of traditional snacks high in sugars and fats, much effort has been made to develop functional snacks with low calorie content. In this study, a new recipe for Korean rice cookie, dasik , was developed and its antioxidative, lipid-lowering, and anti-inflammatory effects and related mechanisms were elucidated. The effects were compared with those of traditional rice cake dasik (RCD), the lipid-lowering effect of which is greater than that of traditional western-style cookies. Ginseng-added brown rice dasik (GBRD) was prepared with brown rice flour, fructooligosaccharide, red ginseng extract, and propolis. Mice were grouped (n = 7 per group) into those fed a normal AIN-76 diet, a high-fat diet (HFD), and HFD supplemented with RCD or GBRD. Dasik in the HFD accounted for 7% of the total calories. The lipid, reactive oxygen species, and peroxynitrite levels, and degree of lipid peroxidation in the plasma or liver were determined. The expression levels of proteins involved in lipid metabolism and inflammation, and those of antioxidant enzymes were determined by western blot analysis. The plasma and hepatic total cholesterol concentrations in the GBRD group were significantly decreased via downregulation of sterol regulatory element-binding protein-2 and 3-hydroxy-3-methylglutaryl-CoA reductase ( P < 0.05). The hepatic peroxynitrite level was significantly lower, whereas glutathione was higher, in the GBRD group than in the RCD group. Among the antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx) were significantly upregulated in the GBRD group ( P < 0.05). In addition, nuclear factor-kappaB (NF-κB) expression in the GBRD group was significantly lower than that in the RCD group. GBRD decreases the plasma and hepatic cholesterol levels by downregulating cholesterol synthesis. This new dasik recipe also improves the antioxidative and anti-inflammatory status in HFD-fed mice via CAT and GPx upregulation and

  7. Chronic kidney disease and bleeding risk in patients at high cardiovascular risk: a cohort study.

    Science.gov (United States)

    Ocak, G; Rookmaaker, M B; Algra, A; de Borst, G J; Doevendans, P A; Kappelle, L J; Verhaar, M C; Visseren, F L

    2018-01-01

    Essentials The association between chronic kidney disease and bleeding is unknown. We followed 10 347 subjects at high cardiovascular risk for bleeding events. Chronic kidney disease was associated with a 1.5-fold increased bleeding risk. Especially albuminuria rather than decreased kidney function was associated with bleeding events. Background There are indications that patients with chronic kidney disease have an increased bleeding risk. Objectives To investigate the association between chronic kidney disease and bleeding in patients at high cardiovascular risk. Methods We included 10 347 subjects referred to the University Medical Center Utrecht (the Netherlands) from September 1996 to February 2015 for an outpatient visit with classic risk factors for arterial disease or with symptomatic arterial disease (Second Manifestation of Arterial disease [SMART] cohort). Patients were staged according to the KDIGO guidelines, on the basis of estimated glomerular filtration rate (eGFR) and albuminuria, and were followed for the occurrence of major hemorrhagic events until March 2015. Hazard ratios (HRs) with 95% confidence intervals (CIs) for bleeding were calculated with Cox proportional hazards analyses. Results The incidence rate for bleeding in subjects with chronic kidney disease was 8.0 per 1000 person-years and that for subjects without chronic kidney disease was 3.5 per 1000 person-years. Patients with chronic kidney disease (n = 2443) had a 1.5-fold (95% CI 1.2-1.9) increased risk of bleeding as compared with subjects without chronic kidney disease (n = 7904) after adjustment. Subjects with an eGFR of Chronic kidney disease is a risk factor for bleeding in patients with classic risk factors for arterial disease or with symptomatic arterial disease, especially in the presence of albuminuria. © 2017 University Medical Center Utrecht. Journal of Thrombosis and Haemostasis © 2017 International Society on Thrombosis and Haemostasis.

  8. The involvement of ginseng berry extract in blood flow via regulation of blood coagulation in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Min Hee Kim

    2017-04-01

    Conclusion: These results suggest the possibility that GBx can ameliorate blood flow by decreasing intima-media thickness via the regulation of blood coagulation factors related to lipid metabolites in rats fed a HFD.

  9. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    Science.gov (United States)

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Small heterodimer partner (SHP deficiency protects myocardia from lipid accumulation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Jung Hun Ohn

    Full Text Available The small heterodimer partner (SHP regulates fatty acid oxidation and lipogenesis in the liver by regulating peroxisome proliferator-activated receptor (PPAR γ expression. SHP is also abundantly expressed in the myocardium. We investigated the effect of SHP expression on myocardia assessing not only heart structure and function but also lipid metabolism and related gene expression in a SHP deletion animal model. Transcriptional profiling with a microarray revealed that genes participating in cell growth, cytokine signalling, phospholipid metabolism, and extracellular matrix are up-regulated in the myocardia of SHP knockout (KO mice compared to those of wild-type (WT mice (nominal p value < 0.05. Consistent with these gene expression changes, the left ventricular masses of SHP KO mice were significantly higher than WT mice (76.8 ± 20.5 mg vs. 52.8 ± 6.8 mg, P = 0.0093. After 12 weeks of high fat diet (HFD, SHP KO mice gained less weight and exhibited less elevation in serum-free fatty acid and less ectopic lipid accumulation in the myocardium than WT mice. According to microarray analysis, genes regulated by PPARγ1 and PPARα were down-regulated in myocardia of SHP KO mice compared to their expression in WT mice after HFD, suggesting that the reduction in lipid accumulation in the myocardium resulted from a decrease in lipogenesis regulated by PPARγ. We confirmed the reduced expression of PPARγ1 and PPARα target genes such as CD36, medium-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, and very long-chain acyl-CoA dehydrogenase by SHP KO after HFD.

  11. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes.

    Directory of Open Access Journals (Sweden)

    Nele Ilmberger

    Full Text Available A phylogenetic and metagenomic study of elephant feces samples (derived from a three-weeks-old and a six-years-old Asian elephant was conducted in order to describe the microbiota inhabiting this large land-living animal. The microbial diversity was examined via 16S rRNA gene analysis. We generated more than 44,000 GS-FLX+454 reads for each animal. For the baby elephant, 380 operational taxonomic units (OTUs were identified at 97% sequence identity level; in the six-years-old animal, close to 3,000 OTUs were identified, suggesting high microbial diversity in the older animal. In both animals most OTUs belonged to Bacteroidetes and Firmicutes. Additionally, for the baby elephant a high number of Proteobacteria was detected. A metagenomic sequencing approach using Illumina technology resulted in the generation of 1.1 Gbp assembled DNA in contigs with a maximum size of 0.6 Mbp. A KEGG pathway analysis suggested high metabolic