WorldWideScience

Sample records for chronic wound healing

  1. Engineered biopolymeric scaffolds for chronic wound healing

    Directory of Open Access Journals (Sweden)

    Laura E Dickinson

    2016-08-01

    Full Text Available Skin regeneration requires the coordinated integration of concomitant biological and molecular events in the extracellular wound environment during overlapping phases of inflammation, proliferation, and matrix remodeling. This process is highly efficient during normal wound healing. However, chronic wounds fail to progress through the ordered and reparative wound healing process and are unable to heal, requiring long-term treatment at high costs. There are many advanced skin substitutes, which mostly comprise bioactive dressings containing mammalian derived matrix components and/or human cells, in clinical use. However, it is presently hypothesized that no treatment significantly outperforms the others. To address this unmet challenge, recent research has focused on developing innovative acellular biopolymeric scaffolds as more efficacious wound healing therapies. These biomaterial-based skin substitutes are precisely engineered and fine-tuned to recapitulate aspects of the wound healing milieu and target specific events in the wound healing cascade to facilitate complete skin repair with restored function and tissue integrity. This mini-review will provide a brief overview of chronic wound healing and current skin substitute treatment strategies while focusing on recent engineering approaches that regenerate skin using synthetic, biopolymeric scaffolds. We discuss key polymeric scaffold design criteria, including degradation, biocompatibility, and microstructure, and how they translate to inductive microenvironments that stimulate cell infiltration and vascularization to enhance chronic wound healing. As healthcare moves towards precision medicine-based strategies, the potential and therapeutic implications of synthetic, biopolymeric scaffolds as tunable treatment modalities for chronic wounds will be considered.

  2. Wound healing and treating wounds: Chronic wound care and management.

    Science.gov (United States)

    Powers, Jennifer G; Higham, Catherine; Broussard, Karen; Phillips, Tania J

    2016-04-01

    In the United States, chronic ulcers--including decubitus, vascular, inflammatory, and rheumatologic subtypes--affect >6 million people, with increasing numbers anticipated in our growing elderly and diabetic populations. These wounds cause significant morbidity and mortality and lead to significant medical costs. Preventative and treatment measures include disease-specific approaches and the use of moisture retentive dressings and adjunctive topical therapies to promote healing. In this article, we discuss recent advances in wound care technology and current management guidelines for the treatment of wounds and ulcers.

  3. Wound healing and treating wounds: Differential diagnosis and evaluation of chronic wounds.

    Science.gov (United States)

    Morton, Laurel M; Phillips, Tania J

    2016-04-01

    Wounds are an excellent example of how the field of dermatology represents a cross-section of many medical disciplines. For instance, wounds may be caused by trauma, vascular insufficiency, and underlying medical conditions, such as diabetes, hypertension, and rheumatologic and inflammatory disease. This continuing medical education article provides an overview of wound healing and the pathophysiology of chronic wounds and reviews the broad differential diagnosis of chronic wounds. It also describes the initial steps necessary in evaluating a chronic wound and determining its underlying etiology.

  4. Healing of Chronic Wounds through Systemic Effects of Electromagnetic Fields

    Science.gov (United States)

    Cañedo, L.; Trigos, I.; García-Cantú, R.; Godina-Nava, J. J.; Serrano, G.

    2002-08-01

    Extremely low frequency electromagnetic fields (ELF) were configured to interact with peripheral blood mononuclear cells (PBMC). These ELF were applied in the arm to five patients with chronic wounds resistant to medical and surgical treatment. Wound healing began in all patients during the first two weeks after ELF exposure permiting their previously unresponsive chronic wounds to function as internal controls. All lesions were cured or healed >70% in less than four months. Systemic effects were explained by ELF activation of PBMC and their transportation through the blood to the affected site. This therapy is effective in selected patients with chronic wounds.

  5. Platelet gel for healing cutaneous chronic wounds.

    Science.gov (United States)

    Crovetti, Giovanni; Martinelli, Giovanna; Issi, Marwan; Barone, Marilde; Guizzardi, Marco; Campanati, Barbara; Moroni, Marco; Carabelli, Angelo

    2004-04-01

    Wound healing is a specific host immune response for restoration of tissue integrity. Experimental studies demonstrated an alteration of growth factors activity due to their reduced synthesis, increased degradation and inactivation. In wound healing platelets play an essential role since they are rich of alpha-granules growth factors (platelet derived growth factor--PDGF; transforming growth factor-beta--TGF-beta; vascular endothelial growth factor--VEGF). Topical use of platelet gel (PG), hemocomponent obtained from mix of activated platelets and cryoprecipitate, gives the exogenous and in situ adding of growth factors (GF). The hemocomponents are of autologous or homologous origin. We performed a technique based on: multicomponent apheretic procedure to obtain plasma rich platelet and cryoprecipitate; manual processing in an open system, in sterile environment, for gel activation. Every step of the gel synthesis was checked by a quality control programme. The therapeutic protocol consists of the once-weekly application of PG. Progressive reduction of the wound size, granulation tissue forming, wound bed detersion, regression and absence of infective processes were considered for evaluating clinical response to hemotherapy. 24 patients were enrolled. They had single or multiple cutaneous ulcers with different ethiopathogenesis. Only 3 patients could perform autologous withdrawal; in the others homologous hemocomponent were used, always considering suitability and traceability criteria for transfusional use of blood. Complete response was observed in 9 patients, 2 were subjected to cutaneous graft, 4 stopped treatment, 9 had partial response and are still receiving the treatment. In each case granulation tissue forming increased following to the first PG applications, while complete re-epithelization was obtained later. Pain was reduced in every treated patient. Topical haemotherapy with PG may be considered as an adjuvant treatment of a multidisciplinary process

  6. State-of-the-art wound healing: skin substitutes for chronic wounds.

    Science.gov (United States)

    Han, George

    2014-01-01

    The care of chronic wounds represents an important and evolving area of dermatology. With a rising prevalence of chronic wounds bearing notable effects on patient morbidity including amputations, appropriate and effective intervention to treat these debilitating wounds can make a significant clinical impact. In recent years, several advanced bioactive wound dressings have been developed to specifically treat chronic nonhealing wounds. These wound dressings encompass a wide range of products containing synthetic matrix scaffolds, animal-derived matrices, and human tissue. With several of these wound dressings, randomized controlled trials (RCTs) have demonstrated improvement in wound healing; furthermore, cost-effectiveness studies have suggested that these products may reduce the overall cost of treating a chronic wound. Familiarity with these products and their appropriate use may be helpful to dermatologists treating chronic wounds.

  7. Why chronic wounds will not heal: a novel hypothesis

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Moller, K.; Jensen, P.O.

    2008-01-01

    The present paper presents a hypothesis aimed at explaining why venous leg ulcers, pressure ulcers, and diabetic foot ulcers develop into a chronic state. We propose that the lack of proper wound healing is at least in part caused by inefficient eradication of infecting, opportunistic pathogens......, a situation reminiscent of chronic Pseudomonas aeruginosa infections found in patients suffering from cystic fibrosis (CF). We have analyzed sections from chronic wounds by fluorescence in situ hybridization and found distinct microcolonies-the basal structures of bacterial biofilms. Several researchers have...

  8. Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing.

    Science.gov (United States)

    Feng, Yi; Sanders, Andrew J; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G; Jiang, Wen G

    2016-11-01

    Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound‑healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine‑induced signalling in the chronic wound‑healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds.

  9. Chronic venous disease - Part I: Inflammatory biomarkers in wound healing.

    Science.gov (United States)

    Ligi, Daniela; Mosti, Giovanni; Croce, Lidia; Raffetto, Joseph D; Mannello, Ferdinando

    2016-10-01

    Venous leg ulcers (VLUs) produce wound fluid (WF), as a result of inflammatory processes within the wound. It is unclear if WF from different healing phases of VLU has a peculiar biochemical profile and how VLU microenvironment affects the wound healing mechanisms. This study was conducted to evaluate the cytokine/chemokine profiles in WF from distinct VLU phases, in WF- and LPS-stimulated monocytes and treated with glycosaminoglycan Sulodexide, a therapeutic option for VLU healing. WF and plasma were collected from patients with VLU during active inflammatory (Infl) and granulating (Gran) phases. Demographics, clinical characteristics and pain measurements were evaluated. WF, plasma, and THP-1 supernatants were analyzed for 27 inflammatory mediators by multiplex immunoassay. Our results demonstrated that: 1) pain was significantly increased in patients with Infl compared to Gran VLU; 2) cytokine profile of Infl WF was found to be statistically different from that Gran WF, as well significantly increased respect to plasma; 3) LPS- and WF-stimulation of THP-1 cells significantly increased the expression of several cytokines compared to untreated cells; 4) Sulodexide treatment of both LPS- and WF-stimulated THP-1 monocytes was able to significantly down-regulate the release of peculiar inflammatory mediators. Our study highlighted the importance to understand biomolecular processes underlying CVI when providing treatment for chronic VLU. Identification of inflammatory biomarkers in leg ulcer microenvironment, may provide useful tools for predicting healing outcome and developing targeted therapies.

  10. Recent advances on the association of apoptosis in chronic non healing diabetic wound

    Institute of Scientific and Technical Information of China (English)

    Awadhesh; K; Arya; Richik; Tripathi; Santosh; Kumar; Kamlakar; Tripathi

    2014-01-01

    Generally, wounds are of two categories, such as chronic and acute. Chronic wounds takes time to heal when compared to the acute wounds. Chronic wounds include vasculitis, non healing ulcer, pyoderma gangrenosum, and diseases that cause ischemia. Chronic wounds are rapidly increasing among the elderly population with dysfunctional valves in their lower extremity deep veins, ulcer, neuropathic foot and pressure ulcers. The process of the healing of wounds has several steps with the involvement of immune cells and several other cell types. There are many evidences supporting the hypothesis that apoptosis of immune cells is involved in the wound healing process by ending inflammatory condition. It is also involved in the resolution of various phases of tissue repair. During final steps of wound healing most of the endothelial cells, macrophagesand myofibroblasts undergo apoptosis or exit from the wound, leaving a mass that contains few cells and consists mostly of collagen and other extracellular matrix proteins to provide strength to the healing tissue. This review discusses the various phases of wound healing both in the chronic and acute wounds especially during diabetes mellitus and thus support the hypothesis that the oxidative stress, apoptosis, connexins and other molecules involved in the regulation of chronic wound healing in diabetes mellitus and gives proper understanding of the mechanisms controlling apoptosis and tissue repair during diabetes and may eventually develop therapeutic modalities to fasten the healing process in diabetic patients.

  11. Recent advances on the association of apoptosis in chronic non healing diabetic wound.

    Science.gov (United States)

    Arya, Awadhesh K; Tripathi, Richik; Kumar, Santosh; Tripathi, Kamlakar

    2014-12-15

    Generally, wounds are of two categories, such as chronic and acute. Chronic wounds takes time to heal when compared to the acute wounds. Chronic wounds include vasculitis, non healing ulcer, pyoderma gangrenosum, and diseases that cause ischemia. Chronic wounds are rapidly increasing among the elderly population with dysfunctional valves in their lower extremity deep veins, ulcer, neuropathic foot and pressure ulcers. The process of the healing of wounds has several steps with the involvement of immune cells and several other cell types. There are many evidences supporting the hypothesis that apoptosis of immune cells is involved in the wound healing process by ending inflammatory condition. It is also involved in the resolution of various phases of tissue repair. During final steps of wound healing most of the endothelial cells, macrophages and myofibroblasts undergo apoptosis or exit from the wound, leaving a mass that contains few cells and consists mostly of collagen and other extracellular matrix proteins to provide strength to the healing tissue. This review discusses the various phases of wound healing both in the chronic and acute wounds especially during diabetes mellitus and thus support the hypothesis that the oxidative stress, apoptosis, connexins and other molecules involved in the regulation of chronic wound healing in diabetes mellitus and gives proper understanding of the mechanisms controlling apoptosis and tissue repair during diabetes and may eventually develop therapeutic modalities to fasten the healing process in diabetic patients.

  12. Chronic and non-healing wounds: The story of vascular endothelial growth factor.

    Science.gov (United States)

    Zhou, Kehua; Ma, Yan; Brogan, Michael S

    2015-10-01

    The pathophysiology of the chronicity and non-healing status of wounds remains unknown. This paper presents the following hypothesis: abnormal patterns of vascular endothelial growth factor receptors (VEGFRs) are the culprits of wound chronicity and non-healing. More specifically, for patients with poor circulation, the decreased VEGFR-2 level is the cause of poor wound healing; for patients with non-compromised circulation, for example, patients with concurrent chronic wounds and active autoimmune diseases, the increased VEGFR-1 level is related to the non-healing status of wounds. The hypothesis is supported by the following facts. VEGFR-1 is the main contributor for inflammation and VEGFR-2 facilitates angiogenesis; soluble VEGFR-1 (sVEGFR-1) inactivates both VEGFR-1 and VEGFR-2. Patients with auto-immune disease have abnormally increased VEGFR-1 and decreased sVEGFR. Wounds in patients with active autoimmune diseases have poor response to electric stimulation which facilitates chronic wound healing in patients without active autoimmune diseases via increasing vascular endothelial growth factor (VEGF) secretion. Patients with chronic wounds (including diabetic foot ulcers and venous leg ulcers) but no active autoimmune diseases have decreased VEGFR-2 levels. We thus believe that abnormal patterns of VEGFRs are the culprits of wound chronicity and non-healing. For wounds with compromised circulation, VEGFR-2 decrease contributes to its chronicity; whereas for wounds with non-compromised circulation, VEGFR-1 increase is the leading cause of the non-healing status of chronic wounds. Treatments and research in wound care should be tailored to target these changes based on circulation status of wounds. Complete elucidation of changes of VEGFRs in chronic and non-healing wounds will enhance our understandings in tissue healing and thus better our selection of appropriate treatments for chronic and non-healing wounds.

  13. Redox mechanisms in hepatic chronic wound healing and fibrogenesis

    Directory of Open Access Journals (Sweden)

    Novo Erica

    2008-10-01

    Full Text Available Abstract Reactive oxygen species (ROS generated within cells or, more generally, in a tissue environment, may easily turn into a source of cell and tissue injury. Aerobic organisms have developed evolutionarily conserved mechanisms and strategies to carefully control the generation of ROS and other oxidative stress-related radical or non-radical reactive intermediates (that is, to maintain redox homeostasis, as well as to 'make use' of these molecules under physiological conditions as tools to modulate signal transduction, gene expression and cellular functional responses (that is, redox signalling. However, a derangement in redox homeostasis, resulting in sustained levels of oxidative stress and related mediators, can play a significant role in the pathogenesis of major human diseases characterized by chronic inflammation, chronic activation of wound healing and tissue fibrogenesis. This review has been designed to first offer a critical introduction to current knowledge in the field of redox research in order to introduce readers to the complexity of redox signalling and redox homeostasis. This will include ready-to-use key information and concepts on ROS, free radicals and oxidative stress-related reactive intermediates and reactions, sources of ROS in mammalian cells and tissues, antioxidant defences, redox sensors and, more generally, the major principles of redox signalling and redox-dependent transcriptional regulation of mammalian cells. This information will serve as a basis of knowledge to introduce the role of ROS and other oxidative stress-related intermediates in contributing to essential events, such as the induction of cell death, the perpetuation of chronic inflammatory responses, fibrogenesis and much more, with a major focus on hepatic chronic wound healing and liver fibrogenesis.

  14. Expression and integrity of dermatopontin in chronic cutaneous wounds: a crucial factor in impaired wound healing.

    Science.gov (United States)

    Krishnaswamy, Venkat Raghavan; Manikandan, Mayakannan; Munirajan, Arasambattu Kannan; Vijayaraghavan, Doraiswamy; Korrapati, Purna Sai

    2014-12-01

    Chronic cutaneous wound (CCW) is a major health care burden wherein the healing process is slow or rather static resulting in anatomical and functional restriction of the damaged tissue. Dysregulated expression and degradation of matrix proteins, growth factors and cytokines contribute to the disrupted and uncoordinated healing process of CCW. Therefore, therapeutic approaches for effective management of CCW should be focused towards identifying and manipulating the molecular defects, such as reduced bioavailability of the pro-healing molecules and elevated activity of proteases. This study essentially deals with assessing the expression and integrity of an extracellular matrix protein, Dermatopontin (DPT), in CCW using real-time quantitative reverse transcriptase PCR and immunological techniques. The results indicate that, despite DPT's high mRNA expression, the protein levels are markedly reduced in both CCW tissue and its exudate. To elucidate the cause for this contradiction in mRNA and protein levels, the stability of DPT is analyzed in the presence of wound exudates and various proteases that are naturally elevated in CCW. DPT was observed to be degraded at higher rates when incubated with certain recombinant proteases or chronic wound exudate. In conclusion, the susceptibility of DPT protein to specific proteases present at high levels in the wound milieu resulted in the degradation of DPT, thus leading to impaired healing response in CCW.

  15. Diabetes and wound healing

    OpenAIRE

    Svendsen, Rikke; Irakunda, Gloire; Knudsen List, Karoline Cecilie; Sønderstup-Jensen, Marie; Hölmich Rosca, Mette Maria

    2014-01-01

    Diabetes is a disease where the glucose level in the blood is high, due to either insulin resistance, impaired insulin sensitivity or no insulin production. The high glucose level causes several complications, one of them being an impaired wound healing process, which might lead to chronic wounds, ulcers. Several factors play a role in the development of ulcers, and recent research indicates that microRNA might play a significant role in skin development and wound healing. The purpose of this...

  16. Optimizing Technology Use for Chronic Lower-Extremity Wound Healing: A Consensus Document.

    Science.gov (United States)

    Mani, Raj; Margolis, David J; Shukla, Vijay; Akita, Sadanori; Lazarides, Miltos; Piaggesi, Alberto; Falanga, Vincent; Teot, Luc; Xie, Ting; Bing, Fu Xiao; Romanelli, Marco; Attinger, Chris; Han, Chun Mao; Lu, Shuliang; Meaume, Sylvie; Xu, Zhangrong; Viswanathan, Vijay

    2016-06-01

    Innovations in technology are used in managing chronic wounds. Despite the wide range of technologies available, healing of chronic wounds remains variable. In this paper, the authors offer an evidence based approach to the use of technology for diagnosis and management based on the concept of standardised care.

  17. Development of a wound healing index for patients with chronic wounds.

    Science.gov (United States)

    Horn, Susan D; Fife, Caroline E; Smout, Randall J; Barrett, Ryan S; Thomson, Brett

    2013-01-01

    Randomized controlled trials in wound care generalize poorly because they exclude patients with significant comorbid conditions. Research using real-world wound care patients is hindered by lack of validated methods to stratify patients according to severity of underlying illnesses. We developed a comprehensive stratification system for patients with wounds that predicts healing likelihood. Complete medical record data on 50,967 wounds from the United States Wound Registry were assigned a clear outcome (healed, amputated, etc.). Factors known to be associated with healing were evaluated using logistic regression models. Significant variables (p healing for each wound type. Some variables predicted significantly in nearly all models: wound size, wound age, number of wounds, evidence of bioburden, tissue type exposed (Wagner grade or stage), being nonambulatory, and requiring hospitalization during the course of care. Variables significant in some models included renal failure, renal transplant, malnutrition, autoimmune disease, and cardiovascular disease. All models validated well when applied to the holdout sample. The "Wound Healing Index" can validly predict likelihood of wound healing among real-world patients and can facilitate comparative effectiveness research to identify patients needing advanced therapeutics.

  18. Chronic venous disease - Part II: Proteolytic biomarkers in wound healing.

    Science.gov (United States)

    Ligi, Daniela; Mosti, Giovanni; Croce, Lidia; Raffetto, Joseph D; Mannello, Ferdinando

    2016-10-01

    Venous leg ulcers (VLU) are characterized by sustained proteolytic microenvironment impairing the healing process. Wound fluid (WF) reflect the biomolecular activities occurring within the wound area; however, it is unclear if WF from different healing phases have different proteolytic profiles and how VLU microenvironment affects the wound healing mechanisms. We investigated the proteolytic network of WF from distinct VLU phases, and in WF- and LPS-stimulated THP-1 monocytes treated with glycosaminoglycan sulodexide, a well known therapeutic approach for VLU healing. WF were collected from patients with VLU during inflammatory (Infl) and granulating (Gran) phases. WF and THP-1 supernatants were analyzed for nine matrix metalloproteinases (MMP) and four tissue inhibitors of metalloproteinases (TIMP) by multiplex immunoassays. Our results demonstrated that: 1) WF from Infl VLU contained significantly increased concentrations of MMP-2, MMP-9, MMP-12, TIMP-1, and TIMP-2 compared to Gran WF; 2) WF from Gran VLU showed significantly increased levels of MMP-1, MMP-7, MMP-13, and TIMP-4 compared to Infl WF; 3) LPS- and WF-stimulation of THP-1 cells significantly increased the expression of several MMP compared to untreated cells; 4) Sulodexide treatment of both LPS- and WF-stimulated THP-1 significantly down-regulated the release of several MMPs. Our study provides evidence-based medicine during treatment of patients with VLU. WF from Infl and Gran VLU have different MMP and TIMP signatures, consistent with their clinical state. The modulation of proteolytic pathways in wound microenvironment by glycosaminoglycan sulodexide, provide insights for translating research into clinical practice during VLU therapy.

  19. Gonadal hormones differently modulate cutaneous wound healing of chronically stressed mice.

    Science.gov (United States)

    Romana-Souza, Bruna; Assis de Brito, Thatiana L; Pereira, Gabriela R; Monte-Alto-Costa, Andréa

    2014-02-01

    Gonadal hormones influence physiological responses to stress and cutaneous wound healing. The aim of this study was to investigate the role of gonadal hormones on cutaneous wound healing in chronically stressed mice. Male and female mice were gonadectomized, and after 25 days, they were spun daily at 115 rpm for 15 min every hour until euthanasia. Twenty-eight days after the gonadectomy, an excisional lesion was created. The animals were killed 7 or 14 days after wounding, and the lesions were collected. Myofibroblast density, macrophage number, catecholamine level, collagen deposition, and blood vessel number were evaluated. In the intact and gonadectomized groups, stress increased the plasma catecholamine levels in both genders. In intact groups, stress impaired wound contraction and re-epithelialization and increased the macrophage number in males but not in females. In addition, stress compromised myofibroblastic differentiation and blood vessel formation and decreased collagen deposition in males but not in females. In contrast to intact mice, wound healing in ovariectomized female mice was affected by stress, while wound healing in castrated male mice was not. In conclusion, gender differences contribute to the cutaneous wound healing of chronically stressed mice. In addition, androgens contribute to the stress-induced impairment of the healing of cutaneous wounds but estrogens inhibit it.

  20. Cellular and molecular mechanisms of repair in acute and chronic wound healing.

    Science.gov (United States)

    Martin, P; Nunan, R

    2015-08-01

    A considerable understanding of the fundamental cellular and molecular mechanisms underpinning healthy acute wound healing has been gleaned from studying various animal models, and we are now unravelling the mechanisms that lead to chronic wounds and pathological healing including fibrosis. A small cut will normally heal in days through tight orchestration of cell migration and appropriate levels of inflammation, innervation and angiogenesis. Major surgeries may take several weeks to heal and leave behind a noticeable scar. At the extreme end, chronic wounds - defined as a barrier defect that has not healed in 3 months - have become a major therapeutic challenge throughout the Western world and will only increase as our populations advance in age, and with the increasing incidence of diabetes, obesity and vascular disorders. Here we describe the clinical problems and how, through better dialogue between basic researchers and clinicians, we may extend our current knowledge to enable the development of novel potential therapeutic treatments.

  1. Redefining the Chronic-Wound Microbiome: Fungal Communities Are Prevalent, Dynamic, and Associated with Delayed Healing

    Directory of Open Access Journals (Sweden)

    Lindsay Kalan

    2016-09-01

    Full Text Available Chronic nonhealing wounds have been heralded as a silent epidemic, causing significant morbidity and mortality especially in elderly, diabetic, and obese populations. Polymicrobial biofilms in the wound bed are hypothesized to disrupt the highly coordinated and sequential events of cutaneous healing. Both culture-dependent and -independent studies of the chronic-wound microbiome have almost exclusively focused on bacteria, omitting what we hypothesize are important fungal contributions to impaired healing and the development of complications. Here we show for the first time that fungal communities (the mycobiome in chronic wounds are predictive of healing time, associated with poor outcomes, and form mixed fungal-bacterial biofilms. We longitudinally profiled 100, nonhealing diabetic-foot ulcers with high-throughput sequencing of the pan-fungal internal transcribed spacer 1 (ITS1 locus, estimating that up to 80% of wounds contain fungi, whereas cultures performed in parallel captured only 5% of colonized wounds. The “mycobiome” was highly heterogeneous over time and between subjects. Fungal diversity increased with antibiotic administration and onset of a clinical complication. The proportions of the phylum Ascomycota were significantly greater (P = 0.015 at the beginning of the study in wounds that took >8 weeks to heal. Wound necrosis was distinctly associated with pathogenic fungal species, while taxa identified as allergenic filamentous fungi were associated with low levels of systemic inflammation. Directed culturing of wounds stably colonized by pathogens revealed that interkingdom biofilms formed between yeasts and coisolated bacteria. Combined, our analyses provide enhanced resolution of the mycobiome during impaired wound healing, its role in chronic disease, and impact on clinical outcomes.

  2. Wound healing: a new approach to the topical wound care.

    Science.gov (United States)

    Öztürk, Ferdi; Ermertcan, Aylin Türel

    2011-06-01

    Cutaneous wound healing is a complex and well-coordinated interaction between inflammatory cells and mediators, establishing significant overlap between the phases of wound healing. Wound healing is divided into three major phases: inflammatory phase, proliferative phase, and remodeling phase. Unlike the acute wound, the nonhealing wound is arrested in one of the phases of healing, typically the inflammatory phase. A systematic approach to the management of the chronic nonhealing wound emphasizes three important elements of wound bed preparation in chronic wounds: debridement, moisture, and countering bacterial colonization and infection. In this article, wound-healing process and new approaches to the topical wound care have been reviewed.

  3. Temporal stability in chronic wound microbiota is associated with poor healing

    Science.gov (United States)

    Loesche, Michael; Gardner, Sue E.; Kalan, Lindsay; Horwinski, Joseph; Zheng, Qi; Hodkinson, Brendan P.; Tyldsley, Amanda S.; Franciscus, Carrie L.; Hillis, Stephen L.; Mehta, Samir; Margolis, David J.; Grice, Elizabeth A.

    2017-01-01

    Microbial burden of chronic wounds is believed to play an important role in impaired healing and development of infection-related complications. However, clinical cultures have little predictive value of wound outcomes, and culture-independent studies have been limited by cross-sectional design and small cohort size. We systematically evaluated the temporal dynamics of the microbiota colonizing diabetic foot ulcers (DFU), a common and costly complication of diabetes, and its association with healing and clinical complications. Dirichlet multinomial mixture modeling, Markov chain analysis, and mixed-effect models were used to investigate shifts in the microbiota over time and its associations with healing. Here we show to our knowledge previously unreported temporal dynamics of the chronic wound microbiome. Microbiota community instability was associated with faster healing and improved outcomes. DFU microbiota were found to exist in one of four community types that experienced frequent and non-random transitions. Transition patterns and frequencies associated with healing time. Exposure to systemic antibiotics destabilized the wound microbiota, rather than altering overall diversity or relative abundance of specific taxa. This study provides to our knowledge previously unreported evidence that the dynamic wound microbiome is indicative of clinical outcomes and may be a valuable guide for personalized management and treatment of chronic wounds. PMID:27566400

  4. Innovation and wound healing.

    Science.gov (United States)

    Harding, Keith

    2015-04-01

    Innovation in medicine requires unique partnerships between academic research, biotech or pharmaceutical companies, and health-care providers. While innovation in medicine has greatly increased over the past 100 years, innovation in wound care has been slow, despite the fact that chronic wounds are a global health challenge where there is a need for technical, process and social innovation. While novel partnerships between research and the health-care system have been created, we still have much to learn about wound care and the wound-healing processes.

  5. Cell therapy for wound healing.

    Science.gov (United States)

    You, Hi-Jin; Han, Seung-Kyu

    2014-03-01

    In covering wounds, efforts should include utilization of the safest and least invasive methods with goals of achieving optimal functional and cosmetic outcome. The recent development of advanced wound healing technology has triggered the use of cells to improve wound healing conditions. The purpose of this review is to provide information on clinically available cell-based treatment options for healing of acute and chronic wounds. Compared with a variety of conventional methods, such as skin grafts and local flaps, the cell therapy technique is simple, less time-consuming, and reduces the surgical burden for patients in the repair of acute wounds. Cell therapy has also been developed for chronic wound healing. By transplanting cells with an excellent wound healing capacity profile to chronic wounds, in which wound healing cannot be achieved successfully, attempts are made to convert the wound bed into the environment where maximum wound healing can be achieved. Fibroblasts, keratinocytes, adipose-derived stromal vascular fraction cells, bone marrow stem cells, and platelets have been used for wound healing in clinical practice. Some formulations are commercially available. To establish the cell therapy as a standard treatment, however, further research is needed.

  6. Excisional wound healing is delayed in a murine model of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Akhil K Seth

    Full Text Available BACKGROUND: Approximately 15% of the United States population suffers from chronic kidney disease (CKD, often demonstrating an associated impairment in wound healing. This study outlines the development of a surgical murine model of CKD in order to investigate the mechanisms underlying this impairment. METHODS: CKD was induced in mice by partial cauterization of one kidney cortex and contralateral nephrectomy, modifying a previously published technique. After a minimum of 6-weeks, splinted, dorsal excisional wounds were created to permit assessment of wound healing parameters. Wounds were harvested on postoperative days (POD 0, 3, 7, and 14 for histological, immunofluorescent, and quantitative PCR (qPCR. RESULTS: CKD mice exhibited deranged blood chemistry and hematology profiles, including profound uremia and anemia. Significant decreases in re-epithelialization and granulation tissue deposition rates were found in uremic mice wounds relative to controls. On immunofluorescent analysis, uremic mice demonstrated significant reductions in cellular proliferation (BrdU and angiogenesis (CD31, with a concurrent increase in inflammation (CD45 as compared to controls. CKD mice also displayed differential expression of wound healing-related genes (VEGF, IL-1β, eNOS, iNOS on qPCR. CONCLUSIONS: These findings represent the first reported investigation of cutaneous healing in a CKD animal model. Ongoing studies of this significantly delayed wound healing phenotype include the establishment of renal failure model in diabetic strains to study the combined effects of CKD and diabetes.

  7. Effective Delivery of Doxycycline and Epidermal Growth Factor for Expedited Healing of Chronic Wounds

    Science.gov (United States)

    Kulkarni, Abhilash

    The problems and high medical costs associated with chronic wounds necessitate an economical bioactive wound dressing. A new strategy was investigated to inhibit MMP-9 proteases and to release epidermal growth factor (EGF) to enhance healing. Doxycycline (DOX) and EGF were encapsulated on polyacrylic acid modified polyurethane film (PAA-PU) using Layer-by-Layer (LbL) assembly. The number of bilayers tuned the concentration of DOX and EGF released over time with over 94% bioactivity of EGF retained over 4 days. A simple wound model in which MMP-9 proteases were added to cell culture containing fibroblast cells demonstrated that DOX inhibited the proteases providing a protective environment for the released EGF to stimulate cell migration and proliferation at a faster healing rate. In the presence of DOX, only small amounts of the highly bioactive EGF are sufficient to close the wound. Results show that this is new and promising bioactive dressing for effective wound management.

  8. Saliva and wound healing

    NARCIS (Netherlands)

    Brand, H.S.; Ligtenberg, A.J.M.; Veerman, E.C.I.; Ligtenberg, A.J.M.; Veerman, E.C.I.

    2014-01-01

    Oral wounds heal faster and with less scar formation than skin wounds. One of the key factors involved is saliva, which promotes wound healing in several ways. Saliva creates a humid environment, thus improving the survival and functioning of inflammatory cells that are crucial for wound healing. In

  9. Acute and chronic wound fluids inversely influence adipose-derived stem cell function: molecular insights into impaired wound healing.

    Science.gov (United States)

    Koenen, Paola; Spanholtz, Timo A; Maegele, Marc; Stürmer, Ewa; Brockamp, Thomas; Neugebauer, Edmund; Thamm, Oliver C

    2015-02-01

    Wound healing is a complex biological process that requires a well-orchestrated interaction of mediators as well as resident and infiltrating cells. In this context, mesenchymal stem cells play a crucial role as they are attracted to the wound site and influence tissue regeneration by various mechanisms. In chronic wounds, these processes are disturbed. In a comparative approach, adipose-derived stem cells (ASC) were treated with acute and chronic wound fluids (AWF and CWF, respectively). Proliferation and migration were investigated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and transwell migration assay. Gene expression changes were analysed using quantitative real time-polymerase chain reaction. AWF had a significantly stronger chemotactic impact on ASC than CWF (77·5% versus 59·8% migrated cells). While proliferation was stimulated by AWF up to 136·3%, CWF had a negative effect on proliferation over time (80·3%). Expression of b-FGF, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 was strongly induced by CWF compared with a mild induction by AWF. These results give an insight into impaired ASC function in chronic wounds. The detected effect of CWF on proliferation and migration of ASC might be one reason for an insufficient healing process in chronic wounds.

  10. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care.

    Science.gov (United States)

    Demidova-Rice, Tatiana N; Hamblin, Michael R; Herman, Ira M

    2012-07-01

    This is the first installment of 2 articles that discuss the biology and pathophysiology of wound healing, review the role that growth factors play in this process, and describe current ways of growth factor delivery into the wound bed. Part 1 discusses the latest advances in clinicians' understanding of the control points that regulate wound healing. Importantly, biological similarities and differences between acute and chronic wounds are considered, including the signaling pathways that initiate cellular and tissue responses after injury, which may be impeded during chronic wound healing.

  11. Chemical Composition and Anti-Candidiasis Mediated Wound Healing Property of Cymbopogon nardus Essential Oil on Chronic Diabetic Wounds.

    Science.gov (United States)

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati; Dash, Suvakanta; Kalita, Kasturi; Kotoky, Jibon

    2016-01-01

    Poor wound healing is one of the major complication of diabetic patients which arises due to different factors like hyperglycemia, oxidative stress, vascular insufficiency and microbial infections. Candidiasis of diabetic wounds is a difficult to treat condition and potentially can lead to organ amputation. There are a few number of medications available in market to treat this chronic condition; which demands for alternative treatment options. In traditional system of medicine like Ayurveda, essential oil extracted from leaves of Cymbopogon nardus L. (Poaceae) has been using for the treatment of microbial infections, inflammation and pain. In this regard, we have evaluated anti-Candida and anti-inflammatory activity mediated wound healing property of C. nardus essential oil (EO-CN) on candidiasis of diabetic wounds. EO-CN was obtained through hydro-distillation and subjected to Gas chromatography-mass spectroscopy (GC-MS) analysis for chemical profiling. Anti-Candida activity of EO-CN was tested against Candida albicans, C. glabrata and C. tropicalis by in vitro zone of inhibition and minimum inhibitory concentration (MIC) assays. Anti-candidiasis ability of EO-CN was evaluated on C. albicans infected diabetic wounds of mice through measuring candida load on the 7th, 14th, and 21st day of treatment. Further progression in wound healing was confirmed by measuring the inflammatory marker levels and histopathology of wounded tissues on last day of EO-CN treatment. A total of 95 compounds were identified through GC-MS analysis, with major compounds like citral, 2,6-octadienal-, 3,7-dimethyl-, geranyl acetate, citronellal, geraniol, and citronellol. In vitro test results demonstrated strong anti-Candida activity of EO-CN with a MIC value of 25 μg/ml against C. albicans, 50 μg/ml against C. glabrata and C. tropicalis. EO-CN treatment resulted in significant reduction of candida load on diabetic wounds. Acceleration in wound healing was indicated by declined levels of

  12. Chemical Composition and Anti-Candidiasis Mediated Wound Healing Property of Cymbopogon nardus Essential Oil on Chronic Diabetic Wounds

    Science.gov (United States)

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati; Dash, Suvakanta; Kalita, Kasturi; Kotoky, Jibon

    2016-01-01

    Poor wound healing is one of the major complication of diabetic patients which arises due to different factors like hyperglycemia, oxidative stress, vascular insufficiency and microbial infections. Candidiasis of diabetic wounds is a difficult to treat condition and potentially can lead to organ amputation. There are a few number of medications available in market to treat this chronic condition; which demands for alternative treatment options. In traditional system of medicine like Ayurveda, essential oil extracted from leaves of Cymbopogon nardus L. (Poaceae) has been using for the treatment of microbial infections, inflammation and pain. In this regard, we have evaluated anti-Candida and anti-inflammatory activity mediated wound healing property of C. nardus essential oil (EO-CN) on candidiasis of diabetic wounds. EO-CN was obtained through hydro-distillation and subjected to Gas chromatography–mass spectroscopy (GC–MS) analysis for chemical profiling. Anti-Candida activity of EO-CN was tested against Candida albicans, C. glabrata and C. tropicalis by in vitro zone of inhibition and minimum inhibitory concentration (MIC) assays. Anti-candidiasis ability of EO-CN was evaluated on C. albicans infected diabetic wounds of mice through measuring candida load on the 7th, 14th, and 21st day of treatment. Further progression in wound healing was confirmed by measuring the inflammatory marker levels and histopathology of wounded tissues on last day of EO-CN treatment. A total of 95 compounds were identified through GC–MS analysis, with major compounds like citral, 2,6-octadienal-, 3,7-dimethyl-, geranyl acetate, citronellal, geraniol, and citronellol. In vitro test results demonstrated strong anti-Candida activity of EO-CN with a MIC value of 25 μg/ml against C. albicans, 50 μg/ml against C. glabrata and C. tropicalis. EO-CN treatment resulted in significant reduction of candida load on diabetic wounds. Acceleration in wound healing was indicated by declined

  13. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds.

    Science.gov (United States)

    Zhao, Ge; Hochwalt, Phillip C; Usui, Marcia L; Underwood, Robert A; Singh, Pradeep K; James, Garth A; Stewart, Philip S; Fleckman, Philip; Olerud, John E

    2010-01-01

    Chronic wounds are a major clinical problem that lead to considerable morbidity and mortality. We hypothesized that an important factor in the failure of chronic wounds to heal was the presence of microbial biofilm resistant to antibiotics and protected from host defenses. A major difficulty in studying chronic wounds is the absence of suitable animal models. The goal of this study was to create a reproducible chronic wound model in diabetic mice by the application of bacterial biofilm. Six-millimeter punch biopsy wounds were created on the dorsal surface of diabetic (db/db) mice, subsequently challenged with Pseudomonas aeruginosa (PAO1) biofilms 2 days postwounding, and covered with semiocclusive dressings for 2 weeks. Most of the control wounds were epithelialized by 28 days postwounding. In contrast, none of biofilm-challenged wounds were closed. Histological analysis showed extensive inflammatory cell infiltration, tissue necrosis, and epidermal hyperplasia adjacent to challenged wounds-all indicators of an inflammatory nonhealing wound. Quantitative cultures and transmission electron microscopy demonstrated that the majority of bacteria were in the scab above the wound bed rather than in the wound tissue. The model was reproducible, allowed localized cutaneous wound infections without high mortality, and demonstrated delayed wound healing following a biofilm challenge. This model may provide an approach to study the role of microbial biofilms in chronic wounds as well as the effect of specific biofilm therapy on wound healing.

  14. Wound Healing and Care

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Wound Healing and Care KidsHealth > For Teens > Wound Healing and Care Print A A A What's in ... mouth, or sunken eyes. There's good news about wound healing when you're a teen: Age is on ...

  15. Negative Pressure Wound Therapy with Instillation in a Chronic Non-Healing Right Hip Trochanteric Pressure Ulcer

    Science.gov (United States)

    Broder, Kevin W; Bodor, Richard M

    2016-01-01

    Complex pressure ulcer wound sites often present with a wide scope of barriers to healing ranging from high colonization of multi-drug-resistant pathogens to tortuous internal anatomy which make the wound recalcitrant to traditional wound care including standard negative pressure wound therapy (NPWT). Negative pressure wound therapy with instillation (NPWTi-d) provides an opportunity to manage and heal wounds with indications not met by standard NPWT such as cavitating wounds with complex undermining and tunneling. In this clinical case report, a patient who presented with a chronic, non-healing Stage IV pressure ulcer underwent a tensor fascia lata flap reconstruction that was complicated by a partial flap-tip nonadherence with associated partial dehiscence of the flap incision that proved unresolvable until application of adjunctive NPWTi-d which allowed the wound to experience a robust rate of granulation, contraction, and closure. PMID:28003941

  16. Saliva and wound healing

    NARCIS (Netherlands)

    Brand, H.S.; Veerman, E.C.I.

    2013-01-01

    Wounds in the oral cavity heal faster and with less scarring than wounds in other parts of the body. One of the factors implicated in this phenomenon is the presence of saliva, which promotes the healing of oral wounds in several ways. Saliva creates a humid environment, which improves the survival

  17. Electrical stimulation therapy to promote healing of chronic wounds: a review of reviews

    Directory of Open Access Journals (Sweden)

    Houghton PE

    2017-01-01

    Full Text Available Pamela E Houghton School of Physical Therapy, Faculty of Health Sciences, Western University, London, ON, Canada Purpose: The overall objective of this study is to identify and appraise all of the existing clinical research literature that has evaluated the effect of electrical stimulation therapy (EST on wound healing outcomes in adults with various types of chronic wounds. Methods: A systematic and comprehensive search of four electronic databases and gray literature was carried out, and references included in related review articles were checked. Prospective and controlled clinical trials, systematic reviews (SRs, and meta-analyses that assessed the effects of EST on wound healing outcomes were described and appraised. A total PRISMA score was assigned for each included SR based on criteria included in the assessment of multiple systematic reviews (AMSTAR measurement tool. The percentage of available research that was identified in the SR was also calculated. Results: Sixty-two clinical research studies involving 2082 patients with pressure ulcers, venous leg ulcers, diabetic foot wounds, and arterial/ischemic wounds, and ulcers of mixed etiology were located. Thirty-three of the studies with 1370 patients compared wound size reduction after EST to a control group. Eighteen reviews that used a systematic approach to identify, select, and evaluate published studies on this topic have yielded conflicting results. Poorer quality SRs with a low total PRISMA score were more likely to yield negative or inconclusive findings. Most of these low-quality SRs had very vague research questions and included less than 50% of the available literature that was known to exist. Results from 22 well-designed randomized clinical trials and 10 high-quality SRs consistently support that EST can stimulate faster wound size reduction and/or produce a greater number of closed wounds compared to a group of similar patients receiving either standard wound care or sham

  18. [Wound healing and wound dressing].

    Science.gov (United States)

    Eitel, F; Sklarek, J

    1988-01-01

    This review article intends to discuss the clinical management of wounds in respect to a pathophysiological background. Recent results of research in the field of wound healing are demonstrated. Wound healing can be seen as aseptic inflammatory response to a traumatic stimulus. The activation of the clotting cascade by the trauma induces a sequence of humoral and cellular reactions. Platelets, granulocytes and macrophages are activated stepwisely. In the first phase of wound healing the wounded tissue area will be prepared for phagocytosis by enzymatic degradation of ground substance and depolymerisation of protein macromolecules (wound edema). Following the phagocytic microdebridement mesenchymal cells proliferate and produce matrix substance. Microcirculation within the traumatized area will be restored by angiogenesis, macroscopically observed as new formed granulation tissue. This leads to the wound healing phase of scar tissue formation. In this complexity of reactions naturally many possibilities of impairment are given. The most common complication during wound healing is the infection. It can be seen as self reinforcing process. The therapy of the impairment of wound healing consists in the disruption of the specific vicious circle, in the case of an osseus infection that would be a macrodebridement (that is necrectomy) and biomechanical stabilization. The surgical management of wounds principally consists in ensuring an undisturbed sequence of the healing process. This can be done by the wound excision that supports the phagocytic microdebridement. A further possibility is to avoid overwhelming formation of edema by eliminating the traumatic stimulus, by immobilization of the injured region and by ensuring a physiological microenvironment with a primary suture if possible. There are up to the present no drugs available to enhance cell proliferation and to regulate wound healing but it seems that experimental research is successful in characterizing

  19. Chitosan-aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound.

    Science.gov (United States)

    Phaechamud, Thawatchai; Yodkhum, Kotchamon; Charoenteeraboon, Juree; Tabata, Yasuhiko

    2015-05-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan-aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days. The

  20. Wearable light management system for light stimulated healing of large area chronic wounds (Conference Presentation)

    Science.gov (United States)

    Kallweit, David; Mayer, Jan; Fricke, Sören; Schnieper, Marc; Ferrini, Rolando

    2016-03-01

    Chronic wounds represent a significant burden to patients, health care professionals, and health care systems, affecting over 40 million patients and creating costs of approximately 40 billion € annually. We will present a medical device for photo-stimulated wound care based on a wearable large area flexible and disposable light management system consisting of a waveguide with incorporated micro- and nanometer scale optical structures for efficient light in-coupling, waveguiding and homogeneous illumination of large area wounds. The working principle of this innovative device is based on the therapeutic effects of visible light to facilitate the self-healing process of chronic wounds. On the one hand, light exposure in the red (656nm) induces growth of keratinocytes and fibroblasts in deeper layers of the skin. On the other hand, blue light (453nm) is known to have antibacterial effects predominately at the surface layers of the skin. In order to be compliant with medical requirements the system will consist of two elements: a disposable wound dressing with embedded flexible optical waveguides for the light management and illumination of the wound area, and a non-disposable compact module containing the light sources, a controller, a rechargeable battery, and a data transmission unit. In particular, we will report on the developed light management system. Finally, as a proof-of-concept, a demonstrator will be presented and its performances will be reported to demonstrate the potential of this innovative device.

  1. Chitosan–aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound

    Energy Technology Data Exchange (ETDEWEB)

    Phaechamud, Thawatchai, E-mail: thawatchaienator@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000 (Thailand); Yodkhum, Kotchamon, E-mail: marskotchamon@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000 (Thailand); Charoenteeraboon, Juree, E-mail: juree@su.ac.th [Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000 (Thailand); Tabata, Yasuhiko, E-mail: yasuhiko@frontier.kyoto-u.ac.jp [Department of Biomaterials, Field of tissue engineering, Institute for Frontier Medical Science, Kyoto University, Kyoto 606-8507 (Japan)

    2015-05-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan–aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days

  2. [Physiology and pathophysiology of wound healing of wound defects].

    Science.gov (United States)

    Mutschler, W

    2012-09-01

    Understanding wound healing involves more than simply stating that there are the three phases of inflammation, proliferation and maturation. Wound healing is a complex series of actions, reactions and interactions among cells and mediators in a sequential and simultaneously ongoing temporal process within a spatial frame. At first this article will attempt to provide a concise summary of the events, cellular components and main influential mediators of wound healing over time. Secondly, the pathophysiology of chronic non-healing wounds is described where an imbalance of stimulating and inhibiting factors causes failure of healing. The most relevant extrinsic and intrinsic determinants are described and related to the cellular and molecular level of disturbed wound healing. A basic understanding of wound healing is a prerequisite for any prophylactic or therapeutic maneuver to maintain or re-establish wound equilibrium to give a satisfactory healing trajectory.

  3. Wound healing in urology.

    Science.gov (United States)

    Ninan, Neethu; Thomas, Sabu; Grohens, Yves

    2015-03-01

    Wound healing is a dynamic and complex phenomenon of replacing devitalized tissues in the body. Urethral healing takes place in four phases namely inflammation, proliferation, maturation and remodelling, similar to dermal healing. However, the duration of each phase of wound healing in urology is extended for a longer period when compared to that of dermatology. An ideal wound dressing material removes exudate, creates a moist environment, offers protection from foreign substances and promotes tissue regeneration. A single wound dressing material shall not be sufficient to treat all kinds of wounds as each wound is distinct. This review includes the recent attempts to explore the hidden potential of growth factors, stem cells, siRNA, miRNA and drugs for promoting wound healing in urology. The review also discusses the different technologies used in hospitals to treat wounds in urology, which make use of innovative biomaterials synthesised in regenerative medicines like hydrogels, hydrocolloids, foams, films etc., incorporated with growth factors, drug molecules or nanoparticles. These include surgical zippers, laser tissue welding, negative pressure wound therapy, and hyperbaric oxygen treatment.

  4. Basics in nutrition and wound healing.

    Science.gov (United States)

    Wild, Thomas; Rahbarnia, Arastoo; Kellner, Martina; Sobotka, Lubos; Eberlein, Thomas

    2010-09-01

    Wound healing is a process that can be divided into three different phases (inflammatory, proliferative, and maturation). Each is characterized by certain events that require specific components. However, wound healing is not always a linear process; it can progress forward and backward through the phases depending on various intrinsic and extrinsic factors. If the wound-healing process is affected negatively, this can result in chronic wounds. Chronic wounds demand many resources in the clinical daily routine. Therefore, local wound management and good documentation of the wound is essential for non-delayed wound healing and prevention of the development of chronic wounds. During the wound-healing process much energy is needed. The energy for the building of new cells is usually released from body energy stores and protein reserves. This can be very challenging for undernourished and malnourished patients. Malnutrition is very common in geriatric patients and patients in catabolic phases of stress such as after injury or surgery. For that reason a close survey of the nutritional status of patients is necessary to start supplementation quickly, if applicable. Wound healing is indeed a very complex process that deserves special notice. There are some approaches to develop guidelines but thus far no golden standard has evolved. Because wounds, especially chronic wounds, cause also an increasing economic burden, the development of guidelines should be advanced.

  5. Glu-Trp-ONa or its acylated analogue (R-Glu-Trp-ONa) administration enhances the wound healing in the model of chronic skin wounds in rabbits.

    Science.gov (United States)

    Shevtsov, Maxim A; Smagina, Larisa V; Kudriavtceva, Tatiana A; Petlenko, Sergey V; Voronkina, Irina V

    2015-01-01

    The management of chronic skin wounds represents a major therapeutic challenge. The synthesized dipeptide (Glu-Trp-ONa) and its acylated analogue (R-Glu-Trp-ONa) were assessed in the model of nonhealing dermal wounds in rabbits in relation to their healing properties in wound closure. Following wound modeling, the rabbits received a course of intraperitoneal injections of Glu-Trp-ONa or R-Glu-Trp-ONa. Phosphate-buffered saline and Solcoseryl® were applied as negative and positive control agents, respectively. An injection of Glu-Trp-ONa and R-Glu-Trp-ONa decreased the period of wound healing in animals in comparison to the control and Solcoseryl-treated groups. Acylation of Glu-Trp-ONa proved to be beneficial as related to the healing properties of the dipeptide. Subsequent zymography analyses showed that the applied peptides decreased the proteolytic activity of matrix metalloproteinases MMP-9, MMP-8, and MMP-2 in the early inflammatory phase and reversely increased the activity of MMP-9, MMP-8, and MMP-1 in the remodeling phase. Histological analyses of the wound sections (hematoxylin-eosin, Mallory's staining) confirmed the enhanced formation of granulation tissue and re-epithelialization in the experimental groups. By administering the peptides, wound closures increased significantly through the modulation of the MMPs' activity, indicating their role in wound healing.

  6. Glu-Trp-ONa or its acylated analogue (R-Glu-Trp-ONa) administration enhances the wound healing in the model of chronic skin wounds in rabbits

    Science.gov (United States)

    Shevtsov, Maxim A; Smagina, Larisa V; Kudriavtceva, Tatiana A; Petlenko, Sergey V; Voronkina, Irina V

    2015-01-01

    The management of chronic skin wounds represents a major therapeutic challenge. The synthesized dipeptide (Glu-Trp-ONa) and its acylated analogue (R-Glu-Trp-ONa) were assessed in the model of nonhealing dermal wounds in rabbits in relation to their healing properties in wound closure. Following wound modeling, the rabbits received a course of intraperitoneal injections of Glu-Trp-ONa or R-Glu-Trp-ONa. Phosphate-buffered saline and Solcoseryl® were applied as negative and positive control agents, respectively. An injection of Glu-Trp-ONa and R-Glu-Trp-ONa decreased the period of wound healing in animals in comparison to the control and Solcoseryl-treated groups. Acylation of Glu-Trp-ONa proved to be beneficial as related to the healing properties of the dipeptide. Subsequent zymography analyses showed that the applied peptides decreased the proteolytic activity of matrix metalloproteinases MMP-9, MMP-8, and MMP-2 in the early inflammatory phase and reversely increased the activity of MMP-9, MMP-8, and MMP-1 in the remodeling phase. Histological analyses of the wound sections (hematoxylin–eosin, Mallory’s staining) confirmed the enhanced formation of granulation tissue and re-epithelialization in the experimental groups. By administering the peptides, wound closures increased significantly through the modulation of the MMPs’ activity, indicating their role in wound healing. PMID:25848208

  7. Fibronectin and wound healing.

    Science.gov (United States)

    Grinnell, F

    1984-01-01

    I have tried to briefly review the evidence (summarized in Table II) indicating that fibronectin is important in cutaneous wound healing. Fibronectin appears to be an important factor throughout this process. It promotes the spreading of platelets at the site of injury, the adhesion and migration of neutrophils, monocytes, fibroblasts, and endothelial cells into the wound region, and the migration of epidermal cells through the granulation tissue. At the level of matrix synthesis, fibronectin appears to be involved both in the organization of the granulation tissue and basement membrane. In terms of tissue remodeling, fibronectin functions as a nonimmune opsonin for phagocytosis of debris by fibroblasts, keratinocytes, and under some circumstances, macrophages. Fibronectin also enhances the phagocytosis of immune-opsonized particles by monocytes, but whether this includes phagocytosis of bacteria remains to be determined. In general, phagocytosis of bacteria has not appeared to involve fibronectin. On the contrary, the presence of fibronectin in the wound bed may promote bacterial attachment and infection. Because of the ease of experimental manipulations, wound healing experiments have been carried out on skin more frequently than other tissues. As a result, the possible role of fibronectin has not been investigated thoroughly in the repair of internal organs and tissues. Nevertheless, it seems reasonable to speculate that fibronectin plays a central role in all wound healing situations. Finally, the wound healing problems of patients with severe factor XIII deficiencies may occur because of their inability to incorporate fibronectin into blood clots.

  8. A STUDY OF NEGATIVE PRESSURE WOUND THERAPY: VACUUM ASSISTED CLOSURE IN CHRONIC NON-HEALING ULCERS

    Directory of Open Access Journals (Sweden)

    Dhamotharan Senraman

    2016-06-01

    Full Text Available BACKGROUND This study evaluates the advantage of Negative Pressure Wound Therapy-Vacuum Assisted Closure over Conventional Dressing in the management of chronic non-healing ulcers. METHODS From June 2014 to June 2015, 50 patients were selected (25 cases and 25 controls. After wound debridement, VAC dressing is applied. Pre VAC and post VAC culture and sensitivity is taken. Dressing is given for 72 hours and intermittent suction is given for 10 mins. in an hour, daily for 12 hours with negative pressure ranging from 100 to 125 mmHg. Rest of the time drain of the VAC dressing is connected to the Romovac suction drain. Doppler study to assess the vascularity of the limb before the procedure and X-ray is taken to rule out osteomyelitis. Control group patients are given conventional dressings. RESULTS The gender, age and ulcer distributions were almost equal in the case and control groups and were found to be statistically insignificant. Duration of hospital stay in days was found to be statistically significant between groups. Majority (52% of cases left hospital within 3 weeks’ time, while a major chunk (88% of control population stayed more than 3 weeks. VAC dressing shows better results in patients with normal Doppler study. VAC dressing have better results in patients with 48% undergoing split skin grafting and less rate (8% of amputation as against none undergoing split skin grafting and 24% needing amputation in the control group. Patients with sterile pre-VAC culture were not turning unsterile after VAC, but 90% unsterile turns sterile after VAC. CONCLUSION NPWT is a novel technique for managing an open wound by submitting the wound either to intermittent or continuous subatmospheric pressure. Here, we did a study to study the advantage of vacuum assisted closure over conventional dressing in the management of chronic non-healing ulcers and concluded that VAC decreases hospital stay, improves pus culture sterility, has better result in

  9. Exogenous Tryptophan Promotes Cutaneous Wound Healing of Chronically Stressed Mice through Inhibition of TNF-α and IDO Activation.

    Directory of Open Access Journals (Sweden)

    Luana Graziella Bandeira

    Full Text Available Stress prolongs the inflammatory response compromising the dermal reconstruction and wound closure. Acute stress-induced inflammation increases indoleamine 2, 3-dioxygenase-stimulated tryptophan catabolism. To investigate the role of indoleamine 2, 3-dioxygenase expression and tryptophan administration in adverse effects of stress on cutaneous wound healing, mice were submitted to chronic restraint stress and treated with tryptophan daily until euthanasia. Excisional lesions were created on each mouse and 5 or 7 days later, the lesions were analyzed. In addition, murine skin fibroblasts were exposed to elevated epinephrine levels plus tryptophan, and fibroblast activity was evaluated. Tryptophan administration reversed the reduction of the plasma tryptophan levels and the increase in the plasma normetanephrine levels induced by stress 5 and 7 days after wounding. Five days after wounding, stress-induced increase in the protein levels of tumor necrosis factor-α and indoleamine 2, 3-dioxygenase, and this was inhibited by tryptophan. Stress-induced increase in the lipid peroxidation and the amount of the neutrophils, macrophages and T cells number was reversed by tryptophan 5 days after wounding. Tryptophan administration inhibited the reduction of myofibroblast density, collagen deposition, re-epithelialization and wound contraction induced by stress 5 days after wounding. In dermal fibroblast culture, the tryptophan administration increased the cell migration and AKT phosphorylation in cells treated with high epinephrine levels. In conclusion, tryptophan-induced reduction of inflammatory response and indoleamine 2, 3-dioxygenase expression may have accelerated cutaneous wound healing of chronically stressed mice.

  10. Autologous platelet-derived wound healing factor promotes angiogenesis via alphavbeta3-integrin expression in chronic wounds.

    Science.gov (United States)

    Herouy, Y; Mellios, P; Bandemir, E; Stetter, C; Dichmann, S; Idzko, M; Hofmann, C; Vanscheidt, W; Schopf, E; Norgauer, J

    2000-11-01

    Healing of venous leg ulcers depends on the adhesive interaction and formation of new vascular cells. Angiogenesis on the surface of angiogenic blood vessels requires the vascular integrin alphavbeta3 also known as the vitronectin receptor. Autologous platelet-derived wound healing factor (autologous PDWHF) has been described to regulate the wound healing process by forming granulation tissue in the early healing phase. Here we analysed the influence of autologous PDWHF on the expression of the alphavbeta3 integrin in tissue specimen of venous leg ulcers in comparison with placebo treated controls by using reverse transcriptase-polymerase chain reaction and immunohistochemistry. Our investigations provide evidence that mRNA and protein expression of alphavbeta3 were significantly increased in healing venous leg ulcers after 96 h treatment (pgranulation tissue. Placebo controlled patients displayed no altered expression of the alphavbeta3 integrin in biopsy specimen. These findings suggest that topical autologous platelet-derived wound healing factor influences the process of angiogenesis/revascularization via alphavbeta3 integrin-expression hereby promoting granulation tissue formation in healing leg ulcers.

  11. Glu-Trp-ONa or its acylated analogue (R-Glu-Trp-ONa administration enhances the wound healing in the model of chronic skin wounds in rabbits

    Directory of Open Access Journals (Sweden)

    Shevtsov MA

    2015-03-01

    Full Text Available Maxim A Shevtsov,1,2 Larisa V Smagina,1 Tatiana A Kudriavtceva,3 Sergey V Petlenko,4 Irina V Voronkina1 1Institute of Cytology of the Russian Academy of Sciences (RAS, St Petersburg, Russia; 2IP Pavlov State Medical University of St Petersburg, St Petersburg, Russia; 3Institute of Experimental Medicine of the North-West Branch of the Russian Academy of Medical Sciences (IEM NWB RAMS, St Petersburg, Russia; 4Military Medical Academy, St Petersburg, Russia Abstract: The management of chronic skin wounds represents a major therapeutic challenge. The synthesized dipeptide (Glu-Trp-ONa and its acylated analogue (R-Glu-Trp-ONa were assessed in the model of nonhealing dermal wounds in rabbits in relation to their healing properties in wound closure. Following wound modeling, the rabbits received a course of intraperitoneal injections of Glu-Trp-ONa or R-Glu-Trp-ONa. Phosphate-buffered saline and Solcoseryl® were applied as negative and positive control agents, respectively. An injection of Glu-Trp-ONa and R-Glu-Trp-ONa decreased the period of wound healing in animals in comparison to the control and Solcoseryl-treated groups. Acylation of Glu-Trp-ONa proved to be beneficial as related to the healing properties of the dipeptide. Subsequent zymography analyses showed that the applied peptides decreased the proteolytic activity of matrix metalloproteinases MMP-9, MMP-8, and MMP-2 in the early inflammatory phase and reversely increased the activity of MMP-9, MMP-8, and MMP-1 in the remodeling phase. Histological analyses of the wound sections (hematoxylin–eosin, Mallory’s staining confirmed the enhanced formation of granulation tissue and re-epithelialization in the experimental groups. By administering the peptides, wound closures increased significantly through the modulation of the MMPs’ activity, indicating their role in wound healing. Keywords: chronic wound, matrix metalloproteinases, small peptides

  12. Healing Invisible Wounds

    Science.gov (United States)

    Adams, Erica J.

    2010-01-01

    As many as 9 in 10 justice-involved youth are affected by traumatic childhood experiences. According to "Healing Invisible Wounds: Why Investing in Trauma-Informed Care for Children Makes Sense," between 75 and 93 percent of youth currently incarcerated in the justice system have had at least one traumatic experience, including sexual…

  13. Current wound healing procedures and potential care.

    Science.gov (United States)

    Dreifke, Michael B; Jayasuriya, Amil A; Jayasuriya, Ambalangodage C

    2015-03-01

    In this review, we describe current and future potential wound healing treatments for acute and chronic wounds. The current wound healing approaches are based on autografts, allografts, and cultured epithelial autografts, and wound dressings based on biocompatible and biodegradable polymers. The Food and Drug Administration approved wound healing dressings based on several polymers including collagen, silicon, chitosan, and hyaluronic acid. The new potential therapeutic intervention for wound healing includes sustained delivery of growth factors, and siRNA delivery, targeting microRNA, and stem cell therapy. In addition, environment sensors can also potentially utilize to monitor and manage microenvironment at wound site. Sensors use optical, odor, pH, and hydration sensors to detect such characteristics as uric acid level, pH, protease level, and infection - all in the hopes of early detection of complications.

  14. How wounds heal

    Science.gov (United States)

    ... chronic wounds. Poor blood flow due to clogged arteries ( arteriosclerosis ) or conditions such as varicose veins. Obesity increases the risk of infection after surgery. Being overweight can also put tension on stitches, which can make them break open. ...

  15. Freeze-dried platelet-rich plasma shows beneficial healing properties in chronic wounds.

    Science.gov (United States)

    Pietramaggiori, Giorgio; Kaipainen, Arja; Czeczuga, Joshua M; Wagner, Christopher T; Orgill, Dennis P

    2006-01-01

    Fresh platelet concentrates are used in many centers to treat recalcitrant wounds. To extend the therapeutic shelf-life of platelets, we analyzed the wound-healing effects of fresh-frozen and freeze-dried (FD) platelet-rich plasma (PRP) using a diabetic mouse model. Db/db mice with 1.0 cm2 dorsal excisional wounds (n = 15/group) were treated with a single application of FD PRP (1.2 x 10(6) platelets/microL) with or without a stabilization solution, and compared with wounds treated with fresh-frozen, sonicated PRP, and untreated wounds. Granulation tissue area, thickness, and wound size were analyzed 9 days posttreatment. Immunostained sections were quantified for vascularity and proliferation using antiplatelet endothelial cell adhesion molecule I and antiproliferating cell nuclear antigen antibodies. The results showed that all PRP preparations increased granulation tissue formation as assessed by surface coverage, thickness, and angiogenic response, when compared with untreated wounds. In addition, wounds treated with FD PRP, and biochemically stabilized FD PRP, exhibited higher proliferative levels. The possibility to deliver growth factors using platelets, and the potential to extend the shelf-life of platelet concentrates makes freeze-drying methods particularly suitable for enhanced wound care.

  16. Assessment and documentation of non-healing, chronic wounds in inpatient health care facilities in the Czech Republic: an evaluation study.

    Science.gov (United States)

    Pokorná, Andrea; Leaper, David

    2015-04-01

    The foundation of health care management of patients with non-healing, chronic wounds needs accurate evaluation followed by the selection of an appropriate therapeutic strategy. Assessment of non-healing, chronic wounds in clinical practice in the Czech Republic is not standardised. The aim of this study was to analyse the methods being used to assess non-healing, chronic wounds in inpatient facilities in the Czech Republic. The research was carried out at 77 inpatient medical facilities (8 university/faculty hospitals, 63 hospitals and 6 long- term hospitals) across all regions of the Czech Republic. A mixed model was used for the research (participatory observation including creation of field notes and content analysis of documents for documentation and analysis of qualitative and quantitative data). The results of this research have corroborated the suspicion of inconsistencies in procedures used by general nurses for assessment of non-healing, chronic wounds. However, the situation was found to be more positive with regard to evaluation of basic/fundamental parameters of a wound (e.g. size, depth and location of a wound) compared with the evaluation of more specific parameters (e.g. exudate or signs of infection). This included not only the number of observed variables, but also the action taken. Both were significantly improved when a consultant for wound healing was present (P = 0·047). The same applied to facilities possessing a certificate of quality issued by the Czech Wound Management Association (P = 0·010). In conclusion, an effective strategy for wound management depends on the method and scope of the assessment of non-healing, chronic wounds in place in clinical practice in observed facilities; improvement may be expected following the general introduction of a 'non-healing, chronic wound assessment' algorithm.

  17. Deficient cytokine expression and neutrophil oxidative burst contribute to impaired cutaneous wound healing in diabetic, biofilm-containing chronic wounds.

    Science.gov (United States)

    Nguyen, Khang T; Seth, Akhil K; Hong, Seok J; Geringer, Matthew R; Xie, Ping; Leung, Kai P; Mustoe, Thomas A; Galiano, Robert D

    2013-01-01

    Diabetic patients exhibit dysregulated inflammatory and immune responses that predispose them to chronic wound infections and the threat of limb loss. The molecular underpinnings responsible for this have not been well elucidated, particularly in the setting of wound biofilms. This study evaluates host responses in biofilm-impaired wounds using the TallyHo mouse, a clinically relevant polygenic model of type 2 diabetes. No differences in cytokine or Toll-like receptor (TLR) expression were noted in unwounded skin or noninoculated wounds of diabetic and wild-type mice. However, diabetic biofilm-containing wounds had significantly less TLR 2, TLR 4, interleukin-1β, and tumor necrosis factor-α expression than wild-type wounds with biofilm (all p oxidative burst activity. This translated into a log-fold greater bacterial burden and significant delay of wound epithelization for biofilm-impaired diabetic wounds at 10 days postwounding. These results suggest that impaired recognition of bacterial infection via the TLR pathway leading to inadequate cytokine stimulation of antimicrobial host responses may represent a potential mechanism underlying diabetic susceptibility to wound infection and ulceration.

  18. Deregulated unfolded protein response in chronic wounds of diabetic ob/ob mice: a potential connection to inflammatory and angiogenic disorders in diabetes-impaired wound healing.

    Science.gov (United States)

    Schürmann, Christoph; Goren, Itamar; Linke, Andreas; Pfeilschifter, Josef; Frank, Stefan

    2014-03-28

    Type-2 diabetes mellitus (T2D) represents an important metabolic disorder, firmly connected to obesity and low level of chronic inflammation caused by deregulation of fat metabolism. The convergence of chronic inflammatory signals and nutrient overloading at the endoplasmic reticulum (ER) leads to activation of ER-specific stress responses, the unfolded protein response (UPR). As obesity and T2D are often associated with impaired wound healing, we investigated the role of UPR in the pathologic of diabetic-impaired cutaneuos wound healing. We determined the expression patterns of the three UPR branches during normal and diabetes-impaired skin repair. In healthy and diabetic mice, injury led to a strong induction of BiP (BiP/Grp78), C/EBP homologous protein (CHOP) and splicing of X-box-binding protein (XBP)1. Diabetic-impaired wounds showed gross and sustained induction of UPR associated with increased expression of the pro-inflammatory chemokine macrophage inflammatory protein (MIP)2 as compared to normal healing wounds. In vitro, treatment of RAW264.7 macrophages with tunicamycin, and subsequently stimulation with lipopolysaccharide (LPS) and interferon (IFN)-γ enhances MIP2 mRNA und protein expression compared to proinflammatory stimulation alone. However, LPS/IFNγ induced vascular endothelial growth factor (VEGF) production was blunted by tunicamycin induced-ER stress. Hence, UPR is activated following skin injury, and functionally connected to the production of proinflammatory mediators. In addition, prolongation of UPR in diabetic non-healing wounds aggravates ER stress and weakens the angiogenic phenotype of wound macrophages.

  19. Immunodepletion of high-abundant proteins from acute and chronic wound fluids to elucidate low-abundant regulators in wound healing

    Directory of Open Access Journals (Sweden)

    Chojnacki Caroline

    2010-12-01

    Full Text Available Abstract Background The process of wound healing consists of several well distinguishable and finely tuned phases. For most of these phases specific proteins have been characterized, although the underlying mechanisms of regulation are not yet fully understood. It is an open question as to whether deficits in wound healing can be traced back to chronic illnesses such as diabetes mellitus. Previous research efforts in this field focus largely on a restricted set of marker proteins due to the limitations detection by antibodies imposes. For mechanistic purposes the elucidation of differences in acute and chronic wounds can be addressed by a less restricted proteome study. Mass spectrometric (MS methods, e.g. multi dimensional protein identification technology (MudPIT, are well suitable for this complex theme of interest. The human wound fluid proteome is extremely complex, as is human plasma. Therefore, high-abundant proteins often mask the mass spectrometric detection of lower-abundant ones, which makes a depletion step of such predominant proteins inevitable. Findings In this study a commercially available immunodepletion kit was evaluated for the detection of low-abundant proteins from wound fluids. The dynamic range of the entire workflow was significantly increased to 5-6 orders of magnitude, which makes low-abundant regulatory proteins involved in wound healing accessible for MS detection. Conclusion The depletion of abundant proteins is absolutely necessary in order to analyze highly complex protein mixtures such as wound fluids using mass spectrometry. For this the used immunodepletion kit is a first but important step in order to represent the entire dynamic range of highly complex protein mixtures in the future.

  20. Wound-healing ability is conserved during periods of chronic stress and costly life history events in a wild-caught bird.

    Science.gov (United States)

    DuRant, S E; de Bruijn, R; Tran, M N; Romero, L M

    2016-04-01

    Chronic stress, potentially through the actions of corticosterone, is thought to directly impair the function of immune cells. However, chronic stress may also have an indirect effect by influencing allocation of energy, ultimately shifting resources away from the immune system. If so, the effects of chronic stress on immune responses may be greater during energetically-costly life history events. To test whether the effects of chronic stress on immune responses differ during expensive life history events we measured wound healing rate in molting and non-molting European starlings (Sturnus vulgaris) exposed to control or chronic stress conditions. To determine whether corticosterone correlated with wound healing rates before starting chronic stress, we measured baseline and stress-induced corticosterone and two estimates of corticosterone release and regulation, negative feedback (using dexamethasone injection), and maximal capacity of the adrenals to secrete corticosterone (using adrenocorticotropin hormone [ACTH] injection). After 8days of exposure to chronic stress, we wounded both control and chronically stressed birds and monitored healing daily. We monitored nighttime heart rate, which strongly correlates with energy expenditure, and body mass throughout the study. Measures of corticosterone did not differ with molt status. Contrary to work on lizards and small mammals, all birds, regardless of stress or molt status, fully-healed wounds at similar rates. Although chronic stress did not influence healing rates, individuals with low baseline corticosterone or strong negative feedback had faster healing rates than individuals with high baseline corticosterone or weak negative feedback. In addition, wound healing does appear to be linked to energy expenditure and body mass. Non-molting, chronically stressed birds decreased nighttime heart rate during healing, but this pattern did not exist in molting birds. Additionally, birds of heavier body mass at the start of

  1. Cotton Study: Albumin Binding and its Effect on Elastase Activity in the Chronic Non-Healing Wound

    Energy Technology Data Exchange (ETDEWEB)

    Castro, N.; Goheen, S.

    2005-01-01

    Cotton, as it is used in wound dressings is composed of nearly pure cellulose. During the wound-healing process, cotton is exposed to various blood components including water, salts, cells, and blood proteins. Albumin is the most prominent protein in blood. Elastase is an enzyme secreted by white blood cells and takes an active role in tissue reconstruction. In the chronic non-healing wound, elastase is often over-expressed such that this enzyme digests tissue and growth factors, and interferes with the normal healing process. Our goal is to design a cotton wound dressing that will sequester elastase or assist in reducing elastase activity in the presence of other blood proteins such as albumin. The ability of cotton and various cotton derivatives to sequester elastase and albumin has been studied by examining the adsorption of these two proteins separately. We undertook the present work to confirm the binding of albumin to cotton and to quantify the activity of elastase in the presence of various derivatives of cotton. We previously observed a slight increase in elastase activity when exposed to cotton. We also observed a continuous accumulation of albumin on cotton using high-performance liquid chromatography methods. In the present study, we used an open-column-absorption technique coupled with a colorimetric protein assay to confirm losses of albumin to cotton. We have also confirmed increased elastase activity after exposure to cotton. The results are discussed in relation to the porosity of cotton and the use of cotton for treating chronic non-healing wounds.

  2. Cellular events and biomarkers of wound healing

    Directory of Open Access Journals (Sweden)

    Shah Jumaat Mohd. Yussof

    2012-01-01

    Full Text Available Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs and the tissue inhibitors of these metalloproteinases (TIMPs. MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds.

  3. 循环纤维细胞与慢性创面愈合%Circulating fibrocytes and chronic wound healing

    Institute of Scientific and Technical Information of China (English)

    鲍济洪; 杨靖; 陈斌

    2015-01-01

    BACKGROUND:Circulating fibrocytes originated from the peripheral blood are a fibroblast-like cel subpopulation of leukocytes. Circulating fibrocytes play an essential role in wound repair by secreting extracel ular matrix proteins and cytokines, initiating antigen-specific immunity, accelerating wound contraction as wel as promoting angiogenesis. However, the potential role for improving chronic wound healing and its mechanism is stil unclear. OBJECTIVE:To summarize the biological features of circulating fibrocytes and its potential role and mechanism in accelerating chronic wound healing. METHODS:A computer-based search of CNKI database from 2000 to 2014, PubMed database from 1994 to 2014 and Foreign Medical Journal Ful-Text Service database from 2000 to 2014 was performed using“circulating fibrocytes, non-healing wounds, diabetic foot ulcer, wound healing, cel therapy”in Chinese and English as the keywords to retrieve articles related to circulating fibrocytes, refractory mechanism of chronic wound healing and cel therapy for chronic wounds. Total y 54 articles meeting the inclusive criteria were included in result analysis. RESULTS AND CONCLUSION:Cel therapy with circulating fibrocytes is a safe and effective treatment for improving wound healing and has been used to repair various chronic wounds in the recent decades. Circulating fibrocytes are a distinct subpopulation of fibroblast-like leukocytes in the peripheral blood. It is able to migrate into wound sites at the early stage of wound repair and plays an active role in the wound healing process by secreting extracel ular matrix proteins, cytokines, presenting antigens, contracting wound and promoting neovascularization. Recently, it has been proved in animal experiments that circulating fibrocytes can accelerate chronic wound healing, especial y diabetic chronic wound.%背景:循环纤维细胞是近些年来在外周血液发现的具有成纤维细胞特性的一种白细胞亚群,由于具有

  4. Biomarkers for wound healing and their evaluation.

    Science.gov (United States)

    Patel, S; Maheshwari, A; Chandra, A

    2016-01-01

    A biological marker (biomarker) is a substance used as an indicator of biological state. Advances in genomics, proteomics and molecular pathology have generated many candidate biomarkers with potential clinical value. Research has identified several cellular events and mediators associated with wound healing that can serve as biomarkers. Macrophages, neutrophils, fibroblasts and platelets release cytokines molecules including TNF-α, interleukins (ILs) and growth factors, of which platelet-derived growth factor (PDGF) holds the greatest importance. As a result, various white cells and connective tissue cells release both matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). Studies have demonstrated that IL-1, IL-6, and MMPs, levels above normal, and an abnormally high MMP/TIMP ratio are often present in non-healing wounds. Clinical examination of wounds for these mediators could predict which wounds will heal and which will not, suggesting use of these chemicals as biomarkers of wound healing. There is also evidence that the application of growth factors like PDGF will alleviate the recuperating process of chronic, non-healing wounds. Finding a specific biomarker for wound healing status would be a breakthrough in this field and helping treat impaired wound healing.

  5. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing.

    Science.gov (United States)

    Koob, Thomas J; Rennert, Robert; Zabek, Nicole; Massee, Michelle; Lim, Jeremy J; Temenoff, Johnna S; Li, William W; Gurtner, Geoffrey

    2013-10-01

    Human amnion/chorion tissue derived from the placenta is rich in cytokines and growth factors known to promote wound healing; however, preservation of the biological activities of therapeutic allografts during processing remains a challenge. In this study, PURION® (MiMedx, Marietta, GA) processed dehydrated human amnion/chorion tissue allografts (dHACM, EpiFix®, MiMedx) were evaluated for the presence of growth factors, interleukins (ILs) and tissue inhibitors of metalloproteinases (TIMPs). Enzyme-linked immunosorbent assays (ELISA) were performed on samples of dHACM and showed quantifiable levels of the following growth factors: platelet-derived growth factor-AA (PDGF-AA), PDGF-BB, transforming growth factor α (TGFα), TGFβ1, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), placental growth factor (PLGF) and granulocyte colony-stimulating factor (GCSF). The ELISA assays also confirmed the presence of IL-4, 6, 8 and 10, and TIMP 1, 2 and 4. Moreover, the relative elution of growth factors into saline from the allograft ranged from 4% to 62%, indicating that there are bound and unbound fractions of these compounds within the allograft. dHACM retained biological activities that cause human dermal fibroblast proliferation and migration of human mesenchymal stem cells (MSCs) in vitro. An in vivo mouse model showed that dHACM when tested in a skin flap model caused mesenchymal progenitor cell recruitment to the site of implantation. The results from both the in vitro and in vivo experiments clearly established that dHACM contains one or more soluble factors capable of stimulating MSC migration and recruitment. In summary, PURION® processed dHACM retains its biological activities related to wound healing, including the potential to positively affect four distinct and pivotal physiological processes intimately involved in wound healing: cell proliferation, inflammation, metalloproteinase activity and recruitment of progenitor cells. This suggests

  6. 慢性创面愈合的细胞治疗%Cell therapy of chronic wound healing

    Institute of Scientific and Technical Information of China (English)

    严龙宗; 陈斌

    2013-01-01

    背景:慢性创面也称难愈性创面,可严重影响患者的生存质量并增加患者经济及社会医疗资源负担。细胞治疗作为一种新的创面治疗方法,在慢性创面的修复中已日益受到重视。  目的:对目前慢性创面的愈合机制及细胞治疗的研究进展做一综述,旨在为临床慢性创面治疗及开展相关研究提供参考。  方法:分别以“难愈性创面、糖尿病足、创面愈合、细胞治疗”和“non-healing wounds、diabetic foot ulcer、wound healing、cel therapy”为关键词进行检索,CNKI数据库的检索时限为2005至2012年,PubMed数据库的检索时限为1995至2012年,西文生物医学期刊文献数据的检索时限为2000至2012年,检索内容为慢性创面的难愈机制以及细胞治疗在慢性创面愈合中的应用。保留符合纳入标准的42篇文献进行总结分析。  结果与结论:创面愈合是多种细胞、细胞外基质及细胞因子等共同参与并高度协调、调控的复杂生物学过程。而难愈创面的愈合延迟严重影响患者的生活质量并增加了经济负担。目前有很多方法用于创面修复,如局部高压氧治疗、外科手术处理、各种生长因子、中药、细胞治疗等,其中细胞治疗由于几乎没有创伤、可通过投递到创面的细胞分泌创伤修复所需的生长因子、细胞因子并通过信号传导而参与到创伤修复全过程、发挥接近正常修复功能而备受人们关注。目前用于治疗慢性创面的细胞主要有骨髓干细胞、骨髓间充质干细胞、脐血干细胞、外周血干细胞、表皮干细胞、皮肤源祖细胞、脂肪干细胞、成纤维细胞、血小板等。%BACKGROUND:The chronic wounds, also cal ed non-heading wounds, can seriously affect the quality of life of patients and has brought heavy burden to patients, as wel as health care professionals. celltherapy is a new method for promoting

  7. Honey: an immunomodulator in wound healing.

    Science.gov (United States)

    Majtan, Juraj

    2014-01-01

    Honey is a popular natural product that is used in the treatment of burns and a broad spectrum of injuries, in particular chronic wounds. The antibacterial potential of honey has been considered the exclusive criterion for its wound healing properties. The antibacterial activity of honey has recently been fully characterized in medical-grade honeys. Recently, the multifunctional immunomodulatory properties of honey have attracted much attention. The aim of this review is to provide closer insight into the potential immunomodulatory effects of honey in wound healing. Honey and its components are able to either stimulate or inhibit the release of certain cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6) from human monocytes and macrophages, depending on wound condition. Similarly, honey seems to either reduce or activate the production of reactive oxygen species from neutrophils, also depending on the wound microenvironment. The honey-induced activation of both types of immune cells could promote debridement of a wound and speed up the repair process. Similarly, human keratinocytes, fibroblasts, and endothelial cell responses (e.g., cell migration and proliferation, collagen matrix production, chemotaxis) are positively affected in the presence of honey; thus, honey may accelerate reepithelization and wound closure. The immunomodulatory activity of honey is highly complex because of the involvement of multiple quantitatively variable compounds among honeys of different origins. The identification of these individual compounds and their contributions to wound healing is crucial for a better understanding of the mechanisms behind honey-mediated healing of chronic wounds.

  8. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Directory of Open Access Journals (Sweden)

    Subhamoy Das

    2016-10-01

    Full Text Available Wound healing is an intricate process that requires complex coordination between many cells and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care; the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds including excessive inflammation, ischemia, scarring and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or currently used in clinical practice.

  9. General concept of wound healing, revisited

    Directory of Open Access Journals (Sweden)

    Theddeus O.H. Prasetyono

    2009-09-01

    Full Text Available Wound healing is a transition of processes which is also recognized as one of the most complex processes in human physiology. Complex series of reactions and interactions among cells and mediators take place in the healing process of wound involving cellular and molecular events. The inflammatory phase is naturally intended to remove devitalized tissue and prevent invasive infection. The proliferative phase is characterized by the formation of granulation tissue within the wound bed, composed of new capillary network, fibroblast, and macrophages in a loose arrangement of supporting structure. This second phase lasts from day 8 to 21 after the injury is also the phase for epithelialisation. The natural period of proliferative phase is a reflection for us in treating wound to reach the goal which ultimately defines as closed wound. The final maturation phase is also characterized by the balancing between deposition of collagen and its degradation. There are at least three prerequisites which are ideal local conditions for the nature of wound to go on a normal process of healing i.e. 1 all tissue involved in the wound and surrounding should be vital, 2 no foreign bodies in the wound, and 3 free from excessive contamination/infection. The author formulated a step ladder of thinking in regards of healing intentions covering all acute and chronic wounds. Regarding the “hierarchy” of healing intention, the fi rst and ideal choice to heal wounds is by primary intention followed by tertiary intention and lastly the secondary intention. (Med J Indones 2009;18:206-14Key words: inflammatory mediator, epithelialisation, growth factor, wound healing

  10. Murine models of human wound healing.

    Science.gov (United States)

    Chen, Jerry S; Longaker, Michael T; Gurtner, Geoffrey C

    2013-01-01

    In vivo wound healing experiments remain the most predictive models for studying human wound healing, allowing an accurate representation of the complete wound healing environment including various cell types, environmental cues, and paracrine interactions. Small animals are economical, easy to maintain, and allow researchers to take advantage of the numerous transgenic strains that have been developed to investigate the specific mechanisms involved in wound healing and regeneration. Here we describe three reproducible murine wound healing models that recapitulate the human wound healing process.

  11. Advances in the research of promoting healing of chronic wound with platelet-rich plasma%富血小板血浆促进慢性创面愈合研究进展

    Institute of Scientific and Technical Information of China (English)

    刘宸; 章宏伟

    2014-01-01

    Normal wound healing is a well-orchestrated process of inflammatory response,cell proliferation,and tissue remodeling.However,this orderly and precise process is impaired in chronic wounds.A series of complicated pathogenic factors,including enhanced inflammatory response,poor cell proliferation,restrained angiogenesis,restricted collagen deposition,and infection,contribute to the failure of healing of chronic wound.The application of platelet-rich plasma (PRP) has been explored as a treatment for chronic wounds as it can balance wound microenvironment for promoting wound healing.PRP can modulate the inflammatory mediators,growth factors,and cytokines,etc.to correct abnormal biological events and disorderly molecular environment of cell migration and proliferation,and thus promote wound healing appropriately.Yet,the mechanism of PRP in promoting healing of chronic wound is still not elaborated,and the clinical application of PRP needs to be standardized as soon as possible.

  12. The Effect of Bone Marrow-Derived Mesenchymal Stem Cells and Their Conditioned Media Topically Delivered in Fibrin Glue on Chronic Wound Healing in Rats

    OpenAIRE

    Mehanna, Radwa A.; Iman Nabil; Noha Attia; Bary, Amany A.; Razek, Khalid A.; Ahmed, Tamer A. E.; Fatma Elsayed

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent a modern approach for management of chronic skin injuries. In this work, we describe BM-MSCs application versus their conditioned media (CM) when delivered topically admixed with fibrin glue to enhance the healing of chronic excisional wounds in rats. Fifty-two adult male rats were classified into four groups after induction of large-sized full-thickness skin wound: control group (CG), fibrin only group (FG), fibrin + MSCs group (...

  13. alpha-Lipoic acid supplementation inhibits oxidative damage, accelerating chronic wound healing in patients undergoing hyperbaric oxygen therapy.

    Science.gov (United States)

    Alleva, Renata; Nasole, Emanuele; Di Donato, Ferruccio; Borghi, Battista; Neuzil, Jiri; Tomasetti, Marco

    2005-07-29

    Hyperbaric oxygen (HBO) therapy is successfully used for the treatment of a variety of conditions. However, prolonged exposure to high concentrations of oxygen induces production of reactive oxygen species, causing damage to the cells. Thus, antioxidant supplementation has been proposed as an adjuvant to attenuate such deleterious secondary effects. We evaluated the effects of alpha-lipoic acid (LA) in patients affected by chronic wounds undergoing HBO treatment. LA supplementation efficiently reduces both the lipid and DNA oxidation induced by oxygen exposure. LA exerted its antioxidant activity by directly interacting with free radicals or by recycling vitamin E. An inhibitory effect of LA on the pro-inflammatory cytokine interleukin-6 was observed. Taken together, we demonstrated an adjuvant effect of LA in HBO therapy used for impaired wound healing treatment. We propose that LA may be used to further promote the beneficial effects of HBO therapy.

  14. Eicosanoids: Emerging contributors in stem cell-mediated wound healing.

    Science.gov (United States)

    Berry, Elizabeth; Liu, Yanzhou; Chen, Li; Guo, Austin M

    2016-11-05

    Eicosanoids are bioactive lipid products primarily derived from the oxidation of arachidonic acid (AA). The individual contributions of eicosanoids and stem cells to wound healing have been of great interest. This review focuses on how stem cells work in concert with eicosanoids to create a beneficial environment in the wound bed and in the promotion of wound healing. Stem cells contribute to wound healing through modulating inflammation, differentiating into skin cells or endothelial cells, and exerting paracrine effects by releasing various potent growth factors. Eicosanoids have been shown to stimulate proliferation, migration, homing, and differentiation of stem cells, all of which contribute to the process of wound healing. Increasing evidence has shown that eicosanoids improve wound healing through increasing stem cell densities, stimulating differentiation, and enhancing the angiogenic properties of stem cells. Chronic wounds have become a major problem in health care. Therefore, research regarding the effects of stem cells and eicosanoids in the promotion wound healing is of great importance.

  15. New insights into microRNAs in skin wound healing.

    Science.gov (United States)

    Fahs, Fatima; Bi, Xinling; Yu, Fu-Shin; Zhou, Li; Mi, Qing-Sheng

    2015-12-01

    Chronic wounds are a major burden to overall healthcare cost and patient morbidity. Chronic wounds affect a large portion of the US, and billions of healthcare dollars are spent in their treatment and management. microRNAs (miRNAs) are small, noncoding double-stranded RNAs that post-transcriptionally downregulate the expression of protein-coding genes. Studies have identified miRNAs involved in all three phases of wound healing including inflammation, proliferation, and remodeling. Some miRNAs have been demonstrated in vitro with primary keratinocyte wound healing model and in vivo with mouse wound healing model through regulation of miRNA expression to affect the wound healing process. This review updates the current miRNAs involved in wound healing and discusses the future therapeutic implications and research directions.

  16. [Specificities in children wound healing].

    Science.gov (United States)

    Sanchez, J; Antonicelli, F; Tuton, D; Mazouz Dorval, S; François, C

    2016-10-01

    Children have specific characteristics of wound healing. The aim of this study was to describe the specific clinical characteristics of wounds healing in children and to present the current knowledge on the specific mechanisms with regard to infant age. The tissue insult or injury in fetus can heal without scar, mainly due to reduced granulation tissue associated to diminished or even no inflammatory phase, modified extracellular matrix such as the concentration of hyaluronic acid in amniotic liquid, expression and arrangement of collagen and tenascin. Thickness of children skin is a serious negative factor in case of trauma, whereas poor co-morbidities and efficient growth tissue mechanisms are beneficial to good evolution, even in cases of extensive damage and loss of tissue. The subsequent tissue mechanical forces, wound healing during childhood, spanning from the age of 2 until the end of puberty, is associated with more hypertrophic scars, both in duration and in intensity. Consequently, unnecessary surgery has to be avoided during this period when possible, and children with abnormal or pathologic wound healing should benefit from complementary treatments (hydration, massage, brace, silicone, hydrotherapy…), which represent efficient factors to minimize tissue scarring. After wound healing, the growth body rate can be responsible for specific complications, such as contractures, alopecia, and scar intussusceptions. Its evolutionary character implies the need of an attentive follow-up until adult age. Psychologic repercussions, as a consequence of pathologic scars, must be prevented and investigated by the surgeon.

  17. The Effect of Bone Marrow-Derived Mesenchymal Stem Cells and Their Conditioned Media Topically Delivered in Fibrin Glue on Chronic Wound Healing in Rats.

    Science.gov (United States)

    Mehanna, Radwa A; Nabil, Iman; Attia, Noha; Bary, Amany A; Razek, Khalid A; Ahmed, Tamer A E; Elsayed, Fatma

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent a modern approach for management of chronic skin injuries. In this work, we describe BM-MSCs application versus their conditioned media (CM) when delivered topically admixed with fibrin glue to enhance the healing of chronic excisional wounds in rats. Fifty-two adult male rats were classified into four groups after induction of large-sized full-thickness skin wound: control group (CG), fibrin only group (FG), fibrin + MSCs group (FG + SCs), and fibrin + CM group (FG + CM). Healing wounds were evaluated functionally and microscopically. Eight days after injury, number of CD68+ macrophages infiltrating granulation tissue was considerably higher in the latter two groups. Although--later--none of the groups depicted a substantially different healing rate, the quality of regenerated skin was significantly boosted by the application of either BM-MSCs or their CM both (1) structurally as demonstrated by the obviously increased mean area percent of collagen fibers in Masson's trichrome-stained skin biopsies and (2) functionally as supported by the interestingly improved epidermal barrier as well as dermal tensile strength. Thus, we conclude that topically applied BM-MSCs and their CM-via fibrin vehicle--could effectively improve the quality of healed skin in chronic excisional wounds in rats, albeit without true acceleration of wound closure.

  18. The Effect of Bone Marrow-Derived Mesenchymal Stem Cells and Their Conditioned Media Topically Delivered in Fibrin Glue on Chronic Wound Healing in Rats

    Science.gov (United States)

    Mehanna, Radwa A.; Nabil, Iman; Attia, Noha; Bary, Amany A.; Razek, Khalid A.; Ahmed, Tamer A. E.; Elsayed, Fatma

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent a modern approach for management of chronic skin injuries. In this work, we describe BM-MSCs application versus their conditioned media (CM) when delivered topically admixed with fibrin glue to enhance the healing of chronic excisional wounds in rats. Fifty-two adult male rats were classified into four groups after induction of large-sized full-thickness skin wound: control group (CG), fibrin only group (FG), fibrin + MSCs group (FG + SCs), and fibrin + CM group (FG + CM). Healing wounds were evaluated functionally and microscopically. Eight days after injury, number of CD68+ macrophages infiltrating granulation tissue was considerably higher in the latter two groups. Although—later—none of the groups depicted a substantially different healing rate, the quality of regenerated skin was significantly boosted by the application of either BM-MSCs or their CM both (1) structurally as demonstrated by the obviously increased mean area percent of collagen fibers in Masson's trichrome-stained skin biopsies and (2) functionally as supported by the interestingly improved epidermal barrier as well as dermal tensile strength. Thus, we conclude that topically applied BM-MSCs and their CM—via fibrin vehicle—could effectively improve the quality of healed skin in chronic excisional wounds in rats, albeit without true acceleration of wound closure. PMID:26236740

  19. The Effect of Bone Marrow-Derived Mesenchymal Stem Cells and Their Conditioned Media Topically Delivered in Fibrin Glue on Chronic Wound Healing in Rats

    Directory of Open Access Journals (Sweden)

    Radwa A. Mehanna

    2015-01-01

    Full Text Available Bone marrow-derived mesenchymal stem cells (BM-MSCs represent a modern approach for management of chronic skin injuries. In this work, we describe BM-MSCs application versus their conditioned media (CM when delivered topically admixed with fibrin glue to enhance the healing of chronic excisional wounds in rats. Fifty-two adult male rats were classified into four groups after induction of large-sized full-thickness skin wound: control group (CG, fibrin only group (FG, fibrin + MSCs group (FG + SCs, and fibrin + CM group (FG + CM. Healing wounds were evaluated functionally and microscopically. Eight days after injury, number of CD68+ macrophages infiltrating granulation tissue was considerably higher in the latter two groups. Although—later—none of the groups depicted a substantially different healing rate, the quality of regenerated skin was significantly boosted by the application of either BM-MSCs or their CM both (1 structurally as demonstrated by the obviously increased mean area percent of collagen fibers in Masson’s trichrome-stained skin biopsies and (2 functionally as supported by the interestingly improved epidermal barrier as well as dermal tensile strength. Thus, we conclude that topically applied BM-MSCs and their CM—via fibrin vehicle—could effectively improve the quality of healed skin in chronic excisional wounds in rats, albeit without true acceleration of wound closure.

  20. A short peptide from frog skin accelerates diabetic wound healing.

    Science.gov (United States)

    Liu, Han; Duan, Zilei; Tang, Jing; Lv, Qiumin; Rong, Mingqiang; Lai, Ren

    2014-10-01

    Delayed wound healing will result in the development of chronic wounds in some diseases, such as diabetes. Amphibian skins possess excellent wound-healing ability and represent a resource for prospective wound-healing promoting compounds. A potential wound-healing promoting peptide (CW49; amino acid sequence APFRMGICTTN) was identified from the frog skin of Odorrana grahami. It promotes wound healing in a murine model with a full-thickness dermal wound in both normal and diabetic animals. In addition to its strong angiogenic ability with respect to the upregulation of some angiogenic proteins, CW49 also showed a significant anti-inflammatory effect in diabetic wounds, which was very important for healing chronic wounds. CW49 had little effect on re-epithelialization, resulting in no significant effect on wound closure rate compared to a vehicle control. Altogether, this indicated that CW49 might accelerate diabetic wound healing by promoting angiogenesis and preventing any excessive inflammatory response. Considering its favorable traits as a small peptide that significantly promotes angiogenesis, CW49 might be an excellent candidate or template for the development of a drug for use in the treatment of diabetic wounds.

  1. Current concepts in wound management and wound healing products.

    Science.gov (United States)

    Davidson, Jacqueline R

    2015-05-01

    Current concepts in wound management are summarized. The emphasis is on selection of the contact layer of the bandage to promote a moist wound environment. Selection of an appropriate contact layer is based on the stage of wound healing and the amount of wound exudate. The contact layer can be used to promote autolytic debridement and enhance wound healing.

  2. Progress in corneal wound healing.

    Science.gov (United States)

    Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2015-11-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal

  3. Photobiomodulation in promoting wound healing: a review.

    Science.gov (United States)

    Kuffler, Damien P

    2016-01-01

    Despite diverse methods being applied to induce wound healing, many wounds remain recalcitrant to all treatments. Photobiomodulation involves inducing wound healing by illuminating wounds with light emitting diodes or lasers. While used on different animal models, in vitro, and clinically, wound healing is induced by many different wavelengths and powers with no optimal set of parameters yet being identified. While data suggest that simultaneous multiple wavelength illumination is more efficacious than single wavelengths, the optimal single and multiple wavelengths must be better defined to induce more reliable and extensive healing of different wound types. This review focuses on studies in which specific wavelengths induce wound healing and on their mechanisms of action.

  4. Diabetes medications: Impact on inflammation and wound healing.

    Science.gov (United States)

    Salazar, Jay J; Ennis, William J; Koh, Timothy J

    2016-01-01

    Chronic wounds are a common complication in patients with diabetes that often lead to amputation. These non-healing wounds are described as being stuck in a persistent inflammatory state characterized by accumulation of pro-inflammatory macrophages, cytokines and proteases. Some medications approved for management of type 2 diabetes have demonstrated anti-inflammatory properties independent of their marketed insulinotropic effects and thus have underappreciated potential to promote wound healing. In this review, the potential for insulin, metformin, specific sulfonylureas, thiazolidinediones, and dipeptidyl peptidase-4 inhibitors to promote healing is evaluated by reviewing human and animal studies on inflammation and wound healing. The available evidence indicates that diabetic medications have potential to prevent wounds from becoming arrested in the inflammatory stage of healing and to promote wound healing by downregulating pro-inflammatory cytokines, upregulating growth factors, lowering matrix metalloproteinases, stimulating angiogenesis, and increasing epithelization. However, no clinical recommendations currently exist on the potential for specific diabetic medications to impact healing of chronic wounds. Thus, we encourage further research that may guide physicians on providing personalized diabetes treatments that achieve glycemic goals while promoting healing in patients with chronic wounds.

  5. Biofilms in chronic wounds.

    Science.gov (United States)

    James, Garth A; Swogger, Ellen; Wolcott, Randall; Pulcini, Elinor deLancey; Secor, Patrick; Sestrich, Jennifer; Costerton, John W; Stewart, Philip S

    2008-01-01

    Chronic wounds including diabetic foot ulcers, pressure ulcers, and venous leg ulcers are a worldwide health problem. It has been speculated that bacteria colonizing chronic wounds exist as highly persistent biofilm communities. This research examined chronic and acute wounds for biofilms and characterized microorganisms inhabiting these wounds. Chronic wound specimens were obtained from 77 subjects and acute wound specimens were obtained from 16 subjects. Culture data were collected using standard clinical techniques. Light and scanning electron microscopy techniques were used to analyze 50 of the chronic wound specimens and the 16 acute wound specimens. Molecular analyses were performed on the remaining 27 chronic wound specimens using denaturing gradient gel electrophoresis and sequence analysis. Of the 50 chronic wound specimens evaluated by microscopy, 30 were characterized as containing biofilm (60%), whereas only one of the 16 acute wound specimens was characterized as containing biofilm (6%). This was a statistically significant difference (p<0.001). Molecular analyses of chronic wound specimens revealed diverse polymicrobial communities and the presence of bacteria, including strictly anaerobic bacteria, not revealed by culture. Bacterial biofilm prevalence in specimens from chronic wounds relative to acute wounds observed in this study provides evidence that biofilms may be abundant in chronic wounds.

  6. Plasminogen is a critical regulator of cutaneous wound healing.

    Science.gov (United States)

    Sulniute, Rima; Shen, Yue; Guo, Yong-Zhi; Fallah, Mahsa; Ahlskog, Nina; Ny, Lina; Rakhimova, Olena; Broden, Jessica; Boija, Hege; Moghaddam, Aliyeh; Li, Jinan; Wilczynska, Malgorzata; Ny, Tor

    2016-05-02

    Wound healing is a complicated biological process that consist of partially overlapping inflammatory, proliferation and tissue remodelling phases. A successful wound healing depends on a proper activation and subsequent termination of the inflammatory phase. The failure to terminate the inflammation halts the completion of wound healing and is a known reason for formation of chronic wounds. Previous studies have shown that wound closure is delayed in plasminogen-deficient mice, and a role for plasminogen in dissection of extracellular matrix was suggested. However, our finding that plasminogen is transported to the wound by inflammatory cells early during the healing process, where it potentiates inflammation, indicates that plasminogen may also have other roles in the wound healing process. Here we report that plasminogen-deficient mice have extensive fibrin and neutrophil depositions in the wounded area long after re-epithelialisation, indicating inefficient debridement and chronic inflammation. Delayed formation of granulation tissue suggests that fibroblast function is impaired in the absence of plasminogen. Therefore, in addition to its role in the activation of inflammation, plasminogen is also crucial for subsequent steps, including resolution of inflammation and activation of the proliferation phase. Importantly, supplementation of plasminogen-deficient mice with human plasminogen leads to a restored healing process that is comparable to that in wild-type mice. Besides of being an activator of the inflammatory phase during wound healing, plasminogen is also required for the subsequent termination of inflammation. Based on these results, we propose that plasminogen may be an important future therapeutic agent for wound treatment.

  7. Comparative wound healing--are the small animal veterinarian's clinical patients an improved translational model for human wound healing research?

    Science.gov (United States)

    Volk, Susan W; Bohling, Mark W

    2013-01-01

    Despite intensive research efforts into understanding the pathophysiology of both chronic wounds and scar formation, and the development of wound care strategies to target both healing extremes, problematic wounds in human health care remain a formidable challenge. Although valuable fundamental information regarding the pathophysiology of problematic wounds can be gained from in vitro investigations and in vivo studies performed in laboratory animal models, the lack of concordance with human pathophysiology has been cited as a major impediment to translational research in human wound care. Therefore, the identification of superior clinical models for both chronic wounds and scarring disorders should be a high priority for scientists who work in the field of human wound healing research. To be successful, translational wound healing research should function as an intellectual ecosystem in which information flows from basic science researchers using in vitro and in vivo models to clinicians and back again from the clinical investigators to the basic scientists. Integral to the efficiency of this process is the incorporation of models which can accurately predict clinical success. The aim of this review is to describe the potential advantages and limitations of using clinical companion animals (primarily dogs and cats) as translational models for cutaneous wound healing research by describing comparative aspects of wound healing in these species, common acute and chronic cutaneous wounds in clinical canine and feline patients, and the infrastructure that currently exists in veterinary medicine which may facilitate translational studies and simultaneously benefit both veterinary and human wound care patients.

  8. Advanced Therapeutic Dressings for Effective Wound Healing--A Review.

    Science.gov (United States)

    Boateng, Joshua; Catanzano, Ovidio

    2015-11-01

    Advanced therapeutic dressings that take active part in wound healing to achieve rapid and complete healing of chronic wounds is of current research interest. There is a desire for novel strategies to achieve expeditious wound healing because of the enormous financial burden worldwide. This paper reviews the current state of wound healing and wound management products, with emphasis on the demand for more advanced forms of wound therapy and some of the current challenges and driving forces behind this demand. The paper reviews information mainly from peer-reviewed literature and other publicly available sources such as the US FDA. A major focus is the treatment of chronic wounds including amputations, diabetic and leg ulcers, pressure sores, and surgical and traumatic wounds (e.g., accidents and burns) where patient immunity is low and the risk of infections and complications are high. The main dressings include medicated moist dressings, tissue-engineered substitutes, biomaterials-based biological dressings, biological and naturally derived dressings, medicated sutures, and various combinations of the above classes. Finally, the review briefly discusses possible prospects of advanced wound healing including some of the emerging physical approaches such as hyperbaric oxygen, negative pressure wound therapy and laser wound healing, in routine clinical care.

  9. Potential of oncostatin M to accelerate diabetic wound healing.

    Science.gov (United States)

    Shin, Soo Hye; Han, Seung-Kyu; Jeong, Seong-Ho; Kim, Woo-Kyung

    2014-08-01

    Oncostatin M (OSM) is a multifunctional cytokine found in a variety of pathologic conditions, which leads to excessive collagen deposition. Current studies demonstrate that OSM is also a mitogen for fibroblasts and has an anti-inflammatory action. It was therefore hypothesised that OSM may play an important role in healing of chronic wounds that usually involve decreased fibroblast function and persist in the inflammatory stage for a long time. In a previous in vitro study, the authors showed that OSM increased wound healing activities of diabetic dermal fibroblasts. However, wound healing in vivo is a complex process involving multiple factors. Thus, the purpose of this study was to evaluate the effect of OSM on diabetic wound healing in vivo. Five diabetic mice were used in this study. Four full-thickness round wounds were created on the back of each mouse (total 20 wounds). OSM was applied on the two left-side wounds (n = 10) and phosphate-buffered saline was applied on the two right-side wounds (n = 10). After 10 days, unhealed wound areas of the OSM and control groups were compared using the stereoimage optical topometer system. Also, epithelialisation, wound contraction and reduction in wound volume in each group were compared. The OSM-treated group showed superior results in all of the tested parameters. In particular, the unhealed wound area and the reduction in wound volume demonstrated statistically significant differences (P healing of diabetic wounds.

  10. Trends in Surgical Wound Healing

    DEFF Research Database (Denmark)

    Gottrup, F.

    2008-01-01

    The understanding of acute and chronic wound pathophysiology has progressed considerably over the past decades. Unfortunately, improvement in clinical practice has not followed suit, although new trends and developments have improved the outcome of wound treatment in many ways. This review focuses...

  11. Plasma Proteins and Wound Healing

    Science.gov (United States)

    1981-11-01

    an iron donor for proline hydroxylase synthesis. Hapto- globin also may prevent retardation of wound healing caused by infection by reducing the...dans le syndrome degression et la croissance tissulaire. Expos. Annu. Biochim. Med., 1970, 30: 149. JEEEAY, H. The metabolism of scrum proteins—III

  12. Wound Healing and Care

    Science.gov (United States)

    ... wounds can be so different, your doctor will give you instructions on how to take care of yourself after you go home from the hospital. In most cases, doctors will ask patients to do the following ... A doctor or nurse will give you instructions on how to change your dressing ...

  13. Effects of Aloe vera cream on chronic anal fissure pain, wound healing and hemorrhaging upon defection: a prospective double blind clinical trial.

    Science.gov (United States)

    Rahmani, N; Khademloo, M; Vosoughi, K; Assadpour, S

    2014-01-01

    Aloe vera is a medicinal plant that promotes wound healing in burn injuries. A prospective clinical trial was conducted to evaluate the effects of a topical cream containing 0.5% Aloe vera juice powder in the treatment of chronic anal fissures. The aloe cream was applied by the patients to the wound site 3 times per day for 6 weeks following the instructions of a physician. Pain was assessed with a visual analog scale before treatment and at the end of each week of treatment. Wound healing and the amount and severity of bleeding were examined and evaluated before and at the end of each week of treatment. There were statistically significant differences in chronic anal fissure pain, hemorrhaging upon defection and wound healing before and at the end of the first week of treatment also in comparison with control group (p aloe vera juice was an effective treatment for chronic anal fissures. This is a promising result indicating that further comparative studies are justified.

  14. Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice

    Directory of Open Access Journals (Sweden)

    Pauline Bannon

    2013-11-01

    Acute inflammation in response to injury is a tightly regulated process by which subsets of leukocytes are recruited to the injured tissue and undergo behavioural changes that are essential for effective tissue repair and regeneration. The diabetic wound environment is characterised by excessive and prolonged inflammation that is linked to poor progression of healing and, in humans, the development of diabetic foot ulcers. However, the underlying mechanisms contributing to excessive inflammation remain poorly understood. Here we show in a murine model that the diabetic environment induces stable intrinsic changes in haematopoietic cells. These changes lead to a hyper-responsive phenotype to both pro-inflammatory and anti-inflammatory stimuli, producing extreme M1 and M2 polarised cells. During early wound healing, myeloid cells in diabetic mice show hyperpolarisation towards both M1 and M2 phenotypes, whereas, at late stages of healing, when non-diabetic macrophages have transitioned to an M2 phenotype, diabetic wound macrophages continue to display an M1 phenotype. Intriguingly, we show that this population predominantly consists of Gr-1+ CD11b+ CD14+ cells that have been previously reported as ‘inflammatory macrophages’ recruited to injured tissue in the early stages of wound healing. Finally, we show that this phenomenon is directly relevant to human diabetic ulcers, for which M2 polarisation predicts healing outcome. Thus, treatments focused at targeting this inflammatory cell subset could prove beneficial for pathological tissue repair.

  15. Hyperbaric oxygen and wound healing

    Directory of Open Access Journals (Sweden)

    Sourabh Bhutani

    2012-01-01

    Full Text Available Hyperbaric oxygen therapy (HBOT is the use of 100% oxygen at pressures greater than atmospheric pressure. Today several approved applications and indications exist for HBOT. HBOT has been successfully used as adjunctive therapy for wound healing. Non-healing wounds such as diabetic and vascular insufficiency ulcers have been one major area of study for hyperbaric physicians where use of HBOT as an adjunct has been approved for use by way of various studies and trials. HBOT is also indicated for infected wounds like clostridial myonecrosis, necrotising soft tissue infections, Fournier′s gangrene, as also for traumatic wounds, crush injury, compartment syndrome, compromised skin grafts and flaps and thermal burns. Another major area of application of HBOT is radiation-induced wounds, specifically osteoradionecrosis of mandible, radiation cystitis and radiation proctitis. With the increase in availability of chambers across the country, and with increasing number of studies proving the benefits of adjunctive use for various kinds of wounds and other indications, HBOT should be considered in these situations as an essential part of the overall management strategy for the treating surgeon.

  16. Wound healing: an overview of acute, fibrotic and delayed healing.

    Science.gov (United States)

    Diegelmann, Robert F; Evans, Melissa C

    2004-01-01

    Acute wounds normally heal in a very orderly and efficient manner characterized by four distinct, but overlapping phases: hemostasis, inflammation, proliferation and remodeling. Specific biological markers characterize healing of acute wounds. Likewise, unique biologic markers also characterize pathologic responses resulting in fibrosis and chronic non-healing ulcers. This review describes the major biological processes associated with both normal and pathologic healing. The normal healing response begins the moment the tissue is injured. As the blood components spill into the site of injury, the platelets come into contact with exposed collagen and other elements of the extracellular matrix. This contact triggers the platelets to release clotting factors as well as essential growth factors and cytokines such as platelet-derived growth factor (PDGF) and transforming growth factor beta (TGF-beta). Following hemostasis, the neutrophils then enter the wound site and begin the critical task of phagocytosis to remove foreign materials, bacteria and damaged tissue. As part of this inflammatory phase, the macrophages appear and continue the process of phagocytosis as well as releasing more PDGF and TGF beta. Once the wound site is cleaned out, fibroblasts migrate in to begin the proliferative phase and deposit new extracellular matrix. The new collagen matrix then becomes cross-linked and organized during the final remodeling phase. In order for this efficient and highly controlled repair process to take place, there are numerous cell-signaling events that are required. In pathologic conditions such as non-healing pressure ulcers, this efficient and orderly process is lost and the ulcers are locked into a state of chronic inflammation characterized by abundant neutrophil infiltration with associated reactive oxygen species and destructive enzymes. Healing proceeds only after the inflammation is controlled. On the opposite end of the spectrum, fibrosis is characterized by

  17. Principles of Wound Management and Wound Healing in Exotic Pets.

    Science.gov (United States)

    Mickelson, Megan A; Mans, Christoph; Colopy, Sara A

    2016-01-01

    The care of wounds in exotic animal species can be a challenging endeavor. Special considerations must be made in regard to the animal's temperament and behavior, unique anatomy and small size, and tendency toward secondary stress-related health problems. It is important to assess the entire patient with adequate systemic evaluation and consideration of proper nutrition and husbandry, which could ultimately affect wound healing. This article summarizes the general phases of wound healing, factors that affect healing, and principles of wound management. Emphasis is placed on novel methods of treating wounds and species differences in wound management and healing.

  18. Influence of oxygen on wound healing.

    Science.gov (United States)

    Yip, Wai Lam

    2015-12-01

    Oxygen has an important role in normal wound healing. This article reviews the evidence concerning the role of oxygen in wound healing and its influence on the different stages of wound healing. The evidence reviewed has demonstrated that improving oxygenation may be helpful in limiting wound infection, although there is a lack of good quality studies on the role of oxygen in the proliferative phase and in reepithelialisation. Overall, the relationship between oxygen and wound healing is complex. Knowledge of this aspect is important as many treatment modalities for refractory wounds are based on these principles.

  19. Grand challenge in Biomaterials-wound healing

    Science.gov (United States)

    Salamone, Joseph C.; Salamone, Ann Beal; Swindle-Reilly, Katelyn; Leung, Kelly Xiaoyu-Chen; McMahon, Rebecca E.

    2016-01-01

    Providing improved health care for wound, burn and surgical patients is a major goal for enhancing patient well-being, in addition to reducing the high cost of current health care treatment. The introduction of new and novel biomaterials and biomedical devices is anticipated to have a profound effect on the future improvement of many deleterious health issues. This publication will discuss the development of novel non-stinging liquid adhesive bandages in healthcare applications developed by Rochal Industries. The scientists/engineers at Rochal have participated in commercializing products in the field of ophthalmology, including rigid gas permeable contact lenses, soft hydrogel contact lenses, silicone hydrogel contact lenses, contact lens care solutions and cleaners, intraocular lens materials, intraocular controlled drug delivery, topical/intraocular anesthesia, and in the field of wound care, as non-stinging, spray-on liquid bandages to protect skin from moisture and body fluids and medical adhesive-related skin injuries. Current areas of entrepreneurial activity at Rochal Industries pertain to the development of new classes of biomaterials for wound healing, primarily in regard to microbial infection, chronic wound care, burn injuries and surgical procedures, with emphasis on innovation in product creation, which include cell-compatible substrates/scaffolds for wound healing, antimicrobial materials for opportunistic pathogens and biofilm reduction, necrotic wound debridement, scar remediation, treatment of diabetic ulcers, amelioration of pressure ulcers, amelioration of neuropathic pain and adjuvants for skin tissue substitutes. PMID:27047680

  20. Phases of the wound healing process.

    Science.gov (United States)

    Brown, Annemarie

    This is the first in a six-part series on wound management. It describes the stages of the wound healing process and explains how they relate to nursing practice. Nurses need to know how to recognise and understand the different phases so they can identify whether wounds are healing normally and apply the appropriate treatments to remove the barriers to healing. Part 2 (page 14) focuses on wound assessment.

  1. The external microenvironment of healing skin wounds

    DEFF Research Database (Denmark)

    Kruse, Carla R; Nuutila, Kristo; Lee, Cameron Cy

    2015-01-01

    The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment...

  2. Predicting complex acute wound healing in patients from a wound expertise centre registry: a prognostic study.

    Science.gov (United States)

    Ubbink, Dirk T; Lindeboom, Robert; Eskes, Anne M; Brull, Huub; Legemate, Dink A; Vermeulen, Hester

    2015-10-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We developed a model to detect which factors can predict (prolonged) healing of complex acute wounds in patients treated in a large wound expertise centre (WEC). Using Cox and linear regression analyses, we determined which patient- and wound-related characteristics best predict time to complete wound healing and derived a prediction formula to estimate how long this may take. We selected 563 patients with acute wounds, documented in the WEC registry between 2007 and 2012. Wounds had existed for a median of 19 days (range 6-46 days). The majority of these were located on the leg (52%). Five significant independent predictors of prolonged wound healing were identified: wound location on the trunk [hazard ratio (HR) 0·565, 95% confidence interval (CI) 0·405-0·788; P = 0·001], wound infection (HR 0·728, 95% CI 0·534-0·991; P = 0·044), wound size (HR 0·993, 95% CI 0·988-0·997; P = 0·001), wound duration (HR 0·998, 95% CI 0·996-0·999; P = 0·005) and patient's age (HR 1·009, 95% CI 1·001-1·018; P = 0·020), but not diabetes. Awareness of the five factors predicting the healing of complex acute wounds, particularly wound infection and location on the trunk, may help caregivers to predict wound healing time and to detect, refer and focus on patients who need additional attention.

  3. BURN WOUND HEALING ACTIVITY OF Euphorbia hirta

    OpenAIRE

    Jaiprakash, B.; Chandramohan,; Reddy, D. Narishma

    2006-01-01

    The Ethanolic extract of whole plant of Euphorbia hirta was screened for burn wound healing activity in rats as 2% W/W cream. The study was carried out based on the assessment of percentage reduction in original wound. It showed significant burn wound healing activity.

  4. 银离子敷料促慢性创面愈合效应%Silver ion dressing effects on healing of chronic wound

    Institute of Scientific and Technical Information of China (English)

    刘韬; 徐海栋

    2013-01-01

    背景:银离子敷料应用的理论基础是湿性愈合理论,利用创面的湿润环境减少组织坏死、加速新生上皮形成、减轻治疗过程中病患的疼痛、强化各种生长因子对伤口内组织细胞的修复,因此具有抗感染、促进创面肉芽形成、上皮增生的作用,有利于慢性创面的愈合。  目的:对比观察银离子敷料与常规消毒敷料在慢性创面治疗中的作用。  方法:选择解放军南京军区南京总医院汤山分院住院的慢性创面未愈合患者40例,采用随机数字表法分两组治疗,在预防及控制感染、改善组织循环等常规处理后,试验组给予银离子敷料换药处理,对照组采用常规消毒敷料换药。于治疗前及治疗后7,14,21 d进行创面分泌物细菌培养,观察创面愈合情况,以疼痛目测类比评分评估疼痛感。  结果与结论:与对照组比较,试验组创面细菌检出率明显降低(P0.05)。两组均未发生任何不良反应。结果表明银离子敷料在慢性创面治疗中的作用明确,可有效抗菌,促进创面肉芽、上皮增生,促进创面愈合,减轻病患治疗过程中的痛苦且无不良反应。%BACKGROUND:Silver ion dressing can reduce tissue necrosis, accelerate the epithelial formation, relieve the patient’s pain during the treatment, and strengthen various growth factors for wound repair, which is based on the theory of wet healing theory. It has obvious advantages for chronic wound healing, such as anti-infection and promoting wound granulation and epithelial hyperplasia. OBJECTIVE:To observe the efficacy of silver ion dressing used in healing of chronic wound. METHODS:A total of 40 patients who had chronic wounds were selected from Tangshan Branch Hospital of Nanjing General Hospital of Nanjing Military Command. Al cases were divided into two groups. The treatment group was treated with silver ion dressing, and the control group

  5. AGEs Induced Autophagy Impairs Cutaneous Wound Healing via Stimulating Macrophage Polarization to M1 in Diabetes

    OpenAIRE

    Yuanyuan Guo; Cai Lin; Peng Xu; Shan Wu; Xiujun Fu; Weidong Xia; Min Yao

    2016-01-01

    Autophagy is essential in physiological and pathological processes, however, the role of autophagy in cutaneous wound healing and the underlying molecular mechanism remain elusive. We hypothesized that autophagy plays an important role in regulating wound healing. Here, we show that enhanced autophagy negatively impacts on normal cutaneous healing process and is related to chronic wounds as demonstrated by the increased LC3 in diabetic mice skin or patients’ chronic wounds. In addition, inhib...

  6. Time course study of delayed wound healing in a biofilm-challenged diabetic mouse model.

    Science.gov (United States)

    Zhao, Ge; Usui, Marcia L; Underwood, Robert A; Singh, Pradeep K; James, Garth A; Stewart, Philip S; Fleckman, Philip; Olerud, John E

    2012-01-01

    Bacterial biofilm has been shown to play a role in delaying wound healing of chronic wounds, a major medical problem that results in significant health care burden. A reproducible animal model could be very valuable for studying the mechanism and management of chronic wounds. Our previous work showed that Pseudomonas aeruginosa (PAO1) biofilm challenge on wounds in diabetic (db/db) mice significantly delayed wound healing. In this wound time course study, we further characterize the bacterial burden, delayed wound healing, and certain aspects of the host inflammatory response in the PAO1 biofilm-challenged db/db mouse model. PAO1 biofilms were transferred onto 2-day-old wounds created on the dorsal surface of db/db mice. Control wounds without biofilm challenge healed by 4 weeks, consistent with previous studies; none of the biofilm-challenged wounds healed by 4 weeks. Of the biofilm-challenged wounds, 64% healed by 6 weeks, and all of the biofilm-challenged wounds healed by 8 weeks. During the wound-healing process, P. aeruginosa was gradually cleared from the wounds while the presence of Staphylococcus aureus (part of the normal mouse skin flora) increased. Scabs from all unhealed wounds contained 10(7) P. aeruginosa, which was 100-fold higher than the counts isolated from wound beds (i.e., 99% of the P. aeruginosa was in the scab). Histology and genetic analysis showed proliferative epidermis, deficient vascularization, and increased inflammatory cytokines. Hypoxia inducible factor expression increased threefold in 4-week wounds. In summary, our study shows that biofilm-challenged wounds typically heal in approximately 6 weeks, at least 2 weeks longer than nonbiofilm-challenged normal wounds. These data suggest that this delayed wound healing model enables the in vivo study of bacterial biofilm responses to host defenses and the effects of biofilms on host wound healing pathways. It may also be used to test antibiofilm strategies for treating chronic wounds.

  7. Nutritional Aspects of Gastrointestinal Wound Healing

    OpenAIRE

    Mukherjee, Kaushik; Sandra L Kavalukas; Barbul, Adrian

    2016-01-01

    Significance: Although the wound healing cascade is similar in many tissues, in the gastrointestinal tract mucosal healing is critical for processes such as inflammatory bowel disease and ulcers and healing of the mucosa, submucosa, and serosal layers is needed for surgical anastomoses and for enterocutaneous fistula. Failure of wound healing can result in complications including infection, prolonged hospitalization, critical illness, organ failure, readmission, new or worsening enterocutaneo...

  8. Overview of Wound Healing and Management.

    Science.gov (United States)

    Childs, Dylan R; Murthy, Ananth S

    2017-02-01

    Wound healing is a highly complex chain of events, and although it may never be possible to eliminate the risk of experiencing a wound, clinicians' armamentarium continues to expand with methods to manage it. The phases of wound healing are the inflammatory phase, the proliferative phase, and the maturation phase. The pathway of healing is determined by characteristics of the wound on initial presentation, and it is vital to select the appropriate method to treat the wound based on its ability to avoid hypoxia, infection, excessive edema, and foreign bodies.

  9. Macrophage PPARγ and impaired wound healing in type 2 diabetes.

    Science.gov (United States)

    Mirza, Rita E; Fang, Milie M; Novak, Margaret L; Urao, Norifumi; Sui, Audrey; Ennis, William J; Koh, Timothy J

    2015-08-01

    Macrophages undergo a transition from pro-inflammatory to healing-associated phenotypes that is critical for efficient wound healing. However, the regulation of this transition during normal and impaired healing remains to be elucidated. In our studies, the switch in macrophage phenotypes during skin wound healing was associated with up-regulation of the peroxisome proliferator-activated receptor (PPAR)γ and its downstream targets, along with increased mitochondrial content. In the setting of diabetes, up-regulation of PPARγ activity was impaired by sustained expression of IL-1β in both mouse and human wounds. In addition, experiments with myeloid-specific PPARγ knockout mice indicated that loss of PPARγ in macrophages is sufficient to prolong wound inflammation and delay healing. Furthermore, PPARγ agonists promoted a healing-associated macrophage phenotype both in vitro and in vivo, even in the diabetic wound environment. Importantly, topical administration of PPARγ agonists improved healing in diabetic mice, suggesting an appealing strategy for down-regulating inflammation and improving the healing of chronic wounds.

  10. Wound healing in the 21st century.

    Science.gov (United States)

    Schreml, Stephan; Szeimies, Rolf-Markus; Prantl, Lukas; Landthaler, Michael; Babilas, Philipp

    2010-11-01

    Delayed wound healing is one of the major therapeutic and economic issues in medicine today. Cutaneous wound healing is an extremely well-regulated and complex process basically divided into 3 phases: inflammation, proliferation, and tissue remodeling. Unfortunately, we still do not understand this process precisely enough to give direction effectively to impaired healing processes. There have been many new developments in wound healing that provide fascinating insights and may improve our ability to manage clinical problems. Our goal is to acquaint the reader with selected major novel findings about cutaneous wound healing that have been published since the beginning of the new millennium. We discuss advances in areas such as genetics, proteases, cytokines, chemokines, and regulatory peptides, as well as therapeutic strategies, all set in the framework of the different phases of wound healing.

  11. Role of adipose-derived stem cells in wound healing.

    Science.gov (United States)

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration.

  12. PLATELET-RICH PLASMA (PRP AND ITS APPLICATION IN THE TREATMENT OF CHRONIC AND HARD-TO-HEAL SKIN WOUNDS. A Review.

    Directory of Open Access Journals (Sweden)

    Tsvetan Sokolov

    2015-12-01

    Full Text Available In the last few years various methods are being applied in the use of platelet-rich plasma (PRP during treatment in different orthopedic disease. They allow improvement of local biological condition and regeneration of different types of tissues. PRP is a modern treatment strategy with worldwide recognition. There is a high concentration of platelet growth factors in small amounts of plasma. PRP and its various forms have become one of the best methods to support the healing process of various tissues. PRP is used in regenerative medicine, because it provides two of three components (growth factors and scaffolds necessary for complete tissue regeneration. The particular reason for the appearance of lesions is important in order to select an appropriate treatment method and technical application. PRP may be used for treatment of various chronic and hard-to-heal cutaneous wounds, especially when standard conventional therapy is not good enough and surgical treatment is not possible. It reduces the duration, cost of treatment and the hospital stay. There is reduction of wound pain after starting the treatment, reduced risk of blood-borne disease transmission, wound healing is restored, and local immunity is activated.

  13. α-Gal Nanoparticles in Wound and Burn Healing Acceleration

    Science.gov (United States)

    Galili, Uri

    2017-01-01

    Significance: Rapid recruitment and activation of macrophages may accelerate wound healing. Such accelerated healing was observed in wounds and burns of experimental animals treated with α-gal nanoparticles. Recent Advances: α-Gal nanoparticles present multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R). α-Gal nanoparticles applied to wounds bind anti-Gal (the most abundant antibody in humans) and generate chemotactic complement peptides, which rapidly recruit macrophages. Fc/Fc receptor interaction between anti-Gal coating the α-gal nanoparticles and recruited macrophages activates macrophages to produce cytokines that accelerate healing. α-Gal nanoparticles applied to burns and wounds in mice and pigs producing anti-Gal, decreased healing time by 40–60%. In mice, this accelerated healing avoided scar formation. α-Gal nanoparticle-treated wounds, in diabetic mice producing anti-Gal, healed within 12 days, whereas saline-treated wounds became chronic wounds. α-Gal nanoparticles are stable for years and may be applied dried, in suspension, aerosol, ointments, or within biodegradable materials. Critical Issues: α-Gal nanoparticle therapy can be evaluated only in mammalian models producing anti-Gal, including α1,3-galactosyltransferase knockout mice and pigs or Old World primates. Traditional experimental animal models synthesize α-gal epitopes and lack anti-Gal. Future Directions: Since anti-Gal is naturally produced in all humans, it is of interest to determine safety and efficacy of α-gal nanoparticles in accelerating wound and burn healing in healthy individuals and in patients with impaired wound healing such as diabetic patients and elderly individuals. In addition, efficacy of α-gal nanoparticle therapy should be studied in healing and regeneration of internal injuries such as surgical incisions, ischemic myocardium following myocardial infarction, and injured nerves. PMID:28289553

  14. Wound healing and infection in surgery

    DEFF Research Database (Denmark)

    Sørensen, Lars Tue

    2012-01-01

    : The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved.......: The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved....

  15. Fibromodulin Enhances Angiogenesis during Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Zhong Zheng, PhD

    2014-12-01

    Conclusions: Altogether, we demonstrated that in addition to reducing scar formation, FMOD also promotes angiogenesis. As blood vessels organize and regulate wound healing, its potent angiogenic properties will further expand the clinical application of FMOD for cutaneous healing of poorly vascularized wounds.

  16. Physics of Wound Healing I: Energy Considerations

    CERN Document Server

    Apell, S Peter; Papazoglou, Elisabeth S; Pizziconi, Vincent

    2012-01-01

    Wound healing is a complex process with many components and interrelated processes on a microscopic level. This paper addresses a macroscopic view on wound healing based on an energy conservation argument coupled with a general scaling of the metabolic rate with body mass M as M^{\\gamma} where 0 <{\\gamma}<1. Our three main findings are 1) the wound healing rate peaks at a value determined by {\\gamma} alone, suggesting a concept of wound acceleration to monitor the status of a wound. 2) We find that the time-scale for wound healing is a factor 1/(1 -{\\gamma}) longer than the average internal timescale for producing new material filling the wound cavity in corresondence with that it usually takes weeks rather than days to heal a wound. 3) The model gives a prediction for the maximum wound mass which can be generated in terms of measurable quantities related to wound status. We compare our model predictions to experimental results for a range of different wound conditions (healthy, lean, diabetic and obses...

  17. Influence of phytochemicals in piper betle linn leaf extract on wound healing

    OpenAIRE

    Lien, Le Thi; Tho, Nguyen Thi; Ha, Do Minh; Hang, Pham Luong; Nghia, Phan Tuan; Thang, Nguyen Dinh

    2015-01-01

    Background Wound healing has being extensively investigated over the world. Healing impairment is caused by many reasons including increasing of free-radicals-mediated damage, delaying in granulation tissue formation, reducing in angiogenesis and decreasing in collagen reorganization. These facts consequently lead to chronic wound healing. Piper betle Linn (Betle) leaves have been folklore used as an ingredient of drugs for cutaneous wound treatment. However, the effect of betle leaf on wound...

  18. Acceleration of cutaneous wound healing by brassinosteroids.

    Science.gov (United States)

    Esposito, Debora; Rathinasabapathy, Thirumurugan; Schmidt, Barbara; Shakarjian, Michael P; Komarnytsky, Slavko; Raskin, Ilya

    2013-01-01

    Brassinosteroids are plant growth hormones involved in cell growth, division, and differentiation. Their effects in animals are largely unknown, although recent studies showed that the anabolic properties of brassinosteroids are possibly mediated through the phosphoinositide 3-kinase/protein kinase B signaling pathway. Here, we examined biological activity of homobrassinolide (HB) and its synthetic analogues in in vitro proliferation and migration assays in murine fibroblast and primary keratinocyte cell culture. HB stimulated fibroblast proliferation and migration and weakly induced keratinocyte proliferation in vitro. The effects of topical HB administration on progression of wound closure were further tested in the mouse model of cutaneous wound healing. C57BL/6J mice were given a full-thickness dermal wound, and the rate of wound closure was assessed daily for 10 days, with adenosine receptor agonist CGS-21680 as a positive control. Topical application of brassinosteroid significantly reduced wound size and accelerated wound healing in treated animals. mRNA levels of transforming growth factor beta and intercellular adhesion molecule 1 were significantly lower, while tumor necrosis factor alpha was nearly suppressed in the wounds from treated mice. Our data suggest that topical application of brassinosteroids accelerates wound healing by positively modulating inflammatory and reepithelialization phases of the wound repair process, in part by enhancing Akt signaling in the skin at the edges of the wound and enhancing migration of fibroblasts in the wounded area. Targeting this signaling pathway with brassinosteroids may represent a promising approach to the therapy of delayed wound healing.

  19. Wound Healing Effect of Curcumin: A Review.

    Science.gov (United States)

    Tejada, Silvia; Manayi, Azadeh; Daglia, Maria; Nabavi, Seyed Fazel; Sureda, Antoni; Hajheydari, Zohreh; Gortzi, Olga; Pazoki-Toroudi, Hamidreza; Nabavi, Seyed Mohammad

    2016-07-21

    Wound healing is a complex process that consists of several phases that range from coagulation, inflammation, accumulation of radical substances, to proliferation, formation of fibrous tissues and collagen, contraction of wound with formation of granulation tissue and scar. Since antiquity, vegetable substances have been used as phytotherapeutic agents for wound healing, and more recently natural substances of vegetable origin have been studied with the attempt to show their beneficial effect on wound treatment. Curcumin, the most active component of rhizome of Curcuma longa L. (common name: turmeric), has been studied for many years due to its bio-functional properties, especially antioxidant, radical scavenger, antimicrobial and anti-inflammatory activities, which play a crucial role in the wound healing process. Moreover, curcumin stimulated the production of the growth factors involved in the wound healing process, and so curcumin also accelerated the management of wound restoration. The aim of the present review is collecting and evaluating the literature data regarding curcumin properties potentially relevant for wound healing. Moreover, the investigations on the wound healing effects of curcumin are reported. In order to produce a more complete picture, the chemistry and sources of curcumin are also discussed.

  20. News in wound healing and management

    DEFF Research Database (Denmark)

    Gottrup, Finn; Jørgensen, Bo; Karlsmark, Tonny

    2009-01-01

    -TNFalpha) and Lactobacillus plantarum cultures have also been successfully used in hard to heal, atypical wounds. Knowledge on influencing factors as smoking and biofilm on the healing process has also been improved. Smoking results in delayed healing and increased risk of postoperative infection, whereas the role of biofilm...

  1. Carnosine enhances diabetic wound healing in the db/db mouse model of type 2 diabetes.

    Science.gov (United States)

    Ansurudeen, Ishrath; Sunkari, Vivekananda Gupta; Grünler, Jacob; Peters, Verena; Schmitt, Claus Peter; Catrina, Sergiu-Bogdan; Brismar, Kerstin; Forsberg, Elisabete Alcantara

    2012-07-01

    Diabetes mellitus (DM) is a progressive disorder with severe late complications. Normal wound healing involves a series of complex and well-orchestrated molecular events dictated by multiple factors. In diabetes, wound healing is grossly impaired due to defective, and dysregulated cellular and molecular events at all phases of wound healing resulting in chronic wounds that fail to heal. Carnosine, a dipeptide of alanine and histidine and an endogenous antioxidant is documented to accelerate healing of wounds and ulcers. However, not much is known about its role in wound healing in diabetes. Therefore, we studied the effect of carnosine in wound healing in db/db mice, a mice model of Type 2 DM. Six millimeter circular wounds were made in db/db mice and analyzed for wound healing every other day. Carnosine (100 mg/kg) was injected (I.P.) every day and also applied locally. Treatment with carnosine enhanced wound healing significantly, and wound tissue analysis showed increased expression of growth factors and cytokines genes involved in wound healing. In vitro studies with human dermal fibroblasts and microvascular-endothelial cells showed that carnosine increases cell viability in presence of high glucose. These effects, in addition to its known role as an antioxidant and a precursor for histamine synthesis, provide evidence for a possible therapeutic use of carnosine in diabetic wound healing.

  2. Non-Coding RNAs: New Players in Skin Wound Healing.

    Science.gov (United States)

    Herter, Eva K; Xu Landén, Ning

    2017-03-01

    Significance: Wound healing is a basic physiological process that is utilized to keep the integrity of the skin. Impaired wound repair, such as chronic wounds and pathological scars, presents a major health and economic burden worldwide. To date, efficient targeted treatment for these wound disorders is still lacking, which is largely due to our limited understanding of the biological mechanisms underlying these diseases. Research driven around discovering new therapies for these complications is, therefore, an urgent need. Recent Advances: The vast majority of the human genome is transcribed to RNAs that lack protein-coding capacity. Intensive research in the recent decade has revealed that these non-coding RNAs (ncRNAs) function as important regulators of cellular physiology and pathology, which makes them promising therapeutic and diagnostic entities. Critical Issues: A class of short ncRNAs, microRNAs, has been found to be indispensable for all the phases of skin wound healing and plays important roles in the pathogenesis of wound complications. The role of long ncRNAs (lncRNA) in skin wound healing remains largely unexplored. Recent studies revealed the essential role of lncRNAs in epidermal differentiation and stress response, indicating their potential importance for skin wound healing, which warrants future research. Future Directions: An investigation of ncRNAs will add new layers of complexity to our understanding of normal skin wound healing as well as to the pathogenesis of wound disorders. Development of ncRNA-based biomarkers and treatments is an interesting and important avenue for future research on wound healing.

  3. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice

    OpenAIRE

    Chen, H.; Shi, R.; Luo, B.; Yang, X.; Qiu, L; Xiong, J.; Jiang, M; Y. Liu; Zhang, Z; Wu, Y

    2015-01-01

    Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPARγ expression was upregulated during skin wound healing. Furthermore, macrophage PPARγ deficiency (PPARγ-knock out (KO)) mice exhibited impaired skin wound healing with reduced co...

  4. Skin wound healing modulation by macrophages.

    Science.gov (United States)

    Rodero, Mathieu P; Khosrotehrani, Kiarash

    2010-07-25

    Skin wound healing is a multi stage phenomenon that requires the activation, recruitment or activity of numerous cell types as keratinocytes, endothelial cells, fibroblast and inflammatory cells. Among the latter, macrophages appear to be central to this process. They colonize the wound at its very early stage and in addition to their protective immune role seem to organize the activity of other cell types at the following stages of the healing. Their benefit to this process is however controversial, as macrophages are described to promote the speed of healing but may also favour the fibrosis resulting from it in scars. Moreover wound healing defects are associated with abnormalities in the inflammatory phase. In this review, we summarise our knowledge on what are the Wound Associated Macrophages, and how they interact with the other cell types to control the reepithelisation, angiogenesis and the extracellular matrix remodelling. We believe this knowledge may open new avenues for therapeutic intervention on skin wounds.

  5. The Role of Iron in the Skin & Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Josephine Anne Wright

    2014-07-01

    Full Text Available In this review article we discuss current knowledge about iron in the skin and the cutaneous wound healing process. Iron plays a key role in both oxidative stress and photo-induced skin damage. The main causes of oxidative stress in the skin include reactive oxygen species (ROS generated in the skin by ultraviolet (UVA 320-400 nm portion of the ultraviolet spectrum and biologically available iron. We also discuss the relationships between iron deficiency, anaemia and cutaneous wound healing. Studies looking at this fall into two distinct groups. Early studies investigated the effect of anaemia on wound healing using a variety of experimental methodology to establish anaemia or iron deficiency and focused on wound-strength rather than effect on macroscopic healing or re-epithelialisation. More recent animal studies have investigated novel treatments aimed at correcting the effects of systemic iron deficiency and localised iron overload. Iron overload is associated with local cutaneous iron deposition, which has numerous deleterious effects in chronic venous disease and hereditary haemochromatosis. Iron plays a key role in chronic ulceration and conditions such as Rheumatoid Arthritis (RA and Lupus Erythematosus are associated with both anaemia of chronic disease and dysregulation of local cutaneous iron haemostasis. Iron is a potential therapeutic target in the skin by application of topical iron chelators and novel pharmacological agents, and in delayed cutaneous wound healing by treatment of iron deficiency or underlying systemic inflammation.

  6. Peroxide-based oxygen generating topical wound dressing for enhancing healing of dermal wounds.

    Science.gov (United States)

    Chandra, Prafulla K; Ross, Christina L; Smith, Leona C; Jeong, Seon S; Kim, Jaehyun; Yoo, James J; Harrison, Benjamin S

    2015-01-01

    Oxygen generating biomaterials represent a new trend in regenerative medicine that aims to generate and supply oxygen at the site of requirement, to support tissue healing and regeneration. To enhance the healing of dermal wounds, we have developed a highly portable, in situ oxygen generating wound dressings that uses sodium percarbonate (SPO) and calcium peroxide (CPO) as chemical oxygen sources. The dressing continuously generated oxygen for more than 3 days, after which it was replaced. In the in vivo testing on porcine full-thickness porcine wound model, the SPO/CPO dressing showed enhanced wound healing during the 8 week study period. Quantitative measurements of wound healing related parameters, such as wound closure, reepithelialization, epidermal thickness and collagen content of dermis showed that supplying oxygen topically using the SPO/CPO dressing significantly accelerated the wound healing. An increase in neovascularization, as determined using Von Willebrand factor (vWF) and CD31 staining, was also observed in the presence of SPO/CPO dressing. This novel design for a wound dressing that contains oxygen generating biomaterials (SPO/CPO) for supplying topical oxygen, may find utility in treating various types of acute to chronic wounds.

  7. Wound healing of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Masahiro Iizuka; Shiho Konno

    2011-01-01

    The intestinal epithelial cells (IECs) form a selective permeability barrier separating luminal content from underlying tissues. Upon injury, the intestinal epithelium undergoes a wound healing process. Intestinal wound healing is dependent on the balance of three cellular events;restitution, proliferation, and differentiation of epithelial cells adjacent to the wounded area. Previous studies have shown that various regulatory peptides, including growth factors and cytokines, modulate intestinal epithelial wound healing. Recent studies have revealed that novel factors, which include toll-like receptors (TLRs), regulatory peptides, particular dietary factors, and some gastroprotective agents, also modulate intestinal epithelial wound repair. Among these factors, the activation of TLRs by commensal bacteria is suggested to play an essential role in the maintenance of gut homeostasis. Recent studies suggest that mutations and dysregulation of TLRs could be major contributing factors in the predisposition and perpetuation of inflammatory bowel disease. Additionally, studies have shown that specific signaling pathways are involved in IEC wound repair. In this review, we summarize the function of IECs, the process of intestinal epithelial wound healing, and the functions and mechanisms of the various factors that contribute to gut homeostasis and intestinal epithelial wound healing.

  8. DIABETIC WOUND HEALING MANAGEMENT- A PEER REVIEW

    Directory of Open Access Journals (Sweden)

    Harshavardhan Pathapati

    2014-10-01

    Full Text Available Objectives: Diabetes is a metabolic disorder mainly impairs the body glucose utilization capacity due to this perforcely repressing the immuno-dysfunction (decreases chemotaxis, phagocytosis and intracellular killing actions and collagen synthesis which are essential in wound debridement management of diabetic patients. Delayed wound healing is considered as one of the most repulsive disabling and costly complication of diabetes. People with diabetes have extenuated circulation, poor resistance to infection and mitigate local nutrition, thus their wounds are meticulously susceptible to infection. Moreover diabetes agonizes the equilibrium exists between accumulation of extra-cellular matrix components and their re-modeling by matrix metallo-proteinases (meltrin, due to this extenuated proliferation action of fibroblasts and finally freezes the progress of wound healing frequency in hyper glycemics. However in diabetic persons the nervous system becomes numb and all feasible actions of neurons are skipped, that condition is called as diabetic neuropathy. In that situation patient body features elevated a glucose level which stiffens the arteries and lack of pain sensation in foot resulting in commencement of new wounds. Conclusion: Consider all problems associated with wound healing in diabetic persons, a proper wound healing management which includes controlling measures like optimized systemic and local factors as well as implement suitable wound dressing for necessary wound in diabeties patients.

  9. Compromised Wound Healing in Ischemic Type 2 Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Peilang Yang

    Full Text Available Ischemia is one of the main epidemic factors and characteristics of diabetic chronic wounds, and exerts a profound effect on wound healing. To explore the mechanism of and the cure for diabetic impaired wound healing, we established a type 2 diabetic rat model. We used an 8 weeks high fat diet (HFD feeding regimen followed by multiple injections of streptozotocin (STZ at a dose of 10mg/kg to induce Wister rat to develop type 2 diabetes. Metabolic characteristics were assessed at the 5th week after the STZ injections to confirm the establishment of diabetes mellitus on the rodent model. A bipedicle flap, with length to width ratio 1.5, was performed on the back of the rat to make the flap area ischemic. Closure of excisional wounds on this bipedicle flap and related physiological and pathological changes were studied using histological, immunohistochemical, real time PCR and protein immunoblot approaches. Our results demonstrated that a combination of HFD feeding and a low dose of STZ is capable of inducing the rats to develop type 2 diabetes with noticeable insulin resistance, persistent hyperglycemia, moderate degree of insulinemia, as well as high serum cholesterol and high triglyceride levels. The excision wounds on the ischemic double pedicle flap showed deteriorative healing features comparing with non-ischemic diabetic wounds, including: delayed healing, exorbitant wound inflammatory response, excessive and prolonged ROS production and excessive production of MMPs. Our study suggested that HFD feeding combined with STZ injection could induce type 2 diabetes in rat. Our ischemic diabetic wound model is suitable for the investigation of human diabetic related wound repair; especically for diabetic chronic wounds.

  10. Regeneration: the ultimate example of wound healing.

    Science.gov (United States)

    Murawala, Prayag; Tanaka, Elly M; Currie, Joshua D

    2012-12-01

    The outcome of wound repair in mammals is often characterized by fibrotic scaring. Vertebrates such as zebrafish, frogs, and salamanders not only heal scarlessly, but also can regenerate lost appendages. Decades of study on the process of animal regeneration has produced key insights into the mechanisms of how complex tissue is restored. By examining our current knowledge of regeneration, we can draw parallels with mammalian wound healing to identify the molecular determinants that produce such differing outcomes.

  11. The effects of grounding (earthing on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Oschman JL

    2015-03-01

    Full Text Available James L Oschman,1 Gaétan Chevalier,2 Richard Brown3 1Nature’s Own Research Association, Dover, NH, USA; 2Developmental and Cell Biology Department, University of California at Irvine, Irvine, CA, USA; 3Human Physiology Department, University of Oregon, Eugene, OR, USA Abstract: Multi-disciplinary research has revealed that electrically conductive contact of the human body with the surface of the Earth (grounding or earthing produces intriguing effects on physiology and health. Such effects relate to inflammation, immune responses, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. The purpose of this report is two-fold: to 1 inform researchers about what appears to be a new perspective to the study of inflammation, and 2 alert researchers that the length of time and degree (resistance to ground of grounding of experimental animals is an important but usually overlooked factor that can influence outcomes of studies of inflammation, wound healing, and tumorigenesis. Specifically, grounding an organism produces measurable differences in the concentrations of white blood cells, cytokines, and other molecules involved in the inflammatory response. We present several hypotheses to explain observed effects, based on current research results and our understanding of the electronic aspects of cell and tissue physiology, cell biology, biophysics, and biochemistry. An experimental injury to muscles, known as delayed onset muscle soreness, has been used to monitor the immune response under grounded versus ungrounded conditions. Grounding reduces pain and alters the numbers of circulating neutrophils and lymphocytes, and also affects various circulating chemical factors related to inflammation. Keywords: chronic inflammation, immune system, wound repair, white blood cells, macrophages, autoimmune disorders

  12. Trehalose lyophilized platelets for wound healing.

    Science.gov (United States)

    Pietramaggiori, Giorgio; Kaipainen, Arja; Ho, David; Orser, Cindy; Pebley, Walter; Rudolph, Alan; Orgill, Dennis P

    2007-01-01

    Fresh platelet preparations are utilized to treat a wide variety of wounds, although storage limitations and mixed results have hampered their clinical use. We hypothesized that concentrated lyophilized and reconstituted platelet preparations, preserved with trehalose, maintain and possibly enhance fresh platelets' ability to improve wound healing. We studied the ability of a single dose of trehalose lyophilized and reconstituted platelets to enhance wound healing when topically applied on full-thickness wounds in the genetically diabetic mouse. We compared these results with the application of multiple doses of fresh platelet preparations and trehalose lyophilized and reconstituted platelets as well as multiple doses of vascular endothelial growth factor (VEGF) and wounds left untreated. Trehalose lyophilized and reconstituted platelets, in single and multiple applications, multiple applications of fresh platelets and multiple applications of VEGF increased granulation tissue deposition, vascularity, and proliferation when compared with untreated wounds, as assessed by histology and immunohistochemistry. Wounds treated with multiple doses of VEGF and a single dose of freeze-dried platelets reached 90% closure faster than wounds left untreated. A single administration of trehalose lyophilized and reconstituted platelet preparations enhanced diabetic wound healing, therefore representing a promising strategy for the treatment of nonhealing wounds.

  13. Using behavior modification to promote wound healing.

    Science.gov (United States)

    Rivera, E; Walsh, A; Bradley, M

    2000-10-01

    Successfully caring for patients with wounds under PPS demands that current practice approaches must change. Instead of focusing on dressings and techniques alone, this article describes how first addressing patients' psychological readiness for change can move them quickly to self-care and enhance wound healing, which results in cost savings and better outcomes.

  14. Cold plasma inactivation of chronic wound bacteria.

    Science.gov (United States)

    Mohd Nasir, N; Lee, B K; Yap, S S; Thong, K L; Yap, S L

    2016-09-01

    Cold plasma is partly ionized non-thermal plasma generated at atmospheric pressure. It has been recognized as an alternative approach in medicine for sterilization of wounds, promotion of wound healing, topical treatment of skin diseases with microbial involvement and treatment of cancer. Cold plasma used in wound therapy inhibits microbes in chronic wound due to its antiseptic effects, while promoting healing by stimulation of cell proliferation and migration of wound relating skin cells. In this study, two types of plasma systems are employed to generate cold plasma: a parallel plate dielectric barrier discharge and a capillary-guided corona discharge. Parameters such as applied voltage, discharge frequency, treatment time and the flow of the carrier gas influence the cold plasma chemistry and therefore change the composition and concentration of plasma species that react with the target sample. Chronic wound that fails to heal often infected by multidrug resistant organisms makes them recalcitrant to healing. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Pseudomonas aeruginosa) are two common bacteria in infected and clinically non-infected wounds. The efficacies of the cold plasma generated by the two designs on the inactivation of three different isolates of MRSA and four isolates of P. aeruginosa are reported here.

  15. Modern wound care - practical aspects of non-interventional topical treatment of patients with chronic wounds.

    Science.gov (United States)

    Dissemond, Joachim; Augustin, Matthias; Eming, Sabine A; Goerge, Tobias; Horn, Thomas; Karrer, Sigrid; Schumann, Hauke; Stücker, Markus

    2014-07-01

    The treatment of patients with chronic wounds is becoming increasingly complex. It was therefore the aim of the members of the working group for wound healing (AGW) of the German Society of Dermatology (DDG) to report on the currently relevant aspects of non-interventional, topical wound treatment for daily practice. -Beside necessary procedures, such as wound cleansing and débridement, we describe commonly used wound dressings, their indications and practical use. Modern antiseptics, which are currently used in wound therapy, usually contain polyhexanide or octenidine. Physical methods, such as negative-pressure treatment, are also interesting options. It is always important to objectify and adequately treat pain symptoms which often affect these patients. Modern moist wound therapy may promote healing, reduce complications, and improve the quality of life in patients with chronic wounds. Together with the improvement of the underlying causes, modern wound therapy is an important aspect in the overall treatment regime for patients with chronic wounds.

  16. Local arginase 1 activity is required for cutaneous wound healing.

    Science.gov (United States)

    Campbell, Laura; Saville, Charis R; Murray, Peter J; Cruickshank, Sheena M; Hardman, Matthew J

    2013-10-01

    Chronic nonhealing wounds in the elderly population are associated with a prolonged and excessive inflammatory response, which is widely hypothesized to impede healing. Previous studies have linked alterations in local L-arginine metabolism, principally mediated by the enzymes arginase (Arg) and inducible nitric oxide synthase (iNOS), to pathological wound healing. Over subsequent years, interest in Arg/iNOS has focused on the classical versus alternatively activated (M1/M2) macrophage paradigm. Although the role of iNOS during healing has been studied, Arg contribution to healing remains unclear. Here, we report that Arg is dynamically regulated during acute wound healing. Pharmacological inhibition of local Arg activity directly perturbed healing, as did Tie2-cre-mediated deletion of Arg1, revealing the importance of Arg1 during healing. Inhibition or depletion of Arg did not alter alternatively activated macrophage numbers but instead was associated with increased inflammation, including increased influx of iNOS(+) cells and defects in matrix deposition. Finally, we reveal that in preclinical murine models reduced Arg expression directly correlates with delayed healing, and as such may represent an important future therapeutic target.

  17. [Advances in the research of the role of mesenchymal stem cell in wound healing].

    Science.gov (United States)

    Liu, Lingying; Chai, Jiake; Yu, Yonghui; Hou, Yusen

    2014-04-01

    Wound healing is a dynamic and complicated process, which generally takes three overlapping phases: inflammation, proliferation, and remodeling. If wounds complicated by severe trauma, diabetes, vascular dysfunction disease, or a massive burn injury failed to pass through the three normal phases of healing, they might end up as chronic and refractory wounds. Mesenchymal stem cells (MSCs) play different important roles in the regulation of all the phases of wound healing. MSCs can be recruited into wound and differentiated into wound repair cells, as well as promote wound healing by exerting functions like anti-inflammation, anti-apoptosis, and neovascularization. This review focuses on the role and mechanism of MSCs in each phase of the wound healing process.

  18. 锌与慢性创面修复的相关研究进展%Research Progress of the Relationship between Zinc and Chronic Wounds Healing

    Institute of Scientific and Technical Information of China (English)

    李峰(综述); 杨红岩(审校)

    2016-01-01

    不同程度的营养不良常伴发于各类压疮、糖尿病足等慢性创面患者,有效的营养支持是处置慢性创面的基础。锌是人体必需营养物质,具有广泛的生理作用。大量的临床实践发现,改善全身或创面局部锌营养状态可促进不同类型的创面修复,其机制至少包括:改善食欲和加强营养物质吸收、拮抗创面过氧化损伤、抑制修复细胞凋亡、激活相关生长因子表达及信号通路等。%Different degrees of malnutrition are often associated with the patients with various chronic wounds such as pressure ulcer and diabetic foot.Effective nutritional support is the basis for the treatments of chronic wounds.Zinc is one of the essential trace elements with extensive physiological functions .It has been proved by a lot of clinical practices that improvement of overall zinc nutrition status or wound surface could pro-mote wounds healing.The mechanisms include at least the following:enhancing appetite,alleviating oxidative impairments,inhabiting apoptosis,and activating expression of related growth factors and signaling pathway.

  19. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Khadjavi, Amina [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Magnetto, Chiara [Istituto Nazionale di Ricerca Metrologica (INRIM), Torino (Italy); Panariti, Alice [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Monza (Italy); Argenziano, Monica [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino (Italy); Gulino, Giulia Rossana [Dipartimento di Oncologia, Università di Torino, Torino (Italy); Rivolta, Ilaria [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Monza (Italy); Cavalli, Roberta [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino (Italy); Giribaldi, Giuliana [Dipartimento di Oncologia, Università di Torino, Torino (Italy); Guiot, Caterina [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Prato, Mauro, E-mail: mauro.prato@unito.it [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino (Italy)

    2015-08-01

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic

  20. Mechanoregulation of Wound Healing and Skin Homeostasis

    Directory of Open Access Journals (Sweden)

    Joanna Rosińczuk

    2016-01-01

    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  1. Total Particulate Matter and Wound Healing: An in vivo Study with Histological Insights

    Institute of Scientific and Technical Information of China (English)

    SOHAIL EJAZ; MUHAMMAD ASHRAF; MUHAMMAD NAWAZ; CHAE WOONG LIM

    2009-01-01

    Objectives Wound healing in the skin is a multifarious orchestration of cellular processes and cigarette smoking may be a cause for delayed wound healing. The aim of this study was to investigate the plausible association between exposures of cigarette total particulate matter (TPM) and wound healing. Methods An in vivo wound healing model of mice was established for determination of assorted events of wound healing, dermal matrix regeneration, re-epithelialization, and neovascularization. A total of 72 adult mice, separated in eight groups, were exposed to TPM for 12 days. Results A highly considerable diminution in wound closure (P<0.001) was pragmatic among all TPM-treated mice from day 6 to day 8 post-wounding. Histological investigations unveiled a noteworthy impede in the outcome of re-epithelialization, dermal matrix regeneration and maturation of collagen bundles among all TPM-exposed wounds. Delayed commencement of neovascularization was pragmatic among all TPM-treated mice, on day 12 post wounding. Abbot curve, angular spectrum, and other different parameters of 3D surface behavior of wounds revealed a very highly significant reduction (P<0.001) in angiogenesis on days 6 and 8 post-wounding, which points that application of TPM instigates extensive delay in trigging the progression of angiogenesis, resulting in delayed onset of wound healing. Conclusion Our annotations validate the damaging effects of TPM on wound healing and excessive use of TPM may lead to the production of chronic wounds and oral ulcers.

  2. YAP and TAZ regulate skin wound healing.

    Science.gov (United States)

    Lee, Min-Jung; Ran Byun, Mi; Furutani-Seiki, Makoto; Hong, Jeong-Ho; Jung, Han-Sung

    2014-02-01

    The Hippo signaling pathway regulates organ size, tissue regeneration, and stem cell self-renewal. The two key downstream transcription coactivators in this pathway, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), mediate the major gene regulation and biological functions of the Hippo pathway. The biological functions of YAP and TAZ in many tissues are known; however, their roles in skin wound healing remain unclear. To analyze whether YAP and/or TAZ are required for cutaneous wound healing, we performed small interfering RNA (siRNA)-mediated knockdown of YAP/TAZ in full-thickness skin wounds. YAP is strongly expressed in the nucleus and cytoplasm in the epidermis and hair follicle. Interestingly, YAP is expressed in the nucleus in the dermis at 2 and 7 days after wounding. TAZ normally localizes to the cytoplasm in the dermis but is distributed in both the nucleus and cytoplasm at 1 day after wounding. The knockdown of YAP and TAZ markedly delayed the rate of wound closure and reduced the transforming growth factor-β1 (TGF-β1) expression in the wound. YAP and TAZ also modulate the expression of TGF-β1 signaling pathway components such as Smad-2, p21, and Smad-7. These results suggest that YAP and TAZ localization to the nucleus is required for skin wound healing.

  3. Modulation of inflammation by Cicaderma ointment accelerates skin wound healing.

    Science.gov (United States)

    Morin, Christophe; Roumegous, Audrey; Carpentier, Gilles; Barbier-Chassefière, Véronique; Garrigue-Antar, Laure; Caredda, Stéphane; Courty, José

    2012-10-01

    Skin wound healing is a natural and intricate process that takes place after injury, involving different sequential phases such as hemostasis, inflammatory phase, proliferative phase, and remodeling that are associated with complex biochemical events. The interruption or failure of wound healing leads to chronic nonhealing wounds or fibrosis-associated diseases constituting a major health problem where, unfortunately, medicines are not very effective. The objective of this study was to evaluate the capacity of Cicaderma ointment (Boiron, Lyon, France) to accelerate ulcer closure without fibrosis and investigate wound healing dynamic processes. We used a necrotic ulcer model in mice induced by intradermal doxorubicin injection, and after 11 days, when the ulcer area was maximal, we applied Vaseline petroleum jelly or Cicaderma every 2 days. Topical application of Cicaderma allowed a rapid recovery of mature epidermal structure, a more compact and organized dermis and collagen bundles compared with the Vaseline group. Furthermore, the expression of numerous cytokines/molecules in the ulcer was increased 11 days after doxorubicin injection compared with healthy skin. Cicaderma rapidly reduced the level of proinflammatory cytokines, mainly tumor necrosis factor (TNF)-α and others of the TNF pathway, which can be correlated to a decrease of polymorphonuclear recruitment. It is noteworthy that the modulation of inflammation through TNF-α, macrophage inflammatory protein-1α, interleukin (IL)-12, IL-4, and macrophage-colony-stimulating factor was maintained 9 days after the first ointment application, facilitating the wound closure without affecting angiogenesis. These cytokines seem to be potential targets for therapeutic approaches in chronic wounds. Our results confirm the use of Cicaderma for accelerating skin wound healing and open new avenues for sequential treatments to improve healing.

  4. Nutritional Aspects of Gastrointestinal Wound Healing

    Science.gov (United States)

    Mukherjee, Kaushik; Kavalukas, Sandra L.; Barbul, Adrian

    2016-01-01

    Significance: Although the wound healing cascade is similar in many tissues, in the gastrointestinal tract mucosal healing is critical for processes such as inflammatory bowel disease and ulcers and healing of the mucosa, submucosa, and serosal layers is needed for surgical anastomoses and for enterocutaneous fistula. Failure of wound healing can result in complications including infection, prolonged hospitalization, critical illness, organ failure, readmission, new or worsening enterocutaneous fistula, and even death. Recent Advances: Recent advances are relevant for the role of specific micronutrients, such as vitamin D, trace elements, and the interplay between molecules with pro- and antioxidant properties. Our understanding of the role of other small molecules, genes, proteins, and macronutrients is also rapidly changing. Recent work has elucidated relationships between oxidative stress, nutritional supplementation, and glucose metabolism. Thresholds have also been established to define adequate preoperative nutritional status. Critical Issues: Further work is needed to establish standards and definitions for measuring the extent of wound healing, particularly for inflammatory bowel disease and ulcers. In addition, a mounting body of evidence has determined the need for adequate preoperative nutritional supplementation for elective surgical procedures. Future Directions: A large portion of current work is restricted to model systems in rodents. Therefore, additional clinical and translational research is needed in this area to promote gastrointestinal wound healing in humans, particularly those suffering from critical illness, patients with enterocutaneous fistula, inflammatory bowel disease, and ulcers, and those undergoing surgical procedures. PMID:27867755

  5. A wound healing model with sonographic monitoring.

    Science.gov (United States)

    Hoffmann, K; Winkler, K; el-Gammal, S; Altmeyer, P

    1993-05-01

    The methods used hitherto for quantification of skin repair processes only allow an examiner a two-dimensional assessment of superficial wound healing. With the recent advent of high frequency B-scan ultrasonography in dermatology it has become possible to follow the course of healing and evaluate the healing processes in deeper layers of the skin. In this investigation 80 patients received cryosurgery for treatment of basal cell carcinomas on the face or neck region. As the size of cryosurgical defects can be precisely controlled they are potentially useful as standardized wound healing models. The course of wound healing after cryosurgery using a digital ultrasound scanner (DUB 20, Taberna pro medicum, Lüneburg, Germany) was monitored. The usable depth of penetration of the echo signal is approximately 7 mm. The lateral resolution is approximately 200 microns, the axial resolution approximately 80 microns. The cryolesion and the repair processes were examined ultrasonographically and clinically over a period of at least 3 weeks or until the wound had completely healed. The depth of invasion and lateral extent of the basal cell carcinoma as well as the size of the induced cryolesion can be determined by ultrasound. The exudative phase after cryosurgery, with developing oedema and necrosis, can be quantified on the basis of the reduced reflectivity in the corium. The repair processes taking place in the region of necrosis can be visualized in the ultrasound scan. The ultrasonically monitored wound healing model which we have demonstrated is particularly suitable for investigating the efficacy of drugs which promote healing.

  6. Survey of Wound-Healing Centers and Wound Care Units in China.

    Science.gov (United States)

    Jiang, Yufeng; Xia, Lei; Jia, Lijing; Fu, Xiaobing

    2016-09-01

    The purpose of this study is to report the Chinese experience of establishing hospital-based wound care centers over 15 years. A total of 69 wound-healing centers (WHCs) and wound care units (WCUs) were involved. Questionnaires were diverged to the principal directors of these sites; data extracted for this study included origin, year of establishment, medical staff, degree of hospitals, wound etiology, wound-healing rate, hospital stay, and outcomes data. The period of data extraction was defined as before and after 1 year of the establishment of WHCs and WCUs. The earliest WHC was established in 1999, and from 2010 the speeds of establishing WHCs and WCUs rapidly increased. The majority of WHCs were divisions of burn departments, and all WHCs came from departments of outpatient dressing rooms. Full-time multidisciplinary employees of WHCs differed greatly to WCUs. Types of wound and outcomes vary with those of centers reported from Western countries and the United States. Improvement in wound healing caused by the establishment of WHCs and WCUs in China occurred without doubt. Some advices include the following: rearrange and reorganize the distribution of WHCs and WCUs; enact and generalize Chinese guidelines for chronic wounds; utilize medical resources reasonably; improve multidisciplinary medical staff team; draw up and change some medical and public policies and regulations.

  7. The effects of caffeine on wound healing.

    Science.gov (United States)

    Ojeh, Nkemcho; Stojadinovic, Olivera; Pastar, Irena; Sawaya, Andrew; Yin, Natalie; Tomic-Canic, Marjana

    2016-10-01

    The purine alkaloid caffeine is a major component of many beverages such as coffee and tea. Caffeine and its metabolites theobromine and xanthine have been shown to have antioxidant properties. Caffeine can also act as adenosine-receptor antagonist. Although it has been shown that adenosine and antioxidants promote wound healing, the effect of caffeine on wound healing is currently unknown. To investigate the effects of caffeine on processes involved in epithelialisation, we used primary human keratinocytes, HaCaT cell line and ex vivo model of human skin. First, we tested the effects of caffeine on cell proliferation, differentiation, adhesion and migration, processes essential for normal wound epithelialisation and closure. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) proliferation assay to test the effects of seven different caffeine doses ranging from 0·1 to 5 mM. We found that caffeine restricted cell proliferation of keratinocytes in a dose-dependent manner. Furthermore, scratch wound assays performed on keratinocyte monolayers indicated dose-dependent delays in cell migration. Interestingly, adhesion and differentiation remained unaffected in monolayer cultures treated with various doses of caffeine. Using a human ex vivo wound healing model, we tested topical application of caffeine and found that it impedes epithelialisation, confirming in vitro data. We conclude that caffeine, which is known to have antioxidant properties, impedes keratinocyte proliferation and migration, suggesting that it may have an inhibitory effect on wound healing and epithelialisation. Therefore, our findings are more in support of a role for caffeine as adenosine-receptor antagonist that would negate the effect of adenosine in promoting wound healing.

  8. Microgravity and the implications for wound healing.

    Science.gov (United States)

    Farahani, Ramin Mostofizadeh; DiPietro, Luisa A

    2008-10-01

    Wound healing is a sophisticated response ubiquitous to various traumatic stimuli leading to an anatomical/functional disruption. The aim of present article was to review the current evidence regarding the effects of microgravity on wound healing dynamics. Modulation of haemostatic phase because of alteration of platelet quantity and function seems probable. Furthermore, production of growth factors that are released from activated platelets and infiltration/function of inflammatory cells seem to be impaired by microgravity. Proliferation of damaged structures is dependent on orchestrated function of various growth factors, for example transforming growth factors, platelet-derived growth factor and epidermal growth factor, all of which are affected by microgravitational status. Moreover, gravity-induced alterations of gap junction, neural inputs, and cell populations have been reported. It may be concluded that different cellular and extracellular element involved in the healing response are modified through effect of microgravity which may lead to impairment in healing dynamics.

  9. Animal models of chronic wound care

    DEFF Research Database (Denmark)

    Trostrup, Hannah; Thomsen, Kim; Calum, Henrik

    2016-01-01

    . An inhibiting effect of bacterial biofilms on wound healing is gaining significant clinical attention over the last few years. There is still a paucity of suitable animal models to recapitulate human chronic wounds. The etiology of the wound (venous insufficiency, ischemia, diabetes, pressure) has to be taken...... on nonhealing wounds. Relevant hypotheses based on clinical or in vitro observations can be tested in representative animal models, which provide crucial tools to uncover the pathophysiology of cutaneous skin repair in infectious environments. Disposing factors, species of the infectious agent(s), and time...... of establishment of the infection are well defined in suitable animal models. In addition, several endpoints can be involved for evaluation. Animals do not display chronic wounds in the way that humans do. However, in many cases, animal models can mirror the pathological conditions observed in humans, although...

  10. Self-assembling peptide nanofiber scaffolds accelerate wound healing.

    Directory of Open Access Journals (Sweden)

    Aurore Schneider

    Full Text Available Cutaneous wound repair regenerates skin integrity, but a chronic failure to heal results in compromised tissue function and increased morbidity. To address this, we have used an integrated approach, using nanobiotechnology to augment the rate of wound reepithelialization by combining self-assembling peptide (SAP nanofiber scaffold and Epidermal Growth Factor (EGF. This SAP bioscaffold was tested in a bioengineered Human Skin Equivalent (HSE tissue model that enabled wound reepithelialization to be monitored in a tissue that recapitulates molecular and cellular mechanisms of repair known to occur in human skin. We found that SAP underwent molecular self-assembly to form unique 3D structures that stably covered the surface of the wound, suggesting that this scaffold may serve as a viable wound dressing. We measured the rates of release of EGF from the SAP scaffold and determined that EGF was only released when the scaffold was in direct contact with the HSE. By measuring the length of the epithelial tongue during wound reepithelialization, we found that SAP scaffolds containing EGF accelerated the rate of wound coverage by 5 fold when compared to controls without scaffolds and by 3.5 fold when compared to the scaffold without EGF. In conclusion, our experiments demonstrated that biomaterials composed of a biofunctionalized peptidic scaffold have many properties that are well-suited for the treatment of cutaneous wounds including wound coverage, functionalization with bioactive molecules, localized growth factor release and activation of wound repair.

  11. Complete healing of chronic wounds of a lower leg with haemoglobin spray and regeneration of an accompanying severe dermatoliposclerosis with intermittent normobaric oxygen inhalation (INBOI: a case report

    Directory of Open Access Journals (Sweden)

    Pötzschke, Harald

    2011-01-01

    application of haemoglobin requires professional supervision, the oxygen inhalation can be carried out at home following initial guidance and monitoring by a physician. Using this novel method, the therapy-resistant ulceration could be closed within 5 months, during which daily outpatient care was only necessary for 1 month. The successful outcome of the treatment in terms of improvement of oxygen supply can monitored at any time using peri-ulceral tcPO2 measurements, whereby, due to the inhomogeneity of the values, measurements at a minimum of two locations at the wound edge are strongly recommended and more measurements at more skin locations would be preferable. Besides its use in the healing of ulcers, the new procedure is also suitable for the prevention of ulceration development (prophylactic INBOI treatment in skin rendered susceptible due to the presence of hypoxia. Here, peri-ulceral transcutaneous oxygen partial pressures of below 10 mmHg should be considered as being critical and are an indication for a prophylactic oxygen inhalation treatment. The new procedure may also be suitable even before the peri-ulceral oxygen partial pressure falls below 10 mmHg. Four measures for rehabilitation, conservation, and prevention with regard to a healed chronic wound are proposed.

  12. 碱性成纤维细胞生长因子加速慢性难愈合创面愈合%Healing of chronic cutaneous wounds by topical treatment with basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    付小兵; 沈祖尧; 郭振荣; 张明良; 盛志勇

    2002-01-01

    Objective To evaluate the safety and efficacy of topical application of recombinant bovine basic fibroblast growth factor (rbFGF) on the healing of chronic cutaneous wounds. Methods Twenty-eight patients with thirty-three chronic cutaneous wounds resulting from trauma, diabetes mellitus, pressure sore and radiation injuries were enrolled in this prospective, open-label crossover trial. Prior to treatment with rbFGF, all wounds failed to heal with conventional therapies within 4 weeks. All wounds were locally treated with rbFGF at a dose of 150?AU/cm2. Healing time and the quality of wounds were used to evaluate the efficacy of the treatment.Results Healing of all chronic wounds was expedited. During the study, eighteen wounds completely healed within 2 weeks, four healed within 3 weeks, and another eight completely healed within 4 weeks. Only three wounds failed to heal within 4 weeks, but healed at 30, 40 and 42 days after treatment with rbFGF. Thus, compared with conventional therapies, the effective rate of rbFGF treatment within 4 weeks was 90.9%. Histological assessment showed more abundant capillary sprouts or tubes and that fibroblasts were differentiated in wounds treated with rbFGF. No adverse side effects related to basic fibroblast growth factor were observed.Conclusions Our results indicate that rbFGF could be used to accelerate healing in chronic wounds. It is our belief that this may be a more effective method of chronic wound management.%目的 观察重组中碱性成纤维细胞生长因子(rbFGF)对慢性难愈合创面(溃疡)的促修复作用并探讨其促修复机制。方法 本组28例共33个慢性难愈合创面,其中创伤性溃疡12例(13个创面)、压迫性溃疡9例(13个创面),糖尿病溃疡4例,放射性溃疡3例。所有创面经清创后用rbFGF治疗(150?AU/cm2创面,每天1次)。结果 所有经rbFGF治疗的创面都产生了明显的愈合,其中2周内愈合为18例,2-3周内愈合为4

  13. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation

    Directory of Open Access Journals (Sweden)

    Sandra Matabi Ayuk

    2016-01-01

    Full Text Available The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI or photobiomodulation (PBM is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.

  14. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation

    Science.gov (United States)

    2016-01-01

    The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs) play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM) during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI) or photobiomodulation (PBM) is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM. PMID:27314046

  15. Low-intensity vibration improves angiogenesis and wound healing in diabetic mice.

    Science.gov (United States)

    Weinheimer-Haus, Eileen M; Judex, Stefan; Ennis, William J; Koh, Timothy J

    2014-01-01

    Chronic wounds represent a significant health problem, especially in diabetic patients. In the current study, we investigated a novel therapeutic approach to wound healing--whole body low-intensity vibration (LIV). LIV is anabolic for bone, by stimulating the release of growth factors, and modulating stem cell proliferation and differentiation. We hypothesized that LIV improves the delayed wound healing in diabetic mice by promoting a pro-healing wound environment. Diabetic db/db mice received excisional cutaneous wounds and were subjected to LIV (0.4 g at 45 Hz) for 30 min/d or a non-vibrated sham treatment (controls). Wound tissue was collected at 7 and 15 d post-wounding and wound healing, angiogenesis, growth factor levels and wound cell phenotypes were assessed. LIV increased angiogenesis and granulation tissue formation at day 7, and accelerated wound closure and re-epithelialization over days 7 and 15. LIV also reduced neutrophil accumulation and increased macrophage accumulation. In addition, LIV increased expression of pro-healing growth factors and chemokines (insulin-like growth factor-1, vascular endothelial growth factor and monocyte chemotactic protein-1) in wounds. Despite no evidence of a change in the phenotype of CD11b+ macrophages in wounds, LIV resulted in trends towards a less inflammatory phenotype in the CD11b- cells. Our findings indicate that LIV may exert beneficial effects on wound healing by enhancing angiogenesis and granulation tissue formation, and these changes are associated with increases in pro-angiogenic growth factors.

  16. [Application of modern wound dressings in the treatment of chronic wounds].

    Science.gov (United States)

    Triller, Ciril; Huljev, Dubravko; Smrke, Dragica Maja

    2012-10-01

    Chronic and acute infected wounds can pose a major clinical problem because of associated complications and slow healing. In addition to classic preparations for wound treatment, an array of modern dressings for chronic wound care are currently available on the market. These dressings are intended for the wounds due to intralesional physiological, pathophysiological and pathological causes and which failed to heal as expected upon the use of standard procedures. Classic materials such as gauze and bandage are now considered obsolete and of just historical relevance because modern materials employed in wound treatment, such as moisture, warmth and appropriate pH are known to ensure optimal conditions for wound healing. Modern wound dressings absorb wound discharge, reduce bacterial contamination, while protecting wound surrounding from secondary infection and preventing transfer of infection from the surrounding area onto the wound surface. The use of modern wound dressings is only justified when the cause of wound development has been established or chronic wound due to the underlying disease has been diagnosed. Wound dressing is chosen according to wound characteristics and by experience. We believe that the main advantages of modern wound dressings versus classic materials include more efficient wound cleaning, simpler placement of the dressing, reduced pain to touch, decreased sticking to the wound surface, and increased capacity of absorbing wound exudate. Modern wound dressings accelerate the formation of granulation tissue, reduce the length of possible hospital stay and facilitate personnel work. Thus, the overall cost of treatment is reduced, although the price of modern wound dressings is higher than that of classic materials. All types of modern wound dressings, their characteristics and indications for use are described.

  17. Deletion of the homeobox gene PRX-2 affects fetal but not adult fibroblast wound healing responses.

    Science.gov (United States)

    White, Philip; Thomas, David W; Fong, Steven; Stelnicki, Eric; Meijlink, Fritz; Largman, Corey; Stephens, Phil

    2003-01-01

    The phenotype of fibroblasts repopulating experimental wounds in vivo has been shown to influence both wound healing responses and clinical outcome. Recent studies have demonstrated that the human homeobox gene PRX-2 is strongly upregulated in fibroblasts within fetal, but not adult, mesenchymal tissues during healing. Differential homeobox gene expression by fibroblasts may therefore be important in mediating the scarless healing exhibited in early fetal wounds. RNase protection analysis demonstrated that murine Prx-2 expression was involved in fetal but not adult wound healing responses in vitro. Using fibroblasts established from homozygous mutant (Prx-2-/-) and wild-type (Prx-2+/+) murine skin tissues it was demonstrated that Prx-2 affected a number of fetal fibroblastic responses believed to be important in mediating scarless healing in vivo; namely cellular proliferation, extracellular matrix reorganization, and matrix metalloproteinase 2 and hyaluronic acid production. These data demonstrate how Prx-2 may contribute to the regulation of fetal, but not adult, fibroblasts and ultimately the wound healing phenotype. This study provides further evidence for the importance of homeobox transcription factors in the regulation of scarless wound healing. A further understanding of these processes will, it is hoped, enable the targeting of specific therapies in wound healing, both to effect scarless healing and to stimulate healing in chronic, nonhealing wounds such as venous leg ulcers.

  18. Cold temperature delays wound healing in postharvest sugarbeet roots

    Science.gov (United States)

    Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots s...

  19. Wound Care.

    Science.gov (United States)

    Balsa, Ingrid M; Culp, William T N

    2015-09-01

    Wound care requires an understanding of normal wound healing, causes of delays of wound healing, and the management of wounds. Every wound must be treated as an individual with regard to cause, chronicity, location, and level of microbial contamination, as well as patient factors that affect wound healing. Knowledge of wound care products available and when negative pressure wound therapy and drain placement is appropriate can improve outcomes with wound healing. Inappropriate product use can cause delays in healing. As a wound healing progresses, management of a wound and the bandage material used must evolve.

  20. Preparation of cellulose-based sponges for wound dressing and healing

    OpenAIRE

    2013-01-01

    For healing of chronic or burn wounds, polymeric sponges have been recently applied. Due to a high absorption capacity, noncitotoxicity and good swelling capabilities, for their production natural polymers are often used. In this study, macroporous regenerated cellulose was evaluated as a matrix for wound dressing materials. Active compounds, such as antibiotic neomycin and phenolic compound quercetin were immobilized in the cellulosic matrix aimed to promote wound healing process. Active com...

  1. Gingival wound healing: an essential response disturbed by aging?

    Science.gov (United States)

    Smith, P C; Cáceres, M; Martínez, C; Oyarzún, A; Martínez, J

    2015-03-01

    Gingival wound healing comprises a series of sequential responses that allow the closure of breaches in the masticatory mucosa. This process is of critical importance to prevent the invasion of microbes or other agents into tissues, avoiding the establishment of a chronic infection. Wound healing may also play an important role during cell and tissue reaction to long-term injury, as it may occur during inflammatory responses and cancer. Recent experimental data have shown that gingival wound healing is severely affected by the aging process. These defects may alter distinct phases of the wound-healing process, including epithelial migration, granulation tissue formation, and tissue remodeling. The cellular and molecular defects that may explain these deficiencies include several biological responses such as an increased inflammatory response, altered integrin signaling, reduced growth factor activity, decreased cell proliferation, diminished angiogenesis, reduced collagen synthesis, augmented collagen remodeling, and deterioration of the proliferative and differentiation potential of stem cells. In this review, we explore the cellular and molecular basis of these defects and their possible clinical implications.

  2. Skin wound healing and phytomedicine: a review.

    Science.gov (United States)

    Pazyar, Nader; Yaghoobi, Reza; Rafiee, Esmail; Mehrabian, Abolfath; Feily, Amir

    2014-01-01

    Skin integrity is restored by a physiological process aimed at repairing the damaged tissues. The healing process proceeds in four phases: hemostasis, inflammation, proliferation and remodeling. Phytomedicine presents remedies, which possess significant pharmacological effects. It is popular amongst the general population in regions all over the world. Phytotherapeutic agents have been largely used for cutaneous wound healing. These include Aloe vera, mimosa, grape vine, Echinacea, chamomile, ginseng, green tea, jojoba, tea tree oil, rosemary, lemon, soybean, comfrey, papaya, oat, garlic, ginkgo, olive oil and ocimum. Phytotherapy may open new avenues for therapeutic intervention on cutaneous wounds. This article provides a review of the common beneficial medicinal plants in the management of skin wounds with an attempt to explain their mechanisms.

  3. The Role of Neuromediators and Innervation in Cutaneous Wound Healing.

    Science.gov (United States)

    Ashrafi, Mohammed; Baguneid, Mohamed; Bayat, Ardeshir

    2016-06-15

    The skin is densely innervated with an intricate network of cutaneous nerves, neuromediators and specific receptors which influence a variety of physiological and disease processes. There is emerging evidence that cutaneous innervation may play an important role in mediating wound healing. This review aims to comprehensively examine the evidence that signifies the role of innervation during the overlapping stages of cutaneous wound healing. Numerous neuropeptides that are secreted by the sensory and autonomic nerve fibres play an essential part during the distinct phases of wound healing. Delayed wound healing in diabetes and fetal cutaneous regeneration following wounding further highlights the pivotal role skin innervation and its associated neuromediators play in wound healing. Understanding the mechanisms via which cutaneous innervation modulates wound healing in both the adult and fetus will provide opportunities to develop therapeutic devices which could manipulate skin innervation to aid wound healing.

  4. Current management of wound healing

    DEFF Research Database (Denmark)

    Gottrup, F; Karlsmark, T

    2009-01-01

    While the understanding of wound pathophysiology has progressed considerably over the past decades the improvements in clinical treatment has occurred to a minor degree. During the last years, however, new trends and initiatives have been launched, and we will continue to attain new information i...

  5. Superficial Burn Wound Healing with Intermittent Negative Pressure Wound Therapy Under Limited Access and Conventional Dressings

    Science.gov (United States)

    Honnegowda, Thittamaranahalli Muguregowda; Padmanabha Udupa, Echalasara Govindarama; Rao, Pragna; Kumar, Pramod; Singh, Rekha

    2016-01-01

    BACKGROUND Thermal injury is associated with several biochemical and histopathological alteration in tissue. Analysis of these objective parameters in research and clinical field are common to determine healing rate of burn wound. Negative pressure wound therapy has been achieved wide success in treating chronic wounds. This study determines superficial burn wound healing with intermittent negative pressure wound therapy under limited access and conventional dressings METHODS A total 50 patients were randomised into two equal groups: limited access and conventional dressing groups. Selective biochemical parameters such as hydroxyproline, hexosamine, total protein, and antioxidants, malondialdhyde (MDA), wound surface pH, matrix metalloproteinase-2 (MMP-2), and nitric oxide (NO) were measured in the granulation tissue. Histopathologically, necrotic tissue, amount of inflammatory infiltrate, angiogenesis and extracellular matrix deposition (ECM) were studied to determine wound healing under intermittent negative pressure. RESULTS Patients treated with limited access have shown significant increase in the mean hydroxyproline, hexosamine, total protein, reduced glutathione (GSH), glutathione peroxidase (GPx), and decrease in MDA, MMP-2, wound surface pH, and NO. Histopathologic study showed that there was a significant difference after 10 days of treatment between limited access vs conventional dressing group, Median (Q1, Q3)=3 (2, 4.25) vs 2 (1.75, 4). CONCLUSION Limited access was shown to exert its beneficial effects on wound healing by increasing ground substance, antioxidants and reducing MMP-2 activity, MDA, NO and providing optimal pH, decreasing necrotic tissue, amount of inflammatory infiltrate, increasing ECM deposition and angiogenesis. PMID:27853690

  6. Modeling the effects of systemic mediators on the inflammatory phase of wound healing.

    Science.gov (United States)

    Cooper, Racheal L; Segal, Rebecca A; Diegelmann, Robert F; Reynolds, Angela M

    2015-02-21

    The normal wound healing response is characterized by a progression from clot formation, to an inflammatory phase, to a repair phase, and finally, to remodeling. In many chronic wounds there is an extended inflammatory phase that stops this progression. In order to understand the inflammatory phase in more detail, we developed an ordinary differential equation model that accounts for two systemic mediators that are known to modulate this phase, estrogen (a protective hormone during wound healing) and cortisol (a hormone elevated after trauma that slows healing). This model describes the interactions in the wound between wound debris, pathogens, neutrophils and macrophages and the modulation of these interactions by estrogen and cortisol. A collection of parameter sets, which qualitatively match published data on the dynamics of wound healing, was chosen using Latin Hypercube Sampling. This collection of parameter sets represents normal healing in the population as a whole better than one single parameter set. Including the effects of estrogen and cortisol is a necessary step to creating a patient specific model that accounts for gender and trauma. Utilization of math modeling techniques to better understand the wound healing inflammatory phase could lead to new therapeutic strategies for the treatment of chronic wounds. This inflammatory phase model will later become the inflammatory subsystem of our full wound healing model, which includes fibroblast activity, collagen accumulation and remodeling.

  7. Prevalence of immune disease in patients with wounds presenting to a tertiary wound healing centre.

    Science.gov (United States)

    Shanmugam, Victoria K; Schilling, Amber; Germinario, Anthony; Mete, Mihriye; Kim, Paul; Steinberg, John; Attinger, Christopher E

    2012-08-01

    Chronic leg ulcers are a significant cause of morbidity and mortality and account for considerable healthcare and socioeconomic costs. Leg ulcers are a recognised complication of immune disease, and the purpose of this study was to establish the prevalence of immune disease in a cohort of patients with chronic wounds, and to compare wound outcomes in the subjects with and without immune disease. Retrospective chart review was completed on consecutive patients scheduled with the plastic surgeon in the Georgetown University Center for Wound Healing between 1 January 2009 and 31 March 2009. Of the 520 patients scheduled for appointments, 340 were eligible for inclusion. The prevalence of immune disease was higher than expected with 78 of 340 patients (23%) having associated immune disease. At presentation, wounds in patients with immune disease had a significantly larger mean surface area [33·4 cm(2) (69·05) compared to 22·5 cm(2) (63·65), P = 0·02]. Split thickness skin graft (STSG) and bioengineered alternative tissue (BAT) graft data was available on 177 grafts from 55 subjects. There was a significantly lower response rate to STSG in subjects with immune disease (50% compared to 97%, P = 0·0002), but response rates to BAT were not different. The association between immune diseases and chronic wounds may provide unique insights into pathways of wound healing, and warrants further study.

  8. A comprehensive review of advanced biopolymeric wound healing systems.

    Science.gov (United States)

    Mayet, Naeema; Choonara, Yahya E; Kumar, Pradeep; Tomar, Lomas K; Tyagi, Charu; Du Toit, Lisa C; Pillay, Viness

    2014-08-01

    Wound healing is a complex and dynamic process that involves the mediation of many initiators effective during the healing process such as cytokines, macrophages and fibroblasts. In addition, the defence mechanism of the body undergoes a step-by-step but continuous process known as the wound healing cascade to ensure optimal healing. Thus, when designing a wound healing system or dressing, it is pivotal that key factors such as optimal gaseous exchange, a moist wound environment, prevention of microbial activity and absorption of exudates are considered. A variety of wound dressings are available, however, not all meet the specific requirements of an ideal wound healing system to consider every aspect within the wound healing cascade. Recent research has focussed on the development of smart polymeric materials. Combining biopolymers that are crucial for wound healing may provide opportunities to synthesise matrices that are inductive to cells and that stimulate and trigger target cell responses crucial to the wound healing process. This review therefore outlines the processes involved in skin regeneration, optimal management and care required for wound treatment. It also assimilates, explores and discusses wound healing drug-delivery systems and nanotechnologies utilised for enhanced wound healing applications.

  9. Exercise, Obesity, and Cutaneous Wound Healing: Evidence from Rodent and Human Studies

    Science.gov (United States)

    Pence, Brandt D.; Woods, Jeffrey A.

    2014-01-01

    Significance: Impaired cutaneous wound healing is a major health concern. Obesity has been shown in a number of studies to impair wound healing, and chronic nonhealing wounds in obesity and diabetes are a major cause of limb amputations in the United States. Recent Advances: Recent evidence indicates that aberrant wound site inflammation may be an underlying cause for delayed healing. Obesity, diabetes, and other conditions such as stress and aging can result in a chronic low-level inflammatory state, thereby potentially affecting wound healing negatively. Critical Issues: Interventions which can speed the healing rate in individuals with slowly healing or nonhealing wounds are of critical importance. Recently, physical exercise training has been shown to speed healing in both aged and obese mice and in older adults. Exercise is a relatively low-cost intervention strategy which may be able to be used clinically to prevent or treat impairments in the wound-healing process. Future Directions: Little is known about the mechanisms by which exercise speeds healing. Future translational studies should address potential mechanisms for these exercise effects. Additionally, clinical studies in obese humans are necessary to determine if findings in obese rodent models translate to the human population. PMID:24761347

  10. Desarrollo de un índice de medida de la evolución hacia la cicatrización de las heridas crónicas Development of a wound healing index for chronic wounds

    Directory of Open Access Journals (Sweden)

    Juan Carlos Restrepo-Medrano

    2011-12-01

    Full Text Available Objetivos: revisar sistemáticamente la literatura sobre instrumentos de medida de la cicatrización. Adaptar y/o desarrollar una escala de medida de la evolución hacia la cicatrización de todo tipo de heridas crónicas. Material y método: el Estudio se lleva a cabo en dos fases: Fase 1: Revisión sistemática de la literatura en las principales bases de datos de ciencias de la salud (MEDLINE, CINAHL, CUIDEN, SCIELO, LILACS, COCHRANE, IME desde el inicio de las bases de datos hasta el año 2009. Las palabras incluidas en la estrategia de búsqueda fueron: instrument, tool, ulcer, chronic wound, healing, assessment, validation, reliability, así como las mismas en español, con sus correspondientes formulaciones booleanas utilizando AND, OR y el término de truncamiento para algunas de ellas. La búsqueda se llevó a cabo inicialmente en los tesauros y si la palabra no existía en texto libre. No se tuvo en cuenta para la inclusión el diseño del estudio. Se utilizó el sistema GRADE para evaluar la calidad de las publicaciones. Fase 2: Estudio Delphi modificado con un grupo de expertos en heridas crónicas, para llegar al consenso sobre las variables que pudieran medir la dimensión "evolución hacia la cicatrización". En la primera ronda se partió con todas las variables de la herida y el paciente encontradas en los diferentes instrumentos de la revisión sistemática. En la segunda ronda se enviaron los ítems que habían obtenido mayor puntuación. Finalmente, se envió la versión final y se preguntó a los expertos que puntuaran en una escala del 1 al 4 para obtener el índice de validez de contenido (CVI. Aquellas variables que hubieran obtenido un CVI superior al 80% fueron incluidas. Resultados: la revisión sistemática revela un número de ocho instrumentos de medida de cicatrización recogidos en 20 artículos (10 artículos sobre el PUSH, tres del PSST, uno de DESIGN, uno de PWAT, uno de la Escala Sessing, uno de la Escala

  11. Differences in cutaneous wound healing between dogs and cats.

    Science.gov (United States)

    Bohling, Mark W; Henderson, Ralph A

    2006-07-01

    Regardless of the species involved, wound healing follows a predictable course of overlapping phases. In spite of these commonalities, significant species differences in cutaneous wound healing have been uncovered in the Equidae and, more recently, between the dog and cat. It has also recently been shown that the subcutaneous tissues play an important supporting role in cutaneous wound healing, which may help to ex-plain healing differences between cats and dogs. These discoveries may improve veterinarians' understanding of problem wound healing in the cat and, hopefully, lead to better strategies for wound management in this sometimes troublesome species.

  12. [Pathophysiological aspects of wound healing in normal and diabetic foot].

    Science.gov (United States)

    Maksimova, N V; Lyundup, A V; Lubimov, R O; Melnichenko, G A; Nikolenko, V N

    2014-01-01

    The main cause of long-term healing of ulcers in patients with diabetic foot is considered to be direct mechanical damage when walking due to reduced sensitivity to due to neuropathy, hyperglycemia, infection and peripheral artery disease. These factors determine the standard approaches to the treatment of diabeticfoot, which include: offloading, glycemic control, debridement of ulcers, antibiotic therapy and revascularization. Recently, however, disturbances in the healing process of the skin in diabetes recognized an additional factor affecting the timing of healing patients with diabetic foot. Improved understanding and correction of cellular, molecular and biochemical abnormalities in chronic wound in combination with standard of care for affords new ground for solving the problem of ulcer healing in diabetes.

  13. Wound healing activity of Elaeis guineensis leaf extract ointment.

    Science.gov (United States)

    Sasidharan, Sreenivasan; Logeswaran, Selvarasoo; Latha, Lachimanan Yoga

    2012-01-01

    Elaeis guineensis of the Arecaceae family is widely used in the traditional medicine of societies in West Africa for treating various ailments. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied. The results showed that E. guineensis leaf extract had potent wound healing capacity as evident from the better wound closure (P guineensis in the treatment of the wound. E. guineensis accelerated wound healing in rats, thus supporting its traditional use. The result of this study suggested that, used efficiently, oil palm leaf extract is a renewable resource with wound healing properties.

  14. Wound healing Agents from Medicinal Plants:A Review

    Institute of Scientific and Technical Information of China (English)

    ShivaniRawat; Ramandeep Singh; Preeti Thakur; SatinderKaur; AlokSemwal

    2012-01-01

    This paper presents a review of plants identified from various ethno botanical surveys and folklore medicinal survey with Wound healing activity. Wound is defined as the disruption of the cellular and anatomic continuity of a tissue. Wound may be produced by physical, chemical, thermal, microbial or immunological insult to the tissues. The process of wound healing consists of integrated cellular and biochemical events leading to re-establishment of structural and functional integrity with regain of strength in injured tissues.This review discuss about Wound healing potential of plants, its botanicalname, Common name, family, part used and references, which are helpful for researcher to development new Wound healing formulations for human use.

  15. Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy.

    Science.gov (United States)

    Gao, Ming; Nguyen, Trung T; Suckow, Mark A; Wolter, William R; Gooyit, Major; Mobashery, Shahriar; Chang, Mayland

    2015-12-01

    Nonhealing chronic wounds are major complications of diabetes resulting in >70,000 annual lower-limb amputations in the United States alone. The reasons the diabetic wound is recalcitrant to healing are not fully understood, and there are limited therapeutic agents that could accelerate or facilitate its repair. We previously identified two active forms of matrix metalloproteinases (MMPs), MMP-8 and MMP-9, in the wounds of db/db mice. We argued that the former might play a role in the body's response to wound healing and that the latter is the pathological consequence of the disease with detrimental effects. Here we demonstrate that the use of compound ND-336, a novel highly selective inhibitor of gelatinases (MMP-2 and MMP-9) and MMP-14, accelerates diabetic wound healing by lowering inflammation and by enhancing angiogenesis and re-epithelialization of the wound, thereby reversing the pathological condition. The detrimental role of MMP-9 in the pathology of diabetic wounds was confirmed further by the study of diabetic MMP-9-knockout mice, which exhibited wounds more prone to healing. Furthermore, topical administration of active recombinant MMP-8 also accelerated diabetic wound healing as a consequence of complete re-epithelialization, diminished inflammation, and enhanced angiogenesis. The combined topical application of ND-336 (a small molecule) and the active recombinant MMP-8 (an enzyme) enhanced healing even more, in a strategy that holds considerable promise in healing of diabetic wounds.

  16. Chitosan-alginate membranes accelerate wound healing.

    Science.gov (United States)

    Caetano, Guilherme Ferreira; Frade, Marco Andrey Cipriani; Andrade, Thiago Antônio Moretti; Leite, Marcel Nani; Bueno, Cecilia Zorzi; Moraes, Ângela Maria; Ribeiro-Paes, João Tadeu

    2015-07-01

    The purpose of this study was to evaluate the efficacy of chitosan-alginate membrane to accelerate wound healing in experimental cutaneous wounds. Two wounds were performed in Wistar rats by punching (1.5 cm diameter), treated with membranes moistened with saline solution (CAM group) or with saline only (SL group). After 2, 7, 14, and 21 days of surgery, five rats of each group were euthanized and reepithelialization was evaluated. The wounds/scars were harvested for histological, flow cytometry, neutrophil infiltrate, and hydroxyproline analysis. CAM group presented higher inflammatory cells recruitment as compared to SL group on 2(nd) day. On the 7(th) day, CAM group showed higher CD11b(+) level and lower of neutrophils than SL group. The CAM group presented higher CD4(+) cells influx than SL group on 2(nd) day, but it decreased during the follow up and became lower on 14(th) and 21(st) days. Higher fibroplasia was noticed on days 7 and 14 as well as higher collagenesis on 21(st) in the CAM group in comparison to SL group. CAM group showed faster reepithelialization on 7(th) day than SL group, although similar in other days. In conclusion, chitosan-alginate membrane modulated the inflammatory phase, stimulated fibroplasia and collagenesis, accelerating wound healing process in rats.

  17. Accelerated wound healing with combined NPWT and IPC: a case series.

    Science.gov (United States)

    Arvesen, Kristian; Nielsen, Camilla Bak; Fogh, Karsten

    2017-03-01

    Negative pressure wound therapy (NPWT) and intermittent pneumatic compression (IPC) have traditionally been used in patients with chronic complicated non-healing wounds. The aim of this study (retrospective case series) was to describe the use of NPWT in combination with IPC in patients with a relatively short history (2-6 months) of ulcers. All wounds showed improved healing during the treatment period with marked or moderate reduction in ulcer size, and granulation tissue formation was markedly stimulated. Oedema was markedly reduced due to IPC. Treatment was generally well tolerated. The results of this study indicate that combined NPWT and IPC can accelerate wound healing and reduce oedema, thus shortening the treatment period. Therefore, patients may have a shorter healing period and may avoid entering a chronic wound phase. However, controlled studies of longer duration are needed in order to show the long-term effect of a more accelerated treatment course.

  18. A derangement of the brain wound healing process may cause some cases of Alzheimer's disease.

    Science.gov (United States)

    Lehrer, Steven; Rheinstein, Peter H

    2016-08-01

    A derangement of brain wound healing may cause some cases of Alzheimer's disease. Wound healing, a highly complex process, has four stages: hemostasis, inflammation, repair, and remodeling. Hemostasis and the initial phases of inflammation in brain tissue are typical of all vascularized tissue, such as skin. However, distinct differences arise in brain tissue during the later stages of inflammation, repair, and remodeling, and closely parallel the changes of Alzheimer's disease. Our hypothesis -- Alzheimer's disease is brain wound healing gone awry at least in some cases -- could be tested by measuring progression with biomarkers for the four stages of wound healing in humans or appropriate animal models. Autopsy studies might be done. Chronic traumatic encephalopathy might also result from the brain wound healing process.

  19. Effects of glutamine on wound healing.

    Science.gov (United States)

    Kesici, Ugur; Kesici, Sevgi; Ulusoy, Hulya; Yucesan, Fulya; Turkmen, Aygen U; Besir, Ahmet; Tuna, Verda

    2015-06-01

    Studies reporting the need for replacing amino acids such as glutamine (Gln), hydroxymethyl butyrate (HMB) and arginine (Arg) to accelerate wound healing are available in the literature. The primary objective of this study was to present the effects of Gln on tissue hydroxyproline (OHP) levels in wound healing. This study was conducted on 30 female Sprague Dawley rats with a mean weight of 230 ± 20 g. Secondary wounds were formed by excising 2 × 1 cm skin subcutaneous tissue on the back of the rats. The rats were divided into three equal groups. Group C (Control): the group received 1 ml/day isotonic solution by gastric gavage after secondary wound was formed. Group A (Abound): the group received 0·3 g/kg/day/ml Gln, 0·052 g/kg/day/ml HMB and 0·3 g/kg/day/ml Arg by gastric gavage after secondary wound was formed. Group R (Resource): the group received 0·3 g/kg/day/ml Gln by gastric gavage after secondary wound was formed. The OHP levels of the tissues obtained from the upper half region on the 8th day and the lower half region on the 21st day from the same rats in the groups were examined. Statistical analysis was performed using the statistics program SPSS version 17.0. No statistically significant differences were reported with regard to the OHP measurements on the 8th and 21st days (8th day: F = 0·068, P = 0·935 > 0·05; 21st day: F = 0·018, P = 0·983 > 0·05). The increase in mean OHP levels on the 8th and 21st days within each group was found to be statistically significant (F = 1146·34, P = 0·000 wound healing negatively and who do not have large tissue loss at critical level, Gln, Arg and HMB support would not be required to accelerate secondary wound healing.

  20. Does maggot therapy promote wound healing? The clinical and cellular evidence.

    Science.gov (United States)

    Nigam, Y; Morgan, C

    2016-05-01

    The larvae of Lucillia sericata, or maggots of the green-bottle fly, are used worldwide to help debride chronic, necrotic and infected wounds. Whilst there is abundant clinical and scientific evidence to support the role of maggots for debriding and disinfecting wounds, not so much emphasis has been placed on their role in stimulating wound healing. However, there is accumulating evidence to suggest that maggots and their externalized secretions may also promote wound healing in stubborn, recalcitrant chronic ulcers. There are a growing number of clinical reports which support the observation that wounds which have been exposed to a course of maggot debridement therapy also show earlier healing and closure end-points. In addition, recent pre-clinical laboratory studies also indicate that maggot secretions can promote important cellular processes which explain this increased healing activity. Such processes include activation of fibroblast migration, angiogenesis (the formation of new blood vessels from pre-existing vessels) within the wound bed, and an enhanced production of growth factors within the wound environment. Thus, in this review, we summarize the clinical evidence which links maggots and improved wound healing, and we précis recent scientific studies which examine and identify the role of maggots, particularly individual components of maggot secretions, on specific cellular aspects of wound healing.

  1. Wound healing - A literature review*

    Science.gov (United States)

    Gonzalez, Ana Cristina de Oliveira; Costa, Tila Fortuna; Andrade, Zilton de Araújo; Medrado, Alena Ribeiro Alves Peixoto

    2016-01-01

    Regeneration and tissue repair processes consist of a sequence of molecular and cellular events which occur after the onset of a tissue lesion in order to restore the damaged tissue. The exsudative, proliferative, and extracellular matrix remodeling phases are sequential events that occur through the integration of dynamic processes involving soluble mediators, blood cells, and parenchymal cells. Exsudative phenomena that take place after injury contribute to the development of tissue edema. The proliferative stage seeks to reduce the area of tissue injury by contracting myofibroblasts and fibroplasia. At this stage, angiogenesis and reepithelialization processes can still be observed. Endothelial cells are able to differentiate into mesenchymal components, and this difference appears to be finely orchestrated by a set of signaling proteins that have been studied in the literature. This pathway is known as Hedgehog. The purpose of this review is to describe the various cellular and molecular aspects involved in the skin healing process. PMID:27828635

  2. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing.

    Science.gov (United States)

    Okuno, Yuji; Nakamura-Ishizu, Ayako; Kishi, Kazuo; Suda, Toshio; Kubota, Yoshiaki

    2011-05-12

    Bone marrow-derived cells (BMDCs) contribute to postnatal vascular growth by differentiating into endothelial cells or secreting angiogenic factors. However, the extent of their endothelial differentiation highly varies according to the angiogenic models used. Wound healing is an intricate process in which the skin repairs itself after injury. As a process also observed in cancer progression, neoangiogenesis into wound tissues is profoundly involved in this healing process, suggesting the contribution of BMDCs. However, the extent of the differentiation of BMDCs to endothelial cells in wound healing is unclear. In this study, using the green fluorescent protein-bone marrow chim-eric experiment and high resolution confocal microscopy at a single cell level, we observed no endothelial differentiation of BMDCs in 2 acute wound healing models (dorsal excisional wound and ear punch) and a chronic wound healing model (decubitus ulcer). Instead, a major proportion of BMDCs were macrophages. Indeed, colony-stimulating factor 1 (CSF-1) inhibition depleted approximately 80% of the BMDCs at the wound healing site. CSF-1-mutant (CSF-1(op/op)) mice showed significantly reduced neoangiogenesis into the wound site, supporting the substantial role of BMDCs as macrophages. Our data show that the proangiogenic effects of macrophages, but not the endothelial differentiation, are the major contribution of BMDCs in wound healing.

  3. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype.

    Science.gov (United States)

    Leal, Ermelindo C; Carvalho, Eugénia; Tellechea, Ana; Kafanas, Antonios; Tecilazich, Francesco; Kearney, Cathal; Kuchibhotla, Sarada; Auster, Michael E; Kokkotou, Efi; Mooney, David J; LoGerfo, Frank W; Pradhan-Nabzdyk, Leena; Veves, Aristidis

    2015-06-01

    Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds.

  4. FERM family proteins and their importance in cellular movements and wound healing (review).

    Science.gov (United States)

    Bosanquet, David C; Ye, Lin; Harding, Keith G; Jiang, Wen G

    2014-07-01

    Motility is a requirement for a number of biological processes, including embryonic development, neuronal development, immune responses, cancer progression and wound healing. Specific to wound healing is the migration of endothelial cells, fibroblasts and other key cellular players into the wound space. Aberrations in wound healing can result in either chronic wounds or abnormally healed wounds. The protein 4.1R, ezrin, radixin, moesin (FERM) superfamily consists of over 40 proteins all containing a three lobed N-terminal FERM domain which binds a variety of cell-membrane associated proteins and lipids. The C-terminal ends of these proteins typically contain an actin-binding domain (ABD). These proteins therefore mediate the linkage between the cell membrane and the actin cytoskeleton, and are involved in cellular movements and migration. Certain FERM proteins have been shown to promote cancer metastasis via this very mechanism. Herein we review the effects of a number of FERM proteins on wound healing and cancer. We show how these proteins typically aid wound healing through their effects on increasing cellular migration and movements, but also typically promote metastasis in cancer. We conclude that FERM proteins play important roles in cellular migration, with markedly different outcomes in the context of cancer and wound healing.

  5. Vibrational spectroscopy: a tool being developed for the noninvasive monitoring of wound healing

    Science.gov (United States)

    Crane, Nicole J.; Elster, Eric A.

    2012-01-01

    Wound care and management accounted for over 1.8 million hospital discharges in 2009. The complex nature of wound physiology involves hundreds of overlapping processes that we have only begun to understand over the past three decades. The management of wounds remains a significant challenge for inexperienced clinicians. The ensuing inflammatory response ultimately dictates the pace of wound healing and tissue regeneration. Consequently, the eventual timing of wound closure or definitive coverage is often subjective. Some wounds fail to close, or dehisce, despite the use and application of novel wound-specific treatment modalities. An understanding of the molecular environment of acute and chronic wounds throughout the wound-healing process can provide valuable insight into the mechanisms associated with the patient's outcome. Pathologic alterations of wounds are accompanied by fundamental changes in the molecular environment that can be analyzed by vibrational spectroscopy. Vibrational spectroscopy, specifically Raman and Fourier transform infrared spectroscopy, offers the capability to accurately detect and identify the various molecules that compose the extracellular matrix during wound healing in their native state. The identified changes might provide the objective markers of wound healing, which can then be integrated with clinical characteristics to guide the management of wounds.

  6. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice.

    Science.gov (United States)

    Chen, H; Shi, R; Luo, B; Yang, X; Qiu, L; Xiong, J; Jiang, M; Liu, Y; Zhang, Z; Wu, Y

    2015-01-15

    Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPARγ expression was upregulated during skin wound healing. Furthermore, macrophage PPARγ deficiency (PPARγ-knock out (KO)) mice exhibited impaired skin wound healing with reduced collagen deposition, angiogenesis and granulation formation. The tumor necrosis factor alpha (TNF-α) expression in wounds of PPARγ-KO mice was significantly increased and local restoration of TNF-α reversed the healing deficit in PPARγ-KO mice. Wound macrophages produced higher levels of TNF-α in PPARγ-KO mice compared with control. In vitro, the higher production of TNF-α by PPARγ-KO macrophages was associated with impaired apoptotic cell clearance. Correspondingly, increased apoptotic cell accumulation was found in skin wound of PPARγ-KO mice. Mechanically, peritoneal and skin wound macrophages expressed lower levels of various phagocytosis-related molecules. In addition, PPARγ agonist accelerated wound healing and reduced local TNF-α expression and wound apoptotic cells accumulation in wild type but not PPARγ-KO mice. Therefore, PPARγ has a pivotal role in controlling wound macrophage clearance of apoptotic cells to ensure efficient skin wound healing, suggesting a potential new therapeutic target for skin wound healing.

  7. Role of polymeric biomaterials as wound healing agents.

    Science.gov (United States)

    Agrawal, Priyanka; Soni, Sandeep; Mittal, Gaurav; Bhatnagar, Aseem

    2014-09-01

    In uncontrolled hemorrhage, the main cause of death on the battlefield and in accidents, half of the deaths are caused by severe blood loss. Polymeric biomaterials have great potential in the control of severe hemorrhage from trauma, which is the second leading cause of death in the civilian community following central nervous system injuries. The intent of this article is to provide a review on currently available biopolymers used as wound dressing agents and to describe their best use as it relates to the condition and type of the wound (acute, chronic, superficial, and full thickness) and the phases of the wound healing process. These biopolymers are beneficial in tissue engineering as scaffolds, hydrogels, and films. Different types of wound dressings based on biopolymers are available in the market, with various physical, chemical, and biological properties. The use of biopolymers as a hemostatic agent depends on its biocompatibility, biodegradability, nonimmunogenicity, and optimal mechanical property. This review summarizes different biopolymers, their physiological characters, and their use as wound healing agents along with biomedical applications.

  8. Effect of fibroblast-seeded artificial dermis on wound healing.

    Science.gov (United States)

    Jang, Joon Chul; Choi, Rak-Jun; Han, Seung-Kyu; Jeong, Seong-Ho; Kim, Woo-Kyung

    2015-04-01

    In covering wounds, efforts should include use of the safest and least invasive methods with a goal of achieving optimal functional and cosmetic outcome. The recent development of advanced technology in wound healing has triggered the use of cells and/or biological dermis to improve wound healing conditions. The purpose of the study was to evaluate the effects of fibroblast-seeded artificial dermis on wound healing efficacy.Ten nude mice were used in this study. Four full-thickness 6-mm punch wounds were created on the dorsal surface of each mouse (total, 40 wounds). The wounds were randomly assigned to one of the following 4 treatments: topical application of Dulbecco phosphate-buffered saline (control), human fibroblasts (FB), artificial dermis (AD), and human fibroblast-seeded artificial dermis (AD with FB). On the 14th day after treatment, wound healing rate and wound contraction, which are the 2 main factors determining wound healing efficacy, were evaluated using a stereoimage optical topometer system, histomorphological analysis, and immunohistochemistry.The results of the stereoimage optical topometer system demonstrated that the FB group did not have significant influence on wound healing rate and wound contraction. The AD group showed reduced wound contraction, but wound healing was delayed. The AD with FB group showed decreased wound contraction without significantly delayed wound healing. Histomorphological analysis exhibited that more normal skin structure was regenerated in the AD with FB group. Immunohistochemistry demonstrated that the AD group and the AD with FB group produced less α-smooth muscle actin than the control group, but this was not shown in the FB group.Fibroblast-seeded artificial dermis may minimize wound contraction without significantly delaying wound healing in the treatment of skin and soft tissue defects.

  9. Wound Healing Activity of Elaeis guineensis Leaf Extract Ointment

    Directory of Open Access Journals (Sweden)

    Sreenivasan Sasidharan

    2011-12-01

    Full Text Available Elaeis guineensis of the Arecaceae family is widely used in the traditional medicine of societies in West Africa for treating various ailments. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied. The results showed that E. guineensis leaf extract had potent wound healing capacity as evident from the better wound closure (P < 0.05, improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Matrix metalloproteinases expression correlated well with the results thus confirming efficacy of E. guineensis in the treatment of the wound. E. guineensis accelerated wound healing in rats, thus supporting its traditional use. The result of this study suggested that, used efficiently, oil palm leaf extract is a renewable resource with wound healing properties.

  10. Evaluation of wound healing activity of Tecomaria capensis leaves

    Institute of Scientific and Technical Information of China (English)

    Saini NK; Singhal M; Srivastava B

    2012-01-01

    The aim of the present study was to evaluate the potential wound healing activity of Tecomaria capensis leaves extract (TCLE) using different models in rats.(a) Excision wound model,(b) Incision wound model and (c) Dead space wound model.TCLE (100,300,1 000 and 2 000 mg.kg-1) was given to rats to observe acute toxicity.No toxicity was found in animals till 14 days.TCLE 5% and 10% ointment were applied topically in excision wound model and incision wound model.TCLE 200 and 400 mg·kg-1 were given orally in dead space wound model.It improved healing in excision wound model,increased breaking strength of tissue in incision wound model,and increased granuloma breaking strength and hydroxyproline content in dead space wound model.These results showed that TCLE presents significant wound healing activity.

  11. Complement deficiency promotes cutaneous wound healing in mice.

    Science.gov (United States)

    Rafail, Stavros; Kourtzelis, Ioannis; Foukas, Periklis G; Markiewski, Maciej M; DeAngelis, Robert A; Guariento, Mara; Ricklin, Daniel; Grice, Elizabeth A; Lambris, John D

    2015-02-01

    Wound healing is a complex homeostatic response to injury that engages numerous cellular activities, processes, and cell-to-cell interactions. The complement system, an intricate network of proteins with important roles in immune surveillance and homeostasis, has been implicated in many physiological processes; however, its role in wound healing remains largely unexplored. In this study, we employ a murine model of excisional cutaneous wound healing and show that C3(-/-) mice exhibit accelerated early stages of wound healing. Reconstitution of C3(-/-) mice with serum from C3(+/+) mice or purified human C3 abrogated the accelerated wound-healing phenotype. Wound histology of C3(-/-) mice revealed a reduction in inflammatory infiltrate compared with C3(+/+) mice. C3 deficiency also resulted in increased accumulation of mast cells and advanced angiogenesis. We further show that mice deficient in the downstream complement effector C5 exhibit a similar wound-healing phenotype, which is recapitulated in C5aR1(-/-) mice, but not C3aR(-/-) or C5aR2(-/-) mice. Taken together, these data suggest that C5a signaling through C5aR may in part play a pivotal role in recruitment and activation of inflammatory cells to the wound environment, which in turn could delay the early stages of cutaneous wound healing. These findings also suggest a previously underappreciated role for complement in wound healing, and may have therapeutic implications for conditions of delayed wound healing.

  12. A potential wound-healing-promoting peptide from salamander skin.

    Science.gov (United States)

    Mu, Lixian; Tang, Jing; Liu, Han; Shen, Chuanbin; Rong, Mingqiang; Zhang, Zhiye; Lai, Ren

    2014-09-01

    Although it is well known that wound healing proceeds incredibly quickly in urodele amphibians, such as newts and salamanders, little is known about skin-wound healing, and no bioactive/effector substance that contributes to wound healing has been identified from these animals. As a step toward understanding salamander wound healing and skin regeneration, a potential wound-healing-promoting peptide (tylotoin; KCVRQNNKRVCK) was identified from salamander skin of Tylototriton verrucosus. It shows comparable wound-healing-promoting ability (EC50=11.14 μg/ml) with epidermal growth factor (EGF; NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR) in a murine model of full-thickness dermal wound. Tylotoin directly enhances the motility and proliferation of keratinocytes, vascular endothelial cells, and fibroblasts, resulting in accelerated reepithelialization and granulation tissue formation in the wound site. Tylotoin also promotes the release of transforming growth factor β1 (TGF-β1) and interleukin 6 (IL-6), which are essential in the wound healing response. Gene-encoded tylotoin secreted in salamander skin is possibly an effector molecule for skin wound healing. This study may facilitate understanding of the cellular and molecular events that underlie quick wound healing in salamanders.

  13. Microbial Biofilms and Chronic Wounds

    Science.gov (United States)

    Omar, Amin; Wright, J. Barry; Schultz, Gregory; Burrell, Robert; Nadworny, Patricia

    2017-01-01

    Background is provided on biofilms, including their formation, tolerance mechanisms, structure, and morphology within the context of chronic wounds. The features of biofilms in chronic wounds are discussed in detail, as is the impact of biofilm on wound chronicity. Difficulties associated with the use of standard susceptibility tests (minimum inhibitory concentrations or MICs) to determine appropriate treatment regimens for, or develop new treatments for use in, chronic wounds are discussed, with alternate test methods specific to biofilms being recommended. Animal models appropriate for evaluating biofilm treatments are also described. Current and potential future therapies for treatment of biofilm-containing chronic wounds, including probiotic therapy, virulence attenuation, biofilm phenotype expression attenuation, immune response suppression, and aggressive debridement combined with antimicrobial dressings, are described. PMID:28272369

  14. Elements affecting wound healing time: An evidence based analysis.

    Science.gov (United States)

    Khalil, Hanan; Cullen, Marianne; Chambers, Helen; Carroll, Matthew; Walker, Judi

    2015-01-01

    The purpose of this study was to identify the predominant client factors and comorbidities that affected the time taken for wounds to heal. A prospective study design used the Mobile Wound Care (MWC) database to capture and collate detailed medical histories, comorbidities, healing times and consumable costs for clients with wounds in Gippsland, Victoria. There were 3,726 wounds documented from 2,350 clients, so an average of 1.6 wounds per client. Half (49.6%) of all clients were females, indicating that there were no gender differences in terms of wound prevalence. The clients were primarily older people, with an average age of 64.3 years (ranging between 0.7 and 102.9 years). The majority of the wounds (56%) were acute and described as surgical, crush and trauma. The MWC database categorized the elements that influenced wound healing into 3 groups--factors affecting healing (FAH), comorbidities, and medications known to affect wound healing. While there were a multitude of significant associations, multiple linear regression identified the following key elements: age over 65 years, obesity, nonadherence to treatment plan, peripheral vascular disease, specific wounds associated with pressure/friction/shear, confirmed infection, and cerebrovascular accident (stroke). Wound healing is a complex process that requires a thorough understanding of influencing elements to improve healing times.© 2015 by the Wound Healing Society.

  15. In vitro electrical-stimulated wound-healing chip for studying electric field-assisted wound-healing process

    OpenAIRE

    Sun, Yung-Shin; Peng, Shih-Wei; Cheng, Ji-Yen

    2012-01-01

    The wound-healing assay is an easy and economical way to quantify cell migration under diverse stimuli. Traditional assays such as scratch assays and barrier assays are widely and commonly used, but neither of them can represent the complicated condition when a wound occurs. It has been suggested that wound-healing is related to electric fields, which were found to regulate wound re-epithelialization. As a wound occurs, the disruption of epithelial barrier short-circuits the trans-epithelial ...

  16. Monitoring wound healing by multiphoton tomography/endoscopy

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Bückle, Rainer; Kaatz, Martin; Hipler, Christina; Zens, Katharina; Schneider, Stefan W.; Huck, Volker

    2015-02-01

    Certified clinical multiphoton tomographs are employed to perform rapid label-free high-resolution in vivo histology. Novel tomographs include a flexible 360° scan head attached to a mechano-optical arm for autofluorescence and SHG imaging as well as rigid two-photon GRIN microendoscope. Mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged with submicron resolution in human skin. The system was employed to study the healing of chronic wounds (venous leg ulcer) and acute wounds (curettage of actinic or seborrheic keratosis) on a subcellular level. Furthermore, a flexible sterile foil as interface between wound and focusing optic was tested.

  17. [Stem cells and growth factors in wound healing].

    Science.gov (United States)

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  18. Effects of genistein on early-stage cutaneous wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eunkyo [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Seung Min [Research Institute of Health Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Jung, In-Kyung [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lim, Yunsook [Department of Foods and Nutrition, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Jung-Hyun, E-mail: jjhkim@cau.ac.kr [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2011-07-08

    Highlights: {yields} We examine the effect of genistein on cutaneous wound healing. {yields} Genistein enhanced wound closure during the early stage of wound healing. {yields} These genistein effects on wound closure were induced by reduction of oxidative stress through increasing antioxidant capacity and modulation of pro-inflammatory cytokine expression. -- Abstract: Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected by antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-{kappa}B and TNF-{alpha} expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results

  19. Complements and the Wound Healing Cascade: An Updated Review

    Directory of Open Access Journals (Sweden)

    Hani Sinno

    2013-01-01

    Full Text Available Wound healing is a complex pathway of regulated reactions and cellular infiltrates. The mechanisms at play have been thoroughly studied but there is much still to learn. The health care system in the USA alone spends on average 9 billion dollars annually on treating of wounds. To help reduce patient morbidity and mortality related to abnormal or prolonged skin healing, an updated review and understanding of wound healing is essential. Recent works have helped shape the multistep process in wound healing and introduced various growth factors that can augment this process. The complement cascade has been shown to have a role in inflammation and has only recently been shown to augment wound healing. In this review, we have outlined the biology of wound healing and discussed the use of growth factors and the role of complements in this intricate pathway.

  20. Mepenzolate bromide promotes diabetic wound healing by modulating inflammation and oxidative stress.

    Science.gov (United States)

    Zheng, Yongjun; Wang, Xingtong; Ji, Shizhao; Tian, Song; Wu, Haibin; Luo, Pengfei; Fang, He; Wang, Li; Wu, Guosheng; Xiao, Shichu; Xia, Zhaofan

    2016-01-01

    Diabetic wounds are characterized by persistent inflammation and the excessive production of reactive oxygen species, thus resulting in impaired wound healing. Mepenzolate bromide, which was originally used to treat gastrointestinal disorders in clinical settings, has recently been shown to display beneficial effects in chronic obstructive pulmonary disease and pulmonary fibrosis of a mouse model by inhibiting inflammatory responses and reducing oxidative stress. However,the role of mepenzolate bromide in diabetic wound healing is still unclear. In this study, full-thickness excisional skin wounds were created on the backs of db/db mice, and mepenzolate bromide was topically applied to the wound bed. We found that mepenzolate bromide significantly promoted diabetic wound healing by measuring wound closure rate and histomorphometric analyses. Further studies showed that inflammation was inhibited by assessing the number of macrophages and levels of pro-inflammatory cytokines and pro-healing cytokines in the wounds. Furthermore, oxidative stress was reduced by monitoring the levels of MDA and H2O2 and the activities of glutathione peroxidase and catalase in the wounds. These results demonstrated the potential application of mepenzolate bromide for treating diabetic ulcers and other chronic wounds in clinics.

  1. Mechanical compression attenuates normal human bronchial epithelial wound healing

    Directory of Open Access Journals (Sweden)

    Malavia Nikita

    2009-02-01

    Full Text Available Abstract Background Airway narrowing associated with chronic asthma results in the transmission of injurious compressive forces to the bronchial epithelium and promotes the release of pro-inflammatory mediators and the denudation of the bronchial epithelium. While the individual effects of compression or denudation are well characterized, there is no data to elucidate how these cells respond to the application of mechanical compression in the presence of a compromised epithelial layer. Methods Accordingly, differentiated normal human bronchial epithelial cells were exposed to one of four conditions: 1 unperturbed control cells, 2 single scrape wound only, 3 static compression (6 hours of 30 cmH2O, and 4 6 hours of static compression after a scrape wound. Following treatment, wound closure rate was recorded, media was assayed for mediator content and the cytoskeletal network was fluorescently labeled. Results We found that mechanical compression and scrape injury increase TGF-β2 and endothelin-1 secretion, while EGF content in the media is attenuated with both injury modes. The application of compression after a pre-existing scrape wound augmented these observations, and also decreased PGE2 media content. Compression stimulated depolymerization of the actin cytoskeleton and significantly attenuated wound healing. Closure rate was partially restored with the addition of exogenous PGE2, but not EGF. Conclusion Our results suggest that mechanical compression reduces the capacity of the bronchial epithelium to close wounds, and is, in part, mediated by PGE2 and a compromised cytoskeleton.

  2. Wound healing and all-cause mortality in 958 wound patients treated in home care

    DEFF Research Database (Denmark)

    Zarchi, Kian; Martinussen, Torben; Jemec, Gregor B. E.

    2015-01-01

    to investigate wound healing and all-cause mortality associated with different types of skin wounds. Consecutive skin wound patients who received wound care by home-care nurses from January 2010 to December 2011 in a district in Eastern Denmark were included in this study. Patients were followed until wound...... healing, death, or the end of follow-up on December 2012. In total, 958 consecutive patients received wound care by home-care nurses, corresponding to a 1-year prevalence of 1.2% of the total population in the district. During the study, wound healing was achieved in 511 (53.3%), whereas 90 (9.4%) died...

  3. Kinetic and Reaction Pathway Analysis in the Application of Botulinum Toxin A for Wound Healing

    Directory of Open Access Journals (Sweden)

    Frank J. Lebeda

    2012-01-01

    Full Text Available A relatively new approach in the treatment of specific wounds in animal models and in patients with type A botulinum toxin is the focus of this paper. The indications or conditions include traumatic wounds (experimental and clinical, surgical (incision wounds, and wounds such as fissures and ulcers that are signs/symptoms of disease or other processes. An objective was to conduct systematic literature searches and take note of the reactions involved in the healing process and identify corresponding pharmacokinetic data. From several case reports, we developed a qualitative model of how botulinum toxin disrupts the vicious cycle of muscle spasm, pain, inflammation, decreased blood flow, and ischemia. We transformed this model into a minimal kinetic scheme for healing chronic wounds. The model helped us to estimate the rate of decline of this toxin's therapeutic effect by calculating the rate of recurrence of clinical symptoms after a wound-healing treatment with this neurotoxin.

  4. Clinical application of growth factors and cytokines in wound healing.

    Science.gov (United States)

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2014-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of nonhealing wounds (e.g., pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted an online search of Medline/PubMed and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies, and future research possibilities. In this review, we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include granulocyte-macrophage colony-stimulating factor, platelet-derived growth factor, vascular endothelial growth factor, and basic fibroblast growth factor. While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy.

  5. Effects of isoniazid and niacin on experimental wound-healing

    DEFF Research Database (Denmark)

    Weinreich, Jürgen; Ågren, Sven Per Magnus; Bilali, Erol;

    2010-01-01

    There is a need for effective treatments of ischemic wounds. Our aim was to test the hypothesis that systemic administration of isoniazid or niacin can enhance wound healing in ischemic as well as nonischemic tissues.......There is a need for effective treatments of ischemic wounds. Our aim was to test the hypothesis that systemic administration of isoniazid or niacin can enhance wound healing in ischemic as well as nonischemic tissues....

  6. [Local treatment of chronic skin wounds in a Swiss out-patient wound centre 2010].

    Science.gov (United States)

    Baumgartner, Marc; Tanner, Daniel; Hunziker, Thomas

    2011-03-01

    In Switzerland around 30,000 patients suffer from chronic skin wounds. Appropriate topical wound care along with treatment of the causes of the wounds enables to heal a lot of these patients and to avoid secondary disease such as infections. Thereby, the final goal of wound care is stable reepithelisation. Based on experience with chronic leg ulcers mainly in our out-patient wound centre, we give a survey of the wound dressings we actually use and discuss their wound-phase adapted application. Furthermore, we address the two tissue engineering products reimbursed in Switzerland, Apligraf and EpiDex, as well as the biological matrix product Oasis. The crucial question, which treatment options will be offered in future to the wound patients by our health regulatory and insurance systems, is open to debate.

  7. A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: In vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice.

    Science.gov (United States)

    Gainza, Garazi; Pastor, Marta; Aguirre, José Javier; Villullas, Silvia; Pedraz, José Luis; Hernandez, Rosa Maria; Igartua, Manoli

    2014-07-10

    Lipid nanoparticles are currently receiving increasing interest because they permit the topical administration of proteins, such as recombinant human epidermal growth factor (rhEGF), in a sustained and effective manner. Because chronic wounds have become a major healthcare burden, the topical administration of rhEGF-loaded lipid nanoparticles, namely solid lipid nanoparticles (SLN) and nanostructured lipid carries (NLC), appears to be an interesting and suitable strategy for the treatment of chronic wounds. Both rhEGF-loaded lipid nanoparticles were prepared through the emulsification-ultrasonication method; however, the NLC-rhEGF preparation did not require the use of any organic solvents. The characterisation of the nanoparticles (NP) revealed that the encapsulation efficiency (EE) of NLC-rhEGF was significantly greater than obtained with SLN-rhEGF. The in vitro experiments demonstrated that gamma sterilisation is a suitable process for the final sterilisation because no loss in activity was observed after the sterilisation process. In addition, the proliferation assays revealed that the bioactivity of the nanoformulations was even higher than that of free rhEGF. Finally, the effectiveness of the rhEGF-loaded lipid nanoparticles was assayed in a full-thickness wound model in db/db mice. The data demonstrated that four topical administrations of SLN-rhEGF and NLC-rhEGF significantly improved healing in terms of wound closure, restoration of the inflammatory process, and re-epithelisation grade. In addition, the data did not reveal any differences in the in vivo effectiveness between the different rhEGF-loaded lipid nanoparticles. Overall, these findings demonstrate the promising potential of rhEGF-loaded lipid nanoparticles, particularly NLC-rhEGF, for the promotion of faster and more effective healing and suggest their future application for the treatment of chronic wounds.

  8. Muscle wound healing in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Schmidt, Jacob Günther; Andersen, Elisabeth Wreford; Ersbøll, Bjarne Kjær

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post......-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3......, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least...

  9. Human skin transcriptome during superficial cutaneous wound healing.

    Science.gov (United States)

    Nuutila, Kristo; Siltanen, Antti; Peura, Matti; Bizik, Jozef; Kaartinen, Ilkka; Kuokkanen, Hannu; Nieminen, Tapio; Harjula, Ari; Aarnio, Pertti; Vuola, Jyrki; Kankuri, Esko

    2012-01-01

    Healing of the epidermis is a crucial process for maintaining the skin's defense integrity and its resistance to environmental threats. Compromised wound healing renders the individual readily vulnerable to infections and loss of body homeostasis. To clarify the human response of reepithelialization, we biopsied split-thickness skin graft donor site wounds immediately before and after harvesting, as well as during the healing process 3 and 7 days thereafter. In all, 25 biopsies from eight patients qualified for the study. All samples were analyzed by genome-wide microarrays. Here, we identified the genes associated with normal skin reepithelialization over time and organized them by similarities according to their induction or suppression patterns during wound healing. Our results provide the first elaborate insight into the transcriptome during normal human epidermal wound healing. The data not only reveal novel genes associated with epidermal wound healing but also provide a fundamental basis for the translational interpretation of data acquired from experimental models.

  10. Wound healing properties and kill kinetics of Clerodendron splendens G. Don, a Ghanaian wound healing plant

    Directory of Open Access Journals (Sweden)

    Stephen Y Gbedema

    2010-01-01

    Full Text Available As part of our general objective of investigating indigenous plants used in wound healing in Ghana, we hereby report our findings from some in vitro and in vivo studies related to wound healing activities of Clerodendron splendens G. Don (Verbanaceae. Methanolic extract of the aerial parts of the plant was tested for antimicrobial activity against Gram positive bacteria (Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, Micrococcus flavus, as well as resistant strains of Staph. aureus SA1199B, RN4220 and XU212, Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteous mirabilis, Klebsiella pneumoniae and Candida albicans using the micro-well dilution method. Survivor-time studies of the microorganisms, radical scavenging activity using 2,2′-diphenylpicrylhydrazyl (DPPH and various in vivo wound healing activity studies were also conducted on the extract. The extract exhibited biostatic action against all the test microorganisms with a Minimum Inhibition Concentration (MIC ranging between 64 and 512 μg/ml and a free radical scavenging property with an IC 50 value of 103.2 μg/ml. The results of the in vivo wound healing tests showed that upon application of C. splendens ointment, there was a reduction in the epithelization period from 26.7 days (control to 13.6 days along with a marked decrease in the scar area from 54.2 mm 2 (control to 25.2 mm 2 . Significant increase in the tensile strength and hydroxyproline content were also observed as compared to the control and was comparable to nitrofurazone. The above results appear to justify the traditional use of C. splendens in wound healing and treatment of skin infections in Ghana.

  11. Traditional Therapies for Skin Wound Healing

    Science.gov (United States)

    Pereira, Rúben F.; Bártolo, Paulo J.

    2016-01-01

    Significance: The regeneration of healthy and functional skin remains a huge challenge due to its multilayer structure and the presence of different cell types within the extracellular matrix in an organized way. Despite recent advances in wound care products, traditional therapies based on natural origin compounds, such as plant extracts, honey, and larvae, are interesting alternatives. These therapies offer new possibilities for the treatment of skin diseases, enhancing the access to the healthcare, and allowing overcoming some limitations associated to the modern products and therapies, such as the high costs, the long manufacturing times, and the increase in the bacterial resistance. This article gives a general overview about the recent advances in traditional therapies for skin wound healing, focusing on the therapeutic activity, action mechanisms, and clinical trials of the most commonly used natural compounds. New insights in the combination of traditional products with modern treatments and future challenges in the field are also highlighted. Recent Advances: Natural compounds have been used in skin wound care for many years due to their therapeutic activities, including anti-inflammatory, antimicrobial, and cell-stimulating properties. The clinical efficacy of these compounds has been investigated through in vitro and in vivo trials using both animal models and humans. Besides the important progress regarding the development of novel extraction methods, purification procedures, quality control assessment, and treatment protocols, the exact mechanisms of action, side effects, and safety of these compounds need further research. Critical Issues: The repair of skin lesions is one of the most complex biological processes in humans, occurring throughout an orchestrated cascade of overlapping biochemical and cellular events. To stimulate the regeneration process and prevent the wound to fail the healing, traditional therapies and natural products have been used

  12. Traditional Therapies for Skin Wound Healing.

    Science.gov (United States)

    Pereira, Rúben F; Bártolo, Paulo J

    2016-05-01

    Significance: The regeneration of healthy and functional skin remains a huge challenge due to its multilayer structure and the presence of different cell types within the extracellular matrix in an organized way. Despite recent advances in wound care products, traditional therapies based on natural origin compounds, such as plant extracts, honey, and larvae, are interesting alternatives. These therapies offer new possibilities for the treatment of skin diseases, enhancing the access to the healthcare, and allowing overcoming some limitations associated to the modern products and therapies, such as the high costs, the long manufacturing times, and the increase in the bacterial resistance. This article gives a general overview about the recent advances in traditional therapies for skin wound healing, focusing on the therapeutic activity, action mechanisms, and clinical trials of the most commonly used natural compounds. New insights in the combination of traditional products with modern treatments and future challenges in the field are also highlighted. Recent Advances: Natural compounds have been used in skin wound care for many years due to their therapeutic activities, including anti-inflammatory, antimicrobial, and cell-stimulating properties. The clinical efficacy of these compounds has been investigated through in vitro and in vivo trials using both animal models and humans. Besides the important progress regarding the development of novel extraction methods, purification procedures, quality control assessment, and treatment protocols, the exact mechanisms of action, side effects, and safety of these compounds need further research. Critical Issues: The repair of skin lesions is one of the most complex biological processes in humans, occurring throughout an orchestrated cascade of overlapping biochemical and cellular events. To stimulate the regeneration process and prevent the wound to fail the healing, traditional therapies and natural products have been used

  13. Effects of Dermal Multipotent Cell Transplantation on Skin Wound Healing

    Institute of Scientific and Technical Information of China (English)

    ShiChunmeng; ChengTianmin; SuYongping; RanXinze; MaiYue; QuJifu; LouShufen; XuHui; LuoChengji

    2005-01-01

    There is increasing evidence that dermis contains adult multipotent stem cells. To investigate the effects of dermis-derived multipotent cells on wound healing, we transplanted a clonal population of dermis-derived multipotent cells (termed as DMCs) by topical and systemic application into the skin wound of rats with simple wounds and rats with combined wound and radiation injury. Our results suggest that both topical and systemic transplantation of DMCs accelerate the healing process in rats with a simple wound; the promoting effect by topical transplantation occurs earlier than systemic transplantation. However, systemic transplantation of DMCs promotes the healing process in irradiated rats, while topical transplantation of DMCs fails. Further studies on the mechanisms of DMCs to promote wound healing indicate that the supernatant of DMCs could promote the proliferation of fibroblasts and epidermal cells; DMCs expressed transcripts of a serics of cytokincs and cxtraccllular matrix molecules, including VEGF, PDGF, HGF, TGF-β, ICAM-1, VCAM-1, and Fibronectin, which were closely related to the wound healing by DNA microarray analysis. The implanted DMCs can engraft into recipient skin wounded tissues after transplantation by the FISH analysis with Y-chromosome-specific probe. Systemic transplantation of DMCs also promotes the recovery of peripheral white blood cells in irradiated rats. These results demonstrate the different effects of DMCs on wound healing in nonirradiated and irradiated rats and illustrate the importance of optimizing wound healing via the topical or systemic transplantation of stem cells.

  14. A small peptide with potential ability to promote wound healing.

    Science.gov (United States)

    Tang, Jing; Liu, Han; Gao, Chen; Mu, Lixian; Yang, Shilong; Rong, Mingqiang; Zhang, Zhiye; Liu, Jie; Ding, Qiang; Lai, Ren

    2014-01-01

    Wound-healing represents a major health burden, such as diabetes-induced skin ulcers and burning. Many works are being tried to find ideal clinical wound-healing biomaterials. Especially, small molecules with low cost and function to promote production of endogenous wound healing agents (i.e. transforming growth factor beta, TGF-β) are excellent candidates. In this study, a small peptide (tiger17, c[WCKPKPKPRCH-NH2]) containing only 11 amino acid residues was designed and proved to be a potent wound healer. It showed strong wound healing-promoting activity in a murine model of full thickness dermal wound. Tiger17 exerted significant effects on three stages of wound healing progresses including (1) the induction of macrophages recruitment to wound site at inflammatory reaction stage; (2) the promotion of the migration and proliferation both keratinocytes and fibroblasts, leading to reepithelialization and granulation tissue formation; and (3) tissue remodeling phase, by promoting the release of transforming TGF-β1 and interleukin 6 (IL-6) in murine macrophages and activating mitogen-activated protein kinases (MAPK) signaling pathways. Considering its easy production, store and transfer and function to promote production of endogenous wound healing agents (TGF-β), tiger17 might be an exciting biomaterial or template for the development of novel wound-healing agents.

  15. A small peptide with potential ability to promote wound healing.

    Directory of Open Access Journals (Sweden)

    Jing Tang

    Full Text Available Wound-healing represents a major health burden, such as diabetes-induced skin ulcers and burning. Many works are being tried to find ideal clinical wound-healing biomaterials. Especially, small molecules with low cost and function to promote production of endogenous wound healing agents (i.e. transforming growth factor beta, TGF-β are excellent candidates. In this study, a small peptide (tiger17, c[WCKPKPKPRCH-NH2] containing only 11 amino acid residues was designed and proved to be a potent wound healer. It showed strong wound healing-promoting activity in a murine model of full thickness dermal wound. Tiger17 exerted significant effects on three stages of wound healing progresses including (1 the induction of macrophages recruitment to wound site at inflammatory reaction stage; (2 the promotion of the migration and proliferation both keratinocytes and fibroblasts, leading to reepithelialization and granulation tissue formation; and (3 tissue remodeling phase, by promoting the release of transforming TGF-β1 and interleukin 6 (IL-6 in murine macrophages and activating mitogen-activated protein kinases (MAPK signaling pathways. Considering its easy production, store and transfer and function to promote production of endogenous wound healing agents (TGF-β, tiger17 might be an exciting biomaterial or template for the development of novel wound-healing agents.

  16. Full-thickness splinted skin wound healing models in db/db and heterozygous mice: implications for wound healing impairment.

    Science.gov (United States)

    Park, Shin Ae; Teixeira, Leandro B C; Raghunathan, Vijay Krishna; Covert, Jill; Dubielzig, Richard R; Isseroff, Roslyn Rivkah; Schurr, Michael; Abbott, Nicholas L; McAnulty, Jonathan; Murphy, Christopher J

    2014-01-01

    The excisional dorsal full-thickness skin wound model with or without splinting is widely utilized in wound healing studies using diabetic or normal mice. However, the effects of splinting on dermal wound healing have not been fully characterized, and there are limited data on the direct comparison of wound parameters in the splinted model between diabetic and normal mice. We compared full-thickness excisional dermal wound healing in db/db and heterozygous mice by investigating the effects of splinting, semi-occlusive dressing, and poly(ethylene glycol) treatment. Two 8-mm full-thickness wounds were made with or without splinting in db/db and heterozygous mice. Body weights, splint maintenance, wound contraction, wound closure, and histopathological parameters including reepithelialization, wound bed collagen deposition, and inflammation were compared between groups. Our results show that silicone splint application effectively reduced wound contraction in heterozygous and db/db mice. Splinted wounds, as opposed to nonsplinted wounds, exhibited no significant differences in wound closure between heterozygous and db/db mice. Finally, polyethylene glycol and the noncontact dressing had no significant effect on wound healing in heterozygous or db/db mice. We believe these findings will help investigators in selection of the appropriate wound model and data interpretation with fully defined parameters.

  17. Wound healing and all-cause mortality in 958 wound patients treated in home care.

    Science.gov (United States)

    Zarchi, Kian; Martinussen, Torben; Jemec, Gregor B E

    2015-09-01

    Skin wounds are associated with significant morbidity and mortality. Data are, however, not readily available for benchmarking, to allow prognostic evaluation, and to suggest when involvement of wound-healing experts is indicated. We, therefore, conducted an observational cohort study to investigate wound healing and all-cause mortality associated with different types of skin wounds. Consecutive skin wound patients who received wound care by home-care nurses from January 2010 to December 2011 in a district in Eastern Denmark were included in this study. Patients were followed until wound healing, death, or the end of follow-up on December 2012. In total, 958 consecutive patients received wound care by home-care nurses, corresponding to a 1-year prevalence of 1.2% of the total population in the district. During the study, wound healing was achieved in 511 (53.3%), whereas 90 (9.4%) died. During the first 3 weeks of therapy, healing was most likely to occur in surgical wounds (surgical vs. other wounds: adjusted hazard ratio [AHR] 2.21, 95% confidence interval 1.50-3.23), while from 3 weeks to 3 months of therapy, cancer wounds, and pressure ulcers were least likely to heal (cancer vs. other wounds: AHR 0.12, 0.03-0.50; pressure vs. other wounds: AHR 0.44, 0.27-0.74). Cancer wounds and pressure ulcers were further associated with a three times increased probability of mortality compared with other wounds (cancer vs. other wounds: AHR 3.19, 1.35-7.50; pressure vs. other wounds: AHR 2.91, 1.56-5.42). In summary, the wound type was found to be a significant predictor of healing and mortality with cancer wounds and pressure ulcers being associated with poor prognosis.

  18. Influence of Helium-Neon Laser Photostimulation on Excision Wound Healing in Wistar Rats

    Directory of Open Access Journals (Sweden)

    B. S. Nayak

    2007-01-01

    Full Text Available The importance of laser photostimulation is now accepted generally but the laser light facilitates wound healing and tissue repair remains poorly understood. So we have examined the hypothesis that the laser photo stimulation can enhances the collagen production in excision wounds using excision wound model in Wister rat model. The circular wounds were created on the dorsum of the back of the animals. The animals were divided into two groups. The experimental group (n = 12 wound was treated with 632.8 nm He-Ne laser at a dose of 2.1J cm-2 for five days a week until the complete healing. The control group was sham irradiated. The parameters studied were wound area, period of epithelization and hydroxyproline. Significant increase in the hydroxyproline content (p<0.001 and reduction in the wound size (p<0.001 was observed in study group when compared to controls. The significant epithelization (p<0.001 was noticed. The experimental wounds were, on average, fully healed by the 15th day, whereas the control group healed, on average by 22nd day. Wound contraction together with the hydroxyproline and experimental observations suggested that low intensity Helium-Neon laser photo stimulation facilitates the tissue repair process by accelerating collagen production in chronic wounds.

  19. Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing.

    Science.gov (United States)

    Zhou, Xin; Wang, He; Zhang, Jimin; Li, Xuemei; Wu, Yifan; Wei, Yongzhen; Ji, Shenglu; Kong, Deling; Zhao, Qiang

    2017-03-09

    Wound healing dressings are increasingly needed clinically due to the large number of skin damage annually. Nitric oxide (NO) plays a key role in promoting wound healing, thus biomaterials with NO-releasing property receive increasing attention as ideal wound dressing. In present study, we prepared a novel functional wound dressing by combining electrospun poly(ε-caprolactone) (PCL) nonwoven mat with chitosan-based NO-releasing biomaterials (CS-NO). As-prepared PCL/CS-NO dressing released NO sustainably under the physiological conditions, which was controlled by the catalysis of β-galactosidase. In vivo wound healing characteristics were further evaluated on full-thickness cutaneous wounds in mice. Results showed that PCL/CS-NO wound dressings remarkably accelerated wound healing process through enhancing re-epithelialization and granulation formation and effectively improved the organization of regenerated tissues including epidermal-dermal junction, which could be ascribed to the pro-angiogenesis, immunomodulation, and enhanced collagen synthesis provided by the sustained release of NO. Therefore, PCL/CS-NO may be a promising candidate for wound dressings, especially for the chronic wound caused by the ischemia.

  20. Managing painful chronic wounds: the Wound Pain Management Model

    DEFF Research Database (Denmark)

    Price, Patricia; Fogh, Karsten; Glynn, Chris;

    2007-01-01

    document persistent wound pain and not to develop a treatment and monitoring strategy to improve the lives of persons with chronic wounds. Unless wound pain is optimally managed, patient suffering and costs to health care systems will increase. Udgivelsesdato: 2007-Apr......Chronic wound pain is not well understood and the literature is limited. Six of 10 patients venous leg ulcer experience pain with their ulcer, and similar trends are observed for other chronic wounds. Chronic wound pain can lead to depression and the feeling of constant tiredness. Pain related...... to the wound should be handled as one of the main priorities in chronic wound management together with addressing the cause. Management of pain in chronic wounds depends on proper assessment, reporting and documenting patient experiences of pain. Assessment should be based on six critical dimensions...

  1. Cutaneous wound healing in aging small mammals: a systematic review.

    Science.gov (United States)

    Kim, Dong Joo; Mustoe, Thomas; Clark, Richard A F

    2015-01-01

    As the elderly population grows, so do the clinical and socioeconomic burdens of nonhealing cutaneous wounds, the majority of which are seen among persons over 60 years of age. Human studies on how aging effects wound healing will always be the gold standard, but studies have ethical and practical hurdles. Choosing an animal model is dictated by costs and animal lifespan that preclude large animal use. Here, we review the current literature on how aging effects cutaneous wound healing in small animal models and, when possible, compare healing across studies. Using a literature search of MEDLINE/PubMed databases, studies were limited to those that utilized full-thickness wounds and compared the wound-healing parameters of wound closure, reepithelialization, granulation tissue fill, and tensile strength between young and aged cohorts. Overall, wound closure, reepithelialization, and granulation tissue fill were delayed or decreased with aging across different strains of mice and rats. Aging in mice was associated with lower tensile strength early in the wound healing process, but greater tensile strength later in the wound healing process. Similarly, aging in rats was associated with lower tensile strength early in the wound healing process, but no significant tensile strength difference between young and old rats later in healing wounds. From studies in New Zealand White rabbits, we found that reepithelialization and granulation tissue fill were delayed or decreased overall with aging. While similarities and differences in key wound healing parameters were noted between different strains and species, the comparability across the studies was highly questionable, highlighted by wide variability in experimental design and reporting. In future studies, standardized experimental design and reporting would help to establish comparable study groups, and advance the overall knowledge base, facilitating the translatability of animal data to the human clinical condition.

  2. Wound healing activity of Curcuma zedoaroides

    Directory of Open Access Journals (Sweden)

    Pattreeya Tungcharoen

    2016-12-01

    Full Text Available Curcuma zedoaroides rhizomes have been used in Thai folk medicine as antidote and wound care for king cobra bite wound. The inhibitory effect of C. zedoaroides extract and its fractions on inflammation were detected by reduction of nitric oxide release using RAW264.7 cells. The improvement capabilities on wound healing were determined on fibroblast L929 cells proliferation and migration assays. The results showed that crude EtOH extract, CHCl3 and hexane fractions inhibited NO release with IC50 values of 14.0, 12.4 and 14.6 μg/ml, respectively. The CHCl3 and EtOAc fractions significantly increased L929 cells proliferation, enhanced fibroblast cells migration (100% on day 3 and scavenged DPPH with IC50 of 40.9 and 7.2 μg/ml, respectively. Only the CHCl3 fraction showed marked effect against carrageenan-induced rat paw edema (IC50 = 272.4 mg/kg. From the present study, both in vitro and in vivo models support the traditional use of C. zedoaroides

  3. [To ponder the key issues in achieving wound healing].

    Science.gov (United States)

    Lu, Shuliang

    2014-04-01

    The understanding of the mechanism of wound healing is deepening. Key issues in the process of wound healing need to be seriously considered, i.e. how to establish the concept of application of phasic and selective means to promote wound healing according to the characteristics of a network and sequential process; to correctly assess the function and status of macrophages in wound healing and to explore the conditions of regulating timely infiltration of macrophages, as well as the phasic and orderly expression of type Iand type II macrophages; to properly understand the role and status of extracellular matrix components or the three-dimensional structure and morphology in wound healing; to elucidate the effects of wound microenvironment on the proliferation and differentiation of stem cells; to find out the intrinsic mechanism of negative pressure in the process of wound healing. The understanding of the above problems are of great value for us to grasp the intrinsic mechanism of wound healing in order to establish a more effective and rational treatment of wound.

  4. Effect of Propolis on Experimental Cutaneous Wound Healing in Dogs

    Science.gov (United States)

    2015-01-01

    This study evaluates clinically the effect of propolis paste on healing of cutaneous wound in dogs. Under general anesthesia and complete aseptic conditions, two full thickness skin wounds (3 cm diameter) were created in each side of the chest in five dogs, one dorsal and one ventral, with 10 cm between them. These wounds were randomly allocated into two groups, control group (10 wounds) and propolis group (10 wounds). Both groups were represented in each dog. The wounds were cleaned with normal saline solution and dressed with macrogol ointment in control group and propolis paste in propolis group, twice daily till complete wound healing. Measurement of the wound area (cm2) was monitored planimetrically at 0, 7, 14, 21, 28, and 35 days after injury. The data were analyzed statistically. The results revealed a significant reduction in the wound surface area in the propolis group after 14 and 21 days compared to control group. The wound reepithelization, contraction, and total wound healing were faster in propolis group than in control group during five weeks of study. In conclusion, propolis paste has a positive impact on cutaneous wound healing and it may be suggested for treating various types of wounds in animals. PMID:26783495

  5. CEACAM1 deficiency delays important wound healing processes.

    Science.gov (United States)

    LeBlanc, Sarah; Arabzadeh, Azadeh; Benlolo, Samantha; Breton, Valérie; Turbide, Claire; Beauchemin, Nicole; Nouvion, Anne-Laure

    2011-11-01

    Cutaneous wound healing is a complex process that requires the coordination of many cell types to achieve proper tissue repair. Four major overlapping processes have been identified in wound healing: hemostasis, inflammation, reepithelialization and granulation tissue formation, and tissue remodeling. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a glycoprotein expressed in epithelial, endothelial, lymphoid, and myeloid cells. Given its known roles in angiogenesis, cell migration, and immune functions, we hypothesized that CEACAM1 might also be involved in cutaneous wound healing and that a number of relevant CEACAM1-positive cell types might contribute to wound healing. To evaluate the role of CEACAM1 in these processes, 6-mm-diameter skin wounds were inflicted on Ceacam1(-/-) and wild-type mice. Herein, we demonstrate that CEACAM1 deletion indeed affects wound healing in three key ways. Infiltration of F4/80(+) macrophages was decreased in Ceacam1(-/-) wounds, altering inflammatory processes. Reepithelialization in Ceacam1(-/-) wounds was delayed. Furthermore, the vascular density of the granulation tissue in Ceacam1(-/-) wounds was significantly diminished. These results confirm CEACAM1's role as an important regulator of key processes in cutaneous wound healing, although whether this works via a specific cell type or alterations in the functioning of multiple processes remains to be determined.

  6. Amniotic membrane can be a valid source for wound healing

    Directory of Open Access Journals (Sweden)

    ElHeneidy H

    2016-06-01

    Full Text Available Hossam ElHeneidy,1 Eman Omran,1 Ahmed Halwagy,1 Hesham Al-Inany,1 Mirvat Al-Ansary,2 Amr Gad3 1Department of Obstetrics & Gynecology, 2Department of Clinical Pathology, 3Department of Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt Abstract: Amniotic membrane (AM can promote proper epithelialization with suppression of excessive fibrosis by creating a supportive milieu for regeneration of chronic ulcer bed.Objective: The objective of this study is to investigate whether AM scaffold can modulate the healing of a wound by promoting tissue reconstruction rather than promoting scar tissue formation.Subjects and methods: AM was obtained and prepared and then applied to patients with chronic leg ulcers who were randomly divided into two different groups. Group I (control group included eleven patients in whom ulcers were treated with conventional wound dressings that were changed daily for 8 weeks. Group II (study group included 14 patients in whom the AM was placed in contact with the ulcer and held in place with a secondary dressing, which was changed daily. Follow-up was done to detect healing rate and detection of ulcer size, assessment of pain, and to take ulcer images (days 0, 7, 14, 21, 30, 45, and 60.Results: In group I, all ulcers showed no reduction in their size, and ulcer floor remained the same. Healthy granulations were present in two ulcers (18.2% and absent in nine ulcers (81.8%. There was no improvement of pain level in the eleven ulcers. In group II, complete healing of 14 ulcers occurred in 14–60 days with a mean of 33.3±14.7; healing rate range was 0.064–2.22 and the mean 0.896±0.646 cm2/day. Healthy granulations were present in 13 ulcers (92.9% and absent in one ulcer (7.1%. Three ulcers (21.4% were of mild severity (grade 1 ulcers while eleven ulcers (78.6% were of moderate severity (grade 2 ulcers. The healing rate was faster in ulcers of mild severity (1.7±0.438 cm2/day in comparison to ulcers of moderate

  7. In vivo wound-healing effects of novel benzalkonium chloride-loaded hydrocolloid wound dressing.

    Science.gov (United States)

    Jin, Sung Giu; Yousaf, Abid Mehmood; Jang, Sun Woo; Son, Mi-Won; Kim, Kyung Soo; Kim, Dong-Wuk; Li, Dong Xun; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2015-05-01

    The purpose of this study was to evaluate the wound-healing effects of a novel benzalkonium chloride (BC)-loaded hydrocolloid wound dressing (HCD). A BC-loaded HCD was prepared with various constituents using a hot melting method, and its mechanical properties and antimicrobial activities were assessed. The in vivo wound healings of the BC-loaded HCD in various would models were evaluated in rats compared with a commercial wound dressing, Duoderm™. This BC-loaded HCD gave better skin adhesion, swelling, mechanical strength, and flexibility compared with the commercial wound dressing. It showed excellent antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. In addition, as compared with the commercial wound dressing, it showed more improved wound healings and tissue restoration effect on the excision, infection, and abrasion wounds in rats. Thus, this novel BC-loaded HCD would be an excellent alternative to the commercial wound dressing for treatment of various wounds.

  8. Stem Cell Therapy in Wound Healing and Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2016-08-01

    a novel approach to many diseases. SUMMARY: Wound healing therapies continue to rapidly evolve, with advances in basic science and engineering research heralding the development of new therapies, as well as ways to modify existing treatments. Stem cell-based therapy is one of the most promising therapeutic concepts for wound healing. Advances in stem cell biology have enabled researchers and clinicians alike with access to cells capable of actively modulating the healing response.  KEYWORDS: wound healing, tissue regeneration, stem cells therapy

  9. Wound healing activity of the inflorescence of Typha elephantina (Cattail).

    Science.gov (United States)

    Panda, Vandana; Thakur, Tejas

    2014-03-01

    Methanolic extracts of Typha elephantina inflorescence (TE) and its bandage were screened for wound healing by incision and excision wound models in Wistar rats. In the incision wound model, incision wounds were topically treated with TE gel (2.0% [w/w], 3.0% [w/w], and 5.0% [w/w]), Typha elephantina inflorescence bandage, and the reference standard 5.0% w/w povidone iodine for a period of 10 days. When the wounds healed thoroughly, sutures were removed on the 8th postwounding day, and the tensile strength of the skin was measured on the 10th day. In the excision wound model, excision wounds were treated with TE gel (3.0% [w/w] and 5.0% [w/w]), inflorescence bandage, and 5.0% w/w povidone iodine till the wounds completely healed. Epithelization time, wound contraction, hydroxyproline and hexosamine content of the scab, and ascorbic acid and malondialdehyde content of the plasma were determined in this model. In the incision wound model, high tensile strength of the skin of the healed wound was observed in rats treated with the TE gels and the inflorescence bandage when compared with wounded control rats. The increase in tensile strength indicates a promotion of collagen fibers and a firm knitting of the disrupted wound surfaces by collagen. In the excision wound model, higher rate of wound contraction, decreased period of epithelization, elevated hydroxyproline, hexosamine, and ascorbic acid levels, and a significant decrease in malondialdehyde content was observed in treated groups when compared with the wounded control animals. It may be concluded that the inflorescence of Typha elephantina possesses a potent wound healing activity, which may be due to an underlying antioxidant mechanism.

  10. Non-healing foot ulcers in diabetic patients: general and local interfering conditions and management options with advanced wound dressings.

    Science.gov (United States)

    Uccioli, Luigi; Izzo, Valentina; Meloni, Marco; Vainieri, Erika; Ruotolo, Valeria; Giurato, Laura

    2015-04-01

    Medical knowledge about wound management has improved as recent studies have investigated the healing process and its biochemical background. Despite this, foot ulcers remain an important clinical problem, often resulting in costly, prolonged treatment. A non-healing ulcer is also a strong risk factor for major amputation. Many factors can interfere with wound healing, including the patient's general health status (i.e., nutritional condition indicated by albumin levels) or drugs such as steroids that can interfere with normal healing. Diabetic complications (i.e., renal insufficiency) may delay healing and account for higher amputation rates observed in diabetic patients under dialysis treatment. Wound environment (e.g., presence of neuropathy, ischaemia, and infection) may significantly influence healing by interfering with the physiological healing cascade and adding local release of factors that may worsen the wound. The timely and well-orchestrated release of factors regulating the healing process, observed in acute wounds, is impaired in non-healing wounds that are blocked in a chronic inflammatory phase without progressing to healing. This chronic phase is characterised by elevated protease activity (EPA) of metalloproteinases (MMPs) and serine proteases (e.g., human neutrophil elastase) that interfere with collagen synthesis, as well as growth factor release and action. EPA (mainly MMP 9, MMP-8 and elastase) and inflammatory factors present in the wound bed (such as IL-1, IL-6, and TNFa) account for the catabolic state of non-healing ulcers. The availability of wound dressings that modulate EPA has added new therapeutic options for treating non-healing ulcers. The literature confirms advantages obtained by reducing protease activity in the wound bed, with better outcomes achieved by using these dressings compared with traditional ones. New technologies also allow a physician to know the status of the wound bed environment, particularly EPA, in a clinical

  11. [Water-filtered infrared-A (wIRA) promotes wound healing].

    Science.gov (United States)

    Winkel, R; Hoffmann, G; Hoffmann, R

    2014-11-01

    Water-filtered infrared-A (wIRA) is a special form of heat radiation with high tissue penetration and low thermal load to the skin surface which promotes the healing of acute and chronic wounds both by thermal and thermic as well as by non-thermal and non-thermic effects. Water-filtered infrared-A increases tissue temperature (+ 2.7 °C at a tissue depth of 2 cm), tissue oxygen partial pressure (+ 32 % at a tissue depth of 2 cm) and tissue perfusion. These three factors are decisive for a sufficient supply of tissue with energy and oxygen and consequently also for wound healing and infection defense. Water-filtered infrared-A promotes normal as well as disturbed wound healing by diminishing inflammation and exudation, by promotion of infection defense and regeneration, and by alleviation of pain. These effects have been proven in a total of seven prospective studies (of these six randomized controlled studies) with most of the effects having an evidence level of Ia or Ib. The additional cases of complicated courses of wound healing presented in this article illustrate the proven effects of wIRA. Not only in the 6 presented cases wIRA turned the complicated courses of wound healing for the better and facilitated the healing of the wounds after varying total times of irradiation (in the 6 cases 51-550 h) and after variable times of wound care and mostly after transplantation of split skin grafts. In complicated courses of wound healing wIRA does not replace consultation and, when indicated, treatment by an experienced plastic surgeon and by a surgeon specialized in septic surgery. With these limitations wIRA can be recommended as a valuable complement for the treatment of acute as well as of chronic wounds.

  12. Effects of Low-Intensity Laser Irradiation on Wound Healing in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Hui Ma

    2012-01-01

    Full Text Available Objective. The effects of low-intensity 630 nm semiconductor laser irradiation at 3.6 J/cm2 (LISL on wound healing in diabetic rats were studied in this paper. Methods. 36 diabetic rats with dorsal cutaneous excisional wounds were divided into three LISL groups and a control group randomly. The three LISL groups were irradiated with LISL at 5, 10, and 20 mW/cm2 five times a week for two weeks, respectively. The process of wound healing was assessed by assessing blood glucose, calculating percentage of wound closure, histopathological evaluation, and immunohistochemical quantification. Results. Blood glucose of all groups remained at similar levels throughout the experiment. LISL could obviously promote wound contraction, fibroblasts proliferation, and collagen synthesis, alter bFGF and TGF-β1 expression, and reduce inflammatory reaction in the early and middle phases of chronic wound-healing process. However, LISL could not shorten cicatrization time, and the treatment effects were not sensitive to illuminate parameters in the later phase of the experiment. Conclusions. LISL might have auxiliary effects in the early and middle phases of wound healing in STZ-induced diabetic rats, but the reciprocity rule might not hold. The wound-healing process of early-phase diabetes rats shows typical characteristics of self-limited disease.

  13. Curcumin: a novel therapeutic for burn pain and wound healing

    Science.gov (United States)

    2013-08-01

    for controlling pain and wound healing. Several reports clearly demonstrate that cur- cumin can directly act on nociceptive neurons and inhibit...bioavailability 5. Curcumin delivery vehicles 6. Conclusion 7. Expert opinion Review Curcumin: a novel therapeutic for burn pain and wound healing Bopaiah...Surgical Research, Battlefield Pain Management Research Task Area, Fort Sam Houston, TX, USA Introduction: Managing burn injury-associated pain and wounds

  14. The Effect of Magnetic Fields on Wound Healing

    OpenAIRE

    Henry, Steven L.; Concannon, Matthew J; Yee, Gloria J

    2008-01-01

    Objective: Magnets are purported to aid wound healing despite a paucity of scientific evidence. The purpose of this study was to evaluate the effect of static magnetic fields on cutaneous wound healing in an animal model. The literature was reviewed to explore the historical and scientific basis of magnet therapy and to define its current role in the evidence-based practice of plastic surgery. Methods: Standardized wounds were created on the backs of 33 Sprague-Dawley rats, which were divided...

  15. Combined effect of PLGA and curcumin on wound healing activity.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Coco, Régis; Memvanga, Patrick B; Ucakar, Bernard; des Rieux, Anne; Vandermeulen, Gaëlle; Préat, Véronique

    2013-10-28

    Wound healing is a complex process involving many interdependent and overlapping sequences of physiological actions. The application of exogenous lactate released from poly (lactic-co-glycolic acid) (PLGA) polymer accelerated angiogenesis and wound healing processes. Curcumin is a well-known topical wound healing agent for both normal and diabetic-impaired wounds. Hence, we hypothesized that the PLGA nanoparticles encapsulating curcumin could much potentially accelerate the wound healing. In a full thickness excisional wound healing mouse model, PLGA-curcumin nanoparticles showed a twofold higher wound healing activity compared to that of PLGA or curcumin. Histology and RT-PCR studies confirmed that PLGA-curcumin nanoparticles exhibited higher re-epithelialization, granulation tissue formation and anti-inflammatory potential. PLGA nanoparticles offered various benefits for the encapsulated curcumin like protection from light degradation, enhanced water solubility and showed a sustained release of curcumin over a period of 8 days. In conclusion, we demonstrated the additive effect of lactic acid from PLGA and encapsulated curcumin for the active healing of wounds.

  16. [The treatment of slowly healing wounds with collagen and growth factors].

    Science.gov (United States)

    Baĭchev, G; Penkova, R; Deliĭski, T

    1995-01-01

    Experience had with the local application of collagen and autologous growth factors, isolated from platelets, in 35 patients presenting chronic, slowly healing wounds, treated with conventional methods, is discussed. In 24 cases of the series reviewed the wounds undergo epithelization within six weeks, and in the remainder (11)-within 10 weeks. As shown by the results, the healing process is quicker in wounds of patients treated with growth factors in combination with collagen, as compared to the control group--p(t) > 0.05.

  17. Promising role of ANGPTL4 gene in diabetic wound healing.

    Science.gov (United States)

    Arya, Awadhesh K; Tripathi, Kamlakar; Das, Parimal

    2014-03-01

    Diabetes mellitus (DM) is one of the severe metabolic disorders of carbohydrate metabolism worldwide. Developing countries are at higher risk of DM, and there is significant evidence that it is epidemic in many economically developing and newly industrialized countries. Among all other complications associated with DM, delayed wound healing is a major concern in diabetic patients. Wound healing is a natural healing process that starts immediately after injury. This involves interaction of a complex cascade of cellular events that generates resurfacing, reconstitution, and restoration of the tensile strength of injured skin. There are multiple factors responsible for delayed wound healing among which the contribution of DM has been well documented. The wound healing process is also delayed by the metabolic, vascular, neurological, and inflammatory alterations, which are well known in both type 1 and type 2 diabetes. Keratinocytes are crucial for wound re-epithelialization, and defects in directed migration of keratinocytes due to DM are associated with the delayed wound healing process. Many factors responsible for re-epithelialization have been identified, characterized, and well described; however, the genes responsible for the healing process have only partially been illustrated. This article will therefore focus on the efficacy of ANGPTL4 (angiopoietin-like 4) gene, which plays a novel role in keratinocyte migration during wound healing.

  18. 局部高渗环境对慢性创伤性窦道的治疗效果分析%Analysis of curative effect on local hypertonic environment improves healing of chronic traumatic wounds

    Institute of Scientific and Technical Information of China (English)

    朱颉; 罗自通; 曹亿; 于萌蕾; 曾兵; 彭吉才; 黄都平

    2014-01-01

    Objective To compare the effects of hypertonic saline and isotonic saline solutions on the healing of chronic traumatic wounds. Methods Between March 2011 and March 2014, sixty-two patients with chronic traumatic wounds were randomized to 2 groups. Thirty-one cases were treated with 28%sodium chloride medical fiber/polyester non-woven dressing (group A) and the other 31 cases , with 0.9% sodium chloride medical gauze (group B). Series of wound cultures were performed, wound conditions were assessed, and the timing of wound healing and adverse reactions were recorded. Results The average healing time in group A was 18.6 days. The average healing time for group B patients was 22.5 days (P<0.05). No obvious adverse effects were observed in either group. Wound cultures showed that 80% of the patients with positive pre-treatment cultures became negative after 3 days of hypertonic saline treatment whereas only 10% turned negative in group B. Conclusion Local hypertonic environment may significantly reduce bacteria load in chronic wounds and improve wound healing.%目的:局部高渗引流及普通引流方法的比较,分析高渗环境下引流对慢性窦道的治疗效果。方法慢性创伤性窦道病例62例进行随机分成2组,其中31例伤口窦道内使用28%高渗氯化钠纤维/聚酯无纺布敷料进行引流,31例使用0.9%氯化钠纱条进行引流观察治疗效果及不良反应。结果28%高渗氯化钠纤维/聚酯无纺布敷料治疗组(高渗引流组)平均痊愈时间18.6天,0.9%氯化钠纱条组(等渗引流组)平均痊愈时间22.5天,两组慢性创面窦道痊愈时间差异有显著统计学意义(P<0.05);高渗引流组患者创面细菌培养阳性例数也明显低于等渗引流组。结论局部高渗压环境引流可显著抑制慢性创伤性窦道细菌微生物被膜的形成,对慢性窦道的愈合有显著的效果。

  19. Wound Healing Effects of Curcumin: A Short Review.

    Science.gov (United States)

    Tejada, Silvia; Manayi, Azadeh; Daglia, Maria; Nabavi, Seyed F; Sureda, Antoni; Hajheydari, Zohreh; Gortzi, Olga; Pazoki-Toroudi, Hamidreza; Nabavi, Seyed M

    Wound healing is a complex process that consists of several phases that range from coagulation, inflammation, accumulation of radical substances, to proliferation, formation of fibrous tissues and collagen, contraction of wound with formation of granulation tissue and scar. Since antiquity, vegetable substances have been used as phytotherapeutic agents for wound healing, and more recently natural substances of vegetable origin have been studied with the attempt to show their beneficial effect on wound treatment. Curcumin, the most active component of rhizome of Curcuma longa L. (common name: turmeric), has been studied for many years due to its bio-functional properties, especially antioxidant, radical scavenger, antimicrobial and anti-inflammatory activities, which play a crucial role in the wound healing process. Moreover, curcumin stimulated the production of the growth factors involved in the wound healing process, and so curcumin also accelerated the management of wound restoration. The aim of the present review is collecting and evaluating the literature data regarding curcumin properties potentially relevant for wound healing. Moreover, the investigations on the wound healing effects of curcumin are reported. In order to produce a more complete picture, the chemistry and sources of curcumin are also discussed.

  20. Honey for Wound Healing, Ulcers, and Burns; Data Supporting Its Use in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Noori Al-Waili

    2011-01-01

    Full Text Available The widespread existence of unhealed wounds, ulcers, and burns has a great impact on public health and economy. Many interventions, including new medications and technologies, are being used to help achieve significant wound healing and to eliminate infections. Therefore, to find an intervention that has both therapeutic effect on the healing process and the ability to kill microbes is of great value. Honey is a natural product that has been recently introduced in modern medical practice. Honey's antibacterial properties and its effects on wound healing have been thoroughly investigated. Laboratory studies and clinical trials have shown that honey is an effective broad-spectrum antibacterial agent. This paper reviews data that support the effectiveness of natural honey in wound healing and its ability to sterilize infected wounds. Studies on the therapeutic effects of honey collected in different geographical areas on skin wounds, skin and gastric ulcers, and burns are reviewed and mechanisms of action are discussed. (Ulcers and burns are included as an example of challenging wounds. The data show that the wound healing properties of honey include stimulation of tissue growth, enhanced epithelialization, and minimized scar formation. These effects are ascribed to honey's acidity, hydrogen peroxide content, osmotic effect, nutritional and antioxidant contents, stimulation of immunity, and to unidentified compounds. Prostaglandins and nitric oxide play a major role in inflammation, microbial killing, and the healing process. Honey was found to lower prostaglandin levels and elevate nitric oxide end products. These properties might help to explain some biological and therapeutic properties of honey, particularly as an antibacterial agent or wound healer. The data presented here demonstrate that honeys from different geographical areas have considerable therapeutic effects on chronic wounds, ulcers, and burns. The results encourage the use of honey

  1. Wound healing and antiinflammatory potential of madhu ghrita

    Directory of Open Access Journals (Sweden)

    Charde M

    2006-01-01

    Full Text Available Madhu ghrita is a herbal formulation containing honey and ghee (clarified butterfat as its constituents. The aim of present study is to verify the wound healing and antiinflammatory claims of Madhu ghrita . Incision and excision wound models were used for evaluation of wound healing activity followed by histopathological study in which healing markers like keratinization, epithelization, fibrosis, neovascularisation and collagenation were evaluated in male Wistar rats. The results of Madhu ghrita were compared with the results of untreated control group and results of framycetine sulphate cream, considered as a positive control. The formulation was also tested for antiinflammatory activity, using carrageenan-induced paw oedema in male Wistar rats. The test formulation Madhu ghrita enhanced the tensile strength, which significantly improved over untreated wounds. The tensile strength of untreated control wound was 281±5.82, while with the Madhu ghrita and framycetine sulphate cream 1% w/w, it was 328±8.9 and 398±6.32, respectively. Treatment with Madhu ghrita alone promoted wound contraction and reduced the wound closure time, so increase in tensile strength and wound contraction shows the wound healing potential of Madhu ghrita . Histopathological study shows that proliferation of epithelial tissue promotes angiogenesis, multiplication of fibrous connective tissue due to treatment with Madhu ghrita . The test formulation Madhu ghrita also shows significant antiinflammatory activity when the results are compared with the activity of ibuprofen gel as reference standard. The present study demonstrates the wound healing and antiinflammatory potential of Madhu ghrita .

  2. Effects of genistein on early-stage cutaneous wound healing.

    Science.gov (United States)

    Park, Eunkyo; Lee, Seung Min; Jung, In-Kyung; Lim, Yunsook; Kim, Jung-Hyun

    2011-07-08

    Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected by antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-κB and TNF-α expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results suggest that genistein supplementation reduces oxidative stress by increasing antioxidant capacity and modulating proinflammatory cytokine expression during the early stage of wound healing.

  3. Evaluation of ghee based formulation for wound healing activity.

    Science.gov (United States)

    Prasad, Vure; Dorle, Avinash Kumar

    2006-08-11

    Formulation containing neomycin and ghee was evaluated for wound-healing potential on different experimental models of wounds in rats. The rats were divided into six groups of group 1 as control, group 2 as treated with neomycin only, group 3 as treated only with ghee, group 4 treated with F-1 formulation containing ghee 40% and neomycin 0.5%, group 5 treated with F-2 formulation containing ghee 50% and neomycin 0.5% and group 6 treated with F-3 formulation containing ghee and ointment base in all two wound models, each group consisting of six rats. Wound contraction ability in excision wound model was measured at different time intervals and study was continued until wound is completely healed. Tensile strength was measured in 10-day-old incision wound and quantitative estimation of hydroxy proline content in the healed tissue was determined in 10-day-old excision wound. Histological studies were done on 10-day-old sections of regenerated tissue of incision wound. F-2 formulation containing ghee 50% and neomycin 0.5% showed statistically significant response, in terms of wound contracting ability, wound closure time, period of epithelization, tensile strength of the wound, regeneration of tissues at wound site when compared with the control group and these results were comparable to those of a reference neomycin ointment.

  4. Cutaneous Wound Healing After Treatment with Plant-Derived Human Recombinant Collagen Flowable Gel

    Science.gov (United States)

    Roth, Sigal; Amzel, Tal; Harel-Adar, Tamar; Tamir, Eran; Grynspan, Frida; Shoseyov, Oded

    2013-01-01

    Chronic wounds, particularly diabetic ulcers, represent a main public health concern with significant costs. Ulcers often harbor an additional obstacle in the form of tunneled or undermined wounds, requiring treatments that can reach the entire wound tunnel, because bioengineered grafts are typically available only in a sheet form. While collagen is considered a suitable biodegradable scaffold material, it is usually extracted from animal and human cadaveric sources, and accompanied by potential allergic and infectious risks. The purpose of this study was to test the performance of a flowable gel made of human recombinant type I collagen (rhCollagen) produced in transgenic tobacco plants, indicated for the treatment of acute, chronic, and tunneled wounds. The performance of the rhCollagen flowable gel was tested in an acute full-thickness cutaneous wound-healing rat model and compared to saline treatment and two commercial flowable gel control products made of bovine collagen and cadaver human skin collagen. When compared to the three control groups, the rhCollagen-based gel accelerated wound closure and triggered a significant jumpstart to the healing process, accompanied by enhanced re-epithelialization. In a cutaneous full-thickness wound pig model, the rhCollagen-based flowable gel induced accelerated wound healing compared to a commercial product made of bovine tendon collagen. By day 21 post-treatment, 95% wound closure was observed with the rhCollagen product compared to 68% closure in wounds treated with the reference product. Moreover, rhCollagen treatment induced an early angiogenic response and induced a significantly lower inflammatory response than in the control group. In summary, rhCollagen flowable gel proved to be efficacious in animal wound models and is expected to be capable of reducing the healing time of human wounds. PMID:23259631

  5. The importance of hydration in wound healing: reinvigorating the clinical perspective.

    Science.gov (United States)

    Ousey, K; Cutting, K F; Rogers, A A; Rippon, M G

    2016-03-01

    Balancing skin hydration levels is important as any disruption in skin integrity will result in disturbance of the dermal water balance. The discovery that a moist environment actively supports the healing response when compared with a dry environment highlights the importance of water and good hydration levels for optimal healing. The benefits of 'wet' or 'hyper-hydrated' wound healing appear similar to those offered by moist over a dry environment. This suggests that the presence of free water may not be detrimental to healing, but any adverse effects of wound fluid on tissues is more likely related to the biological components contained within chronic wound exudate, for example elevated protease levels. Appropriate dressings applied to wounds must not only be able to absorb the exudate, but also retain this excess fluid together with its protease solutes, while concurrently preventing desiccation. This is particularly important in the case of chronic wounds where peri-wound skin barrier properties are compromised and there is increased permeation across the injured skin. This review discusses the importance of appropriate levels of hydration in skin, with a particular focus on the need for optimal hydration levels for effective healing. Declaration of interest: This paper was supported by Paul Hartmann Ltd. The authors have provided consultative services to Paul Hartmann Ltd.

  6. Sirtuin-6 deficiency exacerbates diabetes-induced impairment of wound healing.

    Science.gov (United States)

    Thandavarayan, Rajarajan A; Garikipati, Venkata Naga Srikanth; Joladarashi, Darukeshwara; Suresh Babu, Sahana; Jeyabal, Prince; Verma, Suresh K; Mackie, Alexander R; Khan, Mohsin; Arumugam, Somasundaram; Watanabe, Kenichi; Kishore, Raj; Krishnamurthy, Prasanna

    2015-10-01

    Delayed wound healing is one of the major complications in diabetes and is characterized by chronic proinflammatory response, and abnormalities in angiogenesis and collagen deposition. Sirtuin family proteins regulate numerous pathophysiological processes, including those involved in promotion of longevity, DNA repair, glycolysis and inflammation. However, the role of sirtuin 6 (SIRT6), a NAD+-dependent nuclear deacetylase, in wound healing specifically under diabetic condition remains unclear. To analyse the role of SIRT6 in cutaneous wound healing, paired 6-mm stented wound was created in diabetic db/db mice and injected siRNA against SIRT6 in the wound margins (transfection agent alone and nonsense siRNA served as controls). Wound time to closure was assessed by digital planimetry, and wounds were harvested for histology, immunohistochemistry and Western blotting. SIRT6-siRNA-treated diabetic wound showed impaired healing, which was associated with reduced capillary density (CD31-staining vessels) when compared to control treatment. Interestingly, SIRT6 deficiency decreased vascular endothelial growth factor expression and proliferation markers in the wounds. Furthermore, SIRT6 ablation in diabetic wound promotes nuclear factor-κB (NF-κB) activation resulting in increased expression of proinflammatory markers (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, tumor necrosis factor-α and interleukin-1β) and increased oxidative stress. Collectively, our findings demonstrate that loss of SIRT6 in cutaneous wound aggravates proinflammatory response by increasing NF-κB activation, oxidative stress and decrease in angiogenesis in the diabetic mice. Based on these findings, we speculate that the activation of SIRT6 signalling might be a potential therapeutic approach for promoting wound healing in diabetics.

  7. Blockade of glucocorticoid receptors improves cutaneous wound healing in stressed mice.

    Science.gov (United States)

    de Almeida, Taís Fontoura; de Castro Pires, Taiza; Monte-Alto-Costa, Andréa

    2016-02-01

    Stress is an important condition of modern life. The successful wound healing requires the execution of three major overlapping phases: inflammation, proliferation, and remodeling, and stress can disturb this process. Chronic stress impairs wound healing through the activation of the hypothalamic-pituitary-adrenal axis, and the glucocorticoids (GCs) hormones have been shown to delay wound closure. Therefore, the aim of this study was to investigate the effects of a GC receptor antagonist (RU486) treatment on cutaneous healing in chronically stressed mice. Male mice were submitted to rotational stress, whereas control animals were not subjected to stress. Stressed and control animals were treated with RU486. A full-thickness excisional lesion was generated, and seven days later, lesions were recovered. The RU486 treatment improves wound healing since contraction takes place earlier in RU486-treated in comparison to non-treated mice, and the RU486 treatment also improves the angiogenesis in Stress+RU486 mice when compared to stressed animals. The Stress+RU486 group showed a decrease in inflammatory cell infiltration and in hypoxia-inducible factor-1α and inducible nitric oxide synthase expression; meanwhile, there was an increase in myofibroblasts quantity. In conclusion, blockade of GC receptors with RU486 partially ameliorates stress-impaired wound healing, suggesting that stress inhibits healing through more than one functional pathway.

  8. Local Treatment of Chronic Wounds in Patients With Peripheral Vascular Disease, Chronic Venous Insufficiency, and Diabetes

    NARCIS (Netherlands)

    Ruettermann, Mike; Maier-Hasselmann, Andreas; Nink-Grebe, Brigitte; Burckhardt, Marion

    2013-01-01

    Background: A chronic wound is defined as an area where the skin is not intact that fails to heal within eight weeks. Such wounds usually develop on the lower limbs as a complication of diabetes, venous insufficiency, or inadequate arterial perfusion. Most of the roughly 45 000 limb amputations perf

  9. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  10. EFFECT OF TASPINE ON WOUND HEALING AND FIBROBLAST PROLIFERATION

    Institute of Scientific and Technical Information of China (English)

    Dong Yalin; He Langchong; Chen Fang

    2005-01-01

    Objective To study the effect and mechanism of taspine on wound healing and fibroblast proliferation. Methods The effect of taspine on skin wound was observed in vivo. The different concentration of taspine hydrochloride was added to L929 fibroblast cultivated in vitro, and lactate dehydrogenase was detected and MTT method was applied to observe effect of taspine on fibroblast proliferation. Results The local application of taspine 3 mg/Ml and 1.5 mg/mL accelerated the healing of skin wounded. In vitro, 0.01~0.5 μg/mL of taspine hydrochloride showed no effect on the change of lactate dehydrogenase activity and fibroblast proliferation. Conclusion Taspine is a kind of active alkaloid from leontice robustum which can enhance wound healing, its mechanism on wound healing is not by means of accelerating the proliferation of fibroblast, other mechanisms are necessary for being further studied.

  11. A potential wound healing-promoting peptide from frog skin.

    Science.gov (United States)

    Liu, Han; Mu, Lixian; Tang, Jing; Shen, Chuanbin; Gao, Chen; Rong, Mingqiang; Zhang, Zhiye; Liu, Jie; Wu, Xiaoyang; Yu, Haining; Lai, Ren

    2014-04-01

    Cutaneous wound healing is a dynamic, complex, and well-organized process that requires the orchestration of many different cell types and cellular processes. Transforming growth factor β1 is an important factor that plays a key role during wound healing. Amphibian skin has been proven to possess excellent wound healing ability, whilst no bioactive substrate related to it has ever been identified. Here, a potential wound healing-promoting peptide (AH90, ATAWDFGPHGLLPIRPIRIRPLCG) was identified from the frog skin of Odorrana grahami. It showed potential wound healing-promoting activity in a murine model with full thickness dermal wound. AH90 promoted release of transforming growth factor β1 through activation of nuclear factor-κB and c-Jun NH2-terminal kinase mitogen-activated protein kinases signaling pathways, while inhibitors of nuclear factor-κB and c-Jun NH2-terminal kinase inhibited the process. In addition, the effects of AH90 on Smads family proteins, key regulators in transforming growth factor β1 signaling pathways, could also be inhibited by transforming growth factor β1 antibody. Altogether, this indicated that AH90 promoted wound healing by inducing the release of transforming growth factor β1. This current study may facilitate the understanding of effective factors involved in the wound repair of amphibians and the underlying mechanisms as well. Considering its favorable traits as a small peptide that greatly promoting generation of endogenous wound healing agents (transforming growth factor β1) without mitogenic effects, AH90 might be an excellent template for the future development of novel wound-healing agents.

  12. WOUND HEALING ACTIVITY OF ETHANOL EXTRACT OF PSEUDARTHRIA VISCIDA LINN

    Directory of Open Access Journals (Sweden)

    M. Vijayabaskaran

    2011-04-01

    Full Text Available The wound healing activity of topically applied ethanol extract of Pseudarthria viscida was evaluated in wistar rat by excision wound model for a period of 12 days. The extract was prepared as ointment form (5 and 10% w/w and applied on Wistar rats. Neomycin ointment 0.5%w/w was used as standard drug. The healing of the wound was assessed by the rate of wound contraction, period of epithelialisation, skin breaking strength. Both the ointments (5% and 10% w/w of Pseudarthria viscida extract promoted the wound-healing activity significantly when compared to the standard drug. High rate of wound contraction, decrease the period for epithelialisation, high skin breaking strength were observed in animals treated with 10% w/w extract ointment when compared to the control group of animals. So ethanol extract of Pseudarthria viscida in the form of 10% ointment promote wound-healing activity better than the former concentration, 5%. The result obtained from this study indicates that ethanol extract of Pseudarthria viscida accelerates the wound healing process by decreasing the surface area of the wound.

  13. Effects of Rat's Licking Behavior on Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Abolghasem Esmaeili

    2010-01-01

    Full Text Available Objective(sWound licking has been shown to advance wound healing among humans and many other animals. The present study evaluates the licking effects on healing of skin wound in rats. Materials and MethodsTwenty four rats were assigned to 4 different groups randomly and two 3 cm longitudinal full thickness incisions were made on each dorsal and ventral side of rats. The ventral incisions were considered as treated wounds because of contact to saliva as rats lick them easily and dorsal incisions as control wounds. Clinical changes and histopathological effects of rat saliva on wound healing were evaluated every day and on 3, 7, 14 and 21 days post-operation respectively. ResultsHistologic and clinical evaluation of treated wounds showed better healing than control wounds. ConclusionThis study showed that licking behavior can promote wound healing. Thus salivary compounds could be isolated, be mass produced and may have potential to become as common as antibiotic cream.

  14. A Systematic Review of the Wound-Healing Effects of Monoterpenes and Iridoid Derivatives

    Directory of Open Access Journals (Sweden)

    Rosana S.S. Barreto

    2014-01-01

    Full Text Available The search for more effective and lower cost therapeutic approaches for wound healing remains a challenge for modern medicine. In the search for new therapeutic options, plants and their metabolites are a great source of novel biomolecules. Among their constituents, the monoterpenes represent 90% of essential oils, and have a variety of structures with several activities such as antimicrobial, anti-inflammatory, antioxidant and wound healing. Based on that, and also due to the lack of reviews concerning the wound-healing activity of monoterpenes, we performed this systematic review—which provides an overview of their characteristics and mechanisms of action. In this search, the terms “terpenes”, “monoterpenes”, “wound healing” and “wound closure techniques” were used to retrieve articles published in LILACS, PUBMED and EMBASE until May 2013. Seven papers were found concerning the potential wound healing effect of five compouds (three monoterpenes and two iridoid derivatives in preclinical studies. Among the products used for wound care, the films were the most studied pharmaceutical form. Monoterpenes are a class of compounds of great diversity of biological activities and therapeutic potential. The data reviewed here suggest that monoterpenes, although poorly studied in this context, are promising compounds for the treatment of chronic wound conditions.

  15. Adult stem cells in small animal wound healing models.

    Science.gov (United States)

    Nauta, Allison C; Gurtner, Geoffrey C; Longaker, Michael T

    2013-01-01

    This chapter broadly reviews the use of stem cells as a means to accelerate wound healing, focusing first on the properties of stem cells that make them attractive agents to influence repair, both alone and as vehicles for growth factor delivery. Major stem cell reservoirs are described, including adult, embryonic, and induced pluripotent cell sources, outlining the advantages and limitations of each source as wound healing agents, as well as the possible mechanisms responsible for wound healing acceleration. Finally, the chapter includes a materials and methods section that provides an in-depth description of adult tissue harvest techniques.

  16. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  17. Therapeutic effects of Jingwanhong ointment (京万红软膏)on healing of chronic diabetic wound in mice%京万红软膏治疗糖尿病慢性创面的实验研究

    Institute of Scientific and Technical Information of China (English)

    姜玉峰; 黄沙; 邹吉平; 许樟荣; 高虹; 付小兵

    2013-01-01

    Objective: To explore the promoting effect of Jingwanhong ointment ( 京万红软膏 ) in healing of chronic open wound and its mechanism in diabetic mice. Methods: Fifty-four clean-grade male C57 mice were randomly divided into Jingwanhong ointment group, compound sulfadiazine zinc gel group (medicine control group) and blank control group (n = 18). The model of diabetes was replicated by consecutive administration of 1 % strep-tozotocin intraperitoneally 60 mg/kg for 3 days. Then, on the back of mice, round full-thickness skin wounds with diameter of 1 cm were produced. Jingwanhong ointment or compound sulfadiazine zinc gel was applied on the wounds of the two medicine treatment groups after the second day of wound formation, and vaseline gauze was applied on all the wounds of the three groups. Dressing-change was done daily. On the 3rd, 7th, 10th, 17th, 21st days after treatment, the circumference of the wounds was drawn on transparent plastic films for the estimation of the rate of wound healing. On 7th and 17th day after treatment, 3 mice of every group were sacrificed respectively, and gross morphological changes,histopathological changes in skin and granulation tissue within 2 mm of edge of the wounds were examined. Results:The wound healing rate of the two treatment groups increased on the 7th day after treatment, but the difference was not significant among the three groups (P>0. 05). On the 10th, 17th, 21st day after treatment, the wound healing rate in medicine control group [(81. 00 ± 0. 85) % , (95. 00 ± 0. 29) % , (97.00 ± 0.37)% ] was significantly higher than those of the blank control group [(77. 00 ±1. 35) % ,(87. 00 ± 1. 17)% , (90. 00 ± 0. 96)%,P0.05).给药后10、17和21 d,对照药物组创面愈合率[(81.00±0.85)%,(95.00±0.29)%,(97.00±0.37)% ]明显高于空白对照组[(77.00±1.35)%,(87.00±1.17)%,(90.00±0.96)%,P<0.05],而京万红软膏组愈合率[(85.00±1.93)%,(100.00±0)%,(100.00±0)% ]明显高于对照药物组(P<0.05).

  18. Fibroblast-specific upregulation of Flightless I impairs wound healing.

    Science.gov (United States)

    Turner, Christopher T; Waters, James M; Jackson, Jessica E; Arkell, Ruth M; Cowin, Allison J

    2015-09-01

    The cytoskeletal protein Flightless (Flii) is a negative regulator of wound healing. Upregulation of Flii is associated with impaired migration, proliferation and adhesion of both fibroblasts and keratinocytes. Importantly, Flii translocates from the cytoplasm to the nucleus in response to wounding in fibroblasts but not keratinocytes. This cell-specific nuclear translocation of Flii suggests that Flii may directly regulate gene expression in fibroblasts, providing one potential mechanism of action for Flii in the wound healing response. To determine whether the tissue-specific upregulation of Flii in fibroblasts was important for the observed inhibitory effects of Flii on wound healing, an inducible fibroblast-specific Flii overexpressing mouse model was generated. The inducible ROSA26 system allowed the overexpression of Flii in a temporal and tissue-specific manner in response to tamoxifen treatment. Wound healing in the inducible mice was impaired, with wounds at day 7 postwounding significantly larger than those from non-inducible controls. There was also reduced collagen maturation, increased myofibroblast infiltration and elevated inflammation. The impaired healing response was similar in magnitude to that observed in mice with non-tissue-specific upregulation of Flii suggesting that fibroblast-derived Flii may have an important role in the wound healing response.

  19. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  20. Coacervate delivery of HB-EGF accelerates healing of type 2 diabetic wounds.

    Science.gov (United States)

    Johnson, Noah R; Wang, Yadong

    2015-01-01

    Chronic wounds such as diabetic ulcers pose a significant challenge as a number of underlying deficiencies prevent natural healing. In pursuit of a regenerative wound therapy, we developed a heparin-based coacervate delivery system that provides controlled release of heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) within the wound bed. In this study, we used a polygenic type 2 diabetic mouse model to evaluate the capacity of HB-EGF coacervate to overcome the deficiencies of diabetic wound healing. In full-thickness excisional wounds on NONcNZO10 diabetic mice, HB-EGF coacervate enhanced the proliferation and migration of epidermal keratinocytes, leading to accelerated epithelialization. Furthermore, increased collagen deposition within the wound bed led to faster wound contraction and greater wound vascularization. Additionally, in vitro assays demonstrated that HB-EGF released from the coacervate successfully increased migration of diabetic human keratinocytes. The multifunctional role of HB-EGF in the healing process and its enhanced efficacy when delivered by the coacervate make it a promising therapy for diabetic wounds.

  1. Reduced Il17a expression distinguishes a Ly6c(lo)MHCII(hi) macrophage population promoting wound healing.

    Science.gov (United States)

    Rodero, Mathieu P; Hodgson, Samantha S; Hollier, Brett; Combadiere, Christophe; Khosrotehrani, Kiarash

    2013-03-01

    Macrophages are the main components of inflammation during skin wound healing. They are critical in wound closure and in excessive inflammation, resulting in defective healing observed in chronic wounds. Given the heterogeneity of macrophage phenotypes and functions, we here hypothesized that different subpopulations of macrophages would have different and sometimes opposing effects on wound healing. Using multimarker flow cytometry and RNA expression array analyses on macrophage subpopulations from wound granulation tissue, we identified a Ly6c(lo)MHCII(hi) "noninflammatory" subset that increased both in absolute number and proportion during normal wound healing and was missing in Ob/Ob and MYD88-/- models of delayed healing. We also identified IL17 as the main cytokine distinguishing this population from proinflammatory macrophages and demonstrated that inhibition of IL17 by blocking Ab or in IL17A-/- mice accelerated normal and delayed healing. These findings dissect the complexity of the role and activity of the macrophages during wound inflammation and may contribute to the development of therapeutic approaches to restore healing in chronic wounds.

  2. Muscle wound healing in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Schmidt, J G; Andersen, E W; Ersbøll, B K; Nielsen, M E

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least partially due to the low temperature of about 8.5 °C during the first 100 days. The inflammation phase lasted more than 14 days, and the genes relating to production and remodeling of new extracellular matrix (ECM) exhibited a delayed but prolonged upregulation starting 1-2 weeks post-wounding and lasting until at least 100 days post-wounding. The gene expression patterns and histology reveal limited capacity for muscle regeneration in rainbow trout, and muscle texture analyses one year after wound infliction confirm that wounds heal with fibrosis. At 100 dpw epidermis had fully regenerated, and dermis partially regenerated. Scales had not regenerated even after one year. CD163 is a marker of "wound healing"-type M2c macrophages in mammals. M2 macrophage markers are as yet poorly described in fish. The pattern of CD163 expression in the present study is consistent with the expected timing of presence of M2c macrophages in the wound. CD163 may thus potentially prove a valuable marker of M2 macrophages - or a subset hereof - in fish. We subjected a group of fish to

  3. An audit to assess the perspectives of U.S. wound care specialists regarding the importance of proteases in wound healing and wound assessment.

    Science.gov (United States)

    Snyder, Robert J; Cullen, Breda; Nisbet, Lorraine T

    2013-12-01

    Chronic wounds represent an aberrant biochemistry that creates a toxic proteolytic milieu which can be detrimental to the healing process. Rebalancing the wound microenvironment and addressing elevated protease activity (EPA) could therefore help facilitate healing. To understand how clinicians currently diagnose and manage excessive proteolytic activity, 183 survey responses from US wound specialists were collated and analysed to find out their perceptions on the role of proteases. The majority of respondents (>98%) believed proteases were important in wound healing and that a point-of-care (POC) protease test could be useful. This study yielded a low response rate (7.1%, n = 183); however, there were adequate data to draw significant conclusions. Specialists perceived that fibrin, slough, granulation tissue and rolled wound edges could indicate EPA. About 43% of respondents, however, failed to give a correct response when asked to review photographs to determine if excessive protease activity was present, and the perceived visual signs for EPA did not correlate with the wounds that had EPA; no statistical differences between professions were observed. Respondents chose debridement, wound cleansing and advanced therapies as important in reducing excessive protease activity. It was concluded that specialists have a need for POC diagnostic tests. On the basis of the responses to wound photos, it was determined that there were no visual cues clinicians could use in determining excessive protease activity. Additional research is recommended to evaluate the efficacy of a POC diagnostic test for protease activity and the treatments and therapies applied when EPA is found.

  4. Wound healing activity of Abroma augusta in Wistar rats

    Institute of Scientific and Technical Information of China (English)

    Shanbhag T; Dattachaudhuri A; Shenoy S; Bairy KL

    2009-01-01

    Objective:The study was undertaken to evaluate the wound healing profile of alcoholic extract of Abroma au-gusta and its effect on dexamethasone suppressed wound healing in Wistar rats.Methods:An alcoholic extract of Abroma augusta was prepared.Three models were used -incision,excision and dead space wound models. Four groups of animals were used for each model.They were administered 2% gum acacia (orally),alcoholic extract of Abroma augusta (orally),dexamethasone (intramuscularly)and combination of Abroma augusta (o-rally)with dexamethasone (intramuscularly)respectively.The parameters studied included breaking strength of incision wound,period of epithelization and wound contraction rate in the excision wound,breaking strength,dry weight and hydroxyproline content of granulation tissue in dead space wound.Results:The breaking strength of incision wound of Abroma augusta treated group was significantly increased (P <0.001) while that of dexamethasone treated animals was significantly decreased (P <0.001)as compared to control. Coadministration of dexamethasone and Abroma augusta significantly reversed the dexamethasone suppressed wound healing in incision wound model (P <0.001).Animals treated with both dexamethasone and Abroma augusta also showed significant (P <0.004)increase in the breaking strength of granulation tissue in the dead space wound and a significant (P <0.011)reduction in the period of epithelization in the excision wound as compared to rats treated with dexamethasone alone.The rate of wound contraction was not significantly altered in any of the groups.Conclusion:The alcoholic extract of Abroma augusta was found to reverse dexametha-sone suppressed wound healing.

  5. The influence of polymorbidity, revascularization, and wound therapy on the healing of arterial ulceration

    Directory of Open Access Journals (Sweden)

    Joerg Tautenhahn

    2008-06-01

    Full Text Available Joerg Tautenhahn1, Ralf Lobmann2, Brigitte Koenig3, Zuhir Halloul1, Hans Lippert1, Thomas Buerger11Department of General, Visceral and Vascular Surgery; 2Department of Endocrinology and Metabolism; 3Institute for Medical Microbiology, Medical School, Otto-von-Guericke University, Magdeburg, GermanyObjective: An ulcer categorized as Fontaine’s stage IV represents a chronic wound, risk factor of arteriosclerosis, and co-morbidities which disturb wound healing. Our objective was to analyze wound healing and to assess potential factors affecting the healing process.Methods: 199 patients were included in this 5-year study. The significance levels were determined by chi-squared and log-rank tests. The calculation of patency rate followed the Kaplan-Meier method.Results: Mean age and co-morbidities did not differ from those in current epidemiological studies. Of the patients with ulcer latency of more than 13 weeks (up to one year, 40% required vascular surgery. Vascular surgery was not possible for 53 patients and they were treated conservatively. The amputation rate in the conservatively treated group was 37%, whereas in the revascularizated group it was only 16%. Ulcers in patients with revascularization healed in 92% of cases after 24 weeks. In contrast, we found a healing rate of only 40% in the conservatively treated group (p < 0.001. Revascularization appeared more often in diabetic patients (n = 110; p < 0.01 and the wound size and number of infections were elevated (p = 0.03. Among those treated conservatively, wound healing was decelerated (p = 0.01/0.02; χ² test.Conclusions: The success of revascularization, presence of diabetes mellitus, and wound treatment proved to be prognostic factors for wound healing in arterial ulcers.Keywords: arterial leg ulcer, wound management, risk factors, revascularization

  6. Polysaccharides and Cellulose in the Design of Wound Healing Materials

    Science.gov (United States)

    Chronic Wound Dressings that Sequester Harmful Proteases: Traditionally the use of carbohydrate-based wound dressings including cotton, xerogels, charcoal cloth, alginates, chitosan and hydrogels, have afforded properties such as absorbency, ease of application and removal, bacterial protection, flu...

  7. Chronic Wounds, Biofilms and Use of Medicinal Larvae

    Directory of Open Access Journals (Sweden)

    Linda J. Cowan

    2013-01-01

    Full Text Available Chronic wounds are a significant health problem in the United States, with annual associated costs exceeding $20 billion annually. Traditional wound care consists of surgical debridement, manual irrigation, moisture retentive dressings, and topical and/or systemic antimicrobial therapy. However, despite progress in the science of wound healing, the prevalence and incidence of chronic wounds and their complications are escalating. The presence & complexity of bacterial biofilms in chronic wounds has recently been recognized as a key aspect of non-healing wounds. Bacterial biofilms are sessile colonies of polymicrobial organisms (bacteria, fungus, etc. enclosed within a self-produced exopolymeric matrix that provides high levels of tolerance to host defenses, antibiotics and antiseptics. Thus, there is a need for alternative therapies to reduce biofilms in chronic wounds. In this report, we present initial findings from in vitro experiments which show that larval debridement therapy with disinfected blow fly larvae (Phaenicia sericata reduced total CFUs (6-logs of planktonic and mature biofilms of Pseudomonas aeruginosa or Staphylococcus aureus grown on dermal pig skin explants by 5-logs after 24 hours of exposure, and eliminated biofilms (no measurable CFUs after 48 hours of exposure.

  8. Graphene-based composite materials beneficial to wound healing

    Science.gov (United States)

    Lu, Bingan; Li, Ting; Zhao, Haitao; Li, Xiaodong; Gao, Caitian; Zhang, Shengxiang; Xie, Erqing

    2012-04-01

    We use electrospinning to prepare chitosan-PVA nanofibers containing graphene. The nanofibers can be directly used in wound healing: graphene, as an antibacterial material, can be beneficial for this. A possible antibacterial mechanism for graphene is presented.

  9. Enhancement of wound healing by shikonin analogue 93/637 in normal and impaired healing.

    Science.gov (United States)

    Mani, H; Sidhu, G S; Singh, A K; Gaddipati, J; Banaudha, K K; Raj, K; Maheshwari, R K

    2004-01-01

    Wound healing is a complicated biological process, which involves interactions of multiple cell types, various growth factors, their mediators and the extracellular matrix proteins. In this study, we evaluated the effects of shikonin analogue 93/637 (SA), derived from the plant Arnebia nobilis, on normal and hydrocortisone-induced impaired healing in full thickness cutaneous punch wounds in rats. SA (0.1%) was applied topically daily as an ointment in polyethylene glycol base on wounds. SA treatment significantly accelerated healing of wounds, as measured by wound contraction compared to controls in hydrocortisone-impaired animals. SA treatment promoted formation of granulation tissue including cell migration and neovascularization, collagenization and reepithelialization. The expression of basic fibroblast growth factor (bFGF) was higher as revealed by immunohistochemistry in treated wounds compared to controls. However, the expression of transforming growth factor-beta(1) was not affected by SA treatment. Since bFGF is known to accelerate wound healing, the increased expression of bFGF by SA may be partly responsible for the enhancement of wound healing. These studies suggest that SA could be further studied for clinical use to enhance wound healing.

  10. Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia.

    Directory of Open Access Journals (Sweden)

    Michael J Smout

    2015-10-01

    Full Text Available Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA. Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world.

  11. The Effect of Nitric Oxide Donor in Diabetic Wound Healing

    Directory of Open Access Journals (Sweden)

    N Dashti

    2003-10-01

    Full Text Available Diabetes is characterized by a nitric oxide deficiency at the wound site. Diabetes is a factor that influences all stages of wound healing. In animals with acute experimental diabetes induced by streptozotocin (STZ, the early inflammatory responses after wounding is impaired, fibroblast and endothelial cell proliferation is reduced as well as accumulation of reparative collagen and gain in wound breaking strenght. This study investigated whether exogenous nitric oxide supplimentation with nitric oxide donor DETA NONOate could reverse impaired healing in diabetes. The results suggest nitric oxide donor DETA NONOate can reverse impaired healing associated with diabetes (P<0.001 and urinary nitrate (NO-3 output may reflect the extent of repair in this wound model (P<0.001.

  12. MicroRNAs as regulators of cutaneous wound healing

    Indian Academy of Sciences (India)

    Wing-Fu Lai; Parco M Siu

    2014-06-01

    MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of gene expression, and have displayed important roles in areas spanning from embryonic development to skin physiology. Despite this, till now little is known about the significance of miRNAs in cutaneous wound healing. In this mini-review, we discuss the existing evidence on the roles of miRNAs in physiological processes relevant to cutaneous wound healing, followed by a highlight of the prospects and challenges of future development of miRNA-based wound therapies. With existing technologies of nucleic acid transfer and miRNA modulation, it is anticipated that once the roles of miRNAs in wound healing have been clarified, there will be a vast new vista of opportunities brought up for development of miRNA-targeted therapies for wound care.

  13. Chitosan as a starting material for wound healing applications

    OpenAIRE

    Patrulea,Viorica; Ostafe, V.; Borchard, Gerrit; Jordan, Olivier

    2015-01-01

    Chitosan and its derivatives have attracted great attention due to their properties beneficial for application to wound healing. The main focus of the present review is to summarize studies involving chitosan and its derivatives, especially N,N,N-trimethyl-chitosan (TMC), N,O-carboxymethyl-chitosan (CMC) and O-carboxymethyl-N,N,N-trimethyl-chitosan (CMTMC), used to accelerate wound healing. Moreover, formulation strategies for chitosan and its derivatives, as well as their in vitro, in vivo a...

  14. Novel nitric oxide producing probiotic wound healing patch: preparation and in vivo analysis in a New Zealand white rabbit model of ischaemic and infected wounds.

    Science.gov (United States)

    Jones, Mitchell; Ganopolsky, Jorge G; Labbé, Alain; Gilardino, Mirko; Wahl, Christopher; Martoni, Christopher; Prakash, Satya

    2012-06-01

    The treatment of chronic wounds poses a significant challenge for clinicians and patients alike. Here we report design and preclinical efficacy of a novel nitric oxide gas (gNO)-producing probiotic patch for wound healing. Specifically, a wound healing patch using lactic acid bacteria in an adhesive gas permeable membrane has been designed and investigated for treating ischaemic and infected full-thickness dermal wounds in a New Zealand white rabbit model for ischaemic wound healing. Kaplan-Meier survival curves showed increased wound closure with gNO-producing patch-treated wounds over 21 days of therapy (log-rank P = 0·0225 and Wilcoxon P = 0·0113). Cox proportional hazard regression showed that gNO-producing patch-treated wounds were 2·52 times more likely to close compared with control patches (hazard P = 0·0375, score P = 0·032 and likelihood ratio P = 0·0355), and histological analysis showed improved wound healing in gNO-producing patch-treated animals. This study may provide an effective, safe and less costly alternative for treating chronic wounds.

  15. Extremely low frequency electromagnetic field and wound healing: implication of cytokines as biological mediators.

    Science.gov (United States)

    Pesce, Mirko; Patruno, Antonia; Speranza, Lorenza; Reale, Marcella

    2013-03-01

    Wound healing is a highly coordinated and complex process involving various cell types, chemical mediators and the surrounding extracellular matrix, resulting in a tightly orchestrated re-establishment of tissue integrity by specific cytokines. It consists of various dynamic processes including a series of overlapping phases: inflammation, proliferation, re-epithelialization and remodeling. One of the underlying mechanisms responsible for the disturbances in wound healing is an out-of-control inflammatory response that can cause pathological consequences, such as hypertrophic scars, keloids or chronic wounds and ulcers. Recently, several reports have evaluated the effects of extremely low frequency electromagnetic fields (EMFs) on tissue repair. In particular, the data analysis supports an anti-inflammatory effect of EMFs by the modulation of cytokine profiles that drive the transition from a chronic pro-inflammatory state to an anti-inflammatory state of the healing process. In this review, we focus on the effect of EMFs on skin wound healing showing emerging details of the anti-inflammatory effects of EMFs, with a view to cytokines as candidate biomarkers. Molecular clarification of the mechanisms involved in the modulation of inflammatory factors following exposure to EMFs will provide a better understanding of the cellular responses induced by EMFs and a potential, additional treatment in non-responding, chronic wounds.

  16. The effects of pH on wound healing, biofilms, and antimicrobial efficacy.

    Science.gov (United States)

    Percival, Steven L; McCarty, Sara; Hunt, John A; Woods, Emma J

    2014-01-01

    It is known that pH has a role to play in wound healing. In particular, pH has been shown to affect matrix metalloproteinase activity, tissue inhibitors of matrix metalloproteinases activity, fibroblast activity, keratinocyte proliferation, microbial proliferation, and also immunological responses in a wound; the patient's defense mechanisms change the local pH of a wound to effect microorganism invasion and proliferation; this pH change has been found to affect the performance of antimicrobials, and therefore the efficacy in biological environments directly relevant to wound healing. Based on the available body of scientific evidence to date, it is clear that pH has a role to play in both the healing of and treatment of chronic and acute wounds. It is the purpose of this review to evaluate the published knowledge base that concerns the effect of pH changes, the role it plays in wound healing and biofilm formation, and how it can affect treatment efficacy and wound management strategies.

  17. Aloe vera and Vitis vinifera improve wound healing in an in vivo rat burn wound model.

    Science.gov (United States)

    Lin, Li-Xin; Wang, Peng; Wang, Yu-Ting; Huang, Yong; Jiang, Lei; Wang, Xue-Ming

    2016-02-01

    Aloe vera and Vitis vinifera have been traditionally used as wound healing agents. The present study aimed to investigate the effects of aloe emodin and resveratrol in the burn wound healing procedure. Burn wounds are common in developed and developing countries, however, in developing countries, the incidence of severe complications is higher and financial resources are limited. The results of the present study demonstrated that neither aloe emodin or resveratrol were cytotoxic to THP-1 macrophages at concentrations of 1, 100 and 500 ng/ml. A significant increase in wound-healing activity was observed in mice treated with the aloe emodin and resveratrol, compared with those which received control treatments. The levels of IL-1β in the exudates of the burn wound area of the treated mice increased in a time-dependent manner over 7 days following burn wound injury. At 10 days post-injury, steady and progressive wound healing was observed in the control animals. The present study confirmed that increased wound healing occurs following treatment with aloe emodin,, compared with resveratrol, providing support for the use of Aloe vera plants to improve burn wound healing.

  18. Distribution, organization and ecology of bacteria in chronic wounds

    DEFF Research Database (Denmark)

    Kirketerp-Møller, Klaus; Jensen, Peter Ø.; Fazli, Mustafa;

    2008-01-01

    Between 1 and 2% of the population in the developed world experiences a nonhealing or chronic wound characterized by an apparent arrest in a stage dominated by inflammatory processes. Lately, research groups have proposed that bacteria might be involved in and contribute to the lack of healing...

  19. Genomics of corneal wound healing: a review of the literature.

    Science.gov (United States)

    Maycock, Nick J R; Marshall, John

    2014-05-01

    Corneal wound healing is a complex process: its mechanisms and the underlying genetic control are not fully understood. It involves the integrated actions of multiple growth factors, cytokines and proteases produced by epithelial cells, stromal keratocytes, inflammatory cells and lacrimal gland cells. Following an epithelial insult, multiple cytokines are released triggering a cascade of events that leads to repair the epithelial defect and remodelling of the stroma to minimize the loss of transparency and function. In this review, we examine the literature surrounding the genomics of corneal wound healing with respect to the following topics: epithelial and stromal wound healing (including inhibition); corneal neovascularisation; the role of corneal nerves in wound healing; the endothelium; the role of aquaporins and aptamers. We also examine the effect of ectasia on corneal wound healing with regard to keratoconus and following corneal surgery. A better understanding of the cellular and molecular changes that occur during repair of corneal wounds will provide the opportunity to design treatments that selectively modulate key phases of the healing process resulting in scars that more closely resemble normal corneal architecture.

  20. Factor VII deficiency impairs cutaneous wound healing in mice.

    Science.gov (United States)

    Xu, Zhi; Xu, Haifeng; Ploplis, Victoria A; Castellino, Francis J

    2010-01-01

    Skin keratinocytes express tissue factor (TF) and are highly associated with skin wound healing. Although it has been demonstrated that perivascular TF expression in granulation tissue formed after dermal injury is downregulated during healing, studies of the mechanism of factor (F) VII, a TF ligand, in skin wound healing are lacking. We reported the use of a dermal punch model to demonstrate that low-expressing FVII mice (approximately 1% of wild type [WT]) exhibited impaired skin wound healing compared with WT controls. These low-FVII mice showed defective reepithelialization and reduced inflammatory cell infiltration at wound sites. This attenuated reepithelialization was associated with diminished expression of the transcription factor early growth response 1 (Egr-1). In vitro, Egr-1 was shown to be essential for the FVIIa-induced regulation of keratinocyte migration and inflammation. Both Egr-1 upregulation and downstream inflammatory cytokine appearance in keratinocytes depended on FVIIa/TF/protease-activated receptor 2 (PAR-2)-induced signaling and did not require subsequent generation of FXa and thrombin. The participation of Egr-1 in FVIIa-mediated regulation of keratinocyte function was confirmed by use of Egr-1-deficient mice, wherein a significant delay in skin wound healing after injury was observed, relative to WT mice. The results from these studies demonstrate an in vivo mechanistic relationship between FVIIa, Egr-1 and the inflammatory response in keratinocyte function during the wound healing process.

  1. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin.

    Directory of Open Access Journals (Sweden)

    Theofilos Poutahidis

    Full Text Available Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobacillus reuteri enhances wound-healing properties through up-regulation of the neuropeptide hormone oxytocin, a factor integral in social bonding and reproduction, by a vagus nerve-mediated pathway. Bacteria-triggered oxytocin serves to activate host CD4+Foxp3+CD25+ immune T regulatory cells conveying transplantable wound healing capacity to naive Rag2-deficient animals. This study determined oxytocin to be a novel component of a multi-directional gut microbe-brain-immune axis, with wound-healing capability as a previously unrecognized output of this axis. We also provide experimental evidence to support long-standing medical traditions associating diet, social practices, and the immune system with efficient recovery after injury, sustained good health, and longevity.

  2. Wound healing and hyper-hydration: a counterintuitive model.

    Science.gov (United States)

    Rippon, M G; Ousey, K; Cutting, K F

    2016-02-01

    Winter's seminal work in the 1960s relating to providing an optimal level of moisture to aid wound healing (granulation and re-epithelialisation) has been the single most effective advance in wound care over many decades. As such the development of advanced wound dressings that manage the fluidic wound environment have provided significant benefits in terms of healing to both patient and clinician. Although moist wound healing provides the guiding management principle, confusion may arise between what is deemed to be an adequate level of tissue hydration and the risk of developing maceration. In addition, the counter-intuitive model 'hyper-hydration' of tissue appears to frustrate the moist wound healing approach and advocate a course of intervention whereby tissue is hydrated beyond what is a normally acceptable therapeutic level. This paper discusses tissue hydration, the cause and effect of maceration and distinguishes these from hyper-hydration of tissue. The rationale is to provide the clinician with a knowledge base that allows optimisation of treatment and outcomes and explains the reasoning behind wound healing using hyper-hydration. Declaration of interest: K. Cutting is a Clinical Research Consultant to the medical device and biotechnology industry. M. Rippon is Visiting Clinical Research Fellow, University of Huddersfield and K. Ousey provides consultancy for a range of companies through the University of Huddersfield including consultancy services for Paul Hartmann Ltd on HydroTherapy products.

  3. Effect of 15-hydroxyprostaglandin dehydrogenase inhibitor on wound healing.

    Science.gov (United States)

    Seo, Seung Yong; Han, Song-Iy; Bae, Chun Sik; Cho, Hoon; Lim, Sung Chul

    2015-06-01

    PGE2 is an important mediator of wound healing. It is degraded and inactivated by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Various growth factors, type IV collagen, TIMP-2 and PGE2 are important mediators of inflammation involving wound healing. Overproduction of TGF-β and suppression of PGE2 are found in excessive wound scarring. If we make the condition downregulating growth factors and upregulating PGE2, the wound will have a positive effect which results in little scar formation after healing. TD88 is a 15-PGDH inhibitor based on thiazolinedione structure. We evaluated the effect of TD88 on wound healing. In 10 guinea pigs (4 control and 6 experimental groups), we made four 1cm diameter-sized circular skin defects on each back. TD88 and vehicle were applicated on the wound twice a day for 4 days in the experimental and control groups, respectively. Tissue samples were harvested for qPCR and histomorphometric analyses on the 2nd and 4th day after treatment. Histomorphometric analysis showed significant reepithelization in the experimental group. qPCR analysis showed significant decrease of PDGF, CTGF and TIMP-2, but significant increase of type IV collagen in the experimental group. Taken together TD88 could be a good effector on wound healing, especially in the aspects of prevention of scarring.

  4. Mathematical models of wound healing and closure: a comprehensive review.

    Science.gov (United States)

    Jorgensen, Stephanie N; Sanders, Jonathan R

    2016-09-01

    Wound healing is a complex process comprised of overlapping phases and events that work to construct a new, functioning tissue. Mathematical models describe these events and yield understanding about the overall process of wound healing. Generally, these models are focused on only one phase (or a few phases) to explain healing for a specific system. A review of the literature reveals insights as reported on herein regarding the variety of overlapping inputs and outputs for any given type of model. Specifically, these models have been characterized with respect to the phases of healing and their mathematical/physical basis in an effort to shed light on new opportunities for model development. Though all phases of wound healing have been modeled, previous work has focused mostly on the proliferation and related contraction phases of healing with fewer results presented regarding other phases. As an example, a gap in the literature has been identified regarding models to describe facilitated wound closure techniques (e.g., suturing and its effect on resultant scarring). Thus, an opportunity exists to create models that tie the transient processes of wound healing, such as cell migration, to resultant scarring when considering tension applied to skin with given suturing techniques.

  5. Nitric oxide: a newly discovered function on wound healing

    Institute of Scientific and Technical Information of China (English)

    Jian-dong LUO; Alex F CHEN

    2005-01-01

    Wound healing impairment represents a particularly challenging clinical problem to which no efficacious treatment regimens currently exist. The factors ensuring appropriate intercellular communication during wound repair are not completely understood. Although protein-type mediators are well-established players in this process, emerging evidence from both animal and human studies indicates that nitric oxide (NO) plays a key role in wound repair. The beneficial effects of NO on wound repair may be attributed to its functional influences on angiogenesis,inflammation, cell proliferation, matrix deposition, and remodeling. Recent findings from in vitro and in vivo studies of NO on wound repair are summarized in this review. The unveiled novel mechanisms support the use of NO-containing agents and/or NO synthase gene therapy as new therapeutic regimens for impaired wound healing.

  6. Wound healing potential of Tephrosia purpurea (Linn.) Pers. in rats.

    Science.gov (United States)

    Lodhi, Santram; Pawar, Rajesh Singh; Jain, Alok Pal; Singhai, A K

    2006-11-24

    Tephrosia purpurea is a well-known herb for its hepatoprotective, anticancer, antiulcer, antibacterial and in healing bleeding piles, etc. The present study was aimed for wound healing potential of ethanolic extract of Tephrosia purpurea (aerial part) in the form of simple ointment using three types of wound models in rats as incision wound, excision wound and dead space wound. The results were comparable to standard drug Fluticasone propionate ointment, in terms of wound contraction, tensile strength, histopathological and biochemical parameters such as hydroxyproline content, protein level, etc. Histopathological study showed significant (P<0.05) increase in fibroblast cells, collagen fibres and blood vessels formation. All parameters were observed significant (P<0.05) in comparison to control group.

  7. Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing

    Science.gov (United States)

    Lange-Asschenfeldt, Susanne; Bob, Adrienne; Terhorst, Dorothea; Ulrich, Martina; Fluhr, Joachim; Mendez, Gil; Roewert-Huber, Hans-Joachim; Stockfleth, Eggert; Lange-Asschenfeldt, Bernhard

    2012-07-01

    There is a high demand for noninvasive imaging techniques for wound assessment. In vivo reflectance confocal laser scanning microscopy (CLSM) represents an innovative optical technique for noninvasive evaluation of normal and diseased skin in vivo at near cellular resolution. This study was designed to test the feasibility of CLSM for noninvasive analysis of cutaneous wound healing in 15 patients (7 male/8 female), including acute and chronic, superficial and deep dermal skin wounds. A commercially available CLSM system was used for the assessment of wound bed and wound margins in order to obtain descriptive cellular and morphological parameters of cutaneous wound repair noninvasively and over time. CLSM was able to visualize features of cutaneous wound repair in epidermal and superficial dermal wounds, including aspects of inflammation, neovascularisation, and tissue remodelling in vivo. Limitations include the lack of mechanic fixation of the optical system on moist surfaces restricting the analysis of chronic skin wounds to the wound margins, as well as a limited optical resolution in areas of significant slough formation. By describing CLSM features of cutaneous inflammation, vascularisation, and epithelialisation, the findings of this study support the role of CLSM in modern wound research and management.

  8. Preparation of cellulose-based sponges for wound dressing and healing

    NARCIS (Netherlands)

    Kazlauske, J.; Dutschk, V.; Liesiene, J.; Dörfel, A.; Vignaesh Sankaran, M.

    2013-01-01

    For healing of chronic or burn wounds, polymeric sponges have been recently applied. Due to a high absorption capacity, noncitotoxicity and good swelling capabilities, for their production natural polymers are often used. In this study, macroporous regenerated cellulose was evaluated as a matrix for

  9. Wound healing angiogenesis: The clinical implications of a simple mathematical model

    KAUST Repository

    Flegg, Jennifer A.

    2012-05-01

    Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we develop a deterministic mathematical model, formulated as a system of partial differential equations, that focusses on an important aspect of successful healing: oxygen supply to the wound bed by a combination of diffusion from the surrounding unwounded tissue and delivery from newly formed blood vessels. While the model equations can be solved numerically, the emphasis here is on the use of asymptotic methods to establish conditions under which new blood vessel growth can be initiated and wound-bed angiogenesis can progress. These conditions are given in terms of key model parameters including the rate of oxygen supply and its rate of consumption in the wound. We use our model to discuss the clinical use of treatments such as hyperbaric oxygen therapy, wound bed debridement, and revascularisation therapy that have the potential to initiate healing in chronic, stalled wounds. © 2012 Elsevier Ltd.

  10. Organic light emitting diode improves diabetic cutaneous wound healing in rats.

    Science.gov (United States)

    Wu, Xingjia; Alberico, Stephanie; Saidu, Edward; Rahman Khan, Sazzadur; Zheng, Shijun; Romero, Rebecca; Sik Chae, Hyun; Li, Sheng; Mochizuki, Amane; Anders, Juanita

    2015-01-01

    A major complication for diabetic patients is chronic wounds due to impaired wound healing. It is well documented that visible red wavelengths can accelerate wound healing in diabetic animal models and patients. In vitro and in vivo diabetic models were used to investigate the effects of organic light emitting diode (OLED) irradiation on cellular function and cutaneous wound healing. Human dermal fibroblasts were cultured in hyperglycemic medium (glucose concentration 180 mM) and irradiated with an OLED (623 nm wavelength peak, range from 560 to 770 nm, power density 7 or 10 mW/cm2 at 0.2, 1, or 5 J/cm2). The OLED significantly increased total adenosine triphosphate concentration, metabolic activity, and cell proliferation compared with untreated controls in most parameters tested. For the in vivo experiment, OLED and laser (635 ± 5 nm wavelength) treatments (10 mW/cm2 , 5 J/cm2 daily for a total of seven consecutive days) for cutaneous wound healing were compared using a genetic, diabetic rat model. Both treatments had significantly higher percentage of wound closure on day 6 postinjury and higher total histological scores on day 13 postinjury compared with control. No statistical difference was found between the two treatments. OLED irradiation significantly increased fibroblast growth factor-2 expression at 36-hour postinjury and enhanced macrophage activation during initial stages of wound healing. In conclusion, the OLED and laser had comparative effects on enhancing diabetic wound healing.

  11. Skin grafting and wound healing-the "dermato-plastic team approach".

    Science.gov (United States)

    Hierner, Robert; Degreef, Hugo; Vranckx, Jan Jerome; Garmyn, Maria; Massagé, Patrick; van Brussel, Michel

    2005-01-01

    Autologous skin grafts are successfully used to close recalcitrant chronic wounds especially at the lower leg. If wound care is done in a dermato-plastic team approach using the "integrated concept," difficulties associated with harvesting the skin graft as well as the complexities associated with inducing closure at the donor and the recipient site can be minimized. In the context of wound healing, skin transplantation can be regarded as (1) a supportive procedure for epithelialization of the wound surface and (2) mechanical stability of the wound ground. By placing skin grafts on a surface, central parts are covered much faster with keratinocytes. Skin (wound) closure is the ultimate goal, as wound closure means resistance to infection. Depending on the thickness of the skin graft, different amounts of dermis are transplanted with the overlying keratinocytes. The dermal component determines the mechanical (resistance to pressure and shear forces, graft shrinkage), functional (sensibility), and aesthetic properties of the graft. Generally speaking, the thicker the graft the better the mechanical, functional, and aesthetic properties, however, the worse the neo- and revascularization. Skin grafts do depend entirely on the re- and neovascularization coming from the wound bed. If the wound bed is seen as a recipient site for tissue graft, the classification of Lexer (Die freien Transplantationen. Stuttgart: Enke; 1924) turned out to be of extreme value. Three grades can be distinguished: "good wound conditions," "moderate wound conditions," and "insufficient wound conditions." Given good wound conditions, skin grafting is feasible. Nevertheless, skin closure alone might not be sufficient to fulfill the criteria of successful defect reconstruction. In case of moderate or insufficient wound conditions, wound bed preparation is necessary. If wound bed preparation is successful and good wound conditions can be achieved, skin grafting is possible. If, however, this

  12. Influence of pH on wound-healing: a new perspective for wound-therapy?

    Science.gov (United States)

    Schneider, Lars Alexander; Korber, Andreas; Grabbe, Stephan; Dissemond, Joachim

    2007-02-01

    Wound healing is a complex regeneration process, which is characterised by intercalating degradation and re-assembly of connective tissue and epidermal layer. The pH value within the wound-milieu influences indirectly and directly all biochemical reactions taking place in this process of healing. Interestingly it is so far a neglected parameter for the overall outcome. For more than three decades the common assumption amongst physicians was that a low pH value, such as it is found on normal skin, is favourable for wound healing. However, investigations have shown that in fact some healing processes such as the take-rate of skin-grafts require an alkaline milieu. The matter is thus much more complicated than it was assumed. This review article summarises the existing literature dealing with the topic of pH value within the wound-milieu, its influence on wound healing and critically discusses the currently existing data in this field. The conclusion to be drawn at present is that the wound pH indeed proves to be a potent influential factor for the healing process and that different pH ranges are required for certain distinct phases of wound healing. Further systematic data needs to be collected for a better understanding of the pH requirements under specific circumstances. This is important as it will help to develop new pH targeted therapeutic strategies.

  13. Wound healing evaluation of sodium fucidate-loaded polyvinylalcohol/sodium carboxymethylcellulose-based wound dressing.

    Science.gov (United States)

    Lee, Jeong Hoon; Lim, Soo-Jeong; Oh, Dong Hoon; Ku, Sae Kwang; Li, Dong Xun; Yong, Chul Soon; Choi, Han-Gon

    2010-07-01

    The cross-linked hydrogel films containing sodium fucidate were previously reported to be prepared polyvinyl alcohol (PVA) and sodium carboxymethylcellulose (Na-CMC) using the freeze-thawing method and their physicochemical property was investigated. For the development of novel sodium fucidate-loaded wound dressing, here its in vivo wound healing test and histopathology were performed compared with the conventional ointment product. In wound healing test, the sodium fucidate-loaded composed of 2.5% PVA, 1.125% Na-CMC and 0.2% drug showed faster healing of the wound made in rat dorsum than the hydrogel without drug, indicating the potential healing effect of sodium fucidate. Furthermore, from the histological examination, the healing effect of sodium fucidate-loaded hydrogel was greater than that of the conventional ointment product and hydrogel without drug, since it might gave an adequate level of moisture and build up the exudates on the wound area. Thus, the sodium fucidate-loaded wound dressing composed of 5% PVA, 1.125% Na-CMC and 0.2% drug is a potential wound dressing with excellent wound healing.

  14. Wound-healing property of Momordica charantia L. fruit powder.

    Science.gov (United States)

    Prasad, Vure; Jain, Vikas; Girish, Dugapati; Dorle, Avinash Kumar

    2006-01-01

    Momordica charantia Linn. fruit powder, in the form of an ointment (10% w/w dried powder in simple ointment base), was evaluated for wound-healing potential in an excision, incision and dead space wound model in rats. The rats were divided into three groups of control, treatment and reference in all three wound models, each group consisting of six rats. Wound-contraction ability in excision wound mode was measured at different time intervals on days 4, 8, 10, 12 and 14 , and the study was continued until the wound had completely healed. Tensile strength was measured in 10-day-old incision and granuloma wound. Histological studies were performed on 10-day-old sections of regenerated tissue. Powder ointment showed a statistically significant response (P < 0.01), in terms of wound-contracting ability, wound closure time, period of epithelization, tensile strength of the wound and regeneration of tissues at wound site when compared with the control group, and these results were comparable to those of a reference drug povidone iodine ointment.

  15. Identification of the critical therapeutic entity in secreted Hsp90α that promotes wound healing in newly re-standardized healthy and diabetic pig models.

    Science.gov (United States)

    O'Brien, Kathryn; Bhatia, Ayesha; Tsen, Fred; Chen, Mei; Wong, Alex K; Woodley, David T; Li, Wei

    2014-01-01

    Chronic and non-healing skin wounds represent a significant clinical, economic and social problem worldwide. Currently, there are few effective treatments. Lack of well-defined animal models to investigate wound healing mechanisms and furthermore to identify new and more effective therapeutic agents still remains a major challenge. Pig skin wound healing is close to humans. However, standardized pig wound healing models with demonstrated validity for testing new wound healing candidates are unavailable. Here we report a systematic evaluation and establishment of both acute and diabetic wound healing models in pigs, including wound-creating pattern for drug treatment versus control, measurements of diabetic parameters and the time for detecting delayed wound healing. We find that treatment and control wounds should be on the opposite and corresponding sides of a pig. We demonstrate a strong correlation between duration of diabetic conditions and the length of delay in wound closure. Using these new models, we narrow down the minimum therapeutic entity of secreted Hsp90α to a 27-amino acid peptide, called fragment-8 (F-8). In addition, results of histochemistry and immunohistochemistry analyses reveal more organized epidermis and dermis in Hsp90α-healed wounds than the control. Finally, Hsp90α uses a similar signaling mechanism to promote migration of isolated pig and human keratinocytes and dermal fibroblasts. This is the first report that shows standardized pig models for acute and diabetic wound healing studies and proves its usefulness with both an approved drug and a new therapeutic agent.

  16. Identification of the critical therapeutic entity in secreted Hsp90α that promotes wound healing in newly re-standardized healthy and diabetic pig models.

    Directory of Open Access Journals (Sweden)

    Kathryn O'Brien

    Full Text Available Chronic and non-healing skin wounds represent a significant clinical, economic and social problem worldwide. Currently, there are few effective treatments. Lack of well-defined animal models to investigate wound healing mechanisms and furthermore to identify new and more effective therapeutic agents still remains a major challenge. Pig skin wound healing is close to humans. However, standardized pig wound healing models with demonstrated validity for testing new wound healing candidates are unavailable. Here we report a systematic evaluation and establishment of both acute and diabetic wound healing models in pigs, including wound-creating pattern for drug treatment versus control, measurements of diabetic parameters and the time for detecting delayed wound healing. We find that treatment and control wounds should be on the opposite and corresponding sides of a pig. We demonstrate a strong correlation between duration of diabetic conditions and the length of delay in wound closure. Using these new models, we narrow down the minimum therapeutic entity of secreted Hsp90α to a 27-amino acid peptide, called fragment-8 (F-8. In addition, results of histochemistry and immunohistochemistry analyses reveal more organized epidermis and dermis in Hsp90α-healed wounds than the control. Finally, Hsp90α uses a similar signaling mechanism to promote migration of isolated pig and human keratinocytes and dermal fibroblasts. This is the first report that shows standardized pig models for acute and diabetic wound healing studies and proves its usefulness with both an approved drug and a new therapeutic agent.

  17. Abnormal pigmentation within cutaneous scars: A complication of wound healing

    Directory of Open Access Journals (Sweden)

    Sarah Chadwick

    2012-01-01

    Full Text Available Abnormally pigmented scars are an undesirable consequence of cutaneous wound healing and are a complication every single individual worldwide is at risk of. They present a challenge for clinicians, as there are currently no definitive treatment options available, and render scars much more noticeable making them highly distressing for patients. Despite extensive research into both wound healing and the pigment cell, there remains a scarcity of knowledge surrounding the repigmentation of cutaneous scars. Pigment production is complex and under the control of many extrinsic and intrinsic factors and patterns of scar repigmentation are unpredictable. This article gives an overview of human skin pigmentation, repigmentation following wounding and current treatment options.

  18. In vivo systemic chlorogenic acid therapy under diabetic conditions: Wound healing effects and cytotoxicity/genotoxicity profile.

    Science.gov (United States)

    Bagdas, Deniz; Etoz, Betul Cam; Gul, Zulfiye; Ziyanok, Sedef; Inan, Sevda; Turacozen, Ozge; Gul, Nihal Yasar; Topal, Ayse; Cinkilic, Nilufer; Tas, Sibel; Ozyigit, Musa Ozgur; Gurun, Mine Sibel

    2015-07-01

    Oxidative stress occurs following the impairment of pro-oxidant/antioxidant balance in chronic wounds and leads to harmful delays in healing progress. A fine balance between oxidative stress and endogenous antioxidant defense system may be beneficial for wound healing under redox control. This study tested the hypothesis that oxidative stress in wound area can be controlled with systemic antioxidant therapy and therefore wound healing can be accelerated. We used chlorogenic acid (CGA), a dietary antioxidant, in experimental diabetic wounds that are characterized by delayed healing. Additionally, we aimed to understand possible side effects of CGA on pivotal organs and bone marrow during therapy. Wounds were created on backs of streptozotocin-induced diabetic rats. CGA (50 mg/kg/day) was injected intraperitoneally. Animals were sacrificed on different days. Biochemical and histopathological examinations were performed. Side effects of chronic antioxidant treatment were tested. CGA accelerated wound healing, enhanced hydroxyproline content, decreased malondialdehyde/nitric oxide levels, elevated reduced-glutathione, and did not affect superoxide dismutase/catalase levels in wound bed. While CGA induced side effects such as cyto/genotoxicity, 15 days of treatment attenuated blood glucose levels. CGA decreased lipid peroxidation levels of main organs. This study provides a better understanding for antioxidant intake on diabetic wound repair and possible pro-oxidative effects.

  19. Scientific production on the applicability of phenytoin in wound healing

    Directory of Open Access Journals (Sweden)

    Flávia Firmino

    2014-02-01

    Full Text Available Phenytoin is an anticonvulsant that has been used in wound healing. The objectives of this study were to describe how the scientific production presents the use ofphenytoinas a healing agent and to discuss its applicability in wounds. A literature review and hierarchy analysis of evidence-based practices was performed. Eighteen articles were analyzed that tested the intervention in wounds such as leprosy ulcers, leg ulcers, diabetic foot ulcers, pressure ulcers, trophic ulcers, war wounds, burns, preparation of recipient graft area, radiodermatitis and post-extraction of melanocytic nevi. Systemic use ofphenytoinin the treatment of fistulas and the hypothesis of topical use in the treatment of vitiligo were found. In conclusion, topical use ofphenytoinis scientifically evidenced. However robust research is needed that supports a protocol for the use ofphenytoinas another option of a healing agent in clinical practice.

  20. Comparison of oxidative stress biomarker profiles between acute and chronic wound environments.

    Science.gov (United States)

    Moseley, Ryan; Hilton, Joanna R; Waddington, Rachel J; Harding, Keith G; Stephens, Phil; Thomas, David W

    2004-01-01

    Increasing evidence implicates excessive reactive oxygen species (ROS) generation and ROS-derived degradation products in the pathogenesis of many skin diseases. While numerous attempts have been made to identify prognostic biomarkers of wound healing in skin, these have met with limited success. This study examined the profiles of various oxidative stress biomarkers, namely total protein carbonyl content (from protein oxidation), malondialdehyde content (from lipid peroxidation), and the total antioxidant capacities, in acute wound fluid (n= 10) and chronic wound fluid (n= 12), using a rapid, noninvasive collection technique. Protein carbonyl content was quantified spectrophotometrically and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/Western blotting, following 2,4-dinitrophenylhydrazine derivitization. Malondialdehyde levels were similarly quantified, following N-methyl-2-phenylindole derivitization. Total antioxidant capacity was determined via wound fluid inhibition of cytochrome C reduction by a superoxide radical flux. Acute wound fluid contained higher protein carbonyl content than chronic wound fluid, particularly evident following sodium dodecyl sulfate-polyacrylamide gel electrophoresis/Western blot analysis under nonreducing and reducing conditions (p oxidized in both acute and chronic wound fluid, which may contribute to the reduced albumin and total protein levels in chronic wound fluid. No significant difference (p > 0.1) in malondialdehyde levels or total antioxidant capacities were determined between acute and chronic wound fluids, although chronic wound fluid exhibited significantly higher total antioxidant capacities (p < 0.005), accounting for variations in wound fluid protein content. These findings suggest an adaptation in the antioxidant profiles of chronic wound fluid to counteract the loss of consumed antioxidants in the chronic wound environment. This study highlights the roles of ROS/antioxidants in skin wound healing

  1. Accelerated endothelial wound healing on microstructured substrates under flow.

    Science.gov (United States)

    Franco, Davide; Milde, Florian; Klingauf, Mirko; Orsenigo, Fabrizio; Dejana, Elisabetta; Poulikakos, Dimos; Cecchini, Marco; Koumoutsakos, Petros; Ferrari, Aldo; Kurtcuoglu, Vartan

    2013-02-01

    Understanding and accelerating the mechanisms of endothelial wound healing is of fundamental interest for biotechnology and of significant medical utility in repairing pathologic changes to the vasculature induced by invasive medical interventions. We report the fundamental mechanisms that determine the influence of substrate topography and flow on the efficiency of endothelial regeneration. We exposed endothelial monolayers, grown on topographically engineered substrates (gratings), to controlled levels of flow-induced shear stress. The wound healing dynamics were recorded and analyzed in various configurations, defined by the relative orientation of an inflicted wound, the topography and the flow direction. Under flow perpendicular to the wound, the speed of endothelial regeneration was significantly increased on substrates with gratings oriented in the direction of the flow when compared to flat substrates. This behavior is linked to the dynamic state of cell-to-cell adhesions in the monolayer. In particular, interactions with the substrate topography counteract Vascular Endothelial Cadherin phosphorylation induced by the flow and the wounding. This effect contributes to modulating the mechanical connection between migrating cells to an optimal level, increasing their coordination and resulting in coherent cell motility and preservation of the monolayer integrity, thus accelerating wound healing. We further demonstrate that the reduction of vascular endothelial cadherin phosphorylation, through specific inhibition of Src activity, enhances endothelial wound healing in flows over flat substrates.

  2. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs.

    Science.gov (United States)

    Bhatia, Ayesha; O'Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5-treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  3. Experimental study on influence of chronic stress on skin wound healing and skin graft survival time in mice%慢性应激对小鼠创面愈合及移植皮片存活时间影响的初步研究

    Institute of Scientific and Technical Information of China (English)

    杨震; 亓发芝; 曹小曼; 潘思璇

    2009-01-01

    Objective To investigate the influence of chronic stress on skin wound healing and skin graft survival time in mice. Methods In the study on skin wound healing,a full-thickness dermal wound on the hack of the female C57 BL/6J mice was made, then the mice were randomly divided into simple wound group and wound plus chronic stress group. The chronic stress was given in the latter group. The wound healing conditions of two groups were observed. Meanwhile, the female C57BL/6J mice were grafted with skin donated from the female BALB/C mice,and randomly divided into,the simple skin graft group and the skin graft plus chronic stress group. The chronic stress was given in the latter group. The skin graft survival time of two groups were observed. Re-sults Compared with simple wound group, the healing speed of the wound plus chronic stress group was notably lower, and the difference was significant (P0.05). Conclusion Chronic stress may delay wound healing. But there is no certain conclusion that whether chronic stress impact on skin graft survival time. We need further investigation.%目的 探讨慢性应激对小鼠创面愈合及移植皮片存活时间的影响.方法 在C57BL/6J小鼠背部形成创面,术后将小鼠随机分到单纯创面组和慢性应激创面组,慢性应激创面组给予慢性刺激,观察两组创面愈合伤口情况;同时取BALB/C小鼠背部皮肤移植于C57BL/6J小鼠创面,术后将小鼠随机分到单纯移植组和慢性应激植皮组2个组,观察移植皮片存活情况.结果 与单纯创面组相比,慢性应激创面组创面残余面积较大[第10天时分别为(20.33±0.38)%,(33.55±7.02)%],差异有显著性(P0.05).结论 慢性应激能够延缓创面愈合,而慢性应激对皮片移植影响则不明确,需要进一步研究.

  4. Electrospun 3D Fibrous Scaffolds for Chronic Wound Repair

    Directory of Open Access Journals (Sweden)

    Huizhi Chen

    2016-04-01

    Full Text Available Chronic wounds are difficult to heal spontaneously largely due to the corrupted extracellular matrix (ECM where cell ingrowth is obstructed. Thus, the objective of this study was to develop a three-dimensional (3D biodegradable scaffold mimicking native ECM to replace the missing or dysfunctional ECM, which may be an essential strategy for wound healing. The 3D fibrous scaffolds of poly(lactic acid-co-glycolic acid (PLGA were successfully fabricated by liquid-collecting electrospinning, with 5~20 µm interconnected pores. Surface modification with the native ECM component aims at providing biological recognition for cell growth. Human dermal fibroblasts (HDFs successfully infiltrated into scaffolds at a depth of ~1400 µm after seven days of culturing, and showed significant progressive proliferation on scaffolds immobilized with collagen type I. In vivo models showed that chronic wounds treated with scaffolds had a faster healing rate. These results indicate that the 3D fibrous scaffolds may be a potential wound dressing for chronic wound repair.

  5. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights.

    Science.gov (United States)

    Baltzis, Dimitrios; Eleftheriadou, Ioanna; Veves, Aristidis

    2014-08-01

    Diabetic foot ulcers (DFUs) are one of the most common and serious complications of diabetes mellitus, as wound healing is impaired in the diabetic foot. Wound healing is a dynamic and complex biological process that can be divided into four partly overlapping phases: hemostasis, inflammation, proliferative and remodeling. These phases involve a large number of cell types, extracellular components, growth factors and cytokines. Diabetes mellitus causes impaired wound healing by affecting one or more biological mechanisms of these processes. Most often, it is triggered by hyperglycemia, chronic inflammation, micro- and macro-circulatory dysfunction, hypoxia, autonomic and sensory neuropathy, and impaired neuropeptide signaling. Research focused on thoroughly understanding these mechanisms would allow for specifically targeted treatment of diabetic foot ulcers. The main principles for DFU treatment are wound debridement, pressure off-loading, revascularization and infection management. New treatment options such as bioengineered skin substitutes, extracellular matrix proteins, growth factors, and negative pressure wound therapy, have emerged as adjunctive therapies for ulcers. Future treatment strategies include stem cell-based therapies, delivery of gene encoding growth factors, application of angiotensin receptors analogs and neuropeptides like substance P, as well as inhibition of inflammatory cytokines. This review provides an outlook of the pathophysiology in diabetic wound healing and summarizes the established and adjunctive treatment strategies, as well as the future therapeutic options for the treatment of DFUs.

  6. Aloe vera for treating acute and chronic wounds

    Directory of Open Access Journals (Sweden)

    Anthony D. Dat

    Full Text Available BACKGROUND: Aloe vera is a cactus-like perennial succulent belonging to the Liliaceae Family that is commonly grown in tropical climates. Animal studies have suggested that Aloe vera may help accelerate the wound healing process.OBJECTIVE: To determine the effects of Aloe vera-derived products (for example dressings and topical gels on the healing of acute wounds (for example lacerations, surgical incisions and burns and chronic wounds (for example infected wounds, arterial and venous ulcers.METHODS:Search methods: We searched the Cochrane Wounds Group Specialised Register (9 September 2011, the Cochrane Central Register of Controlled Trials (CENTRAL (The Cochrane Library 2011, Issue 3, Ovid MEDLINE (2005 to August Week 5 2011, Ovid MEDLINE (In-Process & Other Non-Indexed Citations 8 September 2011, Ovid EMBASE (2007 to 2010 Week 35, Ovid AMED (1985 to September 2011 and EBSCO CINAHL (1982 to 9 September 2011. We did not apply date or language restrictions. Selection criteria: We included all randomised controlled trials that evaluated the effectiveness of Aloe vera, aloe-derived products and a combination of Aloe vera and other dressings as a treatment for acute or chronic wounds. There was no restriction in terms of source, date of publication or language. An objective measure of wound healing (either proportion of completely healed wounds or time to complete healing was the primary endpoint. Data collection and analysis: Two review authors independently carried out trial selection, data extraction and risk of bias assessment, checked by a third review author.MAIN RESULTS:Seven trials were eligible for inclusion, comprising a total of 347 participants. Five trials in people with acute wounds evaluated the effects of Aloe vera on burns, haemorrhoidectomy patients and skin biopsies. Aloe vera mucilage did not increase burn healing compared with silver sulfadiazine (risk ratio (RR 1.41, 95% confidence interval (CI 0.70 to 2.85. A reduction in

  7. Wound healing activity of the leaves of Artocarpus heterophyllus Lam. (Moraceae on ex-vivo porcine skin wound healing model

    Directory of Open Access Journals (Sweden)

    K Periyanayagam

    2013-05-01

    Full Text Available ABSTRACT Objective: To prescreen the ex- vivo wound healing activity of flavonoid rich fraction of ethyl acetate extract of the leaves of Artocarpus heterophyllus Lam. Family Moraceae using porcine skin wound healing model (PSWHM along with  phytochemical, XRF, HPTLC analysis. The aim of this present study is to provide pharmacological validation to the traditional claim for wound healing activity of Artocarpus heterophyllus leaves. Method: Total phenolic content by UV spectral methods and ursolic acid content by HPTLC, trace elements by X-ray fluorescence were determined.  The wound healing effect of the ethyl acetate extract of the leaves of A.heterophyllus (EAAH was evaluated using ex- vivo porcine skin wound healing model - a novel organ culture model system for evaluation of drugs in cell-cell junction in the wound healing process. Results: Total phenolic content by UV method, HPTLC determination of ursolic acid content of EAAH was found to be 376.5mg/g GAE, 134mg/g respectively. XRF study showed the presence of calcium (39.4%, potassium (29.6%, magnesium (2.06%, Iron (0.99%, sulphur (1.83%, zinc (0.083%, strontium (0.23%, manganese (0.13% and aluminium (0.005%.   Histopathological evaluation showed all treated wounds were sound with no signs of apoptosis, necrosis or bacterial contamination and no toxicity of the tested concentrations of EAAH of the leaves. Morphology of the wound margins, epidermis and dermis layer were found to be normal. Epidermal migration or keratinocyte migration distances from the edges of each wound were measured, normalized with the PBS control group and expressed as mean%. The result clearly showed EAAH (1.5% promoted statistically significant wound healing effect is comparable to the standard drug Mupirocin. Conclusion: This study indicates that the ethyl acetate extract of the leaves of A.heterophyllus possesses potential wound healing activity on ex-vivo porcine skin wound healing model. Wound healing

  8. Evaluation of wound healing property of Terminalia catappa on excision wound models in Wistar rats.

    Science.gov (United States)

    Khan, A A; Kumar, V; Singh, B K; Singh, R

    2014-05-01

    Wound is defined as the loss of breaking cellular and functional continuity of the living tissues. Management of wounds is frequently encountered with different problems. Drug resistance and toxicity hindered the development of synthetic antimicrobial agents with wound healing activity. Many plants with potent pharmacological activities may offer better treatment options viz. Terminalia chebula, Terminalia bellirica and Phyllanthus emblica formulations have shown healing activities on wounds.The present study was planned to investigate the wound healing activity of Terminalia catappa on excision wound model in rats. Ointment was prepared by using bark extract of Terminalia catappa in soft paraffin and preservative. Wistar albino rats (200-250 gm) of either sex were used in the present study. A circular wound of 2 cm in diameter was made on the depilated dorsal thoracic region of the rats under ether anesthesia in aseptic conditions. The ointment was applied for 18 days and percent wound closure observed along with the parameters viz. Epithelization, granuloma weight and scar formation. Animals were observed on 3rd, 6th, 9th, 12th, 15th and 18th post-wounding day.Wound healing activity was compared with that of control and Betadine ointment as standard drug. Animals treated with Terminalia catappa ointment exhibited 97% reduction in wound area as compared to the control animals (81%). Ointment treated wounds were found to induce epithelization faster compared to the control. In conclusion, Terminalia catappa ointment promotes significant wound healing in rats and further evaluation of this activity in humans is suggested.

  9. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  10. Clinical efficacy of dressings for treatment of heavily exuding chronic wounds

    Directory of Open Access Journals (Sweden)

    Wieg

    2015-06-01

    Full Text Available Cornelia Wiegand, Jörg Tittelbach, Uta-Christina Hipler, Peter Elsner Department of Dermatology, University Hospital Jena, Jena, Germany Abstract: The treatment of chronic ulcers is a complex issue and presents an increasing problem for caregivers everywhere. This is especially true in Germany, where more than 4 million chronic wounds are treated each year. Therapeutic decisions must be patient-centered and reflect wound etiology, localization, and healing status. The practice of using the same wound dressing during the entire healing period is no longer reasonable. Instead, multiple types of dressings may be needed for a single wound over its healing trajectory. Selection of the most appropriate dressing should be based on wound phase, depth, signs of infection, and level of exudate. Moisture balance is critical in wound care; dryness will hamper epithelial cell migration while excessive generation of fluid causes maceration at the wound margins. Hence, exudate management is a key issue in chronic wound therapy, particularly given that exudate from chronic wounds has a composition different from that of acute wound fluid. Several studies have shown that exudates from non-healing wounds contain significantly elevated levels of protease activity, increased formation of free radicals, and abundant amounts of proinflammatory cytokines, while concentrations of growth factors and protease inhibitors are markedly decreased. Application of dressings that remove and sequester excess amounts of wound fluid may not only help in restoring the correct balance of moisture, but also support the wound healing process by preventing tissue deterioration caused by abundant protease activity. Several types of dressings, such as hydrogels, hydrocolloids, alginates, hydrofibers, foams, and superabsorbent dressings, are reviewed here and evaluated with regard to their efficacy for highly exuding wounds. Keywords: chronic wounds, exuding, dressings, clinical efficacy 

  11. Innate defense regulator peptide 1018 in wound healing and wound infection.

    Directory of Open Access Journals (Sweden)

    Lars Steinstraesser

    Full Text Available Innate defense regulators (IDRs are synthetic immunomodulatory versions of natural host defense peptides (HDP. IDRs mediate protection against bacterial challenge in the absence of direct antimicrobial activity, representing a novel approach to anti-infective and anti-inflammatory therapy. Previously, we reported that IDR-1018 selectively induced chemokine responses and suppressed pro-inflammatory responses. As there has been an increasing appreciation for the ability of HDPs to modulate complex immune processes, including wound healing, we characterized the wound healing activities of IDR-1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However, no significant differences in bacterial colonization were observed. Our investigation demonstrates that in addition to previously reported immunomodulatory activities IDR-1018 promotes wound healing independent of direct antibacterial activity. Interestingly, these effects were not observed in diabetic wounds. It is anticipated that the wound healing activities of IDR-1018 can be attributed to modulation of host immune pathways that are suppressed in diabetic wounds and provide further evidence of the multiple immunomodulatory activities of IDR-1018.

  12. Hevin plays a pivotal role in corneal wound healing.

    Directory of Open Access Journals (Sweden)

    Shyam S Chaurasia

    Full Text Available BACKGROUND: Hevin is a matricellular protein involved in tissue repair and remodeling via interaction with the surrounding extracellular matrix (ECM proteins. In this study, we examined the functional role of hevin using a corneal stromal wound healing model achieved by an excimer laser-induced irregular phototherapeutic keratectomy (IrrPTK in hevin-null (hevin(-/- mice. We also investigated the effects of exogenous supplementation of recombinant human hevin (rhHevin to rescue the stromal cellular components damaged by the excimer laser. METHODOLOGY/PRINCIPAL FINDINGS: Wild type (WT and hevin (-/- mice were divided into three groups at 4 time points- 1, 2, 3 and 4 weeks. Group I served as naïve without any treatment. Group II received epithelial debridement and underwent IrrPTK using excimer laser. Group III received topical application of rhHevin after IrrPTK surgery for 3 days. Eyes were analyzed for corneal haze and matrix remodeling components using slit lamp biomicroscopy, in vivo confocal microscopy, light microscopy (LM, transmission electron microscopy (TEM, immunohistochemistry (IHC and western blotting (WB. IHC showed upregulation of hevin in IrrPTK-injured WT mice. Hevin (-/- mice developed corneal haze as early as 1-2 weeks post IrrPTK-treatment compared to the WT group, which peaked at 3-4 weeks. They also exhibited accumulation of inflammatory cells, fibrotic components of ECM proteins and vascularized corneas as seen by IHC and WB. LM and TEM showed activated keratocytes (myofibroblasts, inflammatory debris and vascular tissues in the stroma. Exogenous application of rhHevin for 3 days reinstated inflammatory index of the corneal stroma similar to WT mice. CONCLUSIONS/SIGNIFICANCE: Hevin is transiently expressed in the IrrPTK-injured corneas and loss of hevin predisposes them to aberrant wound healing. Hevin (-/- mice develop early corneal haze characterized by severe chronic inflammation and stromal fibrosis that can be rescued

  13. Irradiation at 660 nm modulates different genes central to wound healing in wounded and diabetic wounded cell models

    Science.gov (United States)

    Houreld, Nicolette N.

    2014-02-01

    Wound healing is a highly orchestrated process and involves a wide variety of cellular components, chemokines and growth factors. Laser irradiation has influenced gene expression and release of various growth factors, cytokines and extracellular matrix proteins involved in wound healing. This study aimed to determine the expression profile of genes involved in wound healing in wounded and diabetic wounded fibroblast cells in response to irradiation at a wavelength of 660 nm. Human skin fibroblast cells (WS1) were irradiated with a diode laser (wavelength 660 nm; fluence 5 J/cm2; power output 100 mW; power density 11 mW/cm2; spot size 9.1 cm2; exposure duration 7 min 35 s). Total RNA was isolated and 1 μg reverse transcribed into cDNA which was used as a template in real-time qualitative polymerase chain reaction (qPCR). Eighty four genes involved in wound healing (extracellular matrix and cell adhesion; inflammatory cytokines and chemokines; growth factors; and signal transduction) were evaluated in wounded and diabetic wounded cell models. Forty eight hours post-irradiation, 6 genes were significantly upregulated and 8 genes were down-regulated in irradiated wounded cells, whereas 1 gene was up-regulated and 33 genes down-regulated in irradiated diabetic wounded cells. Irradiation of stressed fibroblast cells to a wavelength of 660 nm and a fluence of 5 J/cm2 modulated the expression of different genes involved in wound healing in different cell models. Modulation of these genes leads to the effects of laser irradiation seen both in vivo and in vitro, and facilitates the wound healing process.

  14. Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a.

    Science.gov (United States)

    Icli, Basak; Nabzdyk, Christoph S; Lujan-Hernandez, Jorge; Cahill, Meghan; Auster, Michael E; Wara, A K M; Sun, Xinghui; Ozdemir, Denizhan; Giatsidis, Giorgio; Orgill, Dennis P; Feinberg, Mark W

    2016-02-01

    Wound healing is a physiological reparative response to injury and a well-orchestrated process that involves hemostasis, cellular migration, proliferation, angiogenesis, extracellular matrix deposition, and wound contraction and re-epithelialization. However, patients with type 2 diabetes mellitus (T2D) are frequently afflicted with impaired wound healing that progresses into chronic wounds or diabetic ulcers, and may lead to complications including limb amputation. Herein, we investigate the potential role of microRNA-26a (miR-26a) in a diabetic model of wound healing. Expression of miR-26a is rapidly induced in response to high glucose in endothelial cells (ECs). Punch skin biopsy wounding of db/db mice revealed increased expression of miR-26a (~3.5-fold) four days post-wounding compared to that of WT mice. Local administration of a miR-26a inhibitor, LNA-anti-miR-26a, induced angiogenesis (up to ~80%), increased granulation tissue thickness (by 2.5-fold) and accelerated wound closure (53% after nine days) compared to scrambled anti-miR controls in db/db mice. These effects were independent of altered M1/M2 macrophage ratios. Mechanistically, inhibition of miR-26a increased its target gene SMAD1 in ECs nine days post-wounding of diabetic mice. In addition, high glucose reduced activity of the SMAD1-3'-UTR. Diabetic dermal wounds treated with LNA-anti-miR-26a had increased expression of ID1, a downstream modulator or SMAD1, and decreased expression of the cell cycle inhibitor p27. These findings establish miR-26a as an important regulator on the progression of skin wounds of diabetic mice by specifically regulating the angiogenic response after injury, and demonstrate that neutralization of miR-26a may serve as a novel approach for therapy.

  15. Pharmacological modulation of wound healing in experimental burns.

    Science.gov (United States)

    Jurjus, Abdo; Atiyeh, Bishara S; Abdallah, Inaya M; Jurjus, Rosalyne A; Hayek, Shady N; Jaoude, Marlene Abou; Gerges, Alice; Tohme, Rania A

    2007-11-01

    Factors involved in wound healing and their interdependence are not yet fully understood; nevertheless, new prospects for therapy to favor speedy and optimal healing are emerging. Reports about wound healing modulation by local application of simple and natural agents abound even in the recent literature, however, most are anecdotal and lack solid scientific evidence. We describe the effect of silver sulfadiazine and moist exposed burn ointment (MEBO), a recently described burn ointment of herbal origin, on mast cells and several wound healing cytokines (bFGF, IL-1, TGF-beta, and NGF) in the rabbit experimental burn model. The results demonstrate that various inflammatory cells, growth factors and cytokines present in the wound bed may be modulated by application of local agents with drastic effects on their expression dynamics with characteristic temporal and spatial regulation and changes in the expression pattern. Such data are likely to be important for the development of novel strategies for wound healing since they shed some light on the potential formulations of temporally and combinatory optimized therapeutic regimens.

  16. Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors

    Science.gov (United States)

    Escuin-Ordinas, Helena; Li, Shuoran; Xie, Michael W.; Sun, Lu; Hugo, Willy; Huang, Rong Rong; Jiao, Jing; de-Faria, Felipe Meira; Realegeno, Susan; Krystofinski, Paige; Azhdam, Ariel; Komenan, Sara Marie D.; Atefi, Mohammad; Comin-Anduix, Begoña; Pellegrini, Matteo; Cochran, Alistair J.; Modlin, Robert L.; Herschman, Harvey R.; Lo, Roger S.; McBride, William H.; Segura, Tatiana; Ribas, Antoni

    2016-01-01

    BRAF inhibitors are highly effective therapies for the treatment of BRAFV600-mutated melanoma, with the main toxicity being a variety of hyperproliferative skin conditions due to paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyperproliferative skin changes improve when a MEK inhibitor is co-administered, as it blocks paradoxical MAPK activation. Here we show how the BRAF inhibitor vemurafenib accelerates skin wound healing by inducing the proliferation and migration of human keratinocytes through extracellular signal-regulated kinase (ERK) phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing mice models accelerates cutaneous wound healing through paradoxical MAPK activation; addition of a mitogen-activated protein kinase kinase (MEK) inhibitor reverses the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor does not increase the incidence of cutaneous squamous cell carcinomas in mice. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds. PMID:27476449

  17. The importance of a multifaceted approach to characterizing the microbial flora of chronic wounds.

    Science.gov (United States)

    Han, Anne; Zenilman, Jonathan M; Melendez, Johan H; Shirtliff, Mark E; Agostinho, Alessandra; James, Garth; Stewart, Philip S; Mongodin, Emmanuel F; Rao, Dhana; Rickard, Alexander H; Lazarus, Gerald S

    2011-01-01

    Chronic wounds contain complex polymicrobial communities of sessile organisms that have been underappreciated because of limitations of standard culture techniques. The aim of this work was to combine recently developed next-generation investigative techniques to comprehensively describe the microbial characteristics of chronic wounds. Tissue samples were obtained from 15 patients with chronic wounds presenting to the Johns Hopkins Wound Center. Standard bacteriological cultures demonstrated an average of three common bacterial species in wound samples. By contrast, high-throughput pyrosequencing revealed increased bacterial diversity with an average of 17 genera in each wound. Data from microbial community profiling of chronic wounds were compared with published sequenced analyses of bacteria from normal skin. Increased proportions of anaerobes, Gram-negative rods and Gram-positive cocci were found in chronic wounds. In addition, chronic wounds had significantly lower populations of Propionibacterium compared with normal skin. Using epifluorescence microscopy, wound bacteria were visualized in highly organized thick confluent biofilms or as scattered individual bacterial cells. Fluorescent in situ hybridization allowed for the visualization of Staphylococcus aureus cells in a wound sample. Quorum-sensing molecules were measured by bioassay to evaluate signaling patterns among bacteria in the wounds. A range of autoinducer-2 activities was detected in the wound samples. Collectively, these data provide new insights into the identity, organization, and behavior of bacteria in chronic wounds. Such information may provide important clues to effective future strategies in wound healing.

  18. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity

    Directory of Open Access Journals (Sweden)

    Robert Nunan

    2014-11-01

    Full Text Available The efficient healing of a skin wound is something that most of us take for granted but is essential for surviving day-to-day knocks and cuts, and is absolutely relied on clinically whenever a patient receives surgical intervention. However, the management of a chronic wound – defined as a barrier defect that has not healed in 3 months – has become a major therapeutic challenge throughout the Western world, and it is a problem that will only escalate with the increasing incidence of conditions that impede wound healing, such as diabetes, obesity and vascular disorders. Despite being clinically and molecularly heterogeneous, all chronic wounds are generally assigned to one of three major clinical categories: leg ulcers, diabetic foot ulcers or pressure ulcers. Although we have gleaned much knowledge about the fundamental cellular and molecular mechanisms that underpin healthy, acute wound healing from various animal models, we have learned much less about chronic wound repair pathology from these models. This might largely be because the animal models being used in this field of research have failed to recapitulate the clinical features of chronic wounds. In this Clinical Puzzle article, we discuss the clinical complexity of chronic wounds and describe the best currently available models for investigating chronic wound pathology. We also assess how such models could be optimised to become more useful tools for uncovering pathological mechanisms and potential therapeutic treatments.

  19. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity.

    Science.gov (United States)

    Nunan, Robert; Harding, Keith G; Martin, Paul

    2014-11-01

    The efficient healing of a skin wound is something that most of us take for granted but is essential for surviving day-to-day knocks and cuts, and is absolutely relied on clinically whenever a patient receives surgical intervention. However, the management of a chronic wound - defined as a barrier defect that has not healed in 3 months - has become a major therapeutic challenge throughout the Western world, and it is a problem that will only escalate with the increasing incidence of conditions that impede wound healing, such as diabetes, obesity and vascular disorders. Despite being clinically and molecularly heterogeneous, all chronic wounds are generally assigned to one of three major clinical categories: leg ulcers, diabetic foot ulcers or pressure ulcers. Although we have gleaned much knowledge about the fundamental cellular and molecular mechanisms that underpin healthy, acute wound healing from various animal models, we have learned much less about chronic wound repair pathology from these models. This might largely be because the animal models being used in this field of research have failed to recapitulate the clinical features of chronic wounds. In this Clinical Puzzle article, we discuss the clinical complexity of chronic wounds and describe the best currently available models for investigating chronic wound pathology. We also assess how such models could be optimised to become more useful tools for uncovering pathological mechanisms and potential therapeutic treatments.

  20. [The incidence of wound healing disorders in heart surgery].

    Science.gov (United States)

    Fritzsche, D; Krakor, R; Widera, R; Lindenau, K F

    1992-01-01

    In a five-year retrospective study we investigated the wound infection rate after median sternotomy in 2805 adult patients on whom elective surgery had been performed with extracorporeal circulation. On the basis of 14,700 apparently relevant data from 101 patients with wound healing disturbances at the sternotomy site, both the significance of predisposing risk profiles and the prevalence of nosocomial pathogens were evaluated. The control group was formed by 100 patients selected at random. The results were checked for statistical significance using the X2 test for alternative characters; the significance level was set at alpha = 5%. The infection rate observed in our group was 3.6%, which was assigned to 5 internally defined degrees of severity. Cases of healing by second intention were caused to 93% by coagulase-negative staphylococci and staphylococcus aureus. Factors leading to a decrease in oxygenation of the wound area (low-output syndrome, rethoracotomy), diabetes, obesity and the duration of wound drainage were accompanied by a significantly more frequent occurrence of wound healing disturbances. On the other hand, perfusion-technical parameters, operation duration, revascularisation techniques (IMA/ACVB), pulmonary conditioned hypoxemias and the end-of-year desinfection usual in our clinic had no influence on wound healing. Seasonal fluctuation of the epidermal microclimate appear to be responsible for the prevalence and virulence of the pathogen strains in the clinic environment. The preventive measures used in cardiosurgical clinics do not yet represent a fully developed prophylaxis against exposure to nosocomial pathogens.

  1. Effects of mouse genotype on bone wound healing and irradiation-induced delay of healing.

    Science.gov (United States)

    Glowacki, Julie; Mizuno, Shuichi; Kung, Jason; Goff, Julie; Epperly, Michael; Dixon, Tracy; Wang, Hong; Greenberger, Joel S

    2014-01-01

    We tested the effects of mouse genotype (C57BL/6NHsd, NOD/SCID, SAMR1, and SAMP6) and ionizing irradiation on bone wound healing. Unicortical wounds were made in the proximal tibiae, and the time course of spontaneous healing and effects of irradiation were monitored radiographically and histologically. There was reproducible healing beginning with intramedullary osteogenesis, subsequent bone resorption by osteoclasts, gradual bridging of the cortical wound, and re-population of medullary hematopoietic cells. The most rapid wound closure was noted in SAMR1 mice, followed by SAMP6, C57BL/6NHsd, and NOD/SCID. Ionizing irradiation (20 Gy) to the leg significantly delayed bone wound healing in mice of all four genotypes. Mice with genetically-determined predisposition to early osteopenia (SAMP6) or with immune deficiency (NOD/SCID) had impairments in bone wound healing. These mouse models should be valuable for determining the effects of irradiation on bone healing and also for the design and testing of novel bone growth-enhancing drugs and mitigators of ionizing irradiation.

  2. Raman spectroscopy and the spectral correlation index for predicting wound healing outcome: towards in vivo application

    Science.gov (United States)

    Berger, Adam G.; Crane, Nicole J.; Elster, Eric A.

    2016-03-01

    Combat wounds are sometimes confounded by healing complications that are not as prevalent in civilian wounds due to their high energy etiology. One complication of wound healing is dehiscence, where a surgically closed wound reopens after closure. This complication can have serious consequences for the patient, but knowledge about the molecular composition of the wound bed beyond what is readily visible may help clinicians mitigate these complications. It is necessary to develop techniques that can be used in vivo to assess and predict wound healing pointof- care so that care-takers can decide the best way to make informed clinical decisions regarding their patient's healing. Raman spectroscopy is a perfect candidate for predicting wound healing due to its ability to provide a detailed molecular fingerprint of the wound bed noninvasively. Here, we study the spectral correlation index, a measure of orthogonality, with ten reference tissue components to stratify wounds based on how they heal. We analyze these indexes over time to show the modulation of these tissue components over the wound healing process. Results show that qualitative observation of the spectra cannot reveal major differences between the dehisced and normal healing wounds, but the spectral correlation index can. Analysis of the spectral correlations across the wound healing process demonstrates the changes throughout the wound healing process, showing that early differences in tissue components may portend wound healing. Furthermore, Raman spectroscopy coupled with the spectral correlation index presents as a possible point-of-care tool for enabling discrimination of wounds with impaired healing.

  3. [Advances in the effects of pH value of micro-environment on wound healing].

    Science.gov (United States)

    Tian, Ruirui; Li, Na; Wei, Li

    2016-04-01

    Wound healing is a complex regeneration process, which is affected by lots of endogenous and exogenous factors. Researches have confirmed that acid environment could prevent wound infection and accelerate wound healing by inhibiting bacteria proliferation, promoting oxygen release, affecting keratinocyte proliferation and migration, etc. In this article, we review the literature to identify the potential relationship between the pH value of wound micro-environment and the progress of wound healing, and summarize the clinical application of variation of pH value of micro-environment in wound healing, thereby to provide new treatment strategy for wound healing.

  4. The effect of monochromatic infrared energy on diabetic wound healing.

    Science.gov (United States)

    He, Yayi; Yip, Selina Ly; Cheung, Kwok-Kuen; Huang, Lin; Wang, Shijie; Cheing, Gladys Ly

    2013-12-01

    This study examined the effect of monochromatic infrared energy (MIRE) on diabetic wound healing. Fifteen diabetic rats were given MIRE intervention on their skin wounds located on the dorsum and compared with 15 control diabetic rats. Assessments were conducted for each group at weeks 1, 2 and 4 post wounding (five rats at each time point) by calculating the percentage of wound closures (WCs) and performing histological and immunohistochemical staining on sections of wound tissue. Evaluations of WCs and histological examinations of reepithelialisation, cellular content and granulation tissue formation showed no significant difference between the MIRE and the control group at each time point. Through semi-quantitative immunohistochemical staining, the deposition of type I collagen in the MIRE group was found to have improved when compared with the control group at the end of week 2 (P = 0.05). No significant differences in the myofibroblast population were detected between the two groups. In conclusion, MIRE appeared to promote collagen deposition in the early stage of wound healing in diabetic rats, but the overall wound healing in the MIRE group was not significantly different from that of the control group.

  5. Blue light does not impair wound healing in vitro.

    Science.gov (United States)

    Masson-Meyers, Daniela Santos; Bumah, Violet Vakunseh; Enwemeka, Chukuka Samuel

    2016-07-01

    Irradiation with red or near infrared light promotes tissue repair, while treatment with blue light is known to be antimicrobial. Consequently, it is thought that infected wounds could benefit more from combined blue and red/infrared light therapy; but there is a concern that blue light may slow healing. We investigated the effect of blue 470nm light on wound healing, in terms of wound closure, total protein and collagen synthesis, growth factor and cytokines expression, in an in vitro scratch wound model. Human dermal fibroblasts were cultured for 48h until confluent. Then a linear scratch wound was created and irradiated with 3, 5, 10 or 55J/cm(2). Control plates were not irradiated. Following 24h of incubation, cells were fixed and stained for migration and fluorescence analyses and the supernatant collected for quantification of total protein, hydroxyproline, bFGF, IL-6 and IL-10. The results showed that wound closure was similar for groups treated with 3, 5 and 10J/cm(2), with a slight improvement with the 5J/cm(2) dose, and slower closure with 55J/cm(2) plight at low fluence does not impair in vitro wound healing. The significant decrease in IL-6 suggests that 470nm light is anti-inflammatory.

  6. Vitamin C promotes wound healing through novel pleiotropic mechanisms.

    Science.gov (United States)

    Mohammed, Bassem M; Fisher, Bernard J; Kraskauskas, Donatas; Ward, Susan; Wayne, Jennifer S; Brophy, Donald F; Fowler, Alpha A; Yager, Dorne R; Natarajan, Ramesh

    2016-08-01

    Vitamin C (VitC) or ascorbic acid (AscA), a cofactor for collagen synthesis and a primary antioxidant, is rapidly consumed post-wounding. Parenteral VitC administration suppresses pro-inflammatory responses while promoting anti-inflammatory and pro-resolution effects in human/murine sepsis. We hypothesised that VitC could promote wound healing by altering the inflammatory, proliferative and remodelling phases of wound healing. Mice unable to synthesise VitC (Gulo(-/-) ) were used in this study. VitC was provided in the water (sufficient), withheld from another group (deficient) and supplemented by daily intra-peritoneal infusion (200 mg/kg, deficient + AscA) in a third group. Full thickness excisional wounds (6 mm) were created and tissue collected on days 7 and 14 for histology, quantitative polymerase chain reaction (qPCR) and Western blotting. Human neonatal dermal fibroblasts (HnDFs) were used to assess effects of In conclusion, VitC favorably on proliferation. Histological analysis showed improved wound matrix deposition and organisation in sufficient and deficient +AscA mice. Wounds from VitC sufficient and deficient + AscA mice had reduced expression of pro-inflammatory mediators and higher expression of wound healing mediators. Supplementation of HnDF with AscA induced the expression of self-renewal genes and promoted fibroblast proliferation. VitC favourably impacts the spatiotemporal expression of transcripts associated with early resolution of inflammation and tissue remodelling.

  7. Efficacy of frog skin lipids in wound healing

    Directory of Open Access Journals (Sweden)

    Rajaram Rama

    2010-07-01

    Full Text Available Abstract Background Frog skin has been sequentially and scientifically evaluated by our group for its wound healing efficiency. Owing to the complex structure of skin, attempts were being made to analyse the role of individual constituents in different phases of healing. Our earlier papers have shown the significance of frog skin not only in wound healing but also enhancing the proliferating activity of the epidermal and dermal cells which are instrumental for normal healing process. We also have identified for the first time novel antimicrobial peptides from the skin of Rana tigerina and thereby reduce the complications involved in the sepsis. Purpose of the study and Results The current study envisages the role of frog skin lipids in the inflammatory phase of wound healing. The lipid moiety of the frog skin dominated by phospholipids exhibited a dose dependent acceleration of healing irrespective of the mode of application. The efficiency of the extract is attributed partially to the anti-inflammatory activity as observed by the histochemical and immunostimulatory together with plethysmographic studies. Conclusions Thus, frog skin for the first time has been demonstrated to possess lipid components with pharmaceutical and therapeutic potential. The identification and characterization of such natural healing molecules and evaluating their mechanism of action would therefore provide basis for understanding the cues of Nature and hence can be used for application in medicine.

  8. Advances in research on mechanisms of the effect of negative pressure wound treatment in wound healing

    Directory of Open Access Journals (Sweden)

    Lei LI

    2014-10-01

    Full Text Available Negative pressure wound treatment (NPWT refers to apply a highly porous material between the wound and a semipermeable membrane, and it is then connected to a suction apparatus, leading to a minimal deformation of wound, resulting in promoting cell proliferation and wound repair. These devices may significantly expedite wound healing, facilitate the formation of granulation tissue, and reduce the complexity of subsequent reconstructive operations. In recent years, along with wide clinical use, the therapeutic effect of NPWT has been recognized, but the mechanism of its clinical effect still needs further research. DOI: 10.11855/j.issn.0577-7402.2014.08.15

  9. Profiling wound healing with wound effluent: Raman spectroscopic indicators of infection

    Science.gov (United States)

    Crane, Nicole J.; Elster, Eric A.

    2012-01-01

    The care of modern traumatic war wounds remains a significant challenge for clinicians. Many of the extremity wounds inflicted during Operation Enduring Freedom and Operation Iraqi Freedom are colonized or infected with multi-drug resistant organisms, particularly Acinetobacter baumannii. Biofilm formation and resistance to current treatments can significantly confound the wound healing process. Accurate strain identification and targeted drug administration for the treatment of wound bioburden has become a priority for combat casualty care. In this study, we use vibrational spectroscopy to examine wound exudates for bacterial load. Inherent chemical differences in different bacterial species and strains make possible the high specificity of vibrational spectroscopy.

  10. Wound healing activity of flower extract of Calendula officinalis.

    Science.gov (United States)

    Preethi, Korengath C; Kuttan, Ramadasan

    2009-01-01

    The effects of oral and topical application of Calendula officinalis flower extract on excision wounds made in rats were checked. The parameters assessed were the days needed for re-epithelization and percentage of wound closure. The hydroxy proline and hexosamine content in the granuloma tissue of the wound was also measured. The percentage of wound closure was 90.0% in the extract-treated group, whereas the control group showed only 51.1% on the eighth day of wounding (p < .01). The days needed for re-epithelization were 17.7 for the control animals; extract treatment at a dose of 20 or 100 mg/kg b.wt reduced the period to 14 and 13 days, respectively. A significant increase was observed in the hydroxy proline and hexosamine content in the extract-treated group compared with the untreated animals. The data indicate potent wound healing activity ofC. officinalis extract.

  11. Effect of St. Johns Wort (Hypericum Perforatum on Wound Healing

    Directory of Open Access Journals (Sweden)

    Ahmet Altan

    2015-12-01

    Full Text Available Since ancient times, plants used for various purposes have an important role in the improvement of human health. People rely on plants for their therapeutic and preventive purposes and their natural origin, and utilize herbal products for this reason. One of these plants is Hypericum perforatum, which has medical importance and is conventionally used. This plant, which is commonly used by people in order to accelerate the healing of burns and wounds, has been proven by studies to have a positive effect on wound healing. The purpose of this review is to present the current literature covering the effect of Hypericum perforatum on wound healing. [Archives Medical Review Journal 2015; 24(4.000: 578-591

  12. Biochemical association of metabolic profile and microbiome in chronic pressure ulcer wounds.

    Directory of Open Access Journals (Sweden)

    Mary Cloud B Ammons

    Full Text Available Chronic, non-healing wounds contribute significantly to the suffering of patients with co-morbidities in the clinical population with mild to severely compromised immune systems. Normal wound healing proceeds through a well-described process. However, in chronic wounds this process seems to become dysregulated at the transition between resolution of inflammation and re-epithelialization. Bioburden in the form of colonizing bacteria is a major contributor to the delayed headlining in chronic wounds such as pressure ulcers. However how the microbiome influences the wound metabolic landscape is unknown. Here, we have used a Systems Biology approach to determine the biochemical associations between the taxonomic and metabolomic profiles of wounds colonized by bacteria. Pressure ulcer biopsies were harvested from primary chronic wounds and bisected into top and bottom sections prior to analysis of microbiome by pyrosequencing and analysis of metabolome using 1H nuclear magnetic resonance (NMR spectroscopy. Bacterial taxonomy revealed that wounds were colonized predominantly by three main phyla, but differed significantly at the genus level. While taxonomic profiles demonstrated significant variability between wounds, metabolic profiles shared significant similarity based on the depth of the wound biopsy. Biochemical association between taxonomy and metabolic landscape indicated significant wound-to-wound similarity in metabolite enrichment sets and metabolic pathway impacts, especially with regard to amino acid metabolism. To our knowledge, this is the first demonstration of a statistically robust correlation between bacterial colonization and metabolic landscape within the chronic wound environment.

  13. Biochemical association of metabolic profile and microbiome in chronic pressure ulcer wounds.

    Science.gov (United States)

    Ammons, Mary Cloud B; Morrissey, Kathryn; Tripet, Brian P; Van Leuven, James T; Han, Anne; Lazarus, Gerald S; Zenilman, Jonathan M; Stewart, Philip S; James, Garth A; Copié, Valérie

    2015-01-01

    Chronic, non-healing wounds contribute significantly to the suffering of patients with co-morbidities in the clinical population with mild to severely compromised immune systems. Normal wound healing proceeds through a well-described process. However, in chronic wounds this process seems to become dysregulated at the transition between resolution of inflammation and re-epithelialization. Bioburden in the form of colonizing bacteria is a major contributor to the delayed headlining in chronic wounds such as pressure ulcers. However how the microbiome influences the wound metabolic landscape is unknown. Here, we have used a Systems Biology approach to determine the biochemical associations between the taxonomic and metabolomic profiles of wounds colonized by bacteria. Pressure ulcer biopsies were harvested from primary chronic wounds and bisected into top and bottom sections prior to analysis of microbiome by pyrosequencing and analysis of metabolome using 1H nuclear magnetic resonance (NMR) spectroscopy. Bacterial taxonomy revealed that wounds were colonized predominantly by three main phyla, but differed significantly at the genus level. While taxonomic profiles demonstrated significant variability between wounds, metabolic profiles shared significant similarity based on the depth of the wound biopsy. Biochemical association between taxonomy and metabolic landscape indicated significant wound-to-wound similarity in metabolite enrichment sets and metabolic pathway impacts, especially with regard to amino acid metabolism. To our knowledge, this is the first demonstration of a statistically robust correlation between bacterial colonization and metabolic landscape within the chronic wound environment.

  14. Wound Healing and Infection in Surgery

    DEFF Research Database (Denmark)

    Sørensen, Lars Tue

    2012-01-01

    To clarify the evidence on smoking and postoperative healing complications across surgical specialties and to determine the impact of perioperative smoking cessation intervention.......To clarify the evidence on smoking and postoperative healing complications across surgical specialties and to determine the impact of perioperative smoking cessation intervention....

  15. A new star on the H₂O₂rizon of wound healing?

    Science.gov (United States)

    Schreml, Stephan; Landthaler, Michael; Schäferling, Michael; Babilas, Philipp

    2011-03-01

    A breakthrough finding has shown that hydrogen peroxide (H(2)O(2)) gradients contribute to recruit leucocytes to the wound site during the inflammatory phase of healing. It was in 1992 that NO was awarded 'molecule of the year' because of the discovery that such a tiny chemical may act as an important signalling molecule, thereby influencing research over decades. We speculate that H(2)O(2) also has the potential to have a broad impact on research over years, especially in mammalian wound healing. To justify our hypothesis, we provide evidence from the literature on (i) how H(2)O(2) gradients are created, (ii) how H(2)O(2) acts in the physiological phases of wound healing and (iii) a possible role of H(2)O(2) in bacterial defense - bacterial colonization being one of the major problems in chronic wounds. Based on this, we provide the first overview on how H(2)O(2) acts during the different wound healing phases.

  16. Xanthohumol modulates inflammation, oxidative stress, and angiogenesis in type 1 diabetic rat skin wound healing.

    Science.gov (United States)

    Costa, Raquel; Negrão, Rita; Valente, Inês; Castela, Ângela; Duarte, Delfim; Guardão, Luísa; Magalhães, Paulo J; Rodrigues, José A; Guimarães, João T; Gomes, Pedro; Soares, Raquel

    2013-11-22

    Type 1 diabetes mellitus is responsible for metabolic dysfunction, accompanied by chronic inflammation, oxidative stress, and endothelium dysfunction, and is often associated with impaired wound healing. Phenol-rich food improves vascular function, contributing to diabetes prevention. This study has evaluated the effect of phenol-rich beverage consumption in diabetic rats on wound healing, through angiogenesis, inflammation, and oxidative stress modulation. A wound-healing assay was performed in streptozotocin-induced diabetic Wistar rats drinking water, 5% ethanol, and stout beer with and without 10 mg/L xanthohumol (1), for a five-week period. Wounded skin microvessel density was reduced to normal values upon consumption of 1 in diabetic rats, being accompanied by decreased serum VEGF-A and inflammatory markers (IL-1β, NO, N-acetylglucosaminidase). Systemic glutathione and kidney and liver H2O2, 3-nitrotyrosine, and protein carbonylation also decreased to healthy levels after treatment with 1, implying an improvement in oxidative stress status. These findings suggest that consumption of xanthohumol (1) by diabetic animals consistently decreases inflammation and oxidative stress, allowing neovascularization control and improving diabetic wound healing.

  17. Cold Temperature Delays Wound Healing in Postharvest Sugarbeet Roots

    Directory of Open Access Journals (Sweden)

    Karen Klotz Fugate

    2016-04-01

    Full Text Available Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L. roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots stored at 6 and 12 °C for 28 d. Surface abrasions are common injuries of stored roots, and the storage temperatures used are typical of freshly harvested or rapidly cooled roots. Transpiration rate from the wounded surface and root weight loss were used to quantify wound healing. At 12 °C, transpiration rate from the wounded surface declined within 14 d and wounded roots lost weight at a rate similar to unwounded controls. At 6 °C, transpiration rate from the wounded surface did not decline in the 28 d after injury, and wounded roots lost 44% more weight than controls after 28 d storage. Melanin formation, lignification, and suberization occurred more rapidly at 12 °C than at 6 °C, and a continuous layer of lignified and suberized cells developed at 12 °C, but not at 6 °C. Examination of enzyme activities involved in melanin, lignin, and suberin formation indicated that differences in melanin formation at 6 and 12 °C were related to differences in polyphenol oxidase activity, although no relationships between suberin or lignin formation and phenylalanine ammonia lyase or peroxidase activity were evident. Wound-induced respiration was initially greater at 12 °C than at 6 °C. However, with continued storage, respiration rate of wounded roots declined more rapidly at 12 °C, and over 28 d, the increase in respiration due to injury was 52% greater in roots stored at 6 °C than in roots stored at 12 °C. The data indicate that storage at 6 °C severely slowed and impaired wound-healing of surface-abraded sugarbeet roots relative to roots stored at 12 °C and suggest that postharvest losses may be accelerated if freshly harvested roots are cooled

  18. Wound healing potential of Pañcavalkala formulations in a postfistulectomy wound

    OpenAIRE

    2015-01-01

    SUMMARY Sushruta mentioned sixty measures for management of wounds. Panchavalkal is the combination of five herbs having properties like Shodhana (cleaning) and Ropana (healing) of wounds. Individual drugs and in combination have Kashaya rasa (astringent) dominant and useful in the management of Vrana (wounds) as well as Shotha (inflammations). A 35 years old male patient consulted in Shalya OPD with complaints like discharge per anum, induration and intermittent pain at perianal region since...

  19. Wound healing genes and susceptibility to cutaneous leishmaniasis in Brazil

    OpenAIRE

    Castellucci, Léa; Jamieson, Sarra E; Almeida, Lucas; Oliveira, Joyce; Guimarães, Luiz Henrique; Lessa, Marcus; Fakiola, Michaela; Jesus, Amélia Ribeiro de; Miller, E. Nancy; Carvalho, Edgar M.; Blackwell, Jenefer M.

    2012-01-01

    Leishmania braziliensis causes cutaneous (CL) and mucosal (ML) leishmaniasis. In the mouse, Fli1 was identified as a gene influencing enhanced wound healing and resistance to CL caused by L. major. Polymorphism at FLI1 is associated with CL caused by L. braziliensis in humans, with an inverse association observed for ML disease. Here we extend the analysis to look at other wound healing genes, including CTGF, TGFB1, TGFBR1/2, SMADS 2/3/4/7 and FLII, all functionally linked along with FLI1 in ...

  20. Inflammation and wound healing in cats with chronic gingivitis/stomatitis after extraction of all premolars and molars were not affected by feeding of two diets with different omega-6/omega-3 polyunsaturated fatty acid ratios.

    Science.gov (United States)

    Corbee, R J; Booij-Vrieling, H E; van de Lest, C H A; Penning, L C; Tryfonidou, M A; Riemers, F M; Hazewinkel, H A W

    2012-08-01

    Feline chronic gingivitis/stomatitis (FCGS) is a painful inflammatory disease in cats. Extraction of teeth, including all premolars and molars, has been shown to be the therapy of choice in cats not responding sufficiently to home care (e.g. tooth brushing) and/or medical treatment (corticosteroids and/or antibiotics). In this study, we hypothesize that a cat food with an omega-6 polyunsaturated fatty acid (ω6 PUFA) to ω3 PUFA ratio of 10:1 reduces inflammation of the FCGS and accelerates soft tissue wound healing of the gingiva after dental extractions, compared to a cat food with a ω6:ω3 PUFA ratio of 40:1. The cats were fed diets with chicken fat and fish oil as sources of fatty acids. In one diet, part of the fish oil was replaced by safflower oil, resulting in two diets with ω6:ω3 PUFA ratios of 10:1 and 40:1. This double-blinded study in two groups of seven cats revealed that dietary fatty acids influence the composition of plasma cholesteryl esters and plasma levels of inflammatory cytokines. The diet with the 10:1 ratio lowered PGD(2) , PGE(2) and LTB(4) plasma levels significantly, compared to the diet with the 40:1 ratio (p = 0.05, p = 0.04, and p = 0.02 respectively). However, feeding diets with dietary ω6:ω3 PUFA ratios of 10:1 and 40:1, given to cats with FCGS for 4 weeks after extraction of all premolars and molars, did not alter the degree of inflammation or wound healing.

  1. Effect of Neem Leaves Extract (Azadirachta Indica on Wound Healing

    Directory of Open Access Journals (Sweden)

    Naveen Kumar Chundran

    2015-06-01

    Full Text Available Background: Neem leaves (Azadirachta Indica have active ingredients such as nimbidin and sodium nimbidate which possess/possesinganti-inflammatory, antibacterial, antifungal and antiviral properties that help in healing process and also contains an excellent nutrition which plays/playing a vital role information of collagen and formation of new capillaries. The aim of this experimental study is to evaluate healing activity of neem leaves. Methods: This experiment was conducted in Pharmacology Lab of Universitas Padjadjaran on October 2012. Twenty seven rats were grouped randomly into 3 groups and 1.5cm of excision wound was created. Negative control group was treated with a topical application of saline solution (sodium chloride0.9%, treatment group with a topical application of neem leaves extract and positive control group had been treated with a topical application of povidone-iodine for 15 days. Healing was assessed by the longest diameter of the raw surface of wound on days 0, 5, 10 and 15. The data were then analyzed using Mann-Whitney U test. Results: There was a significant reduction in the longest diameter of wound in group of neem leaves extract, compared with group sodium chloride 0.9%,.and there was no significant difference in the longest diameter of wound between neem leaves, extract and povidone iodine. Conclusions: Neem leaves extract has the same wound healing rate compared to povidone iodine. A further study in human should be conducted in the future

  2. Wound healing: a new perspective on glucosylated tetrahydrocurcumin

    Directory of Open Access Journals (Sweden)

    Bhaskar Rao A

    2015-07-01

    Full Text Available Adari Bhaskar Rao,1 Ernala Prasad,1 Seelam Siva Deepthi,1 Vennapusa Haritha,1 Sistla Ramakrishna,1 Kuncha Madhusudan,1 Mullapudi Venkata Surekha,2 Yerramilli Sri Rama Venkata Rao3 1Medicinal Chemistry and Pharmacology Division, Council of Scientific and Industrial Research – Indian Institute of Chemical Technology, 2Pathology Division, National Institute of Nutrition, 3Ashian Herbex Ltd, Hyderabad, AP, India Abstract: Wound healing represents a dynamic set of coordinated physiological processes observed in response to tissue injury. Several natural products are known to accelerate the process of wound healing. Tetrahydrocurcumin (THC, an in vivo biotransformed product/metabolite of curcumin, is known to exhibit a wide spectrum of biological activities similar to those of native curcuminoids. The poor bioavailability of these curcuminoids limits their clinical applications. The present study highlights the percutaneous absorption and wound healing activity of glucosyl-conjugated THC (glucosyl-THC in male Wistar rats. A high plasma concentration of glucosyl-THC (4.35 µg/mL was found in rats 3 hours after application. A significant enhanced wound healing activity and reduced epithelialization time were observed in rats that received glucosyl-THC. This may have been due to the improved bioavailability of the glucosyl compound. The nonstaining and lack of skin-sensitive side effects render the bioconjugated glucosyl-THC a promising therapeutic compound in the management of excision wounds and in cosmetic applications, in the near future. Keywords: glucosylation, epithelialization, granulation tissue, cosmetic, therapeutic

  3. Remodeling of skin nerve fibers during burn wound healing

    Institute of Scientific and Technical Information of China (English)

    Yongqiang Feng; Xia Li; Rui Zhang; Yu Liu; Tingting Leng; Yibing Wang

    2010-01-01

    Burn wound healing involves a complex sequence of processes.Recent studies have revealed that skin reinnervation may have an impact on physiological wound repair.Few studies have addressed the process of reinnervation and morphological changes in regenerated nerve fibers.The regeneration of neurites during full-thickness burn wound healing was determined by immunofluorescent staining using an anti-neurofilament protein monoclonal antibody,and three-dimensional morphology was observed under a laser scanning confocal microscope.Morphology and the volume fraction of collagen and nerve fibers were measured.Skin reinnervation increased during wound healing,peaked during the proliferative scar stage,and then decreased to lower levels during the maturation period.The results from the skin nerve fibers correlated with those from collagen using semi-quantitative analysis.Disintegration and fragmentation were observed frequently in samples from the proliferative stage,and seldom occurred during the maturation stage.There was a remodeling process of regenerated nerve fibers during wound healing,which comprised changed innervation density and topical morphology.The mechanism of remodeling for nerve fibers requires further investigation.

  4. An Essential Role of NRF2 in Diabetic Wound Healing.

    Science.gov (United States)

    Long, Min; Rojo de la Vega, Montserrat; Wen, Qing; Bharara, Manish; Jiang, Tao; Zhang, Rui; Zhou, Shiwen; Wong, Pak K; Wondrak, Georg T; Zheng, Hongting; Zhang, Donna D

    2016-03-01

    The high mortality and disability of diabetic nonhealing skin ulcers create an urgent need for the development of more efficacious strategies targeting diabetic wound healing. In the current study, using human clinical specimens, we show that perilesional skin tissues from patients with diabetes are under more severe oxidative stress and display higher activation of the nuclear factor-E2-related factor 2 (NRF2)-mediated antioxidant response than perilesional skin tissues from normoglycemic patients. In a streptozotocin-induced diabetes mouse model, Nrf2(-/-) mice have delayed wound closure rates compared with Nrf2(+/+) mice, which is, at least partially, due to greater oxidative DNA damage, low transforming growth factor-β1 (TGF-β1) and high matrix metalloproteinase 9 (MMP9) expression, and increased apoptosis. More importantly, pharmacological activation of the NRF2 pathway significantly improves diabetic wound healing. In vitro experiments in human immortalized keratinocyte cells confirm that NRF2 contributes to wound healing by alleviating oxidative stress, increasing proliferation and migration, decreasing apoptosis, and increasing the expression of TGF-β1 and lowering MMP9 under high-glucose conditions. This study indicates an essential role for NRF2 in diabetic wound healing and the therapeutic benefits of activating NRF2 in this disease, laying the foundation for future clinical trials using NRF2 activators in treating diabetic skin ulcers.

  5. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells

    Science.gov (United States)

    Syarina, Pauzi Nur Aimi; Karthivashan, Govindarajan; Abas, Faridah; Arulselvan, Palanisamy; Fakurazi, Sharida

    2015-01-01

    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients. PMID:27004048

  6. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells.

    Science.gov (United States)

    Syarina, Pauzi Nur Aimi; Karthivashan, Govindarajan; Abas, Faridah; Arulselvan, Palanisamy; Fakurazi, Sharida

    2015-01-01

    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients.

  7. Ascorbic acid for the healing of skin wounds in rats

    Directory of Open Access Journals (Sweden)

    CC. Lima

    Full Text Available BACKGROUND: Healing is a complex process that involves cellular and biochemical events. Several medicines have been used in order to shorten healing time and avoid aesthetic damage. OBJECTIVE: to verify the topical effect of ascorbic acid for the healing of rats' skin wounds through the number of macrophages, new vessels and fibroblast verifications in the experimental period; and analyse the thickness and the collagen fibre organization in the injured tissue. METHODS: Male Rattus norvegicus weighing 270 ± 30 g were used. After thionembutal anesthesia, 15 mm transversal incisions were made in the animals' cervical backs. They were divided into two groups: Control Group (CG, n = 12 - skin wound cleaned with water and soap daily; Treated Group (TG, n = 12 - skin wound cleaned daily and treated with ascorbic acid cream (10%. Samples of skin were collected on the 3rd, 7th and 14th days. The sections were stained with hematoxylin-eosin and picrosirius red for morphologic analysis. The images were obtained and analysed by a Digital Analyser System. RESULTS: The ascorbic acid acted on every stage of the healing process. It reduced the number of macrophages, increased the proliferation of fibroblasts and new vessels, and stimulated the synthesis of thicker and more organized collagen fibres in the wounds when compared to CG. CONCLUSION: Ascorbic acid was shown to have anti-inflammatory and healing effects, guaranteeing a suiTable environment and conditions for faster skin repair.

  8. Spectroscopic Biomarkers for Monitoring Wound Healing and Infection in Wounds

    Science.gov (United States)

    2015-06-01

    Diagnostic Raman spectroscopy for the forensic detection of biomaterials and the preservation of cultural heritage. Anal Bioanal Chem 2005;382:1398 406. 29...appropriate treatment in the operating room. 1800 1600 1400 1200 1 000 800 600 Raman Shift (cm-1) Acute Combat Wounds Modern war ballistics inflict...342 1800 1600 1400 1200 1 000 800 600 Raman Shift (cm-1) Acute Combat Wounds Modern war ballistics inflict devastating extremity injuries

  9. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing.

    Science.gov (United States)

    Matsubayashi, Yutaka; Coulson-Gilmer, Camilla; Millard, Tom H

    2015-08-01

    The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form "signaling centers" along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing.

  10. Biliary wound healing, ductular reactions, and IL-6/gp130 signaling in the development of liver disease

    Institute of Scientific and Technical Information of China (English)

    A J Demetris; John G Lunz Ⅲ; Susan Specht; Isao Nozaki

    2006-01-01

    Basic and translational wound healing research in the biliary tree lag significantly behind similar studies on the skin and gastrointestinal tract. This is at least partly attributable to lack of easy access to the biliary tract for study. But clinical relevance, more interest in biliary epithelial cell (BEC) pathophysiology, and widespread availability of BEC cultures are factors reversing this trend. In the extra-hepatic biliary tree, ineffectual wound healing,scarring and stricture development are pressing issues.In the smallest intra-hepatic bile ducts either impaired BEC proliferation or an exuberant response can contribute to liver disease. Chronic inflammation and persistent wound healing reactions in large and small bile ducts often lead to liver cancer. General concepts of wound healing as they apply to the biliary tract, importance of cellular processes dependent on IL-6/gp130/STAT3 signaling pathways, unanswered questions, and future directions are discussed.

  11. Evaluation of dense collagen matrices as medicated wound dressing for the treatment of cutaneous chronic wounds.

    Science.gov (United States)

    Helary, Christophe; Abed, Aicha; Mosser, Gervaise; Louedec, Liliane; Letourneur, Didier; Coradin, Thibaud; Giraud-Guille, Marie Madeleine; Meddahi-Pellé, Anne

    2015-02-01

    Cutaneous chronic wounds are characterized by an impaired wound healing which may lead to infection and amputation. When current treatments are not effective enough, the application of wound dressings is required. To date, no ideal biomaterial is available. In this study, highly dense collagen matrices have been evaluated as novel medicated wound dressings for the treatment of chronic wounds. For this purpose, the structure, mechanical properties, swelling ability and in vivo stability of matrices concentrated from 5 to 40 mg mL(-1) were tested. The matrix stiffness increased with the collagen concentration and was associated with the fibril density and thickness. Increased collagen concentration also enhanced the material resistance against accelerated digestion by collagenase. After subcutaneous implantation in rats, dense collagen matrices exhibited high stability without any degradation after 15 days. The absence of macrophages and neutrophils evidenced their biocompatibility. Subsequently, dense matrices at 40 mg mL(-1) were evaluated as drug delivery system for ampicillin release. More concentrated matrices exhibited the best swelling abilities and could absorb 20 times their dry weight in water, allowing for an efficient antibiotic loading from their dried form. They released efficient doses of antibiotics that inhibited the bacterial growth of Staphylococcus Aureus over 3 days. In parallel, they show no cytotoxicity towards human fibroblasts. These results show that dense collagen matrices are promising materials to develop medicated wound dressings for the treatment of chronic wounds.

  12. Downregulation of PTEN at Corneal Wound Sites Accelerates Wound Healing through Increased Cell Migration

    Science.gov (United States)

    Cao, Lin; Graue-Hernandez, Enrique O.; Tran, Vu; Reid, Brian; Pu, Jin; Mannis, Mark J.

    2011-01-01

    Purpose. The PI3K/Akt pathway is required for cell polarization and migration, whereas the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has inhibitory effects on the PI3K/Akt pathway. The authors therefore hypothesized that wounding would downregulate PTEN and that this downregulation would enhance wound healing. Methods. In human corneal epithelial (HCE) cell monolayer and rat cornea scratch wound models, the authors investigated PTEN and Akt expression using Western blot and immunofluorescence analyses. The effects of PTEN and PI3K inhibitors dipotassium bisperoxo (picolinato) oxovanadate (bpv(pic)) and LY294002 on cell migration and wound closure were investigated using time-lapse imaging. Finally, the authors investigated the effect of PTEN inhibition on wound healing in whole rat eyes. Results. In HCE cell monolayer and rat cornea, PTEN was downregulated at the wound edges within 30 minutes of wounding. The downregulation of PTEN was causal in a simultaneous increase in Akt activation, which was responsible for a significant increase in individual cell migration rate from 8.8 μm/h to 17.3 μm/h. An increased migration rate was maintained for 20 hours. PTEN inhibition significantly enhanced the wound healing rate in the HCE cell monolayer from 10 minutes onward after treatment and reduced the healing time in eye organ culture from 30 to 20 hours. Conclusions. Injury to the corneal epithelium downregulates the expression of PTEN at wound edges, allowing increased PI3K/Akt signaling, thereby contributing to a significant enhancement of cell migration and wound healing. These results suggest that PTEN inhibition may be an effective treatment for corneal injury. PMID:21212174

  13. Wound healing and the effect of pineal gland and melatonin

    Directory of Open Access Journals (Sweden)

    Jacek Drobnik

    2012-02-01

    Full Text Available Wound healing is a complex phenomenon that is controlled by local and general regulatory mechanisms. The aim of the paper is to analyze recently-published data devoted to the regulation of wound repair by melatonin. The effect of melatonin has been reported in different wound types healed with various mechanisms. The action of the pineal indoleamine is dependent on the used dose, time of application and target organ. Moreover, melatonin influences different phases of wound repair such as inflammation, by regulating the release of inflammatory mediators, cell proliferation and migration, by influencing angiogenesis, and the proliferation of fibroblasts, as well as the synthesis phase, by regulating collagen and glycosaminoglycan accumulation in the wounded milieu. Thus, healing of the skin wound, myocardial infarction, bone fractures and gastric ulcer is influenced by melatonin. In patients with low levels of melatonin (elderly or β-blocker treated patients, its regulatory effects are expected to be impaired. Thus, the need for melatonin supplementation in those patients is postulated in the study. [J Exp Integr Med 2012; 2(1.000: 3-14

  14. ROLE OF VACUUM ASSISTED CLOSURE (VAC - IN WOUND HEALING

    Directory of Open Access Journals (Sweden)

    L. Lokanadha Rao

    2016-09-01

    Full Text Available BACKGROUND Large, complicated wounds pose a significant surgical problem. Negative pressure wound therapy is one of several methods enabling to obtain better treatment results in case of open infected wounds.1,2 The use of negative pressure therapy enables to obtain a reduction in the number of bacteria which significantly reduces the number of complications.3,4,5 AIMS AND OBJECTIVES: To review the Role of VAC in wound healing in Orthopaedics. MATERIALS AND METHODS The cases presented in this study are those who were admitted in King George Hospital in the time period from January 2014 to August 2015. This is a prospective interventional study. In this study, 15 patients were assigned to the study group (Negative Pressure Wound Therapy- NPWT based on their willingness for undergoing treatment. OBSERVATIONS AND RESULTS 12 males and 3 females are involved in the study. There is decrease in the mean wound area from 64 cm2 to 38 cm2 . There is decrease in the duration of hospital stay. Finally, wound is closed by SSG or secondary suturing. DISCUSSION NPWT is known to reduce bacterial counts, although they remain colonised with organisms. Wounds covered with NPW dressing are completely isolated from the environment, thereby reduces cross infection. In our series, we had 73.3% (11 cases excellent results and 26.7% (4 cases good results and no poor results. As interpretation with results, VAC therapy is effective mode of adjuvant therapy for the management of infected wounds. CONCLUSION VAC has been proven to be a reliable method of treating a variety of infected wounds. It greatly increases the rate of granulation tissue formation and lowers bacterial counts to accelerate wound healing. It can be used as a temporary dressing to prepare wounds optimally prior to closure or as a definitive treatment for nonsurgical and surgical wounds. VAC is now being used in a multitude of clinical settings, including the treatment of surgical wounds, infected wounds

  15. Establishing an education program for chronic wound care in China.

    Science.gov (United States)

    Yu, Ying; Fu, Xiaobing

    2012-12-01

    Chronic wounds in China are an important issue. However, wound care knowledge and the skill of health care professionals varies among hospitals and cities. The Chinese Tissue Repair Society (CTRS) has developed a 3-year training program in wound care in China that is sponsored by the World Diabetes Foundation and the Coloplast Access to Healthcare foundation. The project focuses on training physicians and nurses in wound care for patients with diabetic mellitus and other chronic skin wounds. In the past 2 years, 1618 health care professionals, including 915 physicians and 703 nurses, have been trained. Participants are from more than 200 hospitals in 21 provinces. About 1200 patients per month, on average, have benefited from this project. In total, 13 hospitals have become training bases to continue the education program. The aim of the program is to help Chinese medical professionals efficiently manage chronic wounds, thereby shortening the wound healing time, reducing the amputation rate and treatment costs, and improving quality of life.

  16. A novel model of chronic wounds: importance of redox imbalance and biofilm-forming bacteria for establishment of chronicity.

    Directory of Open Access Journals (Sweden)

    Sandeep Dhall

    Full Text Available Chronic wounds have a large impact on health, affecting ∼6.5 M people and costing ∼$25B/year in the US alone. We previously discovered that a genetically modified mouse model displays impaired healing similar to problematic wounds in humans and that sometimes the wounds become chronic. Here we show how and why these impaired wounds become chronic, describe a way whereby we can drive impaired wounds to chronicity at will and propose that the same processes are involved in chronic wound development in humans. We hypothesize that exacerbated levels of oxidative stress are critical for initiation of chronicity. We show that, very early after injury, wounds with impaired healing contain elevated levels of reactive oxygen and nitrogen species and, much like in humans, these levels increase with age. Moreover, the activity of anti-oxidant enzymes is not elevated, leading to buildup of oxidative stress in the wound environment. To induce chronicity, we exacerbated the redox imbalance by further inhibiting the antioxidant enzymes and by infecting the wounds with biofilm-forming bacteria isolated from the chronic wounds that developed naturally in these mice. These wounds do not re-epithelialize, the granulation tissue lacks vascularization and interstitial collagen fibers, they contain an antibiotic-resistant mixed bioflora with biofilm-forming capacity, and they stay open for several weeks. These findings are highly significant because they show for the first time that chronic wounds can be generated in an animal model effectively and consistently. The availability of such a model will significantly propel the field forward because it can be used to develop strategies to regain redox balance that may result in inhibition of biofilm formation and result in restoration of healthy wound tissue. Furthermore, the model can lead to the understanding of other fundamental mechanisms of chronic wound development that can potentially lead to novel therapies.

  17. 动机性访谈对儿童小腿创伤慢性伤口愈合的影响%Effect of motivational interview on accelerating chronic wound healing in children with calf injury

    Institute of Scientific and Technical Information of China (English)

    蒋雪飞; 林梅; 傅强; 谭伟欣; 欧会芝

    2016-01-01

    Objective:To explore the effect of motivational interview on accelerating chronic wound healing in children with calf injury. Methods:Selected 140 children with traumatic chronic wounds from January 2015 to December 2015 and randomly divided them into control group and intervention group. The control group was given routine health education. The intervention group established the motivational interview intervention model based on the cross - theo-retical model. The treatment effect was evaluated by wound score and average dressing treatment time. Results:Compared with the situation before the inter-vention,the wound scores of the two groups were decreased at some degree,however the decreased degree of the intervention group was more significant than that of the control group(P < 0. 05). The average time of dressing change of the intervention group was significantly shorter than that of the control group(P < 0. 05). No significant difference was found between the cure rates of the two groups(P ﹥ 0. 05). Conclusion:Motivational interview can relieve children’s depression and tension caused by trauma through motivating inner behavioral change willing,improve children’s compliance and promote the healing of chronic wounds effectively.%目的:探讨动机性访谈对促进儿童小腿创伤慢性伤口愈合的效果。方法:将2015年1~12月140例儿童小腿创伤性慢性伤口患儿随机等分为对照组和干预组,对照组进行常规健康教育;干预组基于跨理论模型建立动机性访谈干预模式。采用伤口疮面评分、平均换药治疗时间评价干预效果。结果:干预前后两组患儿疮面评分均有不同程度降低,但干预组下降程度较对照组更加明显(P <0.05),且平均换药治疗时间明显短于对照组(P <0.05),伤口疮面的痊愈率两组无明显差异(P ﹥0.05)。结论:动机性访谈可通过激发患儿内在行为改变意愿,消除患儿因创伤造成的

  18. Innate Defense Regulator Peptide 1018 in Wound Healing and Wound Infection

    DEFF Research Database (Denmark)

    Steinstraesser, Lars; Hirsch, Tobias; Schulte, Matthias

    2012-01-01

    Innate defense regulators (IDRs) are synthetic immunomodulatory versions of natural host defense peptides (HDP). IDRs mediate protection against bacterial challenge in the absence of direct antimicrobial activity, representing a novel approach to anti-infective and anti-inflammatory therapy......-1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL......-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However...

  19. Proresolution therapy for the treatment of delayed healing of diabetic wounds.

    Science.gov (United States)

    Tang, Yunan; Zhang, Michael J; Hellmann, Jason; Kosuri, Madhavi; Bhatnagar, Aruni; Spite, Matthew

    2013-02-01

    Obesity and type 2 diabetes are emerging global epidemics associated with chronic, low-grade inflammation. A characteristic feature of type 2 diabetes is delayed wound healing, which increases the risk of recurrent infections, tissue necrosis, and limb amputation. In health, inflammation is actively resolved by endogenous mediators, such as the resolvins. D-series resolvins are generated from docosahexaenoic acid (DHA) and promote macrophage-mediated clearance of microbes and apoptotic cells. However, it is not clear how type 2 diabetes affects the resolution of inflammation. Here, we report that resolution of acute peritonitis is delayed in obese diabetic (db/db) mice. Altered resolution was associated with decreased apoptotic cell and Fc receptor-mediated macrophage clearance. Treatment with resolvin D1 (RvD1) enhanced resolution of peritonitis, decreased accumulation of apoptotic thymocytes in diabetic mice, and stimulated diabetic macrophage phagocytosis. Conversion of DHA to monohydroxydocosanoids, markers of resolvin biosynthesis, was attenuated in diabetic wounds, and local application of RvD1 accelerated wound closure and decreased accumulation of apoptotic cells and macrophages in the wounds. These findings support the notion that diabetes impairs resolution of wound healing and demonstrate that stimulating resolution with proresolving lipid mediators could be a novel approach to treating chronic, nonhealing wounds in patients with diabetes.

  20. Gender affects skin wound healing in plasminogen deficient mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  1. Skin wound healing in different aged Xenopus laevis.

    Science.gov (United States)

    Bertolotti, Evelina; Malagoli, Davide; Franchini, Antonella

    2013-08-01

    Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8- and 15-month-old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re-epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti-inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti-tumor necrosis factor (TNF)-α, iNOS, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti-α-SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar-like pattern. The quantitative PCR analysis demonstrated an up-regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar-like tissue formation.

  2. Re-epithelialization: advancing epithelium frontier during wound healing.

    Science.gov (United States)

    Ben Amar, M; Wu, M

    2014-04-06

    The first function of the skin is to serve as a protective barrier against the environment. Its loss of integrity as a result of injury or illness may lead to a major disability and the first goal of healing is wound closure involving many biological processes for repair and tissue regeneration. In vivo wound healing has four phases, one of them being the migration of the healthy epithelium surrounding the wound in the direction of the injury in order to cover it. Here, we present a theoretical model of the re-epithelialization phase driven by chemotaxis for a circular wound. This model takes into account the diffusion of chemoattractants both in the wound and the neighbouring tissue, the uptake of these molecules by the surface receptors of epithelial cells, the migration of the neighbour epithelium, the tension and proliferation at the wound border. Using a simple Darcy's law for cell migration transforms our biological model into a free-boundary problem, which is analysed in the simplified circular geometry leading to explicit solutions for the closure and making stability analysis possible. It turns out that for realistic wound sizes of the order of centimetres and from experimental data, the re-epithelialization is always an unstable process and the perfect circle cannot be observed, a result confirmed by fully nonlinear simulations and in agreement with experimental observations.

  3. Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells.

    Science.gov (United States)

    Sangani, Rajnikumar; Pandya, Chirayu D; Bhattacharyya, Maryka H; Periyasamy-Thandavan, Sudharsan; Chutkan, Norman; Markand, Shanu; Hill, William D; Hamrick, Mark; Isales, Carlos; Fulzele, Sadanand

    2014-03-01

    Bone marrow stromal cell (BMSC) adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38) and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions.

  4. Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Rajnikumar Sangani

    2014-03-01

    Full Text Available Bone marrow stromal cell (BMSC adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38 and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions.

  5. The Review on Properties of Aloe Vera in Healing of Cutaneous Wounds.

    Science.gov (United States)

    Hashemi, Seyyed Abbas; Madani, Seyyed Abdollah; Abediankenari, Saied

    2015-01-01

    Treatment of wounds is very important and was subject of different investigations. In this regard, natural substance plays crucial role as complementary medicine. Various studies reported that aloe vera has useful effects on wounds especially cutaneous wounds healing. Therefore in the current review, we examined the effect of aloe vera on cutaneous wound healing and concluded that although aloe vera improves the wound healing as well as other procedures both clinically and experimentally, more studies are still needed to approve the outcomes.

  6. Wnt signaling induces epithelial differentiation during cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Hocking Anne

    2006-01-01

    Full Text Available Abstract Background Cutaneous wound repair in adult mammals does not regenerate the original epithelial architecture and results in altered skin function. We propose that lack of regeneration may be due to the absence of appropriate molecular signals to promote regeneration. In this study, we investigated the regulation of Wnt signaling during cutaneous wound healing and the consequence of activating either the beta-catenin-dependent or beta-catenin-independent Wnt signaling on epidermal architecture during wound repair. Results We determined that the expression of Wnt ligands that typically signal via the beta-catenin-independent pathway is up-regulated in the wound while the beta-catenin-dependent Wnt signaling is activated in the hair follicles adjacent to the wound edge. Ectopic activation of beta-catenin-dependent Wnt signaling with lithium chloride in the wound resulted in epithelial cysts and occasional rudimentary hair follicle structures within the epidermis. In contrast, forced expression of Wnt-5a in the deeper wound induced changes in the interfollicular epithelium mimicking regeneration, including formation of epithelia-lined cysts in the wound dermis, rudimentary hair follicles and sebaceous glands, without formation of tumors. Conclusion These findings suggest that adult interfollicular epithelium is capable of responding to Wnt morphogenic signals necessary for restoring epithelial tissue patterning in the skin during wound repair.

  7. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe [Faculty of Physics, Alexandru Ioan Cuza University, Bd. Carol No. 11, 700506, Iasi (Romania); Grigoras, Constantin, E-mail: andrei.nastuta@uaic.ro [Physiopathology Department, Grigore T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania)

    2011-03-16

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  8. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Science.gov (United States)

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  9. The heme-heme oxygenase system in wound healing; implications for scar formation.

    NARCIS (Netherlands)

    Wagener, F.A.D.T.G.; Scharstuhl, A.; Tyrrell, R.M.; Hoff, J.W. von den; Jozkowicz, A.; Dulak, J.; Russel, F.G.M.; Kuijpers-Jagtman, A.M.

    2010-01-01

    Wound healing is an intricate process requiring the concerted action of keratinocytes, fibroblasts, endothelial cells, and macrophages. Here, we review the literature on normal wound healing and the pathological forms of wound healing, such as hypertrophic or excessive scar formation, with special e

  10. Hypercalcemia Leads to Delayed Corneal Wound Healing in Ovariectomized Rats.

    Science.gov (United States)

    Nagai, Noriaki; Ogata, Fumihiko; Kawasaki, Naohito; Ito, Yoshimasa; Funakami, Yoshinori; Okamoto, Norio; Shimomura, Yoshikazu

    2015-01-01

    Hypercalcemia is often observed in postmenopausal women as well as in patients with primary hyperparathyroidism or malignant tumors. In this study, we investigated the relationship between calcium ion (Ca(2+)) levels in lacrimal fluid and the rate of corneal wound healing in hypercalcemia using ovariectomized (OVX) rat debrided corneal epithelium. We also determined the effects of Ca(2+) levels on cell adhesion, proliferation and viability in a human cornea epithelial cell line (HCE-T). The calcium content in bones of OVX rats decreased after ovariectomy. Moreover, the Ca(2+) content in the blood of OVX rats was increased 1 month after ovariectomy, and decreased. The Ca(2+) content in the lacrimal fluid of OVX rats was also increased after ovariectomy, and then decreased similarly as in blood. Corneal wound healing in OVX rats was delayed in comparison with Sham rats (control rats), and a close relationship was observed between the Ca(2+) levels in lacrimal fluid and the rate of corneal wound healing in Sham and OVX rats (y=-0.7863x+8.785, R=0.78, n=25). In addition, an enhancement in Ca(2+) levels caused a decrease in the viability in HCE-T cells. It is possible that enhanced Ca(2+) levels in lacrimal fluid may cause a decrease in the viability of corneal epithelial cells, resulting in a delay in corneal wound healing. These findings provide significant information that can be used to design further studies aimed at reducing corneal damage of patients with hypercalcemia.

  11. Catecholamine stress alters neutrophil trafficking and impairs wound healing by β2-adrenergic receptor-mediated upregulation of IL-6.

    Science.gov (United States)

    Kim, Min-Ho; Gorouhi, Farzam; Ramirez, Sandra; Granick, Jennifer L; Byrne, Barbara A; Soulika, Athena M; Simon, Scott I; Isseroff, R Rivkah

    2014-03-01

    Stress-induced hormones can alter the inflammatory response to tissue injury; however, the precise mechanism by which epinephrine influences inflammatory response and wound healing is not well defined. Here we demonstrate that epinephrine alters the neutrophil (polymorphonuclear leukocyte (PMN))-dependent inflammatory response to a cutaneous wound. Using noninvasive real-time imaging of genetically tagged PMNs in a murine skin wound, chronic, epinephrine-mediated stress was modeled by sustained delivery of epinephrine. Prolonged systemic exposure of epinephrine resulted in persistent PMN trafficking to the wound site via an IL-6-mediated mechanism, and this in turn impaired wound repair. Further, we demonstrate that β2-adrenergic receptor-dependent activation of proinflammatory macrophages is critical for epinephrine-mediated IL-6 production. This study expands our current understanding of stress hormone-mediated impairment of wound healing and provides an important mechanistic link to explain how epinephrine stress exacerbates inflammation via increased number and lifetime of PMNs.

  12. Regenerative Medicine: Novel Approach in Burn Wound Healing

    Directory of Open Access Journals (Sweden)

    Zare

    2015-06-01

    Full Text Available Context Burn wounds of the skin require a long period to healing, which very often is incomplete, with functional and esthetic consequences for the patients. Stem cells in the traumatized tissue represent the promoters of the healing process and are a primary focus for regenerative medicine, which aims to find and use the triggers for the activation of stem cells of sin tissue. Evidence Acquisition At present, tissue engineering, composite epithelial autografts, multipotent stem cells and combined gene delivery with stem cell therapy are the approaches used in regenerative medicine. Alongside, the development of 3D scaffolds or matrices is a promising adjunct, as studies investigate the multiple uses of these supports for wound repair. Results Application of cells to the burn wound could be performed, either by the bedside, as a non-invasive procedure, or in the operating room, with the use of a matrix, scaffold or dermal substitute. Cell spraying, although under use in clinical setting, is not yet supported by conclusive data. Magnetic resonance imaging, optical imaging and positron emission tomography are currently used to assess the viability and location of stem cells, after transplantation. Conclusions Stem cell therapies in wound care may lessen the morbidities associated with wound healing. An ideal method for the effective administration of stem cells for burn patients has not yet been elucidated. Further comparison of the local and systemic effects in burn patients, associated with each route of stem cell delivery, needs to be performed.

  13. Targeting connexin 43 in diabetic wound healing: Future perspectives

    Directory of Open Access Journals (Sweden)

    Bajpai S

    2009-01-01

    Full Text Available The unknown mechanisms of impaired tissue repair in diabetes mellitus are making this disease a serious clinical problem for the physicians worldwide. The lacuna in the knowledge of the etiology of diabetic wounds necessitates more focused research in order to develop new targeting tools with higher efficacy for their effective management. Gap-junction proteins, connexins, have shown some promising results in the process of diabetic wound healing. Till now the role of connexins has been implicated in peripheral neuropathy, deafness, skin disorders, cataract, germ cell development and treatment of cancer. Recent findings have revealed that gap junctions play a key role in normal as well as diabetic wound healing. The purpose of this review is to provide the information related to etiology, epidemiology, clinical presentation of diabetic wounds and to analyze the role of connexin 43 (Cx43 in the diabetic wound healing process. The current control strategies and the future research challenges have also been discussed briefly in this review.

  14. The effects of Ankaferd, a hemostatic agent, on wound healing

    Directory of Open Access Journals (Sweden)

    Sevgi Özbaysar Sezgin

    2015-09-01

    Full Text Available Background and Design: There have been a lot of topical and systemic agents to provide an ideal scar formation and to decrease the periods of wound healing process by affecting the factors of healing (inflammatory cells, thrombocytes, extracellular matrix etc.. In this study, we investigated the effects of Ankaferd on wound healing. Materials and Methods: Wounds were created with 8 mm punch biopsy knots on the back of 32 rats which were separated into 4 groups of 9 rats. No treatment was done in group D which was the control group while group A received topical Ankaferd treatment twice a day; group B treated with silver sulfadiazine twice a day, and group C put on base cream, which did not include any active agent, twice a day. The rats were followed for 15 days macroscopically and examined histopathologically on days 0., 3., 7., and 15. by taking biopsy specimens. Result: At the end of our study, it was detected that Ankaferd accelerated the healing process in comparison to control and base cream groups according to the macroscopic and histopathologic results. Additionally, similar to this situation, it was observed that the healing process in silver sulfadiazine group was faster than in control and base cream groups. Conclusion: More experimental and clinical studies in larger populations are needed to prove and confirm its efficacy.

  15. Efeitos do uso crônico da dexametasona na cicatrização de feridas cutâneas em ratos Effects of chronic use of dexamethasone on cutaneous wound healing in rats

    Directory of Open Access Journals (Sweden)

    Fernando Pundek Tenius

    2007-04-01

    Full Text Available FUNDAMENTOS: Acredita-se que os glicocorticóides prejudiquem a cicatrização, causando decréscimo da proliferação celular, da neovascularização e da produção de matriz. OBJETIVO: Investigar os efeitos do uso crônico dos corticoesteróides na cicatrização de feridas cutâneas. MÉTODOS: Após injeções de dexametasona (0,1mg/kg/dia por 30 dias, fez-se incisão no dorso de ratos e estudou-se a cicatrização no terceiro, sétimo e 14o dias. A resistência da cicatriz, a densidade do colágeno e a reação inflamatória foram avaliadas pela histometria. RESULTADOS: As cicatrizes do grupo tratado com dexametasona eram menos resistentes à tração em todos os tempos (p=0,008 e apresentavam menor densidade de colágeno. A do colágeno tipo III foi menor em todos os tempos estudados (pBACKGROUND: Glucocorticoids are believed to hinder healing process, causing decreased cell proliferation, neovascularization and matrix production. OBJECTIVE: To investigate the effects of the chronic use of corticosteroids on skin wound healing. METHODS: After daily injections of dexamethasone (0.1 mg/Kg for 30 days, an excision was made in the dorsum of rats. Wound healing was evaluated at postoperative days 3, 7 and 14. Scar resistance, collagen density and inflammatory reaction were assessed by histometry. RESULTS: The scars of the dexamethasone-treated group were less resistant to traction in all days (p=0.008 and presented lower collagen density. Collagen III density was affected at all times (p<0.0001 and collagen I density was lower only on day 14 (p<0.0001. The inflammatory cell infiltration was less intense in the dexamethasone-treated group in the first two evaluations (p=0.001 and p=0.016, but there was no significant difference on day 14, (p=0.367. CONCLUSIONS: We observed decreased scar resistance and lower total collagen density in all periods studied. In the beginning of the process, low collagen III density was observed and later collagen

  16. Increased collagen synthesis rate during wound healing in muscle.

    Directory of Open Access Journals (Sweden)

    Shaobo Zhou

    Full Text Available Wound healing in muscle involves the deposition of collagen, but it is not known whether this is achieved by changes in the synthesis or the degradation of collagen. We have used a reliable flooding dose method to measure collagen synthesis rate in vivo in rat abdominal muscle following a surgical incision. Collagen synthesis rate was increased by 480% and 860% on days 2 and 7 respectively after surgery in the wounded muscle compared with an undamaged area of the same muscle. Collagen content was increased by approximately 100% at both day 2 and day 7. These results demonstrate that collagen deposition during wound healing in muscle is achieved entirely by an increase in the rate of collagen synthesis.

  17. Aloe Gel Enhances Angiogenesis in Healing of Diabetic Wound

    Directory of Open Access Journals (Sweden)

    Djanggan Sargowo

    2011-12-01

    Full Text Available BACKGROUND: Diabetic micro and macroangiophathy lead to the incident of diabetic foot ulcers characterized by an increased number of circulating endothelial cells (CECs and decreased function of endothelial progenitor cells (EPCs. This fact is correlated with ischemia and diabetic wound healing failure. Aloe vera gel is known to be able to stimulate vascular endothelial growth factor (VEGF expression and activity by enhancing nitric oxide (NO production as a result of nitric oxide synthase (NOS enzyme activity. Aloe vera is a potential target to enhancing angiogenesis in wound healing. OBJECTIVE: The objective of this study was to explore the major role of Aloe vera gel in wound healing of diabetic ulcers by increasing the level of EPCs, VEGF, and endothelial nitric oxide synthase (eNOS, as well as by reducing the level of CECs involved in angiogenesis process of diabetic ulcers healing. METHODS: The experimental groups was divided into five subgroups consisting of non diabetic wistar rats, diabetic rats without oral administration of aloe gel, and treatment subgroup (diabetic rats with 30, 60 and 120 mg/day of aloe gel doses for 14 days. All subgroups were wounded and daily observation was done on the wounds areas. Measurement of the number of EPCs (CD34, and CECs (CD45 and CD146 was done by flow cytometry, followed by measurement of VEGF and eNOS expression on dermal tissue by immunohistochemical method on day 0 and day 14 after treatment. The quantitative data were analyzed by One-Way ANOVA and Linear Regression, with a confidence interval 5% and significance level (p<0.05 using SPSS 16 software to compare the difference and correlation between wound diameters, number of EPCs and CECs as well as the levels of VEGF and eNOS. RESULTS: The results of this study showed that aloe gel oral treatment in diabetic wistar rats was able to accelerate the wound healing process. It was shown by significant reduction of wound diameter (0.27±0.02; the

  18. FOXO1, TGF-β regulation and wound healing.

    Science.gov (United States)

    Hameedaldeen, Alhassan; Liu, Jian; Batres, Angelika; Graves, Gabrielle S; Graves, Dana T

    2014-09-15

    Re-epithelialization is a complex process that involves migration and proliferation of keratinocytes, in addition to the production of cytokines and growth factors that affect other cells. The induction of transcription factors during these processes is crucial for successful wound healing. The transcription factor forkhead boxO-1 (FOXO1) has recently been found to be an important regulator of wound healing. In particular, FOXO1 has significant effects through regulation of transforming growth factor-beta (TGF-β) expression and protecting keratinocytes from oxidative stress. In the absence of FOXO1, there is increased oxidative damage, reduced TGF-β1 expression, reduced migration and proliferation of keratinocytes and increased keratinocytes apoptosis leading to impaired re-epithelialization of wounds.

  19. Gender affects skin wound healing in plasminogen deficient mice

    DEFF Research Database (Denmark)

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge;

    2013-01-01

    functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency...... or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation...... in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound...

  20. A bioactive molecule in a complex wound healing process: platelet-derived growth factor.

    Science.gov (United States)

    Kaltalioglu, Kaan; Coskun-Cevher, Sule

    2015-08-01

    Wound healing is considered to be particularly important after surgical procedures, and the most important wounds related to surgical procedures are incisional, excisional, and punch wounds. Research is ongoing to identify methods to heal non-closed wounds or to accelerate wound healing; however, wound healing is a complex process that includes many biological and physiological events, and it is affected by various local and systemic factors, including diabetes mellitus, infection, ischemia, and aging. Different cell types (such as platelets, macrophages, and neutrophils) release growth factors during the healing process, and platelet-derived growth factor is a particularly important mediator in most stages of wound healing. This review explores the relationship between platelet-derived growth factor and wound healing.

  1. A rat uterine horn model of genital tract wound healing.

    Science.gov (United States)

    Schlaff, W D; Cooley, B C; Shen, W; Gittlesohn, A M; Rock, J A

    1987-11-01

    A rat uterine horn model of genital tract wound healing is described. Healing was reflected by acquisition of strength and elasticity, measured by burst strength (BS) and extensibility (EX), respectively. A tensiometer (Instron Corp., Canton, MA) was used to assess these characteristics in castrated and estrogen-supplemented or nonsupplemented animals. While the horn weights (HW), BS, and EX of contralateral horns were not significantly different, the intra-animal variation of HW was 7.2%, BS was 17.7% and EX was 38.2%. In a second experiment, one uterine horn was divided and anastomosed, and the animal given estrogen supplementation or a placebo pellet. Estrogen administration was found to increase BS and EX of anastomosed horns prior to 14 days, but had no beneficial effect at 21 or 42 days. The data suggest that estrogen may be required for optimal early healing of genital tract wounds.

  2. Soft Tissue Wounds and Principles of Healing

    Science.gov (United States)

    2007-01-01

    tissues, the hemodynamic status, and the effects of sub- stances such as cortisone , vitamins A and C, and zinc [21]. Nutrition is a fac- tor that...plays a dominant role in hemostasis. In the tissues that are exposed from wounds involving the brain, lung , placenta, heart, and uterus, a tissue complex

  3. Serum amyloid P inhibits dermal wound healing

    Science.gov (United States)

    The repair of open wounds depends on granulation tissue formation and contraction, which is primarily mediated by myofibroblasts. A subset of myofibroblasts originates from bone-marrow-derived monocytes which differentiate into fibroblast-like cells called fibrocytes. Serum amyloid P (SAP) inhibits ...

  4. Role of Fibronectin in Wound Healing.

    Science.gov (United States)

    1986-09-12

    Detrick, Frederiek, Nmryland 21701-5012 Contract f. DAl-17-S3-C-3235 Mdloal Colle" of Georgia Augusta, GA 30912 Approved for public distribution...about 30 sec, and replaced In the abdominal cavity. The mucle layer was sutured with 4.0 silk, and the skin was closed with wound clips. Blood samples

  5. Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells

    NARCIS (Netherlands)

    Boink, M.A.; van den Broek, L.J.; Roffel, S.; Nazmi, K.; Bolscher, J.G.M.; Gefen, A.; Veerman, E.C.I.; Gibbs, S.

    2016-01-01

    Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their

  6. Effects of Silk Sericin on Incision Wound Healing in a Dorsal Skin Flap Wound Healing Rat Model

    Science.gov (United States)

    Ersel, Murat; Uyanikgil, Yigit; Akarca, Funda Karbek; Ozcete, Enver; Altunci, Yusuf Ali; Karabey, Fatih; Cavusoglu, Turker; Meral, Ayfer; Yigitturk, Gurkan; Cetin, Emel Oyku

    2016-01-01

    Background The wound healing process is complex and still poorly understood. Sericin is a silk protein synthesized by silk worms (Bombyx mori). The objective of this study was to evaluate in vivo wound healing effects of a sericin-containing gel formulation in an incision wound model in rats. Material/Methods Twenty-eight Wistar-Albino rats were divided into 4 groups (n=7). No intervention or treatment was applied to the Intact control group. For other groups, a dorsal skin flap (9×3 cm) was drawn and pulled up with sharp dissection. The Sham operated group received no treatment. The Placebo group received placebo gel without sericin applied to the incision area once a day from day 0 to day 9. The Sericin Group 3 received 1% sericin gel applied to the incision area once a day from day 0 to day 9. Hematoxylin and eosin stain was applied for histological analysis and Mallory-Azan staining was applied for histoimmunochemical analysis of antibodies and iNOS (inducible nitric oxide synthase), and desmin was applied to paraffin sections of skin wound specimens. Parameters of oxidative stress were measured in the wound area. Results Epidermal thickness and vascularization were increased, and hair root degeneration, edema, cellular infiltration, collagen discoloration, and necrosis were decreased in Sericin group in comparison to the Placebo group and the Sham operated group. Malonyldialdehyde (MDA) levels were decreased, but superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were increased in the sericin group. Conclusions We found that sericin had significant positive effects on wound healing and antioxidant activity. Sericin-based formulations can improve healing of incision wounds. PMID:27032876

  7. Genomic Loci Modulating the Retinal Transcriptome in Wound Healing

    Directory of Open Access Journals (Sweden)

    Félix R. Vázquez-Chona

    2007-01-01

    Full Text Available Purpose: The present study predicts and tests genetic networks that modulate gene expression during the retinal wound-healing response.Methods: Upstream modulators and target genes were defined using meta-analysis and bioinfor matic approaches. Quantitative trait loci (QTLs for retinal acute phase genes (Vazquez-Chona et al. 2005 were defi ned using QTL analysis of CNS gene expression (Chesler et al. 2005. Candidate modulators were defi ned using computational analysis of gene and motif sequences. The effect of candidate genes on wound healing was tested using animal models of gene expression.Results: A network of early wound-healing genes is modulated by a locus on chromosome 12. The genetic background of the locus altered the wound-healing response of the retina. The C57BL/6 allele conferred enhanced expression of neuronal marker Thy1 and heat-shock-like crystallins, whereas the DBA/2J allele correlated with greater levels of the classic marker of retinal stress, glial fibrillary acidic protein (GFAP. Id2 and Lpin1 are candidate upstream modula tors as they strongly correlated with the segregation of DBA/2J and C57BL/6 alleles, and their dosage levels correlated with the enhanced expression of survival genes (Thy1 and crystallin genes.Conclusion: We defined a genetic network associated with the retinal acute injury response. Using genetic linkage analysis of natural transcript variation, we identified regulatory loci and candidate modulators that control transcript levels of acute phase genes. Our results support the convergence of gene expression profiling, QTL analysis, and bioinformatics as a rational approach to discover molecular pathways controlling retinal wound healing.

  8. Pharmacological evaluation and chemical standardization of an ayurvedic formulation for wound healing activity.

    Science.gov (United States)

    Gangopadhyay, Karuna Sagar; Khan, Madhuchanda; Pandit, Srikanta; Chakrabarti, Shrabana; Mondal, Tapan Kumar; Biswas, Tuhin Kanti

    2014-03-01

    Wound healing is a topic of substantial prominence in Ayurveda, the Indian traditional system of medicine. Test drug Kshatantak Malam (KM), otherwise named as Baharer Nani, is described in Ayurveda since a long time for wound healing activity but necessitates scientific base. The test drug was prepared in the form of natural ointment with the plants like Achyranthes aspera, Allium cepa, and Canabis sativa under the base of butter in a specialized form of preparation. Chemical standardization was made on the basis of the physical character, rancidity test, extractive value, thin-layer chromatography, and gas chromatography. An 8-mm-diameter full-thickness punch was produced in Wistar rats. The test drug was applied topically and compared with standard comparators like framycetin ointment and povidone iodine ointment. Effects were observed on the basis of physical parameters like wound contraction size (mm(2)), wound index, healing period (days), tensile strength (g) and biochemical parameters like tissue DNA (mg/g), RNA (mg/g), total protein (mg/g), hydroxyproline (mg/g), PAGE study, and histopathological observations. Significant results (P wound model on the basis of various physical, biochemical, and histopathological parameters. The drug was found to be safe in acute and chronic toxicity models in animals. Chemically it is enriched with fatty substances.

  9. Healing the Hidden Wounds of Racial Trauma

    Science.gov (United States)

    Hardy, Kenneth V.

    2013-01-01

    This article examines racial trauma and highlights strategies for healing and transformation to support the disproportionate number of children and youth of color who fail in school and become trapped in the pipelines of treatment, social service, and justice systems. The difficulty in meeting the needs of these children and youth is failing to…

  10. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings.

    Science.gov (United States)

    Jin, Sung Giu; Yousaf, Abid Mehmood; Kim, Kyeong Soo; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jin Ki; Yong, Chul Soon; Youn, Yu Seok; Kim, Jong Oh; Choi, Han-Gon

    2016-03-30

    The purpose of this study was to investigate the influence of different hydrophilic polymers on the swelling, bioadhesion and mechanical strength of hydrocolloid wound dressings (HCDs) in order to provide an appropriate composition for a hydrocolloid wound dressing system. In this study, the HCDs were prepared with styrene-isoprene-styrene copolymer (SIS) and polyisobutylene (PIB) as the base using a hot melting method. Additionally, numerous SIS/PIB-based HCDs were prepared with six hydrophilic polymers, and their wound dressing properties were assessed. Finally, the wound healing efficacy of the selected formulations was compared to a commercial wound dressing. The swelling ratio, bioadhesive force and mechanical strengths of HCDs were increased in the order of sodium alginate>sodium CMC=poloxamer=HPMC>PVA=PVP, sodium alginate>sodium CMC=poloxamer>PVA>HPMC=PVP and sodium alginate≥PVA>PVP=HPMC=sodium CMC>poloxamer, respectively. Among the hydrophilic polymers tested, sodium alginate most enhanced the swelling capacity, bioadhesive force and mechanical strengths. Thus, the hydrophilic polymers played great role in the swelling, bioadhesion and mechanical strength of SIS/PIB-based HCDs. The HCD formulation composed of PIB, SIS, liquid paraffin and sodium alginate at the weight ratio of 20/25/12/43 gave better wound dressing properties and more excellent wound healing efficacy than the commercial wound dressing. Therefore, the novel HCD formulation could be a promising hydrocolloid system for wound dressings.

  11. Restraint stress alters neutrophil and macrophage phenotypes during wound healing.

    Science.gov (United States)

    Tymen, Stéphanie D; Rojas, Isolde G; Zhou, Xiaofeng; Fang, Zong Juan; Zhao, Yan; Marucha, Phillip T

    2013-02-01

    Previous studies reported that stress delays wound healing, impairs bacterial clearance, and elevates the risk for opportunistic infection. Neutrophils and macrophages are responsible for the removal of bacteria present at the wound site. The appropriate recruitment and functions of these cells are necessary for efficient bacterial clearance. In our current study we found that restraint stress induced an excessive recruitment of neutrophils extending the inflammatory phase of healing, and the gene expression of neutrophil attracting chemokines MIP-2 and KC. However, restraint stress did not affect macrophage infiltration. Stress decreased the phagocytic abilities of phagocytic cells ex vivo, yet it did not affect superoxide production. The cell surface expression of adhesion molecules CD11b and TLR4 were decreased in peripheral blood monocytes in stressed mice. The phenotype of macrophages present at the wound site was also altered. Gene expression of markers of pro-inflammatory classically activated macrophages, CXCL10 and CCL5, were down-regulated; as were markers associated with wound healing macrophages, CCL22, IGF-1, RELMα; and the regulatory macrophage marker, chemokine CCL1. Restraint stress also induced up-regulation of IL10 gene expression. In summary, our study has shown that restraint stress suppresses the phenotype shift of the macrophage population, as compared to the changes observed during normal wound healing, while the number of macrophages remains constant. We also observed a general suppression of chemokine gene expression. Modulation of the macrophage phenotype could provide a new therapeutic approach in the treatment of wounds under stress conditions in the clinical setting.

  12. Effects of erythropoietin in skin wound healing are dose related.

    Science.gov (United States)

    Sorg, Heiko; Krueger, Christian; Schulz, Torsten; Menger, Michael D; Schmitz, Frank; Vollmar, Brigitte

    2009-09-01

    The hematopoietic growth factor erythropoietin (EPO) attracts attention due to its all-tissue-protective pleiotropic properties. We studied the effect of EPO on dermal regeneration using intravital microscopy in a model of full dermal thickness wounds in the skin-fold chamber of hairless mice. Animals received repetitive low doses or high doses of EPO (RLD-EPO or RHD-EPO) or a single high dose of EPO (SHD-EPO). SHD-EPO accelerated wound epithelialization, reduced wound cellularity, and induced maturation of newly formed microvascular networks. In contrast, RHD-EPO impaired the healing process, as indicated by delayed epithelialization, high wound cellularity, and lack of maturation of microvascular networks. Also, RHD-EPO caused an excessive erythrocyte mass and rheological malfunction, further deteriorating vessel and tissue maturation. Moreover, RHD-EPO altered fibroblast and keratinocyte migration in vitro, while both cell types exposed to RLD-EPO, and, in particular, to SHD-EPO showed accelerated wound scratch closure. In summary, our data show that a single application of a high dose of EPO accelerates and improves skin wound healing.

  13. Arginine Silicate Inositol Complex Accelerates Cutaneous Wound Healing.

    Science.gov (United States)

    Durmus, Ali Said; Tuzcu, Mehmet; Ozdemir, Oguzhan; Orhan, Cemal; Sahin, Nurhan; Ozercan, Ibrahim Hanifi; Komorowski, James Richard; Ali, Shakir; Sahin, Kazim

    2016-10-14

    Arginine silicate inositol (ASI) complex is a composition of arginine, silicon, and inositol that has been shown to have beneficial effects on vascular health. This study reports the effects of an ASI ointment on wound healing in rats. A full-thickness excision wound was created by using a disposable 5 mm diameter skin punch biopsy tool. In this placebo-controlled study, the treatment group's wound areas were covered by 4 or 10 % ASI ointments twice a day for 5, 10, or 15 days. The rats were sacrificed either 5, 10, or 15 days after the wounds were created, and biopsy samples were taken for biochemical and histopathological analysis. Granulation tissue appeared significantly faster in the ASI-treated groups than in the control groups (P B cells (NF-κB), and various cytokines (TNF-α and IL-1β) measured in this study showed a significant fall in expression level in ASI-treated wounds. The results suggest that topical application of ASI ointment (especially 4 % concentration) has beneficial effects on the healing response of an excisional wound.

  14. Scar-free cutaneous wound healing in the leopard gecko, Eublepharis macularius.

    Science.gov (United States)

    Peacock, Hanna M; Gilbert, Emily A B; Vickaryous, Matthew K

    2015-11-01

    Cutaneous wounds heal with two possible outcomes: scarification or near-perfect integumentary restoration. Whereas scar formation has been intensively investigated, less is known about the tissue-level events characterising wounds that spontaneously heal scar-free, particularly in non-foetal amniotes. Here, a spatiotemporal investigation of scar-free cutaneous wound healing following full-thickness excisional biopsies to the tail and body of leopard geckos (Eublepharis macularius) is provided. All injuries healed without scarring. Cutaneous repair involves the development of a cell-rich aggregate within the wound bed, similar to scarring wounds. Unlike scar formation, scar-free healing involves a more rapid closure of the wound epithelium, and a delay in blood vessel development and collagen deposition within the wound bed. It was found that, while granulation tissue of scarring wounds is hypervascular, scar-free wound healing conspicuously does not involve a period of exuberant blood vessel formation. In addition, during scar-free wound healing the newly formed blood vessels are typically perivascular cell-supported. Immunohistochemistry revealed widespread expression of both the pro-angiogenic factor vascular endothelial growth factor A and the anti-angiogenic factor thrombospondin-1 within the healing wound. It was found that scar-free wound healing is an intrinsic property of leopard gecko integument, and involves a modulation of the cutaneous scar repair program. This proportional revascularisation is an important factor in scar-free wound healing.

  15. Wound healing in hemophilia B mice and low tissue factor mice.

    Science.gov (United States)

    Monroe, Dougald M; Mackman, Nigel; Hoffman, Maureane

    2010-04-01

    Wound healing involves a number of physiologic mechanisms including coagulation, inflammation, formation of granulation tissue, and tissue remodeling. Coagulation with robust thrombin generation leading to fibrin formation is necessary for wound healing. It is less clear if there is a requirement for ongoing coagulation to support tissue remodeling. We have studied wound healing in mice with defects in both the initiation (low tissue factor) and propagation (hemophilia B) phases. In hemophilia B mice, dermal wound healing is delayed; this delay is associated with bleeding into the granulation tissue. Mice can be treated with replacement therapy (factor IX) or bypassing agents (factor VIIa) to restore thrombin generation. If treated just prior to wound placement, mice will have normal hemostasis in the first day of wound healing. As the therapeutic agents clear, the mice will revert to hemophilic state. If the primary role of coagulation in wound healing is to provide a stable platelet/fibrin plug that is loaded with thrombin, then treating hemophilic animals just prior to wound placement should restore normal wound healing. The results from this study did not support that hypothesis. Instead the results show that restoring thrombin generation only at the time of wound placement did not improve the delayed wound healing. In preliminary studies on low tissue factor mice, there also appears to be a delay in wound healing with evidence of bleeding into the granulation tissue. The current data suggests that ongoing coagulation function needs to be maintained to support a normal wound healing process.

  16. The observation and analysis of cupping therapy for chronic wound healing%负压拔罐对慢性创面治疗效果的观察与分析

    Institute of Scientific and Technical Information of China (English)

    郑文立; 王立民; 赵连魁; 张向涛; 李明

    2016-01-01

    目的:探讨负压拔罐对慢性创面的治疗效果和机制。方法收集慢性创面患者39例,随机分为拔罐组和对照组。其中拔罐组20例,对照组19例。对照组给予慢性创面常规换药,隔日1次;拔罐组除常规换药外还采用拔罐负压治疗,隔日1次。对比观察两组治疗大体观、慢性创面细菌培养阳性率、疼痛评分(VAS 评分)及慢性创面愈合面积比例等。结果拔罐组治疗慢性创面时脓液被引流较充分,并出现新鲜组织液渗出。治疗3 d 后,拔罐组的创面细菌培养阳性率(65%)与对照组(79%)相比差异无统计学意义;治疗1周后拔罐组的创面细菌培养阳性率(40%)明显低于对照组(73%)(χ2=4.496,P =0.034)。治疗1周后拔罐组 VAS 评分(2.20±1.00)明显低于对照组(4.16±0.96)(t =-12.929,P =0.001)。治疗2周后,拔罐组的创面面积比例(80.68%)明显小于对照组(92.28%)(χ2=-13.675,P =0.000),且拔罐组出现4例痊愈患者,对照组无痊愈患者。结论在常规换药基础上的负压拔罐处理对慢性创面有积极的治疗作用,且拔罐治疗价格低廉、操作简单,适合中低收入患者及一些基层医院的推广。%Objective To observe and analyze cupping therapy for chronic wound healing.Methods Thirty-nine patients with chronic wounds were collected and randomly divided into cupping therapy group (n =20) and control group (n =19).The control group was treated with route dressing change once every other day,while the cupping therapy group was added cupping therapy.Compared the two groups of patients in general view,positive ratio of wound germiculture,area percentage of wound healing and pain score (VAS score).Results The pus of wounds was mostly drained out and the fresh tissue fluid leakage when patients were treated with cupping therapy.After three days of treatment

  17. The combined effect of recombinant human epidermal growth factor and erythropoietin on full-thickness wound healing in diabetic rat model.

    Science.gov (United States)

    Hong, Joon Pio; Park, Sung Woo

    2014-08-01

    Diabetic wound is a chronic wound in which normal process of wound healing is interrupted. Lack of blood supply, infection and lack of functional growth factors are assumed as some of the conditions that lead to non-healing environment. Epidermal growth factor (EGF) acts primarily to stimulate epithelial cell growth across wound. Erythropoietin (EPO) is a haematopoietic factor, which stimulates the production, differentiation and maturation of erythroid precursor cells. This study hypothesised combining these two factors, non-healing process of diabetic wound will be compensated and eventually lead to acceleration of wound healing compared with single growth factor treatment. A total of 30 diabetic Sprague-Dawley rats were divided into three treatment groups (single treatment of rh-EPO or rh-EGF or combined treatment on a full-thickness skin wound). To assess the wound healing effects of the components, the wound size and the healing time were measured in each treatment groups. The skin histology was examined by light microscopy and immunohistochemical analysis of proliferating markers was performed. The combined treatment with rh-EPO and rh-EGF improved full-thickness wound significantly (P healing time with higher expression of Ki-67 compared with single growth factor-treated groups. The combined treatment failed to accelerate the total healing time when compared with single growth factor treatments. However, the significant improvement were found in wound size reduction in the combined treatment group on day 4 against single growth factor-treated groups (P wound healing possibly through a synergistic action of each growth factor. This application provides further insight into combined growth factor therapy on non-healing diabetic wounds.

  18. Influence of surgical sutures on wound healing

    Directory of Open Access Journals (Sweden)

    Mirković Siniša

    2010-01-01

    Full Text Available Historical data on closing and suturing of surgical wounds describe a wide range of various suture materials. The choice of the surgical catgut, i.e. the type and diameter, depends on the locality, characteristics and condition of the tissue to be treated. From the standpoint of oral-surgical practice the following clinical parameters are of outstanding importance with respect to the selection of suture material: accumulation of soft deposits on the sutures, score of the adjacent soft tissues and dehiscence of the operative wound. Our prospective clinical study included 150 patients distributed into three groups of 50 subjects. The surgical procedure performed on each patient involved resection (apicotomy of the tooth root end in the intercanine sector of the upper jaw. The following suture materials were applied: Black Silc 5-0, Nylon 5-0 and Vicryl 5-0. The effects of the selected sutures were evaluated according to the wound dehiscence. The effects of the applied sutures were recorded on Days 2, 5 and 7 after the surgery. The comparison of cited parameters of the investigated materials after suturing the oral mucosa revealed that none of the used material was ideal; however, a certain advantage might be given to the synthetic monofilament suture materials.

  19. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing.

    Science.gov (United States)

    Hattori, Yoshiaki; Falgout, Leo; Lee, Woosik; Jung, Sung-Young; Poon, Emily; Lee, Jung Woo; Na, Ilyoun; Geisler, Amelia; Sadhwani, Divya; Zhang, Yihui; Su, Yewang; Wang, Xiaoqi; Liu, Zhuangjian; Xia, Jing; Cheng, Huanyu; Webb, R Chad; Bonifas, Andrew P; Won, Philip; Jeong, Jae-Woong; Jang, Kyung-In; Song, Young Min; Nardone, Beatrice; Nodzenski, Michael; Fan, Jonathan A; Huang, Yonggang; West, Dennis P; Paller, Amy S; Alam, Murad; Yeo, Woon-Hong; Rogers, John A

    2014-10-01

    Non-invasive, biomedical devices have the potential to provide important, quantitative data for the assessment of skin diseases and wound healing. Traditional methods either rely on qualitative visual and tactile judgments of a professional and/or data obtained using instrumentation with forms that do not readily allow intimate integration with sensitive skin near a wound site. Here, an electronic sensor platform that can softly and reversibly laminate perilesionally at wounds to provide highly accurate, quantitative data of relevance to the management of surgical wound healing is reported. Clinical studies on patients using thermal sensors and actuators in fractal layouts provide precise time-dependent mapping of temperature and thermal conductivity of the skin near the wounds. Analytical and simulation results establish the fundamentals of the sensing modalities, the mechanics of the system, and strategies for optimized design. The use of this type of "epidermal" electronics system in a realistic clinical setting with human subjects establishes a set of practical procedures in disinfection, reuse, and protocols for quantitative measurement. The results have the potential to address important unmet needs in chronic wound management.

  20. Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy.

    Science.gov (United States)

    Mittermayr, Rainer; Antonic, Vlado; Hartinger, Joachim; Kaufmann, Hanna; Redl, Heinz; Téot, Luc; Stojadinovic, Alexander; Schaden, Wolfgang

    2012-01-01

    For almost 30 years, extracorporeal shock wave therapy has been clinically implemented as an effective treatment to disintegrate urinary stones. This technology has also emerged as an effective noninvasive treatment modality for several orthopedic and traumatic indications including problematic soft tissue wounds. Delayed/nonhealing or chronic wounds constitute a burden for each patient affected, significantly impairing quality of life. Intensive wound care is required, and this places an enormous burden on society in terms of lost productivity and healthcare costs. Therefore, cost-effective, noninvasive, and efficacious treatments are imperative to achieve both (accelerated and complete) healing of problematic wounds and reduce treatment-related costs. Several experimental and clinical studies show efficacy for extracorporeal shock wave therapy as means to accelerate tissue repair and regeneration in various wounds. However, the biomolecular mechanism by which this treatment modality exerts its therapeutic effects remains unclear. Potential mechanisms, which are discussed herein, include initial neovascularization with ensuing durable and functional angiogenesis. Furthermore, recruitment of mesenchymal stem cells, stimulated cell proliferation and differentiation, and anti-inflammatory and antimicrobial effects as well as suppression of nociception are considered important facets of the biological responses to therapeutic shock waves. This review aims to provide an overview of shock wave therapy, its history and development as well as its current place in clinical practice. Recent research advances are discussed emphasizing the role of extracorporeal shock wave therapy in soft tissue wound healing.

  1. Development of honey hydrogel dressing for enhanced wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, Norimah [Malaysian Institute for Nuclear Technology Research (MINT), Bangi, 43000 Kajang, Selangor (Malaysia)], E-mail: norimah@nuclearmalaysia.gov.my; Ainul Hafiza, A.H.; Zohdi, Rozaini M. [Malaysian Institute for Nuclear Technology Research (MINT), Bangi, 43000 Kajang, Selangor (Malaysia); Bakar, Md Zuki A. [Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor (Malaysia)

    2007-11-15

    Radiation at 25 and 50 kGy showed no effect on the acidic pH of the local honey, Gelam, and its antimicrobial property against Staphylococcus aureus but significantly reduced the viscosity. Honey stored up to 2 years at room temperature retained all the properties studied. Radiation sterilized Gelam honey significantly stimulated the rate of burn wound healing in Sprague-Dawley rats as demonstrated by the increased rate of wound contraction and gross appearance. Gelam honey attenuates wound inflammation; and re-epithelialization was well advanced compared to the treatment using silver sulphadiazine (SSD) cream. To enhance further the use of honey in wound treatment and for easy handling, Gelam honey was incorporated into our hydrogel dressing formulation, which was then cross-linked and sterilized using electron beam at 25 kGy. Hydrogel with 6% of honey was selected based on the physical appearance.

  2. Development of honey hydrogel dressing for enhanced wound healing

    Science.gov (United States)

    Yusof, Norimah; Ainul Hafiza, A. H.; Zohdi, Rozaini M.; Bakar, Md Zuki A.

    2007-11-01

    Radiation at 25 and 50 kGy showed no effect on the acidic pH of the local honey, Gelam, and its antimicrobial property against Staphylococcus aureus but significantly reduced the viscosity. Honey stored up to 2 years at room temperature retained all the properties studied. Radiation sterilized Gelam honey significantly stimulated the rate of burn wound healing in Sprague-Dawley rats as demonstrated by the increased rate of wound contraction and gross appearance. Gelam honey attenuates wound inflammation; and re-epithelialization was well advanced compared to the treatment using silver sulphadiazine (SSD) cream. To enhance further the use of honey in wound treatment and for easy handling, Gelam honey was incorporated into our hydrogel dressing formulation, which was then cross-linked and sterilized using electron beam at 25 kGy. Hydrogel with 6% of honey was selected based on the physical appearance.

  3. Wound-associated macrophages control collagen 1α2 transcription during the early stages of skin wound healing.

    Science.gov (United States)

    Rodero, Mathieu P; Legrand, Julien M D; Bou-Gharios, George; Khosrotehrani, Kiarash

    2013-02-01

    Wound-associated fibrosis is important to provide tensile strength upon wound healing but at the same time is detrimental to proper tissue regeneration. To date, there is no clear evidence of the role of macrophages and their subpopulations in the control of the kinetics of collagen production during wound healing. To evaluate in vivo the contribution of macrophages in collagen transcription, we depleted macrophages after wounding luciferase reporter mice of the collagen 1 alpha 2 (Col 1α2) promoter activity. Our data reveal that Col 1α2 starts to be transcribed at D2 after wounding, reaching a plateau after 7 days. Sustained macrophage depletion significantly reduced collagen 1α2 transcription from D4, indicating that the control of fibrosis by macrophages occurs during the early stages of the wound healing process. In conclusion, our results demonstrate an important role of wound macrophages in the control of collagen production during wound healing.

  4. A review of herbal medicines in wound healing.

    Science.gov (United States)

    Maver, Tina; Maver, Uroš; Stana Kleinschek, Karin; Smrke, Dragica M; Kreft, Samo

    2015-07-01

    Herbs have been integral to both traditional and non-traditional forms of medicine dating back at least 5000 years. The enduring popularity of herbal medicines may be explained by the perception that herbs cause minimal unwanted side effects. More recently, scientists increasingly rely on modern scientific methods and evidence-based medicine to prove efficacy of herbal medicines and focus on better understanding of mechanisms of their action. However, information concerning quantitative human health benefits of herbal medicines is still rare or dispersed, limiting their proper valuation. Preparations from traditional medicinal plants are often used for wound healing purposes covering a broad area of different skin-related diseases. Herbal medicines in wound management involve disinfection, debridement, and provision of a suitable environment for aiding the natural course of healing. Here we report on 22 plants used as wound healing agents in traditional medicine around the world. The aim of this review is therefore to review herbal medicines, which pose great potential for effective treatment of minor wounds.

  5. Laser therapy in wound healing associated with diabetes mellitus - Review*

    Science.gov (United States)

    de Sousa, Raquel Gomes; Batista, Keila de Nazaré Madureira

    2016-01-01

    The article discusses the results of a literature review on the application of low intensity laser therapy on the healing of wounds associated diabetes mellitus in the last 10 years. Objective To determine the most effective parameter in healing wounds related to diabetes mellitus, as well as the most widely used type of laser. Methodology consisted of bibliographic searching the databases Bireme, SciELO, PubMed/Medline and Lilacs by using the keywords related to the topic. Were selected from these keywords, papers discussing the use of laser on wounds associated with diabetes, published in the period 2005-2014, in Portuguese or English. Results After analyzing the research, 12 studies consistent with the theme were selected. Conclusion Based on this review, the studies that showed more satisfactory results in healing diabetic wounds were those who applied energy densities in the range of 3-5 J/cm2, power densities equal to or below 0.2 W/cm2 and continuous emission. The He-Ne laser with a wavelength of 632.8 nm was used more often. PMID:27579745

  6. Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis

    Directory of Open Access Journals (Sweden)

    Shibnath Ghatak

    2015-01-01

    Full Text Available A wound is a type of injury that damages living tissues. In this review, we will be referring mainly to healing responses in the organs including skin and the lungs. Fibrosis is a process of dysregulated extracellular matrix (ECM production that leads to a dense and functionally abnormal connective tissue compartment (dermis. In tissues such as the skin, the repair of the dermis after wounding requires not only the fibroblasts that produce the ECM molecules, but also the overlying epithelial layer (keratinocytes, the endothelial cells, and smooth muscle cells of the blood vessel and white blood cells such as neutrophils and macrophages, which together orchestrate the cytokine-mediated signaling and paracrine interactions that are required to regulate the proper extent and timing of the repair process. This review will focus on the importance of extracellular molecules in the microenvironment, primarily the proteoglycans and glycosaminoglycan hyaluronan, and their roles in wound healing. First, we will briefly summarize the physiological, cellular, and biochemical elements of wound healing, including the importance of cytokine cross-talk between cell types. Second, we will discuss the role of proteoglycans and hyaluronan in regulating these processes. Finally, approaches that utilize these concepts as potential therapies for fibrosis are discussed.

  7. Efficacy and cost-effectiveness of octenidine wound gel in the treatment of chronic venous leg ulcers in comparison to modern wound dressings.

    Science.gov (United States)

    Hämmerle, Gilbert; Strohal, Robert

    2016-04-01

    The aim of this study was to determine the efficacy, safety and cost-effectiveness of an octenidine-based wound gel in the treatment of chronic venous leg ulcers. For this purpose, 49 wounds were treated with either modern wound-phase-adapted dressings alone (treatment arm 1; n = 17), octenidine wound gel plus modern wound-phase-adapted dressings (treatment arm 2; n = 17) or octenidine wound gel alone (treatment arm 3; n = 15). During the study period of 42 days with dressing changes every 3-5 days, wound healing characteristics and treatment costs of different dressings were analysed. Wound size reduction was significantly better (P = 0·028) in both octenidine wound gel treatment arms compared to modern dressings alone with total reductions of 14·6%, 64·1% and 96·2% in treatment arms 1-3. Early wound healing was merely observed under octenidine wound gel treatment (n = 9), whereby lowest treatment costs were generated by octenidine wound gel alone (€20·34/dressing change). As a result, the octenidine wound gel is cost-effective and well suitable for the treatment of chronic venous leg ulcers, considering both safety and promotion of wound healing.

  8. Bacterial cellulose nanofibrillar patch as a wound healing platform of tympanic membrane perforation.

    Science.gov (United States)

    Kim, Jangho; Kim, Seung Won; Park, Subeom; Lim, Ki Taek; Seonwoo, Hoon; Kim, Yeonju; Hong, Byung Hee; Choung, Yun-Hoon; Chung, Jong Hoon

    2013-11-01

    Bacterial cellulose (BC)-based biomaterials on medical device platforms have gained significant interest for tissue-engineered scaffolds or engraftment materials in regenerative medicine. In particular, BC has an ultrafine and highly pure nanofibril network structure and can be used as an efficient wound-healing platform since cell migration into a wound site is strongly meditated by the structural properties of the extracellular matrix. Here, the fabrication of a nanofibrillar patch by using BC and its application as a new wound-healing platform for traumatic tympanic membrane (TM) perforation is reported. TM perforation is a very common clinical problem worldwide and presents as conductive hearing loss and chronic perforations. The BC nanofibrillar patch can be synthesized from Gluconacetobacter xylinus; it is found that the patch contained a network of nanofibrils and is transparent. The thickness of the BC nanofibrillar patch is found to be approximately 10.33 ± 0.58 μm, and the tensile strength and Young's modulus of the BC nanofibrillar patch are 11.85 ± 2.43 and 11.90 ± 0.48 MPa, respectively, satisfying the requirements of an ideal wound-healing platform for TM regeneration. In vitro studies involving TM cells show that TM cell proliferation and migration are stimulated under the guidance of the BC nanofibrillar patch. In vivo animal studies demonstrate that the BC nanofibrillar patch promotes the rate of TM healing as well as aids in the recovery of TM function. These data demonstrate that the BC nanofibrillar patch is a useful wound-healing platform for TM perforation.

  9. Contact dermatitis presenting as non-healing wound: case report

    Directory of Open Access Journals (Sweden)

    Leelavathi M

    2011-05-01

    Full Text Available Abstract Topical antiseptics are commonly used in the management of minor wounds, burns, and infected skin. These agents are widely used by health professionals and are often self-prescribed by patients as they are easily available over-the-counter. This case illustrates a 73 year old man who presented with a non-healing wound on his right forearm for 4 weeks. The wound started from an insect bite and progressively enlarged with increasing pruritus and burning sensation. Clinically an ill-defined ulcer with surrounding erythema and erosion was noted. There was a yellow crust overlying the center of the ulcer and the periphery was scaly. Further inquiry revealed history of self treatment with a yellow solution to clean his wound for 3 weeks. Patient was provisionally diagnosed to have allergic contact dermatitis secondary to acriflavine. Topical acriflavine was stopped and the ulcer resolved after treatment with non-occlusive saline dressing. Skin patch test which is the gold standard for detection and confirmation of contact dermatitis showed a positive reaction (2+ to acriflavine. Acriflavine is widely used as a topical antiseptic agent in this part of the world. Hence, primary care physicians managing a large variety of poorly healing wounds should consider the possibility of contact allergy in recalcitrant cases, not responding to conventional treatment. Patient education is an important aspect of management as this would help curb the incidence of future contact allergies.

  10. Evaluation of In Vivo Wound Healing Activity of Bacopa monniera on Different Wound Model in Rats

    Directory of Open Access Journals (Sweden)

    S. Murthy

    2013-01-01

    Full Text Available Wound healing effects of 50% ethanol extract of dried whole plant of Bacopa monniera (BME was studied on wound models in rats. BME (25 mg/kg was administered orally, once daily for 10 days (incision and dead space wound models or for 21 days or more (excision wound model in rats. BME was studied for its in vitro antimicrobial and in vivo wound breaking strength, WBS (incision model, rate of contraction, period of epithelization, histology of skin (excision model, granulation tissue free radicals (nitric oxide and lipid peroxidation, antioxidants (catalase, superoxide dismutase, and reduced glutathione, acute inflammatory marker (myeloperoxidase, connective tissue markers (hydroxyproline, hexosamine, and hexuronic acid, and deep connective tissue histology (dead space wound. BME showed antimicrobial activity against skin pathogens, enhanced WBS, rate of contraction, skin collagen tissue formation, and early epithelization period with low scar area indicating enhanced healing. Healing effect was further substantiated by decreased free radicals and myeloperoxidase and enhanced antioxidants and connective tissue markers with histological evidence of more collagen formation in skin and deeper connective tissues. BME decreased myeloperoxidase and free radical generated tissue damage, promoting antioxidant status, faster collagen deposition, other connective tissue constituent formation, and antibacterial activity.

  11. Wound healing ability of Xenopus laevis embryos. I. Rapid wound closure achieved by bisectional half embryos.

    Science.gov (United States)

    Yoshii, Yasuko; Noda, Masahiro; Matsuzaki, Takashi; Ihara, Setsunosuke

    2005-10-01

    We examined wound closure in 'half embryos' produced by the transverse bisection of Xenopus laevis embryos at the primary eye vesicle stage. Both the anterior- and posterior-half embryos survived for more than 6 days, and grew into 'half tadpoles'. Histology and videomicroscopy revealed that the open wound in the half embryo was rapidly closed by an epithelial sheet movement in the wound marginal zone. The time-course of wound closure showed a downward convex curve: the wound area decreased to one-fifth of the original area within 30 min, and the wound continued to contract slowly thereafter. The rapidity of closure of the epidermis as well as the absence of inflammatory cells are typical features of an embryonic type of wound healing. There was a dorso-ventral polarity in the motility of the epidermis: the wound was predominantly closed by the ventral and lateral epidermis. The change in the contour of the wound edge with time suggested a complex mechanism involved in the wound closure that could not be explained only by the purse-string theory. The present experimental system would be a unique and useful model for analyses of cellular movements in the embryonic epithelia.

  12. Does FXIII deficiency impair wound healing after myocardial infarction?

    Directory of Open Access Journals (Sweden)

    Matthias Nahrendorf

    Full Text Available Inadequate healing of myocardial infarction may contribute to local expansion of the infarct, frequently leading to chamber dilation, heart failure, or myocardial rupture. Experimental evidence in mouse models suggests that Factor XIII might play a key role in wound healing, and low persistent values lead to increased incidence of cardiac rupture following myocardial infarction. Here we would like to share our initial clinical experiences with strikingly similar observations in patients with this grave disease, and compare these observations to experimental findings.

  13. Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo.

    Science.gov (United States)

    Arndt, Stephanie; Unger, Petra; Wacker, Eva; Shimizu, Tetsuji; Heinlin, Julia; Li, Yang-Fang; Thomas, Hubertus M; Morfill, Gregor E; Zimmermann, Julia L; Bosserhoff, Anja-Katrin; Karrer, Sigrid

    2013-01-01

    Cold atmospheric plasma (CAP) has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time) in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated.

  14. Cold atmospheric plasma (CAP changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Stephanie Arndt

    Full Text Available Cold atmospheric plasma (CAP has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated.

  15. Antioxidant therapies for wound healing: a clinical guide to currently commercially available products.

    Science.gov (United States)

    Fitzmaurice, S D; Sivamani, R K; Isseroff, R R

    2011-01-01

    Many facets of wound healing under redox control require a delicate balance between oxidative stress and antioxidants. While the normal physiology of wound healing depends on low levels of reactive oxygen species and oxidative stress, an overexposure to oxidative stress leads to impaired wound healing. Antioxidants are postulated to help control wound oxidative stress and thereby accelerate wound healing. Many antioxidants are available over the counter or by prescription, but only one, Medihoney®, has been specifically FDA approved for wound healing. Here we review the existing evidence for the use of antioxidants for wound healing, with a review of the pertinent animal and clinical studies. Natural products and naturally derived antioxidants are becoming more popular, and we specifically review the evidence for the use of naturally derived antioxidants in wound healing. Antioxidant therapy for wound healing is promising, but only few animal studies and even fewer clinical studies are available. Because only few products have undergone FDA approval, the consumer is advised to scrutinize them for purity and contaminants prior to use, and this may require direct contact with the companies that sell them. As a field of science, the use of antioxidants for wound healing is in its infancy, and future studies will better elucidate the role of antioxidants in wound healing.

  16. The Role of Nerve Growth Factor (NGF) and Its Precursor Forms in Oral Wound Healing

    Science.gov (United States)

    Schenck, Karl; Schreurs, Olav; Hayashi, Katsuhiko; Helgeland, Kristen

    2017-01-01

    Nerve growth factor (NGF) and its different precursor forms are secreted into human saliva by salivary glands and are also produced by an array of cells in the tissues of the oral cavity. The major forms of NGF in human saliva are forms of pro-nerve growth factor (pro-NGF) and not mature NGF. The NGF receptors tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptor (p75NTR) are widely expressed on cells in the soft tissues of the human oral cavity, including keratinocytes, endothelial cells, fibroblasts and leukocytes, and in ductal and acinar cells of all types of salivary glands. In vitro models show that NGF can contribute at most stages in the oral wound healing process: restitution, cell survival, apoptosis, cellular proliferation, inflammation, angiogenesis and tissue remodeling. NGF may therefore take part in the effective wound healing in the oral cavity that occurs with little scarring. As pro-NGF forms appear to be the major form of NGF in human saliva, efforts should be made to study its function, specifically in the process of wound healing. In addition, animal and clinical studies should be initiated to examine if topical application of pro-NGF or NGF can be a therapy for chronic oral ulcerations and wounds. PMID:28208669

  17. Inhibition of indoleamine 2,3-dioxygenase activity accelerates skin wound healing.

    Science.gov (United States)

    Ito, Hiroyasu; Ando, Tatsuya; Ogiso, Hideyuki; Arioka, Yuko; Saito, Kuniaki; Seishima, Mitsuru

    2015-06-01

    Skin wound healing is a complex process involving several stages that include inflammation, proliferation, and remodeling. In the inflammatory phase, pro-inflammatory cytokines and chemokines are induced at the wound site and, they contribute to the development of wound healing. These cytokines also induce indoleamine 2,3-dioxygenase (IDO1) activity; this is the rate-limiting and first enzyme in the l-tryptophan (TRP)-l-kynurenine (KYN) pathway. This study examined the effect of IDO1 on the process of skin wound healing. The expression of the Ido1 mRNA was enhanced after creating a wound in wild-type (WT) mice. TRP concentration was simultaneously reduced at the wound site. The rate of wound healing in IDO1 knockout (IDO-KO) mice was significantly higher than that in WT mice. 1-Methyl-dl-tryptophan (1-MT), a potent inhibitor of IDO1, increased the rate of wound healing in WT mice. The administration of TRP accelerated wound healing in vivo and in an in vitro experimental model, whereas the rate of wound healing was not affected by the administration of KYN. The present study identifies the role of IDO1 in skin wound healing, and indicates that the local administration of 1-MT or TRP may provide an effective strategy for accelerating wound healing.

  18. Evaluation of Wound Healing Activity of Ethanolic Extract of Pongamia pinnata Bark.

    Science.gov (United States)

    Bhandirge, S K; Tripathi, A S; Bhandirge, R K; Chinchmalatpure, T P; Desai, H G; Chandewar, A V

    2015-06-01

    Present study evaluate wound healing activity of ethanolic extract of stem bark of Pongamia pinnata (PP). Evaluation of wound healing activity, 2 wound models were used I. e., incision and excision wounds were perform in this study on Albino wistar rats (150-200 g). The rats were been treated with 10% and 5% ointment base formulation at dose 15 µl/wound topically. The parameters studied were breaking strength in case of incision wounds, epithelization period and wound area in case of excision wound. The ethanolic extract treated group showed a significant (P healing parameters of incision and excision wound models as compared to control. This study justify the traditional use of ethanolic extract of Pongamia pinnata stem bark shows wound healing property.

  19. Wound healing potential of Pañcavalkala formulations in a postfistulectomy wound.

    Science.gov (United States)

    Meena, Rakesh Kumar; Dudhamal, Tukaram; Gupta, Sanjay Kumar; Mahanta, Vyasadeva

    2015-01-01

    Sushruta mentioned sixty measures for management of wounds. Panchavalkal is the combination of five herbs having properties like Shodhana (cleaning) and Ropana (healing) of wounds. Individual drugs and in combination have Kashaya rasa (astringent) dominant and useful in the management of Vrana (wounds) as well as Shotha (inflammations). A 35 years old male patient consulted in Shalya OPD with complaints like discharge per anum, induration and intermittent pain at perianal region since last five years. On inspection external opening was observed at anterior portion 1 O' clock position which was four centimeter away from anal verge. That case was diagnosed as Bhagandara (fistula-in-ano) and was treated with partial fistulectomy and application of Guggulu based Ksharasutra in the remaining tract. The big fistulectomy wound was treated with local application of Panchavalkal ointment daily and simultaneous change of Ksharasutra. The wound was assessed daily for pain, swelling, discharge, size, and shape. The wound healed completely within two and half month with normal scar having good tissue strength. This case demonstrated that post fistulectomy wound can be treated with Panchavalkal ointment.

  20. Wound healing efficacy of a 660-nm diode laser in a rat incisional wound model.

    Science.gov (United States)

    Suzuki, Ryoichi; Takakuda, Kazuo

    2016-11-01

    This study aimed to elucidate the optimum usage parameters of low reactive-level laser therapy (LLLT) in a rat incisional wound model. In Sprague-Dawley rats, surgical wounds of 15-mm length were made in the dorsal thoracic region. They were divided into groups to receive 660-nm diode laser irradiation 24 h after surgery at an energy density of 0 (control), 1, 5, or 10 J/cm(2). Tissue sections collected on postoperative day 3 were stained with hematoxylin-eosin and an antibody for ED1 to determine the number of macrophages around the wound. Samples collected on day 7 were stained with hematoxylin-eosin and observed via polarized light microscopy to measure the area occupied by collagen fibers around the wound; day 7 skin specimens were also subjected to mechanical testing to evaluate tensile strength. On postoperative day 3, the numbers of macrophages around the wound were significantly lower in the groups receiving 1 and 5 J/cm(2) irradiation, compared to the control and 10 J/cm(2) irradiation groups (p healing tissues from 1 and 5 J/cm(2) irradiation groups, compared to the control group (p wound healing in a rat incisional wound model. However, a higher radiation energy density yielded no significant enhancement.

  1. [The role of erythropoietin in improvement of wound healing].

    Science.gov (United States)

    Sorg, H; Kuhbier, J W; Menger, B; Reimers, K; Harder, Y; Vogt, P M

    2010-11-01

    Pleiotropic substances are characterized by their versatile and complex range of actions which makes them potential new active agents for the therapy of wounds. Besides its known effect to increase red blood cell production, the glycoprotein hormone erythropoietin (EPO) has been found to demonstrate a tissue protective effect in several other organs. The administration of EPO during skin wound healing is most likely essentially based on its cytopotective, proangiogenic, antiapoptotic and antiinflammatory effects. Herein EPO stimulates a coordinated interaction of different types of cells at a low or only a single dose. This review article aims to present the advantages and disadvantages of EPO administration in different experimental models to study the healing and regeneration processes of the skin and discusses possible clinical applications.

  2. Corneal wound healing is compromised by immunoproteasome deficiency.

    Directory of Open Access Journals (Sweden)

    Deborah A Ferrington

    Full Text Available Recent studies have revealed roles for immunoproteasome in regulating cell processes essential for maintaining homeostasis and in responding to stress and injury. The current study investigates how the absence of immunoproteasome affects the corneal epithelium under normal and stressed conditions by comparing corneas from wildtype (WT mice and those deficient in two immunoproteasome catalytic subunits (lmp7(-/-/mecl-1(-/-, L7M1. Immunoproteasome expression was confirmed in WT epithelial cells and in cells of the immune system that were present in the cornea. More apoptotic cells were found in both corneal explant cultures and uninjured corneas of L7M1 compared to WT mice. Following mechanical debridement, L7M1 corneas displayed delayed wound healing, including delayed re-epithelialization and re-establishment of the epithelial barrier, as well as altered inflammatory cytokine production compared to WT mice. These results suggest that immunoproteasome plays an important role in corneal homeostasis and wound healing.

  3. A test of reactive scope: Reducing reactive scope causes delayed wound healing.

    Science.gov (United States)

    DuRant, S E; Arciniega, M L; Bauer, C M; Romero, L M

    2016-09-15

    Reactive scope predicts that all animals have an adaptive ability to respond to stressors in their environment, termed reactive homeostasis, and that only when an animal's response to stressful stimuli exceeds a certain threshold (homeostatic overload) will stress have pathological effects. While this framework has successfully helped interpret effects of stressors on wildlife, no study has designed an experiment to directly test this framework. This study was designed to expose house sparrows (Passer domesticus) to treatments that would result in varying ranges of reactive homeostasis during chronic stress, which based on the reactive scope model should cause birds with the lowest reactive homeostasis range to exhibit signs of pathology during a subsequent challenge. To modulate the reactive homeostasis range, we altered allostatic load of birds by exposing them to chronic stress while either elevating, blocking, or not manipulating corticosterone. After concluding chronic stress treatments, birds were exposed to the subsequent challenge of a superficial wound. Individuals treated with corticosterone during chronic stress (high allostatic load) experienced the most pathology, including both weight loss and slower wound healing. Unmanipulated birds (medium allostatic load) also experienced weight loss but had normal healing rates, while birds with blocked corticosterone (low allostatic load) had minimal weight loss and normal healing rates. Our results indicate that increased allostatic load reduces the reactive homeostasis range, thereby causing individuals to cross the homeostatic overload threshold sooner, and thus support the reactive scope framework.

  4. Photobiomodulation of wound healing via visible and infrared laser irradiation.

    Science.gov (United States)

    Solmaz, Hakan; Ulgen, Yekta; Gulsoy, Murat

    2017-03-20

    Fibroblast cells are known to be one of the key elements in wound healing process, which has been under the scope of research for decades. However, the exact mechanism of photobiomodulation on wound healing is not fully understood yet. Photobiomodulation of 635 and 809 nm laser irradiation at two different energy densities were investigated with two independent experiments; first, in vitro cell proliferation and then in vivo wound healing. L929 mouse fibroblast cell suspensions were exposed with 635 and 809 nm laser irradiations of 1 and 3 J/cm(2) energy densities at 50 mW output power separately for the investigation of photobiomodulation in vitro. Viabilities of cells were examined by means of MTT assays performed at the 24th, 48th, and 72nd hours following the laser irradiations. Following the in vitro experiments, 1 cm long cutaneous incisional skin wounds on Wistar albino rats (n = 24) were exposed with the same laser sources and doses in vivo. Wound samples were examined on 3rd, 5th, and 7th days of healing by means of mechanical tensile strength tests and histological examinations. MTT assay results showed that 635 nm laser irradiation of both energy densities after 24 h were found to be proliferative. One joule per square centimeter laser irradiation results also had positive effect on cell proliferation after 72 h. However, 809 nm laser irradiation at both energy densities had neither positive nor negative affects on cell viability. In vivo experiment results showed that, 635 nm laser irradiation of both energy densities stimulated wound healing in terms of tensile strength, whereas 809 nm laser stimulation did not cause any stimulative effect. The results of mechanical tests were compatible with the histological evaluations. In this study, it is observed that 635 nm laser irradiations of low energy densities had stimulative effects in terms of cell proliferation in vitro and mechanical strength of incisions in vivo. However, 809 nm laser

  5. PLATELET-RICH PLASMA (PRP) AND ITS APPLICATION IN THE TREATMENT OF CHRONIC AND HARD-TO-HEAL SKIN WOUNDS. A Review.

    OpenAIRE

    2015-01-01

    In the last few years various methods are being applied in the use of platelet-rich plasma (PRP) during treatment in different orthopedic disease. They allow improvement of local biological condition and regeneration of different types of tissues. PRP is a modern treatment strategy with worldwide recognition. There is a high concentration of platelet growth factors in small amounts of plasma. PRP and its various forms have become one of the best methods to support the healing process of vario...

  6. Genomic Loci Modulating the Retinal Transcriptome in Wound Healing

    OpenAIRE

    Vázquez-Chona, Félix R; Lu Lu; Robert W Williams; Geisert, Eldon E.

    2007-01-01

    Purpose: The present study predicts and tests genetic networks that modulate gene expression during the retinal wound-healing response.Methods: Upstream modulators and target genes were defined using meta-analysis and bioinfor matic approaches. Quantitative trait loci (QTLs) for retinal acute phase genes (Vazquez-Chona et al. 2005) were defi ned using QTL analysis of CNS gene expression (Chesler et al. 2005). Candidate modulators were defi ned using computational analysis of gene and motif se...

  7. Amplification of effects of photons on wound healing

    Science.gov (United States)

    Dyson, Mary

    2009-02-01

    Following the absorption of photons by cells either resident in or in transit through the skin at and around a wound site, healing can be modulated. This is due to the primary, secondary and tertiary cellular effects of the photons. The main primary effect of phototherapy is photon absorption. This initiates secondary effects within the cells that have absorbed the photons. Secondary effects are restricted to cells that have absorbed a suprathreshold quantity of photonic energy. Photon absorption can lead to an increase in ATP synthesis and the release of reactive oxygen species that can activate specific transcription factors resulting in changes in synthesis of the enzymes needed for cellular proliferation, migration, phagocytosis and protein synthesis, all essential for wound healing. The amount of ATP production is limited in each cell by the availability of ADP and phosphate. Spatial and temporal amplification of the effects of photon absorption increases the range and duration of phototherapy. It may be caused in part by tertiary effects initiated in cells that have not absorbed photons by regulatory proteins such as cytokines secreted by cells that have absorbed photons. Amplification may also be due to changes induced by photons in immune cells, stem cells and soluble protein mediators while in transit through the dermal capillaries. The peripheral location of these capillaries makes their contents readily accessible to photons. The longer the duration of treatment, the greater will be the number of cells in transit that can be affected by photons. Depth of effect may be increased by transduction of electromagnetic energy into mechanical energy. For a treatment to be clinically effective on wound healing, its duration and power may each be important. Components of the immune system, endocrine system and nervous system may also amplify the effects of photons on wound healing.

  8. Modulation of Mast Cell Function by Amino Acids In vitro: A Potential Mechanism of Immunonutrition for Wound Healing

    OpenAIRE

    2013-01-01

    "Mast cells release important chemical mediators, such as histamine and interleukin (IL)-13, for the regulation of allergic reactions and inflammation. Recently, mast cell activation has been implicated in wound healing. Glutamine (Gln) and Arginine (Arg) are used as “immune nutrients” in severe infections and chronic wounds in malnourished patients, but the potential effect of these amino acids on mast cell activation is unclear. We evaluated the effect of Gln and /or Arg in culture on mast ...

  9. Chitosan green tea polyphenol complex as a released control compound for wound healing

    Institute of Scientific and Technical Information of China (English)

    QIN Yao; WANG Hong-wei; Thirupathi Karuppanapandian; Wook Kim

    2010-01-01

    Objective: In recent years, oxidative stress has been implicated in a variety °enerative pro-cess and diseases, including acute and chronic inflamma-tory conditions such as wound healing.Green tea polyphe-nols have shown anti-oxidant property.The present study discussed the application of chitosan green tea polyphenol complex on the wound healing.Methods: The wound healing effect ofchitosan green tea polyphenol complex was studied in ten-week-old healthy male Sherman rats weighing 150-180 g by two wound models.The rats were randomly chosen and divided into four groups (n=5), administered with distilled water in Group A as con-trol group, epigallocatechin-3-gallate (EGCG) in Group B, chitosan-EGCG complex in Group C and chitosan-green tea polyphenols complex in Group D, respectively.In rats'incision wound model, two straight paravertebral inci-sions were made and skin tensile strength was measured using continuous water flow technology on the 10th day.In rats'excision wound model, wound contraction and pe-riod of epithelization were measured.The polyphenols re-lease from the complex was continuously monitored by an elution technique in aqueous solution at different pH val-ues (pH=4, 5, 6, 7).Results: The treatment groups showed significantly enhanced the breaking strength in incision wound (328±4.5) g and (421±18.5) g compared with control (264±16.7) g.In the excision wound model, the wound contraction percentage in treatment groups was relatively increased during the re-covery period.Respectively, the percentage of wound contraction ranged from 47.60%±2.15% on day 4 to 107.98% ±1.26% on day 16 compared with control group (8.46%±5.42% to 59.80%±4.47%).The complex demonstrated a gradual in-crease in the release rate from the initial stage and slow increase at different pH values.The release rate approxi-mated 0.6-0.7 in the complex and remained stable 6 hours after injury, which may be the end of the release process.Conclusions: In our study, chitosan

  10. Diabetic cornea wounds produce significantly weaker electric signals that may contribute to impaired healing

    OpenAIRE

    Yunyun Shen; Trisha Pfluger; Fernando Ferreira; Jiebing Liang; Navedo, Manuel F; Qunli Zeng; Brian Reid; Min Zhao

    2016-01-01

    Wounds naturally produce electric signals which serve as powerful cues that stimulate and guide cell migration during wound healing. In diabetic patients, impaired wound healing is one of the most challenging complications in diabetes management. A fundamental gap in knowledge is whether diabetic wounds have abnormal electric signaling. Here we used a vibrating probe to demonstrate that diabetic corneas produced significantly weaker wound electric signals than the normal cornea. This was conf...

  11. Wound healing potential of Althaea ofifcinalis lfower mucilage in rabbit full thickness wounds

    Institute of Scientific and Technical Information of China (English)

    Robab Valizadeh; Ali Asghar Hemmati; Gholamreza Houshmand; Sara Bayat; Mohammad Bahadoram

    2015-01-01

    Objective:To evaluate and practically demonstrate the influence of Althaea ofifcinalis flower mucilage as a plant known in Iran’s and other Middle Eastern countries’ traditional medicine for its wound healing properties. Methods:Animals were divided into 6 groups of 5 cases including a non-treated group as the negative control group receiving no treatment, a group treated with eucerin as the positive control group, a phenytoin 1%group as a standard group treated topically with phenytoin 1%hand-made ointment, and treatment groups treated with hand-made Althaea ofifcinalis flower mucilage (AFM) ointment in a eucerin base with different concentrations (5%, 10%, 15%). Results:Among the treatment groups, the AFM 15%ointment showed the best result. Wound healing duration was reduced by the surface application of these groups. Wound closure was completed on Days 14 and 15 in the AFM 15% ointment and phenytoin 1% groups, respectively. No significant difference was observed in healing period between these groups. Conclusions:In conclusion, AFM 15%ointment was found to reduce wound healing time without any significant difference with the phenytoin 1% ointment. The authors suggest increased AFM effectiveness in when combined with phenytoin or other effectual plants.

  12. Wound healing potential of Althaea officinalis flower mucilage in rabbit full thickness wounds

    Institute of Scientific and Technical Information of China (English)

    Robab; Valizadeh; Ali; Asghar; Hemmati; Gholamreza; Houshmand; Sara; Bayat; Mohammad; Bahadoram

    2015-01-01

    Objective: To evaluate and practically demonstrate the in fluence of Althaea officinalis flower mucilage as a plant known in Iran’s and other Middle Eastern countries’ traditional medicine for its wound healing properties.Methods: Animals were divided into 6 groups of 5 cases including a non-treated group as the negative control group receiving no treatment, a group treated with eucerin as the positive control group, a phenytoin 1% group as a standard group treated topically with phenytoin 1% hand-made ointment, and treatment groups treated with hand-made Althaea officinalis flower mucilage(AFM) ointment in a eucerin base with different concentrations(5%, 10%, 15%).Results: Among the treatment groups, the AFM 15% ointment showed the best result.Wound healing duration was reduced by the surface application of these groups. Wound closure was completed on Days 14 and 15 in the AFM 15% ointment and phenytoin 1%groups, respectively. No significant difference was observed in healing period between these groups.Conclusions: In conclusion, AFM 15% ointment was found to reduce wound healing time without any significant difference with the phenytoin 1% ointment. The authors suggest increased AFM effectiveness in when combined with phenytoin or other effectual plants.

  13. Using Light to Treat Mucositis and Help Wounds Heal

    Science.gov (United States)

    Ignatius, Robert W.; Martin, Todd S.; Kirk, Charles

    2008-01-01

    A continuing program of research and development is focusing on the use of controlled illumination by light-emitting diodes (LEDs) to treat mucositis and to accelerate healing of wounds. The basic idea is to illuminate the affected area of a patient with light of an intensity, duration, and wavelength (or combination of wavelengths) chosen to produce a therapeutic effect while generating only a minimal amount of heat. This method of treatment was originally intended for treating the mucositis that is a common complication of chemotherapy and radiation therapy for cancer. It is now also under consideration as a means to accelerate the healing of wounds and possibly also to treat exposure to chemical and radioactive warfare agents. Radiation therapy and many chemotherapeutic drugs often damage the mucosal linings of the mouth and gastrointestinal tract, leading to mouth ulcers (oral mucositis), nausea, and diarrhea. Hyperbaric-oxygen therapy is currently the standard of care for ischemic, hypoxic, infected, and otherwise slowlyhealing problem wounds, including those of oral mucositis. Hyperbaric-oxygen therapy increases such cellular activities as collagen production and angiogenesis, leading to an increased rate of healing. Biostimulation by use of laser light has also been found to be effective in treating mucositis. For hyperbaricoxygen treatment, a patient must remain inside a hyperbaric chamber for an extended time. Laser treatment is limited by laser-wavelength capabilities and by narrowness of laser beams, and usually entails the generation of significant amounts of heat.

  14. Psychological distress and its impact on wound healing: an integrative review.

    Science.gov (United States)

    House, Sharon L

    2015-01-01

    Wound healing is typically divided into 4 stages; disruption of any one of these stages can impair this process. This integrative review summarizes findings from key studies suggesting that psychological distress may exert a clinically relevant impact on wound healing. For example, stress has been shown to decrease levels of inflammatory mediators, prolonging the inflammatory stage of healing, and increasing overall healing time. Depression has also been linked with impeding wound healing. Hostility has also been correlated with decreased inflammatory mediators, conversely, effective communication has shown faster healing time. Compounding factors such as unhealthy behaviors are also linked to poor wound healing, such as decreased sleep, poor nutrition, reduced exercise, and increased alcohol use. Clinical evidence suggests that alcohol exposure can reduce angiogenesis. Limited sleep decreases growth hormone secretion, resulting in decreased monocyte migration and activation of macrophages. protein deficiency can decrease capillary formation, collagen synthesis, and wound remodeling. Such evidence challenges clinicians to consider psychological factors when treating wound care patients.

  15. Processing of laminin α chains generates peptides involved in wound healing and host defense.

    Science.gov (United States)

    Senyürek, Ilknur; Kempf, Wolfgang E; Klein, Gerd; Maurer, Andreas; Kalbacher, Hubert; Schäfer, Luisa; Wanke, Ines; Christ, Christina; Stevanovic, Stefan; Schaller, Martin; Rousselle, Patricia; Garbe, Claus; Biedermann, Tilo; Schittek, Birgit

    2014-01-01

    Laminins play a fundamental role in basement membrane architecture and function in human skin. The C-terminal laminin G domain-like (LG) modules of laminin α chains are modified by proteolysis to generate LG1-3 and secreted LG4-5 tandem modules. In this study, we provide evidence that skin-derived cells process and secrete biologically active peptides from the LG4-5 module of the laminin α3, α4 and α5 chain in vitro and in vivo. We show enhanced expression and processing of the LG4-5 module of laminin α3 in keratinocytes after infection and in chronic wounds in which the level of expression and further processing of the LG4-5 module correlated with the speed of wound healing. Furthermore, bacterial or host-derived proteases promote processing of laminin α3 LG4-5. On a functional level, we show that LG4-5-derived peptides play a role in wound healing. Moreover, we demonstrate that LG4-derived peptides from the α3, α4 and α5 chains have broad antimicrobial activity and possess strong chemotactic activity to mononuclear cells. Thus, the data strongly suggest a novel multifunctional role for laminin LG4-5-derived peptides in human skin and its involvement in physiological processes and pathological conditions such as inflammation, chronic wounds and skin infection.

  16. Cell-cycle regulatory proteins in human wound healing

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Grøn, Birgitte; Dabelsteen, Erik

    2003-01-01

    Proper healing of mucosal wounds requires careful orchestration of epithelial cell migration and proliferation. To elucidate the molecular basis of the lack of cellular proliferation in the migrating 'epithelial tongue' during the re-epithelialization of oral mucosal wounds, the expression of cell......-cycle regulators critical for G(1)-phase progression and S-phase entry was here analysed immunohistochemically. Compared to normal human mucosa, epithelia migrating to cover 2- or 3-day-old wounds made either in vivo or in an organotypic cell culture all showed loss of the proliferation marker Ki67 and cyclins D(1...... the abundance of most of the CKIs, including p27Kip1, p57Kip2, p15ink4b and p18ink4c, was relatively maintained in the migrating epithelial tongue. These data indicate that downmodulation of several G(1)/S-phase cyclins and a relative excess of CKIs may cooperate to ensure the quiescent state of migrating...

  17. Wound Healing Activity and Chemical Standardization of Eugenia pruniformis Cambess

    Science.gov (United States)

    de Albuquerque, Ricardo Diego Duarte Galhardo; Perini, Jamila Alessandra; Machado, Daniel Escorsim; Angeli-Gamba, Thaís; Esteves, Ricardo dos Santos; Santos, Marcelo Guerra; Oliveira, Adriana Passos; Rocha, Leandro

    2016-01-01

    Background: Eugenia pruniformis is an endemic species from Brazil. Eugenia genus has flavonoids as one of the remarkable chemical classes which are related to the improvement of the healing process. Aims: To evaluate of wound healing activity of E. pruniformis leaves and to identify and quantify its main flavonoids compounds. Materials And Methods: Wound excision model in rats was used to verify the hydroethanolic and ethyl acetate extracts potential. The animals were divided in four groups of six and the samples were evaluated until the 15° day of treatment. Hydroxyproline dosage and histological staining with hematoxilin-eosin and Sirius Red were used to observe the tissue organization and quantify the collagen deposition, respectively. Chemical compounds of the ethyl acetate extract were identified by chromatographic techniques and mass spectrometry analysis and total flavonoid