WorldWideScience

Sample records for chronic uranyl nitrate

  1. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660{plus_minus}0.092 at 25 C, and extraction enthalpy is -5. 46{plus_minus}0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 {times} 10{sup 6}{plus_minus}3.56 {times} 10{sup 4} at 25 C; reaction enthalpy was -9.610{plus_minus}0.594 kcal/mol. Nitration complexation constant is 8.412{plus_minus}0.579, with an enthalpy of -10.72{plus_minus}1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured.

  2. Ultrastructural and metabolic changes in osteoblasts exposed to uranyl nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Tasat, D.R. [Universidad Nacional de San Martin, Escuela de Ciencia y Tecnologia, Pcia de Bs.As. (Argentina); Universidad de Buenos Aires, Catedra de Histologia y Embriologia, Facultad de Odontologia, Buenos Aires (Argentina); Orona, N.S. [Universidad Nacional de San Martin, Escuela de Ciencia y Tecnologia, Pcia de Bs.As. (Argentina); Mandalunis, P.M. [Universidad de Buenos Aires, Catedra de Histologia y Embriologia, Facultad de Odontologia, Buenos Aires (Argentina); Cabrini, R.L. [Comision Nacional de Energia Atomica, Departamento de Radiobiologia, Buenos Aires (Argentina); Ubios, A.M. [Comision Nacional de Energia Atomica, Departamento de Radiobiologia, Buenos Aires (Argentina); Universidad de Buenos Aires, Catedra de Histologia y Embriologia, Facultad de Odontologia, Buenos Aires (Argentina)

    2007-05-15

    Exposure to uranium is an occupational hazard to workers who continually handle uranium and an environmental risk to the population at large. Since the cellular and molecular pathways of uranium toxicity in osteoblast cells are still unknown, the aim of the present work was to evaluate the adverse effects of uranyl nitrate (UN) on osteoblasts both in vivo and in vitro. Herein we studied the osteoblastic ultrastructural changes induced by UN in vivo and analyzed cell proliferation, generation of reactive oxygen species (ROS), apoptosis, and alkaline phosphatase (APh) activity in osteoblasts exposed to various UN concentrations (0.1, 1, 10, and 100 {mu}M) in vitro. Cell proliferation was quantified by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, ROS was determined using the nitro blue tetrazolium test, apoptosis was morphologically determined using Hoechst 3332 and APh activity was assayed spectrophotometrically. Electron microscopy revealed that the ultrastructure of active and inactive osteoblasts exposed to uranium presented cytoplasmic and nuclear alterations. In vitro, 1-100 {mu}M UN failed to modify cell proliferation ratio and to induce apoptosis. ROS generation increased in a dose-dependent manner in all tested doses. APh activity was found to decrease in 1-100 {mu}M UN-treated cells vs. controls. Our results show that UN modifies osteoblast cell metabolism by increasing ROS generation and reducing APh activity, suggesting that ROS may play a more complex role in cell physiology than simply causing oxidative damage. (orig.)

  3. Status Update: Uranyl Nitrate Calibration Loop Equipment (UNCLE) at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Ladd-Lively, Jennifer L [ORNL

    2009-01-01

    The successful completion of a field trial of safeguards monitoring equipment at a natural uranium conversion plant (NUCP) demonstrated the need for a facility in which to perform full-scale equipment testing under controlled conditions prior to field deployment of safeguards systems at additional plants. Oak Ridge National Laboratory has developed a Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions for a purified uranium-bearing aqueous stream exiting the solvent extraction process conducted in an NUCP. In addition to calibrating instruments such as the neutron detector developed at Los Alamos National Laboratory, UNCLE will be used to test other in-line instruments (mass and volumetric flowmeters, spectrophotometers, etc.). UNCLE will be able to test commercially available equipment, such as the Endress+Hauser Promass 83F Coriolis meter that was used in the field test and other equipment that is presently under development. UNCLE is designed to accommodate different pipe sizes, flow rates, solution concentrations, and other variables of interest. Construction is expected to be completed by the end of September 2008 with initial testing beginning later that year. The design and current status of UNCLE will be presented, along with the capabilities of the facility and the proposed test plans.

  4. Study of the extraction mechanisms by TBP saturated by uranyl nitrate; Etude des mecanismes d'extraction du TBP sature par le nitrate d'uranyle

    Energy Technology Data Exchange (ETDEWEB)

    Meze, F

    2004-02-15

    This work deals with a particular phenomenon likely to occur in the nuclear waste reprocessing process PUREX. It was shown earlier by Russian works that the extractant molecule, tributyl phosphate (TBP), saturated by uranyl nitrate keeps its extraction capacities for nitric acid and tetravalent actinides. This study is composed of three parts. Firstly, some liquid-liquid extraction experiments were conducted to verify the ability of TBP saturated by uranyl nitrate to conserve its extraction capacities for nitric acid. Then, during these experiments, the UV and infrared spectra of both phases were recorded to obtain the organic phase speciation. At last, the informations gathered during the experimental part were used to build a general species distribution model of the H{sub 2}O/HNO{sub 3}/UO{sub 2}(NO{sub 3}){sub 2}/TBP system. (author)

  5. Solid state interaction studies on binary nitrate mixtures of uranyl nitrate hexahydrate and lanthanum nitrate hexahydrate at elevated temperatures

    Science.gov (United States)

    Kalekar, Bhupesh; Raje, Naina; Reddy, A. V. R.

    2017-02-01

    Interaction behavior of uranyl nitrate hexahydrate (UNH) and lanthanum nitrate hexahydrate (LaNH) have been investigated on the mixtures in different molar ratios of the two precursors and monitoring the reactions at elevated temperatures with thermoanalytical and X-ray diffraction measurement techniques. During the decomposition of equimolar mixture of LaNH and UNH, formation of lanthanum uranate (U0.5La0.5)O2, was seen by the temperature of 500 °C along with lanthanum oxide (La2O3) and uranium trioxide (UO3). By the temperature of 700 °C, the formation of uranium sesquioxide (U3O8) was observed along with (U0.5La0.5)O2 as end products in uranium rich mixtures. Lanthanum rich compositions decomposed by the temperature of 700 °C to give (U0.5La0.5)O2 and La2O3 as end products.

  6. Standard test method for isotopic analysis of hydrolyzed uranium hexafluoride and uranyl nitrate solutions by thermal ionization mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This method applies to the determination of isotopic composition in hydrolyzed nuclear grade uranium hexafluoride. It covers isotopic abundance of 235U between 0.1 and 5.0 % mass fraction, abundance of 234U between 0.0055 and 0.05 % mass fraction, and abundance of 236U between 0.0003 and 0.5 % mass fraction. This test method may be applicable to other isotopic abundance providing that corresponding standards are available. 1.2 This test method can apply to uranyl nitrate solutions. This can be achieved either by transforming the uranyl nitrate solution to a uranyl fluoride solution prior to the deposition on the filaments or directly by depositing the uranyl nitrate solution on the filaments. In the latter case, a calibration with uranyl nitrate standards must be performed. 1.3 This test method can also apply to other nuclear grade matrices (for example, uranium oxides) by providing a chemical transformation to uranyl fluoride or uranyl nitrate solution. 1.4 This standard does not purport to address al...

  7. Coordination mode of nitrate in uranyl(VI) complexes: a first-principles molecular dynamics study.

    Science.gov (United States)

    Bühl, Michael; Diss, Romain; Wipff, Georges

    2007-06-25

    According to Car-Parrinello molecular dynamics simulations for [UO(2)(NO(3))(3)](-), [UO(2)(NO(3))(4)](2-), and [UO(2)(OH(2))(4-)(NO(3))](+) complexes in the gas phase and in aqueous solution, the nitrate coordination mode to uranyl depends on the interplay between ligand-metal attractions, interligand repulsions, and solvation. In the trinitrate, the eta(2)-coordination is clearly favored in water and in the gas phase, leading to a coordination number (CN) of 6. According to pointwise thermodynamic integration involving constrained molecular dynamics simulations, a change in free energy of +6 kcal/mol is predicted for eta(2)- to eta(1)-transition of one of the three nitrate ligands in the gas phase. In the gas phase, the mononitrate-hydrate complex also prefers a eta(2)-binding mode but with a CN of 5, one H(2)O molecule being in the second shell. This contrasts with the aqueous solution where the nitrate binds in a eta(1)-fashion and uranyl coordinates to four H2O ligands. A driving force of ca. -3 kcal/mol is predicted for the eta(2)- to eta(1)- transition in water. This structural preference is interpreted in terms of steric arguments and differential solvation of terminal vs uranyl-coordinated O atoms of the nitrate ligands. The [UO(2)(NO(3))(4)](2-) complex with two eta(2)- and two eta(1)- coordinated nitrates, observed in the solid state, is stable for 1-2 ps in the gas phase and in solution. In the studied series, the modulation of uranyl-ligand distances upon immersion of the complex in water is found to depend on the nature of the ligand and the composition of the complex.

  8. Extraction of uranyl nitrate, sulphate and chloride with tri-n-octyl amine (TOA from aqueous solutions

    Directory of Open Access Journals (Sweden)

    DJORDJE M. PETKOVIC

    2001-07-01

    Full Text Available Extraction of uranyl nitrate, chloride and sulphate with tri-n-octyl amine (TOA in benzene as a function of the TOA concentration has been studied. The concentration based extraction equilibrium constants were calculated from the distribution data of the uranyl salts, fitting the parameters of a chemical model to the experimentally obtained extraction isotherms. The calculated equilibrium constants are 46.5, 89.4 and 4.2·104 for uranyl nitrate, chloride and sulphate, respectively. These values are in good agreement with the previously reported extraction equilibrium constants calculated by the inflection point method.

  9. Dehydration of Uranyl Nitrate Hexahydrate to Uranyl Nitrate Trihydrate under Ambient Conditions as Observed via Dynamic Infrared Reflectance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

    2015-05-22

    the hexahydrate [UO2(NO3)2(H2O)6] (UNH) and the trihydrate [UO2(NO3)2(H2O)3] (UNT) forms. Their stabilities depend on both relative humidity and temperature. Both phases have previously been studied by infrared transmission spectroscopy, but the data were limited by both instrumental resolution and the ability to prepare the samples as pellets without desiccating them. We report time-resolved infrared (IR) measurements using an integrating sphere that allow us to observe the transformation from the hexahydrate to the trihydrate simply by flowing dry nitrogen gas over the sample. Hexahydrate samples were prepared and confirmed via known XRD patterns, then measured in reflectance mode. The hexahydrate has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample dehydrates and recrystallizes to the trihydrate, first as a blue edge shoulder but ultimately resulting in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT since UNT has two non-equivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a morphological and structural change that has the lustrous lime green crystals changing to the dull greenish yellow of the trihydrate. Crystal structures and phase transformation were confirmed theoretically using DFT calculations and experimentally via microscopy methods. Both methods showed a transformation with two distinct sites for the uranyl cation in the trihydrate, as opposed to a single crystallographic site in the hexahydrate.

  10. Benchmark calculation for water reflected STACY cores containing low enriched uranyl nitrate solution

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Yoshinori; Yamamoto, Toshihiro; Nakamura, Takemi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-08-01

    In order to validate the availability of criticality calculation codes and related nuclear data library, a series of fundamental benchmark experiments on low enriched uranyl nitrate solution have been performed with a Static Experiment Criticality Facility, STACY in JAERI. The basic core composed of a single tank with water reflector was used for accumulating the systematic data with well-known experimental uncertainties. This paper presents the outline of the core configurations of STACY, the standard calculation model, and calculation results with a Monte Carlo code and JENDL 3.2 nuclear data library. (author)

  11. Complexes of uranyl nitrate with 2,6-pyridinedicarboxamides: synthesis, crystal structure, and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Alyapyshev, Mikhail; Babain, Vasiliy [ITMO University, 49, Kronverksky pr., 197101, St. Petersburg (Russian Federation); ThreeArc Mining Ltd., 5, Stary Tolmachevskiy per., 115184, Moscow (Russian Federation); Tkachenko, Lyudmila; Lumpov, Alexander [Khlopin Radium Institute, 28, 2nd Murinskiy pr., 194021, St. Petersburg (Russian Federation); Gurzhiy, Vladislav; Zolotarev, Andrey; Dar' in, Dmitriy [St. Petersburg State University, 7-9, Universitetskaya nab., 199034, St. Petersburg (Russian Federation); Ustynyuk, Yuriy; Gloriozov, Igor [M.V. Lomonosov Moscow State University, 119991, Moscow (Russian Federation); Paulenova, Alena [Department of Nuclear Engineering, Oregon State University, Corvallis, OR (United States)

    2017-05-04

    Two complexes of uranyl nitrate with N,N,N',N'-tetrabutyl-2,6-pyridinedicarboxamide (TBuDPA) and N,N'-diethyl-N,N'-diphenyl-2,6-pyridinedicarboxamide (EtPhDPA) were synthesized and studied. The complex of tetraalkyl-2,6-pyridinedicarboxamide with metal nitrate was synthesized for the first time. XRD analysis revealed the different type of complexation: a 1:1 metal:ligand complex for EtPhDPA and complex with polymeric structure for TBuDPA. The quantum chemical calculations (DFT) confirm that both ligands form the most stable complexes that match the minimal values pre-organization energy of the ligands. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Synthesis and Crystal Structure of Bis(nitrate)bis(dipiperidin-1-yl-methanone)uranyl(II)

    Institute of Scientific and Technical Information of China (English)

    朱利明; 何雪雁; 周俊慧; 于正风; 李宝龙; 张勇

    2004-01-01

    The new uranyl complex UO2(NO3)2[C5H10NC(O)NH10C5]2 has been synthesized and its structure was determined by single-crystal X-ray diffraction. Crystal data: C22H40N6O10U, monoclinic, space group P21/c, a = 11.151(3), b = 13.907(3), c = 10.067(2)A,β= 115.602(4)0,V = 1408.0(5) A3, Mr = 786.63, Z = 2, Dc = 1.855 g/cm3, F(000) = 772,μ = 5.827 mm-1, R = 0.0465 and wR = 0.1065 for 2916 observed reflections (I > 2σ(I)). The central uranyl ion is coordinated by six oxygen atoms, of which two are from the carbonyl groups of di-piperidin-1-yl-methanone molecules and the other four from two nitrate groups.

  13. New thermo-sensitive chelating surfactants for selective solvent-free extraction of uranyl nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Prevost, S.; Larpent, C.; Testard, F.; Coulombeau, H.; Baczko, K.; Berthon, L.; Desvaux, H.; Madic, C.; Zemb, T

    2004-07-01

    Functional surfactants were synthesised by grafting a chelating group (amino-acid residue) to the tip of a poly-ethoxylated nonionic surfactant chain (C{sub i}E{sub j}: C{sub i}H{sub 2i}+1(OCH{sub 2}CH{sub 2}){sub j}OH)) or in a branched position. C{sub i}E{sub j} nonionic surfactants are known to be thermo-reversible and to exhibit a clouding phenomenon associated to phase separation of micelles. The functional surfactants retain both surface-active properties, characteristic thermo-reversible behaviour and have efficient complexing properties toward uranyl. In the presence of uranyl nitrate, small micelles are formed at ambient temperature and the de-mixing leads to a separation of the target ion trapped by the functional surfactant (cloud point extraction). Those surfactants are more efficient than mixture of classical C{sub i}E{sub j} and complexing agent solubilized in the micelles. This reveals a synergistic effect of the covalent bond between the chelating group and the nonionic surfactant C{sub i}E{sub j}. This paper presents a systematic study of the extraction and aggregation properties and the influence of the nature of the ions. (authors)

  14. MCNP-DSP calculations of measurements with uranyl nitrate solution system

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, T.E. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    The {sup 252}Cf-source-driven noise analysis method has been used to determine the subcriticality of various configurations of fissile materials. In the past, the application of this method was limited because point-kinetics models had to be used to interpret the data; however, with the development of the Monte Carlo code MCNP-DSP, the measurements can be analyzed using the more general Monte Carlo models. The results of the Monte carlo calculations will be dependent on the ability to model the experiment accurately and on the nuclear data used to perform the calculations. This paper presents a comparison of the measured and calculated ratio of spectral densities for a subset of measurements performed with a uranyl nitrate solution tank filled to various heights. The results presented are for calculations that were performed with both ENDF/B-IV and ENDF/B-V cross-section data sets.

  15. Comprehensive analysis of the renal transcriptional response to acute uranyl nitrate exposure

    Directory of Open Access Journals (Sweden)

    Argiles Angel

    2006-01-01

    Full Text Available Abstract Background Chemical and radiological toxicities related to uranium acute exposure have been widely studied in nuclear fuel workers and military personnel. It is well known that uranyl nitrate induces acute renal failure (ARF. However, the mechanisms of this metal-induced injury are not well defined at the molecular level. Results Renal function and histology were assessed in mice receiving uranyl nitrate (UN(+ and controls (UN(-. To identify the genomic response to uranium exposure, serial analysis gene expression (SAGE of the kidney was performed in both groups. Over 43,000 mRNA SAGE tags were sequenced. A selection of the differentially expressed transcripts was confirmed by real-time quantitative PCR and Western blotting. UN(+ animals developed renal failure and displayed the characteristic histological lesions of UN nephropathy. Of the >14,500 unique tags identified in both libraries, 224 had a modified expression level; they are known to participate in inflammation, ion transport, signal transduction, oxidative stress, apoptosis, metabolism, and catabolism. Several genes that were identified had not previously been evaluated within the context of toxic ARF such as translationally controlled tumor protein, insulin like growth factor binding protein 7 and ribosomal protein S29, all apoptosis related genes. Conclusion We report a comprehensive description of the UN induced modifications in gene expression levels, including the identification of genes previously unrelated to ARF. The study of these genes and the metabolisms they control should improve our understanding of toxic ARF and enlighten on the molecular targets for potential therapeutic interventions.

  16. Synthesis of microspheres of triuranium octaoxide by simultaneous water and nitrate extraction from ascorbate-uranyl sols.

    Science.gov (United States)

    Brykala, M; Deptula, A; Rogowski, M; Lada, W; Olczak, T; Wawszczak, D; Smolinski, T; Wojtowicz, P; Modolo, G

    A new method for synthesis of uranium oxide microspheres (diameter Sol-Gel Process, which has been used to synthesize high-quality powders of a wide variety of complex oxides. Starting uranyl-nitrate-ascorbate sols were prepared by addition of ascorbic acid to uranyl nitrate hexahydrate solution and alkalizing by aqueous ammonium hydroxide and then emulsified in 2-ethylhexanol-1 containing 1v/o SPAN-80. Drops of emulsion were firstly gelled by extraction of water by the solvent. Destruction of the microspheres during thermal treatment, owing to highly reactive components in the gels, requires modification of the gelation step by Double Extraction Process-simultaneously extraction of water and nitrates using Primene JMT, which completely eliminates these problem. Final step was calcination in air of obtained microspheres of gels to triuranium octaoxide.

  17. Thermo-responsive metal-chelating surfactants. Properties and use in cloud point extraction of uranyl nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Prevost, S.; Coulombeau, H. [CEA, IRAMIS, SCM, LIONS, 91 - Gif-sur-Yvette (France); Univ. de Versailles St Quentin en Y. Institut Lavoisier UMR CNRS 8180 (France); Baczko, K.; Larpent, C. [Univ. de Versailles St Quentin en Y. Institut Lavoisier UMR CNRS 8180 (France); Berthon, L.; Zorz, N. [CEA/DEN/DRCP/SCPS/LCSE, 30 - Bagnols sur Ceze (France); Desvaux, H.; Testard, F. [CEA, IRAMIS, SCM, LIONS, 91 - Gif-sur-Yvette (France); Zemb, T. [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, 30 - Bagnols sur Ceze (France)

    2009-03-15

    The properties of new thermo-responsive functional surfactants, capable of forming a metal chelate, synthesized by grafting a diamide group (amino-acid residue) to the tip hydrophilic endgroup or in a branched position to polyoxyethylene nonionic surfactants [C{sub i}E{sub j}:C{sub i}H{sub 2i+1}(OCH{sub 2}CH{sub 2}){sub j}OH)], are studied. Their use in cloud point extraction of uranyl nitrate is tested. The reversible temperature-dependent behavior of classical non-ionic surfactants associated to phase separation of micellar solutions known as clouding behavior is exploited for separation based on cation specific binding to the chelating group. The functional surfactants under investigation combine surface-active properties and characteristic thermoreversible behavior with a capacity to bind uranyl cation. The influence of the complexation on the cloud points of functional surfactants is determined. The chelating surfactants are found efficient for the cloud point extraction of uranyl nitrate at low surfactant-to-uranyl ratio. These new thermoresponsive surfactants with chelating properties hold most promise for the development of new solvent free extraction processes.

  18. Thermo-responsive Metal-chelating Surfactants: Properties and Use in Cloud Point Extraction of Uranyl Nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Prevost, S.; Coulombeau, H.; Baczko, K.; Larpent, C. [Univ Versailles St Wuentin Y, Inst Lavoisier, UMR 8180, CNRS, F-78035 Versailles, (France); Prevost, S.; Coulombeau, H.; Desvaux, H.; Testard, F. [CEA, IRAMIS, SCM, LIONS, F-91191 Gif Sur Yvette, (France); Berthon, L.; Zorz, N. [CEA, DEN DRCP SCPS LCSE, F-30207 Bagnols Sur Ceze, (France); Zemb, Th. [ICSM, UMR 5257, CEA CNRS UM2 ENSCM, F-30207 Bagnols Sur Ceze, (France)

    2009-07-01

    The properties of new thermo-responsive functional surfactants, capable of forming a metal chelate, synthesized by grafting a diamide group (amino-acid residue) to the tip hydrophilic end-group or in a branched position to polyoxyethylene nonionic surfactants [CiEj: C{sub i}H{sub 2i+1}(OCH{sub 2}CH{sub 2}){sub j}OH)], are studied. Their use in cloud point extraction of uranyl nitrate is tested. The reversible temperature-dependent behavior of classical non-ionic surfactants associated to phase separation of micellar solutions known as clouding behavior is exploited for separation based on cation specific binding to the chelating group. The functional surfactants under investigation combine surface-active properties and characteristic thermo-reversible behavior with a capacity to bind uranyl cation. The influence of the complexation on the cloud points of functional surfactants is determined. The chelating surfactants are found efficient for the cloud point extraction of uranyl nitrate at low surfactant-to-uranyl ratio. These new thermo-responsive surfactants with chelating properties hold most promise for the development of new solvent free extraction processes. (authors)

  19. Kinetic of liquid-liquid extraction for uranyl nitrate and actinides (III) and lanthanides (III) nitrates by amide extractants; Cinetique d`extraction liquide-liquide du nitrate d`uranyle et des nitrates d`actinides (III) et de lanthanides (III) par des extractants a fonction amide

    Energy Technology Data Exchange (ETDEWEB)

    Toulemonde, V. [CEA Centre d`Etudes Nucleaires de Saclay, 91 -Gif-sur-Yvette (France)]|[CEA Centre d`Etudes de la Vallee du Rhone, 30 -Marcoule (France). Dept. d`Exploitation du Retraitement et de Demantelement

    1995-12-20

    The kinetics of liquid-liquid extraction by amide extractants have been investigated for uranyl nitrate (monoamide extractants), actinides (III) and lanthanides (III) nitrates (diamide extractants). The transfer of the metallic species from the aqueous phase to the organic phase was studied using two experimental devices: ARMOLLEX (Argonne Modified Lewis cell for Liquid Liquid Extraction) and RSC (Rotating Stabilized Cell). The main conclusions are: for the extraction of uranyl nitrate by DEHDMBA monoamide, the rate-controlling step is the complexation of the species at the interface of the two liquids. Thus, an absorption-desorption (according to Langmuir theory) reaction mechanism was proposed; for the extraction of actinides (III) and lanthanides (III) nitrates in nitric acid media by DMDBTDMA diamide, the kinetic is also limited by interfacial reactions. The behavior of Americium and Europium is very similar as fare as their reaction kinetics are concerned. (author). 89 refs.

  20. Chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade uranyl nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The standard covers analytical procedures to determine compliance of nuclear-grade uranyl nitrate solution to specifications. The following methods are described in detail: uranium by ferrous sulfate reduction-potassium dichromate titrimetry and by ignition gravimetry; specific gravity by pycnometry; free acid by oxalate complexation; thorium by the Arsenazo(III) (photometric) method; chromium by the diphenylcarbazide (photometric) method; molybdenum by the thiocyanate (photometric) method; halogens separation by steam distillation; fluorine by specific ion electrode; halogen distillate analysis: chloride, bromide and iodide by amperometric microtitrimetry; bromine by the fluorescein (photometric) method; sulfate sulfur by (photometric) turbidimetry; phosphorus by the molybdenum blue (photometric) method; silicon by the molybdenum blue (photometric) method; carbon by persulfate oxidation-acid titrimetry; nonvolatile impurities by spectrography; volatile impurities by rotating-disk spark spectrography; boron by emission spectrography; impurity elements by spark source mass spectrography; isotopic composition by multiple filament surface-ionization mass spectrometry; uranium-232 by alpha spectrometry; total alpha activity by direct alpha counting; fission product activity by beta and gamma counting; entrained organic matter by infrared spectrophotometry. (JMT)

  1. Critical Parameters of Complex Geometry Intersecting Cylinders Containing Uranyl Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Robert Emil; Briggs, Joseph Blair

    1999-06-01

    About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a "tree") having long, thin arms (or "branches") extending up to four directions off the column. Arms are equally spaced from one another in vertical planes; and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves when each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.

  2. Critical Parameters of Complex Geometries of Intersecting Cylinders Containing Uranyl Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    J. B. Briggs (INEEL POC); R. E. Rothe

    1999-06-14

    About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a ''tree'') having long, thin arms (or ''branches'') extending up to four directions off the column. Arms are equally spaced from one another in vertical planes, and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves with each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.

  3. Highly Enriched Uranyl Nitrate in Annular Tanks with Concrete Reflection: 1 x 3 Line Array of Nested Pairs of Tanks

    Energy Technology Data Exchange (ETDEWEB)

    James Cleaver; John D. Bess; Nathan Devine; Fitz Trumble

    2009-09-01

    A series of seven experiments were performed at the Rocky Flats Critical Mass Laboratory beginning in August, 1980 (References 1 and 2). Highly enriched uranyl nitrate solution was introduced into a 1-3 linear array of nested stainless steel annular tanks. The tanks were inside a concrete enclosure, with various moderator and absorber materials placed inside and/or between the tanks. These moderators and absorbers included boron-free concrete, borated concrete, borated plaster, and cadmium. Two configurations included placing bottles of highly enriched uranyl nitrate between tanks externally. Another experiment involved nested hemispheres of highly enriched uranium placed between tanks externally. These three configurations are not evaluated in this report. The experiments evaluated here are part of a series of experiments, one set of which is evaluated in HEU-SOL-THERM-033. The experiments in this and HEU-SOL-THERM-033 were performed similarly. They took place in the same room and used the same tanks, some of the same moderators and absorbers, some of the same reflector panels, and uranyl nitrate solution from the same location. There are probably additional similarities that existed that are not identified here. Thus, many of the descriptions in this report are either the same or similar to those in the HEU-SOL-THERM-033 report. Seventeen configurations (sixteen of which were critical) were performed during seven experiments; six of those experiments are evaluated here with thirteen configurations. Two configurations were identical, except for solution height, and were conducted to test repeatability. The solution heights were averaged and the two were evaluated as one configuration, which gives a total of twelve evaluated configurations. One of the seventeen configurations was subcritical. Of the twelve critical configurations evaluated, nine were judged as acceptable as benchmarks.

  4. Uranyl(VI) nitrate salts: modeling thermodynamic properties using the binding mean spherical approximation theory and determination of "fictive" binary data.

    Science.gov (United States)

    Ruas, Alexandre; Bernard, Olivier; Caniffi, Barbara; Simonin, Jean-Pierre; Turq, Pierre; Blum, Lesser; Moisy, Philippe

    2006-02-23

    This work is aimed at a description of the thermodynamic properties of highly concentrated aqueous solutions of uranyl nitrate at 25 degrees C. A new resolution of the binding mean spherical approximation (BIMSA) theory, taking into account 1-1 and also 1-2 complex formation, is developed and used to reproduce, from a simple procedure, experimental uranyl nitrate osmotic coefficient variation with concentration. For better consistency of the theory, binary uranyl perchlorate and chloride osmotic coefficients are also calculated. Comparison of calculated and experimental values is made. The possibility of regarding the ternary system UO(2)(NO(3))(2)/HNO(3)/H(2)O as a "simple" solution (in the sense of Zdanovskii, Stokes, and Robinson) is examined from water activity and density measurements. Also, an analysis of existing uranyl nitrate binary data is proposed and compared with our obtained data. On the basis of the concept of "simple" solution, values for density and water activity for the binary system UO(2)(NO(3))(2)/H(2)O are proposed in a concentration range on which uranyl nitrate precipitates from measurements on concentrated solutions of the ternary system UO(2)(NO(3))(2)/HNO(3)/H(2)O. This new set of binary data is "fictive" in the sense that the real binary system is not stable chemically. Finally, a new, interesting predictive capability of the BIMSA theory is shown.

  5. Standard test method for gamma energy emission from fission products in uranium hexafluoride and uranyl nitrate solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of gamma energy emitted from fission products in uranium hexafluoride (UF6) and uranyl nitrate solution. It is intended to provide a method for demonstrating compliance with UF6 specifications C 787 and C 996 and uranyl nitrate specification C 788. 1.2 The lower limit of detection is 5000 MeV Bq/kg (MeV/kg per second) of uranium and is the square root of the sum of the squares of the individual reporting limits of the nuclides to be measured. The limit of detection was determined on a pure, aged natural uranium (ANU) solution. The value is dependent upon detector efficiency and background. 1.3 The nuclides to be measured are106Ru/ 106Rh, 103Ru,137Cs, 144Ce, 144Pr, 141Ce, 95Zr, 95Nb, and 125Sb. Other gamma energy-emitting fission nuclides present in the spectrum at detectable levels should be identified and quantified as required by the data quality objectives. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its us...

  6. Liquid-liquid extraction kinetics of uranyl nitrate and actinides (III)-lanthanides nitrates by extractants with amide function; Cinetique d`extraction liquide-liquide du nitrate d`uranyle et des nitrates d`actinides (III) et de lanthanides (III) par des extractants a fonction amide

    Energy Technology Data Exchange (ETDEWEB)

    Toulemonde, V.

    1995-12-20

    Nowadays, the most important part of electric power is generated by fission energy. But spent fuels have then to be reprocessed. The production of these reprocessed materials separately and with a high purity level is done according to a liquid-liquid extraction process (Purex process) with the use of tributyl phosphate as solvent. Optimization studies concerning the extracting agent have been undertaken. This work gives the results obtained for the uranyl nitrate and the actinides (III)-lanthanides (III) nitrates extraction by extractants with amide function (monoamide for U(VI) and diamide for actinides (III) and lanthanides (III)). The extraction kinetics have been studied in the case of a metallic specie transfer from the aqueous phase towards the organic phase. The experiments show that the nitrates extraction kinetics is limited by the complexation chemical reaction of the species at the interface between the two liquids. An adsorption-desorption interfacial reactional mechanism (Langmuir theory) is proposed for the uranyl nitrate. (O.M.). 89 refs.

  7. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade uranyl nitrate solutions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade uranyl nitrate solution to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Determination of Uranium 7 Specific Gravity by Pycnometry 15-20 Free Acid by Oxalate Complexation 21-27 Determination of Thorium 28 Determination of Chromium 29 Determination of Molybdenum 30 Halogens Separation by Steam Distillation 31-35 Fluoride by Specific Ion Electrode 36-42 Halogen Distillate Analysis: Chloride, Bromide, and Iodide by Amperometric Microtitrimetry 43 Determination of Chloride and Bromide 44 Determination of Sulfur by X-Ray Fluorescence 45 Sulfate Sulfur by (Photometric) Turbidimetry 46 Phosphorus by the Molybdenum Blue (Photometric) Method 54-61 Silicon by the Molybdenum Blue (Photometric) Method 62-69 Carbon by Persulfate Oxidation-Acid Titrimetry 70 Conversion to U3O8 71-74 Boron by ...

  8. Ethane 1-hydroxy-1, 1-diphosphonate (EHDP) counteracts the inhibitory effect of uranyl nitrate on bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Ubios, A.M.; Guglielmotti, M.B. (Univ. of Buenos Aires (Argentina)); Cabrini, R.L. (Univ. of Buenos Aires (Argentina) National Atomic Energy Commission, Buenos Aires (Argentina))

    The beneficial effect of ethane 1-hydroxy-1, 1-diphosphonate (EHDP) in restoring the inhibition of bone formation in cases of acute uranium intoxication is presented. Bone formation was studied histomorphometrically in a model of alveolar bone healing. After tooth extraction, 40 rats were divided into 4 groups that received (1) no further treatment, (2) 10 daily intraperitoneal injections of 7.5 mg/kg of body weight of EHDP, (3) an intraperitoneal injection of 2.0 mg/kg of body weight of uranyl nitrate, and (4) the same treatment as was provided rats in groups 2 and 3. The results showed that the healing of bone did not occur in exposed animals, whereas healing in EHDP-treated exposed animals did not differ from that of nonexposed controls. This effect might result from a blocking and/or competitive action of EHDP and/or the stimulation that EHDP elicits at the doses and in the administration period studied.

  9. Radiation chemistry of cis-syn-cis dicyclohexano-18-crown-6 (DCH18C6): Acidity and uranyl nitrate dependence

    Energy Technology Data Exchange (ETDEWEB)

    Draye, Micheline [Laboratoire de Chimie Moleculaire et Environnement (EA1651), Universite de Savoie-Polytech' Savoie, Campus Scientifique, 73376 Le Bourget du Lac Cedex (France)], E-mail: micheline.draye@univ-savoie.fr; Favre-Reguillon, Alain [Laboratoire de Chimie Organique (UMR7084), Conservatoire National des Arts et Metiers, 2 rue conte, 75003 Paris (France); Faure, Rene [Laboratoire des sciences analytiques, UMR CNRS 5180, Universite Claude Bernard, Lyon 1, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Lemaire, Marc [Laboratoire de Catalyse et Synthese Organique, UMR CNRS 5246, Institut de Chimie et Biochimie Moleculaires et Supramoleculaires, Universite Lyon 1 CPE, 43 boulevard du 11 novembre 1918, Villeurbanne 69622 (France)

    2008-05-15

    The cis-syn-cis isomer of dicyclohexano-18-crown-6 (DCH18C6) has been shown to be an efficient extractant able to perform the separation of Pu(IV) and U(VI) from fission products and then the separation of Pu(IV) from U(VI) without valence exchange as required in the PUREX process. This macrocycle was irradiated in nitric acid with a {sup 137}Cs {gamma} source to study its radiation chemical stability. Radiation chemical yields (G) were determined by gas chromatography. The results show that the presence of uranyl nitrate has a strong influence on DCH18C6 radiation chemical stability. Indeed, the presence of this template ion increases the macrocycle stability by promoting fragments recombination.

  10. Uranyl(VI) nitrate salts: Modeling thermodynamic properties using the binding mean spherical approximation theory and determination of 'fictive' binary data

    Energy Technology Data Exchange (ETDEWEB)

    Ruas, Alexandre; Bernard, Olivier; Caniffi, Barbara; Simonin, Jean-Pierre; Turq, Pierre; Blum, Lesser; Moisy, Philippe [CEA-Valrho Marcoule, DEN/DRCP/SCPS/LCA, Bat 399, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Laboratoire LI2C (UMR 7612), Universite P. M. Curie, Boite No. 51, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Department of Physics, POB 23343, University of Puerto Rico, Rio Pedras, Puerto Rico 00931-3343 (United States)

    2006-07-01

    This work is aimed at a description of the thermodynamic properties of highly concentrated aqueous solutions of uranyl nitrate at 25 degrees C. A new resolution of the binding mean spherical approximation (BIMSA) theory, taking into account 1-1 and also 1-2 complex formation, is developed and used to reproduce, from a simple procedure, experimental uranyl nitrate osmotic coefficient variation with concentration. For better consistency of the theory, binary uranyl perchlorate and chloride osmotic coefficients are also calculated. Comparison of calculated and experimental values is made. The possibility of regarding the ternary system UO{sub 2}(NO{sub 3}){sub 2}/HNO{sub 3}/H{sub 2}O as a 'simple' solution (in the sense of Zdanovskii, Stokes, and Robinson) is examined from water activity and density measurements. Also, an analysis of existing uranyl nitrate binary data is proposed and compared with our obtained data. On the basis of the concept of 'simple' solution, values for density and water activity for the binary system UO{sub 2}(NO{sub 3}){sub 2}/H{sub 2}O are proposed in a concentration range on which uranyl nitrate precipitates from measurements on concentrated solutions of the ternary System UO{sub 2}(NO{sub 3}){sub 2}/HNO{sub 3}/H{sub 2}O. This new set of binary data is 'fictive' in the sense that the real binary system is not stable chemically. Finally, a new, interesting predictive capability of the BIMSA theory is shown. (authors)

  11. Time-Resolved Infrared Reflectance Studies of the Dehydration-Induced Transformation of Uranyl Nitrate Hexahydrate to the Trihydrate Form

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

    2015-10-01

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s the different phases were studied by infrared transmission spectroscopy, but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. The phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with but one in the hexahydrate.

  12. A Nuclear Reactor and Chemical Processing Design for Production of Molybdenum-99 with Crystalline Uranyl Nitrate Hexahydrate Fuel

    Science.gov (United States)

    Stange, Gary Michael

    Medical radioisotopes are used in tens of millions of procedures every year to detect and image a wide variety of maladies and conditions in the human body. The most widely-used diagnostic radioisotope is technetium-99m, a metastable isomer of technetium-99 that is generated by the radioactive decay of molybdenum-99. For a number of reasons, the supply of molybdenum-99 has become unreliable and the techniques used to produce it have become unattractive. This has spurred the investigation of new technologies that avoid the use of highly enriched uranium to produce molybdenum-99 in the United States, where approximately half of the demand originates. The first goal of this research is to develop a critical nuclear reactor design powered by solid, discrete pins of low enriched uranium. Analyses of single-pin heat transfer and whole-core neutronics are performed to determine the required specifications. Molybdenum-99 is produced directly in the fuel of this reactor and then extracted through a series of chemical processing steps. After this extraction, the fuel is left in an aqueous state. The second goal of this research is to describe a process by which the uranium may be recovered from this spent fuel solution and reconstituted into the original fuel form. Fuel recovery is achieved through a crystallization step that generates solid uranyl nitrate hexahydrate while leaving the majority of fission products and transuranic isotopes in solution. This report provides background information on molybdenum-99 production and crystallization chemistry. The previously unknown thermal conductivity of the fuel material is measured. Following this is a description of the modeling and calculations used to develop a reactor concept. The operational characteristics of the reactor core model are analyzed and reported. Uranyl nitrate crystallization experiments have also been conducted, and the results of this work are presented here. Finally, a process flow scheme for uranium

  13. The system uranyl nitrate-dietyl ether-water. Extraction by water in spray and packed columns from uranyl nitrate-either solutions; El sistema nitrato de uranilo-eter dietilico-agua, extraccion de nitrato de uranilo con agua a partir de disoluciones etereas en columnas de pulverizacion y de relleno

    Energy Technology Data Exchange (ETDEWEB)

    Perez Luina, A.; Gutierrez Jodra, L.

    1960-07-01

    This paper is a continuation of the one published in Chemical Engineering Progress. Symposium Series, 50, n. 12, 127 (1954). New runs for spray columns, are given and other concentrations in uranyl nitrate for the packed columns. New correlations for the overall H.T.U. are also given. The individual H.T.U. have been grapycally calculated and show that the film resistances have similar values, being independent of the concentration of the ether phase. (Author) 24 refs.

  14. Annual report of STACY operation in F.Y. 1997. 280mm thickness slab core {center_dot} 10% enriched uranyl nitrate solution

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Seiji; Sono, Hiroki; Hirose, Hideyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-06-01

    Fifty-three times critical experiments (run number R0104 to R0156) with STACY in NUCEF, were performed in F.Y. 1997. During these experiments, 10% enriched uranyl nitrate solution was used as fuel, and core configuration was 280mm thickness and 1.5m height slab core tank with various rectangular solid reflectors; ordinary or borated concrete, polyethylene and so on, to measure mainly reactivity worth by changes of reflecting material and its thickness. Operation data of STACY in F.Y. 1997 are summarized in this report. (author)

  15. Study of the changes in composition of ammonium diuranate with progress of precipitation, and study of the properties of ammonium diuranate and its subsequent products produced from both uranyl nitrate and uranyl fluoride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Subhankar; Kumar, Raj; Satpati, Santosh K.; Roy, Saswati B. [Bhabha Atomic Research Centre, Trombay, Mumbai (India); Joshi, Jyeshtharaj B. [Dept. of Chemical Engineering, Institute of Chemical Technology, Mumbai (India)

    2017-04-15

    Uranium metal used for fabrication of fuel for research reactors in India is generally produced by magnesio-thermic reduction of UF{sub 4}. Performance of magnesio-thermic reaction and recovery and quality of uranium largely depends on properties of UF{sub 4}. As ammonium diuranate (ADU) is first product in powder form in the process flow-sheet, properties of UF{sub 4} depend on properties of ADU. ADU is generally produced from uranyl nitrate solution (UNS) for natural uranium metal production and from uranyl fluoride solution (UFS) for low enriched uranium metal production. In present paper, ADU has been produced via both the routes. Variation of uranium recovery and crystal structure and composition of ADU with progress in precipitation reaction has been studied with special attention on first appearance of the precipitate Further, ADU produced by two routes have been calcined to UO{sub 3}, then reduced to UO{sub 2} and hydroflorinated to UF{sub 4}. Effect of two different process routes of ADU precipitation on the characteristics of ADU, UO{sub 3}, UO{sub 2} and UF{sub 4} were studied here.

  16. Treatment of uranyl nitrate and flouride solutions; Tratamiento de soluciones que contienen nitrato de uranilo y fluoruros

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo Otero, A.; Rodrigo Vilaseca, F.; Morales Calvo, G.

    1977-07-01

    A theoretical study on the fluoride complexes contained in uranyl and aluminium solutions has been carried out. Likewise concentration limits and Duhring diagrams for those solutions have been experimentally established. As a result, the optimum operation conditions for concentration by evaporation in the treatment plant, have been deduced. (Author) 12 refs.

  17. Uranyl Nitrate Flow Loop

    Energy Technology Data Exchange (ETDEWEB)

    Ladd-Lively, Jennifer L [ORNL

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by the U.S. Department of Energy (DOE) NA-241, Office of Dismantlement and Transparency.

  18. Standard test method for determination of bromine and chlorine in UF6 and uranyl nitrate by X-Ray fluorescence (XRF) spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This method covers the determination of bromine (Br) and chlorine (Cl) in uranium hexafluoride (UF6) and uranyl nitrate solution. The method as written covers the determination of bromine in UF6 over the concentration range of 0.2 to 8 μg/g, uranium basis. The chlorine in UF6 can be determined over the range of 4 to 160 μg/g, uranium basis. Higher concentrations may be covered by appropriate dilutions. The detection limit for Br is 0.2 μg/g uranium basis and for Cl is 4 μg/g uranium basis. 1.2 This standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. The mechanism of the transient depression of the erythropoietic rate induced in the rat by a single injection of uranyl nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Giglio, M.J.; Brandan, N.; Leal, T.L.; Bozzini, C.E.

    1989-06-15

    With the purpose of assessing the effect of uranyl nitrate (UN) on the rate of erythropoiesis, 1 mg/kg of the compound was injected iv to adult female Wistar rats. The dosing vehicle was injected into control animals. A single injection of UN induced a transient depression of the rate of red cell volume /sup 59/Fe uptake, which reached its lowest value (68% depression) by the seventh postinjection day. By 14 days, /sup 59/Fe incorporation had returned to normal. The amount of iron going to erythroid tissue per hour, reticulocyte count, and immunoreactive erythropoietin concentration in both plasma and kidney extracts were also significantly depressed in UN-treated rats in relation to these values in vehicle-injected rats by the seventh postinjection day. Dose-response curves for exogenous erythropoietin (Epo) performed in polycythemic intact and UN-treated rats 7 days after drug injection revealed a significant depression of the response in UN-injected animals. Moreover, bone marrow cells obtained from rats pretreated with UN formed a reduced number of erythroid colonies in vitro in response to Epo. Therefore, possible mechanisms for the observed transient depression in the rate of erythropoiesis associated with acute UN treatment include decreased Epo production and direct or indirect damage of erythroid progenitor cells.

  20. Mechanistic Features of the TiO2 Heterogeneous Photocatalysis of Arsenic and Uranyl Nitrate in Aqueous Suspensions Studied by the Stopped-Flow Technique.

    Science.gov (United States)

    Meichtry, Jorge M; Levy, Ivana K; Mohamed, Hanan H; Dillert, Ralf; Bahnemann, Detlef W; Litter, Marta I

    2016-03-16

    The dynamics of the transfer of electrons stored in TiO2 nanoparticles to As(III) , As(V) , and uranyl nitrate in water was investigated by using the stopped-flow technique. Suspensions of TiO2 nanoparticles with stored trapped electrons (etrap (-) ) were mixed with solutions of acceptor species to evaluate the reactivity by following the temporal evolution of etrap (-) by the decrease in the absorbance at λ=600 nm. The results indicate that As(V) and As(III) cannot be reduced by etrap (-) under the reaction conditions. In addition, it was observed that the presence of As(V) and As(III) strongly modified the reaction rate between O2 and etrap (-) : an increase in the rate was observed if As(V) was present and a decrease in the rate was observed in the presence of As(III) . In contrast with the As system, U(VI) was observed to react easily with etrap (-) and U(IV) formation was observed spectroscopically at λ=650 nm. The possible competence of U(VI) and NO3 (-) for their reduction by etrap (-) was analyzed. The inhibition of the U(VI) photocatalytic reduction by O2 could be attributed to the fast oxidation of U(V) and/or U(IV) .

  1. Pharmacokinetics of DA-125, a new anthracycline, after intravenous administration to uranyl nitrate-induced acute renal failure rats or protein-calorie malnutrition rats.

    Science.gov (United States)

    Kim, Y G; Yoon, E J; Yoon, W H; Shim, H J; Lee, S D; Kim, W B; Yang, J; Lee, M G

    1996-04-01

    The pharmacokinetics of DA-125 were compared after intravenous (i.v.) administration of the drug, 10 mg kg-1, to control male Sprague-Dawley rats (n = 9) and uranyl nitrate-induced acute renal failure (U-ARF, n = 12) rats, or male Sprague-Dawley rats fed on a 23% (control, n = 8) or a 5% (protein-calorie malnutrition, PCM, n = 9) protein diet. After i.v. administration of DA-125, almost 'constant' plasma concentrations of M1, M2, and M4 were maintained from 1-2 h to 8-10 h in all rat groups due to the continuous formation of M2 from M1 and M4 from M3. The plasma concentrations of M3 were the lowest among M1-M4 for all rat groups due to the rapid and almost complete conversion of M3 to M4 and other metabolite(s). The AUCt values of M1 (115 against 82.5 micrograms min mL-1), M2 (33.0 against 23.6 micrograms min mL-1), and M4 (26.3 against 15.1 micrograms min mL-1) were significantly higher in the U-ARF rats than in the control rats. The percentages of i.v. dose excreted in 24 h urine as M1 (under the detection limit against 0.316%), M2 (under the detection limit against 5.58%), and M4 (0.0174 against 0.719%)--expressed in terms of DA-125--were significantly lower in the U-ARF rats than in the control rats, and this could be due to the decreased kidney function in the U-ARF rats. However, the percentages of i.v. dose recovered from the GI tract at 24 h as M1 (0.0532% against under the detection limit), M3 (0.0286% against under the detection limit), and M4 (0.702% against 0.305%)--expressed in terms of DA-125--were significantly greater in the U-ARF rats than in the control rats. All U-ARF rats had ascites, but the concentrations of M1 (0.0320 micrograms mL-1), M2 (0.0265 micrograms mL-1), M3 (under the detection limit), and M4 (0.032 micrograms mL-1) in the ascites from one rat were almost negligible. The plasma concentrations and most of the pharmacokinetic parameters of M1, M2, and M4 were not significantly different between the PCM rats and their control rats.

  2. Effect of ethane-1-hydroxy-1,1-bisphosphonate (EHBP) on endochondral ossification lesions induced by a lethal oral dose of uranyl nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Bozal, C.B.; Ubios, A.M. [University of Buenos Aires, Department of Histology and Embryology, Buenos Aires (Argentina); Martinez, A.B. [National University of Rosario, Department of Pharmacology (Argentina); Cabrini, R.L. [National Atomic Energy Commission, Department of Radiobiology (Argentina)

    2005-08-01

    A 350 mg/kg body weight (b.w.) oral dose of uranyl nitrate (UN) caused 100% mortality in mice three days after administration, due to resulting kidney lesions. Mortality decreased 50% after an oral (o) or subcutaneous (sc) dose of bisodic etidronate (EHBP). Given that bone is also a target organ for uranium (U) in acute intoxication, the aim of this work was to study the effect of exposure to a lethal oral dose of UN on endochondral ossification, and the latter's response to EHBP treatment. One hundred male Balb/c mice weighing 25 g were assigned to one of ten groups. Group I served as control. Group II received a lethal 350 mg/kg b.w. oral dose of UN by gavage. Groups III, IV, VII, and VIII received an equal dose of UN immediately followed by a single 500 mg/kg oral dose of EHBP in groups III and VII and a single 50 mg/kg subcutaneous dose of EHBP in groups IV and VIII. Groups V and IX only received a single 500 mg/kg oral dose of EHBP, and groups VI and X received a single 50 mg/kg subcutaneous dose of EHBP. The animals in groups II, III, IV, V, and VI were sacrificed 48 h after the onset of the experiment, whereas those in groups VII, VIII, IX, and X were killed at 14 days. Histologic and histomorphometric studies were performed on the femurs to determine growth cartilage width, bone volume, and metaphyseal bone activity. Our results showed that all growth cartilage and metaphyseal bone histomorphometric parameters were significantly lower in animals exposed to UN at 48 h than in controls. EHPB administration was found to prevent this condition at 48 h reaching similar values to those of controls. Although histomorphometric values did not reach control values at 14 days, they were higher than those of animals exposed to UN at 48 h not treated with EHBP. It is noteworthy that these values also decreased in animals only receiving EHBP at 14 days. Our results show that EHBP effectively ameliorates the adverse effects of a lethal dose of UN on endochondral

  3. The final effect ef extraction system in the uranyl nitrate-water-diethyl ether; El efecto final de la extraccion en el sistema nitro de uranilo-eter dietilico-agua

    Energy Technology Data Exchange (ETDEWEB)

    Perez Luina, A.; Gutierrez Jodra, L.; Miro, A. R.

    1957-07-01

    The solute transfer of uranyl nitrate from diallylether to water has been studied in a spray column using water as dispersed phase and a direction of extraction from ether to water. The column is 102 cm. long has a diameter of 4. 7 cm. The entrances of the phases are 7 7 cm. apart. The rates of flow of both phases have been used as variables and the concentration of the continuous phase has been determined; at different heights. The curves of logarithm of concentration of the continuous phase vs , distance to interphase show the presence of a drop of concentration in the entrance of the continuous phase. This depends on the rates of flow of the phases. No effect in the entrance of the dispersed phase has been found. (Author)

  4. The extraction and effect in the system uranyl nitrate-dietyl ether-water; El efecto final de la extraccion en el sistema nitrato de uranillo-eter dietilico-agua

    Energy Technology Data Exchange (ETDEWEB)

    Perez Luina, A.; Gutierrez Jodra, L.; Rius Miro, A.

    1960-07-01

    The solute transfer of uranyl nitrate from diethyl ether to water has been studied in a spray column using water as dispersed phase and a direction of extraction from ether to water. The column is 102 cm long and has a diameter of 4,7 cm. The entrances of the phases are 77 cm apart. The rates of flow of both phases have been used as variables and the concentration of the continuous phase has been determined at different heights. The curves of logarithm of concentration of the continuous phase vs. distance to interphase show the present of a drop of concentration in the entrance of the continuous phase. This depends on the rates of flow of the phases. No effect in the entrance of the dispersed phase has been found. (Author) 20 refs.

  5. Sterically congested uranyl complexes with seven-coordination of the UO{sub 2} unit: the peculiar ligation mode of nitrate in [UO{sub 2}(NO{sub 3}){sub 2}(Rbtp)] complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berthet, J. C.; Thuery, P.; Dognon, J. P.; Ephritikhine, M. [CEA Saclay, DSM, Serv Chim Mol, CNRS, URA 331, F-91191 Gif Sur Yvette, (France); Guillaneux, D. [CEA VALRHO, DEN/VRH/DRCP/SCPS/LCAM, F-30207 Bagnols Sur Ceze, (France)

    2008-07-01

    Addition of 1 or 2 molar equiv of Rbtp [Rbtp 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine; R = Me, Pr{sup n} to UO{sub 2}(OTf){sub 2} in anhydrous acetonitrile gave the neutral compounds [UO{sub 2}(OTf){sub 2}(Rbtp)] [RMe (1), {sup n}Pr (2)] and the cationic complexes [UO{sub 2}(Rbtp){sub 2}][OTf]{sub 2} [R = Me (3), Pr{sup n} (4)], respectively. No equilibrium between the mono and bis(Rbtp) complexes or between [UO{sub 2}(Rbtp){sub 2}][OTf]{sub 2} and free Rbtp in acetonitrile was detected by NMR spectroscopy. The crystal structures of 1 and 3 resemble those of their ter-pyridine analogues, and 3 is another example of a uranyl complex with the uranium atom in the unusual rhombohedral environment. In the presence of 1 molar equiv of Rbtp in acetonitrile, UO{sub 2}(NO{sub 3}){sub 2} was in equilibrium with [UO{sub 2}(NO{sub 3}){sub 2}(Rbtp)] and the formation of the bis adduct was not observed, even with an excess of Rbtp. The X-ray crystal structures of [UO{sub 2}(NO{sub 3}){sub 2}(Rbtp)] [R = Me (5), Pr{sup n} (6)] reveal a particular coordination geometry with seven coordinating atoms around the UO{sub 2} fragment. The large steric crowding in the equatorial girdle forces the bidentate nitrate ligands to be almost perpendicular to the mean equatorial plane, inducing bending of the UO{sub 2} fragment. The dinuclear oxo compound [U(CyMe{sub 4}btbp){sub 2}({mu}-O)UO{sub 2}(NO{sub 3}){sub 3}][OTf] (7), which was obtained fortuitously from a 1:21 mixture of U(OTf){sub 4}, CyMe{sub 4}btbp, and UO{sub 2}(NO{sub 3}){sub 2} [CyMe{sub 4}btbp6,6'-bis-(3,3,6,6-tetramethyl-cyclohexane-1,2,4-triazin-3-yl)-2,2 = '-bipyridine] is a very rare example of a mixed valence complex involving covalently bound U(IV) and U(VI) ions; its crystal structure also exhibits a seven coordinate uranyl moiety, with one bidentate nitrate group almost parallel to the UO{sub 2} fragment. The distinct structural features of [UO{sub 2}(k{sup 2}-NO{sub 3}){sub 2}(Mebtp)], with its high

  6. Uranyl ion coordination

    Science.gov (United States)

    Evans, H.T.

    1963-01-01

    A review of the known crystal structures containing the uranyl ion shows that plane-pentagon coordination is equally as prevalent as plane-square or plane-hexagon. It is suggested that puckered-hexagon configurations of OH - or H2O about the uranyl group will tend to revert to plane-pentagon coordination. The concept of pentagonal coordination is invoked for possible explanations of the complex crystallography of the natural uranyl hydroxides and the unusual behavior of polynuclear ions in hydrolyzed uranyl solutions.

  7. Nitrates

    Science.gov (United States)

    ... Blockers Angiotensin-Converting Enzyme (ACE) Inhibitors Antiarrhythmics Anticoagulants Antiplatelet Therapy Aspirin Beta-Blockers Blood Thinners Calcium Channel Blockers Digitalis Medicines Diuretics Inotropic Agents Statins, Cholesterol-Lowering Medicines Nitrates Disclaimer The information ...

  8. Expanding the crystal chemistry of uranyl peroxides: four hybrid uranyl-peroxide structures containing EDTA.

    Science.gov (United States)

    Qiu, Jie; Ling, Jie; Sieradzki, Claire; Nguyen, Kevin; Wylie, Ernest M; Szymanowski, Jennifer E S; Burns, Peter C

    2014-11-17

    The first four uranyl peroxide compounds containing ethylenediaminetetra-acetate (EDTA) were synthesized and characterized from aqueous uranyl peroxide nitrate solutions with a pH range of 5-7. Raman spectra demonstrated that reaction solutions that crystallized [NaK15[(UO2)8(O2)8(C10H12O10N2)2(C2O4)4]·(H2O)14] (1) and [Li4K6[(UO2)8(O2)6(C10H12O10N2)2(NO3)6]·(H2O)26] (2) contained excess peroxide, and their structures contained oxidized ethylenediaminetetraacetate, EDTAO2(4-). The solutions from which [K4[(UO2)4(O2)2(C10H13O8N2)2(IO3)2]·(H2O)16] (3) and LiK3[(UO2)4(O2)2(C10H12O8N2)2(H2O)2]·(H2O)18 (4) crystallized contained no free peroxide, and the structures incorporated intact EDTA(4-). In contrast to the large family of uranyl peroxide cage clusters, coordination of uranyl peroxide units in 1-4 by EDTA(4-) or EDTAO2(4-) results in isolated tetramers or dimers of uranyl ions that are bridged by bidentate peroxide groups. Two tetramers are bridged by EDTAO2(4-) to form octamers in 1 and 2, and dimers of uranyl polyhedra are linked through iodate groups in 3 and EDTA(4-) in 4, forming chains in both cases. In each structure the U-O2-U dihedral angle is strongly bent, at ∼140°, consistent with the configuration of this linkage in cage clusters and other recently reported uranyl peroxides.

  9. The Prevalence of Chronic Diseases by Exposure to Nitrates from Environmental Factors

    OpenAIRE

    Beatrice Severin; Floarea Damaschin; Ileana Ion; Cecilia Adumitresi; Victoria Oancea; Broasca V.; Mocanu Elena; Chirila S.

    2014-01-01

    The study aims to analyze the health effects caused by chronic exposure to elevated levels of nitrates in the water in order to improve prevention of some diseases. We analyze water quality from two villages of Constanta County in the period 2006-2012 and we take data about chronic diseases from family doctors of these localities. Analyzes on water samples were made in the laboratory of the Public Health Department. We found a significant increase of prevalence for chronic diseases in localit...

  10. Nonionic metal-chelating surfactants mediated solvent-free thermo-induced separation of uranyl

    Energy Technology Data Exchange (ETDEWEB)

    Larpent, Ch.; Prevost, S. [Versailles-St-Quentin Univ., Institut Lavoisier, UMR-CNRS 8180, 78 - Versailles (France); Prevost, S.; Zemb, Th.; Testard, F. [CEA Saclay, Dept. de Recherche sur l' Etat Condense, les Atomes et les Molecules (DSM/DRECAM/SCM/LIONS), 91 - Gif sur Yvette (France); Berthon, L. [CEA Valrho, Site de Marcoule, Dept. Radiochimie et Procedes (DEN/DRCP/SCPS/LCSE), 30 (France)

    2007-08-15

    Thermo-responsive metal-chelating surfactants permit the solvent-free, cloud point extraction of uranyl nitrate and afford a real molecular economy compared to conventional separation techniques. (authors)

  11. Chronic nitrate enrichment decreases severity and induces protection against an infectious disease.

    Science.gov (United States)

    Smallbone, Willow; Cable, Jo; Maceda-Veiga, Alberto

    2016-05-01

    Excessive fertilisation is one of the most pernicious forms of global change resulting in eutrophication. It has major implications for disease control and the conservation of biodiversity. Yet, the direct link between nutrient enrichment and disease remains largely unexplored. Here, we present the first experimental evidence that chronic nitrate enrichment decreases severity and induces protection against an infectious disease. Specifically, this study shows that nitrate concentrations ranging between 50 and 250mgNO3(-)/l reduce Gyrodactylus turnbulli infection intensity in two populations of Trinidadian guppies Poecilia reticulata, and that the highest nitrate concentration can even clean the parasites from the fish. This added to the fact that host nitrate pre-exposure altered the fish epidermal structure and reduced parasite intensity, suggests that nitrate protected the host against the disease. Nitrate treatments also caused fish mortality. As we used ecologically-relevant nitrate concentrations, and guppies are top-consumers widely used for mosquito bio-control in tropical and often nutrient-enriched waters, our results can have major ecological and social implications. In conclusion, this study advocates reducing nitrate level including the legislative threshold to protect the aquatic biota, even though this may control an ectoparasitic disease.

  12. Influence of chloride on the chronic toxicity of sodium nitrate to Ceriodaphnia dubia and Hyalella azteca.

    Science.gov (United States)

    Soucek, David J; Dickinson, Amy

    2016-09-01

    While it has been well established that increasing chloride concentration in water reduces the toxicity of nitrite to freshwater species, little work has been done to investigate the effect of chloride on nitrate toxicity. We conducted acute and chronic nitrate (as sodium nitrate) toxicity tests with the cladoceran Ceriodaphnia dubia and the amphipod Hyalella azteca (chronic tests only) over a range of chloride concentrations spanning natural chloride levels found in surface waters representative of watersheds of the Great Lakes Region. Chronic nitrate toxicity test results with both crustaceans were variable, with H. azteca appearing to be one of the more sensitive invertebrate species tested and C. dubia being less sensitive. While the variability in results for H. azteca were to an extent related to chloride concentration in test water that was distinctly not the case for C. dubia. We concluded that the chloride dependent toxicity of nitrate is not universal among freshwater crustaceans. An additional sodium chloride chronic toxicity test with the US Lab strain of H. azteca in the present study suggested that when present as predominantly sodium chloride and with relatively low concentrations of other ions, there is a narrow range of chloride concentrations over which this strain is most fit, and within which toxicity test data are reliable.

  13. Uranyl tris-(carbohydrazide) nitrate [UO{sub 2}((N{sub 2}H{sub 3}){sub 2}CO){sub 3}](NO{sub 3}){sub 2}. Synthesis, structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Leshok, Darya Y.; Samoilo, Alexander A.; Kirik, Sergei D. [Siberian Federal Univ., Krasnoyarsk (Russian Federation); Alekseenko, Vladimir N. [Federal Centre for Nuclear and Radiation Safety, Moscow (Russian Federation); Gavrilov, Peter M.; Alekseenko, Sergei N.; Dyachenko, Anton S. [Mining and Chemical Combine, Zheleznogorsk, Krasnoyarskii region (Russian Federation); Kondrasenko, Alexander A. [NMR Facility at Krasnoyarsk Multiaccesed Centre SB RAN, Krasnoyarsk (Russian Federation)

    2015-07-01

    Uranyl tris-(carbohydrazide) nitrate [UO{sub 2}((N{sub 2}H{sub 3}){sub 2}CO){sub 3}](NO{sub 3}){sub 2} was prepared by the reaction of water solution of dioxouranium(VI) nitrate UO{sub 2}(NO{sub 3}){sub 2}(H{sub 2}O){sub 6} with ethanol solution of carbohydrazide (N{sub 2}H{sub 3}){sub 2}CO in a molar ratio of 1 to 3 in an neutral medium. The substance was characterized by elemental, thermal analysis and IR and {sup 15}N MAS CP NMR spectroscopy. Ab initio crystal structure determination was carried out using X-ray powder diffraction techniques. The compound crystallizes in monoclinic lattice with unit cell parameters: a = 15.193(1) Aa, b = 12.005(1) Aa, c = 10.842(1) Aa, β = 109.15(1) , V = 1868.11 Aa{sup 3}, Z = 4, SG = Cc. The type of carbohydrazide coordination was additionally confirmed by {sup 15}N MAS CP NMR and IR spectroscopy. In the complex ion [UO{sub 2}((N{sub 2}H{sub 3}){sub 2}CO){sub 3}]{sup 2+} three carbohydrazide ligands coordinate to UO{sub 2}{sup 2+} through oxygen and nitrogen forming three five-membered chelate rings. The carbohydrazide rings are tuned to the equatorial plane of complex. The crystal structure consists of zig-zag chains of [UO{sub 2}((N{sub 2}H{sub 3}){sub 2}CO){sub 3}]{sup 2+} cations stretched along c-axis. The cations in the chain are linked by the hydrogen bonds between the cations themselves. The anions are located in the pores between chains and participate in hydrogen bonding between adjacent chains and additionally link the chain sections. The length of the chain section is 5.768 Aa and the angle between sections is 140 . The substance [UO{sub 2}((N{sub 2}H{sub 3}){sub 2}CO){sub 3}](NO{sub 3}){sub 2} is thermally stable up to 215 C and then decomposes with an explosion.

  14. Functional Roles of Protein Nitration in Acute and Chronic Liver Diseases

    Science.gov (United States)

    Abdelmegeed, Mohamed A.; Song, Byoung-Joon

    2014-01-01

    Nitric oxide, when combined with superoxide, produces peroxynitrite, which is known to be an important mediator for a number of diseases including various liver diseases. Peroxynitrite can modify tyrosine residue(s) of many proteins resulting in protein nitration, which may alter structure and function of each target protein. Various proteomics and immunological methods including mass spectrometry combined with both high pressure liquid chromatography and 2D PAGE have been employed to identify and characterize nitrated proteins from pathological tissue samples to determine their roles. However, these methods contain a few technical problems such as low efficiencies with the detection of a limited number of nitrated proteins and labor intensiveness. Therefore, a systematic approach to efficiently identify nitrated proteins and characterize their functional roles is likely to shed new insights into understanding of the mechanisms of hepatic disease pathophysiology and subsequent development of new therapeutics. The aims of this review are to briefly describe the mechanisms of hepatic diseases. In addition, we specifically describe a systematic approach to efficiently identify nitrated proteins to study their causal roles or functional consequences in promoting acute and chronic liver diseases including alcoholic and nonalcoholic fatty liver diseases. We finally discuss translational research applications by analyzing nitrated proteins in evaluating the efficacies of potentially beneficial agents to prevent or treat various diseases in the liver and other tissues. PMID:24876909

  15. Functional Roles of Protein Nitration in Acute and Chronic Liver Diseases

    Directory of Open Access Journals (Sweden)

    Mohamed A. Abdelmegeed

    2014-01-01

    Full Text Available Nitric oxide, when combined with superoxide, produces peroxynitrite, which is known to be an important mediator for a number of diseases including various liver diseases. Peroxynitrite can modify tyrosine residue(s of many proteins resulting in protein nitration, which may alter structure and function of each target protein. Various proteomics and immunological methods including mass spectrometry combined with both high pressure liquid chromatography and 2D PAGE have been employed to identify and characterize nitrated proteins from pathological tissue samples to determine their roles. However, these methods contain a few technical problems such as low efficiencies with the detection of a limited number of nitrated proteins and labor intensiveness. Therefore, a systematic approach to efficiently identify nitrated proteins and characterize their functional roles is likely to shed new insights into understanding of the mechanisms of hepatic disease pathophysiology and subsequent development of new therapeutics. The aims of this review are to briefly describe the mechanisms of hepatic diseases. In addition, we specifically describe a systematic approach to efficiently identify nitrated proteins to study their causal roles or functional consequences in promoting acute and chronic liver diseases including alcoholic and nonalcoholic fatty liver diseases. We finally discuss translational research applications by analyzing nitrated proteins in evaluating the efficacies of potentially beneficial agents to prevent or treat various diseases in the liver and other tissues.

  16. Uranyl Oxalate Solubility

    Energy Technology Data Exchange (ETDEWEB)

    Leturcq, G.; Costenoble, S.; Grandjean, S. [CEA Marcoule DEN/DRCP/SCPS/LCA - BP17171 - 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    The solubility of uranyl oxalate was determined at ambient temperature by precipitation in oxalic-nitric solutions, using an initial uranyl concentration of 0.1 mol/L. Oxalic concentration varied from 0.075 to 0.3 mol/L while nitric concentration ranged between 0.75 and 3 mol/L. Dissolution tests, using complementary oxalic-nitric media, were carried out for 550 hours in order to study the kinetic to reach thermodynamic equilibrium. Similar solubility values were reached by dissolution and precipitation. Using the results, it was possible to draw the solubility surface versus oxalic and nitric concentrations and to determine both the apparent solubility constant of UO{sub 2}C{sub 2}O{sub 4}, 3H{sub 2}O (Ks) and the apparent formation constant of the first uranyl-oxalate complex UO{sub 2}C{sub 2}O{sub 4} (log {beta}1), for ionic strengths varying between 1 and 3 mol/L. Ks and log {beta}1 values were found to vary from 1.9 10{sup -8} to 9.2 10{sup -9} and from 5.95 to 6.06, respectively, when ionic strength varied from 1 to 3 mol/L. A second model may fit our data obtained at an ionic strength of 3 mol/L suggesting as reported by Moskvin et al. (1959) that no complexes are formed for [H{sup +}] at 3 M. The Ks value would then be 1.3 10{sup -8}. (authors)

  17. Process for the preparation of pulverulent metallic oxides from aqueous solutions or solid mixtures of metallic nitrates. [UO/sub 3/, ThO/sub 2/, CeO/sub 2/ and PuO/sub 2/]. Procede de preparation d'oxydes metalliques pulverulents a partir de solutions aqueuses ou de melanges solides de nitrates metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Bachelard, R.; Joubert, P.

    1985-05-31

    Oxides of predetermined reactivity adjusted by specific surface for subsequent transformations and/or sintering are prepared by thermal treatment of hydrated uranyl nitrate only or mixed with thorium, cerium and/or plutonium nitrates. In a first step the uranyl nitrate is dehydrated and then calcined in a second step under a controled pressure of water vapor.

  18. Chronic toxicity of silver nitrate to Ceriodaphnia dubia and Daphnia magna, and potential mitigating factors.

    Science.gov (United States)

    Naddy, Rami B; Gorsuch, Joseph W; Rehner, Anita B; McNerney, Gina R; Bell, Russell A; Kramer, James R

    2007-08-15

    We investigated the chronic toxicity of Ag, as silver nitrate, using two freshwater aquatic cladoceran species, Ceriodaphnia dubia and Daphnia magna, to generate data for the development of a chronic ambient water quality criterion for Ag. Preliminary studies with C. dubia showed variable results which were related to the equilibration time between food and silver. Follow-up testing was conducted using a 3h equilibration time, which stabilized dissolved Ag concentrations and the toxicity of Ag(+). Results with C. dubia conducted individually (1 per cup, n=10) and in mass (30 per chamber, n=2) gave similar results once similar standardized equilibration times were used. The maximum acceptable toxicant concentration (MATC) of Ag to C. dubia and D. magna was 9.61 and 3.00microg dissolved Ag/L, respectively. The chronic toxicity of Ag(+) to C. dubia was also evaluated in the presence of: (1) dissolved organic carbon (DOC) and (2) sulfide. The addition of DOC (0.4mg/L) resulted in a approximately 50% decrease in toxicity while the addition of sulfide (75.4nM) deceased toxicity by 42%. Whole-body Ag concentration in D. magna was positively correlated with increased levels of Ag exposure, however; we observed a non-statistical decrease in whole-body Na levels, an estimator of sodium homeostasis.

  19. Plasma Nitration of High-Density and Low-Density Lipoproteins in Chronic Kidney Disease Patients Receiving Kidney Transplants

    Directory of Open Access Journals (Sweden)

    Ahmed Bakillah

    2015-01-01

    Full Text Available Background. Functional abnormalities of high-density lipoprotein (HDL could contribute to cardiovascular disease in chronic kidney disease patients. We measured a validated marker of HDL dysfunction, nitrated apolipoprotein A-I, in kidney transplant recipients to test the hypothesis that a functioning kidney transplant reduces serum nitrated apoA-I concentrations. Methods. Concentrations of nitrated apoA-I and apoB were measured using indirect sandwich ELISA assays on sera collected from each transplant subject before transplantation and at 1, 3, and 12 months after transplantation. Patients were excluded if they have history of diabetes, treatment with lipid-lowering medications or HIV protease inhibitors, prednisone dose > 15 mg/day, nephrotic range proteinuria, serum creatinine > 1.5 mg/dL, or active inflammatory disease. Sera from 18 transplanted patients were analyzed. Four subjects were excluded due to insufficient data. Twelve and eight patients had creatinine < 1.5 mg/dL at 3 and 12 months after transplantation, respectively. Results. Nitrated apoA-I was significantly reduced at 12 months after transplantation (p=0.039. The decrease in apoA-I nitration was associated with significant reduction in myeloperoxidase (MPO activity (p=0.047. In contrast to apoA-I, nitrated apoB was not affected after kidney transplantation. Conclusions. Patients with well-functioning grafts had significant reduction in nitrated apoA-I 12 months after kidney transplantation. Further studies are needed in a large cohort to determine if nitrated apoA-I can be used as a valuable marker for cardiovascular risk stratification in chronic kidney disease.

  20. Nitrite and Nitrate Levels of Gingival Crevicular Fluid and Saliva in Subjects with Gingivitis and Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Ali Orkun Topcu

    2014-07-01

    Full Text Available Objectives: Nitrosative stress plays an essential role in the pathogenesis of periodontal disease. The aim of this study is to analyze the gingival crevicular fluid and saliva nitrite and nitrate levels in periodontally healthy and diseased sites. Material and Methods: A total of 60 individuals including, 20 chronic periodontitis and 20 gingivitis patients and 20 periodontally healthy controls participated in the present study. Probing depth, clinical attachment level, bleeding on probing, gingival index and plaque index were assessed, gingival crevicular fluid (GCF and saliva samples were obtained from the subjects, including 480 GCF samples and 60 unstimulated whole saliva samples. Nitrite and nitrate were analyzed by Griess reagent. Results: Total GCF nitrite levels were higher in gingivitis and periodontitis groups (1.07 [SD 0.62] nmol and 1.08 [SD 0.59] nmol than the control group (0.83 [SD 0.31] nmol (P 0.05. The difference in GCF nitrate level was not significant among the control, gingivitis and periodontitis groups (7.7 [SD 2.71] nmol, 7.51 [SD 4.16] nmol and 7.38 [SD 1.91] nmol. Saliva nitrite and nitrate levels did not differ significantly among three study groups. Saliva nitrate/nitrite ratios were higher in periodontitis and gingivitis groups than the control group. A gradual decrease in nitrate/nitrite ratio in GCF was detected with the presence of inflammation. Conclusions: It may be suggested that nitrite in gingival crevicular fluid is a better periodontal disease marker than nitrate and may be used as an early detection marker of periodontal inflammation, and that local nitrosative stress markers don’t show significant difference between the initial and advanced stages of periodontal disease.

  1. Consumption of nitrate containing vegetables and the risk of chronic kidney disease: Tehran Lipid and Glucose Study.

    Science.gov (United States)

    Mirmiran, Parvin; Bahadoran, Zahra; Golzarand, Mahdieh; Asghari, Golaleh; Azizi, Fereidoun

    2016-07-01

    There is growing evidence regarding the potential properties of nitrate-rich foods in development of chronic diseases. In this study, we investigated the association of nitrate-containing vegetables (NCVs) and the risk of chronic kidney disease (CKD). We evaluated 1546 eligible adult participants of the Tehran Lipid and Glucose Study (TLGS), at baseline (2006-2008) and again after 3 years (2009-2011). Dietary intake was collected using the validated semi-quantitative food frequency questionnaire. Nitrate-containing vegetables and its categories including high-, medium-, and low-nitrate vegetables were defined. Estimated glomerular filtration rate (eGFR) and CKD were defined. Association between NCVs and CKD in the cross-sectional phase and the predictability of NCVs consumption in CKD occurrence were assessed using multivariable logistic regression models with adjustment for potential confounders. Mean dietary intake of energy-adjusted NCVs was 298.0 ± 177.3 g/day. Highest compared to the lowest tertile of NCVs was accompanied with a significantly lower mean eGFR (76.6 vs. 83.3, mL/min/1.73 m(2), p vegetables on kidney function.

  2. Uptake of uranyl ions from uranium ores and sludges by means of Spirulina platensis, Porphyridium cruentum and Nostok linckia alga.

    Science.gov (United States)

    Cecal, Alexandru; Humelnicu, Doina; Rudic, Valeriu; Cepoi, Liliana; Ganju, Dumitru; Cojocari, Angela

    2012-08-01

    In this paper was studied the uranyl ions biosorption on three types of alga: Nostok linckia, Porphyridium cruentum and Spirulina platensis. These ions were supplied either from a pure solution of uranyl nitrate, or after leaching process of uranium ore, or from the sludge resulting in the output of pure UO(2) technology. It was investigated the retention degree versus contact time and afterwards the Langmuir and Freundlich biosorption isotherms of uranyl ions on the three alga types. The retention of UO(2)(2+) ions on alga was proved through FTIR spectra plotted before and after biosorption processes. From the experimental data it was found that regardless of origin of uranyl ions, the retention degree on alga decreased in the series. Spirulina platensis > Porphyridium cruentum ≥ Nostok linckia.

  3. Protein tyrosine nitration in chronic intramuscular parasitism: immunohistochemical evaluation of relationships between nitration, and fiber type-specific responses to infection

    Directory of Open Access Journals (Sweden)

    Ted H. Elsasser

    2011-05-01

    Full Text Available The present study was conducted to determine whether preferential muscle catabolism [psoas major (PM > rectus femoris (RF] observed during the chronic intramuscular stage of Sarcocystis cruzi infection could be associated with the pathological consequences of increased protein tyrosine nitration in fibers characteristically more metabolically active due to higher mitochondrial density. Holstein calves were assigned to control (C, or S. cruzi-infected (I groups, n=5/group. Calves were euthanized on day 63 of infection. Samples of RF and PM were prepared for metabolic fiber typing (MFT: slow oxidative, SO – Type I; fast oxidative glycolytic, FOG - Type IIa; fast glycolytic, FG – Type IIb, fiber area, and immunohistochemical localization of fast myosin heavy chain 2a and 2b, nitrotyrosine (NT, and mitochondrial Complex V ATP-synthase. MFT analysis documented that PM contained twice the number of SO fibers compared to RF (32 v 16%, P<0.002. SO and FOG fibers (Both higher in mitochondrial density than FG fibers in both PM and RF were significantly smaller in area in I calves with mean FG areas not different between C and I. Muscle NT content (Western blot of myofibrillar protein fraction increased with infection; NT was immunohistochemically localized into three distinct patterns in fibers: i sparse fiber staining, ii dense punctuate intrafiber staining, and iii pericystic staining. By image analysis, the greatest punctuate intrafiber pixel density of NT was associated with SO fibers from I calves with the NT colocalizing with mitochondrial Complex V – F1F0 ATP synthase. More fibers were positive for the colocalization in PM than RF (P<0.04. The data are consistent with the concept that fibers rich in mitochondria possessing more inherent oxidative energy capacity generate more nitrated proteins than glycolytic fibers and as such are more affected by the proinflammatory response to infections like Sarcocystosis.

  4. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    Directory of Open Access Journals (Sweden)

    Amanda J. Youker

    2013-01-01

    Full Text Available Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration on Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.

  5. Optical apparatus and method for sensing uranyl

    Science.gov (United States)

    Baylor, L.C.; Buchanan, B.R.

    1994-01-01

    An optical sensing device for uranyl and other substances, a method for making an optical sensing device and a method for chemically binding uranyl and other indicators to glass, quartz, cellulose and similar substrates. The indicator, such as arsenazo III, is immobilized on the substrate using a chemical binding process. The immobilized arsenazo III causes uranyl from a fluid sample to bind irreversibly to the substrate at its active sites, thus causing absorption of a portion of light transmitted through the substrate. Determination of the amount of light absorbed, using conventional means, yields the concentration of uranyl present in the sample fluid. The binding of uranyl on the substrate can be reversed by subsequent exposure of the substrate to a solution of 2,6-pyridinedicarboxylic acid. The chemical binding process is suitable for similarly binding other indicators, such as bromocresol green.

  6. FY-15 Progress Report on Cleanup of irradiated SHINE Target Solutions Containing 140g-U/L Uranyl Sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Megan E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bowers, Delbert L. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    During FY 2012 and 2013, a process was developed to convert the SHINE Target Solution (STS) of irradiated uranyl sulfate (140 g U/L) to uranyl nitrate. This process is necessary so that the uranium solution can be processed by the UREX (Uranium Extraction) separation process, which will remove impurities from the uranium so that it can be recycled. The uranyl sulfate solution must contain <0.02 M SO42- so that the uranium will be extractable into the UREXsolvent. In addition, it is desired that the barium content be below 0.0007 M, as this is the limit in the Resource Conservation and Recovery Act (RCRA).

  7. Reprint of "Chronic toxicity of silver nitrate to Ceriodaphnia dubia and Daphnia magna, and potential mitigating factors".

    Science.gov (United States)

    Naddy, Rami B; Gorsuch, Joseph W; Rehner, Anita B; McNerney, Gina R; Bell, Russell A; Kramer, James R

    2007-08-30

    We investigated the chronic toxicity of Ag, as silver nitrate, using two freshwater aquatic cladoceran species, Ceriodaphnia dubia and Daphnia magna, to generate data for the development of a chronic ambient water quality criterion for Ag. Preliminary studies with C. dubia showed variable results which were related to the equilibration time between food and silver. Follow-up testing was conducted using a 3 h equilibration time, which stabilized dissolved Ag concentrations and the toxicity of Ag(+). Results with C. dubia conducted individually (1 per cup, n=10) and in mass (30 per chamber, n=2) gave similar results once similar standardized equilibration times were used. The maximum acceptable toxicant concentration (MATC) of Ag to C. dubia and D. magna was 9.61 and 3.00 microg dissolved Ag/L, respectively. The chronic toxicity of Ag(+) to C. dubia was also evaluated in the presence of: (1) dissolved organic carbon (DOC) and (2) sulfide. The addition of DOC (0.4 mg/L) resulted in a approximately 50% decrease in toxicity while the addition of sulfide (75.4 nM) deceased toxicity by 42%. Whole-body Ag concentration in D. magna was positively correlated with increased levels of Ag exposure, however; we observed a non-statistical decrease in whole-body Na levels, an estimator of sodium homeostasis.

  8. Extraction study on uranyl nitrate for energy applications

    Science.gov (United States)

    Giri, R.; Nath, G.

    2017-07-01

    Due to the ever-growing demand of energy nuclear reactor materials and the nuclear energy are now considered to be the most critical materials and source of energy for future era. Deposition of nuclear wastes in different industry, nuclear power sector are very much toxic in open environment which are hazardous to living being. There are different methods for extraction and reprocessing of these materials which are cost effective and tedious process. Ultrasonic assisted solvent extraction process is a most efficient and economical way for extraction of such type materials. The presence of third phase in mixing of extractants-diluent pair with aqueous phase imposes the problems in extraction of nuclear reactor materials. The appropriate solvent mixture in proper concentration is an important step in the solvent extraction process. Study of thermo-physical properties helps in selecting an optimum blend for extraction process. In the present work, the extraction of uranium with the binary mixture of Methyl Ethyl Ketone (MEK) and Kerosene was investigated and discussed with the variation of ultrasonic frequency for different temperatures. The result shows that the low frequency and low temperature is suitable environment for extraction. The extraction of uranium by this method is found to be a better result for extraction study in laboratory scale as well as industrial sector.

  9. Acute and chronic safety and efficacy of dose dependent creatine nitrate supplementation and exercise performance.

    Science.gov (United States)

    Galvan, Elfego; Walker, Dillon K; Simbo, Sunday Y; Dalton, Ryan; Levers, Kyle; O'Connor, Abigail; Goodenough, Chelsea; Barringer, Nicholas D; Greenwood, Mike; Rasmussen, Christopher; Smith, Stephen B; Riechman, Steven E; Fluckey, James D; Murano, Peter S; Earnest, Conrad P; Kreider, Richard B

    2016-01-01

    Creatine monohydrate (CrM) and nitrate are popular supplements for improving exercise performance; yet have not been investigated in combination. We performed two studies to determine the safety and exercise performance-characteristics of creatine nitrate (CrN) supplementation. Study 1 participants (N = 13) ingested 1.5 g CrN (CrN-Low), 3 g CrN (CrN-High), 5 g CrM or a placebo in a randomized, crossover study (7d washout) to determine supplement safety (hepatorenal and muscle enzymes, heart rate, blood pressure and side effects) measured at time-0 (unsupplemented), 30-min, and then hourly for 5-h post-ingestion. Study 2 participants (N = 48) received the same CrN treatments vs. 3 g CrM in a randomized, double-blind, 28d trial inclusive of a 7-d interim testing period and loading sequence (4 servings/d). Day-7 and d-28 measured Tendo™ bench press performance, Wingate testing and a 6x6-s bicycle ergometer sprint. Data were analyzed using a GLM and results are reported as mean ± SD or mean change ± 95 % CI. In both studies we observed several significant, yet stochastic changes in blood markers that were not indicative of potential harm or consistent for any treatment group. Equally, all treatment groups reported a similar number of minimal side effects. In Study 2, there was a significant increase in plasma nitrates for both CrN groups by d-7, subsequently abating by d-28. Muscle creatine increased significantly by d-7 in the CrM and CrN-High groups, but then decreased by d-28 for CrN-High. By d-28, there were significant increases in bench press lifting volume (kg) for all groups (PLA, 126.6, 95 % CI 26.3, 226.8; CrM, 194.1, 95 % CI 89.0, 299.2; CrN-Low, 118.3, 95 % CI 26.1, 210.5; CrN-High, 267.2, 95 % CI 175.0, 359.4, kg). Only the CrN-High group was significantly greater than PLA (p < 0.05). Similar findings were observed for bench press peak power (PLA, 59.0, 95 % CI 4.5, 113.4; CrM, 68.6, 95 % CI 11.4, 125.8; CrN-Low, 40.9, 95

  10. Effect of uranyl intoxication on renal corticomedullary gradient of orthoiodohippurate in laboratory rat

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, J.; Kvetina, J. (Karlova Univ., Hradec Kralove (Czechoslovakia). Farmaceuticka Fakulta)

    1983-08-05

    The assessment is attempted of the intrarenal distribution (by means of the cortico-medullary gradient and the cortico-pelvic gradient) of a model diagnostic substance (O-/sup 125/I-hippurate) for the analysis of mechanisms causing damage to the renal function during intoxication induced by uranyl ions (uranyl nitrate). The findings were correlated with other indicators of the renal lesion (creatinine and urea plasma levels). Relative shifts of different gradients, i.e. mutual shifts and shifts in relation to hippurate blood levels, make it possible to describe the stepwise character of functional changes in the damaged kidney. The method used is suitable for investigating the dynamics of substances transport during functional renal changes in particular when combined with the determination the intensity of the uptake of model substances by renal tissue slices.

  11. Uranyl Sequestration: Synthesis and Structural Characterization of Uranyl Complexes with a Tetradentate Methylterephthalamide Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Chengbao; Shuh, David; Raymond, Kenneth

    2011-03-07

    Uranyl complexes of a bis(methylterephthalamide) ligand (LH{sub 4}) have been synthesized and characterized by X-ray crystallography. The structure is an unexpected [Me{sub 4}N]{sub 8}[L(UO{sub 2})]{sub 4} tetramer, formed via coordination of the two MeTAM units of L to two uranyl moieties. Addition of KOH to the tetramer gave the corresponding monomeric uranyl methoxide species [Me{sub 4}N]K{sub 2}[LUO{sub 2}(OMe)].

  12. Uranyl Sequestration: Synthesis and Structural Characterization of Uranyl Complexes with a Tetradentate Methylterephthalamide Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Chengbao; Shuh, David; Raymond, Kenneth

    2011-03-07

    Uranyl complexes of a bis(methylterephthalamide) ligand (LH{sub 4}) have been synthesized and characterized by X-ray crystallography. The structure is an unexpected [Me{sub 4}N]{sub 8}[L(UO{sub 2})]{sub 4} tetramer, formed via coordination of the two MeTAM units of L to two uranyl moieties. Addition of KOH to the tetramer gave the corresponding monomeric uranyl methoxide species [Me{sub 4}N]K{sub 2}[LUO{sub 2}(OMe)].

  13. Stoichiometry of uranyl salophene anion complexes

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Ruel, Bianca H.M.; Engbersen, Johannes F.J.; Reinhoudt, David

    1998-01-01

    In PVC/NPOE ion-selective membranes of potentiometric sensors, the guest-host stoichiometry of the anion complex of H2PO4 - and F- selective uranyl salophene derivatives is 2:1. This stoichiometry is different from the stoichiometry observed in DMSO solution (1H NMR) or solid state (X-ray crystal

  14. Stoichiometry of uranyl salophene anion complexes

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Ruel, Bianca H.M.; Engbersen, Johannes F.J.; Reinhoudt, David

    1998-01-01

    In PVC/NPOE ion-selective membranes of potentiometric sensors, the guest-host stoichiometry of the anion complex of H2PO4 - and F- selective uranyl salophene derivatives is 2:1. This stoichiometry is different from the stoichiometry observed in DMSO solution (1H NMR) or solid state (X-ray crystal st

  15. Stoichiometry of uranyl salophene anion complexes

    NARCIS (Netherlands)

    Antonisse, Martijn M.G.; Snellink-Ruel, Bianca H.M.; Engbersen, Johan F.J.; Reinhoudt, David N.

    1998-01-01

    In PVC/NPOE ion-selective membranes of potentiometric sensors, the guest-host stoichiometry of the anion complex of H2PO4 - and F- selective uranyl salophene derivatives is 2:1. This stoichiometry is different from the stoichiometry observed in DMSO solution (1H NMR) or solid state (X-ray crystal st

  16. Solid-state dynamics of uranyl polyoxometalates.

    Science.gov (United States)

    Alam, Todd M; Liao, Zuolei; Zakharov, Lev N; Nyman, May

    2014-07-01

    Understanding fundamental uranyl polyoxometalate (POM) chemistry in solution and the solid state is the first step to defining its future role in the development of new actinide materials and separation processes that are vital to every step of the nuclear fuel cycle. Many solid-state geometries of uranyl POMs have been described, but we are only beginning to understand their chemical behavior, which thus far includes the role of templates in their self-assembly, and the dynamics of encapsulated species in solution. This study provides unprecedented detail into the exchange dynamics of the encapsulated species in the solid state through Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy. Although it was previously recognized that capsule-like molybdate and uranyl POMs exchange encapsulated species when dissolved in water, analogous exchange in the solid state has not been documented, or even considered. Here, we observe the extremely high rate of transport of Li(+) and aqua species across the uranyl shell in the solid state, a process that is affected by both temperature and pore blocking by larger species. These results highlight the untapped potential of emergent f-block element materials and vesicle-like POMs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Series of mixed uranyl-lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers.

    Science.gov (United States)

    Mihalcea, Ionut; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2012-09-17

    Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.

  18. Syntheses and structures of uranyl ethylenediphosphonates: from layers to elliptical nanochannels.

    Science.gov (United States)

    Tian, Tao; Yang, Weiting; Wang, Hao; Dang, Song; Pan, Qing-Jiang; Sun, Zhong-Ming

    2013-06-17

    A family of uranium diphosphonates have been hydrothermally synthesized through the reaction of ethylenediphosphonic acid (EDP, H4L) and uranyl nitrate/zinc uranyl acetate in the presence of organic templates, such as tetraethyl ammonium (NEt4(+)), 4,4'-bipyridine (bipy), and 1,10-phenanthroline (phen). The UO2(2+) in UO2(H2O)(H2L)(EDP-U1) is equatorially five-coordinated by four phosphonate groups and one aqua ligand, forming a pentagonal bipyramid. Each EDP ligand is doubly protonated and chelates three UO2(2+), resulting in a layered structure. Compounds (NEt4)2(UO2)3(HL)2(H2L)·4H2O (EDP-U2) and (H2bipy)UO2L (EDP-U3) have the same layered structure in which NEt4(+) and protonated bipy fill in the uranyl-phosphonate interlayers, respectively, and play a role to balance the negative charges. Different from that in EDP-U1, the UO2(2+) exists in the form of a UO6 tetragonal bipyramid and is surrounded by four different EDP ligands in EDP-U2 and EDP-U3. (Hphen)2(UO2)2(H2L)3 (EDP-U4) features a three-dimensional framework structure with large elliptical channels along the c axis (1.3 × 1.1 nm(2)). Monoprotonated phen molecules fill in these channels and hold together through strong π···π interactions. All of the four compounds have been characterized by IR and photoluminescent spectroscopy. Their characteristic emissions have been attributed as transition properties of uranyl cations. The ion-exchange study indicates that [Co(en)3](3+) could partially replace the protonated phen molecules.

  19. Determination of formation constants of uranyl(VI complexes with a hydrophilic SO3-Ph-BTP ligand, using liquid-liquid extraction

    Directory of Open Access Journals (Sweden)

    Steczek Lukasz

    2015-12-01

    Full Text Available Complex formation between uranyl ion, UO22+, and a hydrophilic anionic form of SO3-Ph-BTP4- ligand, L4-, in water was studied by liquid-liquid extraction experiments performed over a range of the ligand and HNO3 concentrations in the aqueous phase, at a constant concentration of nitrate anions at 25°C . The competition for UO22+ ions between the lipophilic TODGA extractant and the hydrophilic L4- ligand leads to the decrease in the uranyl distribution ratios, D, with an increasing L4- concentration. The model of the solvent extraction process used accounts - apart from uranyl complexation by TODGA and SO3-Ph-BTP4- - also for uranyl complexation by nitrates and for the decrease in the concentration of the free L4- ligand in the aqueous phase, due to its protonation, bonding in the uranyl complex and the distribution between the two liquid phases. The unusually strong dependence of the D values on the acidity, found in the experiment, could hardly be explained as due to L4- protonation merely. Three hypotheses were experimentally tested, striving to interpret the data in terms of additional extraction to the organic phase of ion associates of protonated TODGA cation with either partly protonated anionic L4- ligands or anionic UO22+ complexes with NO3 - or L4-. None of them has been confirmed. The analysis of the results, based on the formal correction of free ligand concentrations, points to the formation of 1 : 1 and 1 : 2 uranyl - SO3-Ph-BTP complexes in the aqueous phase. The conditional formation constant of the 1:1 complex has been determined, logßL,1 = 2.95 ± 0.15.

  20. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Kalensky, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Schneider, John [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  1. Selective Se-for-S substitution in Cs-bearing uranyl compounds

    Science.gov (United States)

    Gurzhiy, Vladislav V.; Tyumentseva, Olga S.; Krivovichev, Sergey V.; Tananaev, Ivan G.

    2017-04-01

    Phase formation in the mixed sulfate-selenate aqueous system of uranyl nitrate and cesium nitrate has been investigated. Two types of crystalline compounds have been obtained and characterized using a number of experimental (single crystal XRD, FTIR, SEM) and theoretical (information-based complexity calculations, topological analysis) techniques. No miscibility gaps have been observed for Cs2[(UO2)2(TO4)3] (T= S, Se), which crystallizes in tetragonal system, P-421m, a =9.616(1)-9.856(2), c =8.105(1)-8.159(1) Å, V =749.6(2)-792.5(3) Å3. Nine phases with variable amount of S and Se have been structurally characterized. The structures of the Cs2[(UO2)2(TO4)3] (T= S, Se) compounds are based upon the [(UO2)2(TO4)3]2- layers of corner-sharing uranyl pentagonal bipyramids and TO4 tetrahedra. The layers contain two types of tetrahedral sites: T1 (3-connected, i.e. having three O atoms shared by adjacent uranyl polyhedra) and T2 (4-connected). The Se-for-S substitution in tetrahedral sites is highly selective with smaller S6+ cation showing a strong preference for the more tightly bonded T2 site. Crystallization in the pure Se system starts with the formation of Cs2[(UO2)(SeO4)2(H2O)](H2O) crystals, its subsequent dissolution and formation of Cs2[(UO2)2(SeO4)3]. The information-based structural complexity calculations for these two phases support the rule that more topologically complex structures form at the latest stages of crystallization.

  2. DNA conformational analysis in solution by uranyl mediated photocleavage

    DEFF Research Database (Denmark)

    Nielsen, Peter E.; Møllegaard, N E; Jeppesen, C

    1990-01-01

    by uranyl in a way indicating strongest uranyl binding at the center of the minor groove of the AT-region. The A-tracts of kinetoplast DNA show the highest reactivity at the 3'-end of the tract--as opposed to cleavage by EDTA/Fell--in accordance with the minor groove being more narrow at this end. Finally...

  3. Determination of the stability of the uranyl ion sipped in {tau}-hydrogen phosphate of zirconium in sodic form; Determinacion de la estabilidad del ion uranilo sorbido en {tau}-hidrogenofosfato de zirconio en forma sodica

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E.; Fernandez V, S.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Drot, R.; Simoni, E. [Universite de Paris-Sud-XI, Institut de Physique Nucleaire d' Orsay, Groupe de radiochimie, Bat. 100, 91406 Orsay (France)]. e-mail: edo@nuclear.inin.mx

    2005-07-01

    The stability of the uranyl sipped in the zirconium {tau}-hydrogen phosphate in sodic form ({tau}-NaZrP), was carried out characterizing the complexes formed by Laser spectroscopy in the visible region and by X-ray photoelectron spectroscopy. The material was prepared by a new synthesis technique working in nitrogen atmosphere and to low temperatures. The sorption of the uranyl ion was made in acid media with concentrations of 10{sup -4} and 10{sup -5} of uranyl nitrate and with ion forces of 0.1 and 0.5 M of NaClO{sub 4}. The spectra of induced fluorescence with laser (TRLFS) show that the uranyl is fixed in very acid media in three well differentiated species, to pH less acid, the specie of long half life disappears and are only those of short half life. The results of the binding energy obtained by XPS indicate that the binding energy of the uranyl confer it a stable character to the complex formed in the {tau}-NaZP, that makes to this material appropriate to retain to the uranyl in solution to high ion forces and in acid media. (Author)

  4. Structure and spectroscopy of uranyl salicylaldiminate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Tamasi, A.L.; Barnes, C.L.; Walensky, J.R. [Missouri Univ., Columbia, MO (United States). Dept. of Chemistry

    2013-07-01

    The synthesis of uranyl complexes coordinated to tridentate, monoanionic salicylaldiminate (Schiff base) ligands was achieved by the reaction of UO{sub 2}Cl{sub 2}(THF){sub 3}, 1, with one equivalent of the corresponding sodium salicylaldiminate salts affording [(C{sub 9}H{sub 6}N)N=C(H)C{sub 6}H{sub 2}'Bu{sub 2}O]UO{sub 2}Cl(THF), 2, [(NC{sub 5}H{sub 4})N=C(H)C{sub 6}H{sub 2}'Bu{sub 2}O]UO{sub 2}Cl(THF), 3, and [(C{sub 6}H{sub 4}SCH{sub 3})N=C(H)C{sub 6}H{sub 2}'Bu{sub 2}O]UO{sub 2}Cl(THF), 4. These are uncommon examples of uranyl complexes with a monoanionic ancillary ligand to stabilize the coordination sphere and one chloride ligand. Compounds 2-4 have been characterized by {sup 1}H and {sup 13}C NMR spectroscopy as well as IR and UVVis spectroscopy and their structures determined by X-ray crystallography. (orig.)

  5. Mechanistic study of the interaction of uranyl ions with zirconium oxide and zirconium silicate; Etude mecanistique de l'interaction des ions uranyle avec l'oxyde et le silicate de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Lomenech, C

    2002-04-01

    This work deals with structural and thermodynamic studies of the sorption of uranyl species on zircon and zirconia. After determination of the specific areas, of the pH of the isoelectric points, and of the sorption site numbers, thermodynamic data were obtained using alpha spectrometry, for different uranyl concentrations, different background electrolytes (NaClO{sub 4} or KNO{sub 3}) and different ionic strengths. The structural identification of the surface complexes and sorption sites was carried out using several spectroscopies: XPS spectroscopy allowed a determination of the nature of the sorption sites ({identical_to}Zr-O- on zirconia and {identical_to}Si-O- on zircon). Whereas fluorescence decay measurements gave the number of surface species, the combined use of XPS spectroscopy and laser spectro-fluorimetry enabled us to correlate differences in bonding energies and emission wavelengths with differences in the nature of the background electrolyte or in the pH of sorption; DRIFT spectroscopy was a powerful tool for the determination of the presence of sorbed uranyl nitrate species. EXAFS results clearly showed a splitting of the equatorial oxygen atoms in two shells, corresponding to a polydentate, inner-sphere complex. EXAFS results also indicated strong similarities between dry samples and in situ experiments, which confirms the validity of all the spectroscopic measurements. Macroscopic thermodynamic data were then modeled using a surface complexation model (2 pK and constant capacitance models), the results of the structural study being used as constraints for the simulation code FITEQL. (author)

  6. Uranyl-oxo coordination directed by non-covalent interactions.

    Science.gov (United States)

    Lewis, Andrew J; Yin, Haolin; Carroll, Patrick J; Schelter, Eric J

    2014-07-28

    Directed coordination of weakly Lewis acidic K(+) ions to weakly Lewis basic uranyl oxo ligands is accomplished through non-covalent cation-π and cation-F interactions for the first time. Comparison of a family of structurally related diarylamide ligands highlights the role that the cation-π and cation-F interactions play in guiding coordination. Cation binding to uranyl is demonstrated in the solid state and in solution, providing the shortest reported crystallographic uranyl-oxo to potassium distance. UV-Vis, TD-DFT calculations, and electrochemical measurements show that cation coordination directly impacts the electronics at the uranium(vi) cation.

  7. New reactivity of the uranyl(VI) ion

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Robert J. [School of Chemistry, University of Dublin, Trinity College (Ireland)

    2012-12-14

    The chemistry of the uranyl ion ([UO{sub 2}]{sup 2+}) has evolved remarkably over the past few years, with unexpected reactivity observed that challenge our understanding of this ion, and of actinides in general. This review highlights some recent advances in the field, focussing on the organometallic chemistry of the uranyl moiety, which is not well developed in comparison to lower oxidation states of uranium. The use of uranyl as a catalyst is highlighted and the newly developed supramolecular chemistry is described. The uranyl oxygen atoms have been considered as inert, but recent work has shown that is not necessarily the case and is discussed herein. Finally, reduction to the [UO{sub 2}]{sup +} ion will be discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Adsorption isotherm of uranyl ions by fish scales of corvina

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Caroline Hastenreiter; Santos, Bruno Zolotareff dos; Yamamura, Amanda Pongeluppe Gualberto; Yamaura, Mitiko, E-mail: hc.caroline@gmail.co, E-mail: bzsantos@gmail.co, E-mail: amandaifusp@yahoo.com.b, E-mail: myamaura@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Fish scale is by-product of fishery. The scales are mainly formed by hydroxyapatite and collagen forming a kind of natural composite with a large specific surface area that intensifies the adsorption process. In this paper the potential of adsorption of scales of Corvina fish for uranyl ions from nitric solutions was studied. The scales were washed several times with faucet water, sun-dried, triturated and sieved. Equilibrium and kinetic studies in adsorption of uranyl ions in batch systems were carried out at room temperature. Equilibrium time was reached at 5 min for 0.1 g L{sup -1} uranyl solution with removal efficiency over 82%, and at 1 min of contact was observed about 60% of removal. The equilibrium isotherm was obtained and the Langmuir model fitted best. These preliminary results are very promising, showing great perspectives of application of the fish scales as biosorbent for uranyl ions in radioactive wastewater treatment processes with a sustainable technology. (author)

  9. Acute and chronic toxicity of uranium compounds to Ceriodaphnia-Daphnia dubia

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, J.B.; Specht, W.L.; Keyes, J.L.

    1993-03-31

    A study to determine the acute and chronic toxicity of uranyl nitrate, hydrogen uranyl phosphate, and uranium dioxide to the organism Ceriodaphnia dubia was conducted. The toxicity tests were conducted by two independent environmental consulting laboratories. Part of the emphasis for this determination was based on concerns expressed by SCDHEC, which was concerned that a safety factor of 100 must be applied to the previous 1986 acute toxicity result of 0.22 mg/L for Daphnia pulex, This would have resulted in the LETF release limits being based on an instream concentration of 0.0022 mg/L uranium. The NPDES Permit renewal application to SCDHEC utilized the results of this study and recommended that the LETF release limit for uranium be based an instream concentration of 0.004 mg/L uranium. This is based on the fact that the uranium releases from the M-Area LETF will be in the hydrogen uranyl phosphate form, or a uranyl phosphate complex at the pH (6--10) of the Liquid Effluent Treatment Facility effluent stream, and at the pH of the receiving stream (5.5 to 7.0). Based on the chronic toxicity of hydrogen uranyl phosphate, a lower uranium concentration limit for the Liquid Effluent Treatment Facility outfall vs. the existing NPDES permit was recommended: The current NPDES permit ``Guideline`` for uranium at outfall M-004 is 0.500 mg/L average and 1.0 mg/L maximum, at a design flowrate of 60 gpm. It was recommended that the uranium concentration at the M-004 outfall be reduced to 0.28 mg/L average, and 0.56 mg/L, maximum, and to reduce the design flowrate to 30 gpm. The 0.28 mg/L concentration will provide an instream concentration of 0.004 mg/L uranium. The 0.28 mg/L concentration at M-004 is based on the combined flows from A-014, A-015, and A-011 outfalls (since 1985) of 1840 gpm (2.65 MGD) and was the flow rate which was utilized in the 1988 NPDES permit renewal application.

  10. Glutathione attenuates uranyl toxicity in Lactococcus lactis

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim; Oertel, Jana [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Obeid, M. [Technische Univ. Dresden (Germany); Solioz, M. [Bern Univ. (Switzerland)

    2017-06-01

    We investigated the role of intracellular glutathione (GSH), which in a large number of taxa plays a role in the protection against the toxicity of heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism allowing the study of GSH-dependent uranyl detoxification without interference from additional reactive oxygen species. Microcalorimetric measurements of the metabolic heat showed that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10-150 μM. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH.

  11. Ligand sensitized luminescence of uranyl by benzoic acid in acetonitrile medium: a new luminescent uranyl benzoate specie.

    Science.gov (United States)

    Kumar, Satendra; Maji, S; Joseph, M; Sankaran, K

    2015-03-05

    Benzoic acid (BA) is shown to sensitize and enhance the luminescence of uranyl ion in acetonitrile medium. Luminescence spectra and especially UV-Vis spectroscopy studies reveal the formation of tri benzoate complex of uranyl i.e. [UO2(C6H5COO)3](-) which is highly luminescent. In particular, three sharp bands at 431, 443, 461nm of absorption spectra provides evidence for tri benzoate specie of uranyl in acetonitrile medium. The luminescence lifetime of uranyl in this complex is 68μs which is much more compared to the lifetime of uncomplexed uranyl (20μs) in acetonitrile medium. In contrary to aqueous medium where uranyl benzoate forms 1:1 and 1:2 species, spectroscopic data reveal formation of 1:3 complex in acetonitrile medium. Addition of water to acetonitrile results in decrease of luminescence intensity of this specie and the luminescence features implode at 20% (v/v) of water content. For the first time, to the best of our knowledge, the existence of [UO2(C6H5COO)3](-) specie in acetonitrile is reported. Mechanism of luminescence enhancement is discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Ligand sensitized luminescence of uranyl by benzoic acid in acetonitrile medium: A new luminescent uranyl benzoate specie

    Science.gov (United States)

    Kumar, Satendra; Maji, S.; Joseph, M.; Sankaran, K.

    2015-03-01

    Benzoic acid (BA) is shown to sensitize and enhance the luminescence of uranyl ion in acetonitrile medium. Luminescence spectra and especially UV-Vis spectroscopy studies reveal the formation of tri benzoate complex of uranyl i.e. [UO2(C6H5COO)3]- which is highly luminescent. In particular, three sharp bands at 431, 443, 461 nm of absorption spectra provides evidence for tri benzoate specie of uranyl in acetonitrile medium. The luminescence lifetime of uranyl in this complex is 68 μs which is much more compared to the lifetime of uncomplexed uranyl (20 μs) in acetonitrile medium. In contrary to aqueous medium where uranyl benzoate forms 1:1 and 1:2 species, spectroscopic data reveal formation of 1:3 complex in acetonitrile medium. Addition of water to acetonitrile results in decrease of luminescence intensity of this specie and the luminescence features implode at 20% (v/v) of water content. For the first time, to the best of our knowledge, the existence of [UO2(C6H5COO)3]- specie in acetonitrile is reported. Mechanism of luminescence enhancement is discussed.

  13. Surface complexation model of uranyl sorption on Georgia kaolinite

    Science.gov (United States)

    Payne, T.E.; Davis, J.A.; Lumpkin, G.R.; Chisari, R.; Waite, T.D.

    2004-01-01

    The adsorption of uranyl on standard Georgia kaolinites (KGa-1 and KGa-1B) was studied as a function of pH (3-10), total U (1 and 10 ??mol/l), and mass loading of clay (4 and 40 g/l). The uptake of uranyl in air-equilibrated systems increased with pH and reached a maximum in the near-neutral pH range. At higher pH values, the sorption decreased due to the presence of aqueous uranyl carbonate complexes. One kaolinite sample was examined after the uranyl uptake experiments by transmission electron microscopy (TEM), using energy dispersive X-ray spectroscopy (EDS) to determine the U content. It was found that uranium was preferentially adsorbed by Ti-rich impurity phases (predominantly anatase), which are present in the kaolinite samples. Uranyl sorption on the Georgia kaolinites was simulated with U sorption reactions on both titanol and aluminol sites, using a simple non-electrostatic surface complexation model (SCM). The relative amounts of U-binding >TiOH and >AlOH sites were estimated from the TEM/EDS results. A ternary uranyl carbonate complex on the titanol site improved the fit to the experimental data in the higher pH range. The final model contained only three optimised log K values, and was able to simulate adsorption data across a wide range of experimental conditions. The >TiOH (anatase) sites appear to play an important role in retaining U at low uranyl concentrations. As kaolinite often contains trace TiO2, its presence may need to be taken into account when modelling the results of sorption experiments with radionuclides or trace metals on kaolinite. ?? 2004 Elsevier B.V. All rights reserved.

  14. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... storage in the leaf vacuole cells to be released later and reduced in the cytosol ... pathway dependent on nitrate ion concentration, and (2) potassium and ..... converted to starch in storage organs (Li et al., 2009;. Amtmann and ...

  15. A Phosphorylation Tag for Uranyl Mediated Protein Purification and Photo Assisted Tag Removal

    DEFF Research Database (Denmark)

    Zhang, Qiang; Jørgensen, Thomas. J. D.; Nielsen, Peter E;

    2014-01-01

    enables target protein purification from an E. coli extract by immobilized uranyl affinity chromatography. Subsequently, the tag can be efficiently removed by UV-irradiation assisted uranyl photocleavage. We therefore suggest that the divalent uranyl ion (UO22+) may provide a dual function in protein...

  16. Uranyl complexes formed with a para-t-butylcalix[4]arene bearing phosphinoyl pendant arms on the lower rim. Solid and solution studies

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, F. de M. [Instituto Nacional de Investigaciones Nucleares, La Marquesa, Ocoyoacac (Mexico). Dept. de Quimica; Varbanov, S. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Organic Chemistry with Center of Phytochemistry; Buenzli, J.C.G. [Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland). Inst. of Chemical Sciences and Engineering; Rivas-Silva, J.F.; Ocana-Bribiesca, M.A. [Instituto de Fisica de la BUAP, Puebla (Mexico); Cortes-Jacome, M.A.; Toledo-Antonio, J.A. [Instituto Mexicano del Petroleo/Programa de Ingenieria Molecular (Mexico)

    2012-07-01

    The current interest in functionalized calixarenes with phosphorylated pendant arms resides in their coordination ability towards f elements and capability towards actinide/rare earth separation. Uranyl cation forms 1:1 and 1:2 (M:L) complexes with a tetra-phosphinoylated p-tert-butylcalix[4]arene, B{sub 4}bL{sup 4}: UO{sub 2}(NO{sub 3}){sub 2}(B{sub 4}bL{sup 4}){sub n} . xH{sub 2}O (n = 1, x = 2, 1; n = 2, x = 6, 2). Spectroscopic data point to the inner coordination sphere of 1 containing one monodentate nitrate anion, one water molecule and the four phosphinoylated arms bound to UO{sub 2}{sup 2+} while in 2, uranyl is only coordinated to calixarene ligands. In both cases the U(VI) ion is 8-coordinate. Uranyl complexes display enhanced metal-centred luminescence due to energy transfer from the calixarene ligands; the luminescence decays are bi-exponential with associated lifetimes in the ranges 220 {mu}s < {tau}{sub s} < 250 {mu}s and 630 {mu}s < {tau}{sub L} < 640 {mu}s, pointing to the presence of two species with differently coordinated calixarene, as substantiated by a XPS study of U(4f{sub 5/2,7/2}), O(1s) and P(2p) levels on solid state samples. The extraction study of UO{sub 2}{sup 2+} cation and trivalent rare-earth (Y, La, Eu) ions from acidic nitrate media by B{sub 4}bL{sup 4} in chloroform shows the uranyl cation being much more extracted than rare earths. (orig.)

  17. Uranyl-selective electrodes based on acyclic oligoethers with terminal phosphonate groups

    Energy Technology Data Exchange (ETDEWEB)

    Khramov, A.N.; Garifzyanov, A.R.; Toropova, V.F. [Kazan State Univ., Tatarstan (Russian Federation)

    1994-10-01

    In recent years, a number of attempts have been made to develop ion-selective electrodes sensitive to uranyl ions. The most appropriate ionophores for uranyl-selective electrodes have been found among both acyclic oligoethers (podands) with terminal amide groups and organophosphorous compounds (conventional extracting agents for uranyl salts). However, in the first case, the proposed uranyl-selective electrodes exhibit a linear electrode response in a rather narrow range; in the second case, the electrodes are insufficiently selective. The goal of this work was to examine the possibility of using podands with terminal phosphonate groups as ionophores in uranyl-selective electrodes.

  18. Rate theory on water exchange in aqueous uranyl ion

    Science.gov (United States)

    Dang, Liem X.; Vo, Quynh N.; Nilsson, Mikael; Nguyen, Hung D.

    2017-03-01

    We report a classical rate theory approach to predict the exchange mechanism that occurs between water and aqueous uranyl ion. Using our water and ion-water polarizable force field and molecular dynamics techniques, we computed the potentials of mean force for the uranyl ion-water pair as a function of different pressures at ambient temperature. These potentials of mean force were used to calculate rate constants using transition rate theory; the transmission coefficients also were examined using the reactive flux method and Grote-Hynes approach. The computed activation volumes are positive; thus, the mechanism of this particular water-exchange is a dissociative process.

  19. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes

    Science.gov (United States)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (UVIO2 2+) coordinated by formate or acetate ligands. Anionic complexes containing UVIO2 2+ and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [UVIO2(O)(H)]-. Cationic species ultimately dissociate to make [UVIO2(OH)]+. Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to UVO2 +. Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [UVO2(O)]-. Loss of CH4 occurs by an intra-complex H+ transfer process that leaves UVO2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [UVO2(O)]-. Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2.

  20. Thermodynamics of Uranyl Minerals: Enthalpies of Formation of Uranyl Oxide Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    K. Kubatko; K. Helean; A. Navrotsky; P.C. Burns

    2005-05-11

    The enthalpies of formation of seven uranyl oxide hydrate phases and one uranate have been determined using high-temperature oxide melt solution calorimetry: [(UO{sub 2}){sub 4}O(OH){sub 6}](H{sub 2}O){sub 5}, metaschoepite; {beta}-UO{sub 2}(OH){sub 2}; CaUO{sub 4}; Ca(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}(H{sub 2}O){sub 8}, becquerelite; Ca(UO{sub 2}){sub 4}O{sub 3}(OH){sub 4}(H{sub 2}O){sub 2}; Na(UO{sub 2})O(OH), clarkeite; Na{sub 2}(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}(H{sub 2}O){sub 7}, the sodium analogue of compreignacite and Pb{sub 3}(UO{sub 2}){sub 8}O{sub 8}(OH){sub 6}(H{sub 2}O){sub 2}, curite. The enthalpy of formation from the binary oxides, {Delta}H{sub f-ox}, at 298 K was calculated for each compound from the respective drop solution enthalpy, {Delta}H{sub ds}. The standard enthalpies of formation from the elements, {Delta}H{sub f}{sup o}, at 298 K are -1791.0 {+-} 3.2, -1536.2 {+-} 2.8, -2002.0 {+-} 3.2, -11389.2 {+-} 13.5, -6653.1 {+-} 13.8, -1724.7 {+-} 5.1, -10936.4 {+-} 14.5 and -13163.2 {+-} 34.4 kJ mol{sup -1}, respectively. These values are useful in exploring the stability of uranyl oxide hydrates in auxiliary chemical systems, such as those expected in U-contaminated environments.

  1. Determination of the extractive capacity of para-tert butyl calix[8]arene octa-phosphinoylated towards uranyl ions from an aqueous-acidic-salty medium; Determinacion de la capacidad extractiva del p-ter-butilocalix[8]areno octa-fosfinoilado hacia iones uranilo de un medio acuo-acido salino

    Energy Technology Data Exchange (ETDEWEB)

    Serrano V, E. C.

    2011-07-01

    The extraction properties of octa-phosphinoylated para-tert butyl calix[8]arene (prepared in the laboratory) in chloroform towards uranyl ions from an aqueous-acidic-salty medium (HNO{sub 3}-3.5 NaNO{sub 3}) containing uranyl nitrate salt, was investigated. Two spectroscopic techniques UV/Vis and Luminescence were used for this study. The latter permitted analyze the fluorescence from the uranyl ions influenced by the surrounding medium. Both permitted to learn about the power of this calixarene as extractant towards the mentioned ions. Its extraction ability or capability using this calixarene at 5.91 x 10{sup -4} M towards the uranyl ions was 400% as determined by UV/Vis while fluorescence revealed 100% of uranyl ion extraction. A closed analysis of the results obtained by using these techniques revealed that the stoichiometry of the main extracted species was 1calixarene:2 uranyl ions. The loading capacity of the calixarene ligand towards the uranyl ions was also investigated using both techniques. UV/Vis resulted to be inadequate for quantifying exactly the loading capacity of the calixarene whereas luminescence was excellent indeed, using a 5.91 x 10{sup -4} M calixarene concentration, its loading capacity was 0.157 M of free uranyl ions from 0.161 M of uranyl ions present in the aqueous-acidic-salty medium. The extracts from the ability and capacity studies were concentrated to dryness, purified and the dried extracts were analyzed by infrared and neutron activation analysis. By these techniques it was demonstrated that during the extraction of the uranyl ions by the calixarene ligand they form thermodynamically and kinetically stable complexes, since in the solid state, the 1:2, calixarene; uranyl ions stoichiometry was kept with the minimum formula: (UO{sub 2}){sub 2}B{sub 8}bL{sup 8}(NO{sub 3}){sub 4}(H{sub 2}O){sub 4}CHCl{sub 3}(CH{sub 3}OH){sub 3} the methanol molecules come from its purification. It is proposed that B{sub 8}bL{sup 8} calixarene in

  2. Colorimetric peroxidase mimetic assay for uranyl detection in sea water

    KAUST Repository

    Zhang, Dingyuan

    2015-03-04

    Uranyl (UO2 2+) is a form of uranium in aqueous solution that represents the greatest risk to human health because of its bioavailability. Different sensing techniques have been used with very sensitive detection limits especially the recently reported uranyl-specific DNAzymes systems. However, to the best of our knowledge, few efficient detection methods have been reported for uranyl sensing in seawater. Herein, gold nanoclusters (AuNCs) are employed in an efficient spectroscopic method to detect uranyl ion (UO2 2+) with a detection limit of 1.86 ÎM. In the absence of UO2 2+, the BSA-stabilized AuNCs (BSA-AuNCs) showed an intrinsic peroxidase-like activity. In the presence of UO2 2+, this activity can be efficiently restrained. The preliminary quenching mechanism and selectivity of UO2 2+ was also investigated and compared with other ions. This design strategy could be useful in understanding the binding affinity of protein-stabilized AuNCs to UO2 2+ and consequently prompt the recycling of UO2 2+ from seawater.

  3. Multi-scale modelling of uranyl chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thanh-Nghi; Duvail, Magali, E-mail: magali.duvail@icsm.fr; Villard, Arnaud; Dufrêche, Jean-François, E-mail: jean-francois.dufreche@univ-montp2.fr [Institut de Chimie Séparative de Marcoule (ICSM), UMR 5257, CEA-CNRS-Université Montpellier 2-ENSCM, Site de Marcoule, Bâtiment 426, BP 17171, F-30207 Bagnols-sur-Cèze Cedex (France); Molina, John Jairo [Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103 (Japan); Guilbaud, Philippe [CEA/DEN/DRCP/SMCS/LILA, Marcoule, F-30207 Bagnols-sur-Cèze Cedex (France)

    2015-01-14

    Classical molecular dynamics simulations with explicit polarization have been successfully used to determine the structural and thermodynamic properties of binary aqueous solutions of uranyl chloride (UO{sub 2}Cl{sub 2}). Concentrated aqueous solutions of uranyl chloride have been studied to determine the hydration properties and the ion-ion interactions. The bond distances and the coordination number of the hydrated uranyl are in good agreement with available experimental data. Two stable positions of chloride in the second hydration shell of uranyl have been identified. The UO{sub 2}{sup 2+}-Cl{sup −} association constants have also been calculated using a multi-scale approach. First, the ion-ion potential averaged over the solvent configurations at infinite dilution (McMillan-Mayer potential) was calculated to establish the dissociation/association processes of UO{sub 2}{sup 2+}-Cl{sup −} ion pairs in aqueous solution. Then, the association constant was calculated from this potential. The value we obtained for the association constant is in good agreement with the experimental result (K{sub UO{sub 2Cl{sup +}}} = 1.48 l mol{sup −1}), but the resulting activity coefficient appears to be too low at molar concentration.

  4. Polaron effects in the protonic conductor hydrogen uranyl phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Lupu, D. (Inst. of Isotopic and Molecular Technology, Cluj-Napoca (Romania)); Grecu, R. (Inst. of Chemistry, Cluj-Napoca (Romania)); Biris, A.R. (Inst. of Isotopic and Molecular Technology, Cluj-Napoca (Romania))

    1993-08-01

    The isotope effects on the conductivity of hydrogen uranyl phosphate reveal ionic polaron effects in this solid protonic conductor, in agreement with the small polaron theory. An absorption band is observed at 0.67 eV, which can be correlated with the conduction mechanism consisting in both tunnelling and over-barrier hopping processes. (orig.)

  5. Durable phosphate-selective electrodes based on uranyl salophenes

    NARCIS (Netherlands)

    Wroblewski, Wojciech; Wojciechowski, Kamil; Dybko, Artur; Brzozka, Zbigniew; Egberink, Richard J.M.; Snellink-Ruel, Bianca H.M.; Reinhoudt, David N.

    2001-01-01

    Lipophilic uranyl salophenes derivatives were used as ionophores in durable phosphate-selective electrodes. The influence of the ionophore structure and membrane composition (polarity of plasticizer, the amount of incorporated ionic sites) on the electrode selectivity and long-term stability were st

  6. Uranyl salophenes as ionophores for phosphate-selective electrodes

    NARCIS (Netherlands)

    Wroblewski, Wojciech; Wojciechowski, Kamil; Dybko, Artur; Brzozka, Zbigniew; Egberink, Richard J.M.; Snellink-Ruel, Bianca H.M.; Reinhoudt, David N.

    2000-01-01

    Anion selectivities of poly(vinylchloride) (PVC) plasticized membranes containing uranyl salophene derivatives were presented. The influence of the membrane components (i.e. ionophore structure, dielectric constant and structure of plasticizer, the amount of incorporated ammonium salt) on its phosph

  7. The energy landscape of uranyl-peroxide species

    Energy Technology Data Exchange (ETDEWEB)

    Tiferet, Eitan [Peter A. Rock Thermochemistry Laboratory, University of California, Davis, CA (United States); Nuclear Research Center - Negev, Be' er-Sheva (Israel); Gil, Adria; Bo, Carles [Institute of Chemical Research of Catalonia (ICIQ), Tarragona (Spain); Departament de Quimica Fisica i Inorganica, Universitat Rovira i Virgil, Tarragona (Spain); Shvareva, Tatiana Y.; Navrotsky, Alexandra [Peter A. Rock Thermochemistry Laboratory, University of California, Davis, CA (United States); Nyman, May [Department of Chemistry, Oregon State University, Corvallis, OR (United States)

    2014-03-24

    Nanoscale uranyl peroxide clusters containing UO{sub 2}{sup 2+} groups bonded through peroxide bridges to form polynuclear molecular species (polyoxometalates) exist both in solution and in the solid state. There is an extensive family of clusters containing 28 uranium atoms (U{sub 28} clusters), with an encapsulated anion in the center, for example, [UO{sub 2}(O{sub 2}){sub 3-x}(OH){sub x}{sup 4-}], [Nb(O{sub 2}){sub 4}{sup 3-}], or [Ta(O{sub 2}){sub 4}{sup 3-}]. The negative charge of these clusters is balanced by alkali ions, both encapsulated, and located exterior to the cluster. The present study reports measurement of enthalpy of formation for two such U{sub 28} compounds, one of which is uranyl centered and the other is peroxotantalate centered. The [Ta(O{sub 2}){sub 4}]-centered U{sub 28} capsule is energetically more stable than the [(UO{sub 2})(O{sub 2}){sub 3}]-centered capsule. These data, along with our prior studies on other uranyl-peroxide solids, are used to explore the energy landscape and define thermochemical trends in alkali-uranyl-peroxide systems. It was suggested that the energetic role of charge-balancing alkali ions and their electrostatic interactions with the negatively charged uranyl-peroxide species is the dominant factor in defining energetic stability. These experimental data were supported by DFT calculations, which agree that the [Ta(O{sub 2}){sub 4}]-centered U{sub 28} capsule is more stable than the uranyl-centered capsule. Moreover, the relative stability is controlled by the interactions of the encapsulated alkalis with the encapsulated anion. Thus, the role of alkali-anion interactions was shown to be important at all length scales of uranyl-peroxide species: in both comparing clusters to clusters; and clusters to monomers or extended solids. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Structural study of the uranyl and rare earth complexation functionalized by the CMPO; Etude structurale de la complexation de l'uranyle et des ions lanthanides par des calixarenes fonctionnalises par le CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Cherfa, S

    1998-12-10

    In view of reducing the volume of nuclear waste solutions, a possible way is to extract simultaneously actinide and lanthanide ions prior to their ulterior separation.. Historically, the two extractant families used for nuclear waste reprocessing are the phosphine oxides and the CMPO (Carbamoyl Methyl Phosphine Oxide). For a better understanding of the complexes formed during extraction, we undertook structural studies of the complexes formed between uranyl and lanthanide (III) ions and the two classes of ligands cited above. These studies have been performed by X-ray diffraction on single crystals. Recently, a new type of extractants of lanthanide (III) and actinide (III) ions has been developed. When the Organic macrocycle called calixarene (an oligomeric compound resulting from the poly-condensation of phenolic units) is functionalized by a CMPO ligand, the extracting power, in terms of yield and selectivity towards lightest lanthanides, is greatly enhanced compared to the one measured for the single CMPO. Our X-ray diffraction studies allowed us to characterise, in terms of stoichiometry and monodentate or bidentate coordination mode of the CMPO functions, the complexes of calix[4]arene-CMPO (with four phenolic units) with lanthanide nitrates and uranyl. These different steps of characterisation enabled us to determine the correlation between the structures of the complexes and both selectivity and exacerbation of the extracting power measured in the liquid phase. (author)

  9. Insensitive Ammonium Nitrate.

    Science.gov (United States)

    is reduced by replacing the ammonium nitrate with a solid solution of potassium nitrate in form III ammonium nitrate wherein the potassium nitrate...constitutes from more than zero to less than 50 weight percent of the solid solution . (Author)

  10. 2,6-Diiminopiperidin-1-ol: an overlooked motif relevant to uranyl and transition metal binding on poly(amidoxime) adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Zachary C.; Cardenas, Allan J.; Corbey, Jordan F.; Warner, Marvin G.

    2016-06-06

    Glutardiamidoxime, a structural motif on sorbents used in uranium extraction from seawater, was discovered to cyclize in situ at room temperature to 2,6-diimino-piperidin-1-ol in the presence of uranyl nitrate. The new diimino motif was also generated when exposed to competing transition metals Cu(II) and Ni(II). Multinuclear μ-O bridged U(VI), Cu(II), and Ni(II) complexes featuring bound diimino ligands were isolated. A Cu(II) complex with the historically relevant cyclic imide dioxime motif is also reported for structural comparison to the reported diimino complexes.

  11. Evaluation of Some Biochemical Parameters and Brain Oxidative Stress in Experimental Rats Exposed Chronically to Silver Nitrate and the Protective Role of Vitamin E and Selenium

    Science.gov (United States)

    Gueroui, Mouna; Kechrid, Zine

    2016-01-01

    Due to undesirable hazardous interactions with biological systems, this investigation was undertaken to evaluate the effect of chronic exposure to silver on certain biochemical and some oxidative stress parameters with histopathological examination of brain, as well as the possible protective role of selenium and/or vitamin E as nutritional supplements. Thirty six male rats were divided into six groups of six each: the first group used as a control group. Group II given both vitamin E (400 mg/kg) of diet and selenium (Se) (1 mg/L) in their drinking water. Group III given silver as silver nitrate (AgNO3) (20 mg/L). Group IV given vitamin E and AgNO3. Group V given both AgNO3 and selenium. Group VI given AgNO3, vitamin E and Se. The animals were in the same exposure conditions for 3 months. According to the results which have been obtained; there was an increase in serum lactate dehydrogenase (LDH), lipase activities and cholesterol level, a decrease in serum total protein, calcium and alkaline phosphatase (ALP) activity in Ag-intoxicated rats. Moreover, the findings showed that Ag+ ions affected antioxidant defense system by decreasing superoxide dismutase (SOD) activity and increasing vitamin E concentration with a high level of malondialdehyde (MDA) in brain tissue. The histological examination also exhibited some nervous tissue alterations including hemorrhage and cytoplasm vacuolization. However, the co-administration of selenium and/or vitamin E ameliorated the biochemical parameters and restored the histological alterations. In conclusion, this study indicated that silver could cause harmful effects in animal body and these effects can be more toxic in high concentrations or prolonged time exposure to this metal. However, selenium and vitamin E act as powerful antioxidants which may exercise adverse effect against the toxicity of this metal.

  12. Uranyl ion extraction with conventional PUREX/TRUEX ligands assessed by electroanalytical chemistry at micro liquid/liquid interfaces.

    Science.gov (United States)

    Stockmann, Tom J; Ding, Zhifeng

    2011-10-01

    The facilitated ion transfer (FIT) of uranyl or dioxouranium (UO(2)(2+)) was studied electrochemically using a micro interface between two immiscible electrolytic solutions (micro-ITIES) in order to evaluate the complexation stoichiometry and complexation constants (β) of two widely used ligands in spent fuel reprocessing: tributylphosphate (TBP) and octyl(phenyl)-N,N-diisobutylcarbamoylmethyl-phosphine oxide (CMPO). For the first time, discrete interfacial complexation reaction steps of varying uranyl to the two ligands ratios were resolved using the micro-ITIES hosted at the tip of a 25 μm diameter glass capillary. Two stoichiometries for UO(2)NO(3)TBP(n)(+) were determined including n = 3 and 4 with β values of 3.2 × 10(11) and 3.9 × 10(13), respectively. Subsequently, three distinct complexation reactions of CMPO with UO(2)(2+) were discovered corresponding to UO(2)NO(3)CMPO(2)(+), UO(2)NO(3)CMPO(3)(+), and UO(2)CMPO(5)(2+) whose respective complexation constants were determined to be 8.0 × 10(11), 8.8 × 10(14), and 6.5 × 10(32). The participation of nitrate anions in these complexation reactions is also discussed.

  13. Sub-chronic effects of nitrate in drinking water on red-legged partridge (Alectoris rufa): oxidative stress and T-cell mediated immune function.

    Science.gov (United States)

    Rodríguez-Estival, Jaime; Martínez-Haro, Mónica; Martín-Hernando, M A Paz; Mateo, Rafael

    2010-07-01

    In order to evaluate the effects of nitrates on birds, we have exposed captive red-legged partridges to nitrates concentrations of 0 (control), 100 (dwell water in farming areas) or 500 mg/l (fertirrigation level). The cellular immune response, plasma biochemistry, methemoglobin concentration (metHb), and oxidative stress biomarkers in blood and tissues were studied after two weeks of exposure. Several blood parameters such as aspartate aminotransferase, creatinine phosphokinase and lactate dehydrogenase activities and magnesium level decreased with nitrate exposure, whereas alkaline phosphatase activity and creatinine level increased. The oxidant effect of nitrates was evidenced by the increase in blood metHb, accompanied by the lipid peroxidation of red blood cells, the increased levels of oxidized glutathione (GSH) in liver, and the generation of oxidative DNA damage in plasma lymphocytes. GSH in erythrocytes was negatively correlated with blood metHb. The cellular immune function was slightly lower at partridges exposed to nitrates. These results suggest that adverse effects of nitrates on birds occur at concentrations potentially present in the field.

  14. Residual biomass for removal of uranyl ions;Biomassa residual para remocao de ions uranilo

    Energy Technology Data Exchange (ETDEWEB)

    Boniolo, Milena Rodrigues [Universidade Federal de Sao Carlos (UFScar), SP (Brazil). Dept. de Biogeoquimica Ambiental; Yamaura, Mitiko; Monteiro, Raquel Almeida, E-mail: milenaboniolo@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2010-07-01

    Activities related to nuclear industry, production of phosphoric acid and hospitals have generated considerable volumes of radioactive waste containing uranyl ions. Banana pith was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy and was investigated as a biosorbent for uranyl ions from nitric solutions by batch experiments. Influences of adsorbent size, kinetics and equilibrium adsorption were studied. The biosorption of the uranyl ions followed pseudo-second-order kinetics. The adsorption isotherm data were closely fitted to the Freundlich equation. (author)

  15. Adsorption of uranyl ion on acid-modified zeolitic mineral clinoptilolite

    Directory of Open Access Journals (Sweden)

    Matijašević Srđan D.

    2009-01-01

    Full Text Available In this paper, the results of adsorption of uranyl ion on acid-modified zeolitic mineral clinoptilolite are presented. Adsorption was investigated at different amounts of solid phase in suspension, as well as at different pH values. The modified clinoptilolite samples were obtained by treatment of clinoptilolite with acids: hydrochloric, oxalyc and citric. Starting and modified clinoptilolites were characterized by chemical analysis, thermal (DT/TG analysis and by determination of cation exchange capacity, while starting and nonadsorbed amounts of uranyl ion were determined by fluorometric method. Uranyl ion adsorption experiments on natural unmodified zeolitic mineral showed that uranyl ion adsorption was low (29.2% and that treatment of clinoptilolite with acids significantly increases the adsorption of uranyl ion (>90%. In the case of acid treated clinoptilolites, the highest adsorption of uranyl ion was achieved on clinoptilolite modified with hydrochloric acid. Kinetics of adsorption showed that adsorption of uranyl ion begins very fast and that the most of uranyl ion was adsorbed in first 30 min. Practically, there were no changes in uranyl ion adsorption within next 72 h.

  16. Quantum chemical modeling of uranyl adsorption on mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kremleva, A.; Krueger, S.; Roesch, N. [Dept. Chemie and Catalysis Research Center, Technische Univ. Muenchen, Garching (Germany)

    2010-07-01

    We overview quantum mechanical simulations that model the adsorption of actinide ions at solvated mineral surfaces. Pertinent examples illustrate the status of this emerging field of computational chemistry. In particular, we describe our own studies on uranyl adsorption on kaolinite. Already the few available results, from applications of density functional methods to cluster models or periodic slab models, show that such calculations are a useful complement to experimental investigations. Detailed information at the atomic level from accurate electronic structure calculations on well defined model systems helps to refine current interpretations of the chemical nature of uranyl adsorption species and to discover new features of these interface systems. Results from quantum mechanical simulations also provide a valuable reference for future experimental investigations. (orig.)

  17. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer.

    Science.gov (United States)

    Jarczewska, Marta; Ziółkowski, Robert; Górski, Łukasz; Malinowska, Elżbieta

    2014-04-01

    The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+).

  18. Uranyl(VI) luminescence spectroscopy at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Steudtner, Robin; Franzen, Carola; Brendler, Vinzenz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Surface Processes; Haubitz, Toni [Brandenburg Univ. of Technology, Cottbus-Senftenberg (Germany)

    2016-07-01

    We studied the influence of temperature and ionic strength on the luminescence characteristics (band position, decay time and intensity) of the free uranyl ion (UO{sub 2}{sup 2+}) in acidic aqueous solution. Under the chosen conditions an increasing temperature reduced both intensity and luminescence decay time of the UO{sub 2}{sup 2+} luminescence, but the individual U(VI) emission bands did not change.

  19. Study of the solubility of plutonyl nitrate with a view to its extraction by a solvent; Etude de la solubilite du nitrate de plutonyle en vue de son extraction par solvant

    Energy Technology Data Exchange (ETDEWEB)

    Vergnaud, G. [Commissariat a l' Energie Atomique, Fontenay aux Roses (France). Centre d' Etudes Nucleaires

    1965-09-01

    The research covers the determination of the partition coefficient of plutonyl nitrate and their application to the industrial treatment of plutonium. The solvent used is a tri-n-butyl phosphate solution diluted to 30 per cent in dodecane. The parameters which have been studied and which can affect the extraction of the plutonyl nitrate are: the plutonyl nitrate concentration; the nitric acid concentration; the uranyl nitrate concentration; the tetravalent plutonium nitrate concentration. The industrial application has been studied using a battery of mixer-separators. The operational conditions are defined in the case of a conventional plutonium separation plant. The results obtained, for a higher plutonyl nitrate concentration than that actually planned, are satisfactory and encouraging as far as the operation is concerned. Only the presence of polymerized tetravalent plutonium can adversely affect the satisfactory extraction of the plutonium. (author) [French] L'etude porte sur les coefficients de partage du nitrate de plutonyle et leur application a l'elaboration industrielle du plutonium. Le solvant utilise est une solution de phosphate de tri-n-butyle, dilue a 30 pour cent dans le dodecane. Les parametres etudies et pouvant influencer l'extraction du nitrate de plutonyle, par ce solvant, sont: concentration du nitrate de plutonyle; concentration de l'acide nitrique; concentration du nitrate d'uranyle; concentration au nitrate de plutonium tetravalent. L'application industrielle est etudiee au moyen d'une batterie de melangeurs-decanteurs. Les conditions operatoires sont definies d'apres un schema classique d'usine de separation de plutonium. Les resultats obtenus, pour une concentration du nitrate de plutonyle superieure a celle reellement prevue, sont satisfaisants et encourageants pour l'exploitation. Seule, la presence de plutonium tetraralent polymerise, peut nuire a une bonne extraction du plutonium

  20. Structure and bonding in crystalline cesium uranyl tetrachloride under pressure.

    Science.gov (United States)

    Osman, Hussien H; Pertierra, Pilar; Salvadó, Miguel A; Izquierdo-Ruiz, F; Recio, J M

    2016-07-21

    A thorough investigation of pressure effects on the structural properties of crystalline cesium uranyl chloride was performed by means of first-principles calculations within the density functional theory framework. Total energies, equilibrium geometries and vibrational frequencies were computed at selected pressures up to 50 GPa. Zero pressure results present good agreement with available experimental and theoretical data. Our calculated equation of state parameters reveal that Cs2UO2Cl4 is a high compressible material, similar to other ionic compounds with cesium cations, and displays a structural anisotropic behavior guided by the uranyl moiety. An unexpected variation of the U-O bond length, dUO, is detected as pressure is applied. It leads to a dUO-stretching frequency relationship that cannot be described by the traditional Badger's rule. Interestingly enough, it can be explained in terms of a change in the main factor controlling dUO. At low pressure, the charge transferred to the uranyl cation induces an increase of the bond length and a red shift of the stretching frequencies, whereas it is the mechanical effect of the applied pressure above 10 GPa that is the dominant factor that leads to a shortening of dUO and a blue shift of the stretching frequencies.

  1. Determination of Uranyl Nitrate and Nitric Acid Based on Density and Conductivity Measurements

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Measurement of the uranium and acidity plays an important role in process control of spent fuel reprocessing. The main chemical compositions including a mount of U solution in spent fuel reprocessing

  2. Simulation of Uranyl Nitrate Crystallization Process in Linear Crystallizer Using Simsar Software

    Science.gov (United States)

    Ochoa Bique, A.; Gozhimov, A.; Chursin, Yu; Schmidt, O.

    2016-08-01

    The paper deals with simulation of linear crystallizer work process for the research of technic operating modes and searching the most effective for material's nano-purity achievement. The model is realized by using SimSar software. Importance of device's geometry and process variables are marked. The model was included in the complex's composition of closed nuclear fuel cycle.

  3. Polarity and Chirality in Uranyl Borates: Insights into Understanding the Vitrification of Nuclear Waste and the Development of Nonlinear Optical Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuao; Alekseev, Evgeny V.; Ling, Jie; Liu, Guokui; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2010-03-23

    Four new sodium uranyl borates, α-Na[(UO{sub 2}){sub 2}B{sub 10}O{sub 15}(OH){sub 5})] (NaUBO-1), β-Na[(UO{sub 2}){sub 2}B{sub 10}O{sub 15}(OH){sub 5}] (NaUBO-2), Na[(UO{sub 2}){sub 2}B{sub 10}O{sub 15}(OH){sub 5}]·3H{sub 2}O (NaUBO-3), and Na[(UO{sub 2})B{sub 6}O{sub 10}(OH)]·2H{sub 2}O (NaUBO-4), and four new thallium uranyl borates, α-Tl{sub 2}[(UO{sub 2}){sub 2}B{sub 11}O{sub 18}(OH){sub 3}] (TlUBO-1), β-Tl{sub 2}[(UO{sub 2}){sub 2}B{sub 11}O{sub 18}(OH){sub 3}] (TlUBO-2), Tl[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}] (TlUBO-3), and Tl{sub 2}[(UO{sub 2}){sub 2}B{sub 11}O{sub 19}(OH)] (TlUBO-4), have been prepared via the reaction of sodium nitrate or thallium nitrate, uranyl nitrate, and excess boric acid at 190 °C. These compounds share a common structural motif consisting of a linear uranyl, UO{sub 2}{sup 2+}, cation surrounded by BO{sub 3} triangles and BO{sub 4} tetrahedra to create a UO{sub 8} hexagonal bipyramidal environment around uranium. The borate anions bridge between uranyl units to create sheets. Additional BO{sub 3} triangles extend from the polyborate layers and are directed approximately perpendicular to the sheets. In some compounds, these units can link the layers together to yield three-dimensional networks with large pores to house the Na{sup +} or Tl{sup+} cations and water molecules. The structures are all noncentrosymmetric and are either polar or chiral. While the uranyl borate layers are noncentrosymmetric in and of themselves, there is also twisting of the interlayer BO{sub 3} groups to reduce the interlayer spacing, producing helical features in some structures. Na[(UO{sub 2})B{sub 6}O{sub 10}(OH)]·2H{sub 2}O and β-Tl{sub 2}[(UO{sub 2}){sub 2}B{sub 11}O{sub 18}(OH){sub 3}], which can be obtained as pure phases, display second-harmonic generation of 532 nm light from 1064 nm light.

  4. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to Other Siderophores

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S.

    2016-06-24

    Siderophores are Fe binding secondary metabolites that have been investigated for their uranium binding properties. Much of the previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of uranyl, yet they have not been widely studied and are more difficult to obtain. Desmalonichrome is a carboxylate siderophore which is not commercially available and so was obtained from the ascomycete fungus Fusarium oxysporum cultivated under Fe depleted conditions. The relative affinity for uranyl binding of desmalonichrome was investigated using a competitive analysis of binding affinities between uranyl acetate and different concentrations of iron(III) chloride using electrospray ionization mass spectrometry (ESI-MS). In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A) were studied to understand their relative affinities for the uranyl ion at two pH values. The binding affinities of hydroxymate siderophores to uranyl ion were found to decrease to a greater degree at lower pH as the concentration of Fe (III) ion increases. On the other hand, lowering pH has little impact on the binding affinities between carboxylate siderophores and uranyl ion. Desmalonichrome was shown to have the greatest relative affinity for uranyl at any pH and Fe(III) concentration. These results suggest that acidic functional groups in the ligands are critical for strong chelation with uranium at lower pH.

  5. Can uranyl complexes encapsulate to carbon nanotubes? A periodic DFT study

    Indian Academy of Sciences (India)

    K SRINIVASU; MAHESH SUNDARARAJAN

    2017-06-01

    Periodic density functional theory (DFT)-based calculations were carried out on a series of uranyl complexes encapsulated within single walled (SW)-CNT to understand their encapsulation affinities. We find that uranyl-aqua complex ([UO₂(H₂O)₅]²⁺) binds stronger as compared to uranyl-hydroxo-complex ([UO₂(OH)₄]²⁻) due to the variable overall charge of the complex. Further, binding affinities of uranyl formate complexes with different formate stoichiometries (1:1, 1:2 and 1:3) with SW-CNT are considered. Here again, due to variable charges, cationic mono-‘formate-uranyl ([UO2(FM)(H₂O)₃]¹⁺) complex binds stronger as compared to anionic tri-formate uranyl ([UO2(FM)₃]¹⁻). Further, due to the very weak binding commonly found in [UO₂(FM)₃]¹⁻ to CNT, the tubular ends of SW-CNT are sealed with functionalized C₃₆ fullerene. The binding affinity of uranyl complex is not improved when C₃₆ fullerene is used to seal to the SW-CNT as compared to its unsealed counterpart. However, upon functionalizing (at the hub carbon) the C36 cork, the binding affinity of [UO₂(FM)3]¹⁻ is larger inside the CNT due to favorable hydrogen bonding interactions with the uranyl oxygens. Our findings are consistent with the experimental observations which will help to design novel nanomaterials for nuclear waste management processes.

  6. Synthesis of phosphorylated calix[4]arene derivatives for the design of solid phases immobilizing uranyl cations

    Energy Technology Data Exchange (ETDEWEB)

    Maroun, E.B.; Hagege, A.; Asfari, Z. [Laboratoire de Chimie Analytique et Minerale, UMR 7178 ULP/CNRS/IN2P3 LC4, ECPM, Strasbourg Cedex (France); Basset, CH.; Quemeneur, E.; Vidaud, C. [CEA IBEB, SBTN, Centre de Marcoule, Bagnols-sur-Ceze (France)

    2009-07-01

    With the aim of developing supports for uranyl cations immobilisation, new 1, 3-alternate calix[4]arenes bearing both phosphonic acid functions as chelating sites and N-succinimide-4-oxa-butyrate as the anchoring arm were synthesised in good yields. The coupling of such calixarenes to a gel was performed and a successful immobilisation of uranyl cations was obtained. (authors)

  7. A protein engineered to bind uranyl selectively and with femtomolar affinity

    Science.gov (United States)

    Zhou, Lu; Bosscher, Mike; Zhang, Changsheng; Özçubukçu, Salih; Zhang, Liang; Zhang, Wen; Li, Charles J.; Liu, Jianzhao; Jensen, Mark P.; Lai, Luhua; He, Chuan

    2014-03-01

    Uranyl (UO22+), the predominant aerobic form of uranium, is present in the ocean at a concentration of ~3.2 parts per 109 (13.7 nM) however, the successful enrichment of uranyl from this vast resource has been limited by the high concentrations of metal ions of similar size and charge, which makes it difficult to design a binding motif that is selective for uranyl. Here we report the design and rational development of a uranyl-binding protein using a computational screening process in the initial search for potential uranyl-binding sites. The engineered protein is thermally stable and offers very high affinity and selectivity for uranyl with a Kd of 7.4 femtomolar (fM) and >10,000-fold selectivity over other metal ions. We also demonstrated that the uranyl-binding protein can repeatedly sequester 30-60% of the uranyl in synthetic sea water. The chemical strategy employed here may be applied to engineer other selective metal-binding proteins for biotechnology and remediation applications.

  8. Quantification of uranyl in presence of citric acid; Cuantificacion de uranilo en presencia de acido citrico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N.; Barrera D, C.E. [UAEM, Facultad de Quimica, 50000 Toluca, Estado de Mexico (Mexico); Ordonez R, E. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: nidgg@yahoo.com.mx

    2007-07-01

    To determine the influence that has the organic matter of the soil on the uranyl sorption on some solids is necessary to have a detection technique and quantification of uranyl that it is reliable and sufficiently quick in the obtaining of results. For that in this work, it intends to carry out the uranyl quantification in presence of citric acid modifying the Fluorescence induced by UV-Vis radiation technique. Since the uranyl ion is very sensitive to the medium that contains it, (speciation, pH, ionic forces, etc.) it was necessary to develop an analysis technique that stands out the fluorescence of uranyl ion avoiding the out one that produce the organic acids. (Author)

  9. Effects of aqueous uranyl speciation on the kinetics of microbial uranium reduction

    Science.gov (United States)

    Belli, Keaton M.; DiChristina, Thomas J.; Van Cappellen, Philippe; Taillefert, Martial

    2015-05-01

    The ability to predict the success of the microbial reduction of soluble U(VI) to highly insoluble U(IV) as an in situ bioremediation strategy is complicated by the wide range of geochemical conditions at contaminated sites and the strong influence of aqueous uranyl speciation on the bioavailability and toxicity of U(VI) to metal-reducing bacteria. To determine the effects of aqueous uranyl speciation on uranium bioreduction kinetics, incubations and viability assays with Shewanella putrefaciens strain 200 were conducted over a range of pH and dissolved inorganic carbon (DIC), Ca2+, and Mg2+ concentrations. A speciation-dependent kinetic model was developed to reproduce the observed time series of total dissolved uranium concentration over the range of geochemical conditions tested. The kinetic model yielded the highest rate constant for the reduction of uranyl non-carbonate species (i.e., the 'free' hydrated uranyl ion, uranyl hydroxides, and other minor uranyl complexes), indicating that they represent the most readily reducible fraction of U(VI) despite being the least abundant uranyl species in solution. The presence of DIC, Ca2+, and Mg2+ suppressed the formation of more bioavailable uranyl non-carbonate species and resulted in slower bioreduction rates. At high concentrations of bioavailable U(VI), however, uranium toxicity to S. putrefaciens inhibited bioreduction, and viability assays confirmed that the concentration of non-carbonate uranyl species best predicts the degree of toxicity. The effect of uranium toxicity was accounted for by incorporating the free ion activity model of metal toxicity into the bioreduction rate law. Overall, these results demonstrate that, in the absence of competing terminal electron acceptors, uranium bioreduction kinetics can be predicted over a wide range of geochemical conditions based on the bioavailability and toxicity imparted on U(VI) by solution composition. These findings also imply that the concentration of uranyl non

  10. Chronic lung injury in the neonatal rat: up-regulation of TGFβ1 and nitration of IGF-R1 by peroxynitrite as likely contributors to impaired alveologenesis.

    Science.gov (United States)

    Belcastro, Rosetta; Lopez, Lianet; Li, Jun; Masood, Azhar; Tanswell, A Keith

    2015-03-01

    Postnatal alveolarization is regulated by a number of growth factors, including insulin-like growth factor-I (IGF-I) acting through the insulin-like growth factor receptor-1 (IGF-R1). Exposure of the neonatal rat lung to 60% O2 for 14 days results in impairments of lung cell proliferation, secondary crest formation, and alveologenesis. This lung injury is mediated by peroxynitrite and is prevented by treatment with a peroxynitrite decomposition catalyst. We hypothesized that one of the mechanisms by which peroxynitrite induces lung injury in 60% O2 is through nitration and inactivation of critical growth factors or their receptors. Increased nitration of both IGF-I and IGF-R1 was evident in 60% O2-exposed lungs, which was reversible by concurrent treatment with a peroxynitrite decomposition catalyst. Increased nitration of the IGF-R1 was associated with its reduced activation, as assessed by IGF-R1 phosphotyrosine content. IGF-I displacement binding plots were conducted in vitro using rat fetal lung distal epithelial cells which respond to IGF-I by an increase in DNA synthesis. When IGF-I was nitrated to a degree similar to that observed in vivo there was minimal, if any, effect on IGF-I displacement binding. In contrast, nitrating cell IGF-R1 to a similar degree to that observed in vivo completely prevented specific binding of IGF-I to the IGF-R1, and attenuated an IGF-I-mediated increase in DNA synthesis. Additionally, we hypothesized that peroxynitrite also impairs alveologenesis by being an upstream regulator of the growth inhibitor, TGFβ1. That 60% O2-induced impairment of alveologenesis was mediated in part by TGFβ1 was confirmed by demonstrating an improvement in secondary crest formation when 60% O2-exposed pups received concurrent treatment with the TGFß1 activin receptor-like kinase, SB 431542. That the increased TGFβ1 content in lungs of pups exposed to 60% O2 was regulated by peroxynitrite was confirmed by its attenuation by concurrent treatment

  11. Acute toxicity of uranium hexafluoride, uranyl fluoride and hydrogen fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Just, R.A.

    1988-01-01

    Uranium hexafluoride (UF/sub 6/) released into the atmosphere will react rapidly with moisture in the air to form the hydrolysis products uranyl fluoride (UO/sub 2/F/sub 2/) and hydrogen fluoride (HF). Uranium compounds such as UF/sub 6/ and UO/sub 2/F/sub 2/ exhibit both chemical toxicity and radiological effects, while HF exhibits only chemical toxicity. This paper describes the development of a methodology for assessing the human health consequences of a known acute exposure to a mixture of UF/sub 6/, UO/sub 2/F/sub 2/, and HF. 4 refs., 2 figs., 5 tabs.

  12. Enhanced adsorption and recovery of uranyl ions by NikR mutant-displaying yeast.

    Science.gov (United States)

    Kuroda, Kouichi; Ebisutani, Kazuki; Iida, Katsuya; Nishitani, Takashi; Ueda, Mitsuyoshi

    2014-04-11

    Uranium is one of the most important metal resources, and the technology for the recovery of uranyl ions (UO22+) from aqueous solutions is required to ensure a semi-permanent supply of uranium. The NikR protein is a Ni2+-dependent transcriptional repressor of the nickel-ion uptake system in Escherichia coli, but its mutant protein (NikRm) is able to selectively bind uranyl ions in the interface of the two monomers. In this study, NikRm protein with ability to adsorb uranyl ions was displayed on the cell surface of Saccharomyces cerevisiae. To perform the binding of metal ions in the interface of the two monomers, two metal-binding domains (MBDs) of NikRm were tandemly fused via linker peptides and displayed on the yeast cell surface by fusion with the cell wall-anchoring domain of yeast α-agglutinin. The NikRm-MBD-displaying yeast cells with particular linker lengths showed the enhanced adsorption of uranyl ions in comparison to the control strain. By treating cells with citrate buffer (pH 4.3), the uranyl ions adsorbed on the cell surface were recovered. Our results indicate that the adsorption system by yeast cells displaying tandemly fused MBDs of NikRm is effective for simple and concentrated recovery of uranyl ions, as well as adsorption of uranyl ions.

  13. Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study.

    Science.gov (United States)

    Wu, Qun-Yan; Lan, Jian-Hui; Wang, Cong-Zhi; Xiao, Cheng-Liang; Zhao, Yu-Liang; Wei, Yue-Zhou; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-03-20

    Studying the bonding nature of uranyl ion and graphene oxide (GO) is very important for understanding the mechanism of the removal of uranium from radioactive wastewater with GO-based materials. We have optimized 22 complexes between uranyl ion and GO applying density functional theory (DFT) combined with quasi-relativistic small-core pseudopotentials. The studied oxygen-containing functional groups include hydroxyl, carboxyl, amido, and dimethylformamide. It is observed that the distances between uranium atoms and oxygen atoms of GO (U-OG) are shorter in the anionic GO complexes (uranyl/GO(-/2-)) compared to the neutral GO ones (uranyl/GO). The formation of hydrogen bonds in the uranyl/GO(-/2-) complexes can enhance the binding ability of anionic GO toward uranyl ions. Furthermore, the thermodynamic calculations show that the changes of the Gibbs free energies in solution are relatively more negative for complexation reactions concerning the hydroxyl and carboxyl functionalized anionic GO complexes. Therefore, both the geometries and thermodynamic energies indicate that the binding abilities of uranyl ions toward GO modified by hydroxyl and carboxyl groups are much stronger compared to those by amido and dimethylformamide groups. This study can provide insights for designing new nanomaterials that can efficiently remove radionuclides from radioactive wastewater.

  14. Enhanced Adsorption and Recovery of Uranyl Ions by NikR Mutant-Displaying Yeast

    Directory of Open Access Journals (Sweden)

    Kouichi Kuroda

    2014-04-01

    Full Text Available Uranium is one of the most important metal resources, and the technology for the recovery of uranyl ions (UO22+ from aqueous solutions is required to ensure a semi-permanent supply of uranium. The NikR protein is a Ni2+-dependent transcriptional repressor of the nickel-ion uptake system in Escherichia coli, but its mutant protein (NikRm is able to selectively bind uranyl ions in the interface of the two monomers. In this study, NikRm protein with ability to adsorb uranyl ions was displayed on the cell surface of Saccharomyces cerevisiae. To perform the binding of metal ions in the interface of the two monomers, two metal-binding domains (MBDs of NikRm were tandemly fused via linker peptides and displayed on the yeast cell surface by fusion with the cell wall-anchoring domain of yeast α-agglutinin. The NikRm-MBD-displaying yeast cells with particular linker lengths showed the enhanced adsorption of uranyl ions in comparison to the control strain. By treating cells with citrate buffer (pH 4.3, the uranyl ions adsorbed on the cell surface were recovered. Our results indicate that the adsorption system by yeast cells displaying tandemly fused MBDs of NikRm is effective for simple and concentrated recovery of uranyl ions, as well as adsorption of uranyl ions.

  15. Escherichia coli response to uranyl exposure at low pH and associated protein regulations.

    Directory of Open Access Journals (Sweden)

    Arbia Khemiri

    Full Text Available Better understanding of uranyl toxicity in bacteria is necessary to optimize strains for bioremediation purposes or for using bacteria as biodetectors for bioavailable uranyl. In this study, after different steps of optimization, Escherichia coli cells were exposed to uranyl at low pH to minimize uranyl precipitation and to increase its bioavailability. Bacteria were adapted to mid acidic pH before exposure to 50 or 80 µM uranyl acetate for two hours at pH≈3. To evaluate the impact of uranium, growth in these conditions were compared and the same rates of cells survival were observed in control and uranyl exposed cultures. Additionally, this impact was analyzed by two-dimensional differential gel electrophoresis proteomics to discover protein actors specifically present or accumulated in contact with uranium.Exposure to uranium resulted in differential accumulation of proteins associated with oxidative stress and in the accumulation of the NADH/quinone oxidoreductase WrbA. This FMN dependent protein performs obligate two-electron reduction of quinones, and may be involved in cells response to oxidative stress. Interestingly, this WrbA protein presents similarities with the chromate reductase from E. coli, which was shown to reduce uranyl in vitro.

  16. Removal of uranyl ions from residual waters using some algae types

    Science.gov (United States)

    Cecal, Al; Palamaru, I.; Humelnicu, D.; Popa, K.; Salaru, V. V.; Rudic, V.; Gulea, A.

    1999-01-01

    This paper deals with a study on the bioaccumulation of uranyl ions resulted from residual effluents by means of some microbiological collectors: Scenedesmus quadricauda, Anabaena karakumica, Calothrix brevissima, Penicillinium sp, as well as the Glucide extract of Porphyridium cruentum, under various experimental conditions. The retaining degree of the bioaccumulated uranyl ions, as well as the leaching degree, in HCl and H2O media, of the same ions previously retained on algae were established. The retaining degree decreases in the serie: Scenedesmus quadricauda >Anabaena karakumica >Penicillinium sp>Calothrix brevissima. The leaching effect of bioaccumulated uranyl ions is higher in hydrochloric acid than in water.

  17. Synthesis, X-ray crystallography, thermal studies, spectroscopic and electrochemistry investigations of uranyl Schiff base complexes.

    Science.gov (United States)

    Asadi, Zahra; Shorkaei, Mohammad Ranjkesh

    2013-03-15

    Some tetradentate salen type Schiff bases and their uranyl complexes were synthesized and characterized by UV-Vis, NMR, IR, TG, C.H.N. and X-ray crystallographic studies. From these investigations it is confirmed that a solvent molecule occupied the fifth position of the equatorial plane of the distorted pentagonal bipyramidal structure. Also, the kinetics of complex decomposition by using thermo gravimetric methods (TG) was studied. The thermal decomposition reactions are first order for the studied complexes. To examine the properties of uranyl complexes according to the substitutional groups, we have carried out the electrochemical studies. The electrochemical reactions of uranyl Schiff base complexes in acetonitrile were reversible.

  18. Self-assembly of uranyl-peroxide nanocapsules in basic peroxidic environments

    Energy Technology Data Exchange (ETDEWEB)

    Miro, Pere; Vlaisavljevich, Bess [Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, MN (United States); Gil, Adria [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona (Spain); Burns, Peter C. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, South Bend, IN (United States); Nyman, May [Materials Science of Actinides, Department of Chemistry, Oregon State University, Corvallis, OR (United States); Bo, Carles [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona (Spain); Departament de Quimica Fisica i Inorganica, Universitat Rovira i Virgili, Campus Sescelades, Tarragona (Spain)

    2016-06-13

    A wide range of uranyl-peroxide nanocapsules have been synthesized using very simple reactants in basic media; however, little is known about the process to form these species. We have performed a density functional theory study of the speciation of the uranyl ions under different experimental conditions and explored the formation of dimeric species via a ligand exchange mechanism. We shed some light onto the importance of the excess of peroxide and alkali counterions as a thermodynamic driving force towards the formation of larger uranyl-peroxide species. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Combination Therapy with Losartan and Pioglitazone Additively Reduces Renal Oxidative and Nitrative Stress Induced by Chronic High Fat, Sucrose, and Sodium Intake

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2012-01-01

    Full Text Available We recently showed that combination therapy with losartan and pioglitazone provided synergistic effects compared with monotherapy in improving lesions of renal structure and function in Sprague-Dawley rats fed with a high-fat, high-sodium diet and 20% sucrose solution. This study was designed to explore the underlying mechanisms of additive renoprotection provided by combination therapy. Losartan, pioglitazone, and their combination were orally administered for 8 weeks. The increased level of renal malondialdehyde and expression of nicotinamide adenine dinucleotide phosphate oxidase subunit p47phox and nitrotyrosine as well as the decreased total superoxide dismutase activity and copper, zinc-superoxide dismutase expression were tangible evidence for the presence of oxidative and nitrative stress in the kidney of model rats. Treatment with both drugs, individually and in combination, improved these abnormal changes. Combination therapy showed synergistic effects in reducing malondialdehyde level, p47phox, and nitrotyrosine expression to almost the normal level compared with monotherapy. All these results suggest that the additive renoprotection provided by combination therapy might be attributed to a further reduction of oxidative and nitrative stress.

  20. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  1. Organic nitrates and nitrate tolerance--state of the art and future developments.

    Science.gov (United States)

    Daiber, Andreas; Münzel, Thomas; Gori, Tommaso

    2010-01-01

    The hemodynamic and antiischemic effects of nitroglycerin (GTN) are lost upon chronic administration due to the rapid development of nitrate tolerance. The mechanism of this phenomenon has puzzled several generations of scientists, but recent findings have led to novel hypotheses. The formation of reactive oxygen and nitrogen species in the mitochondria and the subsequent inhibition of the nitrate-bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) appear to play a central role, at least for GTN, that is, bioactivated by ALDH-2. Importantly, these findings provide the opportunity to reconcile the two "traditional" hypotheses of nitrate tolerance, that is, the one postulating a decreased bioactivation and the concurrent one suggesting a role of oxidative stress. Furthermore, recent animal and human experimental studies suggest that the organic nitrates are not a homogeneous group but demonstrate a broad diversity with regard to induction of vascular dysfunction, oxidative stress, and other side effects. In the past, attempts to avoid nitrate-induced side effects have focused on administration schedules that would allow a "nitrate-free interval"; in the future, the role of co-therapies with antioxidant compounds and of activation of endogeneous protective pathways such as the heme oxygenase 1 (HO-1) will need to be explored. However, the development of new nitrates, for example, tolerance-free aminoalkyl nitrates or combination of nitrate groups with established cardiovascular drugs like ACE inhibitors or AT(1)-receptor blockers (hybrid molecules) may be of great clinical interest.

  2. Removal of uranyl ions from residual waters using some algae types

    NARCIS (Netherlands)

    Cecal, A; Palamaru, [No Value; Humelnicu, D; Popa, K; Salaru, VV; Rudic, [No Value; Gulea, A

    1999-01-01

    This paper deals with a study on the bioaccumulation of uranyl ions resulted from residual effluents by means of some microbiological collectors: Scenedesmus quadricauda, Anabaena karakumica, Calothrix brevissima, Penicillinium sp, as well as the Glucide extract of Porphyridium cruentum, under

  3. Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study.

    Science.gov (United States)

    Zhang, Yu-Juan; Lan, Jian-Hui; Wang, Lin; Wu, Qun-Yan; Wang, Cong-Zhi; Bo, Tao; Chai, Zhi-Fang; Shi, Wei-Qun

    2016-05-05

    In this work, hydroxylated titanium carbide Ti3C2(OH)2, a representative of the two-dimensional transition metal carbides, has been predicted to be an effective adsorbent for uranyl ions in aqueous environments for the first time using density functional theory simulations. The calculations revealed that the uranyl ion can strongly bind with Ti3C2(OH)2 nanosheet in aqueous solution regardless of the presence of anionic ligands such as OH(-), Cl(-) and NO3(-). The bidentate coordination of uranyl to the surface is energetically more favorable than other adsorption configurations, and the uranyl ion prefers to bind with the deprotonated O adsorption site rather than the protonated one on the hydroxylated surface. During the adsorption process, the chemical adsorption as well as the formation of hydrogen bonds is the dominant factor.

  4. Micromachined Amperometric Nitrate Sensor

    OpenAIRE

    Dohyun Kim; Ira Goldberg; Jack Judy

    2003-01-01

    A nitrate-sensing system that consists of a micromachined sensor substrate, nitrate-permeable membrane, integrated microfluidic channels, and standard fluidic connectors has been designed, fabricated, assembled, and tested. Our microsensor was designed for in-situ monitoring of nitrate concentrations in ground water. A silver electrode was patterned for amperometric nitrate detection. An electrochemically oxidized silver electrode was used as a reference electrode. Microfluidic channels were ...

  5. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  6. Hydrothermal syntheses and characterization of uranyl tungstates with electro-neutral structural units

    Energy Technology Data Exchange (ETDEWEB)

    Balboni, Enrica; Burns, Peter C. [Univ. of Notre Dame, IN (United States). Dept. of Civil and Enviromental Engineering and Earth Sciences; Univ. of Notre Dame, IN (United States). Dept. of Chemistry and Biochemistry

    2015-11-01

    Two uranyl tungstates, (UO{sub 2})(W{sub 2}O{sub 7})(H{sub 2}O){sub 3} (1) and (UO{sub 2}){sub 3}(W{sub 2}O{sub 8})F{sub 2}(H{sub 2}O){sub 3} (2), were synthesized under hydrothermal conditions at 220 C and were structurally, chemically, and spectroscopically characterized. 1 Crystallizes in space group Pbcm, a = 6.673(5) Aa, b = 12.601(11) Aa, c = 11.552 Aa; 2 is in C2/m, a = 13.648(1) Aa, b = 16.852(1) Aa, c = 9.832(1) Aa, β = 125.980(1) {sup circle}. In 1 the U(VI) cations are present as (UO{sub 2}){sup 2+} uranyl ions that are coordinated by five oxygen atoms to give pentagonal bipyramids. These share two edges with two tungstate octahedra and single vertices with four additional octahedra, resulting in a sheet with the iriginite-type anion topology. Only water molecules are located in the interlayer. The structural units of 2 consist of (UO{sub 2}){sup 2+} uranyl oxy-fluoride pentagonal bipyramids present as either [UO{sub 2}F{sub 2}O{sub 3}]{sup -6} or [UO{sub 2}FO{sub 4}]{sup -5}, and strongly distorted tungstate octahedra. The linkage of uranyl pentagonal bipyramids and tungstate octahedra gives a unique sheet anion topology consisting of pentagons, squares and triangles. In 2, the uranyl tungstates sheets are connected into a novel electro-neutral three-dimensional framework through dimers of uranyl pentagonal bipyramids. These dimers connecting the sheets share an edge defined by F anions. 2 is the first example of a uranyl tungstate oxy-fluoride, and 1 and 2 are rare examples of uranyl compounds containing electro-neutral structural units.

  7. Control of oxo-group functionalization and reduction of the uranyl ion.

    Science.gov (United States)

    Arnold, Polly L; Pécharman, Anne-Frédérique; Lord, Rianne M; Jones, Guy M; Hollis, Emmalina; Nichol, Gary S; Maron, Laurent; Fang, Jian; Davin, Thomas; Love, Jason B

    2015-04-01

    Uranyl complexes of a large, compartmental N8-macrocycle adopt a rigid, "Pacman" geometry that stabilizes the U(V) oxidation state and promotes chemistry at a single uranyl oxo-group. We present here new and straightforward routes to singly reduced and oxo-silylated uranyl Pacman complexes and propose mechanisms that account for the product formation, and the byproduct distributions that are formed using alternative reagents. Uranyl(VI) Pacman complexes in which one oxo-group is functionalized by a single metal cation are activated toward single-electron reduction. As such, the addition of a second equivalent of a Lewis acidic metal complex such as MgN″2 (N″ = N(SiMe3)2) forms a uranyl(V) complex in which both oxo-groups are Mg functionalized as a result of Mg-N bond homolysis. In contrast, reactions with the less Lewis acidic complex [Zn(N″)Cl] favor the formation of weaker U-O-Zn dative interactions, leading to reductive silylation of the uranyl oxo-group in preference to metalation. Spectroscopic, crystallographic, and computational analysis of these reactions and of oxo-metalated products isolated by other routes have allowed us to propose mechanisms that account for pathways to metalation or silylation of the exo-oxo-group.

  8. Temperature and pH driven association in uranyl aqueous solutions

    Directory of Open Access Journals (Sweden)

    M. Druchok

    2012-12-01

    Full Text Available An association behavior of uranyl ions in aqueous solutions is explored. For this purpose a set of all-atom molecular dynamics simulations is performed. During the simulation, the fractions of uranyl ions involved in dimer and trimer formations were monitored. To accompany the fraction statistics one also collected distributions characterizing average times of the dimer and trimer associates. Two factors effecting the uranyl association were considered: temperature and pH. As one can expect, an increase of the temperature decreases an uranyl capability of forming the associates, thus lowering bound fractions/times and vice versa. The effect of pH was modeled by adding H+ or OH- ions to a "neutral" solution. The addition of hydroxide ions OH- favors the formation of the associates, thus increasing bound times and fractions. The extra H+ ions in a solution produce an opposite effect, thus lowering the uranyl association capability. We also made a structural analysis for all the observed associates to reveal the mutual orientation of the uranyl ions.

  9. Assessment of CE-ICP/MS hyphenation for the study of uranyl/protein interactions.

    Science.gov (United States)

    Huynh, Thi-Ngoc Suong; Bourgeois, Damien; Basset, Christian; Vidaud, Claude; Hagège, Agnès

    2015-06-01

    Identification of uranyl transport proteins is key to develop efficient detoxification approaches. Therefore, analytical approaches have to be developed to cope with the complexity of biological media and allow the analysis of metal speciation. CE-ICP/MS was used to combine the less-intrusive character and high separation efficiency of CE with the sensitive detection of ICP/MS. The method was based on the incubation of samples with uranyl prior to the separation. Electrophoretic buffers were compared to select a 10 mM Tris to 15 mM NaCl buffer, which enabled analyses at pH 7.4 and limited dissociation. This method was applied to the analysis of a serum. Two main fractions were observed. By comparison with synthetic mixtures of proteins, the first one was attributed to fetuin and in a lesser extent to HSA, and the second one to uranyl unbound to proteins. The analysis showed that fetuin was likely to be the main target of uranyl. CE-ICP/MS was also used to investigate the behavior of the fetuin-uranyl complex, in the presence of carbonate, an abundant complexing agent of uranyl in blood. This method enabled association constants determination, suggesting the occurrence of both FETUA(UO2(2+)) and FETUA(UO2(2+))(CO3(2-)) complexes, depending on the carbonate concentration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Modulation of the Structure and Properties of Uranyl Ion Coordination Polymers Derived from 1,3,5-Benzenetriacetate by Incorporation of Ag(I) or Pb(II).

    Science.gov (United States)

    Thuéry, Pierre; Harrowfield, Jack

    2016-07-05

    Reaction of uranyl nitrate with 1,3,5-benzenetriacetic acid (H3BTA) in the presence of additional species, either organic bases or their conjugate acids or metal cations, has provided 12 new crystalline complexes, all but one obtained under solvo-hydrothermal conditions. The complexes [C(NH2)3][UO2(BTA)]·H2O (1) and [H2NMe2][UO2(BTA)] (2) crystallize as one- or two-dimensional (1D or 2D) assemblies, respectively, both with uranyl tris-chelation by carboxylate groups and hydrogen-bonded counterions but different ligand conformations. One of the bound carboxylate units is replaced by chelating 1,10-phenanthroline (phen) or 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4phen) in the complexes [(UO2)3(BTA)2(phen)3]·4H2O (3) and [(UO2)3(BTA)2(Me4phen)3]·NMP·3H2O (4) (NMP = N-methyl-2-pyrrolidone), which are a 2D network with honeycomb topology and a 1D polymer, respectively. With silver(I) cations, [UO2Ag(BTA)] (5), a three-dimensional (3D) framework in which the ligand assumes various chelating/bridging coordination modes, and the aromatic ring is involved in Ag(I) bonding, is obtained. A series of seven heterometallic complexes results when lead(II) cations and N-chelating molecules are both present. The complexes [UO2Pb(BTA)(NO3)(bipy)] (6) and [UO2Pb2(BTA)2(bipy)2]·3H2O (7), where bipy is 2,2'-bipyridine, crystallize from the one solution, as 1D and 2D assemblies, respectively. The two 1D coordination polymers [UO2Pb(BTA)(HCOO)(phen)] (8 and 9), again obtained from the one synthesis, provide an example of coordination isomerism, with the formate anion bound either to lead(II) or to uranyl cations. Another 2D architecture is found in [(UO2)2Pb2(BTA)2(HBTA)(H2O)2(phen)2]·2H2O (10), which provides a possible example of a Pb-oxo(uranyl) "cation-cation" interaction. While [UO2Pb(BTA)(HCOO)0.5(NO3)0.5(Me2phen)] (11), where Me2phen is 5,6-dimethyl-1,10-phenanthroline, is a 1D assembly close to those in 6 and 8, [UO2Pb2(BTA)2(Me4phen)2] (12), obtained together with

  11. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  12. Characterization of the Aqueous Uranyl-Silicate Complex Using X-Ray Absorption Spectroscopy and Ab Initio Modeling

    Science.gov (United States)

    Vu, M.; Massey, M.; Huang, P.

    2015-12-01

    The speciation of aqueous uranium ions is an important factor in predicting its mobility and fate in the environment. Two major controls on speciation are pH and the presence of complexing ligands. For the case of aqueous uranyl, UO22+(aq), some common complexes include uranyl-hydroxy, uranyl-carbonato, and uranyl-calcium-carbonato complexes, all of which differ in chemical reactivity and mobility. Uranyl-silicate complexes are also known but remain poorly characterized. In this work, we studied uranyl speciation in a series of aqueous solutions of 0.1 mM uranyl and 2 mM silicate with pH ranging from 4 to 7. Extended X-Ray Absorption Fine Structure (EXAFS) spectra of these samples were recorded at the Stanford Synchrotron Radiation Lightsource (SLAC National Accelerator Laboratory). Of particular note are the uranyl and silicate concentrations employed in our experiments, which are lower than conditions in previously reported EXAFS studies and approach conditions in natural groundwater systems. Preliminary analyses of EXAFS data indicate that uranyl speciation changes across the pH range, consistent with published thermodynamic data that suggest uranyl-silicate complexes may be important for pH ~ 5 and below, while uranyl-carbonato complexes become dominant at circumneutral pH. To guide the interpretation of the EXAFS data, molecular-scale simulations were carried out using density functional theory. We considered two classes of models: (i) hydrated clusters, and (ii) ab initio molecular dynamics simulations of 3D-periodic models involving uranyl and silicate in water. These calculations reveal that at pH ~ 5, the uranyl speciation is the [UO2(H2O)4H3SiO4]+ complex formed by the substitution of an equatorial uranyl water with a monodentate silicate ligand. The evidence from experiments and simulations provide a consistent picture for the uranyl-silicate complex, which may be important in the transport of uranyl in acidic, silicate-rich waters.

  13. Temperature effects on the interaction mechanisms between the europium (III) and uranyl ions and zirconium diphosphate; Effets de la temperature sur les mecanismes d'interaction entre les ions europium (3) et uranyle et le diphosphate de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Finck, N

    2006-10-15

    Temperature should remain higher than 25 C in the near field environment of a nuclear waste repository for thousands years. In this context, the aim of this work is to study the temperature influence on the interaction mechanisms between europium (III) and uranyl ions and zirconium diphosphate, as well as the influence of a complexing medium (nitrate) on the sorption of the lanthanide. The experimental definition of the equilibria was achieved by combining a structural investigation with the macroscopic sorption data. Surface complexes were characterized at all temperatures (25 C to 90 C) by TRLFS experiments carried out on dry and in situ samples using an oven. This characterization was completed by XPS experiments carried out at 25 C on samples prepared at 25 C and 90 C. The reaction constants (surface hydration and cations sorption) were obtained by simulating the experimental data with the constant capacitance surface complexation model. The reaction constants temperature dependency allowed one to characterize thermodynamically the different reactions by application of the van't Hoff relation. The validity of this law was tested by performing microcalorimetric measurements of the sorption heat for both cations. (author)

  14. ARRAYS OF BOTTLES OF PLUTONIUM NITRATE SOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2012-09-01

    In October and November of 1981 thirteen approaches-to-critical were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas® reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were sponsored by Rockwell Hanford Operations because of the lack of experimental data on the criticality of arrays of bottles of Pu solution such as might be found in storage and handling at the Purex Facility at Hanford. The results of these experiments were used “to provide benchmark data to validate calculational codes used in criticality safety assessments of [the] plant configurations” (Ref. 1). Data for this evaluation were collected from the published report (Ref. 1), the approach to critical logbook, the experimenter’s logbook, and communication with the primary experimenter, B. Michael Durst. Of the 13 experiments preformed 10 were evaluated. One of the experiments was not evaluated because it had been thrown out by the experimenter, one was not evaluated because it was a repeat of another experiment and the third was not evaluated because it reported the critical number of bottles as being greater than 25. Seven of the thirteen evaluated experiments were determined to be acceptable benchmark experiments. A similar experiment using uranyl nitrate was benchmarked as U233-SOL-THERM-014.

  15. Crystal structure of the uranyl-oxide mineral rameauite

    Energy Technology Data Exchange (ETDEWEB)

    Plasil, Jakub [ASCR, Prague (Czech Republic). Inst. of Physics; Skoda, Radek [Masaryk Univ., Brno (Czech Republic). Dept. of Geological Sciences; Cejka, Jiri [National Museum, Prague (Czech Republic). Dept. of Mineralogy and Petrology; Bourgoin, Vincent; Boulliard, Jean-Claude [Pierre et Marie Curie Univ., Paris (France). Association Jean Wyart, Collection des Mineraux de Jussieu

    2016-12-15

    Rameauite is a rare supergene uranyl-oxide hydroxy-hydrate mineral that forms during hydration-oxidation weathering of uraninite. On the basis of single-crystal X-ray diffraction data collected on a microfocus source, rameauite is monoclinic, space group Cc, with a = 13.9458(19), b = 14.3105(19), c = 13.8959(18) Aa, β = 118.477(14) , V = 2437.7(6) Aa{sup 3} and Z = 4, with D{sub calc} = 5.467 g cm{sup -3}. The structure of rameauite (R = 0.060 for 1698 unique observed reflections) contains sheets of the β-U{sub 3}O{sub 8} topology, with both UO{sub 6} and UO{sub 7} bipyramids, which is similar to the sheets found in spriggite, ianthinite and wyartite. The sheets alternate with the interlayer, which contains K{sup +}, Ca{sup 2+} and H{sub 2}O molecules. Interstitial cations are linked into infinite chains that extend along [10-1]. Adjacent sheets are linked through K-O, Ca-O and H-bonds. The structural formula of rameauite is K{sub 2} Ca(H{sub 2}{sup [3]}O){sub 1}(H{sub 2}{sup [5]}O){sub 4}[(UO{sub 2}) {sub 6}O{sub 6}(OH){sub 4}](H{sub 2}{sup [4]}O){sub 1}. The empirical formula obtained from the average of eight electron-microprobe analyses is (on the basi s of 6 U p.f.u.) K{sub 1.87}(Ca{sub 1.10}Sr{sub 0.04}){sub Σ1.14}[(UO 2){sub 6}O{sub 6}(OH){sub 4.15}].6H{sub 2}O. The Raman spectrum is dominate d by U.O and O.H vibrations. A discussion of related uranyl-oxide minerals is given.

  16. More answers to the still unresolved question of nitrate tolerance.

    Science.gov (United States)

    Münzel, Thomas; Daiber, Andreas; Gori, Tommaso

    2013-09-01

    Organic nitrates are traditionally felt to be a safe adjuvant in the chronic therapy of patients with coronary artery disease. Despite their long use, progress in the understanding of the pharmacology and mechanism of action of these drugs has been achieved only in the last two decades, with the identification of the role of oxidative stress in the pathophysiology of nitrate tolerance, with, the discovery of the ancillary effects of nitrates, and with the demonstration that nitrate therapy has important chronic side effects that might modify patients' prognosis. These advances are however mostly confined to the molecular level or to studies in healthy volunteers, and the true impact of organic nitrates on clinical outcome remains unknown. Complicating this issue, evidence supports the existence of important differences among the different drugs belonging to the group, and there are reasons to believe that the nitrates should not be treated as a homogeneous class. As well, the understanding of the effects of alternative nitric oxide (NO) donors is currently being developed, and future studies will need to test whether the properties of these new medications may compensate and prevent the abnormalities imposed by chronic nitrate therapy. Intermittent therapy with nitroglycerin and isosorbide mononitrate is now established in clinical practice, but they should neither be considered a definitive solution to the problem of nitrate tolerance. Both these strategies are not deprived of complications, and should currently be seen as a compromise rather than a way fully to exploit the benefits of NO donor therapy.

  17. Temperature and pH driven association in uranyl aqueous solutions

    CERN Document Server

    Druchok, M; 10.5488/CMP.15.43602

    2013-01-01

    An association behavior of uranyl ions in aqueous solutions is explored. For this purpose a set of all-atom molecular dynamics simulations is performed. During the simulation, the fractions of uranyl ions involved in dimer and trimer formations were monitored. To accompany the fraction statistics one also collected distributions characterizing average times of the dimer and trimer associates. Two factors effecting the uranyl association were considered: temperature and pH. As one can expect, an increase of the temperature decreases an uranyl capability of forming the associates, thus lowering bound fractions/times and vice versa. The effect of pH was modeled by adding H^+ or OH^- ions to a "neutral" solution. The addition of hydroxide ions OH^- favors the formation of the associates, thus increasing bound times and fractions. The extra H^+ ions in a solution produce an opposite effect, thus lowering the uranyl association capability. We also made a structural analysis for all the observed associates to reveal...

  18. Atomistic simulations of calcium uranyl(VI) carbonate adsorption on calcite and stepped-calcite surfaces.

    Science.gov (United States)

    Doudou, Slimane; Vaughan, David J; Livens, Francis R; Burton, Neil A

    2012-07-17

    Adsorption of actinyl ions onto mineral surfaces is one of the main mechanisms that control the migration of these ions in environmental systems. Here, we present computational classical molecular dynamics (MD) simulations to investigate the behavior of U(VI) in contact with different calcite surfaces. The calcium-uranyl-carbonate [Ca(2)UO(2)(CO(3))(3)] species is shown to display both inner- and outer-sphere adsorption to the flat {101̅4} and the stepped {314̅8} and {31̅2̅16} planes of calcite. Free energy calculations, using the umbrella sampling method, are employed to simulate adsorption paths of the same uranyl species on the different calcite surfaces under aqueous condition. Outer-sphere adsorption is found to dominate over inner-sphere adsorption because of the high free energy barrier of removing a uranyl-carbonate interaction and replacing it with a new uranyl-surface interaction. An important binding mode is proposed involving a single vicinal water monolayer between the surface and the sorbed complex. From the free energy profiles of the different calcite surfaces, the uranyl complex was also found to adsorb preferentially on the acute-stepped {314̅8} face of calcite, in agreement with experiment.

  19. The effect of food on the acute toxicity of silver nitrate to four freshwater test species and acute-to-chronic ratios.

    Science.gov (United States)

    Naddy, Rami B; McNerney, Gina R; Gorsuch, Joseph W; Bell, Russell A; Kramer, James R; Wu, Kuen B; Paquin, Paul R

    2011-11-01

    Acute silver toxicity studies were conducted with and without food for four common freshwater test species: Daphnia magna, Ceriodaphnia dubia, Pimephales promelas (fathead minnow-FHM), and Oncorhynchus mykiss (rainbow trout-RBT) in order to generate acute-to-chronic ratios (ACR). The studies were conducted similarly (i.e., static-renewal or flow-through) to chronic/early-life stage studies that were previously performed in this laboratory. The acute toxicity (EC/LC50 values) of silver without food ranged from 0.57 μg dissolved Ag/l for C.dubia to 9.15 μg dissolved Ag/l for RBT. The presence of food resulted in an increase in EC/LC50 values from 1.25× for RBT to 22.4× for C. dubia. Invertebrate food type was also shown to effect acute silver toxicity. Food did not affect EC/LC50s or ACRs as greatly in fish studies as in invertebrate studies. ACRs for both invertebrate species were <1.0 when using acute studies without food but were 1.22 and 1.33 when using acute studies with food. ACRs for FHMs ranged from 4.06 to 7.19, while RBT ACRs ranged from 28.6 to 35.8 depending on whether food was present in acute studies. The data generated from this research program should be useful in re-determining a final ACR for silver in freshwater as well as in risk assessments.

  20. Closing uranyl polyoxometalate capsules with bismuth and lead polyoxocations

    Energy Technology Data Exchange (ETDEWEB)

    Renier, Olivier; Falaise, Clement; Neal, Harrison; Kozma, Karoly; Nyman, May [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry

    2016-10-17

    Uranyl polyoxometalate clusters are both fundamentally fascinating and potentially relevant to nuclear energy applications. With only ten years of development, there is still much to be discovered about heterometal derivatives and aqueous speciation and behavior. Herein, we show that it is possible to encapsulate the polyoxocations [Bi{sub 6}O{sub 8}]{sup 2+} and [Pb{sub 8}O{sub 6}]{sup 4+} in [(UO{sub 2})(O{sub 2})(OH)]{sub 24}{sup 24-} (denoted Bi rate at U{sub 24} and Pb rate at U{sub 24}) in pure form and high yields despite the fact that under aqueous conditions, these compounds are stable on opposite ends of the pH scale. Moreover, [Pb{sub 8}O{sub 6}]{sup 4+} is a formerly unknown Pb{sup II} polynuclear species, both in solution and in the solid state. Raman spectroscopic and mass spectrometric analysis of the reaction solutions revealed the very rapid assembly of the nested clusters, driven by bismuth- or lead-promoted decomposition of excess peroxide, which inhibits U{sub 24} formation. Experimental and simulated small-angle X-ray scattering data of Bi rate at U{sub 24} and Pb rate at U{sub 24} solutions revealed that this technique is very sensitive not only to the size and shape of the clusters, but also to the encapsulated species.

  1. Agricultural nitrate pollution

    DEFF Research Database (Denmark)

    Anker, Helle Tegner

    2015-01-01

    Despite the passing of almost 25 years since the adoption of the EU Nitrates Directive, agricultural nitrate pollution remains a major concern in most EU Member States. This is also the case in Denmark, although a fairly strict regulatory regime has resulted in almost a 50 per cent reduction...

  2. Nitrate Leaching Index

    Science.gov (United States)

    The Nitrate Leaching Index is a rapid assessment tool that evaluates nitrate (NO3) leaching potential based on basic soil and climate information. It is the basis for many nutrient management planning efforts, but it has considerable limitations because of : 1) an oversimplification of the processes...

  3. Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution

    Science.gov (United States)

    Kerisit, Sebastien; Liu, Chongxuan

    2010-09-01

    Potential-based molecular dynamics simulations of aqueous uranyl carbonate species (M xUO 2(CO 3) y2+2x-2y with M = Mg, Ca, or Sr) were carried out to gain molecular-level insight into the hydration properties of these species. The simulation results were used to estimate the self-diffusion coefficients of these uranyl carbonate species, which often dominate uranyl speciation in groundwater systems. The diffusion coefficients obtained for the monoatomic alkaline-earth cations and polyatomic ions (uranyl, carbonate, and uranyl tri-carbonate) were compared with those calculated from the Stokes-Einstein (SE) equation and its variant formulation by Impey et al. (1983). Our results show that the equation of Impey et al. (1983), originally formulated for monovalent monoatomic ions, can be extended to divalent monoatomic ions, with some success in reproducing the absolute values and the overall trend determined from the molecular dynamics simulations, but not to polyatomic ions, for which the hydration shell is not spherically symmetrical. Despite the quantitative failure of both SE formulations, a plot of the diffusion coefficients of the uranyl carbonate complexes as a function of the inverse of the equivalent spherical radius showed that a general linear dependence is observed for these complexes as expected from the SE equation. The nature of the alkaline-earth cation in the uranyl carbonate complexes was not found to have a significant effect on the ion's diffusion coefficient, which suggests that the use of a single diffusion coefficient for different alkaline-earth uranyl carbonate complexes in microscopic diffusion models is appropriate. The potential model reproduced well published quantum mechanical and experimental data of UO(CO)32x-4 and of the individual constituent ions, and therefore is expected to offer reliable predictions of the structure of magnesium and strontium uranyl carbonate aqueous species, for which there is no structural data available to date

  4. Synthesis, spectroscopy, and thermal study of uranyl unsymmetrical Schiff base complexes.

    Science.gov (United States)

    Kianfar, Ali Hossein; Dostani, Morteza

    2011-11-01

    The new uranyl complexes with tetradentate unsymmetrical N(2)O(2) Schiff base ligands were synthesized and characterized by IR, UV-vis, NMR and elemental analysis. The DMF solvent is coordinated to uranyl complexes. The thermogravimetry (TG) and differential thermoanalysis (DTA) of the uranyl complexes were carried out in the range of 20-700°C. The UO(2)L(1) complex was decomposed in two and the others were decomposed in three stages. Up to 100°C, the coordinated solvent was released then the Schiff base ligands were decomposed in one or two steps. Decomposition of synthesized complexes is related to the Schiff base characteristics. The thermal decomposition reaction is first order for the studied complexes.

  5. Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water?

    Directory of Open Access Journals (Sweden)

    Benjamin Nigel

    2006-09-01

    Full Text Available Abstract Several authors have suggested that it is safe to raise the health standard for nitrate in drinking water, and save money on measures associated with nitrate pollution of drinking water resources. The major argument has been that the epidemiologic evidence for acute and chronic health effects related to drinking water nitrate at concentrations near the health standard is inconclusive. With respect to the chronic effects, the argument was motivated by the absence of evidence for adverse health effects related to ingestion of nitrate from dietary sources. An interdisciplinary discussion of these arguments led to three important observations. First, there have been only a few well-designed epidemiologic studies that evaluated ingestion of nitrate in drinking water and risk of specific cancers or adverse reproductive outcomes among potentially susceptible subgroups likely to have elevated endogenous nitrosation. Positive associations have been observed for some but not all health outcomes evaluated. Second, the epidemiologic studies of cancer do not support an association between ingestion of dietary nitrate (vegetables and an increased risk of cancer, because intake of dietary nitrate is associated with intake of antioxidants and other beneficial phytochemicals. Third, 2–3 % of the population in Western Europe and the US could be exposed to nitrate levels in drinking water exceeding the WHO standard of 50 mg/l nitrate, particularly those living in rural areas. The health losses due to this exposure cannot be estimated. Therefore, we conclude that it is not possible to weigh the costs and benefits from changing the nitrate standard for drinking water and groundwater resources by considering the potential consequences for human health and by considering the potential savings due to reduced costs for nitrate removal and prevention of nitrate pollution.

  6. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, John [Univ. of California, Berkeley, CA (United States)

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  7. Molecular Simulation of the Diffusion of Uranyl Carbonate Species in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Liu, Chongxuan

    2010-09-01

    Molecular dynamics simulations of aqueous uranyl carbonate species were carried out with two different potential models to gain molecular-level insight into the hydration properties of these species and evaluate the ability of the two models to reproduce published ab initio and experimental data. The simulation results were used to estimate the self-diffusion coefficients of uranyl carbonate species that often dominate uranyl speciation in groundwater systems. The first potential model was based on a series of shell models developed by Parker and co-workers (including (DE LEEUW and PARKER, 1998; KERISIT and PARKER, 2004; PAVESE et al., 1996). The second potential model was a rigid-ion model based on the flexible SPC water model (TELEMAN et al., 1987), the uranyl model of Guilbaud and Wipff (GUILBAUD and WIPFF, 1996), and the parameters for the carbonate ion given by Greathouse and co-workers (GREATHOUSE and CYGAN, 2005; GREATHOUSE et al., 2002). Analysis of structural (mean interatomic distances and coordination numbers) and dynamical (water residence times in hydration shell and self-diffusion coefficients) properties showed that, overall, the first potential model performed best when compared to published data, although the only major discrepancy with the second model was a misrepresentation of the configuration adopted by the alkaline-earth uranyl carbonate ions. The diffusion coefficients obtained for the alkaline-earth cations and the uranyl ion were compared with three variants of the Stokes-Einstein (SE) equation and it was found that none of the three SE models were able to reproduce both the absolute values and the overall trend determined from the molecular dynamics simulations. However, as would be expected based on the SE equation, a plot of the diffusion coefficients of the uranyl carbonate complexes as a function of the inverse of the equivalent spherical radius showed a general linear dependence with the two models yielding almost identical gradients

  8. Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Ioana-Carmen [R and D National Institute for Metals and Radioactive Resources–ICPMRR, B-dul Carol I No.70, Sector 2, Bucharest 020917 (Romania); Petru, Filip [“C.D. Nenitescu” Institute of Organic Chemistry, Splaiul Independentei 202B, Sector 6, Bucharest 71141 (Romania); Humelnicu, Ionel [“Al.I. Cuza” University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania); Mateescu, Marina [National R and D Institute for Chemistry and Petrochemistry, Splaiul Independenţei No. 202, Bucharest 060021 (Romania); Militaru, Ecaterina [R and D National Institute for Metals and Radioactive Resources–ICPMRR, B-dul Carol I No.70, Sector 2, Bucharest 020917 (Romania); Humelnicu, Doina, E-mail: doinah@uaic.ro [“Al.I. Cuza” University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania)

    2014-10-15

    Radioactive pollution is a significant threat for the people’s health. Therefore highly effective radioactive decontamination methods are required. Ion exchange, biotechnologies and phytoremediation in constructed wetlands have been used as radioactive decontamination technologies for uranium contaminated soil and water remediation. Recently, beside those classical methods the calix[n]arenic derivatives’ utilization as radioactive decontaminators has jogged attention. The present work aims to present the preliminary research results of uranyl ion sorption studies on the p-hexasulfonated calyx[6]arenic acid. The effect of temperature, contact time, sorbent amount and uranyl concentration variation on sorption efficiency was investigated. Isotherm models revealed that the sorption process fit better Langmuir isotherm.

  9. Bioactivation of organic nitrates and the mechanism of nitrate tolerance.

    Science.gov (United States)

    Klemenska, Emila; Beresewicz, Andrzej

    2009-01-01

    Organic nitrates, such as nitroglycerin, are commonly used in the therapy of cardiovascular disease. Long-term therapy with these drugs, however, results in the rapid development of nitrate tolerance, limiting their hemodynamic and anti-ischemic efficacy. In addition, nitrate tolerance is associated with the expression of potentially deleterious modifications such as increased oxidative stress, endothelial dysfunction, and sympathetic activation. In this review we discuss current concepts regarding the mechanisms of organic nitrate bioactivation, nitrate tolerance, and nitrate-mediated oxidative stress and endothelial dysfunction. We also examine how hydralazine may prevent nitrate tolerance and related endothelial dysfunction.

  10. VT Nitrate Leaching Index

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) Nitrate Leaching Index data for the state of Vermont. This is a derivative product based on the SSURGO soils data for all counties except Essex...

  11. Agricultural nitrate pollution

    DEFF Research Database (Denmark)

    Anker, Helle Tegner

    2015-01-01

    Despite the passing of almost 25 years since the adoption of the EU Nitrates Directive, agricultural nitrate pollution remains a major concern in most EU Member States. This is also the case in Denmark, although a fairly strict regulatory regime has resulted in almost a 50 per cent reduction...... in nitrogen leaching since the mid-80s. Nevertheless, further effort is needed, particularly in ecologically sensitive areas. This article discusses different regulatory approaches – and in particular the need for a differentiated nitrate regulation tailored to meet site-specific ecological demands – from...... of the mandatory specification standards of the Nitrates Directive combined with additional instruments to address the need for severe restrictions on fertiliser use or cultivation practices in the most ecologically vulnerable areas....

  12. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate....... A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings...

  13. Protein tyrosine nitration

    Science.gov (United States)

    Chaki, Mounira; Leterrier, Marina; Barroso, Juan B

    2009-01-01

    Nitric oxide metabolism in plant cells has a relative short history. Nitration is a chemical process which consists of introducing a nitro group (-NO2) into a chemical compound. in biological systems, this process has been found in different molecules such as proteins, lipids and nucleic acids that can affect its function. This mini-review offers an overview of this process with special emphasis on protein tyrosine nitration in plants and its involvement in the process of nitrosative stress. PMID:19826215

  14. Synthesis, characterization, anticancer activity, thermal and electrochemical studies of some novel uranyl Schiff base complexes

    Energy Technology Data Exchange (ETDEWEB)

    Asadi, Zahra; Asadi, Mozaffar; Firuzabadi, Fahimeh Dehghani [Shiraz Univ. (Iran, Islamic Republic of). Dept. of Chemistry; Yousefi, Reza; Jamshidi, Mehrnaz [Shiraz Univ. (Iran, Islamic Republic of). Protein Chemistry Lab. (PCL)

    2014-04-15

    Some tetradentate N{sub 2}O{sub 2} Schiff base ligands, such as N,N{sup '}-bis(naphtalidene)-1,2-phenylenediamine, N,N{sup '}-bis(naphtalidene)-4-methyl-1,2-phenylenediamine, N,N{sup '}-bis(naphtalidene)-4-chloro-1,2-phenylenediamine, N,N{sup '}-bis(naphtalidene)-4-nitro-1,2-phenylenediamine, N,N{sup '}-bis(naphtalidene)-4-carboxyl-1,2-phenylenediamine, and their uranyl complexes were synthesized and characterized by {sup 1}H NMR, IR, UV-Vis spectroscopy, TG (thermogravimetry), and elemental analysis (C.H.N.). Thermogravimetric analysis shows that uranyl complexes have very different thermal stabilities. This method is used also to establish that only one solvent molecule is coordinated to the central uranium ion and this solvent molecule does not coordinate strongly and is removed easier than the tetradentate ligand and also trans oxides. The electrochemical properties of the uranyl complexes were investigated by cyclic voltammetry. Electrochemistry of these complexes showed a quasireversible redox reaction without any successive reactions. Also, the kinetic parameters of thermal decomposition were calculated using Coats-Redfern equation. According to Coats-Redfern plots the kinetics of thermal decomposition of the studied complexes is first-order in all stages. Anticancer activity of the uranyl Schiff base complexes against cancer cell lines (Jurkat) was studied and determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide) assay.

  15. On the retention of uranyl and thorium ions from radioactive solution on peat moss.

    Science.gov (United States)

    Humelnicu, Doina; Bulgariu, Laura; Macoveanu, Matei

    2010-02-15

    The efficiency of the radioactive uranyl and thorium ions on the peat moss from aqueous solutions has been investigated under different experimental conditions. The sorption and desorption of uranyl and thorium ions on three types (unmodified peat moss, peat moss treated with HNO(3) and peat moss treated with NaOH) of peat moss were studied by the static method. Peat moss was selected as it is available in nature, in any amount, as a cheap and accessible sorbent. Study on desorption of such ions led to the conclusion that the most favourable desorptive reagent for the uranyl ions is Na(2)CO(3) 1M while, for the thorium ions is HCl 1M. The results obtained show that the parameters here under investigation exercise a significant effect on the sorption process of the two ions. Also, the investigations performed recommend the peat moss treated with a base as a potential sorbent for the uranyl and thorium ions from a radioactive aqueous solution.

  16. Nucleobase assemblies supported by uranyl cation coordination and other non-covalent interactions

    Indian Academy of Sciences (India)

    Jitendra Kumar; Sandeep Verma

    2011-11-01

    We describe synthesis and solid state structural description of uranyl complexes of carboxylate functionalized adenine and uracil derivatives. The metal coordination through carboxylate pendant leads to the formation of dimeric assemblies, whereas the directional nature of hydrogen bonding interaction supported by nucleobases and aqua ligands, result in the generation of complex 3-D architectures containing embedded nucleobase ribbons.

  17. Removal of uranyl ions from residual waters using some algae types

    NARCIS (Netherlands)

    Cecal, A; Palamaru, [No Value; Humelnicu, D; Popa, K; Salaru, VV; Rudic, [No Value; Gulea, A

    1999-01-01

    This paper deals with a study on the bioaccumulation of uranyl ions resulted from residual effluents by means of some microbiological collectors: Scenedesmus quadricauda, Anabaena karakumica, Calothrix brevissima, Penicillinium sp, as well as the Glucide extract of Porphyridium cruentum, under vario

  18. On the bonding and the electric field gradient of the uranyl ion

    NARCIS (Netherlands)

    de Jong, WA; Visscher, L; Nieuwpoort, WC

    1999-01-01

    Molecular properties of the uranyl ion ([UO2](2+)) are studied using both a non-relativistic and a relativistic method. Inclusion of relativity leads to a bond length expansion and makes the electric field gradient (EFG) at the uranium nucleus strongly dependent on the U-O bond distance, The non-rel

  19. Carbonization of solid uranyl-ascorbate gel as an indirect step of uranium carbide synthesis

    Directory of Open Access Journals (Sweden)

    Brykala Marcin

    2015-12-01

    Full Text Available The studies of the synthesis of uranium carbide from uranyl-ascorbate gels using the complex sol-gel process (CSGP have been carried out. The synthesis of uranyl-ascorbate mixture as liquid sol from uranium trioxide and ascorbic acid and solid gel by extraction of water from sol were carefully examined. Ascorbic acid was used as a complexing agent in complex sol-gel process and as a carbon source. The crucial step to obtain final uranium carbides from the aforementioned substrates is the carbonization process. The thermal behavior of ascorbic acid and uranyl-ascorbate gels in a nitrogen atmosphere in the temperature range of 25-900°C were investigated using TG-DTG. Furthermore, the products of the carbonization of uranyl-ascorbate gels in nitrogen, argon and vacuum atmosphere were identified by X-ray diffraction. TG-DTG was used also as a method for determining of carbon residues in the samples.

  20. Identification of Uranyl Minerals Using Oxygen K-Edge X Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Jesse D.; Bowden, Mark E.; Resch, Charles T.; Smith, Steven C.; McNamara, Bruce K.; Buck, Edgar C.; Eiden, Gregory C.; Duffin, Andrew M.

    2016-03-01

    Uranium analysis is consistently needed throughout the fuel cycle, from mining to fuel fabrication to environmental monitoring. Although most of the world’s uranium is immobilized as pitchblende or uraninite, there exists a plethora of secondary uranium minerals, nearly all of which contain the uranyl cation. Analysis of uranyl compounds can provide clues as to a sample’s facility of origin and chemical history. X-ray absorption spectroscopy is one technique that could enhance our ability to identify uranium minerals. Although there is limited chemical information to be gained from the uranium X-ray absorption edges, recent studies have successfully used ligand NEXAFS to study the physical chemistry of various uranium compounds. This study extends the use of ligand NEXAFS to analyze a suite of uranium minerals. We find that major classes of uranyl compounds (carbonate, oxyhydroxide, silicate, and phosphate) exhibit characteristic lineshapes in the oxygen K-edge absorption spectra. As a result, this work establishes a library of reference spectra that can be used to classify unknown uranyl minerals.

  1. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    Science.gov (United States)

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong; Chorover, Jon; O'Day, Peggy A.

    2017-06-01

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium (U) concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this work, the dissolution rates of K- and Na-compreignacite (K2(UO2)6O4(OH)6·8H2O and Na2(UO2)6O4(OH)6·8H2O, respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved carbonate concentration (ca. 0.2 and 2.8 mmol L-1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area, and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total U mass from the columns, compared to mass removal during dissolution more accurately reproduced effluent data in high carbonate systems, and resulted in faster overall rates compared with a steady-state dissolution assumption. This study highlights the importance of coupling

  2. Establishment of a luminescence technique for the quantification of uranyl ion in a KNO{sub 3} media; Establecimiento de una tecnica de luminiscencia para la cuantificacion del ion uranilo en medio de KNO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Contreras R, A. [UAEM, A.P. 2-139, 50000 Toluca, Estado de Mexico (Mexico); Fernandez V, S.M.; Ordonez R, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-07-01

    The study of the storage of high level radioactive residuals that contain uranium, it makes necessary that in the sorption studies is counted with a reliable technique and not pollutant for the quantification of this element. Presently work intends a technique for the quantification of the uranyl ion using the luminescence technique, which allows not to generate radioactive or industrial residuals. It was used a solution of uranyl nitrate in KNO{sub 3} 0.5 M media. The solutions were adjusted to a pH of 1.48+0.03. A statistical study for the analysis of the data of fluorescence, about the maximum value of the peak, total area under the curve and area under the it curves is shown, being the best correlation for the concentration curve versus maximum of the peak, adjusted with a polynomial of second grade. The study of stability of the solutions with regard to the time is reported and that the technique proposal works for the interval of concentrations among 1 x 10{sup -2} M and 6 x 10{sup -5} M. (Author)

  3. In vitro evaluation of percutaneous diffusion of uranyl nitrate through intact or excoriated skin of rat and pig

    Energy Technology Data Exchange (ETDEWEB)

    Petitot, F.; Moreels, A.M.; Paquet, F. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Lab. d' Etudes Appliquees de Radiotoxicologie, Service de Dosimetrie, Dept. de Protection de la sante de l' Homme et de Dosimetrie, Pierrelatte CEDEX (France)]. E-mail: fabrice.petitot@irsn.fr

    2004-02-01

    At the present time, the International Commission on Radiological Protection (ICRP) has not published any model concerning internal radioactive contamination by uptake from wounds. The aims of our work were to determine the time available to treat contamination of intact or wounded skin before a significant uptake of uranium occurred and to evaluate the consequences of incomplete decontamination on uranium uptake. The kinetics of percutaneous diffusion of uranium through intact or excoriated skin and its distribution in skin layers were evaluated using an in vitro technique. Our data demonstrated a dramatic increase of uranium percutaneous diffusion through excoriated skin compared with intact skin. Significant uptake of uranium through excoriated skin occurred in only 30 min, indicating that there is only a short interval available to treat a contaminated wound effectively. Moreover, in the case of an incompletely decontaminated superficial wound, viable epidermis behaved as a reservoir for uranium that remained bioavailable. At the present time, potential uptake of uranium and perhaps other radionuclides through intact or wounded skin is not adequately taken into account by radiological protection agencies. Our results emphasize the need for further study and modeling of uptake of radionuclides through intact or wounded skin. (author)

  4. Heme Oxygenase-1 Induction and Organic Nitrate Therapy: Beneficial Effects on Endothelial Dysfunction, Nitrate Tolerance, and Vascular Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Andreas Daiber

    2012-01-01

    Full Text Available Organic nitrates are a group of very effective anti-ischemic drugs. They are used for the treatment of patients with stable angina, acute myocardial infarction, and chronic congestive heart failure. A major therapeutic limitation inherent to organic nitrates is the development of tolerance, which occurs during chronic treatment with these agents, and this phenomenon is largely based on induction of oxidative stress with subsequent endothelial dysfunction. We therefore speculated that induction of heme oxygenase-1 (HO-1 could be an efficient strategy to overcome nitrate tolerance and the associated side effects. Indeed, we found that hemin cotreatment prevented the development of nitrate tolerance and vascular oxidative stress in response to chronic nitroglycerin therapy. Vice versa, pentaerithrityl tetranitrate (PETN, a nitrate that was previously reported to be devoid of adverse side effects, displayed tolerance and oxidative stress when the HO-1 pathway was blocked pharmacologically or genetically by using HO-1+/– mice. Recently, we identified activation of Nrf2 and HuR as a principle mechanism of HO-1 induction by PETN. With the present paper, we present and discuss our recent and previous findings on the role of HO-1 for the prevention of nitroglycerin-induced nitrate tolerance and for the beneficial effects of PETN therapy.

  5. Coordination of the uranyl ion in solution and ionic liquids : a combined UV-Vis absorption and EXAFS study

    OpenAIRE

    Servaes, Kelly

    2007-01-01

    The uranyl ion (UO22+) has been extensively studied for decades and nowadays it is still a hot topic in a number of contemporary issues like nuclear waste treatment and the Balkan syndrome. Therefore, besides our fundamental interest in this complex system, the aim of this study was to provide a convenient and straightforward approach to identify the structure of various uranyl complexes formed in solution. To achieve this goal, spectroscopic techniques like UV-Vis absorption spectroscopy, ...

  6. Nitrate absorption through hydrotalcite reformation.

    Science.gov (United States)

    Frost, Ray L; Musumeci, Anthony W

    2006-10-01

    Thermally activated hydrotalcite based upon a Zn/Al hydrotalcite with carbonate in the interlayer has been used to remove nitrate anions from an aqueous solution resulting in the reformation of a hydrotalcite with a mixture of nitrate and carbonate in the interlayer. X-ray diffraction of the reformed hydrotalcites with a d(003) spacing of 7.60 A shows that the nitrate anion is removed within a 30 min period. Raman spectroscopy shows that two types of nitrate anions exist in the reformed hydrotalcite (a) nitrate bonded to the 'brucite-like' hydrotalcite surface and (b) aquated nitrate anion in the interlayer. Kinetically the nitrate is replaced by the carbonate anion over a 21 h period. Two types of carbonate anions are observed. This research shows that the reformation of a thermally activated hydrotalcite can be used to remove anions such as nitrate from aqueous systems.

  7. Nitrate Leaching Management

    Science.gov (United States)

    Nitrate (NO3) leaching is a significant nitrogen (N) loss process for agriculture that must be managed to minimize NO3 enrichment of groundwater and surface waters. Managing NO3 leaching should involve the application of basic principles of understanding the site’s hydrologic cycle, avoiding excess ...

  8. Treatment tests for ex situ removal of chromate, nitrate, and uranium (VI) from Hanford (100-HR-3) groundwater. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M.A.; Duncan, J.B.

    1993-11-15

    This report describes batch and anion exchange column laboratory-scale studies investigating ex situ methods to remove chromate (chromium [VI]), nitrate (NO{sub 3}), and uranium (present as uranyl (uranium [VI]) carbonato anionic species) from contaminated Hanford Site groundwaters. The technologies investigated include chemical precipitation or coprecipitation to remove chromate and uranium, and anion exchange to remove chromate, uranium, and nitrate. The technologies investigated were specified in the 100-HR-3 Groundwater Treatability Test Plan (DOE-RL 1993). The goal of these tests was to determine the best method to remove selected contaminants to below the concentration of the project performance goals. The raw data and observations made during these tests can be found in the Westinghouse Hanford Company (WHC) laboratory notebooks (Beck 1992, Herting 1993). The method recommended for future study is anion exchange with Dowex 21K resin.

  9. DFT studies of uranyl acetate, carbonate, and malonate, complexes in solution.

    Science.gov (United States)

    Vázquez, Jordi; Bo, Carles; Poblet, Josep Maria; de Pablo, Joan; Bruno, Jordi

    2003-09-22

    The aim of this work is to demonstrate that theoretical chemistry can be used as a complementary tool in determining geometric parameters of a number of uranyl complexes in solution, which are not observable by experimental methods. In addition, we propose plausible structures with partial geometric data from experimental results. A gradient corrected DFT methodology with relativistic effects is used employing a COSMO solvation model. The theoretical calculations show good agreement with experimental X-ray and EXAFS data for the triacetato-dioxo-uranium(VI) and tricarbonato-dioxo-uranium(VI) complexes and are used to assign possible geometries for dicalcium-tricarbonato-dioxo-uranium(VI) and malonato-dioxo-uranium(VI) complexes. The results of this exercise indicate that carbonate bonding in these complexes is mainly bidentate and that hydroxo bridging plays a critical role in the stabilization of the polynuclear uranyl complexes.

  10. An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, M.L.; Horwitz, E.P.; Sajdak, L.R.; Chiarizia, R. [Chemistry Division, Argonne National Laboratory, 60439 Argonne, IL (United States)

    2001-07-06

    The preparation and characterization of a new extraction chromatographic resin exhibiting extraordinarily strong retention of hexavalent uranyl ion over a wide range of nitric acid concentrations and very high selectivity for U(VI) over Fe(III) and numerous other cations is described. This new material (designated U/TEVA-2) comprises a novel liquid stationary phase consisting of an equimolar mixture of diamyl amylphosphonate (DA[AP]) and Cyanex 923{sup registered} (a commercially available trialkyl-phosphine oxide, TRPO) sorbed on silanized silica or Amberchrom CG-71. Cyanex 923 is shown to be preferable to a related TRPO, Cyanex 925{sup registered}, due to its lower viscosity and higher selectivity for U(VI) over Fe(III). The retention of uranyl nitrate by the U/TEVA-2 resin, as measured by the k' values (number of free column values to peak maximum) is >5000 from approximately 0.1 to 8 M HNO{sub 3}. The ability of the new resin to strongly and selectively retain U(VI) from such a wide range of acid concentrations, along with its favorable physical properties, make it a good candidate for application in the separation and preconcentration of U(VI) from complex environmental, biological, and nuclear waste samples for subsequent determination.

  11. An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media.

    Science.gov (United States)

    Dietz, M L; Horwitz, E P; Sajdak, L R; Chiarizia, R

    2001-07-01

    The preparation and characterization of a new extraction chromatographic resin exhibiting extraordinarily strong retention of hexavalent uranyl ion over a wide range of nitric acid concentrations and very high selectivity for U(VI) over Fe(III) and numerous other cations is described. This new material (designated U/TEVA-2) comprises a novel liquid stationary phase consisting of an equimolar mixture of diamyl amylphosphonate (DA[AP]) and Cyanex 923((R)) (a commercially available trialkyl-phosphine oxide, TRPO) sorbed on silanized silica or Amberchrom CG-71. Cyanex 923 is shown to be preferable to a related TRPO, Cyanex 925((R)), due to its lower viscosity and higher selectivity for U(VI) over Fe(III). The retention of uranyl nitrate by the U/TEVA-2 resin, as measured by the k' values (number of free column values to peak maximum) is >5000 from approximately 0.1 to 8 M HNO(3). The ability of the new resin to strongly and selectively retain U(VI) from such a wide range of acid concentrations, along with its favorable physical properties, make it a good candidate for application in the separation and preconcentration of U(VI) from complex environmental, biological, and nuclear waste samples for subsequent determination.

  12. Recuperation of uranyl ions from effluents by means of microbiological collectors

    Energy Technology Data Exchange (ETDEWEB)

    Cecal, A.; Palamaru, I.; Humelnicu, D.; Goanta, M. [Al.I.Cuza Univ., Iasi (Romania). Faculty of Chemistry; Rudic, V.; Salaru, V.V. [Academy of Science, Kishinew (Moldova, Republic of). Inst. of Microbiology; Gulea, A. [State Univ., Kishinew (Moldova, Republic of). Faculty of Chemistry

    1997-12-31

    This paper deals with the study of bioaccumulation of uranyl ions (UO{sub 2}{sup 2+}) from industrial effluents, using microbiological collectors: Nostoc linkia sp., Tolipotrix sp., Spirulina sp., Porphyridium cruentum and also the glucide extract of P. cruentum. The values of retaining degree of UO{sub 2}{sup 2+} on the biomass, for several experimental conditions, were established between 14.22 and 91.99%.

  13. Spectroscopic study on uranyl carboxylate complexes formed at the surface layer of Sulfolobus acidocaldarius.

    Science.gov (United States)

    Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Steudtner, Robin; Selenska-Pobell, Sonja; Merroun, Mohamed L

    2015-02-14

    The complexation of U(vi) at the proteinaceous surface layer (S-layer) of the archaeal strain Sulfolobus acidocaldarius was investigated over a pH range from pH 1.5 to 6 at the molecular scale using time-resolved laser-induced fluorescence spectroscopy (TRLFS) and U L(III)-edge extended X-ray absorption fine structure (EXAFS). The S-layer, which represents the interface between the cell and its environment, is very stable against high temperatures, proteases, and detergents. This allowed the isolation and purification of S-layer ghosts (= empty cells) that maintain the size and shape of the cells. In contrast to many other microbial cell envelope compounds the studied S-layer is not phosphorylated, enabling the investigation of uranyl carboxylate complexes formed at microbial surfaces. The latter are usually masked by preferentially formed uranyl phosphate complexes. We demonstrated that at highly acidic conditions (pH 1.5 to 3) no uranium was bound by the S-layer. In contrast to that, at moderate acidic pH conditions (pH 4.5 and 6) a complexation of U(vi) at the S-layer via deprotonated carboxylic groups was stimulated. Titration studies revealed dissociation constants for the carboxylic groups of glutamic and aspartic acid residues of pK(a) = 4.78 and 6.31. The uranyl carboxylate complexes formed at the S-layer did not show luminescence properties at room temperature, but only under cryogenic conditions. The obtained luminescence maxima are similar to those of uranyl acetate. EXAFS spectroscopy demonstrated that U(vi) in these complexes is mainly coordinated to carboxylate groups in a bidentate binding mode. The elucidation of the molecular structure of these complexes was facilitated by the absence of phosphate groups in the studied S-layer protein.

  14. Engaging the Terminal: Promoting Halogen Bonding Interactions with Uranyl Oxo Atoms.

    Science.gov (United States)

    Carter, Korey P; Kalaj, Mark; Surbella, Robert G; Ducati, Lucas C; Autschbach, Jochen; Cahill, Christopher L

    2017-07-13

    Engaging the nominally terminal oxo atoms of the linear uranyl (UO2(2+) ) cation in non-covalent interactions represents both a significant challenge and opportunity within the field of actinide hybrid materials. An approach has been developed for promoting oxo atom participation in a range of non-covalent interactions, through judicious choice of electron donating equatorial ligands and appropriately polarizable halogen-donor atoms. As such, a family of uranyl hybrid materials was generated based on a combination of 2,5-dihalobenzoic acid and aromatic, chelating N-donor ligands. Delineation of criteria for oxo participation in halogen bonding interactions has been achieved by preparing materials containing 2,5-dichloro- (25diClBA) and 2,5-dibromobenzoic acid (25diBrBA) coupled with 2,2'-bipyridine (bipy) (1 and 2), 1,10-phenanthroline (phen) (3-5), 2,2':6',2''-terpyridine (terpy) (6-8), or 4'-chloro-2,2':6',2''-terpyridine (Cl-terpy) (9-10), which have been characterized through single crystal X-ray diffraction, Raman, Infrared (IR), and luminescence spectroscopy, as well as through density functional calculations of electrostatic potentials. Looking comprehensively, these results are compared with recently published analogues featuring 2,5-diiodobenzoic acid which indicate that although inclusion of a capping ligand in the uranyl first coordination sphere is important, it is the polarizability of the selected halogen atom that ultimately drives halogen bonding interactions with the uranyl oxo atoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Rupashree Shyama

    2009-02-10

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO{sub 2}{sup 2+}, [UO{sub 2}OH]{sup +}, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  16. Determination of uranyl incorporation into biogenic manganese oxides using X-ray absorption spectroscopy and scattering

    Science.gov (United States)

    Webb, S.M.; Fuller, C.C.; Tebo, B.M.; Bargar, J.R.

    2006-01-01

    Biogenic manganese oxides are common and an important source of reactive mineral surfaces in the environment that may be potentially enhanced in bioremediation cases to improve natural attenuation. Experiments were performed in which the uranyl ion, UO22+ (U(VI)), at various concentrations was present during manganese oxide biogenesis. At all concentrations, there was strong uptake of U onto the oxides. Synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) studies were carried out to determine the molecular-scale mechanism by which uranyl is incorporated into the oxide and how this incorporation affects the resulting manganese oxide structure and mineralogy. The EXAFS experiments show that at low concentrations (2 mol % U, >4 ??M U(VI) in solution), the presence of U(VI) affects the stability and structure of the Mn oxide to form poorly ordered Mn oxide tunnel structures, similar to todorokite. EXAFS modeling shows that uranyl is present in these oxides predominantly in the tunnels of the Mn oxide structure in a tridentate complex. Observations by XRD corroborate these results. Structural incorporation may lead to more stable U(VI) sequestration that may be suitable for remediation uses. These observations, combined with the very high uptake capacity of the Mn oxides, imply that Mn-oxidizing bacteria may significantly influence dissolved U(VI) concentrations in impacted waters via sorption and incorporation into Mn oxide biominerals. ?? 2006 American Chemical Society.

  17. A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate and oxyhydroxide minerals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Zachara, J.M.; Liu, C.; Gassman, P.L.; Felmy, A.R. [Pacific Northwest National Lab., Richland, WA (United States); Clark, S.B. [Washington State Univ., Pullman, WA (United States)

    2008-07-01

    In this work we applied time-resolved laser-induced fluorescence spectroscopy (TRLIF) at both room temperature (RT) and near liquid-helium temperature (6 K) to characterize a series of natural and synthetic minerals of uranium carbonate, phosphate and oxyhydroxides including rutherfordine, zellerite, liebigite, phosphuranylite, meta-autunite, meta-torbernite, uranyl phosphate, sodium-uranyl-phosphate, becquerelite, schoepite, meta-schoepite, dehydrated schoepite and compreignacite, and have compared the spectral characteristics among these minerals as well as our previously published data on uranyl silicates. For the carbonate minerals, the fluorescence spectra of rutherfordine showed significant difference from those of zellerite and liebigite. The fluorescence spectra of the phosphate minerals closely resemble each other despite the differences in their composition and structure. For all uranium oxyhydroxides, the fluorescence spectra are largely red-shifted as compared to those of the uranium carbonates and phosphates and their vibronic bands are broad and less resolved at RT. The enhanced spectra resolution at 6 K allows more accurate determination of the fluorescence band origin and offers a complemental method to measure the O=U=O symmetrical stretch frequency, {nu}{sub 1}, from the spacings of the vibronic bands of the fluorescence spectra. The average {nu}{sub 1} values appear to be inversely correlated with the average pK{sub a} values of the anions. (orig.)

  18. A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate, and oxyhydroxide minerals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheming; Zachara, John M.; Liu, Chongxuan; Gassman, Paul L.; Felmy, Andrew R.; Clark, Sue B.

    2008-11-03

    In this work we have applied liquid-helium temperature (LHeT) time-resolved laser-induced fluorescence spectroscopy (TRLIF) to characterize a series of natural and synthetic minerals of uranium carbonate, phosphate and oxyhydroxides including rutherfordine, zellerite, liebigite, phosphuranylite, meta-autunite, meta-torbernite, uranyl phosphate, sodium-uranyl-phosphate, bequerelite, clarkeite, curite, schoepite and compregnacite, and compared their spectral characteristics among these minerals as well as our previously published data on uranyl silicates. For the carbonate minerals, the fluorescence spectra depend on the stoichiometry of the mineral. For the phosphate minerals the fluorescence spectra closely resemble each other despite the differences in their composition and structure. For all uranium oxyhydroxides, the fluorescence spectra are largely red-shifted as compared with those of the uranium carbonates and phosphates and their vibronic bands are broadened and less resolved. The much enhanced spectra resolution at LHeT allows more accurate calculation of the O=U=O symmetrical stretch frequency, ν1, corresponding to the average spacing of the vibronic peaks of the fluorescence spectra and the spectral origin as reflected by the position of the first vibronic band. It was found that both the average ν1 and λ1 values correlate well with the average basicity of the inorganic anion.

  19. Gas-phase reactions of molecular oxygen with uranyl(V) anionic complexes-synthesis and characterization of new superoxides of uranyl(VI).

    Science.gov (United States)

    Lucena, Ana F; Carretas, José M; Marçalo, Joaquim; Michelini, Maria C; Gong, Yu; Gibson, John K

    2015-04-16

    Gas-phase complexes of uranyl(V) ligated to anions X(-) (X = F, Cl, Br, I, OH, NO3, ClO4, HCO2, CH3CO2, CF3CO2, CH3COS, NCS, N3), [UO2X2](-), were produced by electrospray ionization and reacted with O2 in a quadrupole ion trap mass spectrometer to form uranyl(VI) anionic complexes, [UO2X2(O2)](-), comprising a superoxo ligand. The comparative rates for the oxidation reactions were measured, ranging from relatively fast [UO2(OH)2](-) to slow [UO2I2](-). The reaction rates of [UO2X2](-) ions containing polyatomic ligands were significantly faster than those containing the monatomic halogens, which can be attributed to the greater number of vibrational degrees of freedom in the polyatomic ligands to dissipate the energy of the initial O2-association complexes. The effect of the basicity of the X(-) ligands was also apparent in the relative rates for O2 addition, with a general correlation between increasing ligand basicity and O2-addition efficiency for polyatomic ligands. Collision-induced dissociation of the superoxo complexes showed in all cases loss of O2 to form the [UO2X2](-) anions, indicating weaker binding of the O2(-) ligand compared to the X(-) ligands. Density functional theory computations of the structures and energetics of selected species are in accord with the experimental observations.

  20. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126...) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.28 Ammonium...

  1. Nitrate in drinking water

    DEFF Research Database (Denmark)

    Schullehner, Jörg; Hansen, Birgitte; Sigsgaard, Torben

    Annual nationwide exposure maps for nitrate in drinking water in Denmark from the 1970s until today will be presented based on the findings in Schullehner & Hansen (2014) and additional work on addressing the issue of private well users and estimating missing data. Drinking water supply in Denmark...... is highly decentralized and fully relying on simple treated groundwater. At the same time, Denmark has an intensive agriculture, making groundwater resources prone to nitrate pollution. Drinking water quality data covering the entire country for over 35 years are registered in the public database Jupiter....... In order to create annual maps of drinking water quality, these data had to be linked to 2,852 water supply areas, which were for the first time digitized, collected in one dataset and connected to the Jupiter database. Analyses of the drinking water quality maps showed that public water supplies...

  2. Selective recognition of uranyl ions from bulk of thorium(iv) and lanthanide(iii) ions by tetraalkyl urea: a combined experimental and quantum chemical study.

    Science.gov (United States)

    Vats, Bal Govind; Das, Debasish; Sadhu, Biswajit; Kannan, S; Pius, I C; Noronha, D M; Sundararajan, Mahesh; Kumar, Mukesh

    2016-06-21

    The selective separation of uranyl ions from an aqueous solution is one of the most important criteria for sustainable nuclear energy production. We report herein a known, but unexplored extractant, tetraalkyl urea, which shows supreme selectivity for uranium in the presence of interfering thorium and other lanthanide ions from a nitric acid medium. The structural characterization of the uranyl complex (UO2X2·2L, where X = NO3(-), Cl(-) and Br(-)) by IR, NMR and single crystal X-ray diffraction provides insight into the strong interaction between the uranyl ion and the ligand. The origin of this supreme selectivity for uranyl ions is further supported by electronic structure calculations. Uranyl binding with the extractant is thermodynamically more favourable when compared to thorium and the selectivity is achieved through a combination of electronic and steric effects.

  3. Assimilation of nitrate by yeasts.

    Science.gov (United States)

    Siverio, José M

    2002-08-01

    Nitrate assimilation has received much attention in filamentous fungi and plants but not so much in yeasts. Recently the availability of classical genetic and molecular biology tools for the yeast Hansenula polymorpha has allowed the advance of the study of this metabolic pathway in yeasts. The genes YNT1, YNR1 and YNI1, encoding respectively nitrate transport, nitrate reductase and nitrite reductase, have been cloned, as well as two other genes encoding transcriptional regulatory factors. All these genes lie closely together in a cluster. Transcriptional regulation is the main regulatory mechanism that controls the levels of the enzymes involved in nitrate metabolism although other mechanisms may also be operative. The process involved in the sensing and signalling of the presence of nitrate in the medium is not well understood. In this article the current state of the studies of nitrate assimilation in yeasts as well as possible venues for future research are reviewed.

  4. A Structural and Spectroscopic Study of the First Uranyl Selenocyanate, [Et4N]3[UO2(NCSe5

    Directory of Open Access Journals (Sweden)

    Stefano Nuzzo

    2016-02-01

    Full Text Available The first example of a uranyl selenocyanate compound is reported. The compound [Et4N]3[UO2(NCSe5] has been synthesized and fully characterized by vibrational and multinuclear (1H, 13C{1H} and 77Se{1H} NMR spectroscopy. The photophysical properties have also been recorded and trends in a series of uranyl pseudohalides discussed. Spectroscopic evidence shows that the U–NCSe bonding is principally ionic. An electrochemical study revealed that the reduced uranyl(V species is unstable to disproportionation and a ligand based oxidation is also observed. The structure of [Et4N]4[UO2(NCSe5][NCSe] is also presented and Se···H–C hydrogen bonding and Se···Se chalcogen–chalcogen interactions are seen.

  5. Potential of dietary nitrate in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Christos; Rammos; Peter; Luedike; Ulrike; Hendgen-Cotta; Tienush; Rassaf

    2015-01-01

    Endothelial dysfunction with impaired bioavailability of nitric oxide(NO) is the hallmark in the development of cardiovascular disease. Endothelial dysfunction leads to atherosclerosis, characterized by chronic inflammation of the arterial wall and stepwise narrowing of the vessel lumen. Atherosclerosis causes deprivation of adequate tissue blood flow with compromised oxygen supply. To overcome this undersupply, remodeling of the vascular network is necessary to reconstitute and sustain tissue viability. This physiological response is often not sufficient and therapeutic angiogenesis remains an unmet medical need in critical limb ischemia or coronary artery disease. Feasible approaches to promote blood vessel formation are sparse. Administration of pro-angiogenic factors, gene therapy, or targeting of micro RNAs has not yet entered the daily practice. Nitric oxide is an important mediator of angiogenesis that becomes limited under ischemic conditions and the maintenance of NO availability might constitute an attractive therapeutic target. Until recently it was unknown how the organism provides NO under ischemia. In recent years it could be demonstrated that NO can be formed independently of its enzymatic synthesis in the endothelium by reduction of inorganic nitrite under hypoxic conditions. Circulating nitrite derives from oxidation of NO or reduction of inorganic nitrate by commensal bacteria in the oral cavity. Intriguingly, nitrate is a common constituent of our everyday diet and particularly high concentrations are found in leafy green vegetables such as spinach, lettuce, or beetroot. Evidence suggests that dietary nitrate supplementation increases the regenerative capacity of ischemic tissue and that this effect may offer an attractive nutrition-based strategy to improve ischemia-induced revascularization. We here summarize and discuss the regenerative capacity of dietary nitrate on the vascular system.

  6. Potential of dietary nitrate in angiogenesis.

    Science.gov (United States)

    Rammos, Christos; Luedike, Peter; Hendgen-Cotta, Ulrike; Rassaf, Tienush

    2015-10-26

    Endothelial dysfunction with impaired bioavailability of nitric oxide (NO) is the hallmark in the development of cardiovascular disease. Endothelial dysfunction leads to atherosclerosis, characterized by chronic inflammation of the arterial wall and stepwise narrowing of the vessel lumen. Atherosclerosis causes deprivation of adequate tissue blood flow with compromised oxygen supply. To overcome this undersupply, remodeling of the vascular network is necessary to reconstitute and sustain tissue viability. This physiological response is often not sufficient and therapeutic angiogenesis remains an unmet medical need in critical limb ischemia or coronary artery disease. Feasible approaches to promote blood vessel formation are sparse. Administration of pro-angiogenic factors, gene therapy, or targeting of microRNAs has not yet entered the daily practice. Nitric oxide is an important mediator of angiogenesis that becomes limited under ischemic conditions and the maintenance of NO availability might constitute an attractive therapeutic target. Until recently it was unknown how the organism provides NO under ischemia. In recent years it could be demonstrated that NO can be formed independently of its enzymatic synthesis in the endothelium by reduction of inorganic nitrite under hypoxic conditions. Circulating nitrite derives from oxidation of NO or reduction of inorganic nitrate by commensal bacteria in the oral cavity. Intriguingly, nitrate is a common constituent of our everyday diet and particularly high concentrations are found in leafy green vegetables such as spinach, lettuce, or beetroot. Evidence suggests that dietary nitrate supplementation increases the regenerative capacity of ischemic tissue and that this effect may offer an attractive nutrition-based strategy to improve ischemia-induced revascularization. We here summarize and discuss the regenerative capacity of dietary nitrate on the vascular system.

  7. Computer simulation of uranyl uptake by the rough lipopolysaccharide membrane of Pseudomonas aeruginosa.

    Science.gov (United States)

    Lins, Roberto D; Vorpagel, Erich R; Guglielmi, Matteo; Straatsma, T P

    2008-01-01

    Heavy metal environmental contaminants cannot be destroyed but require containment, preferably in concentrated form, in a solid or immobile form for recycling or final disposal. Microorganisms are able to take up and deposit high levels of contaminant metals, including radioactive metals such as uranium and plutonium, into their cell wall. Consequently, these microbial systems are of great interest as the basis for potential environmental bioremediation technologies. The outer membranes of Gram-negative microbes are highly nonsymmetric and exhibit a significant electrostatic potential gradient across the membrane. This gradient has a significant effect on the uptake and transport of charged and dipolar compounds. However, the effectiveness of microbial systems for environmental remediation will depend strongly on specific properties that determine the uptake of targeted contaminants by a particular cell wall. To aid in the design of microbial remediation technologies, knowledge of the factors that determine the affinity of a particular bacterial outer membrane for the most common ionic species found in contaminated soils and groundwater is of great importance. Using our previously developed model for the lipopolysaccharide (LPS) membrane of Pseudomonas aeruginosa, this work presents the potentials of mean force as the estimate of the free energy profile for uptake of sodium, calcium, chloride, uranyl ions, and a water molecule by the bacterial LPS membrane. A compatible classical parameter set for uranyl has been developed and validated. Results show that the uptake of uranyl is energetically a favorable process relative to the other ions studied. At neutral pH, this nuclide is shown to be retained on the surface of the LPS membrane through chelation with the carboxyl and hydroxyl groups located in the outer core.

  8. Thermal Analysis of the Decomposition of Ammonium Uranyl Carbonate (AUC) in Different Atmospheres

    DEFF Research Database (Denmark)

    Hälldahl, L.; Sørensen, Ole Toft

    1979-01-01

    The intermediate products formed during thermal decomposition of ammonium uranyl carbonate (AUC) in different atmospheres, (air, helium and hydrogen) have been determined by thermal analysis, (TG, and DTA) and X-ray analysis. The endproducts observed are U3O8 and UO2 in air/He and hydrogen, respe......, respectively. The following intermediate products were observed in all atmospheres: http://www.sciencedirect.com.globalproxy.cvt.dk/cache/MiamiImageURL/B6THV-44K80TV-FB-1/0?wchp=dGLzVlz-zSkWW X-ray diffraction analysis showed that these phases were amorphous....

  9. Synthesis, characterization and photo luminescence studies of uranyl doped SrBPO{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Rout, Annapurna; Suriyamurthy, N.; Panigrahi, B. S., E-mail: bsp@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam – 603 102 (India)

    2015-06-24

    SrBPO{sub 5}: UO{sub 2}{sup 2+} was synthesized using solid state reaction method and characterized using powder X-ray diffraction. PXRD data showed the formation of single phase confirming successful doping of UO{sub 2}{sup 2+}. Photo luminescence investigation informed stabilization of Uranium as Uranyl (UO{sub 2}{sup 2+}) in SrBPO{sub 5} matrix. Luminescence decay time data suggested two possible environments for UO{sub 2}{sup 2+} with two different life time values.

  10. New complexes of heteroaromatic N-oxides with europium, uranyl and zinc ions

    Institute of Scientific and Technical Information of China (English)

    Zbigniew Hnatejko

    2012-01-01

    New solid complexes of europium,uranyl and zinc ions with N-oxides of 4-chloro-2,6-dimethylpyridine,quinoline and 4-methoxyquinaldinic acid in presence different anions were obtained and characterized by elemental and TG analyses,IR and luminescence spectra.The compounds are crystalline,hydrated or anhydrous salts with colours typical of metal ions.Thermal studies showed that in hydrated salts lattice or coordination water molecules are present.A role of different anions in the formation of various types of the complexes is presented.

  11. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils;

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly...... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...... storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described...

  12. Synthesis, characterization and molecular structure of a dinuclear uranyl complex supported by N,N',N'',N'''-tetra-(3,5-di-tert-butylsalicylidene)-1,2,4,5- phenylenetetraamine

    Energy Technology Data Exchange (ETDEWEB)

    Schnorr, Rene; Handke, Marcel; Kersting, Berthold [Leipzig Univ. (Germany). Inst. fuer Anorganische Chemie

    2015-07-01

    The preparation, characterization and the molecular structure of a dinuclear uranyl complex [(UO{sub 2}){sub 2}L(OCMe{sub 2}){sub 2}] supported by the bis-salophen ligand N,N',N'',N'''-tetra-(3,5-di-tert-butylsalicylidene)-1,2,4,5- phenylenetetraamine (L{sup 4-}) is described. [(UO{sub 2}){sub 2}L(OCMe{sub 2}){sub 2}] was prepared by reaction of uranyl nitrate with the neutral, protonated form of the ligand (H{sub 4}L) in acetone. From a saturated acetone solution [(UO{sub 2}){sub 2}L(OCMe{sub 2}){sub 2}] . 1.5(OCMe{sub 2}) crystallizes triclinically, space group P anti 1 with a = 1522.7(2), b = 1751.4(2), c = 1815.4(2) Aa, α = 109.16(1), β = 99.29(1), γ = 105.29(1) and Z = 2. Each uranium atom is surrounded in a distorted pentagonal bipyramidal fashion by two O and two N atoms of the salicylidene units, one O atom of an acetone ligand, and the two oxo groups. The cyclic voltammogram of [(UO{sub 2}){sub 2}L(OCMe{sub 2}){sub 2}] shows two quasi-reversible redox processes centered at +0.57 V and +0.82 V vs. Fc{sup +}/Fc attributed to the sequential oxidation of the coordinating phenolates to phenoxyl radicals. The crystal structure of an ethanol solvate of H{sub 4}L was also determined by X-ray crystallography. H{sub 4}L . 5EtOH: triclinic, space group P anti 1, a = 1003.4(3), b = 1187.7(3), c = 1905.1(5) Aa, α = 75.75(2), β = 78.74(2), γ = 66.66(2) , Z = 1.

  13. Waterproofing Materials for Ammonium Nitrate

    Directory of Open Access Journals (Sweden)

    R.S. Damse

    2004-10-01

    Full Text Available This study explores the possibility of overcoming the problem of hygroscopicity of ammonium nitrate by coating the particles with selected waterproofing materials. Gravimetric analysis ofthe samples of ammonium nitrate coated with eight different waterproofing materials, vis-a-vis, uncoated ammonium nitrate, were conducted at different relative humidity and exposuretime. The results indicate that mineral jelly is the promising waterproofing material for ammonium nitrate among the materials tested, viz, calcium stearate, dioctyl phthalate, kaoline, diethylphthalate, dinitrotoluene, shelac varnish, and beeswax. Attempts were made to confirm the waterproofing ability of mineral jelly to ammonium nitrate using differential thermal analysisand x-ray diffraction patterns as an experimental tool. Suitability of mineral jelly as an additive for the gun propellant was also assessed on the basis of theoretical calculations using THERMprogram.

  14. MCNP5 CALCULATIONS REPLICATING ARH-600 NITRATE DATA

    Energy Technology Data Exchange (ETDEWEB)

    FINFROCK SH

    2011-10-25

    This report serves to extend the previous document: 'MCNP Calculations Replicating ARH-600 Data' by replicating the nitrate curves found in ARH-600. This report includes the MCNP models used, the calculated critical dimension for each analyzed parameter set, and the resulting data libraries for use with the CritView code. As with the ARH-600 data, this report is not meant to replace the analysis of the fissile systems by qualified criticality personnel. The M CNP data is presented without accounting for the statistical uncertainty (although this is typically less than 0.001) or bias and, as such, the application of a reasonable safety margin is required. The data that follows pertains to the uranyl nitrate and plutonium nitrate spheres, infinite cylinders, and infinite slabs of varying isotopic composition, reflector thickness, and molarity. Each of the cases was modeled in MCNP (version 5.1.40), using the ENDF/B-VI cross section set. Given a molarity, isotopic composition, and reflector thickness, the fissile concentration and diameter (or thicknesses in the case of the slab geometries) were varied. The diameter for which k-effective equals 1.00 for a given concentration could then be calculated and graphed. These graphs are included in this report. The pages that follow describe the regions modeled, formulas for calculating the various parameters, a list of cross-sections used in the calculations, a description of the automation routine and data, and finally the data output. The data of most interest are the critical dimensions of the various systems analyzed. This is presented graphically, and in table format, in Appendix B. Appendix C provides a text listing of the same data in a format that is compatible with the CritView code. Appendices D and E provide listing of example Template files and MCNP input files (these are discussed further in Section 4). Appendix F is a complete listing of all of the output data (i.e., all of the analyzed dimensions and

  15. Synthesis and structure determination of uranyl peroxide nanospheres in the presence of organic structure directing agents

    Science.gov (United States)

    Forbes, T. Z.; Burns, P. C.

    2007-12-01

    Recently, actinyl peroxide nanoclusters containing 20, 24, 28, or 32 actinyl polyhedra have been synthesized and their structures identified with single crystal X-ray diffraction [1]. Most nanomaterials are composed of main group elements or transition metals, therefore, these actinyl nanospheres may display vastly different chemical and physical properties due to the presence of filled f-orbitals. A major goal of our research group is to create novel actinyl materials, focusing on nano- and mesoporous materials. The original nanosphere syntheses were limited to inorganic crystallization agents, such as monovalent cations. Over the last decade, the use of organic compounds and surfactants have received increased attention as structure-directing agents for the generation of novel inorganic materials. Using structure-directing organic amines we have successfully synthesized and determined the structures of uranyl nanospheres containing 40 and 50 uranyl polyhedra. The topology of the skeletal U-50 nanosphere is identical to the C50Cl10 fullerene [2]. The topographical relationship between the actinyl nanospheres and fullerene or fullerene-like material may provide additional insight into stable configurations for lower fullerenes. [1] Burns et al., Actinyl peroxide nanospheres. Angewandte Chemie, International Edition, 2005. 44(14): p. 2135. [2] Xie et al., Capturing the Labile Fullerene[50] as C50Cl10. Science, (2004) 305(5671): p. 699.

  16. Isotope selectivity of infrared laser-driven unimolecular dissociation of a volatile uranyl compound.

    Science.gov (United States)

    Cox, D M; Hall, R B; Horsley, J A; Kramer, G M; Rabinowitz, P; Kaldor, A

    1979-07-27

    Isotope-selective photodissociation of the volatile complex uranyl hexafluoroacetylacetonate . tetrahydrofuran [UO(2)(hfacac)(2) . THF] has been achieved with both a continuous-wave and a pulsed carbon dioxide laser. The photodissociation was carried out in a low-density molecular beam under collisionless conditions. Transitions of the laser are in resonance with the asymmetric O-U-O stretch of the uranyl moiety, a vibrational mode whose frequency is sensitive to the masses of the uranium and oxygen isotopes. Unimolecular dissociation is observed mass spectrometrically at an extremely low energy fluence, with no evidence of an energy fluence or intensity threshold. The dissociation yield increases nearly linearly with increasing energy fluence. At constant fluence the dissociation yield is independent of contact time between the radiation field and the molecule, indicating that the decomposition is driven by laser energy fluence and not laser intensity. The oxygen and uranium isotope selectivities measured in these experiments are nearly those predicted by the ratio of the linear absorption cross sections for the respective isotopes. Thus, essentially complete selectivity is observed for oxygen isotopes, while a selectivity of only about 1.25 is measured for the uranium isotopes. A model presented to describe these results is based on rapid intramolecular vibrational energy flow from the pumped mode into a limited number of closely coupled modes.

  17. Alternative process to produce UF{sub 4} using the effluent from ammonium uranyl carbonate route

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Joao B.; Garcia, Rafael Henrique Lazzari; Dal Vechio, Edvaldo, E-mail: jbsneto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), SP (Brazil); Riella, Humberto G., E-mail: riella@enq.ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq) (Brazil); Carvalho, Elita F. Urano de; Durazzo, Michelangelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), SP (Brazil); Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq) (Brazil)

    2011-07-01

    The Nuclear Fuel Centre of IPEN / CNEN - SP develops and manufactures dispersion fuel with high uranium concentration. It meets the demand of the IEA-R1 reactor and future research reactors to be constructed in Brazil. The fuel uses uranium silicide (U{sub 3}Si{sub 2}) dispersed in aluminum. For producing the fuel, the process of uranium hexafluoride (UF{sub 6}) conversion consist in obtaining U{sub 3}Si{sub 2} and / or U{sub 3}O{sub 8} through the preparation of intermediate compounds, among them ammonium uranyl carbonate - AUC, ammonium diuranate - DUA and uranium tetrafluoride - UF{sub 4}. This work describes a procedure for preparing uranium tetrafluoride via a dry route, using as raw material the filtrate generated when ammonium uranyl carbonate is routinely produced. The filtrate consists mainly of a solution containing high concentrations of ammonium (NH{sup 4+}), fluoride (F{sup -}), carbonate (CO{sup 3-}) and low concentrations of uranium. The procedure consists in recovering NH{sup 4F} and uranium, as UF{sub 4}, through the crystallization of ammonium bifluoride (NH{sub 4}HF{sub 2}) and, in a later step, the addition of UO{sub 2}, occurring fluoridation and decomposition. The UF{sub 4} obtained is further diluted in the UF{sub 4} produced routinely at IPEN / CNEN-SP by a wet route process. (author)

  18. Rapid dissolution of soluble uranyl phases in arid, mine-impacted catchments near Church Rock, NM.

    Science.gov (United States)

    deLemos, Jamie L; Bostick, Benjamin C; Quicksall, Andrew N; Landis, Joshua D; George, Christine C; Slagowski, Naomi L; Rock, Tommy; Brugge, Doug; Lewis, Johnnye; Durant, John L

    2008-06-01

    We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of > 100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to be highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10--50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were > 4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts.

  19. Structural elucidation and physicochemical properties of mononuclear Uranyl(VI) complexes incorporating dianionic units

    Science.gov (United States)

    Azam, Mohammad; Velmurugan, Gunasekaran; Wabaidur, Saikh Mohammad; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal; Al-Resayes, Saud I.; Al-Othman, Zeid A.; Venuvanalingam, Ponnambalam

    2016-01-01

    Two derivatives of organouranyl mononuclear complexes [UO2(L)THF] (1) and [UO2(L)Alc] (2), where L = (2,2′-(1E,1′E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene, THF = Tetrahydrofuran, Alc = Alcohol), have been prepared. These complexes have been determined by elemental analyses, single crystal X-ray crystallography and various spectroscopic studies. Moreover, the structure of these complexes have also been studied by DFT and time dependent DFT measurements showing that both the complexes have distorted pentagonal bipyramidal environment around uranyl ion. TD-DFT results indicate that the complex 1 displays an intense band at 458.7 nm which is mainly associated to the uranyl centered LMCT, where complex 2 shows a band at 461.8 nm that have significant LMCT character. The bonding has been further analyzed by EDA and NBO. The photocatalytic activity of complexes 1 and 2 for the degradation of rhodamine-B (RhB) and methylene blue (MB) under the irradiation of 500W Xe lamp has been explored, and found more efficient in presence of complex 1 than complex 2 for both dyes. In addition, dye adsorption and photoluminescence properties have also been discussed for both complexes. PMID:27595801

  20. Structure and spectroscopy of uranyl and thorium complexes with substituted phosphine oxide ligands

    Energy Technology Data Exchange (ETDEWEB)

    Breshears, Andrew T.; Barnes, Charles L.; Wagle, Durgesh V.; Baker, Gary A.; Walensky, Justin R. [Missouri Univ., Columbia, MO (United States). Dept. of Chemistry; Takase, Michael K. [California Institute of Technology, Pasadena, CA (United States). Beckman Institute

    2015-05-01

    Phosphine oxide ligands are important in the chemistry of the nuclear fuel cycle. We have synthesized and characterized a series of phosphine oxide ligands with polycyclic aromatic hydrocarbon (PAH) groups to enhance the spectroscopic features of uranyl, UO{sub 2}{sup 2+}, and to make detection more efficient. Complexation of OPPh{sub 2}R, R = C{sub 10}H{sub 7} (naphthyl); C{sub 14}H{sub 9} (phenanthrenyl); C{sub 14}H{sub 9} (anthracenyl); and C{sub 16}H{sub 9} (pyrenyl), to UO{sub 2}(NO{sub 3}){sub 2} afforded the eight-coordinate complexes, UO{sub 2}(NO{sub 3}){sub 2}(OPPh{sub 2}R){sub 2}. An eleven-coordinate complex, Th(NO{sub 3}){sub 4}[OPPh{sub 2}(C{sub 14}H{sub 9})]{sub 3}, C{sub 14}H{sub 9} = phenanthrenyl, was structurally characterized, and was found to be the first thorium compound isolated with three phosphine oxide ligands bound. The phosphine oxide ligands were not fluorescent but the anthracenyl-substituted ligand showed broad, red-shifted emission at approximately 50 nm relative to typical anthracene, making this ligand set a possibility for use in detection. The synthesis and spectroscopy of the uranyl and thorium complexes are presented.

  1. Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments near Church Rock, NM

    Science.gov (United States)

    DELEMOS, JAMIE L.; BOSTICK, BENJAMIN C.; QUICKSALL, ANDREW N.; LANDIS, JOSHUA D.; GEORGE, CHRISTINE C.; SLAGOWSKI, NAOMI L.; ROCK, TOMMY; BRUGGE, DOUG; LEWIS, JOHNNYE; DURANT, JOHN L.

    2008-01-01

    We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to be highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10–50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts. PMID:18589950

  2. Deciphering the energy landscape of the interaction uranyl-DCP with antibodies using dynamic force spectroscopy.

    Science.gov (United States)

    Teulon, Jean-Marie; Parot, Pierre; Odorico, Michael; Pellequer, Jean-Luc

    2008-11-15

    Previous studies on molecular recognition of uranyl-DCP (dicarboxy-phenanthroline chelator) compound by two distinct monoclonal antibodies (Mabs U04S and U08S) clearly showed the presence of a biphasic shape in Bell-Evans' plots and an accentuated difference in slopes at the high loading rates. To further explore the basis in the slope difference, we have performed complementary experiments using antibody PHE03S, raised against uranyl-DCP but, presenting a strong cross-reactivity toward the DCP chelator. This work allowed us to obtain a reallocation of the respective contributions of the metal ion itself and that of the chelator. Results led us to propose a 2D schematic model representing two energy barriers observed in the systems Mabs U04S- and U08S-[UO(2)-DCP] where the outer barrier characterizes the interaction between UO(2) and Mab whereas the inner barrier characterizes the interaction between DCP and Mab. Using dynamic force spectroscopy, it is thus possible to dissect molecular interactions during the unbinding between proteins and ligands.

  3. Synthesis and characterization of uranyl ion-imprinted microspheres based on amidoximated modified alginate.

    Science.gov (United States)

    Monier, M; Abdel-Latif, D A; Mohammed, Hassan A

    2015-04-01

    Surface ion-imprinting technique was utilized for the preparation of surface ion-imprinted chelating microspheres based on amidoximated modified alginate (U-AOX) in presence of uranyl ions as a template and glutaraldehyde cross-linker. Different instrumental techniques such as elemental analysis, scanning electron microscope (SEM), FTIR, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction spectra were employed for full investigation of the manufactured materials. The synthesized microspheres displayed a higher ability for selective extraction of UO2(2+) when compared to the non-imprinted microspheres (NI-AOX). In addition, the essential parameters such as pH, temperature, time and initial uranyl ion concentration were evaluated in order to optimize the conditions of the adsorption process. The results indicated that pH 5 was the best for the UO2(2+) removal, also, the adsorption was endothermic in nature, follows the second-order kinetics and the adsorption isotherm showed the best fit with Langmuir model with maximum adsorption capacity of 155 ± 1 and 64 ± 1 mg/g for both U-AOX and NI-AOX respectively. Desorption and regeneration had been carried out using 0.5M HNO3 solution and the results indicated that the microspheres maintained about 96% of its original efficiency after five consecutive adsorption-desorption cycles. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Structural elucidation and physicochemical properties of mononuclear Uranyl(VI) complexes incorporating dianionic units

    Science.gov (United States)

    Azam, Mohammad; Velmurugan, Gunasekaran; Wabaidur, Saikh Mohammad; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal; Al-Resayes, Saud I.; Al-Othman, Zeid A.; Venuvanalingam, Ponnambalam

    2016-09-01

    Two derivatives of organouranyl mononuclear complexes [UO2(L)THF] (1) and [UO2(L)Alc] (2), where L = (2,2‧-(1E,1‧E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene, THF = Tetrahydrofuran, Alc = Alcohol), have been prepared. These complexes have been determined by elemental analyses, single crystal X-ray crystallography and various spectroscopic studies. Moreover, the structure of these complexes have also been studied by DFT and time dependent DFT measurements showing that both the complexes have distorted pentagonal bipyramidal environment around uranyl ion. TD-DFT results indicate that the complex 1 displays an intense band at 458.7 nm which is mainly associated to the uranyl centered LMCT, where complex 2 shows a band at 461.8 nm that have significant LMCT character. The bonding has been further analyzed by EDA and NBO. The photocatalytic activity of complexes 1 and 2 for the degradation of rhodamine-B (RhB) and methylene blue (MB) under the irradiation of 500W Xe lamp has been explored, and found more efficient in presence of complex 1 than complex 2 for both dyes. In addition, dye adsorption and photoluminescence properties have also been discussed for both complexes.

  5. Acidity constants and redox potentials of uranyl ions in hydrothermal solutions.

    Science.gov (United States)

    Liu, Xiandong; Cheng, Jun; He, Mengjia; Lu, Xiancai; Wang, Rucheng

    2016-09-21

    We report a first principles molecular dynamics (FPMD) study of the structures, acidity constants (pKa) and redox potentials (E(0)) of uranyl (UO2(2+)) from ambient conditions to 573 K. It is found that UO2(2+) keeps five coordination up to 573 K whereas UO2(+) transforms from 5 to 4-coordinate as temperature increases to 573 K. The FPMD-based vertical energy gap method is used to derive pKas and E(0)s. The method is validated by comparing with available experimental data (for E(0) under the ambient conditions and for pKas from ambient conditions to 367 K), with an uncertainty of 1-2 pKa units and 0.2 V for pKa and E(0). The encouraging results demonstrate that the method may be used to predict the pH-Eh diagrams of f-block elements under the conditions of hydrothermal solutions. The results show that the acidity constants of uranyl decrease with temperature and are lower than 3.0 when the temperature is above 473 K, indicating that hydrolytic forms are dominant for U(vi) in the near neutral pH range. The reduction potential increases with temperature, indicating that the reduced state is more significant at higher temperatures.

  6. Nitration of Polystyrene-Part II Effect of Nitrating Medium on Nitration

    Directory of Open Access Journals (Sweden)

    I. Bajaj

    1968-04-01

    Full Text Available Polystyrene has been nitrated in mixtures of anhydrous nitric and sulphuric acid (70 : 30 and 80 : 20 by volume. Degree of substitution of nitro group per benzene ring varies from 1 to 2 depending on the time, temperature and composition of the nitrating media. Effect of polar and non polar solvents on nitration has been studied by nitrating the polymer in (i fuming nitric acid and (iimixture of nitric and sulphuric acid in presence of dimethyl formamide (DMF and carbon tetrachloride (CCI/Sub4. MF increase the rate of nitration in fuming nitric acid whereas the rate of nitration is lowered in the presence of DMF in the nitrating mixtures. In the case of CCI/Sub4, however, the effect is just the opposite to that observed in DMF. The results have been explained from the mechanism of the formation of 'nitroniumion,NO/Sub2+ in various nitrating media. Degradation of the polymer has been found to be comparatively less in the presence of the organic solvents used in the study.

  7. Molecular Simulations of the Diffusion of Uranyl Carbonate Species in Nanosized Mineral Fractures

    Science.gov (United States)

    Kerisit, S.; Liu, C.

    2010-12-01

    Uranium is a major groundwater contaminant at uranium processing and mining sites as a result of intentional and accidental discharges of uranium-containing waste products into subsurface environments. Recent characterization has shown that uranium preferentially associates with intragrain and intra-aggregate domains in some of the uranium-contaminated sediments collected from the US Department of Energy Hanford Site [1, 2]. In these sediments, uranium existed as precipitated and/or adsorbed phases in grain micropores with nano- to microscale sizes. Desorption and diffusion characterization studies and continuum-scale modeling indicated that ion diffusion in the microfractures is a major mechanism that led to preferential uranium concentration in the microfracture regions and will control the future mobility of uranium in the subsurface sediments [1, 3-4]. However, the diffusion properties of uranyl species in the intragrain regions, especially at the solid-liquid interface, are still poorly understood. Therefore, a general aim of this work is to provide atomic-level insights into the contribution of microscopic surface effects to the slow diffusion process of uranyl species in porous media with nano- to microsized fractures. In this presentation, we will first present molecular dynamics (MD) simulations of feldspar-water interfaces to investigate their interfacial structure and dynamics and establish a theoretical framework for subsequent simulations of water and ion diffusion at these interfaces [5]. We will then report on MD simulations carried out to probe the effects of confinement and of the presence of the mineral surface on the diffusion of water and electrolyte ions in nanosized feldspar fractures [6]. Several properties of the mineral-water interface were varied, such as the fracture width, the ionic strength of the contacting solution, and the surface charge. Our calculations reveal a 2.0-2.5 nm interfacial region within which the diffusion properties of

  8. A New Form of Triple-Stranded Helicate Found in Uranyl Complexes of Aliphatic α,ω-Dicarboxylates.

    Science.gov (United States)

    Thuéry, Pierre; Harrowfield, Jack

    2015-11-16

    The reaction of uranyl ions with azelaic or dodecanedioic acids under solvohydrothermal conditions leads to crystallization of anionic dinuclear cage compounds with [M(bipy/phen)3](2+) counterions (M = 3d-block cation), while the smaller suberic acid yields heterometallic metallacycles. Complexes with the longer aliphatic chains are the first triple-stranded helicates reported in actinide chemistry.

  9. Synthesis of thermally stable extra-large pore crystalline materials: a uranyl germanate with 12-ring channels.

    Science.gov (United States)

    Lin, Chia-Hui; Chiang, Ray-Kuang; Lii, Kwang-Hwa

    2009-02-18

    A thermally stable extra-large pore uranyl germanate is synthesized under high-temperature, high-pressure hydrothermal conditions at 585 degrees C and 150 MPa. The structure contains U(6+)O(6) tetragonal bipyramids which are interconnected by digermanate groups to form a 3D framework with 12-ring pore openings.

  10. An unprecedented two-fold nested super-polyrotaxane: sulfate-directed hierarchical polythreading assembly of uranyl polyrotaxane moieties

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Lei; Wu, Qun-yan; Yuan, Li-yong; Wang, Lin; An, Shu-wen; Xie, Zhen-ni; Hu, Kong-qiu; Shi, Wei-qun [Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Chai, Zhi-fang [Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); School of Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Burns, Peter C. [Department of Chemistry and Biochemistry, University of Notre Dame, IN (United States)

    2016-08-01

    The hierarchical assembly of well-organized submoieties could lead to more complicated superstructures with intriguing properties. We describe herein an unprecedented polyrotaxane polythreading framework containing a two-fold nested super-polyrotaxane substructure, which was synthesized through a uranyl-directed hierarchical polythreading assembly of one-dimensional polyrotaxane chains and two-dimensional polyrotaxane networks. This special assembly mode actually affords a new way of supramolecular chemistry instead of covalently linked bulky stoppers to construct stable interlocked rotaxane moieties. An investigation of the synthesis condition shows that sulfate can assume a vital role in mediating the formation of different uranyl species, especially the unique trinuclear uranyl moiety [(UO{sub 2}){sub 3}O(OH){sub 2}]{sup 2+}, involving a notable bent [O=U=O] bond with a bond angle of 172.0(9) . Detailed analysis of the coordination features, the thermal stability as well as a fluorescence, and electrochemical characterization demonstrate that the uniqueness of this super-polyrotaxane structure is mainly closely related to the trinuclear uranyl moiety, which is confirmed by quantum chemical calculations. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: role in nitrate tolerance.

    Science.gov (United States)

    Mollace, Vincenzo; Muscoli, Carolina; Dagostino, Concetta; Giancotti, Luigino Antonio; Gliozzi, Micaela; Sacco, Iolanda; Visalli, Valeria; Gratteri, Santo; Palma, Ernesto; Malara, Natalia; Musolino, Vincenzo; Carresi, Cristina; Muscoli, Saverio; Vitale, Cristiana; Salvemini, Daniela; Romeo, Francesco

    2014-11-01

    Bioconversion of glyceryl trinitrate (GTN) into nitric oxide (NO) by aldehyde dehydrogenase-2 (ALDH-2) is a crucial mechanism which drives vasodilatory and antiplatelet effect of organic nitrates in vitro and in vivo. Oxidative stress generated by overproduction of free radical species, mostly superoxide anions and NO-derived peroxynitrite, has been suggested to play a pivotal role in the development of nitrate tolerance, though the mechanism still remains unclear. Here we studied the free radical-dependent impairment of ALDH-2 in platelets as well as vascular tissues undergoing organic nitrate ester tolerance and potential benefit when using the selective peroxynitrite decomposition catalyst Mn(III) tetrakis (4-Benzoic acid) porphyrin (MnTBAP). Washed human platelets were made tolerant to nitrates via incubation with GTN for 4h. This was expressed by attenuation of platelet aggregation induced by thrombin (40U/mL), an effect accompanied by GTN-related induction of cGMP levels in platelets undergoing thrombin-induced aggregation. Both effects were associated to attenuated GTN-induced nitrite formation in platelets supernatants and to prominent nitration of ALDH-2, the GTN to NO metabolizing enzyme, suggesting that GTN tolerance was associated to reduced NO formation via impairment of ALDH-2. These effects were all antagonized by co-incubation of platelets with MnTBAP, which restored GTN-induced responses in tolerant platelets. Comparable effect was found under in in vivo settings. Indeed, MnTBAP (10mg/kg, i.p.) significantly restored the hypotensive effect of bolus injection of GTN in rats made tolerants to organic nitrates via chronic administration of isosorbide-5-mononitrate (IS-5-MN), thus confirming the role of peroxynitrite overproduction in the development of tolerance to vascular responses induced by organic nitrates. In conclusion, oxidative stress subsequent to prolonged use of organic nitrates, which occurs via nitration of ALDH-2, represents a key event

  12. Variability of nitrate and phosphate

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Sundar, D.

    Nitrate and phosphate are important elements of the biogeochemical system of an estuary. Observations carried out during the dry season April-May 2002, and March 2003 and wet season September 2002, show temporal and spatial variability of these two...

  13. A new uranyl phosphate sheet in the crystal structure of furongite

    Energy Technology Data Exchange (ETDEWEB)

    Dal Bo, Fabrice; Hatert, Frederic [Liege Univ. (Belgium). Lab. de Mineralogie; Philippo, Simon [Musee National d' Historie Naturelle, Luxembourg (Luxembourg). Section Mineralogie

    2017-06-15

    The crystal structure of furongite, Al{sub 4}[(UO{sub 2}){sub 4}(PO{sub 4}){sub 6}](OH){sub 2}(H{sub 2}O){sub 19.5}, from the Kobokobo pegmatite, Kivu, Democratic Republic of Congo, was solved for the first time. Furongite is triclinic, the space group P anti 1, Z=2, a = 12.1685(8), b = 14.1579(6), c = 17.7884(6) Aa, α = 79.822(3), β = 77.637(4), γ = 67.293(2) , and V = 2746.2(2)Aa{sup 3}. The crystal structure was refined from single crystal X-ray diffraction data to R{sub 1} = 0.0733 for 7716 unique observed reflections, and to wR{sub 2} = 0.2081 for all 12,538 unique reflections. The structure of furongite contains infinite uranyl phosphate sheets of composition [(UO{sub 2}){sub 4}(PO{sub 4}){sub 6}]{sup 10-} which are parallel to (1 0 1). The sheets are constituted by UrO{sub 5} pentagonal bipyramids and PO{sub 4} tetrahedra which share edges and vertices, and adjacent sheets are linked by a dense network of hydrogen bonds. Running through the sheets and connected mainly to the free apical oxygen atom of PO4 tetrahedra are Al octahedra connected together to form remarkable Al{sub 2}O{sub 5}(OH)(H{sub 2}O){sub 5} and Al{sub 4}O{sub 8}(OH){sub 2}(H{sub 2}O){sub 10} clusters. These Al clusters are only bonded to one sheet, and do not connect two adjacent sheets together. The topology of the uranyl phosphate sheets is related to the uranophane anion topology, and can be described as a new geometrical isomer of the uranophane group. Furongite is the first uranyl phosphate reported in nature with a U:P ratio of 2:3.

  14. Nitrate Reductase: Properties and Regulation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nitrate Reductase (NR) is a rating-limit and key enzyme of nitrate assimilation in plants ,so ,NR activity is important for growth,development and the dry matter accumulation of plants. The regulation of NR activity appears to be rather complex and many studies have been devoted to the description of regulation and properties,but in this paper we focus on the properties and regulation of NR in higher plants.

  15. Headspace Analysis of Ammonium Nitrate

    Science.gov (United States)

    2017-01-25

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--17-9709 Headspace Analysis of Ammonium Nitrate January 25, 2017 Approved for public...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Headspace Analysis of Ammonium Nitrate G...isobutane reagent ion from analysis of ammonia desorbed from packed tungsten oxide sampling tube .................. 18 E-1 Executive Summary The

  16. 21 CFR 172.170 - Sodium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... sablefish, smoked, cured salmon, and smoked, cured shad, so that the level of sodium nitrate does not...

  17. Analysis of uranyl in solution through the formation of luminescent complexes; Analisis de uranilo en solucion mediante la formacion de complejos luminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N.; Ordonez R, E.; Barrera D, C.E. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    The luminescence is one of the techniques used to determine the speciation of those complex that forms the uranyl in the solid-liquid interphase of distinct zirconium phosphates, also has the advantage that it allows to carry out its quantification at mid of high ion forces, because it has been demonstrated that this detection technique and quantification is reliable and sufficiently quick in the obtaining of results. For it that in this work, the quantification of the uranyl is presented by means of a luminescent complex with the aim of phosphates that avoid the fluorescence signal extinction, then the uranyl ion is very sensitive to the medium that contains it (pH, ion force, concentration, etc.) for what was necessary to establish the analysis conditions of the uranyl ion without signal lost, in inferior concentrations to 1X10{sup -3} M at mid of sodium perchlorate 0.5 M. (Author)

  18. Nitrate transport and signalling.

    Science.gov (United States)

    Miller, Anthony J; Fan, Xiaorong; Orsel, Mathilde; Smith, Susan J; Wells, Darren M

    2007-01-01

    Physiological measurements of nitrate (NO(3)(-)) uptake by roots have defined two systems of high and low affinity uptake. In Arabidopsis, genes encoding both of these two uptake systems have been identified. Most is known about the high affinity transport system (HATS) and its regulation and yet measurements of soil NO(3)(-) show that it is more often available in the low affinity range above 1 mM concentration. Several different regulatory mechanisms have been identified for AtNRT2.1, one of the membrane transporters encoding HATS; these include feedback regulation of expression, a second component protein requirement for membrane targeting and phosphorylation, possibly leading to degradation of the protein. These various changes in the protein may be important for a second function in sensing NO(3)(-) availability at the surface of the root. Another transporter protein, AtNRT1.1 also has a role in NO(3)(-) sensing that, like AtNRT2.1, is independent of their transport function. From the range of concentrations present in the soil it is proposed that the NO(3)(-)-inducible part of HATS functions chiefly as a sensor for root NO(3)(-) availability. Two other key NO(3)(-) transport steps for efficient nitrogen use by crops, efflux across membranes and vacuolar storage and remobilization, are discussed. Genes encoding vacuolar transporters have been isolated and these are important for manipulating storage pools in crops, but the efflux system is yet to be identified. Consideration is given to how well our molecular and physiological knowledge can be integrated as well to some key questions and opportunities for the future.

  19. Water quality dynamics and hydrology in nitrate loaded riparian zones in the Netherlands.

    Science.gov (United States)

    Hefting, Mariet; Beltman, Boudewijn; Karssenberg, Derek; Rebel, Karin; van Riessen, Mirjam; Spijker, Maarten

    2006-01-01

    Riparian zones are known to function as buffers, reducing non-point source pollution from agricultural land to streams. In the Netherlands, riparian zones are subject to high nitrogen inputs. We combined hydrological, chemical and soil profile data with groundwater modelling to evaluate whether chronically N loaded riparian zones were still mitigating diffuse nitrate fluxes. Hydraulic parameters and water quality were monitored over 2 years in 50 piezometres in a forested and grassland riparian zone. Average nitrate loadings were high in the forested zone with 87 g NO(3)(-)-N m(-2) y(-1) and significantly lower in the grassland zone with 15 g NO(3)(-)-N m(-2) y(-1). Groundwater from a second aquifer diluted the nitrate loaded agricultural runoff. Biological N removal however occurred in both riparian zones, the grassland zone removed about 63% of the incoming nitrate load, whereas in the forested zone clear symptoms of saturation were visible and only 38% of the nitrate load was removed.

  20. Nitration of soluble proteins in organotypic culture models of Parkinson's disease

    DEFF Research Database (Denmark)

    Larsen, Trine R; Söderling, Ann-Sofi; Caidahl, Kenneth

    2008-01-01

    Protein nitration due to oxidative and nitrative stress has been linked to the pathogenesis of Parkinson's disease (PD), but its relationship to the loss of dopamine (DA) or tyrosine hydroxylase (TH) activity is not clear. Here we quantified protein-bound 3-nitrotyrosine (3-NT) by a novel gas...... toxin 1-methyl-4-phenylpyridinium (MPP(+)) or the lipophilic complex I inhibitor rotenone. Incubation with SIN-1 (24h) or MPP(+) treatments (48h) caused dose-dependent protein nitration reaching a maximum of eightfold increase by 10mM SIN-1 or twofold by 10muM MPP(+), but significant DA depletions...... occurred at much lower concentrations of MPP(+) (1muM). Chronic MPP(+) or rotenone treatments (3 weeks) caused maximum protein nitration by 1muM (twofold) or 10nM (fourfold), respectively. Co-treatment with the nitric oxide synthase inhibitor l-NAME (300muM) prevented protein nitration by MPP(+), but did...

  1. Mechanisms of Chromium and Uranium Toxicity in Pseudomonas stutzeri RCH2 Grown under Anaerobic Nitrate-Reducing Conditions

    Directory of Open Access Journals (Sweden)

    Michael P. Thorgersen

    2017-08-01

    Full Text Available Chromium and uranium are highly toxic metals that contaminate many natural environments. We investigated their mechanisms of toxicity under anaerobic conditions using nitrate-reducing Pseudomonas stutzeri RCH2, which was originally isolated from a chromium-contaminated aquifer. A random barcode transposon site sequencing library of RCH2 was grown in the presence of the chromate oxyanion (Cr[VI]O42− or uranyl oxycation (U[VI]O22+. Strains lacking genes required for a functional nitrate reductase had decreased fitness as both metals interacted with heme-containing enzymes required for the later steps in the denitrification pathway after nitrate is reduced to nitrite. Cr[VI]-resistance also required genes in the homologous recombination and nucleotide excision DNA repair pathways, showing that DNA is a target of Cr[VI] even under anaerobic conditions. The reduced thiol pool was also identified as a target of Cr[VI] toxicity and psest_2088, a gene of previously unknown function, was shown to have a role in the reduction of sulfite to sulfide. U[VI] resistance mechanisms involved exopolysaccharide synthesis and the universal stress protein UspA. As the first genome-wide fitness analysis of Cr[VI] and U[VI] toxicity under anaerobic conditions, this study provides new insight into the impact of Cr[VI] and U[VI] on an environmental isolate from a chromium contaminated site, as well as into the role of a ubiquitous protein, Psest_2088.

  2. Uranyl-selective PVC membrane electrodes based on some recently synthesized benzo-substituted macrocyclic diamides.

    Science.gov (United States)

    Shamsipur, Mojtaba; Soleymanpour, Ahmad; Akhond, Morteza; Sharghi, Hashem; Massah, Ahmad Reza

    2002-08-23

    Four different recently synthesized macrocyclic diamides were studied to characterize their abilities as uranyl ion carriers in PVC membrane electrodes. The electrodes based on macrocycle 1,18-diaza-3,4;15,16-dibenzo-5,8,11,14,21,24-hexaoxacyclohexaeicosane-2,17-dione resulted in a Nernstian response for UO(2)(2+) ion over wide concentration ranges. The linear concentration range for the polymeric membrane electrode (PME) is 3.0x10(-6)-8.2x10(-3) M with a detection limit of 2.2x10(-6) and that for the coated graphite electrode (CGE) is 5.0x10(-7)-1.5x10(-3) M with a detection limit of 3.5x10(-7) M. The electrodes manifest advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations.

  3. Potential remediation approach for uranium-contaminated groundwaters through potassium uranyl vanadate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, T.K.; Kim, Y.; Wan, J.

    2009-06-01

    Methods for remediating groundwaters contaminated with uranium (U) through precipitation under oxidizing conditions are needed because bioreduction-based approaches require indefinite supply of electron donor. Although strategies based on precipitation of some phosphate minerals within the (meta)autunite group have been considered for this purpose, thermodynamic calculations for K- and Ca-uranyl phopsphates, meta-ankoleite and autunite, predict that U concentrations will exceed the Maximum Contaminant Level (MCL = 0.13 {micro}M for U) at any pH and pCO{sub 2}, unless phosphate is maintained at much higher concentrations than the sub-{micro}M levels typically found in groundwaters. We hypothesized that potassium uranyl vanadate will control U(VI) concentrations below regulatory levels in slightly acidic to neutral solutions based on thermodynamic data available for carnotite, K{sub 2}(UO{sub 2}){sub 2}V{sub 2}O8. The calculations indicate that maintaining U concentrations below the MCL through precipitation of carnotite will be sustainable in some oxidizing waters having pH in the range of 5.5 to 7, even when dissolution of this solid phase becomes the sole supply of sub-{micro}M levels of V. Batch experiments were conducted in solutions at pH 6.0 and 7.8, chosen because of their very different predicted extents of U(VI) removal. Conditions were identified where U concentrations dropped below its MCL within 1 to 5 days of contact with oxidizing solutions containing 0.2 to 10 mM K, and 0.1 to 20 {micro}M V(V). This method may also have application in extracting (mining) U and V from groundwaters where they both occur at elevated concentrations.

  4. Structure-configurational entropy and its effect on the thermodynamic stability of uranyl phases: With special application for geological disposal of nuclear waste

    Institute of Scientific and Technical Information of China (English)

    CHEN; Fanrong(陈繁荣); Rodney; C.Ewing

    2003-01-01

    Spent UO2 fuel will rapidly be altered to U6+ phases in nuclear waste repositories. Because most uranyl phases are based on sheet or chain structures and usually contain several molecular water groups, site-mixing, vacancies, as well as disorder in the orientation of hydrogen bonds may occur. A systematic survey of the published crystallographic data for uranates, uranyl oxide hydrates, phosphates, silicates, carbonates, and sulfates demonstrates that site-mixing apparently occurs in the structures of at least 31 uranyl phases. Calculations of the ideal site-mixing entropy indicate that the residual contribution that arises from substitution and vacancies to the third-law entropies of some uranyl phases is large. A brief examination of the crystal chemistry of water molecules in uranyl phases suggests that considerable residual entropy may be caused by the disorder of hydrogen bonds associated with interstitial H2O groups. In the geochemical environment that expected to occur in the near-field of nuclear waste repositories, the existence of structure-configurational entropy may reduce the uranium concentration of several log units in solutions equilibrated with some uranyl phases. Therefore, compositional analysis and structural determinations must be made on the samples used in calorimetric measurements, and the calorimetric data must be combined with solubility data to evaluate the thermodynamic stability of the interested phases.

  5. Sorption of uranyl(VI) cations on suspended silicate: effects of N-donor ligands, carboxylic acids, organic cosolvents, and metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, P.N.; Choppin, G.R. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry

    2007-07-01

    Sorption of uranyl ion, UO{sub 2}{sup 2+}, on silicate particles (3.00g/L) was studied in sodium perchlorate solution as a function of pcH and ionic strength at 298 K. The effects of different ligands (e.g., N-donors, carboxylic acids) on the uranyl sorption were investigated. At I = 0.20 M (NaClO{sub 4}), uranyl sorption on silicate increased from ca. 6% (pcH 3.0) to ca. 99% (at pcH 6.5), above which a small decrease was observed. A synergistic enhancement in uranyl sorption was observed in the presence of N-donor ligands such as 1,10-phenanthroline and ethylenediamine in the pcH range 3 to 4.5 as compared to that in the absence of ligands. Carboxylic acids inhibited the sorption in the order: citric acid > malonic acid > nitrilotriacetic acid > iminodiacetic acid > sulfosalicylic acid > succinic acid > glycolic acid. The presence of organic cosolvents such as dimethylsulfoxide, glycerol and tetrahydrofuran had no significant influence on the uranyl sorption profile. Uranyl sorption decreased marginally in the presence of 1.00 x 10{sup -3} M Eu(III). (orig.)

  6. Effect of the temperature and oxalic acid in the uranyl sorption in zircon; Efecto de la temperatura y acido oxalico en la sorcion de uranilo en circon

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E.; Almazan T, M. G.; Garcia G, N. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Hernandez O, R., E-mail: eduardo.ordonez@inin.gob.mx [Instituto Tecnologico de Veracruz, Ingenieria Quimica, Miguel Angel de Quevedo No. 2779, 91860 Veracruz (Mexico)

    2012-10-15

    In this work the results of the temperature effect study are presented on uranyl solutions adsorbed on zirconium silicate (ZrSiO{sub 4}) and also on the compounds formed in surface with oxalic acid. The adsorption isotherms of uranyl on hydrated zircon with NaClO{sub 4} 0.5 M, show an increase of the uranyl sorption efficiency when increasing the temperature from 20 to 4 C with a sudden descent in this efficiency when changing the temperature at 60 C. The uranyl sorption efficiency increases to hydrate the zircon with a solution of oxalic acid 0.1 M, maintaining the same tendency regarding to the temperatures of the sorption in medium NaClO{sub 4} 0.5 M. The complex formation in the zircon surface with organic acids of low molecular weight increases the fixation of the uranyl in solution due to the formation of ternary systems, in the order Zircon/A. Organic/Uranyl, without altering their response to the temperature. (Author)

  7. Surface modified magnetic Fe{sub 3}O{sub 4} nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Susan, E-mail: ssadeghi@birjand.ac.ir [Department of Chemistry, Faculty of Science, University of Birjand, P.O. Box. 97175/615, Birjand (Iran, Islamic Republic of); Azhdari, Hoda [Department of Chemistry, Faculty of Science, University of Birjand, P.O. Box. 97175/615, Birjand (Iran, Islamic Republic of); Arabi, Hadi [Magnetism and Superconducting Research Lab, Department of Physics, Faculty of Science, University of Birjand, P.O. Box. 97175/615, Birjand (Iran, Islamic Republic of); Moghaddam, Ali Zeraatkar [Department of Chemistry, Faculty of Science, University of Birjand, P.O. Box. 97175/615, Birjand (Iran, Islamic Republic of)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A new sorbent based on functionalized magnetite nanoparticles with quercetin is reported. Black-Right-Pointing-Pointer The quercetin based magnetic nanoparticles could be used as a sorbent to remove toxic uranyl ions from water samples. Black-Right-Pointing-Pointer The sorbent provides a rapidly and easy separation of uranyl ions only by using a permanent magnet. Black-Right-Pointing-Pointer This technique is considered more efficient separation compared to conventional filtering or centrifuging methods for the removing of the sorbent. - Abstract: In this study, silica-coated magnetic nanoparticles modified with quercetin were synthesized by a sol-gel method. These magnetic nanoparticles were assessed as a new solid phase sorbent for extraction of uranyl ions from aqueous solutions. The crystal and chemical structures and magnetic property of the new sorbent were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectrophotometer (FT-IR), and vibration sample magnetometer (VSM). The experimental parameters affecting the extraction efficiency of uranyl ions from aqueous solutions using the synthesized sorbent were optimized by means of the response surface methodology. The adsorption equilibrium of uranyl ions onto the sorbent was explained by Langmuir isotherm and maximum monolayer adsorption capacity was found 12.33 mg/g. The synthesized sorbent was applied to extraction of uranyl ions from different water samples.

  8. Workgroup report: Drinking-water nitrate and health - Recent findings and research needs

    Science.gov (United States)

    Ward, M.H.; deKok, T.M.; Levallois, P.; Brender, J.; Gulis, G.; Nolan, B.T.; VanDerslice, J.

    2005-01-01

    Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered.

  9. Workgroup Report: Drinking-Water Nitrate and Health—Recent Findings and Research Needs

    Science.gov (United States)

    Ward, Mary H.; deKok, Theo M.; Levallois, Patrick; Brender, Jean; Gulis, Gabriel; Nolan, Bernard T.; VanDerslice, James

    2005-01-01

    Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered. PMID:16263519

  10. Nitrate causes deleterious effects on the behaviour and reproduction of the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca).

    Science.gov (United States)

    Álonso, Alvaro; Camargo, Julio A

    2013-08-01

    Nitrate (NO3 (-)) is present in aquatic ecosystems as a natural component of the nitrogen cycle. However, in the last decades, several human activities are the causes of the rising amounts of organic matter and inorganic nitrogen nutrients in aquatic ecosystems, causing notable increase of nitrate above background natural levels. In spite of the toxicity of nitrate to aquatic animals, there are relatively few studies on the chronic toxicity of this compound to invertebrates. The aim of our study is to assess the effect of chronic (35 days) exposure to nitrate on the behaviour (velocity of movement) and reproduction (number of newborns) of the aquatic snail Potamopyrgus antipodarum. Four actual concentrations of nitrate were used (21.4, 44.9, 81.8 and 156.1 mg N-NO3 (-)/L). In each treatment, 12 animals were individually monitored for velocity (weekly) and newborn production (every 3-4 days). Velocity was recorded using quantitative video monitoring. Our results showed that nitrate did not cause mortality, but it reduced the velocity of movement (at 44.9, 81.8 and 156.1 mg N-NO3 (-)/L) and number of live newborns (in all tested concentrations). Reproductive impairment was caused at realistic nitrate concentrations which is relevant to the risk assessment of this compound. Our study contributes to the knowledge of the chronic effects of nitrate on the behaviour and reproduction of an aquatic snail.

  11. Development and validation of mathematical methods for the evaluation of spectroscopic data of uranyl (VI) hxdrolysis; Entwicklung und Validierung mathematischer Methoden zur Auswertung spektroskopischer Daten der Uranyl(VI)-Hydrolyse

    Energy Technology Data Exchange (ETDEWEB)

    Drobot, Bjoern

    2016-08-18

    The availability of metals in the biosphere is determined by the chemical state. Spectroscopic methods are appropriate for the analysis of speciation - the problem is the data processing. In the frame of the thesis the use of the software PARAFAC was used to analyze the excitation spectra of uranyl (VI) hydrolysis. It was shown that modern mathematical tools are essential for the data processing. The range of applicability covers deprotonation processes up to complex biochemical processes.

  12. Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases.

    Science.gov (United States)

    Omar, S A; Webb, A J; Lundberg, J O; Weitzberg, E

    2016-04-01

    Nitric oxide (NO) is generated endogenously by NO synthases to regulate a number of physiological processes including cardiovascular and metabolic functions. A decrease in the production and bioavailability of NO is a hallmark of many major chronic diseases including hypertension, ischaemia-reperfusion injury, atherosclerosis and diabetes. This NO deficiency is mainly caused by dysfunctional NO synthases and increased scavenging of NO by the formation of reactive oxygen species. Inorganic nitrate and nitrite are emerging as substrates for in vivo NO synthase-independent formation of NO bioactivity. These anions are oxidation products of endogenous NO generation and are also present in the diet, with green leafy vegetables having a high nitrate content. The effects of nitrate and nitrite are diverse and include vasodilatation, improved endothelial function, enhanced mitochondrial efficiency and reduced generation of reactive oxygen species. Administration of nitrate or nitrite in animal models of cardiovascular disease shows promising results, and clinical trials are currently ongoing to investigate the therapeutic potential of nitrate and nitrite in hypertension, pulmonary hypertension, peripheral artery disease and myocardial infarction. In addition, the nutritional aspects of the nitrate-nitrite-NO pathway are interesting as diets suggested to protect against cardiovascular disease, such as the Mediterranean diet, are especially high in nitrate. Here, we discuss the potential therapeutic opportunities for nitrate and nitrite in prevention and treatment of cardiovascular and metabolic diseases.

  13. Actinide-Transition Metal heteronuclear Ions and Their Oxides: {IrUO}+ as an Analogue to Uranyl

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, John K [ORNL

    2006-01-01

    Recent theoretical calculations have shown that Ir should behave as a chemical analogue to N, with the result that IrUO{sup +}, like known NUO{sup +}, is predicted to be a stable species isoelectronic with UO{sub 2}{sup 2+}, the uranyl dication. The target heterometallic analogue to uranyl has now been prepared by direct laser desorption/ionization of a U/Ir alloy, and by oxidation of UIr{sup +} with N{sub 2}O and C{sub 2}H{sub 4}O. Properties of UIr{sup +}, UPt{sup +}, and UAu{sup +} bimetallic ions have been studied. They demonstrate direct actinide-transition metal bonding, and support the concept of autogenic isolobality.

  14. Structural determination of some uranyl compounds by vibrational spectroscopy; Determinacion estructural de algunos compuestos de uranilo por espectroscopia vibracional

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez S, A.; Martinez Q, E

    1990-07-15

    The vibrational spectra of different uranyl compounds has been studied and of it spectral information has been used the fundamental asymmetric vibrational frequency, to determine the length and constant bond force U=O by means of the combination of the concept of absorbed energy and the mathematical expression of Badger modified by Jones. It is intended a factor that simplifies the mathematical treatment and the results are compared with the values obtained for other methods. (Author)

  15. Role of aqueous sulfide and sulfate-reducing bacteria in the kinetics and mechanisms of the reduction of uranyl ion

    Energy Technology Data Exchange (ETDEWEB)

    Mohagheghi, A.

    1985-01-01

    Formation of sedimentary rock-hosted uranium ore deposits is thought to have resulted from the reduction by aqueous sulfide species of relatively soluble uranyl ion (U(VI)) to insoluble uranium(IV) oxides and silicates. The origin of this H/sub 2/S in such deposits can be either biogenic or abiogenic. Therefore, the kinetics and mechanism of uranyl ion reduction by aqueous sulfide, and the effect of several key variables on the reduction process in non-bacterial (sterile) systems was studied. The role of both pure and mixed cultures of sulfate-reducing bacteria on the reduction process was also investigated. In sterile systems the reduction reaction generally occurred by a two step reaction sequence. Uranium(V) (as UO/sub 2//sup +/) and U(IV) (as UO/sub 2/ the mineral uraninite) were the intermediate and final products, respectively. The initial concentration of uranyl ion required for reaction initiation had a minimum value of 0.8 ppm at pH 7, and was higher at pH values less than or greater than 7. An induction period was observed in all experiments. No reduction was observed after 8 hours at pH 8. Although increasing ionic strength increased the length of the induction period, it also increased the rate of the reduction of UO/sub 2//sup +/ in the second step. No reaction was observed under any experimental conditions with initial UO/sub 2//sup 2 +/ concentration less than 0.1 ppm, which is thought to be typical for ore forming solutions. However, by absorbing uranyl ion onto kaolinite, the reduction by H/sub 2/S occurred at lower UO/sub 2//sup 2 +/ concentrations (approx. 0.1 ppm) in that in the homogeneous system. Thus, adsorption may play a significant role in the reduction and therefore in the formation of ore deposits.

  16. SHINE and Mini-SHINE Column Designs for Recovery of Mo from 140 g-U/L Uranyl Sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Dominique C. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    Argonne is assisting SHINE Medical Technologies (SHINE) in their efforts to develop an accelerator-driven process that utilizes a uranyl-sulfate solution for the production of fission Mo-99. In an effort to design a Mo-recovery system for the SHINE project using low-enriched uranium (LEU), we conducted batch, breakthrough, and pulse tests to determine the Mo isotherm, mass-transfer zone (MTZ), and system parameters for a 130 g-U/L uranyl sulfate solution at pH 1 and 80°C, as described previously. The VERSE program was utilized to calculate the MTZ under various loading times and velocities. The results were then used to design Mo separation and recovery columns employing a pure titania sorbent (110-μm particles, S110, and 60 Å pore size). The plant-scale column designs assume Mo will be separated from 271 L of a 141 g-U/L uranyl sulfate solution, pH 1, containing 0.0023 mM Mo. The VERSE-designed recovery systems have been tested and verified in laboratory-scale experiments, and this approach was found to be very successful.

  17. Short-term effects of a high nitrate diet on nitrate metabolism in healthy individuals.

    Science.gov (United States)

    Bondonno, Catherine P; Liu, Alex H; Croft, Kevin D; Ward, Natalie C; Puddey, Ian B; Woodman, Richard J; Hodgson, Jonathan M

    2015-03-12

    Dietary nitrate, through the enterosalivary nitrate-nitrite-NO pathway, can improve blood pressure and arterial stiffness. How long systemic nitrate and nitrite remain elevated following cessation of high nitrate intake is unknown. In 19 healthy men and women, the time for salivary and plasma nitrate and nitrite to return to baseline after 7 days increased nitrate intake from green leafy vegetables was determined. Salivary and plasma nitrate and nitrite was measured at baseline [D0], end of high nitrate diet [D7], day 9 [+2D], day 14 [+7D] and day 21 [+14D]. Urinary nitrite and nitrate was assessed at D7 and +14D. Increased dietary nitrate for 7 days resulted in a more than fourfold increase in saliva and plasma nitrate and nitrite (p nitrate had returned to baseline while saliva nitrate and nitrite were more than 1.5 times higher than at baseline levels. By [+7D] all metabolites had returned to baseline levels. The pattern of response was similar between men and women. Urinary nitrate and nitrate was sevenfold higher at D7 compared to +14D. These results suggest that daily ingestion of nitrate may be required to maintain the physiological changes associated with high nitrate intake.

  18. Efficiency of nitrate uptake in spinach : impact of external nitrate concentration and relative growth rate on nitrate influx and efflux

    NARCIS (Netherlands)

    Ter Steege, MW; Stulen, [No Value; Wiersema, PK; Posthumus, F; Vaalburg, W

    1999-01-01

    Regulation of nitrate influx and efflux in spinach (Spinacia oleracea L., cv. Subito), was studied in short-term label experiments with N-13- and N-15-nitrate. Nitrate fluxes were examined in relation to the N demand for growth, defined as relative growth rate (RGR) times plant N concentration. Plan

  19. Metal nitrate conversion method, patent application

    NARCIS (Netherlands)

    2008-01-01

    A method for converting a supported metal nitrate into the corresponding supported metal comprises heating the metal nitrate to effect its decomposition under a gas mixture that contains nitric oxide and has an oxygen content of

  20. 76 FR 62311 - Ammonium Nitrate Security Program

    Science.gov (United States)

    2011-10-07

    ... to best notify agents (AN Agents) when ammonium nitrate purchasers (AN Purchasers) submit those AN... directly to ammonium nitrate sellers (AN Sellers) when it is not possible for an AN Seller to verify the...

  1. Structures and luminescent properties of new uranyl-based hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Severance, R.C.; Vaughn, S.A.; Smith, M.D.; Hans-Conrad zur, Loye [Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208 (United States)

    2011-06-15

    Six uranyl coordination compounds, UO{sub 2}(OH)(PYCA) (1), UO{sub 2}(PYCA){sub 2}(H{sub 2}O).2H{sub 2}O (2), UO{sub 2}(PIC){sub 2} (3), UO{sub 2}(H{sub 2}O){sub 2}(NIC){sub 2} (4), UO{sub 2}(OH)(HINIC)(INIC) (5), and UO{sub 2}(PYTAC){sub 2}(H{sub 2}O){sub 2} (6) were grown as single crystals via hydrothermal synthesis (PYCA - pyrazine-2-carboxylate, PIC - picolinate, NIC - nicotinate, INIC - iso-nicotinate, and PYTAC - 2-(pyridin-4-yl)thiazole-5-carboxylate) to study their optical properties. All six compounds have been identified via single crystal X-ray diffraction and fully characterized via powder X-ray diffraction, infrared spectroscopy, UV-Vis spectroscopy, and fluorescence spectroscopy. Three of the complexes, 1, 3, and 6, represent new structures, and their synthesis and structural characterization is detailed within. The structures of 2, 4, and 5 have previously been reported in the literature. Coordination polymer 1 crystallizes in the orthorhombic space group Pca21 (a = 13.5476(5) Angstroms, b = 6.6047(2) Angstroms, c = 8.3458(3) Angstroms), and forms infinite 1-D chains of corner-sharing uranium polyhedra connected into 2-D layers by bridging ligands. Coordination polymer 3 crystallizes in the monoclinic space group Cc (a = 8.4646(8) Angstroms, b = 13.0357(11) Angstroms, c = 11.8955(10) Angstroms, {beta} = 96.815(2) degrees), and forms ligand-bridged 1-D chains. Complex 6 crystallizes in the triclinic space group P-1 (a = 5.6272(7) Angstroms, b = 8.9568(10) Angstroms, c = 10.4673(12) Angstroms, {alpha} 90.508(2) degrees, {beta} = 104.194(2) degrees, {gamma} = 91.891(2) Angstroms), and consists of isolated uranyl complexes connected via hydrogen bonds. The structures and luminescent properties of UO{sub 2}(OH)(PYCA) (1), UO{sub 2}(PYCA){sub 2}(H{sub 2}O).2H{sub 2}O (2), UO{sub 2}(PIC){sub 2} (3), UO{sub 2}(H{sub 2}O){sub 2}(NIC){sub 2} (4), UO{sub 2}(OH)(HINIC)(INIC) (5), and UO{sub 2}(PYTAC){sub 2}(H{sub 2}O){sub 2} (6) are discussed. (authors)

  2. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, B.D.; Amos, R.T.; Nico, P.S.; Fendorf, S.

    2010-03-15

    Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates its partitioning between the aqueous- and solid-phases, and thus controls its dissolved concentration and, coupled with groundwater flow, its migration within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO{sub 2}{sup 2+} and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO{sub 2}. However, various factors within soils and sediments may limit biological reduction of U(VI), inclusive of alterations in U(VI) speciation and competitive electron acceptors. Here we elucidate the impact of U(VI) speciation on the extent and rate of reduction with specific emphasis on speciation changes induced by dissolved Ca, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite and hematite) varying in free energies of formation on U reduction. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% with no Ca or ferrihydrite present but only 24% (with ferrihydrite) and 14% (no ferrihydrite) were removed for systems with 0.8 mM Ca. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Dissimilatory reduction of Fe(III) and U(VI) can proceed through different enzyme pathways, even within a single organism, thus providing a potential second means by which Fe(III) bearing minerals may impact U(VI) reduction. We quantify rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concentration (0 to 0.8 mM), and using a mathematical construct implemented with the reactive transport code MIN3P, we reveal the predominant influence of uranyl speciation, specifically the formation of uranyl

  3. Nitrate Removal from Ground Water: A Review

    OpenAIRE

    Archna *; Surinder K. Sharma; Ranbir Chander Sobti

    2012-01-01

    Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion ex...

  4. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  5. Nitrate tolerance impairs nitric oxide-mediated vasodilation in vivo

    DEFF Research Database (Denmark)

    Laursen, Jørn Bech; Boesgaard, Søren; Poulsen, Henrik E.;

    1996-01-01

    Nitrates, Nitrate tolerence, Nitric oxide, acetylcholine, N-acetylcholine, N-acetylcysteine, L-NAME, Rat, Anesthetized......Nitrates, Nitrate tolerence, Nitric oxide, acetylcholine, N-acetylcholine, N-acetylcysteine, L-NAME, Rat, Anesthetized...

  6. Nitration of Naphthol: A Laboratory Experiment.

    Science.gov (United States)

    Mowery, Dwight F.

    1982-01-01

    Products of nitrations, upon distillation or steam distillation, may produce dermatitis in some students. A procedure for nitration of beta-naphthol producing a relatively non-volatile product not purified by steam distillation is described. Nitration of alpha-naphthol by the same procedure yields Martius Yellow dye which dyes wool yellow or…

  7. 76 FR 11273 - Ammonium Nitrate From Russia

    Science.gov (United States)

    2011-03-01

    ... COMMISSION Ammonium Nitrate From Russia AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the suspended investigation on ammonium nitrate from Russia... investigation on ammonium nitrate from Russia would be likely to lead to continuation or recurrence of...

  8. 76 FR 47238 - Ammonium Nitrate From Russia

    Science.gov (United States)

    2011-08-04

    ... COMMISSION Ammonium Nitrate From Russia Determination On the basis of the record \\1\\ developed in the subject... order on ammonium nitrate from Russia would be likely to lead to continuation or recurrence of material... Commission are contained in USITC Publication 4249 (August 2011), entitled Ammonium Nitrate from...

  9. 21 CFR 172.160 - Potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a...

  10. The Influence of Linker Geometry on Uranyl Complexation by Rigidly-Linked Bis(3-hydroxy-N-methyl-pyridin-2-one)

    Energy Technology Data Exchange (ETDEWEB)

    Szigethy, Geza; Raymond, Kenneth

    2010-04-22

    A series of bis(3-hydroxy-N-methyl-pyridin-2-one) ligands was synthesized, and their respective uranyl complexes were characterized by single crystal X-ray diffraction analyses. These structures were inspected for high-energy conformations and evaluated using a series of metrics to measure co-planarity of chelating moieties with each other and the uranyl coordination plane, as well as to measure coordinative crowding about the uranyl dication. Both very short (ethyl, 3,4-thiophene and o-phenylene) and very long ({alpha},{alpha}{prime}-m-xylene and 1,8-fluorene) linkers provide optimal ligand geometries about the uranyl cation, resulting in planar, unstrained molecular arrangements. The planarity of the rigid linkers also suggests there is a degree of pre-organization for a planar coordination mode that is ideal for uranyl-selective ligand design. Comparison of intramolecular N{sub amide}-O{sub phenolate} distances and {sup 1}H NMR chemical shifts of amide protons supports earlier results that short linkers provide the optimal geometry for intramolecular hydrogen bonding.

  11. Negative feedback loops leading to nitrate homeostasis and oscillatory nitrate assimilation in plants and fungi.

    OpenAIRE

    Huang, Yongshun

    2011-01-01

    Nitrate is an important nutrient for plants and fungi. For plants it has been shown that cytosolic nitrate levels are under homeostatic control. Here we describe two networks that can obtain robust, i.e. perturbation independent, homeostatic behavior in cytosolic nitrate concentration. One of the networks, a member in the family of outflow controllers, is based on a negative feedback loop containing a nitrate-induced activation of a controller molecule which removes nitrate. In plants this co...

  12. Sorption of strontium on uranyl peroxide: implications for a high-level nuclear waste repository.

    Science.gov (United States)

    Sureda, Rosa; Martínez-Lladó, Xavier; Rovira, Miquel; de Pablo, Joan; Casas, Ignasi; Giménez, Javier

    2010-09-15

    Strontium-90 is considered the most important radioactive isotope in the environment and one of the most frequently occurring radionuclides in groundwaters at nuclear facilities. The uranyl peroxide studtite (UO2O2 . 4H2O) has been observed to be formed in spent nuclear fuel leaching experiments and seems to have a relatively high sorption capacity for some radionuclides. In this work, the sorption of strontium onto studtite is studied as a function of time, strontium concentration in solution and pH. The main results obtained are (a) sorption is relatively fast although slower than for cesium; (b) strontium seems to be sorbed via a monolayer coverage of the studtite surface, (c) sorption has a strong dependence on ionic strength, is negligible at acidic pH, and increases at neutral to alkaline pH (almost 100% of the strontium in solution is sorbed above pH 10). These results point to uranium secondary solid phase formation on the spent nuclear fuel as an important mechanism for strontium retention in a high-level nuclear waste repository (HLNW).

  13. Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jian; Wang, Yaxing; Liu, Wei; Yin, Xuemiao; Chen, Lanhua; Diwu, Juan; Chai, Zhifang; Wang, Shuao [School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Zou, Youming [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui (China); Albrecht-Schmitt, Thomas E. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL (United States); Liu, Guokui [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-19

    Precise detection of low-dose X- and γ-radiations remains a challenge and is particularly important for studying biological effects under low-dose ionizing radiation, safety control in medical radiation treatment, survey of environmental radiation background, and monitoring cosmic radiations. We report here a photoluminescent uranium organic framework, whose photoluminescence intensity can be accurately correlated with the exposure dose of X- or γ-radiations. This allows for precise and instant detection of ionizing radiations down to the level of 10{sup -4} Gy, representing a significant improvement on the detection limit of approximately two orders of magnitude, compared to other chemical dosimeters reported up to now. The electron paramagnetic resonance analysis suggests that with the exposure to radiations, the carbonyl double bonds break affording oxo-radicals that can be stabilized within the conjugated uranium oxalate-carboxylate sheet. This gives rise to a substantially enhanced equatorial bonding of the uranyl(VI) ions as elucidated by the single-crystal structure of the γ-ray irradiated material, and subsequently leads to a very effective photoluminescence quenching through phonon-assisted relaxation. The quenched sample can be easily recovered by heating, enabling recycled detection for multiple runs. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Uranyl-specific binding at a functionalised interface: a chemophotonic fibre optic sensor platform.

    Science.gov (United States)

    Hayes, Neil W; Tremlett, Clare J; Melfi, Patricia J; Sessler, Jonathon D; Shaw, Andrew M

    2008-05-01

    Detection of radiological materials in the solution phase is restricted by conventional radiation-counting techniques owing to extreme attenuation. Chemical sensing of the resultant radiological species such as uranyl UO(2)(2+) is possible on the surface of a plastic or glass fibre optic. A dihydroxy isoamethryin complex is tethered to the fibre surface which has a large extinction coefficient (119 000 M(-1) cm(-1) at lambda = 439 nm) and changes colour upon binding UO(2)(2+). The spectral changes are greater on the surface than in solution and binding is specific to UO(2)(2+) with small interferences from Gd(3+). Monitoring the spectral response in three detector bands in the red, green and blue enable the optical power change to be measured with sensitivities of 1 mdB, allowing UO(2)(2+) to be detected confidently at 50-100 ppb levels. Real-time kinetic analysis enables discrimination between the target species and possible interferents.

  15. Synthesis, structural investigation and kinetic studies of uranyl(VI) unsymmetrical Schiff base complexes

    Indian Academy of Sciences (India)

    Zahra Asadi; Mozaffar Asadi; Azade Zeinali; Mohammad Ranjkeshshorkaei; Karla Fejfarova; Vaclav Eigner; Michal Dusek; Aliakbar Dehnokhalaji

    2014-11-01

    Uranyl(VI) complexes with unsymmetrical N2O2 Schiff base ligands were synthesized and characterized. Their characterization was performed using UV-Vis, 1H NMR, cyclic voltammetry, single-crystal X-ray crystallography, IR, TG and C.H.N. techniques. X-ray crystallography of the complexes show that beside coordination of the tetradentate Schiff base, one DMF molecule is also coordinated. In order to investigate the effect of the substitutional groups of the Schiff base on the oxidation and reduction potentials, we used the cyclic voltammetry method. Electrochemistry of these complexes showed that the presence of electron releasing groups accelerates oxidation of the complexes. The kinetics of thermal decomposition was studied using thermal gravimetric method (TG) and Coats-Redfern equation. According to Coats-Redfern plots, the kinetics of thermal decomposition of the studied complexes is first-order in all stages. Also the kinetics and mechanism of the exchange reaction of the coordinated solvent with tributylphosphine was carried out in solution, using spectrophotometric method. As a result, the second order rate constants at four temperatures and the activation parameters were calculated showing an associative mechanism for all corresponding complexes. It was concluded that the steric and the electronic properties of the complexes influence the reaction rate significantly.

  16. Structural, mechanical and vibrational study of uranyl silicate mineral soddyite by DFT calculations

    Science.gov (United States)

    Colmenero, Francisco; Bonales, Laura J.; Cobos, Joaquín; Timón, Vicente

    2017-09-01

    Uranyl silicate mineral soddyite, (UO2)2(SiO4)·2(H2O), is a fundamental component of the paragenetic sequence of secondary phases that arises from the weathering of uraninite ore deposits and corrosion of spent nuclear fuel. In this work, soddyite was studied by first principle calculations based on the density functional theory. As far as we know, this is the first time that soddyite structure is determined theoretically. The computed structure of soddyite reproduces the one determined experimentally by X-Ray diffraction (orthorhombic symmetry, spatial group Fddd O2; lattice parameters a = 8.334 Å, b = 11.212 Å; c = 18.668 Å). Lattice parameters, bond lengths, bond angles and X-Ray powder pattern were found to be in very good agreement with their experimental counterparts. Furthermore, the mechanical properties were obtained and the satisfaction of the Born conditions for mechanical stability of the structure was demonstrated by means of calculations of the elasticity tensor. The equation of state of soddyite was obtained by fitting lattice volumes and pressures to a fourth order Birch-Murnahan equation of state. The Raman spectrum was also computed by means of density functional perturbation theory and compared with the experimental spectrum obtained from a natural soddyite sample. The results were also found in agreement with the experimental data. A normal mode analysis of the theoretical spectra was carried out and used in order to assign the main bands of the Raman spectrum.

  17. A new low temperature route to uranyl borates with structural variations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shijun [Kiel Univ. (Germany). Inst. fuer Geowissenschaften; Chinese Academy of Sciences, Guangzhou (China). Guangzhou Inst. of Geochemistry; Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie- und Klimaforschung (IEK-6); Wang, Shuao [Notre Dame Univ., IN (United States). Dept. of Civil Engineering and Geological Sciences; Notre Dame Univ., IN (United States). Dept. of Chemistry and Biochememistry; Lawrence Berkeley Lab., Berkeley, CA (United States). Actinide Chemistry Group; California Univ., Berkeley, CA (United States). Dept. of Chemistry; Polinski, Matthew J. [Notre Dame Univ., IN (United States). Dept. of Civil Engineering and Geological Sciences; Notre Dame Univ., IN (United States). Dept. of Chemistry and Biochememistry; Depmeier, Wulf [Kiel Univ. (Germany). Inst. fuer Geowissenschaften; Albrecht-Schmitt, Thomas E. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Alekseev, Evgeny V. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie- und Klimaforschung (IEK-6); RWTH Aachen Univ. (Germany). Inst. fuer Kristallographie

    2013-10-01

    Three new uranyl borates, K(UO{sub 2})(BO{sub 3}) (1), Rb(UO{sub 2})(BO{sub 3}) (2) and Cs(UO{sub 2})(BO{sub 3}) (3) have been prepared using B{sub 2}O{sub 3} fluxes at 1000 C. 1 and 3 can also be synthesized using potassium tetraborate tetrahydrate as a molten flux at 290 C, which provides a new low temperature route to prepare actinide borates. 1 possesses an a-uranophane anion sheet topology identical to that in the previously reported compounds Li(UO{sub 2})(BO{sub 3}) and Na(UO{sub 2})(BO3). 2 and 3 display a new [UO{sub 5}]{sub 1{infinity}} anion topology with a basic building block of edge-sharing dimers comprised of (UO{sub 7}){sub 2} polyhedra. The A(UO{sub 2})(BO{sub 3}) (A = alkali metal) series shows a systematic structural evolution, which will be discussed in the main text. (orig.)

  18. Improvement of the cloud point extraction of uranyl ions by the addition of ionic liquids.

    Science.gov (United States)

    Gao, Song; Sun, Taoxiang; Chen, Qingde; Shen, Xinghai

    2013-12-15

    The cloud point extraction (CPE) of uranyl ions by different kinds of extractants in Triton X-114 (TX-114) micellar solution was investigated upon the addition of ionic liquids (ILs) with various anions, i.e., bromide (Br(-)), tetrafluoroborate (BF4(-)), hexafluorophosphate (PF6(-)) and bis[(trifluoromethyl)sulfonyl]imide (NTf2(-)). A significant increase of the extraction efficiency was found on the addition of NTf2(-) based ILs when using neutral extractant tri-octylphosphine oxide (TOPO), and the extraction efficiency kept high at both nearly neutral and high acidity. However, the CPE with acidic extractants, e.g., bis(2-ethylhexyl) phosphoric acid (HDEHP) and 8-hydroxyquinoline (8-HQ) which are only effective at nearly neutral condition, was not improved by ILs. The results of zeta potential and (19)F NMR measurements indicated that the anion NTf2(-) penetrated into the TX-114 micelles and was enriched in the surfactant-rich phase during the CPE process. Meanwhile, NTf2(-) may act as a counterion in the CPE of UO2(2+) by TOPO. Furthermore, the addition of IL increased the separation factor of UO2(2+) and La(3+), which implied that in the micelle TOPO, NTf2(-) and NO3(-) established a soft template for UO2(2+). Therefore, the combination of CPE and IL provided a supramolecular recognition to concentrate UO2(2+) efficiently and selectively.

  19. Capture chromatography for Mo-99 recovery from uranyl sulfate solutions: minimum-column-volume design method.

    Science.gov (United States)

    Ling, Lei; Chung, Pei-Lun; Youker, Amanda; Stepinski, Dominique C; Vandegrift, George F; Wang, Nien-Hwa Linda

    2013-09-27

    Molybdenum-99 (Mo-99), generated from the fission of Uranium-235 (U-235), is the radioactive parent of the most widely used medical isotope, technetium-99m (Tc-99m). An efficient, robust, low-pressure process is developed for recovering Mo-99 from uranyl sulfate solutions. The minimum column volume and the maximum column length for required yield, pressure limit, and loading time are determined using a new graphical method. The method is based on dimensionless groups and intrinsic adsorption and diffusion parameters, which are estimated using a small number of experiments and simulations. The design is tested with bench-scale experiments with titania columns. The results show a high capture yield and a high stripping yield (95±5%). The design can be adapted to changes in design constraints or the variations in feed concentration, feed volume, or material properties. The graph shows clearly how the column utilization is affected by the required yield, loading time, and pressure limit. The cost effectiveness of various sorbent candidates can be evaluated based on the intrinsic parameters. This method can be used more generally for designing other capture chromatography processes. Published by Elsevier B.V.

  20. Oxo Ligand Substitution in a Cationic Uranyl Complex: Synergistic Interaction of an Electrophile and a Reductant.

    Science.gov (United States)

    Pedrick, Elizabeth A; Wu, Guang; Hayton, Trevor W

    2015-07-20

    Reaction of [U(VI)O2(dppmo)2(OTf)][OTf] (dppmo = Ph2P(O)CH2P(O)Ph2) with 4 equiv of Ph3SiOTf and 2 equiv of Cp2Co generates the U(IV) complex U(IV)(OTf)4(dppmo)2 (1), as a yellow-green crystalline solid in 83% yield, along with Ph3SiOSiPh3 and [Cp2Co][OTf]. This reaction proceeds via a U(IV) silyloxide intermediate, [U(IV)(OSiPh3)(dppmo)2(OTf)2][OTf] (2), which we have isolated and structurally characterized. Similarly, reaction of [U(VI)O2(TPPO)4][OTf]2 (TPPO = Ph3PO) with 6 equiv of Me3SiOTf and 2 equiv of Cp2Co generates the U(IV) complex, [Cp2Co][U(IV)(OTf)5(TPPO)2] (3), as a yellow-green crystalline solid in 76% yield, concomitant with formation of Me3SiOSiMe3, [Ph3POSiMe3][OTf], and [Cp2Co][OTf]. Complexes 1 and 3 have been fully characterized, including analysis by X-ray crystallography. The conversion of [U(VI)O2(dppmo)2(OTf)][OTf] and [U(VI)O2(TPPO)4][OTf]2 to complexes 1 and 3, respectively, represents rare examples of well-defined uranyl oxo ligand substitution.

  1. Continuous flow nitration in miniaturized devices.

    Science.gov (United States)

    Kulkarni, Amol A

    2014-01-01

    This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed.

  2. Continuous flow nitration in miniaturized devices

    Directory of Open Access Journals (Sweden)

    Amol A. Kulkarni

    2014-02-01

    Full Text Available This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed.

  3. Nitrate metabolism in the gromiid microbial universe

    DEFF Research Database (Denmark)

    Høgslund, Signe; Risgaard-Petersen, Nils; Cedhagen, Tomas

    Eukaryotic nitrate respiration supported by intracellular nitrate storages contributes substantially to the nitrogen cycle. Research focus is currently directed towards two phyla: Foraminifera and diatoms, but the widespread Gromia in the Rhizaria may be another key organism. These giant protists...... enclose and regulate a small biogeochemical universe within their cell. Their transparent proteinaceous cell wall surrounds a complex matrix consisting of sediment, bacteria and nitrate which is concentrated to hundreds of mM in the gromiid cell. The nitrate is respired to dinitrogen, but in contrast...... to the findings of eukaryotic mediated nitrate reduction in some foraminifera and diatoms, nitrate respiration in gromiids seems to be mediated by bacterial endosymbionts. The role of endobionts in nitrate accumulating eukaryotes is of fundamental importance for understanding the evolutionary path...

  4. Phase diagram of ammonium nitrate

    Science.gov (United States)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  5. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Science.gov (United States)

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  6. 2-Amino-5-chloropyridinium nitrate

    Directory of Open Access Journals (Sweden)

    Donia Zaouali Zgolli

    2009-11-01

    Full Text Available The title structure, C5H6ClN2+·NO3−, is held together by extensive hydrogen bonding between the NO3− ions and 2-amino-5-chloropyridinium H atoms. The cation–anion N—H...O hydrogen bonds link the ions into a zigzag- chain which develops parallel to the b axis. The structure may be compared with that of the related 2-amino-5-cyanopyridinium nitrate.

  7. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    Directory of Open Access Journals (Sweden)

    F. Paulot

    2015-09-01

    Full Text Available We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL atmospheric model (AM3. Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 % or in the uptake of nitric acid on dust (13 %. Our best estimate for present-day fine nitrate optical depth at 550 nm is 0.006 (0.005–0.008. We only find a modest increase of nitrate optical depth (2 (−40 % and ammonia (+38 % from 2010 to 2050. Nitrate burden is projected to increase in the tropics and in the free troposphere, but to decrease at the surface in the midlatitudes because of lower nitric acid concentrations. Our results suggest that better constraints on the heterogeneous chemistry of nitric acid on dust, on tropical ammonia emissions, and on the transport of ammonia to the free troposphere are needed to improve projections of aerosol optical depth.

  8. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    Science.gov (United States)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.-Y.; Mao, J.; Naik, V.; Horowitz, L. W.

    2016-02-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for fine nitrate optical depth at 550 nm in 2010 is 0.006 (0.005-0.008). In wintertime, nitrate aerosols are simulated to account for over 30 % of the aerosol optical depth over western Europe and North America. Simulated nitrate optical depth increases by less than 30 % (0.0061-0.010) in response to projected changes in anthropogenic emissions from 2010 to 2050 (e.g., -40 % for SO2 and +38 % for ammonia). This increase is primarily driven by greater concentrations of nitrate in the free troposphere, while surface nitrate concentrations decrease in the midlatitudes following lower concentrations of nitric acid. With the projected increase of ammonia emissions, we show that better constraints on the vertical distribution of ammonia (e.g., convective transport and biomass burning injection) and on the sources and sinks of nitric acid (e.g., heterogeneous reaction on dust) are needed to improve estimates of future nitrate optical depth.

  9. Alkali-metal ion coordination in uranyl(VI) poly-peroxo complexes in solution, inorganic analogues to crown-ethers. Part 2. Complex formation in the tetramethyl ammonium-, Li(+)-, Na(+)- and K(+)-uranyl(VI)-peroxide-carbonate systems.

    Science.gov (United States)

    Zanonato, Pier Luigi; Szabó, Zoltán; Vallet, Valerie; Di Bernardo, Plinio; Grenthe, Ingmar

    2015-10-01

    The constitution and equilibrium constants of ternary uranyl(vi) peroxide carbonate complexes [(UO2)p(O2)q(CO3)r](2(p-q-r)) have been determined at 0 °C in 0.50 M MNO3, M = Li, K, and TMA (tetramethyl ammonium), ionic media using potentiometric and spectrophotometric data; (17)O NMR data were used to determine the number of complexes present. The formation of cyclic oligomers, "[(UO2)(O2)(CO3)]n", n = 4, 5, 6, with different stoichiometries depending on the ionic medium used, suggests that Li(+), Na(+), K(+) and TMA ions act as templates for the formation of uranyl peroxide rings where the uranyl-units are linked by μ-η(2)-η(2) bridged peroxide-ions. The templating effect is due to the coordination of the M(+)-ions to the uranyl oxygen atoms, where the coordination of Li(+) results in the formation of Li[(UO2)(O2)(CO3)]4(7-), Na(+) and K(+) in the formation of Na/K[(UO2)(O2)(CO3)]5(9-) complexes, while the large tetramethyl ammonium ion promotes the formation of two oligomers, TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-). The NMR spectra demonstrate that the coordination of Na(+) in the five- and six-membered oligomers is significantly stronger than that of TMA(+); these observations suggest that the templating effect is similar to the one observed in the synthesis of crown-ethers. The NMR experiments also demonstrate that the exchange between TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-) is slow on the (17)O chemical shift time-scale, while the exchange between TMA[(UO2)(O2)(CO3)]6(11-) and Na[(UO2)(O2)(CO3)]6(11-) is fast. There was no indication of the presence of large clusters of the type identified by Burns and Nyman (M. Nyman and P. C. Burns, Chem. Soc. Rev., 2012, 41, 7314-7367) and possible reasons for this and the implications for the synthesis of large clusters are briefly discussed.

  10. Extraction and coordination studies of a carbonyl-phosphine oxide scorpionate ligand with uranyl and lanthanide(III) nitrates: structural, spectroscopic and DFT characterization of the complexes.

    Science.gov (United States)

    Matveeva, Anna G; Vologzhanina, Anna V; Goryunov, Evgenii I; Aysin, Rinat R; Pasechnik, Margarita P; Matveev, Sergey V; Godovikov, Ivan A; Safiulina, Alfiya M; Brel, Valery K

    2016-03-28

    Hybrid scorpionate ligand (OPPh2)2CHCH2C(O)Me (L) was synthesized and characterized by spectroscopic methods and X-ray diffraction. The selected coordination chemistry of L with UO2(NO3)2 and Ln(NO3)3 (Ln = La, Nd, Lu) has been evaluated. The isolated mono- and binuclear complexes, namely, [UO2(NO3)2L] (1), [{UO2(NO3)L}2(μ2-O2)]·EtOH (2), [La(NO3)3L2]·2.33MeCN (3), [Nd(NO3)3L2]·3MeCN (4), [Nd(NO3)2L2]+·(NO3)−·EtOH (5) and [Lu(NO3)3L2] (6) have been characterized by IR spectroscopy and elemental analysis. Single-crystal X-ray structures have been determined for complexes 1-5. Intramolecular intraligand π-stacking interactions between two phenyl fragments of the coordinated ligand(s) were observed in all complexes 1-5. The π-stacking interaction energy was estimated from Bader's AIM theory calculations performed at the DFT level. Solution properties have been examined using IR and multinuclear ((1)H, (13)C, and (31)P) NMR spectroscopy in CD3CN and CDCl3. Coordination modes of L vary with the coordination polyhedron of the metal and solvent nature showing many coordination modes: P(O),P(O), P(O),P(O),C(O), P(O),C(O), and P(O). Preliminary extraction studies of U(VI) and Ln(III) (Ln = La, Nd, Ho, Yb) from 3.75 M HNO3 into CHCl3 show that scorpionate L extracts f-block elements (especially uranium) better than its unmodified prototype (OPPh2)2CH2.

  11. Standard test method for isotopic abundance analysis of uranium hexafluoride and uranyl nitrate solutions by multi-collector, inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    1.1 This test method covers the isotopic abundance analysis of 234U, 235U, 236U and 238U in samples of hydrolysed uranium hexafluoride (UF6) by inductively coupled plasma source, multicollector, mass spectrometry (ICP-MC-MS). The method applies to material with 235U abundance in the range of 0.2 to 6 % mass. This test method is also described in ASTM STP 1344. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  12. An integrated study of uranyl mineral dissolution processes. Etch pit formation, effects of cations in solution, and secondary precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, M. [Laurentian Univ., Sudbury, ON (Canada). Dept. of Earth Sciences; Hawthorne, F.C. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Geological Sciences; Mandaliev, P. [Eidgenoessische Technische Hochschule (ETH), Zurich (Switzerland). Dept. of Environmental Sciences; Burns, P.C.; Maurice, P.A. [Notre Dame Univ., IN (United States). Dept. of Civil Engineering and Geological Sciences

    2011-07-01

    Understanding the mechanism(s) of uranium-mineral dissolution is crucial for predictive modeling of U mobility in the subsurface. In order to understand how pH and type of cation in solution may affect dissolution, experiments were performed on mainly single crystals of curite, Pb{sup 2+}{sub 3}(H{sub 2}O){sub 2}[(UO{sub 2}){sub 4}O{sub 4}(OH){sub 3}]{sub 2}, becquerelite, Ca(H{sub 2}O){sub 8}[(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}], billietite, Ba(H{sub 2}O){sub 7}[(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}], fourmarierite Pb{sup 2+}{sub 1-x}(H{sub 2}O){sub 4}[(UO{sub 2}){sub 4}O{sub 3-2x}(OH){sub 4+2x}] (x= 0.00-0.50), uranophane, Ca(H{sub 2}O){sub 5}[(UO{sub 2})(SiO{sub 3}OH)]{sub 2}, zippeite, K{sub 3}(H{sub 2}O){sub 3}[(UO{sub 2}){sub 4}(SO{sub 4}){sub 2}O{sub 3}(OH)], and Na-substituted metaschoepite, Na{sub 1-x}[(UO{sub 2}){sub 4}O{sub 2-x}(OH){sub 5+x}] (H{sub 2}O){sub n}. Solutions included: deionized water; aqueous HCl solutions at pH 3.5 and 2; 0.5 mol L{sup -1} Pb(II)-, Ba-, Sr-, Ca-, Mg-, HCl solutions at pH 2; 1.0 mol L{sup -1} Na- and K-HCl solutions at pH 2; and a 0.1 mol L{sup -1} Na{sub 2}CO{sub 3} solution at pH 10.5. Uranyl mineral basal surface microtopography, micromorphology, and composition were examined prior to, and after dissolution experiments on micrometer scale specimens using atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Evolution of etch pit depth at different pH values and experimental durations can be explained using a stepwave dissolution model. Effects of the cation in solution on etch pit symmetry and morphology can be explained using an adsorption model involving specific surface sites. Surface precipitation of the following phases was observed: (a) a highly-hydrated uranyl-hydroxy-hydrate in ultrapure water (on all minerals), (b) a Na-uranyl-hydroxy-hydrate in Na{sub 2}CO{sub 3} solution of pH 10.5 (on uranyl-hydroxy-hydrate minerals), (c) a Na-uranyl-carbonate on zippeite, (d) Ba- and

  13. Chemical controls on uranyl citrate speciation and the self-assembly of nanoscale macrocycles and sandwich complexes in aqueous solutions.

    Science.gov (United States)

    Basile, M; Unruh, D K; Gojdas, K; Flores, E; Streicher, L; Forbes, T Z

    2015-03-28

    Uranyl citrate forms trimeric species at pH > 5.5, but exact structural characteristics of these important oligomers have not previously been reported. Crystallization and structural characterization of the trimers suggests the self-assembly of the 3 : 3 and 3 : 2 U : Cit complexes into larger sandwich and macrocyclic molecules. Raman spectroscopy and ESI-MS have been utilized to investigate the relative abundance of these species in solution under varying pH and citrate concentrations. Additional dynamic light scattering experiments indicate that self-assembly of the larger molecules does occur in aqueous solution.

  14. Mechanism of rhythmic contractions induced by uranyl ion in the ileal longitudinal muscle of guinea-pig

    Energy Technology Data Exchange (ETDEWEB)

    Wenmei Fu; Shoeiyn Linshiau

    1985-07-17

    The uranyl ion (UO2S ) produces rhythmic contractions of the longitudinal muscle of the ileum, similar to those induced by repetitive transmural stimulation. Hexamethonium inhibited the action of UO2S , indicating a preganglionic site of action of UO2S and interneurons possibly being involved in the ACh-releasing effect of UO2S . In addition, the action of UO2S was enhanced by physostigmine but antagonized by atropine, ATP, adrenaline and morphine suggesting multiple sites of action of UO2S . The effects of BaS were studied simultaneously in order to compare them with those of UO2S . (Auth.). 25 refs.; 4 figs.

  15. Synthesis, structure, luminescence and photocatalytic properties of an uranyl-2,5-pyridinedicarboxylate coordination polymer

    Energy Technology Data Exchange (ETDEWEB)

    Si, Zhen-Xiu; Xu, Wei, E-mail: xuwei@nbu.edu.cn; Zheng, Yue-Qing, E-mail: yqzhengmc@163.com

    2016-07-15

    An uranium coordination polymer, namely [(UO{sub 2}(pydc)(H{sub 2}O)]·H{sub 2}O (1) (H{sub 2}pydc=2,5-pyridinedicarboxylic acid), has been obtained by hydrothermal method and characterized by X-ray single crystal structure determination. Structural analysis reveals that complex 1 exhibits 1D chain coordination polymer, in which UO{sub 2}{sup 2+} ions are bridged by 2,5-pyridinedicarboxylate ligands and the chains are connected into a 3D supramolecular network by O–H···O hydrogen bond interactions and π–π stacking interactions. The photocatalytic properties of 1 for degradation of methylene blue (MB), Rhodamine B (RhB) and methyl orange (MO) under Hg-lamp irradiation have been performed, and the amount of the catalyst as well as Hg-lamp irradiation with different power on the photodegradation efficiency of MB have been investigated. Elemental analyses, infrared spectroscopy, TG-DTA analyses and luminescence properties were also discussed. - Graphical abstract: Complex 1 exhibits 1D chain coordination polymer in which UO{sub 2}{sup 2+} ions are bridged by 2,5-pyridinedicarboxylate ligand. Photoluminescence studies reveal that complex 1 exhibits characteristic emissions of uranyl centers. The compound is selective to degraded dye and displays good photocatalytic activities for the degradation of MB under Hg-lamp. Display Omitted - Highlights: • Complex 1 exhibits 1D chain coordination polymer. • Complex 1 could degrade methylene blue and Rhodamine B under Hg-lamp irradiation. • Luminescent property of 1 has been studied.

  16. Nitrate contamination of groundwater and its countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Hisayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The inevitable increases of food production and energy consumption with an increase in world population become main causes of an increase of nitrate load to the environment. Although nitrogen is essential for the growth of animal and plant as a constituent element of protein, excessive nitrate load to the environment contaminates groundwater resources used as drinking water and leads to seriously adverse effects on the health of man and livestock. In order to clarify the problem of nitrate contamination of groundwater and search a new trend of technology development from the viewpoint of environment remediation and protection, the present paper has reviewed adverse effects of nitrate on human health, the actual state of nitrogen cycle, several kinds of nitrate sources, measures for reducing nitrate level, etc. (author)

  17. Interaction of neodymium nitrate with rubidium and cesium nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Molodkin, A.K.; Odinets, Z.K.; S' ' edina, T.V.; Ivanova, T.N. (Universitet Druzhby Narodov, Moscow (USSR))

    1982-12-01

    The Rb/sub 2/Nd(NO/sub 3/)/sub 5/xH/sub 2/O (1) and Cs/sub 2/Nd(NO/sub 3/)/sub 5/xH/sub 2/O (2) new complexes are prepared. The crystals 1 are isotropic, of cubic crystal system, Ng=1.570+-0.002; 2 - Ng=1.582+-0.002; Csub(Np)=0-9 degrees, of low crystal system (syngony). The bands of coordinated nitrate group, the ..delta nu..=..nu../sub 4/(B/sub 2/)-..nu../sub 1/(A/sub 1/) splitting value is respectively equal to 225 and 230 cm/sup -1/ are present in the infrared absorption spectra of the compounds. The interplane distances and corresponding intensities for the 1, 2 and hexahydrate of neodymium nitrate are determined. Derivatograms of the compounds are recorded, the final products of the thermolysis are correspondingly RbNdO/sub 2/ and Nd/sub 2/O/sub 3/.

  18. KINETICS STUDY ON NITRATION OF METHYL RICINOLEATE

    OpenAIRE

    Abdullah, Abdullah; Triyono, Triyono; Trisunaryanti, Wega; Haryadi, Winarto

    2012-01-01

    Kinetics parameter values of methyl ricinoleate nitration (rate constant, reaction order and the rate of reaction) have been determined. Nitration was carried out with both concentrations of HNO3 and acetic anhydride in excess to the concentration of methyl ricinoleate. Thus, the kinetics parameter value was only affected by the concentration of methyl ricinoleate. Based on kinetic study conducted, it could be concluded that the nitration follows pseudo first-order, and the reaction rate for ...

  19. Nitrate leaching from Silage Maize

    OpenAIRE

    Hansen, Elly Møller; Eriksen, Jørgen

    2009-01-01

    During the last 20 years the area with maize in Denmark has increased dramatically and reached 163,000 ha in 2008. Silage maize is easy to grow, is a suitable fodder for cows and goes well with grass-clover in the diet. This means that silage maize is often found in crop rotations with grass-clover on sandy soils in western Denmark. The ploughing in of grass-clover fields poses a serious risk of increased nitrate leaching on a coarse sandy soil, even when carried out in spring. With increased...

  20. Trend Analyses of Nitrate in Danish Groundwater

    Science.gov (United States)

    Hansen, B.; Thorling, L.; Dalgaard, T.; Erlandsen, M.

    2012-04-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded in decreasing the N surplus by 40% since the mid 1980s while at the same time maintaining crop yields and increasing the animal production of especially pigs. Trend analyses prove that the youngest (0-15 years old) oxic groundwater shows more pronounced significant downward nitrate trends (44%) than the oldest (25-50 years old) oxic groundwater (9%). This amounts to clear evidence of the effect of reduced nitrate leaching on groundwater nitrate concentrations in Denmark. Are the Danish groundwater monitoring strategy obtimal for detection of nitrate trends? Will the nitrate concentrations in Danish groundwater continue to decrease or are the Danish nitrate concentration levels now appropriate according to the Water Framework Directive?

  1. Measurement of isoprene nitrates by GCMS

    Science.gov (United States)

    Mills, Graham P.; Hiatt-Gipson, Glyn D.; Bew, Sean P.; Reeves, Claire E.

    2016-09-01

    According to atmospheric chemistry models, isoprene nitrates play an important role in determining the ozone production efficiency of isoprene; however this is very poorly constrained through observations as isoprene nitrates have not been widely measured. Measurements have been severely restricted largely due to a limited ability to measure individual isoprene nitrate isomers. An instrument based on gas chromatography/mass spectrometry (GCMS) and the associated calibration methods are described for the speciated measurements of individual isoprene nitrate isomers. Five of the primary isoprene nitrates which formed in the presence of NOx by reaction of isoprene with the hydroxyl radical (OH) in the Master Chemical Mechanism are identified using known isomers on two column phases and are fully separated on the Rtx-200 column. Three primary isoprene nitrates from the reaction of isoprene with the nitrate radical (NO3) are identified after synthesis from the already identified analogous hydroxy nitrate. A Tenax adsorbent-based trapping system allows the analysis of the majority of the known hydroxy and carbonyl primary isoprene nitrates, although not the (1,2)-IN isomer, under field-like levels of humidity and showed no impact from typical ambient concentrations of NOx and ozone.

  2. Nitration of Phenol Catalyzed by Horseradish Peroxidase

    Institute of Scientific and Technical Information of China (English)

    DAI Rong-ji; HUANG Hui; TONG Bin; XIAO Sheng-yuan

    2007-01-01

    Horseradish peroxidase, an acidic peroxidase from the horseradish, is one of the most important enzymes as analytical reagent.The enzymatic nitration of phenol by oxidation of nitrite was studied using horseradish peroxidase in the presence of H2O2.The results showed that nitration occur at 2- and 4- positions of phenol.There were also minor products of hydroquinone and catechol.The influence of various reaction parameters, including pH, organic solvent, and concentration of H2O2, on nitration products were discussed.The best nitration pH was 7.0, and H2O2 should be added to the reaction mixture slowly.

  3. Evaluation of the effect of water type on the toxicity of nitrate to aquatic organisms.

    Science.gov (United States)

    Baker, Josh A; Gilron, Guy; Chalmers, Ben A; Elphick, James R

    2017-02-01

    A suite of acute and chronic toxicity tests were conducted to evaluate the sensitivity of freshwater organisms to nitrate (as sodium nitrate). Acute exposures with rainbow trout (Onchorhynchus mykiss) and amphipods (Hyalella azteca), as well as chronic exposures with H. azteca (14-d survival and growth), midges (Chironomus dilutus; 10-d survival and growth), daphnids (Ceriodaphnia dubia; 7-d survival and reproduction), and fathead minnows (Pimephales promelas; 7-d survival and growth) were used to determine sublethal and lethal effect concentrations. Modification of nitrate toxicity was investigated across a range of ionic strengths, created through the use of very soft water, and standard preparations of synthetic soft, moderately-hard and hard dilution waters. The most sensitive species tested were C. dubia and H. azteca, in soft water, with reproduction and growth IC25 values of 13.8 and 12.2 mg/L NO3-N, respectively. All of the organisms exposed to nitrate demonstrated significantly reduced effects with increasing ionic strength associated with changes in water type. Possible mechanisms responsible for the modifying effect of increasing major ion concentrations on nitrate toxicity are discussed.

  4. Water quality dynamics and hydrology in nitrate loaded riparian zones in Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Hefting, Mariet [Department of Geobiology, Faculty of Biology, Utrecht University, PO Box 80084, 3508 TB Utrecht (Netherlands)]. E-mail: m.m.hefting@bio.uu.nl; Beltman, Boudewijn [Department of Geobiology, Faculty of Biology, Utrecht University, PO Box 80084, 3508 TB Utrecht (Netherlands); Karssenberg, Derek [Netherlands Centre for Geo-ecological Research (ICG), Faculty of Geographical Sciences, Utrecht University, PO Box 80115, 3508 TC Utrecht (Netherlands); Rebel, Karin [Department of Geobiology, Faculty of Biology, Utrecht University, PO Box 80084, 3508 TB Utrecht (Netherlands); Riessen, Mirjam van [Netherlands Centre for Geo-ecological Research (ICG), Faculty of Geographical Sciences, Utrecht University, PO Box 80115, 3508 TC Utrecht (Netherlands); Spijker, Maarten [Netherlands Centre for Geo-ecological Research (ICG), Faculty of Geographical Sciences, Utrecht University, PO Box 80115, 3508 TC Utrecht (Netherlands)

    2006-01-15

    Riparian zones are known to function as buffers, reducing non-point source pollution from agricultural land to streams. In Netherlands, riparian zones are subject to high nitrogen inputs. We combined hydrological, chemical and soil profile data with groundwater modelling to evaluate whether chronically N loaded riparian zones were still mitigating diffuse nitrate fluxes. Hydraulic parameters and water quality were monitored over 2 years in 50 piezometres in a forested and grassland riparian zone. Average nitrate loadings were high in the forested zone with 87 g NO{sub 3} {sup -}-N m{sup -2} y{sup -1} and significantly lower in the grassland zone with 15 g NO{sub 3} {sup -}-N m{sup -2} y{sup -1}. Groundwater from a second aquifer diluted the nitrate loaded agricultural runoff. Biological N removal however occurred in both riparian zones, the grassland zone removed about 63% of the incoming nitrate load, whereas in the forested zone clear symptoms of saturation were visible and only 38% of the nitrate load was removed. - Riparian zones reduced nitrate from agricultural lands.

  5. Analysis of the acute response of Galleria mellonella larvae to potassium nitrate.

    Science.gov (United States)

    Maguire, Ronan; Kunc, Martin; Hyrsl, Pavel; Kavanagh, Kevin

    2017-02-20

    Potassium nitrate (E252) is widely used as a food preservative and has applications in the treatment of high blood pressure however high doses are carcinogenic. Larvae of Galleria mellonella were administered potassium nitrate to establish whether the acute effects in larvae correlated with those evident in mammals. Intra-haemocoel injection of potassium nitrate resulted in a significant increase in the density of circulating haemocytes and a small change in the relative proportions of haemocytes but haemocytes showed a reduced fungicidal ability. Potassium nitrate administration resulted in increased superoxide dismutase activity and in the abundance of a range of proteins associated with mitochondrial function (e.g. mitochondrial aldehyde dehydrogenase, putative mitochondrial Mn superoxide dismutase), metabolism (e.g. triosephosphate isomerase, glyceraldehyde 3 phosphate dehydrogenase) and nitrate metabolism (e.g. aliphatic nitrilase, glutathione S-transferase). A strong correlation exists between the toxicity of a range of food preservatives when tested in G. mellonella larvae and rats. In this work a correlation between the effect of potassium nitrate in larvae and mammals is shown and opens the way to the utilization of insects for studying the in vivo acute and chronic toxicity of xenobiotics.

  6. Characterizing the interaction between uranyl ion and fulvic acid using regional integration analysis (RIA) and fluorescence quenching.

    Science.gov (United States)

    Zhu, Bingqi; Ryan, David K

    2016-03-01

    The development of chemometric methods has substantially improved the quantitative usefulness of the fluorescence excitation-emission matrix (EEM) in the analysis of dissolved organic matter (DOM). In this study, Regional Integration Analysis (RIA) was used to quantitatively interpret EEMs and assess fluorescence quenching behavior in order to study the binding between uranyl ion and fulvic acid. Three fulvic acids including soil fulvic acid (SFA), Oyster River fulvic acid (ORFA) and Suwannee River fulvic acid (SRFA) were used and investigated by the spectroscopic techniques. The EEM spectra obtained were divided into five regions according to fluorescence structural features and two distinct peaks were observed in region III and region V. Fluorescence quenching analysis was conducted for these two regions with the stability constants, ligand concentrations and residual fluorescence values calculated using the Ryan-Weber model. Results indicated a relatively strong binding ability between uranyl ion and fulvic acid samples at low pH (log K value varies from 4.11 to 4.67 at pH 3.50). Fluorophores in region III showed a higher binding ability with fewer binding sites than in region V. Stability constants followed the order, SFA > ORFA > SRFA, while ligand concentrations followed the reverse order, SRFA > ORFA > SFA. A comparison between RIA and Parallel Factor Analysis (PARAFAC) data treatment methods was also performed and good agreement between these two methods (less than 4% difference in log K values) demonstrates the reliability of the RIA method in this study.

  7. Effects of a low-radiotoxicity uranium salt (uranyl acetate) on biochemical and hematological parameters of the catfish, Clarias gariepinus

    Science.gov (United States)

    Al-Ghanim, Khalid A.; Ahmad, Zubair; Al-Kahem Al-Balawi, Hmoud F.; Al-Misned, Fahad; Maboob, Shahid; Suliman, El-Amin M.

    2016-01-01

    Specimens of Clarias gariepinus were treated with lethal (70, 75, 80, 85, 90, and 95 mg/L) and sub-lethal concentrations (8, 12 and 16 mg/L) of uranyl acetate, a low-radiotoxicity uranium salt. The LC 50 value was registered as 81.45 mg/L. The protein and glycogen concentrations in liver and muscles were decreased in the fish exposed to sub-lethal concentrations. The red blood cell (RBC) and white blood cell (WBC) counts, haemoglobin (Hb) concentration and haematocrit (Hct) values were decreased. Different blood indices like mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) were negatively affected. Level of plasma glucose was elevated whereas protein was decreased. The level of calcium concentration (Ca) was declined in the blood of exposed fish whereas magnesium (Mg) remains unchanged. The activity level of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) was elevated in exposed fish. These effects were more pronounced in the last period of exposure and in higher concentrations. Results of the present study indicate that uranyl acetate has adverse effects on Clarias gariepinus and causes changes in the biochemical and hematological parameters of the fish.

  8. Crystal chemistry and application development of uranyl extended structure and nanoscale materials and actinyl ion-substituted mineral phases

    Science.gov (United States)

    Wylie, Ernest M.

    The worldwide use of nuclear energy presents both significant advantages and challenges for society. Actinide research seeks to address these challenges and drive advancement in the fields of nuclear science and engineering. Here, key aspects of the fuel cycle are examined from both a fundamental and an applications-based perspective. Hydrothermal, ionothermal, room-temperature evaporation, and liquid diffusion synthesis techniques and single-crystal X-ray diffraction were used to study the structures of 18 uranyl compounds and six actinyl-doped mineral phases. These compounds represent a diverse group ranging from unique molecular clusters to novel and known extended structures isolated from aqueous and ionic liquid media. Ultrafiltration techniques were utilized to separate uranyl peroxide nanoclusters from complex aqueous solutions. Inductively coupled plasma optical emission spectroscopy and mass spectrometry were used to quantify elemental distributions in the feed and permeate solutions while Raman spectroscopy, small-angle X-ray scattering, and electrospray ionization mass spectrometry were used to define the characteristics of the cluster species across a range different solution conditions.

  9. The effect of nitrate supplementation on exercise performance in healthy individuals: a systematic review and meta-analysis.

    Science.gov (United States)

    Hoon, Matthew W; Johnson, Nathan A; Chapman, Phillip G; Burke, Louise M

    2013-10-01

    The purpose of this review was to examine the effect of nitrate supplementation on exercise performance by systematic review and meta-analysis of controlled human studies. A search of four electronic databases and cross-referencing found 17 studies investigating the effect of inorganic nitrate supplementation on exercise performance that met the inclusion criteria. Beetroot juice and sodium nitrate were the most common supplements, with doses ranging from 300 to 600 mg nitrate and prescribed in a manner ranging from a single bolus to 15 days of regular ingestion. Pooled analysis showed a significant moderate benefit (ES = 0.79, 95% CI: 0.23-1.35) of nitrate supplementation on performance for time to exhaustion tests (p = .006). There was a small but insignificant beneficial effect on performance for time trials (ES = 0.11, 95% CI: -0.16-0.37) and graded exercise tests (ES = 0.26, 95% CI: -0.10-0.62). Qualitative analysis suggested that performance benefits are more often observed in inactive to recreationally active individuals and when a chronic loading of nitrate over several days is undertaken. Overall, these results suggest that nitrate supplementation is associated with a moderate improvement in constant load time to exhaustion tasks. Despite not reaching statistical significance, the small positive effect on time trial or graded exercise performance may be meaningful in an elite sport context. More data are required to clarify the effect of nitrate supplementation on exercise performance and to elucidate the optimal way to implement supplementation.

  10. Yttrium Nitrate mediated Nitration of Phenols at room temperature in Glacial Acetic acid

    Indian Academy of Sciences (India)

    MOHABUL A MONDAL; DBASHIS MANDAL; KANCHAN MITRA

    2017-01-01

    Rapid nitration of electron rich phenols using Y(NO₃)₃.6H₂O in glacial acetic acid at room temperature was observed with good yield. The method allows nitration of phenols without oxidation, and isolation of nitration product in a rapid and simple way. The described method is selective for phenols.

  11. Arabidopsis Nitrate Transporter NRT1.9 Is Important in Phloem Nitrate Transport[W][OA

    Science.gov (United States)

    Wang, Ya-Yun; Tsay, Yi-Fang

    2011-01-01

    This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport. PMID:21571952

  12. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport.

    Science.gov (United States)

    Wang, Ya-Yun; Tsay, Yi-Fang

    2011-05-01

    This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport.

  13. Challenges with nitrate therapy and nitrate tolerance: prevalence, prevention, and clinical relevance.

    Science.gov (United States)

    Thadani, Udho

    2014-08-01

    Nitrate therapy has been an effective treatment for ischemic heart disease for over 100 years. The anti-ischemic and exercise-promoting benefits of sublingually administered nitrates are well established. Nitroglycerin is indicated for the relief of an established attack of angina and for prophylactic use, but its effects are short lived. In an effort to increase the duration of beneficial effects, long-acting orally administered and topical applications of nitrates have been developed; however, following their continued or frequent daily use, patients soon develop tolerance to these long-acting nitrate preparations. Once tolerance develops, patients begin losing the protective effects of the long-acting nitrate therapy. By providing a nitrate-free interval, or declining nitrate levels at night, one can overcome or reduce the development of tolerance, but cannot provide 24-h anti-anginal and anti-ischemic protection. In addition, patients may be vulnerable to occurrence of rebound angina and myocardial ischemia during periods of absent nitrate levels at night and early hours of the morning, and worsening of exercise capacity prior to the morning dose of the medication. This has been a concern with nitroglycerin patches but not with oral formulations of isosorbide-5 mononitrates, and has not been adequately studied with isosorbide dinitrate. This paper describes problems associated with nitrate tolerance, reviews mechanisms by which nitrate tolerance and loss of efficacy develop, and presents strategies to avoid nitrate tolerance and maintain efficacy when using long-acting nitrate formulations.

  14. Ligand size dependence of U-N and U-O bond character in a series of uranyl hexaphyrin complexes: quantum chemical simulation and density based analysis.

    Science.gov (United States)

    Di Pietro, Poppy; Kerridge, Andrew

    2017-03-02

    A series of uranyl complexes with hexaphyrin ligands are investigated at the density functional level of theory and analysed using a variety of density-based techniques. A relationship is identified between the size of the ligand and the stability of the complex, controlled by the presence of meso-carbon centres in the porphyrin ring. The complex with the smallest ligand, cyclo[6]pyrrole, is found to have enhanced covalent character in equatorial U-N bonds as defined by the quantum theory of atoms in molecules (QTAIM), as well as enhanced stability, compared to the larger complexes. QTAIM data are supported by electron density difference distributions, integrated electronic properties and analysis of the reduced density gradient (RDG), which all show unambiguous evidence of electron sharing in all U-N bonds. In all complexes, a weakening of the covalent axial U-Oyl interaction in comparison to free uranyl is found, with evidence for a separation of electronic charge resulting in a more ionic interaction. A relationship between covalent character in the U-N bonds and the magnitude of uranyl charge redistribution is identified, where the greater the covalent character of the U-N interaction, the more ionic the U-Oyl interaction appears. The complex with the largest ligand, hexaphyrin(1.1.1.1.1.1), is found to have additional interactions with the uranyl oxygen centres, perturbing the U-Oyl interaction.

  15. Evaluation of nitrates in albanian wines

    Directory of Open Access Journals (Sweden)

    Ariola Morina

    2013-05-01

    Full Text Available Nitrates are important compounds in nature but not desirable if they are present in wine at increased amount. The high level of nitrate is attributed to the use of nitrogen fertilizers in the vineyards. Method of the reactive Gries I and Gries II was used for the determination of nitrates in wine. There were analyzed 45 white wines and 55 red wines produced in 2008 – 2010, as well as wines produced from Albanian grape varieties Shesh i Bardhë and Shesh i Zi in 2009 and 2010, as an authentic wines evidence with denominated origin. From the results of analyses was observed that, in 51 % of white wines was found that the content of nitrates were less than 5 mg/l, in 46% of them the nitrates level goes up to 10 mg/l and only in 3 % of them the amount of nitrates is up to 12 mg/l. None of white wine samples have the content of nitrates over 20 mg/l. In this case there is no doubt for water addition during wine preparation. In regards of red wines, in 34% of them the amount of nitrates is up to 5 mg/l, in 30% of them up to 10 mg/l, while in 26% of them the amount of nitrates is 20 mg/l. Only 10 % of red wines have nitrates content over 20 mg/l which raise dubiety for falsified wines where water and sugar is added in the red marc. The level of nitrates in wines with denominated origin was under 20 mg/L.

  16. Regulation of nitrate assimilation in cyanobacteria.

    Science.gov (United States)

    Ohashi, Yoshitake; Shi, Wei; Takatani, Nobuyuki; Aichi, Makiko; Maeda, Shin-ichi; Watanabe, Satoru; Yoshikawa, Hirofumi; Omata, Tatsuo

    2011-02-01

    Nitrate assimilation by cyanobacteria is inhibited by the presence of ammonium in the growth medium. Both nitrate uptake and transcription of the nitrate assimilatory genes are regulated. The major intracellular signal for the regulation is, however, not ammonium or glutamine, but 2-oxoglutarate (2-OG), whose concentration changes according to the change in cellular C/N balance. When nitrogen is limiting growth, accumulation of 2-OG activates the transcription factor NtcA to induce transcription of the nitrate assimilation genes. Ammonium inhibits transcription by quickly depleting the 2-OG pool through its metabolism via the glutamine synthetase/glutamate synthase cycle. The P(II) protein inhibits the ABC-type nitrate transporter, and also nitrate reductase in some strains, by an unknown mechanism(s) when the cellular 2-OG level is low. Upon nitrogen limitation, 2-OG binds to P(II) to prevent the protein from inhibiting nitrate assimilation. A pathway-specific transcriptional regulator NtcB activates the nitrate assimilation genes in response to nitrite, either added to the medium or generated intracellularly by nitrate reduction. It plays an important role in selective activation of the nitrate assimilation pathway during growth under a limited supply of nitrate. P(II) was recently shown to regulate the activity of NtcA negatively by binding to PipX, a small coactivator protein of NtcA. On the basis of accumulating genome information from a variety of cyanobacteria and the molecular genetic data obtained from the representative strains, common features and group- or species-specific characteristics of the response of cyanobacteria to nitrogen is summarized and discussed in terms of ecophysiological significance.

  17. Assessing nitrate contamination and its potential health risk to Kinmen residents.

    Science.gov (United States)

    Liu, Chen-Wuing; Lin, Chun-Nan; Jang, Cheng-Shin; Ling, Min-Pei; Tsai, Jeng-Wei

    2011-10-01

    Kinmen is located in the southwest of Mainland China. Groundwater supplies 50% of the domestic water use on the island. Residents of Kinmen drink groundwater over the long term because surface water resources are limited. Nitrate-N pollution is found and distributed primarily in the western part of groundwater aquifer whereas saline groundwater is distributed to the northeastern Kinmen. This work applied the DRASTIC model to construct the vulnerability map of Kinmen groundwater. MT3D was then used to evaluate the contamination potential of nitrate-N. The health risk associated with the ingestion of nitrate-N contaminated groundwater is also assessed. The results from DRASTIC model showed that the upland crop and grass land have high contamination potential, whereas the forest, reservoir and housing land have low contamination potential. The calibrated MT3D model inversely determined the high strength sources (0.09-2.74 kg/m(2)/year) of nitrate contaminant located in the west to the north west area and required 2-5 years travel time to reach the monitoring wells. Simulated results of MT3D also showed that both the continuous and instantaneous contaminant sources of nitrate-N release may cause serious to moderate nitrate contamination in the western Kinmen and jeopardize the domestic use of groundwater. The chronic health hazard quotient (HQ) associated with the potential non-carcinogenic risk of drinking nitrate-N contaminated groundwater showed that the assessed 95th percentile of HQ is 2.74, indicating that exposure to waterborne nitrate poses a potential non-cancer risk to the residents of the island. Corrective measures, including protecting groundwater recharge zones and reducing the number of agricultural and non-agricultural nitrogen sources that enters the aquifer, should be implemented especially in the western part of Kinmen to assure a sustainable use of groundwater resources.

  18. Nitrate reduction functional genes and nitrate reduction potentials persist in deeper estuarine sediments. Why?

    Directory of Open Access Journals (Sweden)

    Sokratis Papaspyrou

    Full Text Available Denitrification and dissimilatory nitrate reduction to ammonium (DNRA are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the

  19. Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?

    Science.gov (United States)

    Papaspyrou, Sokratis; Smith, Cindy J.; Dong, Liang F.; Whitby, Corinne; Dumbrell, Alex J.; Nedwell, David B.

    2014-01-01

    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This

  20. [Toxicity of nitrate-N to freshwater aquatic life and its water quality criteria].

    Science.gov (United States)

    Zhang, Ling-Song; Wang, Ye-Yao; Meng, Fan-Sheng; Zhou, Yue-Xi; Yu, Hai-Bin

    2013-08-01

    The toxicity sensitivity of different freshwater aquatic organisms was analyzed using the collected toxicity data in this paper. Three methods were used to estimate the criteria of nitrate to protect the freshwater aquatic life. The results showed that the species sensitivity to nitrate followed the order of Arthropoda > Mollusca > Chordata, and Crustacea > Insecta > Gastropoda > Bivalvia > Amphibia > Actinopterygii. Moreover, the output of assessment factor method, species sensitivity distribution method and USEPA's method was significantly different. Finally, criterias of 87.97 mg x L(-1) and 5.17 mg x L(-1) to protect aquatic life from acute and chronic toxicity were proposed using USEPA's method.

  1. Computational insight into nitration of human myoglobin.

    Science.gov (United States)

    Lin, Ying-Wu; Shu, Xiao-Gang; Du, Ke-Jie; Nie, Chang-Ming; Wen, Ge-Bo

    2014-10-01

    Protein nitration is an important post-translational modification regulating protein structure and function, especially for heme proteins. Myoglobin (Mb) is an ideal protein model for investigating the structure and function relationship of heme proteins. With limited structural information available for nitrated heme proteins from experiments, we herein performed a molecular dynamics study of human Mb with successive nitration of Tyr103, Tyr146, Trp7 and Trp14. We made a detailed comparison of protein motions, intramolecular contacts and internal cavities of nitrated Mbs with that of native Mb. It showed that although nitration of both Tyr103 and Tyr146 slightly alters the local conformation of heme active site, further nitration of both Trp7 and Trp14 shifts helix A apart from the rest of protein, which results in altered internal cavities and forms a water channel, representing an initial stage of Mb unfolding. The computational study provides an insight into the nitration of heme proteins at an atomic level, which is valuable for understanding the structure and function relationship of heme proteins in non-native states by nitration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Bacterial nitrate assimilation: gene distribution and regulation.

    Science.gov (United States)

    Luque-Almagro, Víctor M; Gates, Andrew J; Moreno-Vivián, Conrado; Ferguson, Stuart J; Richardson, David J; Roldán, M Dolores

    2011-12-01

    In the context of the global nitrogen cycle, the importance of inorganic nitrate for the nutrition and growth of marine and freshwater autotrophic phytoplankton has long been recognized. In contrast, the utilization of nitrate by heterotrophic bacteria has historically received less attention because the primary role of these organisms has classically been considered to be the decomposition and mineralization of dissolved and particulate organic nitrogen. In the pre-genome sequence era, it was known that some, but not all, heterotrophic bacteria were capable of growth on nitrate as a sole nitrogen source. However, examination of currently available prokaryotic genome sequences suggests that assimilatory nitrate reductase (Nas) systems are widespread phylogenetically in bacterial and archaeal heterotrophs. Until now, regulation of nitrate assimilation has been mainly studied in cyanobacteria. In contrast, in heterotrophic bacterial strains, the study of nitrate assimilation regulation has been limited to Rhodobacter capsulatus, Klebsiella oxytoca, Azotobacter vinelandii and Bacillus subtilis. In Gram-negative bacteria, the nas genes are subjected to dual control: ammonia repression by the general nitrogen regulatory (Ntr) system and specific nitrate or nitrite induction. The Ntr system is widely distributed in bacteria, whereas the nitrate/nitrite-specific control is variable depending on the organism.

  3. Dietary Nitrate, Nitric Oxide, and Cardiovascular Health.

    Science.gov (United States)

    Bondonno, Catherine P; Croft, Kevin D; Hodgson, Jonathan M

    2016-09-09

    Emerging evidence strongly suggests that dietary nitrate, derived in the diet primarily from vegetables, could contribute to cardiovascular health via effects on nitric oxide (NO) status. NO plays an essential role in cardiovascular health. It is produced via the classical L-arginine-NO-synthase pathway and the recently discovered enterosalivary nitrate-nitrite-NO pathway. The discovery of this alternate pathway has highlighted dietary nitrate as a candidate for the cardioprotective effect of a diet rich in fruit and vegetables. Clinical trials with dietary nitrate have observed improvements in blood pressure, endothelial function, ischemia-reperfusion injury, arterial stiffness, platelet function, and exercise performance with a concomitant augmentation of markers of NO status. While these results are indicative of cardiovascular benefits with dietary nitrate intake, there is still a lingering concern about nitrate in relation to methemoglobinemia, cancer, and cardiovascular disease. It is the purpose of this review to present an overview of NO and its critical role in cardiovascular health; to detail the observed vascular benefits of dietary nitrate intake through effects on NO status as well as to discuss the controversy surrounding the possible toxic effects of nitrate.

  4. 4-Methoxy-N,N′-diphenylbenzamidinium nitrate

    Directory of Open Access Journals (Sweden)

    Renata S. Silva

    2016-09-01

    Full Text Available The asymmetric unit of the title salt N,N′-diphenyl-4-methoxybenzamidinium nitrate, C20H19N2O+·NO3−, comprises two independent N,N′-diphenyl-4-methoxybenzamidinium cations and two nitrate anions. The crystal structure features N—H...O hydrogen bonds and C—H...O contacts responsible for the packing.

  5. Seasonal Variation in Hydrology Driving Shifts in Sources of Nitrate in an Agricultural Dominant Semi-arid Watershed

    Science.gov (United States)

    Moon Nielsen, L. G.; Orr, C. H.

    2010-12-01

    In the South Fork Palouse River in the semi-arid region of Eastern Washington State, surface water hydrology is driven by seasonal variation in precipitation, with peak surface water flow and highest Nitrate values observed from January to April, and lowest surface flows and corresponding lower Nitrate concentrations observed from June to August. Land-use in the watershed is predominantly non-irrigated cropland (82%) fertilized by synthetic fertilizer, with an additional 8% of land in urban areas. Due to the prevalence of anthropogenically influenced land in the watershed, Nitrate concentrations measured in streams here are chronically elevated above natural levels. Typically in an area that is dominated by agriculture, the source of Nitrate in surface waters draining agricultural land would be predicted to be synthetic fertilizer. However it is important to consider the impacts seasonal hydrological conditions can have upon Nitrate sources and flow paths. We investigated how Nitrate sources in Palouse streams and rivers changed seasonally to address the hypothesis that seasonal variation in precipitation shifts the dominant sources of Nitrate in surface waters. We based our determination of nitrogen source on the results from dual stable isotope analysis of Nitrate using the denitrifier method. Sampling was done at 7 locations of increasing catchment area along the South Fork Palouse River and tributary streams. Sampling site catchment area varied one order of magnitude from 70.9 to 717.4 km2. Surface waters at yearly low flow during the summer season indicated δ15N-Nitrate and δ18O-Nitrate ranging within generally accepted values to indicate Nitrate derived from animal and human waste. These can be attributed to waste water discharge from the urban areas in the watershed. Yearly hydrologic data suggests that during the winter season, increased precipitation causes a shift in δ15N-Nitrate and δ18O-Nitrate to values typically observed in sources derived from

  6. Effect of temperature on the mechanisms of interaction between uranyl ion and zirconium oxo-phosphate; Effet de la temperature sur les mechanismes d'interaction entre l'ion uranyle et l'oxophosphate de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Almazan Torres, Maria Guadalupe [Universite de Paris XI Orsay, Orsay (France)

    2007-07-01

    Uranium sorption onto Zr{sub 2}O(PO{sub 4}){sub 2} has been studied between 298 K and 363 K, in 0.1 M NaClO{sub 4} medium. Potentiometric titrations were realized to determine temperature dependency of the acid-base properties (pH{sub pcn}, acidity constants). Classical batch experiments were performed at different temperatures. The sorption experiments revealed that the uranium sorption onto Zr{sub 2}O(PO{sub 4}){sub 2} is favoured with the temperature. Structural characterization of the surface complexes was performed by both Time-Resolved Laser-Induced Fluorescence (TRLIF) and EXAFS spectroscopy. The TRLIF measurements vs. temperature revealed two uranyl surface complexes. No influence of the temperature onto the nature surface complex was observed. The EXAFS analysis showed a splitting of the equatorial oxygen atoms in two shells, corresponding to uranyl bidentate, inner-sphere complexes. The obtained structural uranyl surface complex information was used to simulate (using a constant capacitance model) the sorption edges. The proposed complexes equilibrium model consists of the following surface complexes: ({identical_to}ZrOH){sub 2}UO{sub 2}{sup 2+} and ({identical_to}PO){sub 2}UO{sub 2}. Besides the stability constants for the surface complexes, the thermodynamic parameters {delta}H{sup 0} and {delta}S{sup 0} were determined using the van't Hoff equation. The enthalpy values associated to the U(VI) retention onto Zr{sub 2}O(PO{sub 4}){sub 2}, determined by the temperature dependence of the stability constants, testify that the formation of the complex ({identical_to}PO){sub 2}UO{sub 2} (55 kJ/mol) is endothermic, while no influence of the temperature was observed for the formation of the complex ({identical_to}ZrOH){sub 2}UO{sub 2}{sup 2+}. The adsorption reaction of the last complex is then driven by entropy. In addition, calorimetric measurements of uranium sorption onto Zr{sub 2}O(PO{sub 4}){sub 2} were carried out to directly quantify the enthalpy

  7. Nitrate reduction in an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Boesen, Carsten; Kristiansen, Henning;

    1991-01-01

    Nitrate distribution and reduction processes were investigated in an unconfined sandy aquifer of Quaternary age. Groundwater chemistry was studied in a series of eight multilevel samplers along a flow line, deriving water from both arable and forested land. Results show that plumes of nitrate...... processes of O2 and NO3- occur at rates that are fast compared to the rate of downward water transport. Nitrate-contaminated groundwater contains total contents of dissolved ions that are two to four times higher than in groundwater derived from the forested area. The persistence of the high content...... of total dissolved ions in the NO3- free anoxic zone indicates the downward migration of contaminants and that active nitrate reduction is taking place. Nitrate is apparently reduced to N2 because both nitrite and ammonia are absent or found at very low concentrations. Possible electron donors...

  8. Sedimentary nitrate reduction and its effect on the N-isotopic composition of oceanic nitrate

    Science.gov (United States)

    Lehmann, M. F.; Sigman, D. M.; McCorkle, D. C.

    2005-12-01

    A prerequisite for assessing denitrification fluxes in a specific environment using water column nitrate N isotope ratios is the knowledge of the expressed N isotope effects of water column and/or benthic denitrification in this environment. Here, we aim at assessing the effects of benthic nitrogen cycling on the N isotopic composition of the oceanic nitrate pool in deep-sea sediments, which are believed to harbour a large portion of the global benthic denitrification. We report 15N/14N ratios of pore water nitrate in pelagic sediments from the deep Bering Sea, where benthic nitrate reduction has previously been identified as a significant sink of fixed nitrogen. Porewater profiles from multicores indicate strong 15N enrichment in porewater nitrate at all stations, as one goes deeper in the sediments and nitrate concentrations decrease (δ15N generally reached 25-35‰). Our data are consistent with variable biological isotope effect (ɛ) for dissimilatory nitrate reduction ranging between 13 to 30 ‰. A one-dimensional diffusion-reaction model including organic matter degradation, nitrification, and denitrification indicates that, although denitrification leads to a pore water nitrate pool that is enriched in 15N, N isotope fractionation is poorly expressed at the scale of sediment-water nitrate exchange, independent of whether sediments are a net sink or a net source of nitrate. The apparent nitrate isotope effect of sedimentary denitrification on nitrate in overlying waters is generally below 2‰, as a result of diffusive transport limitation into, and within, the sediments and/or the production of light nitrate during nitrification. Thus, our data suggest that the low expressed isotope effect of benthic denitrification observed previously in reactive shelf sediments also applies to deep-sea sediments. However, where ammonium fluxes out of the sediments, it is enriched in 15-N, and may ultimately lead to an N-isotopic enrichment of the water-column nitrate

  9. Modeling nitrate removal in a denitrification bed.

    Science.gov (United States)

    Ghane, Ehsan; Fausey, Norman R; Brown, Larry C

    2015-03-15

    Denitrification beds are promoted to reduce nitrate load in agricultural subsurface drainage water to alleviate the adverse environmental effects associated with nitrate pollution of surface water. In this system, drainage water flows through a trench filled with a carbon media where nitrate is transformed into nitrogen gas under anaerobic conditions. The main objectives of this study were to model a denitrification bed treating drainage water and evaluate its adverse greenhouse gas emissions. Field experiments were conducted at an existing denitrification bed. Evaluations showed very low greenhouse gas emissions (mean N2O emission of 0.12 μg N m(-2) min(-1)) from the denitrification bed surface. Field experiments indicated that nitrate removal rate was described by Michaelis-Menten kinetics with the Michaelis-Menten constant of 7.2 mg N L(-1). We developed a novel denitrification bed model based on the governing equations for water flow and nitrate removal kinetics. The model evaluation statistics showed satisfactory prediction of bed outflow nitrate concentration during subsurface drainage flow. The model can be used to design denitrification beds with efficient nitrate removal which in turn leads to enhanced drainage water quality.

  10. Nitration of soluble proteins in organotypic culture models of Parkinson's disease.

    Science.gov (United States)

    Larsen, Trine R; Söderling, Ann-Sofi; Caidahl, Kenneth; Roepstorff, Peter; Gramsbergen, Jan Bert

    2008-02-01

    Protein nitration due to oxidative and nitrative stress has been linked to the pathogenesis of Parkinson's disease (PD), but its relationship to the loss of dopamine (DA) or tyrosine hydroxylase (TH) activity is not clear. Here we quantified protein-bound 3-nitrotyrosine (3-NT) by a novel gas chromatography/negative chemical ionization tandem mass spectrometry technique and DA and 3,4-dihydroxyphenylalanine (DOPA) by HPLC in tissues or medium of organotypic, mouse mesencephalon cultures after acute or chronic treatments with the peroxynitrite donor 3-morpholino-sydnonimine (SIN-1), the dopaminergic toxin 1-methyl-4-phenylpyridinium (MPP(+)) or the lipophilic complex I inhibitor rotenone. Incubation with SIN-1 (24 h) or MPP(+) treatments (48 h) caused dose-dependent protein nitration reaching a maximum of eightfold increase by 10 mM SIN-1 or twofold by 10 microM MPP(+), but significant DA depletions occurred at much lower concentrations of MPP(+) (1 microM). Chronic MPP(+) or rotenone treatments (3 weeks) caused maximum protein nitration by 1 microM (twofold) or 10nM (fourfold), respectively. Co-treatment with the nitric oxide synthase inhibitor l-NAME (300 microM) prevented protein nitration by MPP(+), but did not protect against MPP(+)-induced DA depletion or inhibition of TH activity. Acute incubation with 100 microM SIN-1 inhibited TH activity, which could be blocked by co-treatment with the tetrahydrobiopterin precursor l-sepiapterin, but tissue DA depletions required higher doses of SIN-1 (>1 mM, 24 h) and longer survival. In conclusion, protein nitration and TH activity or DA depletion are not directly related in these models.

  11. Photodegradation of Paracetamol in Nitrate Solution

    Science.gov (United States)

    Meng, Cui; Qu, Ruijuan; Liang, Jinyan; Yang, Xi

    2010-11-01

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  12. Design and Construction of Experiment for Direct Electron Irradiation of Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakho [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects of convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.

  13. Uranyl-glycine-water complexes in solution: comprehensive computational modeling of coordination geometries, stabilization energies, and luminescence properties.

    Science.gov (United States)

    Su, Jing; Zhang, Kai; Schwarz, W H Eugen; Li, Jun

    2011-03-21

    Comprehensive computational modeling of coordination structures, thermodynamic stabilities, and luminescence spectra of uranyl-glycine-water complexes [UO(2)(Gly)(n)aq(m)](2+) (Gly = glycine, aq = H(2)O, n = 0-2, m = 0-5) in aqueous solution has been carried out using relativistic density functional approaches. The solvent is approximated by a dielectric continuum model and additional explicit water molecules. Detailed pictures are obtained by synergic combination of experimental and theoretical data. The optimal equatorial coordination numbers of uranyl are determined to be five. The energies of several complex conformations are competitively close to each other. In non-basic solution the most probable complex forms are those with two water ligands replaced by the bidentate carboxyl groups of zwitterionic glycine. The N,O-chelation in non-basic solution is neither entropically nor enthalpically favored. The symmetric and antisymmetric stretch vibrations of the nearly linear O-U-O unit determine the luminescence features. The shapes of the vibrationally resolved experimental solution spectra are reproduced theoretically with an empirically fitted overall line-width parameter. The calculated luminescence origins correspond to thermally populated, near-degenerate groups of the lowest electronically excited states of (3)Δ(g) and (3)Φ(g) character, originating from (U-O)σ(u) → (U-5f)δ(u),ϕ(u) configurations of the linear [OUO](2+) unit. The intensity distributions of the vibrational progressions are consistent with U-O bond-length changes around 5 1/2 pm. The unusually high intensity of the short wavelength foot is explained by near-degeneracy of vibrationally and electronically excited states, and by intensity enhancement through the asymmetric O-U-O stretch mode. The combination of contemporary computational chemistry and experimental techniques leads to a detailed understanding of structures, thermodynamics, and luminescence of actinide compounds, including

  14. An experimental and ab initio study on the abiotic reduction of uranyl by ferrous iron

    Science.gov (United States)

    Taylor, S. D.; Marcano, M. C.; Rosso, K. M.; Becker, U.

    2015-05-01

    It is important to understand the mechanisms controlling the removal of uranyl from solution from an environmental standpoint, particularly whether soluble Fe(II) is capable of reducing soluble U(VI) to insoluble U(IV). Experiments were performed to shed light into discrepancies of recent studies about precipitation of U-containing solids without changing oxidation states versus precipitation/reduction reactions, especially with respect to the kinetics of these reactions. To understand the atomistic mechanisms, thermodynamics, and kinetics of these redox processes, ab initio electron transfer (ET) calculations, using Marcus theory, were applied to study the reduction of U(VI)aq to U(V)aq by Fe(II)aq (the first rate-limiting ET-step). Outer-sphere (OS) and inner-sphere (IS) Fe-U complexes were modeled to represent simple species within a homogeneous environment through which ET could occur. Experiments on the chemical reduction were performed by reacting 1 mM Fe(II)aq at pH 7.2 with high (i.e., 0.16 mM) and lower (i.e., 0.02 mM) concentrations of U(VI)aq. At higher U concentration, a rapid decrease in U(VI)aq was observed within the first hour of reaction. XRD and XPS analyses of the precipitates confirmed the presence of (meta)schoepite phases, where up to ∼25% of the original U was reduced to U4+ and/or U5+-containing phases. In contrast, at 0.02 mM U, the U(VI)aq concentration remained fairly constant for the first 3 h of reaction and only then began to decrease due to slower precipitation kinetics. XPS spectra confirm the partial chemical reduction U associated with the precipitate (up to ∼30%). Thermodynamic calculations support that the reduction of U(VI)aq to U(IV)aq by Fe(II)aq is energetically unfavorable. The batch experiments in this study show U(VI) is removed from solution by precipitation and that transitioning to a heterogeneous system in turn enables the solid U phase to be partially reduced. Ab initio ET calculations revealed that OS ET is

  15. 77 FR 65532 - Solid Fertilizer Grade Ammonium Nitrate From the Russian Federation: Notice of Rescission of...

    Science.gov (United States)

    2012-10-29

    ... International Trade Administration Solid Fertilizer Grade Ammonium Nitrate From the Russian Federation: Notice... the antidumping duty order on solid fertilizer grade ammonium nitrate (ammonium nitrate) from the... Administrative Review: Solid Fertilizer Grade Ammonium Nitrate (Ammonium Nitrate) from the Russian...

  16. Denitrification of nitrate waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bertolami, R.J.; Chao, E.I.; Choi, W.M.; Johnson, B.R.; Varlet, J.L.P.

    1976-04-26

    Growth rates for the denitrifying bacteria Pseudomonas Stutzeri were studied to minimize the time necessary to start up a bacterial denitrification reactor. Batch experiments were performed in nine 250-ml Erlenmeyer flasks, a 7-liter fermentor, and a 67-liter fermentor. All reactors maintained an anaerobic environment. Initial microorganism inoculum concentration was varied over four orders of magnitude. Initial nitrate and substrate carbon concentrations were varied from 200 to 6000 ppm and from 56 to 1596 ppm, respectively, with a carbon-to-nitrogen weight ratio of 1.18. In all experiments, except those with the highest initial substrate-to-bacteria ratio, no growth was observed due to substrate depletion during the lag period. In those experiments which did exhibit an increase in bacterial population, growth also stopped due to substrate depletion. A model simulating microbe growth during the induction period was developed, but insufficient data were available to properly adjust the model constants. Because of this, the model does not accurately predict microbe growth. The metabolism of Pseudomonas Stutzeri was studied in detail. This resulted in a prediction of the denitrification stoichiometry during steady state reactor operation. Iron was found to be an important component for bacterial anabolism.

  17. Geologic and Anthropogenic Controls on Selenium and Nitrate Loading to Southern California Streams

    Science.gov (United States)

    Hibbs, B. J.; Ellis, A. S.

    2009-12-01

    We have identified three urban watersheds with elevated selenium concentrations in the Los Angeles Basin. These include San Diego Creek Watershed of Orange County, Malibu Creek Watershed of Los Angeles County, and tributaries to the Los Angeles River. All of these provide ecological habitat to migratory waterfowl. Dry weather surface flows in these watersheds contain 20 to 35 ug/L dissolved selenium. Shallow groundwater in these watersheds contains 30 to 300 ug/L dissolved selenium. Concentrations exceed the USEPA chronic criterion for selenium of 5 ug/L for protection of aquatic life. Miocene marine shales and siltstones in the Monterrey-Modelo-Puente formation appear to be the original sources of selenium in these watersheds. Selenium is leached into groundwater from these low-permeability strata, along with standard inorganic constituents (primarily sulfate) and phosphorous. Elevated selenium concentrations develop in shallow groundwater, and baseflows carry selenium into urban surface streams. Groundwater baseflows account for most of the selenium loading to streams. Positive correlations are observed between nitrate and selenium in both groundwater and surface water in the watersheds we investigated. Previous theoretical calculations showed favorable Gibbs free energies for oxidation of selenium by dissolved nitrate. Empirical batch studies support theoretical calculations for mobilization of selenium by nitrate in marine shales. Positive correlation between nitrate and selenium in our studies appears to be related to nitrate sourced from atmospheric fallout, agriculture, and treated wastewater application. Laboratory leaching experiments carried out on weathered and unweathered Monterrey rocks from the Malibu Creek Watershed showed high selenium concentrations only when nitrate was leached from the rocks in high concentrations. Selenium concentrations were non-detectable or very dilute when nitrate was not leached from rocks. Weathered rock generally had high

  18. Dietary Nitrate Is a Modifier of Vascular Gene Expression in Old Male Mice

    Directory of Open Access Journals (Sweden)

    Christos Rammos

    2015-01-01

    Full Text Available Aging leads to a number of disadvantageous changes in the cardiovascular system. Deterioration of vascular homoeostasis with increase in oxidative stress, chronic low-grade inflammation, and impaired nitric oxide bioavailability results in endothelial dysfunction, increased vascular stiffness, and compromised arterial-ventricular interactions. A chronic dietary supplementation with the micronutrient nitrate has been demonstrated to improve vascular function. Healthy dietary patterns may regulate gene expression profiles. However, the mechanisms are incompletely understood. The changes that occur at the gene expression level and transcriptional profile following a nutritional modification with nitrate have not been elucidated. To determine the changes of the vascular transcriptome, we conducted gene expression microarray experiments on aortas of old mice, which were treated with dietary nitrate. Our results highlight differentially expressed genes overrepresented in gene ontology categories. Molecular interaction and reaction pathways involved in the calcium-signaling pathway and the detoxification system were identified. Our results provide novel insight to an altered gene-expression profile in old mice following nitrate supplementation. This supports the general notion of nutritional approaches to modulate age-related changes of vascular functions and its detrimental consequences.

  19. Process for the preparation of high reactivity UO/sub 3/ by thermal decomposition in solid phase of hydrated uranyl nitrate. Procede d'obtention de UO/sub 3/ de grande reactivite par decomposition thermique sous forme solide de nitrate d'uranyle hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Bachelard, R.; Lakodey, P.

    1984-06-01

    A process is described for the preparation of uranium trioxide highly reactive (i.e. easy to reduce in UO/sub 2/ and to fluorinate in UF/sub 4/ because of high specific surface and porosity). It is obtained from UO/sub 2/(NO/sub 3/)/sub 2/, xH/sub 2/O (with 2 <= x <= 6) by thermal denitration by heating always at a temperature below the melting point up to a final temperature of 260/sup 0/C. In the thermal treatment the temperature is always maintained below the melting point corresponding to the instantaneous composition and partial pressure of water is below 65 millimeters of mercury.

  20. Removal of Nitrate from Groundwater by Cyanobacteria: Quantitative Assessment of Factors Influencing Nitrate Uptake

    OpenAIRE

    Hu, Qiang; Westerhoff, Paul; Vermaas, Wim

    2000-01-01

    The feasibility of biologically removing nitrate from groundwater was tested by using cyanobacterial cultures in batch mode under laboratory conditions. Results demonstrated that nitrate-contaminated groundwater, when supplemented with phosphate and some trace elements, can be used as growth medium supporting vigorous growth of several strains of cyanobacteria. As cyanobacteria grew, nitrate was removed from the water. Of three species tested, Synechococcus sp. strain PCC 7942 displayed the h...

  1. ROE Wet Nitrate Deposition 1989-1991

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet nitrate deposition in kilograms per hectare from 1989 to 1991. Summary data in this indicator were provided by EPA’s...

  2. ROE Wet Nitrate Deposition 2011-2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet nitrate deposition in kilograms per hectare from 2011 to 2013. Summary data in this indicator were provided by EPA’s...

  3. Spectrophotometric Determination of Nitrate and Phosphate Levels ...

    African Journals Online (AJOL)

    MBI

    2013-04-09

    Apr 9, 2013 ... Drinking Water Samples in The Vicinity of Irrigated Farmlands of Kura ... of Kura irrigated farmlands using polythene plastic containers and were analysed for the nitrate and ... polythene bottles, the bottles were covered with.

  4. Nitrate reduction in geologically heterogeneous catchments

    DEFF Research Database (Denmark)

    Refsgaard, Jens Christian; Auken, Esben; Bamberg, C.A.

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface...... conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root...... the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface...

  5. Nitrate Waste Treatment Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Patrick Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garcia, Terrence Kerwin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  6. Qualitative Determination of Nitrate with Triphenylbenzylphosphonium Chloride.

    Science.gov (United States)

    Berry, Donna A.; Cole, Jerry J.

    1984-01-01

    Discusses two procedures for the identification of nitrate, the standard test ("Brown Ring" test) and a new procedure using triphenylbenzylphosphonium chloride (TPBPC). Effectiveness of both procedures is compared, with the TPBPC test proving to be more sensitive and accurate. (JM)

  7. 76 FR 70366 - Ammonium Nitrate Security Program

    Science.gov (United States)

    2011-11-14

    ...- accessible Internet access could obtain the access necessary to register online. 3. How to best notify... ammonium nitrate sellers (AN Sellers) when it is not possible for an AN Seller to verify the identity of...

  8. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds.

    Science.gov (United States)

    Chopin, Franck; Orsel, Mathilde; Dorbe, Marie-France; Chardon, Fabien; Truong, Hoai-Nam; Miller, Anthony J; Krapp, Anne; Daniel-Vedele, Françoise

    2007-05-01

    In higher plants, nitrate is taken up by root cells where Arabidopsis thaliana NITRATE TRANSPORTER2.1 (ATNRT2.1) chiefly acts as the high-affinity nitrate uptake system. Nitrate taken up by the roots can then be translocated from the root to the leaves and the seeds. In this work, the function of the ATNRT2.7 gene, one of the seven members of the NRT2 family in Arabidopsis, was investigated. High expression of the gene was detected in reproductive organs and peaked in dry seeds. beta-Glucuronidase or green fluorescent protein reporter gene expression driven by the ATNRT2.7 promoter confirmed this organ specificity. We assessed the capacity of ATNRT2.7 to transport nitrate in Xenopus laevis oocytes or when it is expressed ectopically in mutant plants deficient in nitrate transport. We measured the impact of an ATNRT2.7 mutation and found no difference from the wild type during vegetative development. By contrast, seed nitrate content was affected by overexpression of ATNRT2.7 or a mutation in the gene. Finally, we showed that this nitrate transporter protein was localized to the vacuolar membrane. Our results demonstrate that ATNRT2.7 plays a specific role in nitrate accumulation in the seed.

  9. Biodegradation of Glycidol and Glycidyl Nitrate

    OpenAIRE

    1982-01-01

    When calcium hydroxide is used to desensitize glycerol trinitrate (nitroglycerine)-containing waste streams, the epoxides glycidol and glycidyl nitrate are formed. The epoxide rings of both compounds are unstable to heat in aqueous solutions, and they open to form glycerol 1-mononitrate and presumably glycerol. These transformations were accelerated by microbial activity. Glycerol 1-mononitrate was slowly denitrated to form glycerol. Glycidol and glycidyl nitrate caused base-pair substitution...

  10. Preformed Nitrate in the Glacial North Atlantic

    Science.gov (United States)

    Homola, K.; Spivack, A. J.; D'Hondt, S.; Estes, E. R.; Insua, T. L.; McKinley, C. C.; Murray, R. W.; Pockalny, R. A.; Robinson, R. S.; Sauvage, J.

    2015-12-01

    Atmospheric CO2 abundances are highly correlated with global temperature variations over the past 800,000 years. Consequently, understanding the feedbacks between climate and CO2 is important for predictions of future climate. Leading hypotheses to explain this feedback invoke changes in ocean biology, circulation, chemistry, and/or gas exchange rates to trap CO2 in the deep ocean, thereby reducing the greenhouse effect of CO2 in the atmosphere. To test these hypotheses, we use sediment pore water profiles of dissolved nitrate and oxygen to reconstruct paleo-preformed nitrate concentrations at two deep-water sites in the western North Atlantic (23°N 57°W, 5557 m water depth; 30°N 58°W, 5367 m water depth). Preformed nitrate increases down-core to 22.7 μM (25.6 m core depth) at the northern site, and to 28.5 μM (27.8 m core depth) at the southern site. The large preformed nitrate gradient between these sites reveals a paleo-boundary between a southern water source high in preformed nitrate and a northern water source with lower concentrations, similar to today's ocean. However, the boundary between these water masses occurs north of where their modern counterparts meet, indicating that Antarctic Bottom Water (AABW) extended farther north during the Last Glacial Maximum (LGM). In addition, the southern source had a higher preformed nitrate concentration than today's AABW (25 μM), contradicting hypotheses that nutrient utilization was more efficient in the Southern Ocean deep-water formation regions during the LGM. Comparison to our previous Pacific data reveals that the average preformed nitrate concentration of the deep ocean was slightly higher during the LGM than today. This result implies that the CO2-climate feedback was not principally due to more efficient nitrate utilization.

  11. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise.

    Science.gov (United States)

    Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio

    2016-04-01

    Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT.

  12. Synthesis of a new energetic nitrate ester

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E [Los Alamos National Laboratory

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  13. Stimulating nitrate removal processes of restored wetlands.

    Science.gov (United States)

    Ballantine, Kate A; Groffman, Peter M; Lehmann, Johannes; Schneider, Rebecca L

    2014-07-01

    The environmental and health effects caused by nitrate contamination of aquatic systems are a serious problem throughout the world. A strategy proposed to address nitrate pollution is the restoration of wetlands. However, although natural wetlands often remove nitrate via high rates of denitrification, wetlands restored for water quality functions often fall below expectations. This may be in part because key drivers for denitrification, in particular soil carbon, are slow to develop in restored wetlands. We added organic soil amendments that range along a gradient of carbon lability to four newly restored wetlands in western New York to investigate the effect of carbon additions on denitrification and other processes of the nitrogen cycle. Soil carbon increased by 12.67-63.30% with the use of soil amendments (p ≤ 0.0001). Soil nitrate, the carbon to nitrogen ratio, and microbial biomass nitrogen were the most significant predictors of denitrification potential. Denitrification potential, potential net nitrogen nitrification and mineralization, and soil nitrate and ammonium, were highest in topsoil-amended plots, with increases in denitrification potential of 161.27% over control plots. While amendment with topsoil more than doubled several key nitrogen cycling processes, more research is required to determine what type and level of amendment application are most effective for stimulating removal of exogenous nitrate and meeting functional goals within an acceptable time frame.

  14. Nitrate Adsorption on Clay Kaolin: Batch Tests

    Directory of Open Access Journals (Sweden)

    Morteza Mohsenipour

    2015-01-01

    Full Text Available Soils possessing kaolin, gibbsite, goethite, and hematite particles have been found to have a natural capacity to attenuate pollution in aqueous phase. On the other hand, the hydroxyl group in soil increases anion exchange capacity under a low pH condition. The main objective of this paper was to evaluate effects of kaolin on nitrate reduction under acidic condition. In order to analyze the kaolin adsorption behaviour under various conditions, four different concentrations of nitrate, 45, 112.5, 225, and 450 mgNO3-/L, with a constant pH equal to 2, constant temperature equal to 25°C, and exposure period varying from 0 to 150 minutes were considered. The capacity of nitrate adsorption on kaolin has also been studied involving two well-known adsorption isotherm models, namely, Freundlich and Longmuir. The results revealed that approximately 25% of the nitrate present in the solution was adsorbed on clay kaolin. The laboratory experimental data revealed that Freundlich adsorption isotherm model was more accurate than Longmuir adsorption model in predicting of nitrate adsorption. Furthermore, the retardation factor of nitrate pollution in saturated zone has been found to be approximately 4 in presence of kaolin, which indicated that kaolin can be used for natural scavenger of pollution in the environment.

  15. Luminescent properties of [UO{sub 2}(TFA){sub 2}(DMSO){sub 3}], a promising material for sensing and monitoring the uranyl ion

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Ramos, Pablo; Silva, Manuela Ramos; Silva, Pedro S. Pereira da [Centro de Fisica da Universidade de Coimbra (CFisUC), Department of Physics, Universidade de Coimbra (Portugal); Costa, Ana L.; Melo, J. Sergio Seixas de [Centro de Quimica de Coimbra, Department of Chemistry, Universidade de Coimbra (Portugal); Pereira, Laura C.J. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Martin-Gil, Jesus, E-mail: pmr@unizar.es [Advanced Materials Laboratory, Escuela Tecnica Superior de Ingenierias Agrarias, University of Valladolid, Palencia (Spain)

    2016-03-15

    An uranyl complex [UO{sub 2}(TFA){sub 2}(DMSO){sub 3}] (TFA=deprotonated trifluoroacetic acid; DMSO=dimethyl sulfoxide) has been successfully synthesized by reacting UO{sub 2}(CH{sub 3}COO){sub 2} ·H{sub 2} O with one equivalent of (CF{sub 3} CO){sub 2} O and DMSO. The complex has been characterized by single-crystal X-ray diffraction, X-ray powder diffraction, elemental analysis, FTIR spectroscopy, thermal analysis and absorption and emission spectroscopies. The spectroscopic properties of the material make it suitable for its application in the sensing and monitoring of uranyl in the PUREX process. (author)

  16. Enhanced effects of nonisotopic hafnium chloride in methanol as a substitute for uranyl acetate in TEM contrast of ultrastructure of fungal and plant cells.

    Science.gov (United States)

    Ikeda, Ken-Ichi; Inoue, Kanako; Kanematsu, Satoko; Horiuchi, Yoshitaka; Park, Pyoyun

    2011-09-01

    This ultrastructural study showed that nonisotopic methanolic hafnium chloride and aqueous lead solution was an excellent new electron stain for enhancing TEM contrasts of fungal and plant cell structures. The ultrastructural definition provided by the new stain was often superior to that provided by conventional staining with uranyl acetate and lead. Definition of fine ultrastructure was also supported by quantitative data on TEM contrast ratios of organelles and components in fungal and plant cells. In particular, polysaccharides, which were localized in cell walls, glycogen particles, starch grains, and plant Golgi vesicle components, were much more reactive to the new stain than to the conventional one. The new nonisotopic stain is useful for enhancing the contrast of ultrastructure in biological tissues and is a safer alternative to uranyl acetate. Copyright © 2010 Wiley-Liss, Inc.

  17. Radiation-induced nitration of organic compounds in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L. [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Inst. of Physical Chemistry and Electrochemistry; Moisy, P. [CEA, Bagnols sur Ceze (France). Nuclear Energy Div.

    2012-07-01

    Radiolysis in aqueous nitrate and acetic acid solutions and nitrate/nitric acid and phenol was studied. The radiolysis of these solutes occurs with {sup circle} NO{sup 2} radical, which is the active nitrating agent. Accumulation of nitromethane and nitrite was determined during {gamma}-irradiation of aqueous solutions containing acetic and nitrate solutions. Irradiation of aqueous phenol-nitrate/nitric acid solutions results in the formation of 2- and 4-nitrophenols.

  18. Historical Tracking of Nitrate in Contrasting Vineyard Using Water Isotopes and Nitrate Depth Profiles

    Science.gov (United States)

    Sprenger, M.; Erhardt, M.; Riedel, M.; Weiler, M.

    2015-12-01

    The European Water Framework Directive (EWFD) aims to achieve a good chemical status for the groundwater bodies in Europe by the year 2015. Despite the effort to reduce the nitrate pollution from agriculture within the last two decades, there are still many groundwater aquifers that exceed nitrate concentrations above the EWFD threshold of 50 mg/l. Viticulture is seen as a major contributor of nitrate leaching and sowing of a green cover was shown to have a positive effect on lowering the nitrate loads in the upper 90 cm of the soil. However, the consequences for nitrate leaching into the subsoil were not yet tested. We analyzed the nitrate concentrations and pore water stable isotope composition to a depth of 380 cm in soil profiles under an old vineyard and a young vineyard with either soil tillage or permanent green cover in between the grapevines. The pore water stable isotopes were used to calibrate a soil physical model, which was then used to infer the age of the soil water at different depths. This way, we could relate elevated nitrate concentrations below an old vineyard to tillage processes that took place during the winter two years before the sampling. We further showed that the elevated nitrate concentration in the subsoil of a young vineyard can be related to the soil tillage prior to the planting of the new vineyard. If the soil is kept bare due to tillage, a nitrate concentration of 200 kg NO3--N/ha is found in 290 to 380 cm depth 2.5 years after the installation of the vineyard. The amount of nitrate leaching is considerably reduced due to a seeded green cover between the grapevines that takes up a high share of the mobilized nitrate reducing a potential contamination of the groundwater.

  19. Preliminary Assessment of Potential for Metal-Ligand Speciation in Aqueous Solution via the Liquid Sampling-Atmospheric Pressure Glow Discharge (LS-APGD) Ionization Source: Uranyl Acetate.

    Science.gov (United States)

    Zhang, Lynn X; Manard, Benjamin T; Powell, Brian A; Marcus, R Kenneth

    2015-07-21

    The determination of metals, including the generation of metal-ligand speciation information, is essential across a myriad of biochemical, environmental, and industrial systems. Metal speciation is generally affected by the combination of some form of chromatographic separation (reflective of the metal-ligand chemistry) with element-specific detection for the quantification of the metal composing the chromatographic eluent. Thus, the identity of the metal-ligand is assigned by inference. Presented here, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) is assessed as an ionization source for metal speciation, with the uranyl ion-acetate system used as a test system. Molecular mass spectra can be obtained from the same source by simple modification of the sustaining electrolyte solution. Specifically, chemical information pertaining to the degree of acetate complexation of uranyl ion (UO2(2+)) is assessed as a function of pH in the spectral abundance of three metallic species: inorganic (nonligated) uranyl, UO2Ac(H2O)n(MeOH)m(+), and UO2Ac2(H2O)n(MeOH)(m)H(+) (n = 1, 2, 3, ...; m = 1, 2, 3, ...). The product mass spectra are different from what are obtained from electrospray ionization sources that have been applied to this system. The resulting relationships between the speciation and pH values have been compared to calculated concentrations of the corresponding uranyl species: UO2(2+), UO2Ac(+), UO2Ac2. The capacity for the LS-APGD to affect both atomic mass spectra and structurally significant spectra for organometallic complexes is a unique and potentially powerful combination.

  20. Subtle interactions and electron transfer between U{sup III}, Np{sup III}, or Pu{sup III} and uranyl mediated by the oxo group

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Polly L.; Dutkiewicz, Michal S.; Zegke, Markus [Edinburgh Univ. (United Kingdom). EaStCHEM School of Chemistry; and others

    2016-10-04

    A dramatic difference in the ability of the reducing An{sup III} center in AnCp{sub 3} (An = U, Np, Pu; Cp = C{sub 5}H{sub 5}) to oxo-bind and reduce the uranyl(VI) dication in the complex [(UO{sub 2})(THF)(H{sub 2}L)] (L = ''Pacman'' Schiff-base polypyrrolic macrocycle), is found and explained. These are the first selective functionalizations of the uranyl oxo by another actinide cation. At-first contradictory electronic structural data are explained by combining theory and experiment. Complete one-electron transfer from Cp{sub 3}U forms the U{sup IV}-uranyl(V) compound that behaves as a U{sup V}-localized single molecule magnet below 4 K. The extent of reduction by the Cp{sub 3}Np group upon oxo-coordination is much less, with a Np{sup III}-uranyl(VI) dative bond assigned. Solution NMR and NIR spectroscopy suggest Np{sup IV}U{sup V} but single-crystal X-ray diffraction and SQUID magnetometry suggest a Np{sup III}-U{sup VI} assignment. DFT-calculated Hirshfeld charge and spin density analyses suggest half an electron has transferred, and these explain the strongly shifted NMR spectra by spin density contributions at the hydrogen nuclei. The Pu{sup III}-U{sup VI} interaction is too weak to be observed in THF solvent, in agreement with calculated predictions.

  1. Effect of betaine supplementation on plasma nitrate/nitrite in exercise-trained men

    Directory of Open Access Journals (Sweden)

    McCarthy Cameron G

    2011-03-01

    Full Text Available Abstract Background Betaine, beetroot juice, and supplemental nitrate have recently been reported to improve certain aspects of exercise performance, which may be mechanistically linked to increased nitric oxide. The purpose of the present study was to investigate the effect of betaine supplementation on plasma nitrate/nitrite, a surrogate marker or nitric oxide, in exercise-trained men. Methods We used three different study designs (acute intake of betaine at 1.25 and 5.00 grams, chronic intake of betaine at 2.5 grams per day for 14 days, and chronic [6 grams of betaine per day for 7 days] followed by acute intake [6 grams], all involving exercise-trained men, to investigate the effects of orally ingested betaine on plasma nitrate/nitrite. Blood samples were collected before and at 30, 60, 90, and 120 min after ingestion of 1.25 and 5.00 grams of betaine (Study 1; before and after 14 days of betaine supplementation at a dosage of 2.5 grams (Study 2; and before and after 7 days of betaine supplementation at a dosage of 6 grams, followed by acute ingestion of 6 grams and blood measures at 30 and 60 min post ingestion (Study 3. Results In Study 1, nitrate/nitrite was relatively unaffected and no statistically significant interaction (p = 0.99, dosage (p = 0.69, or time (p = 0.91 effects were noted. Similar findings were noted in Study 2, with no statistically significant interaction (p = 0.57, condition (p = 0.98, or pre/post intervention (p = 0.17 effects noted for nitrate/nitrite. In Study 3, no statistically significant changes were noted in nitrate/nitrite between collection times (p = 0.97. Conclusion Our data indicate that acute or chronic ingestion of betaine by healthy, exercise-trained men does not impact plasma nitrate/nitrite. These findings suggest that other mechanisms aside from increasing circulating nitric oxide are likely responsible for any performance enhancing effect of betaine supplementation.

  2. Uranyl ion interaction at the water/NiO(100) interface: A predictive investigation by first-principles molecular dynamic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sebbari, Karim [EDF-R and D, Departement Materiaux et Mecanique des Composants, Les Renardieres, Ecuelles, 77818 Moret Sur Loing (France); Institut de Physique Nucleaire d' Orsay, Universite Paris-Sud, CNRS UMR 8608, 15 rue Georges Clemenceau, Batiment 100, 91406 Orsay Cedex (France); Roques, Jerome; Simoni, Eric [Institut de Physique Nucleaire d' Orsay, Universite Paris-Sud, CNRS UMR 8608, 15 rue Georges Clemenceau, Batiment 100, 91406 Orsay Cedex (France); Domain, Christophe [EDF-R and D, Departement Materiaux et Mecanique des Composants, Les Renardieres, Ecuelles, 77818 Moret Sur Loing (France)

    2012-10-28

    The behavior of the UO{sub 2}{sup 2+} uranyl ion at the water/NiO(100) interface was investigated for the first time using Born-Oppenheimer molecular dynamic simulations with the spin polarized DFT +U extension. A water/NiO(100) interface model was first optimized on a defect-free five layers slab thickness, proposed as a reliable surface model, with an explicit treatment of the solvent. Water molecules are adsorbed with a well-defined structure in a thickness of about 4 A above the surface. The first layer, adsorbed on nickel atoms, remains mainly in molecular form but can partly dissociate at 293 K. Considering low acidic conditions, a bidentate uranyl ion complex was characterized on two surface oxygen species (arising from water molecules adsorption on nickel atoms) with d{sub U-O{sub a{sub d{sub s{sub o{sub r{sub p{sub t{sub i{sub o{sub n}}}}}}}}}}}=2.39 A. This complex is stable at 293 K due to iono-covalent bonds with an estimated charge transfer of 0.58 electron from the surface to the uranyl ion.

  3. Uranyl ion interaction at the water/NiO(100) interface: a predictive investigation by first-principles molecular dynamic simulations.

    Science.gov (United States)

    Sebbari, Karim; Roques, Jérôme; Domain, Christophe; Simoni, Eric

    2012-10-28

    The behavior of the UO(2)(2+) uranyl ion at the water/NiO(100) interface was investigated for the first time using Born-Oppenheimer molecular dynamic simulations with the spin polarized DFT + U extension. A water/NiO(100) interface model was first optimized on a defect-free five layers slab thickness, proposed as a reliable surface model, with an explicit treatment of the solvent. Water molecules are adsorbed with a well-defined structure in a thickness of about 4 Å above the surface. The first layer, adsorbed on nickel atoms, remains mainly in molecular form but can partly dissociate at 293 K. Considering low acidic conditions, a bidentate uranyl ion complex was characterized on two surface oxygen species (arising from water molecules adsorption on nickel atoms) with d(U-O(adsorption))=2.39 Å. This complex is stable at 293 K due to iono-covalent bonds with an estimated charge transfer of 0.58 electron from the surface to the uranyl ion.

  4. Nitrate in aquifers beneath agricultural systems.

    Science.gov (United States)

    Burkart, M R; Stoner, J D

    2007-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWQA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and also shallow carbonate aquifers that provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The system of corn, soybean, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems because this system imports the largest amount of N-fertilizer per unit production area. Mean nitrate under dairy, poultry, horticulture, and cattle and grains systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as

  5. Observations of Alkyl Nitrates during ARCTAS: Investigation of the low NOx Chemistry of Isoprene Nitrates

    Science.gov (United States)

    Browne, E. C.; Cohen, R. C.; Wooldridge, P. J.; Min, K.; Apel, E. C.; Blake, D. R.; Brune, W. H.; Fried, A.; Ren, X.; Weinheimer, A. J.; Wisthaler, A.; Team, A. S.

    2009-12-01

    During numerous ground and airborne experiments alkyl and multifunctional nitrates, measured by Thermal Dissociation-Laser Induced Fluorescence, have been shown to represent a significant fraction of oxidized nitrogen. It is postulated that a large fraction of these nitrates, particularly in forested environments, are isoprene-derived nitrates. The formation of these nitrates is important in terminating photochemical ozone production. However, it is still highly uncertain if these nitrates serve as a permanent termination step or only as a temporary sink that upon further oxidation, releases NO2 back into the atmosphere. The summer portion of the NASA ARCTAS experiment allows us to investigate the role of alkyl nitrates in photochemical ozone production in a new regime: the low NOx of the summer boreal forest. This data set also represents the first time that vertical profiles of the isoprene oxidation products methyl vinyl ketone and methacrolein were obtained along with total alkyl nitrates. We use these measurements to investigate and constrain the low NOx chemistry of isoprene nitrates. We compare these measurements to past airborne and laboratory studies.

  6. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    Science.gov (United States)

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy.

  7. The δ15N of nitrate in the Southern Ocean: Consumption of nitrate in surface waters

    Science.gov (United States)

    Sigman, D. M.; Altabet, M. A.; McCorkle, D. C.; Francois, R.; Fischer, G.

    1999-12-01

    We report nitrogen isotope data for nitrate from transects of hydrocast and surface samples collected in the eastern Indian and Pacific sectors of the Southern Ocean, focusing here on the data from the upper water column to study the effect of nitrate consumption by phytoplankton. The δ15N of nitrate increases by 1-2‰ from deep water into the Antarctic summertime surface layer, due to kinetic isotopic fractionation during nitrate uptake. Estimation of the nitrate uptake isotope effect from Antarctic depth profiles yields values in the range of 5-6‰ in east Indian sector and 4-5‰ in the east Pacific sector. Surface transect data from the Pacific sector also yield values of 4-5‰. The major uncertainty in the profile-based estimation of the isotope effect involves the δ15N of nitrate from the temperature minimum layer below the summertime Antarctic surface layer, which deviates significantly from the predictions of simple models of isotope fractionation. For the Subantarctic surface, it is possible to distinguish between nitrate supplied laterally from the surface Antarctic and nitrate supplied vertically from the Subantarctic thermocline because of the distinctive relationships between the δ15N and concentration of nitrate in these two potential sources. Our Subantarctic samples, collected during the summer and fall, indicate that nitrate is supplied to the Subantarctic surface largely by northward transport of Antarctic surface water. Isotopic data from the Pacific sector of the Subantarctic suggest an isotope effect of 4.5‰, indistinguishable from the Antarctic estimates in this sector.

  8. Microbial Reduction of Chromate in the presence of Nitrate by Three Nitrate Respiring Organisms.

    Directory of Open Access Journals (Sweden)

    Peter eChovanec

    2012-12-01

    Full Text Available A major challenge for the bioremediation of toxic metals is the co-occurrence of nitrate, as it can inhibit metal transformation. Geobacter metallireducens, Desulfovibrio desulfuricans, and Sulfurospirillum barnesii are three soil bacteria that can reduce chromate (Cr(VI and nitrate, and may be beneficial for developing bioremediation strategies. All three organisms respire through dissimilatory nitrate reduction to ammonia (DNRA, employing different nitrate reductases but similar nitrite reductase (Nrf. G. metallireducens reduces nitrate to nitrite via the membrane bound nitrate reductase (Nar, while S. barnesii and D. desulfuricans strain 27774 have slightly different forms of periplasmic nitrate reductase (Nap. We investigated the effect of DNRA growth in the presence of Cr(VI in these three organisms and the ability of each to reduce Cr(VI to Cr(III, and each organisms responded differently. Growth of G. metallireducens on nitrate was completely inhibited by Cr(VI. Cultures of D. desulfuricans on nitrate media was initially delayed (48 h in the presence of Cr(VI, but ultimately reached comparable cell yields to the non-treated control. This prolonged lag phase accompanied the transformation of Cr(VI to Cr(III. Viable G. metallireducens cells could reduce Cr(VI, whereas Cr(VI reduction by D. desulfuricans during growth, was mediated by a filterable and heat stable extracellular metabolite. S. barnesii growth on nitrate was not affected by Cr(VI, and Cr(VI was reduced to Cr(III. However, Cr(VI reduction activity in S. barnesii, was detected in both the cell free spent medium and cells, indicating both extracellular and cell associated mechanisms. Taken together, these results have demonstrated that Cr(VI affects DNRA in the three organisms differently, and that each have a unique mechanism for Cr(VI reduction.

  9. The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community

    NARCIS (Netherlands)

    Nijburg, J.W.; Laanbroek, H.J.

    1997-01-01

    The influence of nitrate addition and the presence of Glyceria maxima (reed sweetgrass) on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community was investigated. Anoxic freshwater sediment was incubated in pots with or without G. maxima and with or without

  10. The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community

    NARCIS (Netherlands)

    Nijburg, J.W.; Laanbroek, H.J.

    1997-01-01

    The influence of nitrate addition and the presence of Glyceria maxima (reed sweetgrass) on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community was investigated. Anoxic freshwater sediment was incubated in pots with or without G. maxima and with or without

  11. Exclusion of Nitrate from Frozen Aqueous Solutions

    Science.gov (United States)

    Marrocco, H. A.; Michelsen, R. R.

    2013-12-01

    Reactions occurring at the surface of ice, sea ice, and snow in Earth's cryosphere have an impact on the composition of the overlying atmosphere. In order to elucidate reaction mechanisms and model their contributions to atmospheric processes, the morphology of frozen aqueous surfaces and amounts of reactants contained therein must be determined. To this end, the exclusion of nitrate ions to the surface of frozen aqueous solutions has been studied by attenuated total reflection infrared spectroscopy (ATR-IR). In this technique the near-surface region of the frozen films are interrogated to a depth of a few hundred nanometers from the film-crystal interface. Aqueous solutions (0.001 to 0.01 M) of sodium nitrate (NaNO3), magnesium nitrate (Mg(NO3)2), and nitric acid (HNO3) were quickly frozen on the germanium ATR crystal and observed at a constant temperature of about -18°C. In addition to ice and the solutes, liquid water in varying amounts was observed in the spectra. The amount of nitrate in the surface liquid is three to four orders of magnitude higher than in the unfrozen solution. While all the nitrate salts exhibit exclusion to the unfrozen surface, the dynamics are different for different counter-ions. Results are compared to freezing point depression data and the predictions of equilibrium thermodynamics.

  12. Nitrate transceptor(s) in plants.

    Science.gov (United States)

    Gojon, Alain; Krouk, Gabriel; Perrine-Walker, Francine; Laugier, Edith

    2011-04-01

    The availability of mineral nutrients in the soil dramatically fluctuates in both time and space. In order to optimize their nutrition, plants need efficient sensing systems that rapidly signal the local external concentrations of the individual nutrients. Until recently, the most upstream actors of the nutrient signalling pathways, i.e. the sensors/receptors that perceive the extracellular nutrients, were unknown. In Arabidopsis, increasing evidence suggests that, for nitrate, the main nitrogen source for most plant species, a major sensor is the NRT1.1 nitrate transporter, also contributing to nitrate uptake by the roots. Membrane proteins that fulfil a dual nutrient transport/signalling function have been described in yeast and animals, and are called 'transceptors'. This review aims to illustrate the nutrient transceptor concept in plants by presenting the current evidence indicating that NRT1.1 is a representative of this class of protein. The various facets, as well as the mechanisms of nitrate sensing by NRT1.1 are considered, and the possible occurrence of other nitrate transceptors is discussed.

  13. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    Science.gov (United States)

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities.

  14. Identification of nitrated tyrosine residues of protein kinase G-Iα by mass spectrometry.

    Science.gov (United States)

    Lu, Jingshan; Yao, Ikuko; Shimojo, Masahito; Katano, Tayo; Uchida, Hitoshi; Setou, Mitsutoshi; Ito, Seiji

    2014-02-01

    The nitration of tyrosine to 3-nitrotyrosine is an oxidative modification of tyrosine by nitric oxide and is associated with many diseases, and targeting of protein kinase G (PKG)-I represents a potential therapeutic strategy for pulmonary hypertension and chronic pain. The direct assignment of tyrosine residues of PKG-I has remained to be made due to the low sensitivity of the current proteomic approach. In order to assign modified tyrosine residues of PKG-I, we nitrated purified PKG-Iα expressed in insect Sf9 cells by use of peroxynitrite in vitro and analyzed the trypsin-digested fragments by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Among the 21 tyrosine residues of PKG-Iα, 16 tyrosine residues were assigned in 13 fragments; and six tyrosine residues were nitrated, those at Y71, Y141, Y212, Y336, Y345, and Y567, in the peroxynitrite-treated sample. Single mutation of tyrosine residues at Y71, Y212, and Y336 to phenylalanine significantly reduced the nitration of PKG-Iα; and four mutations at Y71, Y141, Y212, and Y336 (Y4F mutant) reduced it additively. PKG-Iα activity was inhibited by peroxynitrite in a concentration-dependent manner from 30 μM to 1 mM, and this inhibition was attenuated in the Y4F mutant. These results demonstrated that PKG-Iα was nitrated at multiple tyrosine residues and that its activity was reduced by nitration of these residues.

  15. The key role of U{sub 28} in the aqueous self-assembly of uranyl peroxide nanocages

    Energy Technology Data Exchange (ETDEWEB)

    Falaise, Clement; Nyman, May [Energy Frontier Research Center, Materials Science of Actinides, Department of Chemistry, Oregon State University, Corvallis, OR (United States)

    2016-10-04

    For 11 years now, the structural diversity and aesthetic beauty of uranyl-peroxide capsules have fascinated researchers from the diverse fields of mineralogy, polyoxometalate chemistry, and nuclear fuel technologies. There is still much to be learned about the mechanisms of the self-assembly process, and the role of solution parameters including pH, alkali template, temperature, time, and others. Here we have exploited the high solubility of the UO{sub 2}{sup 2+}/H{sub 2}O{sub 2}/LiOH aqueous system to address the effect of the hydroxide concentration. Important techniques of this study are single-crystal X-ray diffraction, small-angle X-ray scattering, and Raman spectroscopy. Three key phases dominate the solution speciation as a function of time and the LiOH/UO{sub 2}{sup 2+} ratio: the uranyl-triperoxide monomer [UO{sub 2}(O{sub 2}){sub 3}]{sup 4-}and the two capsules [(UO{sub 2})(O{sub 2})(OH)]{sub 24}{sup 24-}(U{sub 24}) and [(UO{sub 2})(O{sub 2}){sub 1.5}]{sub 28}{sup 28-}(U{sub 28}). When the LiOH/U ratio is around three, U{sub 28} forms rapidly and this cluster can be isolated in high yield and purity. This result was most surprising and challenges the hypothesis that alkali templating is the most important determinant in the cluster geometry. Moreover, analogous experiments with KOH, NH{sub 4}OH, and TEAOH (TEA=tetraethylammonium) also rapidly yield U{sub 28}, which suggests that U{sub 28} is the kinetically favored species. Complete mapping of the pH-time phase space reveals only a narrow window of the U{sub 28} dominance, which is why it was previously overlooked as an important kinetic species in this chemical system, as well as others with different counterions. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Ammonium and nitrate tolerance in lichens.

    Science.gov (United States)

    Hauck, Markus

    2010-05-01

    Since lichens lack roots and take up water, solutes and gases over the entire thallus surface, these organisms respond more sensitively to changes in atmospheric purity than vascular plants. After centuries where effects of sulphur dioxide and acidity were in the focus of research on atmospheric chemistry and lichens, recently the globally increased levels of ammonia and nitrate increasingly affect lichen vegetation and gave rise to intense research on the tolerance of lichens to nitrogen pollution. The present paper discusses the main findings on the uptake of ammonia and nitrate in the lichen symbiosis and to the tolerance of lichens to eutrophication. Ammonia and nitrate are both efficiently taken up under ambient conditions. The tolerance to high nitrogen levels depends, among others, on the capability of the photobiont to provide sufficient amounts of carbon skeletons for ammonia assimilation. Lowly productive lichens are apparently predisposed to be sensitive to excess nitrogen.

  17. Insights on nitrate respiration by Shewanella

    Directory of Open Access Journals (Sweden)

    Fengping eWang

    2015-01-01

    Full Text Available Shewanellae are well known for their ability to utilize a number of electron acceptors and are therefore considered to have important roles in element cycling in the environment, such as nitrogen cycling through dissimilatory nitrate reduction to ammonia (DNRA and denitrification. Possessing two periplasmic nitrate reductase systems (NAP-α and NAP-β is a special trait of the Shewanella genus, and both enzymes are likely to provide selective advantage to the host. This review relates the current knowledge and aspects of the nitrate respiration system of Shewanella. Specifically, the potential physiological functions and regulation mechanisms of the duo-NAP system are discussed in addition to the evolution of anaerobic respiration systems of Shewanella.

  18. Plasma nitrate and nitrite are increased by a high-nitrate supplement but not by high-nitrate foods in older adults.

    Science.gov (United States)

    Miller, Gary D; Marsh, Anthony P; Dove, Robin W; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S Bruce; Kim-Shapiro, Daniel

    2012-03-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/nitric oxide cycle in older adults. We examined the effect of a 3-day control diet vs high-nitrate diet, with and without a high-nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics and blood pressure using a randomized 4-period crossover controlled design. We hypothesized that the high-nitrate diet would show higher levels of plasma nitrate/nitrite and lower blood pressure compared with the control diet, which would be potentiated by the supplement. Participants were 8 normotensive older men and women (5 female, 3 male, 72.5 ± 4.7 years old) with no overt disease or medications that affect nitric oxide metabolism. Plasma nitrate and nitrite levels and blood pressure were measured before and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet + supplement (P < .001 and P = .017 for nitrate and nitrite, respectively) and high-nitrate diet + supplement (P = .001 and P = .002), but not for control diet (P = .713 and P = .741) or high-nitrate diet (P = .852 and P = .500). Blood pressure decreased from the morning baseline measure to the three 2-hour postmeal follow-up time points for all treatments, but there was no main effect for treatment. In healthy older adults, a high-nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction.

  19. Techniques for Measurement of Nitrate Movement in Soils

    Science.gov (United States)

    Broadbent, F. E.

    1971-01-01

    Contamination of surface and ground waters with nitrate usually involves leaching through soil of nitrate produced by mineralization of soil organic matter, decomposition of animal wastes or plant residues, or derived from fertilizers. Nitrate concentrations in the soil solution may be measured by several chemical procedures or by the nitrate electrode. since nitrate is produced throughout the soil mass it is difficult to identify a source of nitrate contamination by conventional means. This problem can be solved by use of N-15-enriched or N-15-depleted materials as tracers. The latter is particularly attractive because of the negligible possibility of the tracer hazardous to health.

  20. Stochastic Controls on Nitrate Transport and Cycling

    Science.gov (United States)

    Botter, G.; Settin, T.; Alessi Celegon, E.; Marani, M.; Rinaldo, A.

    2005-12-01

    In this paper, the impact of nutrient inputs on basin-scale nitrates losses is investigated in a probabilistic framework by means of a continuous, geomorphologically based, Montecarlo approach, which explicitly tackles the random character of the processes controlling nitrates generation, transformation and transport in river basins. This is obtained by coupling the stochastic generation of climatic and rainfall series with simplified hydrologic and biogeochemical models operating at the hillslope scale. Special attention is devoted to the spatial and temporal variability of nitrogen sources of agricultural origin and to the effect of temporally distributed rainfall fields on the ensuing nitrates leaching. The influence of random climatic variables on bio-geochemical processes affecting the nitrogen cycle in the soil-water system (e.g. plant uptake, nitrification and denitrification, mineralization), is also considered. The approach developed has been applied to a catchment located in North-Eastern Italy and is used to provide probabilistic estimates of the NO_3 load transferred downstream, which is received and accumulated in the Venice lagoon. We found that the nitrogen load introduced by fertilizations significantly affects the pdf of the nitrates content in the soil moisture, leading to prolonged risks of increased nitrates leaching from soil. The model allowed the estimation of the impact of different practices on the probabilistic structure of the basin-scale hydrologic and chemical response. As a result, the return period of the water volumes and of the nitrates loads released into the Venice lagoon has been linked directly to the ongoing climatic, pluviometric and agricultural regimes, with relevant implications for environmental planning activities aimed at achieving sustainable management practices.

  1. Side effects of using nitrates to treat heart failure and the acute coronary syndromes, unstable angina and acute myocardial infarction.

    Science.gov (United States)

    Thadani, Udho; Ripley, Toni L

    2007-07-01

    Nitrates are potent venous dilators and anti-ischemic agents. They are widely used for the relief of chest pain and pulmonary congestion in patients with acute coronary syndromes and heart failure. Nitrates, however, do not reduce mortality in patients with acute coronary syndromes. Combination of nitrates and hydralazine when given in addition to beta-blockers and angiotensin-converting enzyme (ACE) inhibitors reduce mortality and heart failure hospitalizations in patients with heart failure due to left ventricular systolic dysfunction who are of African-American origin. Side effects during nitrate therapy are common but are less well described in the literature compared with the reported side effects in patients with stable angina pectoris. The reported incidence of side effects varies highly among different studies and among various disease states. Headache is the most commonly reported side effect with an incidence of 12% in acute heart failure, 41-73% in chronic heart failure, 3-19% in unstable angina and 2-26% in acute myocardial infarction. The reported incidence of hypotension also differs: 5-10% in acute heart failure, 20% in chronic heart failure, 9% in unstable angina and < 1-48% in acute myocardial infarction, with the incidence being much higher with concomitant nitrate therapy plus angiotensin-converting enzyme inhibitors. Reported incidence of dizziness is as low as 1% in patients with acute myocardial infarction to as high as 29% in patients with heart failure. Severe headaches and/or symptomatic hypotension may necessitate discontinuation of nitrate therapy. Severe life threatening hypotension or even death may occur when nitrates are used in patients with acute inferior myocardial infarction associated with right ventricular dysfunction or infarction, or with concomitant use of phosphodiesterase-5 inhibitors or N-acetylcysteine. Despite the disturbing observational reports in the literature that continuous and prolonged use of nitrates may lead to

  2. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(−)-myrtenol nitrate

    Science.gov (United States)

    Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Summary Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a ’halide for nitrate’ substitution. Employing readily available starting materials, reagents and Horner–Wadsworth–Emmons chemistry the synthesis of easily separable, synthetically versatile ‘key building blocks’ (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, ’off the shelf’ materials. Exploiting their reactivity we have studied their ability to undergo an ‘allylic halide for allylic nitrate’ substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates (‘isoprene nitrates’) in 66–80% overall yields. Using NOESY experiments the elucidation of the carbon–carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our ‘halide for nitrate’ substitution chemistry we outline the straightforward transformation of (1R,2S)-(−)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(−)-myrtenol nitrate. PMID:27340495

  3. Nitrate removal and denitrification affected by soil characteristics in nitrate treatment wetlands.

    Science.gov (United States)

    Lin, Ying-Feng; Jing, Shuh-Ren; Lee, Der-Yuan; Chang, Yih-Feng; Shih, Kai-Chung

    2007-03-01

    Several small-scale surface flow constructed wetlands unplanted and planted (monoculture) with various macrophytes (Phragmites australis, Typha orientalis, Pennisetum purpureum, Ipomoea aquatica, and Pistia stratiotes) were established to continuously receive nitrate-contaminated groundwater. Soil characteristics and their effects on nitrate removal and soil denitrification were investigated. The results showed that planted wetland cells exhibited significantly higher (P wetland cell (1%, 0.11 microg N2O-N/g/h). However, the unplanted uncovered wetland cell showed a nitrate removal efficiency (55%) lower than but a soil denitrification rate (9.12 microg N2O-N/g/h) comparable to the planted cells. The nitrate removal rate correlated closely and positively with the soil denitrification rate for the planted cells, indicating that soil denitrification is an important process for removing nitrate in constructed wetlands. The results of nitrogen budget revealed that around 68.9-90.7% of the overall nitrogen removal could be attributed to the total denitrification. The soil denitrification rate was found to correlate significantly (P wetland soil, which accordingly were concluded as suitable indicators of soil denitrification rate and nitrate removal rate in nitrate treatment wetlands.

  4. Excess nitrate loads to coastal waters reduces nitrate removal efficiency: mechanism and implications for coastal eutrophication.

    Science.gov (United States)

    Lunau, Mirko; Voss, Maren; Erickson, Matthew; Dziallas, Claudia; Casciotti, Karen; Ducklow, Hugh

    2013-05-01

    Terrestrial ecosystems are becoming increasingly nitrogen-saturated due to anthropogenic activities, such as agricultural loading with artificial fertilizer. Thus, more and more reactive nitrogen is entering streams and rivers, primarily as nitrate, where it is eventually transported towards the coastal zone. The assimilation of nitrate by coastal phytoplankton and its conversion into organic matter is an important feature of the aquatic nitrogen cycle. Dissolved reactive nitrogen is converted into a particulate form, which eventually undergoes nitrogen removal via microbial denitrification. High and unbalanced nitrate loads to the coastal zone may alter planktonic nitrate assimilation efficiency, due to the narrow stochiometric requirements for nutrients typically shown by these organisms. This implies a cascade of changes for the cycling of other elements, such as carbon, with unknown consequences at the ecosystem level. Here, we report that the nitrate removal efficiency (NRE) of a natural phytoplankton community decreased under high, unbalanced nitrate loads, due to the enhanced recycling of organic nitrogen and subsequent production and microbial transformation of excess ammonium. NRE was inversely correlated with the amount of nitrate present, and mechanistically controlled by dissolved organic nitrogen (DON), and organic carbon (Corg) availability. These findings have important implications for the management of nutrient runoff to coastal zones.

  5. Nitrate stimulation of indigenous nitrate-reducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms.

    Science.gov (United States)

    Garcia-de-Lomas, Juan; Corzo, Alfonso; Carmen Portillo, M; Gonzalez, Juan M; Andrades, Jose A; Saiz-Jimenez, Cesáreo; Garcia-Robledo, Emilio

    2007-07-01

    The role of the nitrate-reducing, sulfide-oxidising bacteria (NR-SOB) in the nitrate-mediated inhibition of sulfide net production by anaerobic wastewater biofilms was analyzed in two experimental bioreactors, continuously fed with the primary effluent of a wastewater treatment plant, one used as control (BRC) and the other one supplemented with nitrate (BRN). This study integrated information from H(2)S and pH microelectrodes, RNA-based molecular techniques, and the time course of biofilm growth and bioreactors water phase. Biofilms were a net source of sulfide for the water phase (2.01 micromol S(2-)(tot)m(-2)s(-1)) in the absence of nitrate dosing. Nitrate addition effectively led to the cessation of sulfide release from biofilms despite which a low rate of net sulfate reduction activity (0.26 micromol S(2-)(tot)m(-2)s(-1)) persisted at a deep layer within the biofilm. Indigenous NR-SOB including Thiomicrospira denitrificans, Arcobacter sp., and Thiobacillus denitrificans were stimulated by nitrate addition resulting in the elimination of most sulfide from the biofilms. Active sulfate reducing bacteria (SRB) represented comparable fractions of total metabolically active bacteria in the libraries obtained from BRN and BRC. However, we detected changes in the taxonomic composition of the SRB community suggesting its adaptation to a higher level of NR-SOB activity in the presence of nitrate.

  6. Biodegradation of Glycidol and Glycidyl Nitrate

    Science.gov (United States)

    Kaplan, David L.; Cornell, John H.; Kaplan, Arthur M.

    1982-01-01

    When calcium hydroxide is used to desensitize glycerol trinitrate (nitroglycerine)-containing waste streams, the epoxides glycidol and glycidyl nitrate are formed. The epoxide rings of both compounds are unstable to heat in aqueous solutions, and they open to form glycerol 1-mononitrate and presumably glycerol. These transformations were accelerated by microbial activity. Glycerol 1-mononitrate was slowly denitrated to form glycerol. Glycidol and glycidyl nitrate caused base-pair substitutions in the Ames test for mutagenicity, whereas glycerol 1-mononitrate tests were negative. PMID:16345917

  7. Biodegradation of glycidol and glycidyl nitrate.

    Science.gov (United States)

    Kaplan, D L; Cornell, J H; Kaplan, A M

    1982-01-01

    When calcium hydroxide is used to desensitize glycerol trinitrate (nitroglycerine)-containing waste streams, the epoxides glycidol and glycidyl nitrate are formed. The epoxide rings of both compounds are unstable to heat in aqueous solutions, and they open to form glycerol 1-mononitrate and presumably glycerol. These transformations were accelerated by microbial activity. Glycerol 1-mononitrate was slowly denitrated to form glycerol. Glycidol and glycidyl nitrate caused base-pair substitutions in the Ames test for mutagenicity, whereas glycerol 1-mononitrate tests were negative.

  8. 9-Amino­acridinium nitrate monohydrate

    OpenAIRE

    Pourayoubi, Mehrdad; Eshtiagh-Hosseini, Hossein; Sanaei Ataabadi, Somayyeh; Mancilla Percino, Teresa; A. Leyva Ramírez, Marco

    2011-01-01

    The pyridine N atom of the cation in the title hydrated salt, C13H11N2 +·NO3 −·H2O, is protonated; the N atom of the NH2 group shows a planar conformation. The former N atom is hydrogen bonded to a water mol­ecule. The amino group is involved in three N—H⋯O hydrogen bonds with two neighboring nitrate anions. The water mol­ecule is hydrogen bonded to two adjacent nitrate anions. In the crystal, this results in a layered network.

  9. 9-Amino­acridinium nitrate monohydrate

    Science.gov (United States)

    Pourayoubi, Mehrdad; Eshtiagh-Hosseini, Hossein; Sanaei Ataabadi, Somayyeh; Mancilla Percino, Teresa; A. Leyva Ramírez, Marco

    2011-01-01

    The pyridine N atom of the cation in the title hydrated salt, C13H11N2 +·NO3 −·H2O, is protonated; the N atom of the NH2 group shows a planar conformation. The former N atom is hydrogen bonded to a water mol­ecule. The amino group is involved in three N—H⋯O hydrogen bonds with two neighboring nitrate anions. The water mol­ecule is hydrogen bonded to two adjacent nitrate anions. In the crystal, this results in a layered network. PMID:21522328

  10. The effect of six days of dietary nitrate supplementation on performance in trained CrossFit athletes.

    Science.gov (United States)

    Kramer, Samuel J; Baur, Daniel A; Spicer, Maria T; Vukovich, Matthew D; Ormsbee, Michael J

    2016-01-01

    While it is well established that dietary nitrate reduces the metabolic cost of exercise, recent evidence suggests this effect is maintained 24 h following the final nitrate dose when plasma nitrite levels have returned to baseline. In addition, acute dietary nitrate was recently reported to enhance peak power production. Our purpose was to examine whether chronic dietary nitrate supplementation enhanced peak power 24 h following the final dose and if this impacted performance in a heavily power-dependent sport. In a double-blind, randomized, crossover design, maximal aerobic capacity, body composition, strength, maximal power (30 s Wingate), endurance (2 km rowing time trial), and CrossFit performance (Grace protocol) were assessed before and after six days of supplementation with nitrate (NO) (8 mmol·potassium nitrate·d(-1)) or a non-caloric placebo (PL). A 10-day washout period divided treatment conditions. Paired t-tests were utilized to assess changes over time and to compare changes between treatments. Peak Wingate power increased significantly over time with NO (889.17 ± 179.69 W to 948.08 ± 186.80 W; p = 0.01) but not PL (898.08 ± 183.24 W to 905.00 ± 157.23 W; p = 0.75). However, CrossFit performance was unchanged, and there were no changes in any other performance parameters. Consuming dietary nitrate in the potassium nitrate salt form improved peak power during a Wingate test, but did not improve elements of strength or endurance in male CrossFit athletes.

  11. The Acid Catalyzed Nitration of Methanol: Formation of Methyl Nitrate via Aerosol Chemistry

    Science.gov (United States)

    Riffel, Brent G.; Michelsen, Rebecca R.; Iraci, Laura T.

    2004-01-01

    The liquid phase acid catalyzed reaction of methanol with nitric acid to yield methyl nitrate under atmospheric conditions has been investigated using gas phase infrared spectroscopy. This nitration reaction is expected to occur in acidic aerosol particles found in the upper troposphere/lower stratosphere as highly soluble methanol and nitric acid diffuse into these aerosols. Gaseous methyl nitrate is released upon formation, suggesting that some fraction of NO(x) may he liberated from nitric acid (methyl nitrate is later photolyzed to NO(x)) before it is removed from the atmosphere by wet deposition. Thus, this reaction may have important implications for the NO(x) budget. Reactions have been initiated in 45-62 wt% H2SO4 solutions at 10.0 C. Methyl nitrate production rates increased exponentially with acidity within the acidity regime studied. Preliminary calculations suggest that the nitronium ion (NO2(+) is the active nitrating agent under these conditions. The reaction order in methanol appears to depend on the water/methanol ratio and varies from first to zeroth order under conditions investigated. The nitration is first order in nitronium at all acidities investigated. A second order rate constant, kappa(sub 2), has been calculated to be 1 x 10(exp 8)/ M s when the reaction is first order in methanol. Calculations suggest the nitration is first order in methanol under tropospheric conditions. The infinitesimal percentage of nitric acid in the nitronium ion form in this acidity regime probably makes this reaction insignificant for the upper troposphere; however, this nitration may become significant in the mid stratosphere where colder temperatures increase nitric acid solubility and higher sulfuric acid content shifts nitric acid speciation toward the nitronium ion.

  12. The Acid Catalyzed Nitration of Methanol: Formation of Methyl Nitrate via Aerosol Chemistry

    Science.gov (United States)

    Riffel, Brent G.; Michelsen, Rebecca R.; Iraci, Laura T.

    2004-01-01

    The liquid phase acid catalyzed reaction of methanol with nitric acid to yield methyl nitrate under atmospheric conditions has been investigated using gas phase infrared spectroscopy. This nitration reaction is expected to occur in acidic aerosol particles found in the upper troposphere/lower stratosphere as highly soluble methanol and nitric acid diffuse into these aerosols. Gaseous methyl nitrate is released upon formation, suggesting that some fraction of NO(x) may he liberated from nitric acid (methyl nitrate is later photolyzed to NO(x)) before it is removed from the atmosphere by wet deposition. Thus, this reaction may have important implications for the NO(x) budget. Reactions have been initiated in 45-62 wt% H2SO4 solutions at 10.0 C. Methyl nitrate production rates increased exponentially with acidity within the acidity regime studied. Preliminary calculations suggest that the nitronium ion (NO2(+) is the active nitrating agent under these conditions. The reaction order in methanol appears to depend on the water/methanol ratio and varies from first to zeroth order under conditions investigated. The nitration is first order in nitronium at all acidities investigated. A second order rate constant, kappa(sub 2), has been calculated to be 1 x 10(exp 8)/ M s when the reaction is first order in methanol. Calculations suggest the nitration is first order in methanol under tropospheric conditions. The infinitesimal percentage of nitric acid in the nitronium ion form in this acidity regime probably makes this reaction insignificant for the upper troposphere; however, this nitration may become significant in the mid stratosphere where colder temperatures increase nitric acid solubility and higher sulfuric acid content shifts nitric acid speciation toward the nitronium ion.

  13. Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface Complexation in Subsurface Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.; Hu, Qinhong

    2016-07-31

    The additivity model assumed that field-scale reaction properties in a sediment including surface area, reactive site concentration, and reaction rate can be predicted from field-scale grain-size distribution by linearly adding reaction properties estimated in laboratory for individual grain-size fractions. This study evaluated the additivity model in scaling mass transfer-limited, multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment. Experimental data of rate-limited U(VI) desorption in a stirred flow-cell reactor were used to estimate the statistical properties of the rate constants for individual grain-size fractions, which were then used to predict rate-limited U(VI) desorption in the composite sediment. The result indicated that the additivity model with respect to the rate of U(VI) desorption provided a good prediction of U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel-size fraction (2 to 8 mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.

  14. Experimental Results for Direct Electron Irradiation of a Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-30

    In support of the development of accelerator-driven production of fission product Mo-99 as proposed by SHINE Medical Technologies, a 35 MeV electron linac was used to irradiate depleted-uranium (DU) uranyl sulfate dissolved in pH 1 sulfuric acid at average power densities of 6 kW, 12 kW, and 15 kW. During these irradiations, gas bubbles were generated in the solution due to the radiolytic decomposition of water molecules in the solution. Multiple video cameras were used to record the behavior of bubble generation and transport in the solution. Seven six-channel thermocouples were used to record temperature gradients in the solution from self-heating. Measurements of hydrogen and oxygen concentrations in a helium sweep gas were recorded by a gas chromatograph to estimate production rates during irradiation. These data are being used to validate a computational fluid dynamics (CFD) model of the experiment that includes multiphase flow and a custom bubble injection model for the solution region.

  15. Entangled Uranyl Organic Frameworks with (10,3)-b Topology and Polythreading Network: Structure, Luminescence, and Computational Investigation.

    Science.gov (United States)

    Liu, Chao; Gao, Chao-Ying; Yang, Weiting; Chen, Fang-Yuan; Pan, Qing-Jiang; Li, Jiyang; Sun, Zhong-Ming

    2016-06-06

    Two 3D uranyl organic frameworks (UOFs) with entangled structures, (HPhen)2[(UO2)2L2]·4.5H2O (1) and [(UO2)3(H2O)4L2]·6H2O (2), were synthesized using a rigid tripodal linker (4,4',4″-(phenylsilanetriyl)tribenzoic acid, H3L). Compound 1 represents a 2-fold interpenetrating UOF with the unique (10,3)-b topology. Compound 2 is composed of three interlocked sets of identical singlet networks and thus exhibits a rare 3D polythreading network with (3,4)-connected topology. These two compounds have been characterized by IR, UV-vis, and photoluminescent spectroscopy. A density functional theory (DFT) study on the model compounds of 1 and 2 shows good agreement of structural parameters and U═O stretching vibrational frequencies with experimental data. The experimentally measured absorption bands were well reproduced by the time-dependent DFT calculations.

  16. Nanoscale UO{sub 2} and novel complex U(IV)-sulphate phase formation from electrolytically reduced uranyl sulphate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gil, D.; Malmbeck, R.; Spino, J.; Fanghaenel, T. [European Commission, Joint Research Centre, Inst. for Transuranium Elements, Karlsruhe (Germany); Dinnebier, R. [Max Planck Inst. for Solid State Research, Stuttgart (Germany)

    2010-07-01

    Three different processes have been explored to determine the ranges of U-concentration and acidity (pH-value) for nanocrystalline U{sub 2+x} precipitation from electrolytically reduced uranyl sulphate solutions. Precipitation of U{sub 2+x} nanoparticles aggregates was found to occur only in the narrow range of pH {proportional_to} 4.5 to 5 and for U-concentrations of {proportional_to} 10{sup -6} to 10{sup -7} M. The solid phase crystallized with the typical UO{sub 2}-fcc structure and with a crystallite size {<=} 3 nm. The average aggregate size was mostly {<=} 80 nm. At higher U-concentrations, ranging from [U] {proportional_to} 10{sup -1} M at pH {proportional_to} 1.5 to [U] {proportional_to} 5 x 10{sup -4} M at pH {proportional_to} 4.9, formation of microscale precipitates of a novel complex U(IV)-sulphate phase occurred, which was characterized by SEM/EDX-WDX, ICP-OES and XRD-powder diffraction. The crystal structure was identified with an orthorhombic cell (space group Cmca), with the following lattice parameters: a = 1.974(0)(2) nm, b = 1.3336(2) nm and c = 2.0643(2) nm. Further composition analyses indicated a basic sulphate hydrate of the type Na{sub 3}U(SO{sub 4}){sub 3}(OH).nH{sub 2}O. (orig.)

  17. Adsorption characteristics of uranyl ions onto micelle surface for treatment of radioactive liquid wastes by micelle enhanced ultrafiltration technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Choi, W. K.; Jeong, K. H.; Lee, D. K.; Jeong, K. J. [KAERI, Taejon (Korea, Republic of)

    2001-10-01

    The objective of this investigation is to establish the rejection behavior of uranium bearing waste water by micelle enhanced ultrafiltration technique. An extensive experimental investigation was conducted with uranium only and uranium in the presence of electrolyte, utilizing ultrasfiltration stirred cell. The effects of experimental parameters such as solution pH and concentration of uranium on rejection were examined from the change of micelle concentration. The rejection dependence of the uranium was found to be a function of pH and uranium to surfactant concentration ratio. Over 95% removal was observed at pH 3 {approx} 5 and SDS concentration of 40 mM. In the presence of electrolytes, the rejection of uranium was observed to decrease significantly, the addition of cobalt ion showed more reduction than that obtained by presence of sodium and cesium ions on rejection of uranium. The rejection behavior was explained in terms of apparent distribution constants. The rejection efficiencies of uranyl ions was significantly affected by the chemical species of the given system. For all cases, the rejection was highly dependent on uranium complex species.

  18. Toward equatorial planarity about uranyl: synthesis and structure of tridentate nitrogen-donor {UO2}2+ complexes.

    Science.gov (United States)

    Copping, Roy; Jeon, Byoungseon; Pemmaraju, C Das; Wang, Shuao; Teat, Simon J; Janousch, Markus; Tyliszczak, Tolek; Canning, Andrew; Grønbech-Jensen, Niels; Prendergast, David; Shuh, David K

    2014-03-01

    The reaction of UO2Cl2·3THF with the tridentate nitrogen donor ligand 2,6-bis(2-benzimidazolyl)pyridine (H2BBP) in pyridine leads to the formation of three different complexes: [(UO2)(H2BBP)Cl2] (1), [(UO)2(HBBP)(Py)Cl] (2), and [(UO2)(BBP)(Py)2] (3) after successive deprotonation of H2BBP with a strong base. Crystallographic determination of 1-3 reveals that increased charge through ligand deprotonation and displacement of chloride leads to equatorial planarity about uranyl as well as a more compact overall coordination geometry. Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectra of 1-3 at the U-4d edges have been recorded using a soft X-ray Scanning Transmission X-ray Microscope (STXM) and reveal the uranium 4d5/2 and 4d3/2 transitions at energies associated with uranium in the hexavalent oxidation state. First-principles Density Functional Theory (DFT) electronic structure calculations for the complexes have been performed to determine and validate the coordination characteristics, which correspond well to the experimental results.

  19. Long-term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments

    Science.gov (United States)

    Peng, Xuefeng; Ji, Qixing; Angell, John H.; Kearns, Patrick J.; Yang, Hannah J.; Bowen, Jennifer L.; Ward, Bess B.

    2016-08-01

    Salt marshes provide numerous valuable ecological services. In particular, nitrogen (N) removal in salt marsh sediments alleviates N loading to the coastal ocean. N removal reduces the threat of eutrophication caused by increased N inputs from anthropogenic sources. It is unclear, however, whether chronic nutrient overenrichment alters the capacity of salt marshes to remove anthropogenic N. To assess the effect of nutrient enrichment on N cycling in salt marsh sediments, we examined important N cycle pathways in experimental fertilization plots in a New England salt marsh. We determined rates of nitrification, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) using sediment slurry incubations with 15N labeled ammonium or nitrate tracers under oxic headspace (20% oxygen/80% helium). Nitrification and denitrification rates were more than tenfold higher in fertilized plots compared to control plots. By contrast, DNRA, which retains N in the system, was high in control plots but not detected in fertilized plots. The relative contribution of DNRA to total nitrate reduction largely depends on the carbon/nitrate ratio in the sediment. These results suggest that long-term fertilization shifts N cycling in salt marsh sediments from predominantly retention to removal.

  20. Abiotic Immobilization of Nitrate in Forest Soils: a Double Label Approach

    Science.gov (United States)

    Maclean, R. W.; Ollinger, S. V.; Hobbie, E. A.; Frey, S. D.; Dail, D. B.

    2007-12-01

    Mechanisms of soil nitrogen (N) retention remain a key uncertainty in the terrestrial N cycle. During recent work at the Harvard Forest Chronic N Experiment, 15N added to soils as ammonia nitrate was observed to be rapidly immobilized after addition to soil on a time scale of minutes. In published results it was hypothesized that the rapid time of immobilization could be explained by abiotic immobilization of both ammonia and nitrate. The possibility of abiotic immobilization of nitrate has been studied since the first half of the 20th century, mainly using ideal compounds and soil sterilization techniques. However, critics of these studies have argued that while in vitro studies may indicate the possibility of an abiotic reaction, they cannot demonstrate its plausibility in soils. Soil sterilization methods have been criticized, because they are not effective enough to eliminate biotic interactions within an experimental treatment. Isotopic tracer studies have also been used but also have problems differentiating biotic and abiotic reactions. This study is an attempt to demonstrate abiotic immobilization of nitrate in soil samples through the use of double labeled nitrate (15N18O3- ). The resolution of this method depends on the biochemistry of microbial immobilization of nitrate; reduction of nitrate to nitrite, then ammonia and glutamine before incorporation into microbial biomass. Reduction of 15N18O3- before microbial utilization of the 15N implies that retention of both heavy isotopes in the soil can only occur through abiotic reaction of 15N18Ox species. In biotic immobilization the 18O is lost to the system in water. While nitrate has proven unreactive in soils, its reduced product, nitrite, is known to be readily reactive with various soil compounds. Nitrite can be introduced into the soil environment naturally by both 'leakiness' in nitrification and denitrification and may possibly be generated abiotically through methods such as the proposed Ferrous

  1. A toxicological study of gadolinium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    London, J.E.

    1988-05-01

    The sensitization study in the guinea pig did not show gadolinium nitrate to have potential sensitizing properties. Skin application studies in the rabbit demonstrated that it was cutaneously a severe irritant. This material was considered an irritant in the rabbit eye application studies. 3 refs., 1 tab.

  2. Nitrate Salt Surrogate Blending Scoping Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  3. Protein Tyrosine Nitration: Role in Aging.

    Science.gov (United States)

    Chakravarti, Bulbul; Chakravarti, Deb Narayan

    2017-03-15

    Aging is the inevitable fate of all living organisms, but the molecular basis of physiological aging is still poorly understood. Oxidative stress is believed to play a key role in the aging process. In addition to reactive oxygen species (ROS), reactive nitrogen species (RNS) are generated during aerobic metabolism in living organisms. Protein damage and functional modification by ROS have been demonstrated in details by different investigators. However, compared to protein carbonylation by ROS, fewer studies have been reported on the protein damage by RNS and its implication with the aging process. Due to the high chemical reactivity of RNS, they can covalently modify various endogenous macromolecules including proteins and alter their essential biological functions. Tyrosine residues in protein molecules are nitrated following their interaction with RNS under nitrosative stress. Proteins undergoing tyrosine nitration are associated with pathophysiology of several diseases, as well as physiological aging. The purpose of the current review is to provide a brief summary of the biochemical mechanisms of tyrosine nitration, methodologies used for the detection of these modified proteins, effect of this post translational modification on biological functions and the putative role of tyrosine nitrated proteins in the aging process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Trend Analyses of Nitrate in Danish Groundwater

    DEFF Research Database (Denmark)

    Hansen, B.; Thorling, L.; Dalgaard, Tommy;

    2012-01-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded...

  5. Denitration of High Nitrate Salts Using Reductants

    Energy Technology Data Exchange (ETDEWEB)

    HD Smith; EO Jones; AJ Schmidt; AH Zacher; MD Brown; MR Elmore; SR Gano

    1999-05-03

    This report describes work conducted by Pacific Northwest National Laboratory (PNNL), in conjunction with Idaho National Engineering and Environmental Laboratory (INEEL), to remove nitrates in simulated low-activity waste (LAW). The major objective of this work was to provide data for identifying and demonstrating a technically viable and cost-effective approach to condition LAW for immobilization (grout).

  6. Assimilatory Nitrate Reduction in Hansenula polymorpha

    Science.gov (United States)

    Rossi, Beatrice; Berardi, Enrico

    In the last decade, the yeast Hansenula polymorpha (syn.: Pichia angusta) has become an excellent experimental model for genetic and molecular investigations of nitrate assimilation, a subject traditionally investigated in plants, filamentous fungi and bacteria. Among other advantages, H. polymorpha offers classical and molecular genetic tools, as well as the availability of genomic sequence data.

  7. Detonation characteristics of ammonium nitrate products

    NARCIS (Netherlands)

    Kersten, R.J.A.; Hengel, E.I.V. van den; Steen, A.C. van der

    2006-01-01

    The detonation properties of ammonium nitrate (AN) products depend on many factors and are therefore, despite the large amount of information on this topic, difficult to assess. In order to further improve the understanding of the safety properties of AN, the European Fertilizer Manufacturers Associ

  8. The Path to Nitrate Salt Disposition

    Energy Technology Data Exchange (ETDEWEB)

    Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-16

    The topic is presented in a series of slides arranged according to the following outline: LANL nitrate salt incident as thermal runaway (thermally sensitive surrogates, full-scale tests), temperature control for processing, treatment options and down selection, assessment of engineering options, anticipated control set for treatment, and summary of the overall steps for RNS.

  9. Reinforced Sisal Fiber with Ferric Nitrate Composites

    Directory of Open Access Journals (Sweden)

    Asif Jehan

    2015-06-01

    Full Text Available Ferric oxide synthesized through annealing route. The present research work deals with ferrite composite prepared using chemical reactions. Ferric nitrates and ammonium chloride doped with sisal fiber has been prepared. The structural behavior of aluminum oxide was studied in XRD, SEM, TEM, FTIR & dielectric measurement. This behavior showed ferrite nature of the sample.

  10. Chronic myelogenous leukemia (CML)

    Science.gov (United States)

    CML; Chronic myeloid leukemia; Chronic granulocytic leukemia; Leukemia - chronic granulocytic ... Chronic myelogenous leukemia is grouped into phases: Chronic Accelerated Blast crisis The chronic phase can last for ...

  11. Ocular argyrosis secondary to long-term ingestion of silver nitrate salts

    Directory of Open Access Journals (Sweden)

    Olson JL

    2012-12-01

    Full Text Available Kesenia Stafeeva, Michael Erlanger, Raul Velez-Montoya, Jeffrey L OlsonDepartment of Ophthalmology, University of Colorado School of Medicine, Rocky Mountain Lions Eye Institute, Colorado, CO, USAAbstract: This case report describes the clinical, autofluorescence, and optical coherent tomography findings in a patient with panocular argyrosis secondary to chronic intake of diluted silver nitrate salts in his water supply. An 86-year-old Caucasian male with a distinctive gray-bluish hue of the skin presented to our clinic, having developed a slow decrease in visual acuity in both eyes and nyctalopia for the past 2 years. Based on the patient's history of chronic intake of silver nitrate salts and a positive skin biopsy (performed by the dermatology department, data not shown, a diagnosis of panocular argyrosis was made. Fluorescein angiography showed choroidal blockage with a completely dark choroid. Fundus autofluorescence was within normal limits. Optical coherent tomography showed multiple excrescences of retinal pigment epithelium in both eyes. Although the drusen-like changes on fundus examination and retinal pigment epithelium changes may account for the diminished vision, the presence of concomitant nyctalopia suggests underlying damage of the photoreceptors.Keywords: silver nitrate, argyria, ocular argyrosis, fundus autofluorescence, optical coherent tomography

  12. Morphine causes persistent induction of nitrated neurofilaments in cortex and subcortex even during abstinence.

    Science.gov (United States)

    Pal, A; Das, S

    2015-04-16

    Morphine has a profound role in neurofilament (NF) expression. However, there are very few studies on the fate of NFs during morphine abstinence coinciding with periods of relapse. Mice were treated chronically with morphine to render them tolerant to and dependent on morphine and sacrificed thereafter while another group, treated similarly, was left for 2 months without morphine. A long-lasting alteration in the stoichiometric ratio of the three NFs was observed under both conditions in both the cortex and subcortex. Morphine abstinence caused significant alterations in the phosphorylated and nitrated forms of the three NF subunits. Nitrated neurofilament light polypeptide chain (NFL) was significantly increased during chronic morphine treatment which persisted even after 2 months of morphine withdrawal. Mass spectrometric analysis following two-dimensional gel electrophoresis (2DE)-gel electrophoresis of cytoskeleton fractions of both cortex and subcortex regions identified enzymes associated with energy metabolism, cytoskeleton-associated proteins as well as NFs which showed sustained regulation even after abstinence of morphine for 2 months. It is suggestive that alteration in the levels of some of these proteins may be instrumental in the increased nitration of NFL during morphine exposure. Such gross alteration in NF dynamics is indicative of a concerted biological process of neuroadaptation during morphine abstinence.

  13. NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.

    2011-02-01

    This report satisfies the initial phase of Task WP-2.3.4 Alternative Sodium Recovery Technology, Subtask 1; Develop Near-Tank Nitrate/Nitrite Destruction Technology. Some of the more common anions in carbon steel waste tanks at SRS and Hanford Site are nitrate which is corrosive, and nitrite and hydroxide which are corrosion inhibitors. At present it is necessary to periodically add large quantities of 50 wt% caustic to waste tanks. There are three primary reasons for this addition. First, when the contents of salt tanks are dissolved, sodium hydroxide preferentially dissolves and is removed. During the dissolution process the concentration of free hydroxide in the tank liquid can decrease from 9 M to less than 0.2 M. As a result, roughly half way through the dissolution process large quantities of sodium hydroxide must be added to the tank to comply with requirements for corrosion control. Second, hydroxide is continuously consumed by reaction with carbon dioxide which occurs naturally in purge air used to prevent buildup of hydrogen gas inside the tanks. The hydrogen is generated by radiolysis of water. Third, increasing the concentration of hydroxide increases solubility of some aluminum compounds, which is desirable in processing waste. A process that converts nitrate and nitrite to hydroxide would reduce certain costs. (1) Less caustic would be purchased. (2) Some of the aluminum solid compounds in the waste tanks would become more soluble so less mass of solids would be sent to High Level Vitrification and therefore it would be not be necessary to make as much expensive high level vitrified product. (3) Less mass of sodium would be fed to Saltstone at SRS or Low Level Vitrification at Hanford Site so it would not be necessary to make as much low level product. (4) At SRS less nitrite and nitrate would be sent to Defense Waste Processing Facility (DWPF) so less formic acid would be consumed there and less hydrogen gas would be generated. This task involves

  14. Impact of Sulfide on Nitrate Conversion in Eutrophic Nitrate-Rich Marine Sludge

    DEFF Research Database (Denmark)

    Schwermer, Carsten U.; Krieger, Bärbel; Lavik, Gaute

    2006-01-01

    IMPACT OF SULFIDE ON NITRATE CONVERSION IN EUTROPHIC NITRATE-RICH MARINE SLUDGE C.U. Schwermer 1, B.U. Krieger 2, G. Lavik 1, A. Schramm 3, J. van Rijn 4, D. de Beer 1, D. Minz 5, E. Cytryn 4, M. Kuypers 1, A. Gieseke 1 1 Max Planck Institute for Marine Microbiology, Bremen, Germany; 2 Dept...... and Environmental Sciences, Volcani Research Center, Bet-Dagan, Israel Multiple anaerobic processes are responsible for carbon mineralization in eutrophic nitrate-rich marine environments (e.g., upwelling areas, estuaries, and aquacultures), involving electron acceptors from both the nitrogen and sulfur cycle....... The interaction of these processes is less understood. Our aim was to investigate the functional interaction of nitrate reduction, denitrification and sulfate reduction in an anaerobic marine sludge. We hypothesize that sulfide (from sulfate reduction) (i) causes incomplete denitrification, and (ii) directs...

  15. Benefits of Safer Drinking Water: The Value of Nitrate Reduction

    OpenAIRE

    Crutchfield, Stephen R.; Cooper, Joseph C.; Hellerstein, Daniel

    1997-01-01

    Nitrates in drinking water, which may come from nitrogen fertilizers applied to crops, are a potential health risk. This report evaluates the potential benefits of reducing human exposure to nitrates in the drinking water supply. In a survey, respondents were asked a series of questions about their willingness to pay for a hypothetical water filter, which would reduce their risk of nitrate exposure. If nitrates in the respondent's drinking water were to exceed the EPA minimum safety standard,...

  16. Identification of nitrate sources and discharge-depending nitrate dynamics in a mesoscale catchment

    Science.gov (United States)

    Mueller, Christin; Strachauer, Ulrike; Brauns, Mario; Musolff, Andreas; Kunz, Julia Vanessa; Brase, Lisa; Tarasova, Larisa; Merz, Ralf; Knöller, Kay

    2017-04-01

    During the last decades, nitrate concentrations in surface and groundwater have increased due to land use change and accompanying application of fertilizer in agriculture as well as increased atmospheric deposition. To mitigate nutrient impacts on downstream aquatic ecosystems, it is important to quantify potential nitrate sources, instream nitrate processing and its controls in a river system. The objective of this project is to characterize and quantify (regional) scale dynamics and trends in water and nitrogen fluxes of the entire Holtemme river catchment in central Germany making use of isotopic fingerprinting methods. Here we compare two key date sampling campaigns in 2014 and 2015, with spatially highly resolved measurements of discharge at 23 sampling locations including 11 major tributaries and 12 locations at the main river. Additionally, we have data from continuous runoff measurements at 10 locations operated by the local water authorities. Two waste water treatment plants contribute nitrogen to the Holtemme stream. This contribution impacts nitrate loads and nitrate isotopic signatures depending on the prevailing hydrological conditions. Nitrogen isotopic signatures in the catchment are mainly controlled by different sources (nitrified soil nitrogen in the headwater and manure/ effluents from WWTPs in the lowlands) and increase with raising nitrate concentrations along the main river. Nitrate loads at the outlet of the catchment are extremely different between both sampling campaigns (2014: NO3- = 97 t a-1, 2015: NO3- = 5 t a-1) which is associated with various runoff (2014: 0.8 m3 s-1, 2015: 0.2 m3 s-1). In 2015, the inflow from WWTP's raises the NO3- loads and enriches δ18O-NO3 values. Generally, oxygen isotope signatures from nitrate are more variable and are controlled by biogeochemical processes in concert with the oxygen isotopic composition of the ambient water. Elevated δ18O-NO3 in 2015 are most likely due to higher temperatures and lower

  17. 76 FR 49449 - Continuation of Antidumping Duty Order on Solid Fertilizer Grade Ammonium Nitrate From the...

    Science.gov (United States)

    2011-08-10

    ... Nitrate From the Russian Federation AGENCY: Import Administration, International Trade Administration... duty investigation on solid fertilizer grade ammonium nitrate (``ammonium nitrate'') from the Russian... and the ITC instituted a second sunset review of the ammonium nitrate suspended investigation....

  18. 76 FR 23569 - Termination of the Suspension Agreement on Solid Fertilizer Grade Ammonium Nitrate From the...

    Science.gov (United States)

    2011-04-27

    ... Nitrate From the Russian Federation and Notice of Antidumping Duty Order AGENCY: Import Administration... (``AD'') Investigation on Solid Fertilizer Grade Ammonium Nitrate from the Russian Federation (``the... determine whether imports of solid fertilizer grade ammonium nitrate (``ammonium nitrate'') from Russia...

  19. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    NARCIS (Netherlands)

    Balk, Melike; Laverman, A.M.; Keuskamp, Joost A.; Laanbroek, Hendrikus J.

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought

  20. Synthesis, Characterization, and Sensitivity Analysis of Urea Nitrate (UN)

    Science.gov (United States)

    2015-04-01

    ARL-TR-7250 ● APR 2015 US Army Research Laboratory Synthesis, Characterization, and Sensitivity Analysis of Urea Nitrate (UN...Characterization, and Sensitivity Analysis of Urea Nitrate (UN) by William M Sherrill Weapons and Materials Research Directorate...Characterization, and Sensitivity Analysis of Urea Nitrate (UN) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  1. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  2. Nitrate to ammonia ceramic (NAC) bench scale stabilization study

    Energy Technology Data Exchange (ETDEWEB)

    Caime, W.J.; Hoeffner, S.L. [RUST - Clemson Technical Center, Anderson, SC (United States)

    1995-10-01

    Department of Energy (DOE) sites such as the Hanford site, Idaho National Engineering Laboratory (INEL), Savannah River site, Oak Ridge National Laboratory (ORNL) have large quantities of sodium-nitrate based liquid wastes. A process to reduce the nitrates to ammonia has been developed at ORNL. This technology creates a sludge lower in nitrates. This report describes stabilization possibilities of the sludge.

  3. A nitrate sensitive planar optode; performance and interferences

    DEFF Research Database (Denmark)

    Pedersen, Lasse; Dechesne, Arnaud; Smets, Barth F.

    2015-01-01

    We present a newly developed nitrate sensitive planar optode. It exhibits a linear response to nitrate from 1 to 50 mM at pH 8.0, a fast response time below 10 s and a good lifetime, allowing for fast two dimensional nitrate measurements over long periods of time. Interference from nitrite...

  4. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a component of articles intended for use in...

  5. 78 FR 32690 - Certain Ammonium Nitrate From Ukraine

    Science.gov (United States)

    2013-05-31

    ... COMMISSION Certain Ammonium Nitrate From Ukraine Determination On the basis of the record \\1\\ developed in... antidumping duty order on certain ammonium nitrate from Ukraine would be likely to lead to continuation or... Publication 4396 (May 2013), entitled Certain Ammonium Nitrate from Ukraine: Investigation No....

  6. 40 CFR 721.7500 - Nitrate polyether polyol (generic name).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nitrate polyether polyol (generic name... Substances § 721.7500 Nitrate polyether polyol (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nitrate polyether polyol (PMN P88-2540)...

  7. Leaching of nitrate from temperate forests - effects of air pollution and forest management

    DEFF Research Database (Denmark)

    Gundersen, Per; Schmidt, Inger Kappel; Raulund-Rasmussen, Karsten

    2006-01-01

    We compiled regional and continental data on inorganic nitrogen (N) in seepage and surface water from temperate forests. Currently, N concentrations in forest waters are usually well below water quality standards. But elevated concentrations are frequently found in regions with chronic N input from...... deposition (> 8-10 kg ha(-1) a(-1)). We synthesized the current understanding of factors controlling N leaching in relation to three primary causes of N cycle disruption: (i) Increased N input (air pollution, fertilization, N-2 fixing plants). In European forests, elevated N deposition explains approximately...... conifer forests receive higher N deposition and exhibit higher nitrate loss than deciduous forests; an exception is alder that shows substantial nitrate leaching through N fixation input. Fertilization with N poses limited risk to water quality, when applied to N-limited forests. (ii) Reduced plant uptake...

  8. Effect of the substitutional groups on the electrochemistry, kinetic of thermal decomposition and kinetic of substitution of some uranyl Schiff base complexes

    Energy Technology Data Exchange (ETDEWEB)

    Asadi, Zahra; Nasrollahi, Rahele; Ranjkeshshorkaei, Mohammad; Firuzabadi, Fahimeh Dehghani [Shiraz Univ. (Iran, Islamic Republic of). Chemistry Dept.; Dusek, Michal; Fejfarova, Karla [ASCR, Prague (Czech Republic). Inst. of Physics

    2016-05-15

    Uranyl(VI) complexes, [UO{sub 2}(X-saloph)(solvent)], where saloph denotes N,N{sup '}-bis(salicylidene)-1,2-phenylenediamine and X = NO{sub 2}, Cl, Me, H; were synthesized and characterized by 61H NMR, IR, UV-Vis spectroscopy, thermal gravimetry (TG), cyclic voltammetry, elemental analysis (C.H.N) and X-ray crystallography. X-ray crystallography of [UO{sub 2}(4-nitro-saloph)(DMF)] revealed coordination of the uranyl by the tetradentate Schiff base ligand and one solvent molecule, resulting in seven-coordinated uranium. The complex of [UO{sub 2}(4-nitro-saloph)(DMF)] was also synthesized in nano form. Transmission electron microscopy image showed nano-particles with sizes between 30 and 35 nm. The TG method and analysis of Coats-Redfern plots revealed that the kinetics of thermal decomposition of the complexes is of the first-order in all stages. The kinetics and mechanism of the exchange reaction of the coordinated solvent with tributylphosphine was investigated by spectrophotometric method. The second-order rate constants at four temperatures and the activation parameters showed an associative mechanism for all corresponding complexes with the following trend: 4-Nitro > 4-Cl > H > 4-Me. It was concluded that the steric and electronic properties of the complexes were important for the reaction rate. For analysis of anticancer properties of uranyl Schiff base complexes, cell culture and MTT assay was carried out. These results showed a reduction of jurkat cell line concentration across the complexes.

  9. UO₂²⁺ uptake by proteins: understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity.

    Science.gov (United States)

    Odoh, Samuel O; Bondarevsky, Gary D; Karpus, Jason; Cui, Qiang; He, Chuan; Spezia, Riccardo; Gagliardi, Laura

    2014-12-17

    The capture of uranyl, UO2(2+), by a recently engineered protein (Zhou et al. Nat. Chem. 2014, 6, 236) with high selectivity and femtomolar sensitivity has been examined by a combination of density functional theory, molecular dynamics, and free-energy simulations. It was found that UO2(2+) is coordinated to five carboxylate oxygen atoms from four amino acid residues of the super uranyl binding protein (SUP). A network of hydrogen bonds between the amino acid residues coordinated to UO2(2+) and residues in its second coordination sphere also affects the protein's uranyl binding affinity. Free-energy simulations show how UO2(2+) capture is governed by the nature of the amino acid residues in the binding site, the integrity and strength of the second-sphere hydrogen bond network, and the number of water molecules in the first coordination sphere. Alteration of any of these three factors through mutations generally results in a reduction of the binding free energy of UO2(2+) to the aqueous protein as well as of the difference between the binding free energies of UO2(2+) and other ions (Ca(2+), Cu(2+), Mg(2+), and Zn(2+)), a proxy for the protein's selectivity over these ions. The results of our free-energy simulations confirmed the previously reported experimental results and allowed us to discover a mutant of SUP, specifically the GLU64ASP mutant, that not only binds UO2(2+) more strongly than SUP but that is also more selective for UO2(2+) over other ions. The predictions from the computations were confirmed experimentally.

  10. Establishment of the conditions for the determination of the concentration of the uranyl ion in perchloric media by Fluorescence; Establecimiento de las condiciones para la determinacion de la concentracion del ion uranilo en medio perclorico por Fluorescencia

    Energy Technology Data Exchange (ETDEWEB)

    Contreras R, A.; Ordonez R, E.; Fernandez V, S.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: contraida@yahoo.com.mx

    2004-07-01

    The influence of the p H is reported in the spectra of luminescence of the ion uranyl in sodium perchlorate 2M. The best spectra were observed to ph <3 that to neutral and basic p Hs this is explained by the present species. They were carried out four calibration curves for the uranyl in perchloric acid media, taking into account the area under the curve, the maximum height of two characteristic peaks of this ion, in those that one observes a better correlation with the maximum height of the peak located to 486.7 nm. (Author)

  11. Protein Tyrosine Nitration : Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins

    NARCIS (Netherlands)

    Abello, Nicolas; Kerstjens, Huib A. M.; Postma, Dirkje S.; Bischoff, Rainer

    Protein tyrosine nitration (PTN) is a post-translational modification occurring under the action of a nitrating agent. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group (NO(2)). In the present article, we review the main nitration reactions and

  12. Protein Tyrosine Nitration: Selectivity, physicochemical and biological consequences, denitration and proteomics methods for the identification of tyrosine-nitrated proteins

    NARCIS (Netherlands)

    Abello, N.; Kerstjens, H.A.M.; Postma, D.S; Bischoff, Rainer

    2009-01-01

    Protein tyrosine nitration (PTN) is a post-translational modification occurring under the action of a nitrating agent. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group (NO2). In the present article, we review the main nitration reactions and elucidate

  13. Effect of Sodium Nitrate and Nitrate Reducing Bacteria on In vitro Methane Production and Fermentation with Buffalo Rumen Liquor.

    Science.gov (United States)

    Sakthivel, Pillanatham Civalingam; Kamra, Devki Nandan; Agarwal, Neeta; Chaudhary, Lal Chandra

    2012-06-01

    Nitrate can serve as a terminal electron acceptor in place of carbon dioxide and inhibit methane emission in the rumen and nitrate reducing bacteria might help enhance the reduction of nitrate/nitrite, which depends on the type of feed offered to animals. In this study the effects of three levels of sodium nitrate (0, 5, 10 mM) on fermentation of three diets varying in their wheat straw to concentrate ratio (700:300, low concentrate, LC; 500:500, medium concentrate, MC and 300:700, high concentrate, HC diet) were investigated in vitro using buffalo rumen liquor as inoculum. Nitrate reducing bacteria, isolated from the rumen of buffalo were tested as a probiotic to study if it could help in enhancing methane inhibition in vitro. Inclusion of sodium nitrate at 5 or 10 mM reduced (pfeed reduced (pfeeding and introduced individually (3 ml containing 1.2 to 2.3×10(6) cfu/ml) into in vitro incubations containing the MC diet with 10 mM sodium nitrate. Addition of live culture of NRBB 57 resulted in complete removal of nitrate and nitrite from the medium with a further reduction in methane and no effect on IVTD compared to the control treatments containing nitrate with autoclaved cultures or nitrate without any culture. The data revealed that nitrate reducing bacteria can be used as probiotic to prevent the accumulation of nitrite when sodium nitrate is used to reduce in vitro methane emissions.

  14. Ab initio study of the mechanism for photoinduced Yl-oxygen exchange in uranyl(VI) in acidic aqueous solution.

    Science.gov (United States)

    Réal, Florent; Vallet, Valérie; Wahlgren, Ulf; Grenthe, Ingmar

    2008-09-03

    The mechanism for the photochemically induced isotope-exchange reaction U(17/18)O2(2+)(aq) + H2(16)O U(16)O2(2+)(aq) + H2(17/18)O has been studied using quantum-chemical methods. There is a dense manifold of states between 22,000 and 54,000 cm(-1) that results from excitations from the sigma(u) and pi(u) bonding orbitals in the (1)Sigma(g)(+) ground state to the nonbonding f(delta) and f(phi) orbitals localized on uranium. On the basis of investigations of the reaction profile in the (1)Sigma(g)(+) ground state and the excited states (3)Delta(g) (the lowest triplet state) and (3)Gamma(g) (one of the several higher triplet states), the latter two of which have the electron configurations sigma(u)f(delta) and pi(u)f(phi), respectively, we suggest that the isotope exchange takes place in one of the higher triplet states, of which the (3)Gamma(g) state was used as a representative. The geometries of the luminescent (3)Delta(g) state, the lowest in the sigma(u)f(delta,phi) manifold (the "sigma" states), and the (1)Sigma(g)(+) ground state are very similar, except that the bond distances are slightly longer in the former. This is presumably a result of transfer of a bonding electron to a nonbonding f orbital, which makes the excited state in some respects similar to uranyl(V). As is the case for all of the states of the pi(u)f(delta,phi) manifold (the "pi" states), the geometry of the (3)Gamma(g) state is very different from that of the (3)Delta(g) "sigma" state and has nonequivalent U-O(yl) distances of 1.982 and 1.763 A; in the (3)Gamma(g) state, the yl-exchange takes place by transfer of a proton or hydrogen from water to the more distant yl-oxygen. The activation barriers for proton/hydrogen transfer in the ground state and the (3)Delta(g) and (3)Gamma(g) states are 186, 219, and 84 kJ/mol, respectively. The relaxation energy for the (3)Gamma(g) state in the solvent after photoexcitation is -86 kJ/mol, indicating that the energy barrier can be overcome; the "pi

  15. Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface Complexation in Subsurface Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.; Hu, Qinhong

    2016-07-01

    This study statistically analyzed a grain-size based additivity model that has been proposed to scale reaction rates and parameters from laboratory to field. The additivity model assumed that reaction properties in a sediment including surface area, reactive site concentration, reaction rate, and extent can be predicted from field-scale grain size distribution by linearly adding reaction properties for individual grain size fractions. This study focused on the statistical analysis of the additivity model with respect to reaction rate constants using multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment as an example. Experimental data of rate-limited U(VI) desorption in a stirred flow-cell reactor were used to estimate the statistical properties of multi-rate parameters for individual grain size fractions. The statistical properties of the rate constants for the individual grain size fractions were then used to analyze the statistical properties of the additivity model to predict rate-limited U(VI) desorption in the composite sediment, and to evaluate the relative importance of individual grain size fractions to the overall U(VI) desorption. The result indicated that the additivity model provided a good prediction of the U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model, and U(VI) desorption in individual grain size fractions have to be simulated in order to apply the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel size fraction (2-8mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.

  16. CsUV{sub 3}O{sub 11}, a new uranyl vanadate with a layered structure

    Energy Technology Data Exchange (ETDEWEB)

    Duribreux, I.; Dion, C.; Abraham, F. [Univ. des Sciences et Technologies de Lille, Villeneuve d`Ascq (France). Lab. de Cristallochimie et Physicochimie du Solide; Saadi, M. [Univ. Chouaib Doukkali, El Jadida (Morocco). Lab. de Chimie de Coordination et Analytique

    1999-08-01

    A new cesium uranyl vanadate CsUV{sub 3}O{sub 11} has been synthesized by solid state reaction. Its crystal structure has been determined from single-crystal X-ray diffraction data. It crystallizes in the monoclinic system with space group P2{sub 1}/a and unit cell parameters a = 11.904(2) {angstrom}, b = 6.8321(6) {angstrom}, c = 12.095(2) {angstrom}, {beta} = 106.989(5){degree}, Z = 4, and D{sub exp} = 4.89(2) g/cm{sup 3}. A full-matrix least squares refinement yielded R = 0.046 and R{sub w} = 0.045 for 1831 independent reflections with I > 3{sigma}(I) collected on a Nonius CAD4 diffractometer (MoK{alpha} radiation). The structure of CsUV{sub 3}O{sub 11} is characterized by [UV{sub 3}O{sub 11}]{sub {infinity}} layers parallel to the (001) plane. The layers, very similar to those found in UV{sub 3}O{sub 10}, are built up from VO{sub 5} square pyramids sharing corners of their equatorial bases and UO{sub 8} hexagonal bipyramids, the U atoms occupying the hexagonal holes created by the VO{sub 5} array. The Cs{sup +} ions are located between two successive layers and hold them together; the Cs{sup +} ions and two layers constitute a neutral sandwich {l_brace}(UV{sub 3}O{sub 11}{sup {minus}})-(Cs){sub 2}{sup 2+}-(UV{sub 3}O{sub 11}{sup {minus}}){r_brace}. In this unusual structure, the neutral sandwiches are stacked one above another along the [104] direction with no formal chemical bonds between the neutral sandwiches. The Cs mobilities in CsUV{sub 3}O{sub 11} and Cs carnotite are compared.

  17. Europium, uranyl, and thorium-phenanthroline amide complexes in acetonitrile solution: an ESI-MS and DFT combined investigation.

    Science.gov (United States)

    Xiao, Cheng-Liang; Wang, Cong-Zhi; Mei, Lei; Zhang, Xin-Rui; Wall, Nathalie; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun

    2015-08-28

    The tetradentate N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen) ligand with hard-soft donor atoms has been demonstrated to be promising for the group separation of actinides from highly acidic nuclear wastes. To identify the formed complexes of this ligand with actinides and lanthanides, electrospray ionization mass spectrometry (ESI-MS) combined with density functional theory (DFT) calculations was used to probe the possible complexation processes. The 1 : 2 Eu-L species ([EuL2(NO3)](2+)) can be observed in ESI-MS at low metal-to-ligand ([M]/[L]) ratios, whereas the 1 : 1 Eu-L species ([EuL(NO3)2](+)) can be observed when the [M]/[L] ratio is higher than 1.0. However, ([UO2L(NO3)](+)) is the only detected species for the uranyl complexes. The [ThL2(NO3)2](2+) species can be observed at low [M]/[L] ratios; the 1 : 2 species ([ThL2(NO3)](3+)) and a new 1 : 1 species ([ThL(NO3)3](+)) can be detected at high [M]/[L] ratios. Collision-induced dissociation (CID) results showed that Et-Tol-DAPhen ligands can coordinate strongly with metal ions, and the coordination moieties remain intact under CID conditions. Natural bond orbital (NBO), molecular electrostatic potential (MEP), electron localization function (ELF), atoms in molecules (AIM) and molecular orbital (MO) analyses indicated that the metal-ligand bonds of the actinide complexes exhibited more covalent character than those of the lanthanide complexes. In addition, according to thermodynamic analysis, the stable cationic M-L complexes in acetonitrile are found to be in good agreement with the ESI-MS results.

  18. Study of magnetite as adsorbent material of uranyl ions; Estudo da magnetita como material adsorvedor de ions de uranilo

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Roberto

    2006-07-01

    Magnetite, also known as iron ferrite, is a mineral iron and a natural magnet found in iron deposits. In addition to its magnetic intrinsic behavior, the magnetite has the capacity to remove the metallic ions from aqueous medium by adsorption phenomena. The strong magnetic character of magnetite distinguishes it from other adsorbent types, which it allows to be readily removed from solution by magnetic separation. In this work, uranium (VI) adsorption, as UO{sub 2}{sup 2+} ions, from nitric solution by synthetic magnetite was investigated. It was prepared by simultaneous precipitation process, adding a NaOH solution into a solution containing Fe{sup 2+} and Fe{sup 3+} ions. The synthetic magnetite, a black powder, has exhibited a strong magnetic response in presence of a magnetic field, without nevertheless becomes magnetic. This typical superparamagnetic behavior was confirmed by magnetization measurements. Adsorption parameters of UO{sub 2}{sup 2+} ions such as pH, the adsorbent dose, contact time and equilibrium isotherm were evaluated. Maximum uranium adsorption was observed in the pH 4.0-5.0 range. It was noticed that increase in magnetite dose increased the percent removal of uranium, but decreased the adsorption capacity of the magnetite. It was observed from the relation between adsorption and contact time that the removal has increased very fast with time, and achieved the equilibrium within 30 minutes. The results of equilibrium isotherm agreed well with the Langmuir model, and so the theoretical saturation capacity of the magnetite was determined for uranyl ions. The interaction between UO{sub 2}{sup 2+} ions and the magnetite was defined as a spontaneous chemical adsorption. (author)

  19. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe (III) (hydr)oxides.

    Science.gov (United States)

    Zhengji, Yi

    2010-09-01

    Microbiological reduction of uranyl by sulfate reducing bacteria (SRB) has been proposed as a promising method for removal of radionuclide from groundwater. In this study, we examined the effect of two naturally occurring Fe(III) (hydr)oxides, hematite and goethite, on the bioreduction of U(VI) by a mixed culture of SRB via laboratory batch experiments. The biogenic precipitate from U(VI) bioreduction was determined using X-ray absorption near edge structure (XANES) analysis, showing a typical feature of uraninite (UO(2)). In the presence of either hematite or goethite-containing Fe(III) ranging from 10 to 30 mM, the reduction of U(VI) was retarded by both minerals and the retardatory effect was enhanced with increasing amount of Fe(III) (hydr)oxide. When exposed to a mixture of hematite and goethite with the total Fe(III) kept constant at 20 mM, the retardatory effect on U(VI) reduction by the minerals were directly correlated with the fraction of hematite present. A slow increase in U(VI) concentration was also found in all Fe(III) (hydr)oxide treatments after 10-13 days, accompanied by the release of Fe(II) into the solution. The presence of Fe(III) (hydr)oxide can cause the eventual incomplete bioreduction of U(VI). However, it was not the case for the control without minerals. When mixing biogenic uraninite with hematite or goethite without SRB, Fe(II) was also detected in the solution. These findings suggest that the U(VI) remobilization after 1013 days may be due to reoxidation of the uraninite by the solid-phase Fe(III) (hydr)oxide. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Factors influencing protein tyrosine nitration--structure-based predictive models.

    Science.gov (United States)

    Bayden, Alexander S; Yakovlev, Vasily A; Graves, Paul R; Mikkelsen, Ross B; Kellogg, Glen E

    2011-03-15

    Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high-resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged side chain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines for which there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases, predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives). Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Open-Source Photometric System for Enzymatic Nitrate Quantification.

    Science.gov (United States)

    Wittbrodt, B T; Squires, D A; Walbeck, J; Campbell, E; Campbell, W H; Pearce, J M

    2015-01-01

    Nitrate, the most oxidized form of nitrogen, is regulated to protect people and animals from harmful levels as there is a large over abundance due to anthropogenic factors. Widespread field testing for nitrate could begin to address the nitrate pollution problem, however, the Cadmium Reduction Method, the leading certified method to detect and quantify nitrate, demands the use of a toxic heavy metal. An alternative, the recently proposed Environmental Protection Agency Nitrate Reductase Nitrate-Nitrogen Analysis Method, eliminates this problem but requires an expensive proprietary spectrophotometer. The development of an inexpensive portable, handheld photometer will greatly expedite field nitrate analysis to combat pollution. To accomplish this goal, a methodology for the design, development, and technical validation of an improved open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis Method. This approach is evaluated for its potential to i) eliminate the need for toxic chemicals in water testing for nitrate and nitrite, ii) reduce the cost of equipment to perform this method for measurement for water quality, and iii) make the method easier to carryout in the field. The device is able to perform as well as commercial proprietary systems for less than 15% of the cost for materials. This allows for greater access to the technology and the new, safer nitrate testing technique.

  2. Nitrate removal by microbial enhancement in a riparian wetland.

    Science.gov (United States)

    Pei, Yuansheng; Yang, Zhifeng; Tian, Binghui

    2010-07-01

    A riparian wetland (RW) was constructed in a river bend to study the effect of the addition of Bacillus subtilis FY99-01 on nitrate removal. Nitrate was removed more efficiently in the summer than in the winter owing to integrated hydraulic, microbial and environmental effects. The maximal nitrate removal and the mean nitrate loss rate in the RW were 36.1% and 50.5 g/m(2)/yr, respectively. Statistic analyses indicated that the redox potential was very significant to denitrification while organic matter in the outflow, temperature and nitrate in the inflow significantly affected nitrate removal. These results suggest that an RW can be a cost-effective approach to enhance microbial nitrate removal and can potentially be extended to similar river bends.

  3. Understanding nitrate assimilation and its regulation in microalgae

    Directory of Open Access Journals (Sweden)

    Emanuel eSanz-Luque

    2015-10-01

    Full Text Available Nitrate assimilation is a key process for nitrogen (N acquisition in green microalgae. Among Chlorophyte algae, Chlamydomonas reinhardtii has resulted to be a good model system to unravel important facts of this process, and has provided important insights for agriculturally relevant plants. In this work, the recent findings on nitrate transport, nitrate reduction and the regulation of nitrate assimilation are presented in this and several other algae. Latest data have shown nitric oxide (NO as an important signal molecule in the transcriptional and posttranslational regulation of nitrate reductase and inorganic N transport. Participation of regulatory genes and proteins in positive and negative signaling of the pathway and the mechanisms involved in the regulation of nitrate assimilation, as well as those involved in Molybdenum cofactor synthesis required to nitrate assimilation, are critically reviewed.

  4. Observations on particulate organic nitrates and unidentified components of NOy

    DEFF Research Database (Denmark)

    Nielsen, T.; Egeløv, A.H.; Granby, K.

    1995-01-01

    A method to determine the total content of particulate organic nitrates (PON) has been developed and ambient air measurements of PON, NO, NO2, HNO3, peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), gas NOy and particulate inorganic nitrate have been performed in the spring and early...... = gas NOy + particulate inorganic nitrate). Residual gas NOy was much higher than the particulate fraction of organic nitrates (PON). PON was only 0.25 +/- 0.11% of concentrations of photochemical oxidants in connection with high-pressure systems suggesting atmospheric processes being the major source...... summer al an agricultural site in Denmark and compared with measurements of ozone, H2O2, SO2, formic acid, acetic acid and methane sulphonic acid. The gas NOy detector determines the sum NO + NO2 + HNO2 + HNO3 + PAN + PPN + gas phase organic nitrates + 2 x N2O5 + NO3. The content of residual gas NOy...

  5. Nitrate intake from drinking water on Tenerife island (Spain).

    Science.gov (United States)

    Caballero Mesa, J M; Rubio Armendáriz, C; Hardisson de la Torre, A

    2003-01-20

    Although meat and vegetable products contain higher concentrations of nitrate, drinking water is the fastest and most direct form of nitrate consumption by the population. It becomes contaminated with nitrates when sea water infiltrates fresh water aquifers and when rain and irrigation water wash through soils that have been excessively treated with nitrated fertilizers. Nitrates are of great toxicological interest as they are involved in the origin of nitrites and nitrosamines and the development of metahaemoglobinaemia in infants. The objective of this study was to determine the quantities of NO(3)(-) in the water supply of each of the Island's municipalities and in the leading brands of bottled waters consumed by the population of Tenerife. This parameter is necessary for the determination of Acceptable Daily Intake (A.D.I.) of nitrates from drinking water. With one unremarkable exception, the nitrate levels found in the water analyzed were optimum for human consumption and amply complied with current European Legislation.

  6. Understanding nitrate assimilation and its regulation in microalgae.

    Science.gov (United States)

    Sanz-Luque, Emanuel; Chamizo-Ampudia, Alejandro; Llamas, Angel; Galvan, Aurora; Fernandez, Emilio

    2015-01-01

    Nitrate assimilation is a key process for nitrogen (N) acquisition in green microalgae. Among Chlorophyte algae, Chlamydomonas reinhardtii has resulted to be a good model system to unravel important facts of this process, and has provided important insights for agriculturally relevant plants. In this work, the recent findings on nitrate transport, nitrate reduction and the regulation of nitrate assimilation are presented in this and several other algae. Latest data have shown nitric oxide (NO) as an important signal molecule in the transcriptional and posttranslational regulation of nitrate reductase and inorganic N transport. Participation of regulatory genes and proteins in positive and negative signaling of the pathway and the mechanisms involved in the regulation of nitrate assimilation, as well as those involved in Molybdenum cofactor synthesis required to nitrate assimilation, are critically reviewed.

  7. Silver nanoparticles can attenuate nitrative stress

    Directory of Open Access Journals (Sweden)

    Mariusz Zuberek

    2017-04-01

    Full Text Available We have reported previously that glucose availability can modify toxicity of silver nanoparticles (AgNPs via elevation of antioxidant defence triggered by increased mitochondrial generation of reactive oxygen species. In this study, we examined the effect of glucose availability on the production of reactive nitrogen species in HepG2 cells and modification of nitrative stress by AgNPs. We found that lowering the glucose concentration increased expression of genes coding for inducible nitric oxide syntheas, NOS2 and NOS2A resulting in enhanced production of nitric oxide. Surprisingly, AgNPs decreased the level of nitric oxide accelerated denitration of proteins nitrated by exogenous peroxynitrite in cells grown in the presence of lowered glucose concentration, apparently due to further induction of protective proteins.

  8. Enzyme catalytic nitration of aromatic compounds.

    Science.gov (United States)

    Kong, Mingming; Wang, Kun; Dong, Runan; Gao, Haijun

    2015-06-01

    Nitroaromatic compounds are important intermediates in organic synthesis. The classic method used to synthesize them is chemical nitration, which involves the use of nitric acid diluted in water or acetic acid, both harmful to the environment. With the development of green chemistry, environmental friendly enzyme catalysis is increasingly employed in chemical processes. In this work, we adopted a non-aqueous horseradish peroxidase (HRP)/NaNO2/H2O2 reaction system to study the structural characteristics of aromatic compounds potentially nitrated by enzyme catalysis, as well as the relationship between the charges on carbon atoms in benzene ring and the nitro product distribution. Investigation of various reaction parameters showed that mild reaction conditions (ambient temperature and neutral pH), plus appropriate use of H2O2 and NaNO2 could prevent inactivation of HRP and polymerization of the substrates. Compared to aqueous-organic co-solvent reaction media, the aqueous-organic two-liquid phase system had great advantages in increasing the dissolved concentration of substrate and alleviating substrate inhibition. Analysis of the aromatic compounds' structural characteristics indicated that substrates containing substituents of NH2 or OH were readily catalyzed. Furthermore, analysis of the relationship between natural bond orbital (NBO) charges on carbon atoms in benzene ring, as calculated by the density functional method, and the nitro product distribution characteristics, demonstrated that the favored nitration sites were the ortho and para positions of substituents in benzene ring, similar to the selectivity of chemical nitration. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Methemoglobinaemia in Cardiac Patients on Nitrate Therapy

    Directory of Open Access Journals (Sweden)

    Abdel Aziz A. Ghanem

    2010-06-01

    Full Text Available Background: Methaemoglobinaemia refers to the oxidation of ferrous iron to ferric iron within the haemoglobin molecule, which occurs following oxidative stresses. The subsequent impairment in oxygen transport may lead to progressive hypoxia that is highly dangerous condition especially in borderline patients like the cardiac patient.Objectives: In the present work, authors explore the extent of methaemoglobinaemia in cardiac patients receiving nitrate therapy.Methodology: The study included 970 cardiac patients presented in cardiology department, Mansoura Specialised Medical Hospital, Egypt, in the period from February to July 2009. Patients were taking oral, sublingual, dermal preparation or a combination of two preparations.Results: cases of the study had methemoglobin level 1.1782 ± 0.3476 g/dL with insignificant difference between males and females. Methemoglobin showed positive correlation with carboxyhemogloin and negative correlation with O2 content and O2 saturation. It was significantly higher in cardiac patient with chest infection, anaemia and diabetic patients but didn't differ in hepatic or non hepatic cardiac patients. 3.2% of cardiac patients who receive more than one nitrate preparation (either oral and dermal or oral and sublingual therapy have methemoglobin level significantly higher than those who receive single preparation. There is significant difference in methemoglobin level in cardiac patients complaining of myocardial infarction “MI”, unstable Angina, atrial fibrillation “AF” and hypertensive heart disease “HTN”.Conclusions: It is concluded that commonly used dosages of nitrates are capable of causing elevations of methemoglobin ranged from 0.9 – 5.3 g/dl. Although the elevation in methaemoglobin (MetHb levels was not of routine clinical significance, there was statistically significant increase in MetHb levels in cardiac patients with another pathologic condition as anaemia, diabetes mellitus or chest

  10. Genetic basis for nitrate resistance in Desulfovibrio strains

    Directory of Open Access Journals (Sweden)

    Hannah eKorte

    2014-04-01

    Full Text Available Nitrate is an inhibitor of sulfate-reducing bacteria (SRB. In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702, as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605 that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance.

  11. Organic Nitrates: A Complex Family of Atmospheric Trace Constituents

    Science.gov (United States)

    Ballschmiter, K.; Fischer, R. G.; Grünert, A.; Kastler, J.; Schneider, M.; Woidich, S.

    2003-04-01

    Biogenic and geogenic hydrocarbons are the precursors of organic nitrates that are formed as tropospheric photo-oxidation products in the presence of NOx. Air chemistry leads to a very complex pattern of nitric acid esters: alkyl nitrates, aryl-alkyl nitrates, and bifunctional nitrates like alkyl dinitrates, hydroxy alkyl nitrates and carbonyl alkyl nitrates. We have analyzed the pattern of organic nitrates in air samples after adsorption/thermal desorption (low volume sampling-LVS) or adsorption/solvent desorption (high volume sampling-HVS) by capillary gas chromatography with electron capture (ECD) and mass spectrometric detection (MSD) using air aliquotes of 100 up to 3000 liters on column. The complexity of the organic nitrates found in air requires a group pre-separation by normal phase liquid chromatography. A detection limit per compound of 0.005 ppt(v) is achieved by our approach. We have synthesized a broad spectrum of organic nitrates as reference compounds. Air samples were taken from central Europe, the US West (Utah, Nevada, California), and the North- and South Atlantic including Antarctica. Levels and patterns of the regional and global occurrence of the various groups of C1-C12 organic nitrates including dinitrates and hydroxy nitrates and nitrates of isoprene (2-methylbutadiene) are presented. Werner G., J. Kastler, R. Looser, K. Ballschmiter: "Organic nitrates of isoprene as atmospheric trace compounds" Angewandte Chemie - International Edition (1999) 38: 1634-1637. Woidich S., O. Froescheis, O. Luxenhofer, K. Ballschmiter: "EI- and NCI-mass spectrometry of arylalkyl nitrates and their occurrence in urban air" Fresenius J. Anal. Chem. (1999) 364 : 91-99. Kastler, J; Jarman, W; Ballschmiter, K.: "Multifunctional organic nitrates as constituents in European and US urban photo-smog" Fresenius J. Anal. Chem. (2000) 368:244-249. Schneider M., K. Ballschmiter: "C3-C14 alkyl nitrates in remote South Atlantic air" Chemosphere (1999) 38: 233-244. Fischer

  12. Insight into Hydrogen Bonding of Uranyl Hydroxide Layers and Capsules by Use of 1H Magic-Angle Spinning NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Organic Material Science; Liao, Zuolei [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry and Materials; Nyman, May [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry and Materials; Yates, Jonathan [Univ. of Oxford (United Kingdom). Dept. of Materials

    2016-04-27

    In this paper, solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO2(OH)2] (α-UOH) and hydrated uranyl hydroxide [(UO2)4O(OH)6·5H2O (metaschoepite). For the metaschoepite material, proton resonances of the μ2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H–1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Finally, these NMR correlations allowed characterization of local hydrogen-bond environments in uranyl U24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.

  13. Multifunctional uranyl hybrid materials: structural diversities as a function of pH, luminescence with potential nitrobenzene sensing, and photoelectric behavior as p-type semiconductors.

    Science.gov (United States)

    Song, Jian; Gao, Xue; Wang, Zhi-Nan; Li, Cheng-Ren; Xu, Qi; Bai, Feng-Ying; Shi, Zhong-Feng; Xing, Yong-Heng

    2015-09-21

    A series of uranyl-organic frameworks (UOFs), {[(UO2)2(H2TTHA)(H2O)]·4,4'-bipy·2H2O}n (1), {[(UO2)3(TTHA)(H2O)3]}n (2), and {[(UO2)5(TTHA) (HTTHA)(H2O)3]·H3O}n (3), have been obtained by the hydrothermal reaction of uranyl acetate with a flexible hexapodal ligand (1,3,5-triazine-2,4,6-triamine hexaacetic acid, H6TTHA). These compounds exhibited three distinct 3D self-assembly architectures as a function of pH by single-crystal structural analysis, although the used ligand was the same in each reaction. Surprisingly, all of the coordination modes of the H6TTHA ligand in this work are first discovered. Furthermore, the photoluminescent results showed that these compounds displayed high-sensitivity luminescent sensing functions for nitrobenzene. Additionally, the surface photovoltage spectroscopy and electric-field-induced surface photovoltage spectroscopy showed that compounds 1-3 could behave as p-type semiconductors.

  14. Additional studies on mixed uranyl oxide-hydroxide hydrate alteration products of uraninite from the palermo and ruggles granitic pegmatites, grafton county, New Hampshire

    Science.gov (United States)

    Foord, E.E.; Korzeb, S.L.; Lichte, F.E.; Fitzpatrick, J.J.

    1997-01-01

    Additional studies on an incompletely characterized secondary uranium "mineral" from the Ruggles and Palermo granitic pegmatites, New Hampshire, referred to as mineral "A" by Frondel (1956), reveal a mixture of schoepite-group minerals and related uranyl oxide-hydroxide hydrated compounds. A composite chemical analysis yielded (in wt.%): PbO 4.85 (EMP), UO3 83.5 (EMP), BaO 0.675 (av. of EMP and ICP), CaO 0.167 (av. of EMP and ICP), K2O 2.455 (av. of EMP and ICP), SrO 0.21 (ICP), ThO2 0.85 (ICP), H2O 6.9, ??99.61. Powder-diffraction X-ray studies indicate a close resemblance in patterns between mineral "A" and several uranyl oxide-hydroxide hydrated minerals, including the schoepite family of minerals and UO2(OH)2. The powder-diffraction data for mineral "A" are most similar to those for synthetic UO2.86??1.5H2O and UO2(OH)2, but other phases are likely present as well. TGA analysis of both mineral "A" and metaschoepite show similar weight-loss and first derivative curves. The dominant losses are at 100??C, with secondary events at 400?? and 600??C. IR spectra show the presence of (OH) and H2O. Uraninite from both pegmatites, analyzed by LAM-ICP-MS, shows the presence of Th, Pb, K and Ca.

  15. Carbonyl Alkyl Nitrates as Trace Constituents in Urban Air

    Science.gov (United States)

    Woidich, S.; Gruenert, A.; Ballschmiter, K.

    2003-04-01

    Organic nitrates, esters of nitric acid, significantly contribute to the entire pool of odd nitrogen (NOY) in the atmosphere. Organic nitrates are formed in NO rich air by degradation of alkanes and alkenes initiated by OH and NO3 radicals during daytime and nighttime, respectively. Bifunctional organonitrates like the alkyl dinitrates and hydroxy alkyl nitrates are formed primarily from alkenes. The two main sources for Alkenes are traffic emissions and naturally occurring terpenes. So far a broad spectrum of alkyl dinitrates and hydroxy alkyl nitrates including six different isoprene nitrates has been identified in urban and marine air (1-3). We report here for the first time about the group of C4 C7 carbonyl alkyl nitrates as trace constituents in urban air collected on the campus of the University of Ulm Germany, and in the downtown area of Salt Lake City, Utah. Air sampling was done by high volume sampling (flow rate 25 m3/h) using a layer of 100 g silica gel (particle diameter 0.2 - 0.5 mm) as adsorbent. The organic nitrates were eluted from the silica gel by pentane/acetone (4:1, w/w) and the extract was concentrated to a volume of 500 µL for a group separation using normal phase HPLC. Final analysis was performed by high resolution capillary gas chromatography with electron capture detection as well as by mass selective detection in the (CH4)NCI mode using NO2- = m/e 46 as the indicator mass. The carbonyl alkyl nitrates were identified by self synthesized reference standards . So far we have identified eight non-branched a-carbonyl alkyl nitrates (vicinal carbonyl alkyl nitrates), two b-carbonyl alkyl nitrates and one g-carbonyl alkyl nitrate with carbon chains ranging from C4 to C7. The mixing ratios are between 0.05 and 0.30 ppt(v) for daytime samples and are two to three times higher for samples taken at night. (1) M. Schneider, O. Luxenhofer, Angela Deißler, K. Ballschmiter: 2C1-C15 Alkyl Nitrates, Benzyl Nitrate, and Bifunctional Nitrates

  16. PERSONAL, INDOOR, AND OUTDOOR CONCENTRATIONS OF PM2.5, PARTICULATE NITRATE, AND ELEMENTAL CARBON FOR INDIVIDUALS WITH COPD IN LOS ANGELES, CA

    Science.gov (United States)

    This study characterizes the personal, indoor, and outdoor concentrations of PM2.5 and the major components of PM2.5, including nitrate (NO3-), elemental carbon (EC), and the elements for individuals with chronic obstructive pulmonary disease (COPD) living in Los Angeles, CA. ...

  17. [Nitrate removal by a strain of nitrate-dependent Fe (II) -oxidizing bacteria].

    Science.gov (United States)

    Wang, Hong-Yu; Yang, Kai; Zhang, Qian; Ji, Bin; Chen, Dan; Sun, Yu-Chong; Tian, Jun

    2014-04-01

    A nitrate-dependent Fe(II)-oxidizing bacterial strain, named W5, was isolated from the sediment of the East Lake in Wuhan. Strain W5 was studied for its characteristics of denitrification and nitrogen removal. According to its physiological and biochemical characteristics and the analysis of its 16S rRNA gene sequence, strain W5 was identified as Microbacterium sp. The optimal denitrification performance can be obtained under conditions of NO3(-) -N 40 mg x L(-1), Fe2+ 500 mg x L(-1) and pH 6.8-7.0. After one week of cultivation under optimal conditions, nitrate removal percentage reached 87.0%. During the process of the culture, the nitrite nitrogen concentration was no more than 0.31 mg x L(-1) and there was no ammonia nitrogen production. It was indicated that the nitrate was mostly converted into N2. The consumption rate of Fe2+ was 95.2%.

  18. Chronic Bronchitis

    Science.gov (United States)

    Bronchitis is an inflammation of the bronchial tubes, the airways that carry air to your lungs. It ... chest tightness. There are two main types of bronchitis: acute and chronic. Chronic bronchitis is one type ...

  19. Chronic Pain

    Science.gov (United States)

    ... a problem you need to take care of. Chronic pain is different. The pain signals go on ... there is no clear cause. Problems that cause chronic pain include Headache Low back strain Cancer Arthritis ...

  20. Chronic Pain

    Science.gov (United States)

    ... pain. Psychotherapy, relaxation and medication therapies, biofeedback, and behavior modification may also be employed to treat chronic pain. × ... pain. Psychotherapy, relaxation and medication therapies, biofeedback, and behavior modification may also be employed to treat chronic pain. ...

  1. Nitration of Hsp90 on Tyrosine 33 Regulates Mitochondrial Metabolism.

    Science.gov (United States)

    Franco, Maria C; Ricart, Karina C; Gonzalez, Analía S; Dennys, Cassandra N; Nelson, Pascal A; Janes, Michael S; Mehl, Ryan A; Landar, Aimee; Estévez, Alvaro G

    2015-07-31

    Peroxynitrite production and tyrosine nitration are present in several pathological conditions, including neurodegeneration, stroke, aging, and cancer. Nitration of the pro-survival chaperone heat shock protein 90 (Hsp90) in position 33 and 56 induces motor neuron death through a toxic gain-of-function. Here we show that nitrated Hsp90 regulates mitochondrial metabolism independently of the induction of cell death. In PC12 cells, a small fraction of nitrated Hsp90 was located on the mitochondrial outer membrane and down-regulated mitochondrial membrane potential, oxygen consumption, and ATP production. Neither endogenous Hsp90 present in the homogenate nor unmodified and fully active recombinant Hsp90 was able to compete with the nitrated protein for the binding to mitochondria. Moreover, endogenous or recombinant Hsp90 did not prevent the decrease in mitochondrial activity but supported nitrated Hsp90 mitochondrial gain-of-function. Nitrotyrosine in position 33, but not in any of the other four tyrosine residues prone to nitration in Hsp90, was sufficient to down-regulate mitochondrial activity. Thus, in addition to induction of cell death, nitrated Hsp90 can also regulate mitochondrial metabolism, suggesting that depending on the cell type, distinct Hsp90 nitration states regulate different aspects of cellular metabolism. This regulation of mitochondrial homeostasis by nitrated Hsp90 could be of particular relevance in cancer cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Nitrate removal using different carbon substrates in a laboratory model.

    Science.gov (United States)

    Hashemi, Seyyed Ebrahim; Heidarpour, Manouchehr; Mostafazadeh-Fard, Behrouz

    2011-01-01

    Agricultural fields have been frequently identified as major contributors of nitrate leaching into surface and ground waters. Tile drains can act as direct pathways, transferring leached nitrate to surface water. Bioreactor filters are useful for the removal of nitrate from drainage waters; however, these filters require an external carbon supply to sustain denitrification. In this study, four organic carbon sources including wood, barley straw, rice husks, and date palm leaf, were used to enhance denitrification and the effects of water velocity and influent nitrate concentration on the nitrate removal were evaluated. Cumulative nitrate removal was highest for the date palm leaf treatments and was lowest for the wood treatments. The effects were in decreasing order for date palm leaf, barley straw, rice husks, and wood, respectively. The performance of the biofilters improved with increasing influent nitrate concentration and decreasing water velocity, allowing for high nitrate removal rates to be achieved. The results showed that all of the treatments had reduced the effluent nitrate concentrations below the USEPA maximum contaminant level for drinking water of 45 mg L(-1) nitrate at the end of the study.

  3. Nitrate removal using Brevundimonas diminuta MTCC 8486 from ground water.

    Science.gov (United States)

    Kavitha, S; Selvakumar, R; Sathishkumar, M; Swaminathan, K; Lakshmanaperumalsamy, P; Singh, A; Jain, S K

    2009-01-01

    Brevundimonas diminuta MTCC 8486, isolated from marine soil of coastal area of Trivandrum, Kerala, was used for biological removal of nitrate from ground water collected from Kar village of Pali district, Rajasthan. The organism was found to be resistance for nitrate up to 10,000 mg L(-1). The optimum growth conditions for biological removal of nitrate were established in batch culture. The effect of carbon sources on nitrate removal was investigated using mineral salt medium (MSM) containing 500 mg L(-1) of nitrate to select the most effective carbon source. Among glucose and starch as carbon source, glucose at 1% concentration increased the growth (182+/-8.24 x 10(4) CFU mL(-1)) and induced maximum nitrate reduction (86.4%) at 72 h. The ground water collected from Kar village, Pali district of Rajasthan containing 460+/-5.92 mg L(-1) of nitrate was subjected to three different treatment processes in pilot scale (T1 to T3). Higher removal of nitrate was observed in T2 process (88%) supplemented with 1% glucose. The system was scaled up to 10 L pilot scale treatment plant. At 72 h the nitrate removal was observed to be 95% in pilot scale plant. The residual nitrate level (23+/-0.41 mg L(-1)) in pilot scale treatment process was found to be below the permissible limit of WHO.

  4. Reductive denitrification of nitrate by scrap iron filings

    Institute of Scientific and Technical Information of China (English)

    HAO Zhi-wei; XU Xin-hua; WANG Da-hui

    2005-01-01

    Reduction of nitrate by zero-valent iron is a highly exergonic reaction that has long been known to occur. Use of scrap iron filings (SIF) as the PRB (Permeable Reactive Barrier) material can be used to recycle certain by-products, and identify cheaper replacements for expensive conventional PRB materials, especially pure metallic iron. The feasibility of reductive denitrification of nitrate by SIF was studied by batch experiments. Operational parameters such as pH value, SIF dosage and initial concentration of nitrate were investigated. The removal efficiency of nitrate reached 80% under the conditions of pH of 2.5, nitrate initial concentration of 45 mg/L and SIF dosage of 100 g/L within 4 h. Results indicated that nitrate removal is inversely related to pH. Low pH value condition favors for the nitrate transformation. Different from the results of others who studied nitrate reduction using iron powder, we found that there was a lag time before nitrate reduction occurs, even at low pH. Finally, the possible mechanism of nitrate reduction by Fe0 is discussed.

  5. Growing patterns to produce 'nitrate-free' lettuce (Lactuca sativa).

    Science.gov (United States)

    Croitoru, Mircea Dumitru; Muntean, Daniela-Lucia; Fülöp, Ibolya; Modroiu, Adriana

    2015-01-01

    Vegetables can contain significant amounts of nitrate and, therefore, may pose health hazards to consumers by exceeding the accepted daily intake for nitrate. Different hydroponic growing patterns were examined in this work in order to obtain 'nitrate-free lettuces'. Growing lettuces on low nitrate content nutrient solution resulted in a significant decrease in lettuces' nitrate concentrations (1741 versus 39 mg kg(-1)), however the beneficial effect was cancelled out by an increase in the ambient temperature. Nitrate replacement with ammonium was associated with an important decrease of the lettuces' nitrate concentration (from 1896 to 14 mg kg(-1)) and survival rate. An economically feasible method to reduce nitrate concentrations was the removal of all inorganic nitrogen from the nutrient solution before the exponential growth phase. This method led to lettuces almost devoid of nitrate (10 mg kg(-1)). The dried mass and calcinated mass of lettuces, used as markers of lettuces' quality, were not influenced by this treatment, but a small reduction (18%, p lettuces and their modifications are also discussed in the paper. It is possible to obtain 'nitrate-free' lettuces in an economically feasible way.

  6. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    Directory of Open Access Journals (Sweden)

    Melike eBalk

    2015-03-01

    Full Text Available Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests.The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden under the nitrate-limited conditions of most mangrove forest soils.

  7. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    Science.gov (United States)

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  8. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike

    2015-03-02

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  9. Impact of ammonium nitrate and sodium nitrate on tadpoles of Alytes obstetricans.

    Science.gov (United States)

    Garriga, Núria; Montori, A; Llorente, G A

    2017-07-01

    The presence of pesticides, herbicides and fertilisers negatively affect aquatic communities in general, and particularly amphibians in their larval phase, even though sensitivity to pollutants is highly variable among species. The Llobregat Delta (Barcelona, Spain) has experienced a decline of amphibian populations, possibly related to the reduction in water quality due to the high levels of farming activity, but also to habitat loss and alteration. We studied the effects of increasing ammonium nitrate and sodium nitrate levels on the survival and growth rate of Alytes obstetricans tadpoles under experimental conditions. We exposed larvae to increasing concentrations of nitrate and ammonium for 14 days and then exposed them to water without pollutants for a further 14 days. Only the higher concentrations of ammonium (>33.75 mg/L) caused larval mortality. The growth rate of larvae was reduced at ≥22.5 mg/L NH4(+), although individuals recovered and even increased their growth rate once exposure to the pollutant ended. The effect of nitrate on growth rate was detected at ≥80 mg/L concentrations, and the growth rate reduction in tadpoles was even observed during the post-exposure phase. The concentrations of ammonium with adverse effects on larvae are within the range levels found in the study area, while the nitrate concentrations with some adverse effect are close to the upper range limit of current concentrations in the study area. Therefore, only the presence of ammonium in the study area is likely to be considered of concern for the population of this species, even though the presence of nitrate could cause some sublethal effects. These negative effects could have an impact on population dynamics, which in this species is highly sensitive to larval mortality due to its small clutch size and prolonged larval period compared to other anuran amphibians.

  10. [La(UO2)V2O7][(UO2)(VO4)] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology

    Science.gov (United States)

    Mer, A.; Obbade, S.; Rivenet, M.; Renard, C.; Abraham, F.

    2012-01-01

    The new lanthanum uranyl vanadate divanadate, [La(UO2)V2O7][(UO2)(VO4)] was obtained by reaction at 800 °C between lanthanum chloride, uranium oxide (U3O8) and vanadium oxide (V2O5) and the structure was determined from single-crystal X-ray diffraction data. This compound crystallizes in the orthorhombic system with space group P212121 and unit-cell parameters a=6.9470(2) Å, b=7.0934(2) Å, c=25.7464(6) Å, V=1268.73(5) Å3, Z=4. A full matrix least-squares refinement yielded R1=0.0219 for 5493 independent reflections. The crystal structure is characterized by the stacking of uranophane-type sheets [(UO2)(VO4)]-∞2 and double layers [La(UO2)(V2O7)]+∞2 connected through La-O bonds involving the uranyl oxygen of the uranyl-vanadate sheets. The double layers result from the connection of two [La(UO2)(VO4)2]-∞2 sheets derived from the uranophane anion-topology by replacing half of the uranyl ions by lanthanum atoms and connected through the formation of divanadate entities.

  11. Chronic prostatitis

    OpenAIRE

    Le, Brian; Schaeffer, Anthony J.

    2011-01-01

    Chronic prostatitis can cause pain and urinary symptoms, and usually occurs without positive bacterial cultures from prostatic secretions (known as chronic abacterial prostatitis or chronic pelvic pain syndrome [CP/CPPS]). Bacterial infection can result from urinary tract instrumentation, but the cause and natural history of CP/CPPS are unknown.

  12. Chronic prostatitis

    OpenAIRE

    Erickson, Bradley A.; Schaeffer, Anthony J.; Le, Brian

    2008-01-01

    Chronic prostatitis can cause pain and urinary symptoms, and usually occurs without positive bacterial cultures from prostatic secretions (known as chronic abacterial prostatitis or chronic pelvic pain syndrome, CP/CPPS). Bacterial infection can result from urinary tract instrumentation, but the cause and natural history of CP/CPPS are unknown.

  13. A structural and theoretical study of the alkylammonium nitrates forefather: Liquid methylammonium nitrate

    Science.gov (United States)

    Gontrani, Lorenzo; Caminiti, Ruggero; Salma, Umme; Campetella, Marco

    2017-09-01

    We present here a structural and vibrational analysis of melted methylammonium nitrate, the simplest compound of the family of alkylammonium nitrates. The static and dynamical features calculated were endorsed by comparing the experimental X-ray data with the theoretical ones. A reliable description cannot be obtained with classical molecular dynamics owing to polarization effects. Contrariwise, the structure factor and the vibrational frequencies obtained from ab initio molecular dynamics trajectories are in very good agreement with the experiment. A careful analysis has provided additional information on the complex hydrogen bonding network that exists in this liquid.

  14. Protein nitration in biological aging: proteomic and tandem mass spectrometric characterization of nitrated sites.

    Science.gov (United States)

    Kanski, Jaroslaw; Schöneich, Christian

    2005-01-01

    Proteomic techniques for the identification of 3-nitrotyrosine-containing proteins in various biological systems are described with emphasis on the direct mass spectrometric detection and sequencing of 3-nitrotyrosine-containing peptides. Strengths and weaknesses of various separation and mass spectrometric techniques are discussed. Some examples for the MS/MS analysis of nitrated peptides obtained from aging rat heart and skeletal muscle are provided, such as nitration of Tyr105 of the mitochondrial electron-transfer flavoprotein and Tyr14 of creatine kinase.

  15. NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.

    2011-02-01

    This report satisfies the initial phase of Task WP-2.3.4 Alternative Sodium Recovery Technology, Subtask 1; Develop Near-Tank Nitrate/Nitrite Destruction Technology. Some of the more common anions in carbon steel waste tanks at SRS and Hanford Site are nitrate which is corrosive, and nitrite and hydroxide which are corrosion inhibitors. At present it is necessary to periodically add large quantities of 50 wt% caustic to waste tanks. There are three primary reasons for this addition. First, when the contents of salt tanks are dissolved, sodium hydroxide preferentially dissolves and is removed. During the dissolution process the concentration of free hydroxide in the tank liquid can decrease from 9 M to less than 0.2 M. As a result, roughly half way through the dissolution process large quantities of sodium hydroxide must be added to the tank to comply with requirements for corrosion control. Second, hydroxide is continuously consumed by reaction with carbon dioxide which occurs naturally in purge air used to prevent buildup of hydrogen gas inside the tanks. The hydrogen is generated by radiolysis of water. Third, increasing the concentration of hydroxide increases solubility of some aluminum compounds, which is desirable in processing waste. A process that converts nitrate and nitrite to hydroxide would reduce certain costs. (1) Less caustic would be purchased. (2) Some of the aluminum solid compounds in the waste tanks would become more soluble so less mass of solids would be sent to High Level Vitrification and therefore it would be not be necessary to make as much expensive high level vitrified product. (3) Less mass of sodium would be fed to Saltstone at SRS or Low Level Vitrification at Hanford Site so it would not be necessary to make as much low level product. (4) At SRS less nitrite and nitrate would be sent to Defense Waste Processing Facility (DWPF) so less formic acid would be consumed there and less hydrogen gas would be generated. This task involves

  16. Effect of Sodium Nitrate and Nitrate Reducing Bacteria on Methane Production and Fermentation with Buffalo Rumen Liquor

    Directory of Open Access Journals (Sweden)

    Pillanatham Civalingam Sakthivel

    2012-06-01

    Full Text Available Nitrate can serve as a terminal electron acceptor in place of carbon dioxide and inhibit methane emission in the rumen and nitrate reducing bacteria might help enhance the reduction of nitrate/nitrite, which depends on the type of feed offered to animals. In this study the effects of three levels of sodium nitrate (0, 5, 10 mM on fermentation of three diets varying in their wheat straw to concentrate ratio (700:300, low concentrate, LC; 500:500, medium concentrate, MC and 300:700, high concentrate, HC diet were investigated in vitro using buffalo rumen liquor as inoculum. Nitrate reducing bacteria, isolated from the rumen of buffalo were tested as a probiotic to study if it could help in enhancing methane inhibition in vitro. Inclusion of sodium nitrate at 5 or 10 mM reduced (p<0.01 methane production (9.56, 7.93 vs. 21.76 ml/g DM; 12.20, 10.42 vs. 25.76 ml/g DM; 15.49, 12.33 vs. 26.86 ml/g DM in LC, MC and HC diets, respectively. Inclusion of nitrate at both 5 and 10 mM also reduced (p<0.01 gas production in all the diets, but in vitro true digestibility (IVTD of feed reduced (p<0.05 only in LC and MC diets. In the medium at 10 mM sodium nitrate level, there was 0.76 to 1.18 mM of residual nitrate and nitrite (p<0.01 also accumulated. In an attempt to eliminate residual nitrate and nitrite in the medium, the nitrate reducing bacteria were isolated from buffalo adapted to nitrate feeding and introduced individually (3 ml containing 1.2 to 2.3×106 cfu/ml into in vitro incubations containing the MC diet with 10 mM sodium nitrate. Addition of live culture of NRBB 57 resulted in complete removal of nitrate and nitrite from the medium with a further reduction in methane and no effect on IVTD compared to the control treatments containing nitrate with autoclaved cultures or nitrate without any culture. The data revealed that nitrate reducing bacteria can be used as probiotic to prevent the accumulation of nitrite when sodium nitrate is used to reduce

  17. Accumulation of Nitrate in Vegetables and Its Possible Implications to Human Health

    Institute of Scientific and Technical Information of China (English)

    DU Shao-ting; ZHANG Yong-song; LIN Xian-yong

    2007-01-01

    In recent times, there are two kinds of completely opposite viewpoints about the impacts of nitrate on human health. To further objectively understand the effects of nitrate on human health, both of harmfulness and possible benefits of nitrate to human body, it is discussed in this review from the aspects of nitrate accumulation in vegetables, the source of nitrate ingested into human body, and the transformation of nitrate in human body, as well as the pathogenesis and physiological functions of nitrate metabolism.

  18. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    Science.gov (United States)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only

  19. Glucose elevates NITRATE TRANSPORTER2.1 protein levels and nitrate transport activity independently of its HEXOKINASE1-mediated stimulation of NITRATE TRANSPORTER2.1 expression.

    Science.gov (United States)

    de Jong, Femke; Thodey, Kate; Lejay, Laurence V; Bevan, Michael W

    2014-01-01

    Mineral nutrient uptake and assimilation is closely coordinated with the production of photosynthate to supply nutrients for growth. In Arabidopsis (Arabidopsis thaliana), nitrate uptake from the soil is mediated by genes encoding high- and low-affinity transporters that are transcriptionally regulated by both nitrate and photosynthate availability. In this study, we have studied the interactions of nitrate and glucose (Glc) on gene expression, nitrate transport, and growth using glucose-insensitive2-1 (gin2-1), which is defective in sugar responses. We confirm and extend previous work by showing that HEXOKINASE1-mediated oxidative pentose phosphate pathway (OPPP) metabolism is required for Glc-mediated NITRATE TRANSPORTER2.1 (NRT2.1) expression. Treatment with pyruvate and shikimate, two products derived from intermediates of the OPPP that are destined for amino acid production, restores wild-type levels of NRT2.1 expression, suggesting that metabolites derived from OPPP metabolism can, together with Glc, directly stimulate high levels of NRT2.1 expression. Nitrate-mediated NRT2.1 expression is not influenced by gin2-1, showing that Glc does not influence NRT2.1 expression through nitrate-mediated mechanisms. We also show that Glc stimulates NRT2.1 protein levels and transport activity independently of its HEXOKINASE1-mediated stimulation of NRT2.1 expression, demonstrating another possible posttranscriptional mechanism influencing nitrate uptake. In gin2-1 plants, nitrate-responsive biomass growth was strongly reduced, showing that the supply of OPPP metabolites is essential for assimilating nitrate for growth.

  20. Laboratory study of nitrate photolysis in Antarctic snow

    DEFF Research Database (Denmark)

    Berhanu, Tesfaye A.; Meusinger, Carl; Erbland, Joseph;

    2014-01-01

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [" Laboratory study of nitrate photolysis...... in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide...... additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters...

  1. Impact of weather variability on nitrate leaching

    Science.gov (United States)

    Richards, Karl; Premrov, Alina; Hackett, Richard; Coxon, Catherine

    2016-04-01

    The loss of nitrate (NO3 - N) to water via leaching and overland flow contributes to eutrophication of freshwaters, transitional and near coastal waters with agriculture contributing significantly to nitrogen (N) loading to these water. Environmental regulations, such as the Nitrates and Water Framework Directives, have increased constraints on farmers to improve N management in regions at risk of NO3--N loss to water. In addition, farmers also have to manage their systems within a changing climate as the imapcts of climate change begin to impact resulting in more frequent extreme events such as floods and droughts. The objective of this study was to investigate the link between weather volatility and the concentration of leached NO3--N spring barley. Leaching was quantified under spring barley grown on a well-drained, gravelly sandy soil using ceramic cup samplers over 6 drainage years under the same farming practices and treatments. Soil solution NO3--N concentrations under spring barley grown by conventional inversion ploughing and reduced tillage were compared to weather parameters over the period. Weather was recorded at a national Met Eireann weather station on site. Soil solution NO3--N varied significantly between years. Within individual years NO3--N concentrations varied over the drainage season, with peak concentrations generally observed in the autumn time, decreasing thereafter. Under both treatments there was a three-fold difference in mean annual soil solution NO3--N concentration over the 6 years with no change in the agronomic practices (crop type, tillage type and fertiliser input). Soil solution nitrate concentrations were significantly influenced by weather parameters such as rainfall, effective drainage and soil moisture deficit. The impact of climate change in Ireland could lead to increased NO3--N loss to water further exacerbating eutrophication of sensitive estuaries. The increased impact on eutrophication of waters, related to climatic

  2. Infrared Multiphoton Dissociation Spectroscopy of a Gas-Phase Complex of Uranyl and 3-Oxa-Glutaramide: An Extreme Red-Shift of the [O=U=O]²⁺ Asymmetric Stretch

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, John K.; Hu, Hanshi; Van Stipdonk, Michael J.; Berden, Giel; Oomens, Jos; Li, Jun

    2015-04-09

    The gas-phase complex UO₂(TMOGA)₂²⁺ (TMOGA = tetramethyl-3-oxa-glutaramide) prepared by electrospray ionization was characterized by infrared multiphoton dissociation (IRMPD) spectroscopy. The IRMPD spectrum from 700–1800 cm⁻¹ was interpreted using a computational study based on density functional theory. The predicted vibrational frequencies are in good agreement with the measured values, with an average deviation of only 8 cm⁻¹ (<1%) and a maximum deviation of 21 cm⁻¹ (<2%). The only IR peak assigned to the linear uranyl moiety was the asymmetric ν₃ mode, which appeared at 965 cm⁻¹ and was predicted by DFT as 953 cm⁻¹. This ν₃ frequency is red-shifted relative to bare uranyl, UO₂²⁺, by ca. 150 cm⁻¹ due to electron donation from the TMOGA ligands. Based on the degree of red-shifting, it is inferred that two TMOGA oxygen-donor ligands have a greater effective gas basicity than the four monodentate acetone ligands in UO₂(acetone)₄²⁺. The uranyl ν₃ frequency was also computed for uranyl coordinated by two TMGA ligands, in which the central Oether of TMOGA has been replaced by CH₂. The computed ν₃ for UO₂(TMGA)₂²⁺, 950 cm⁻¹, is essentially the same as that for UO₂(TMOGA)₂²⁺, suggesting that electron donation to uranyl from the Oether of TMOGA is minor. The computed ν₃ asymmetric stretching frequencies for the three actinyl complexes, UO₂(TMOGA)₂²⁺, NpO₂(TMOGA)₂²⁺ and PuO₂(TMOGA)₂²⁺, are comparable. This similarity is discussed in the context of the relationship between ν₃ and intrinsic actinide-oxygen bond energies in actinyl complexes.

  3. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease.

    Science.gov (United States)

    Sacksteder, Colette A; Qian, Wei-Jun; Knyushko, Tatyana V; Wang, Haixing; Chin, Mark H; Lacan, Goran; Melega, William P; Camp, David G; Smith, Richard D; Smith, Desmond J; Squier, Thomas C; Bigelow, Diana J

    2006-07-04

    Increased abundance of nitrotyrosine modifications of proteins have been documented in multiple pathologies in a variety of tissue types and play a role in the redox regulation of normal metabolism. To identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic data set identifying 7792 proteins from a whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in the identification of 31 unique nitrotyrosine sites within 29 different proteins. More than half of the nitrated proteins that have been identified are involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces an increased level of nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high-resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, a characteristic consistent with peroxynitrite-induced tyrosine modification. In addition, most sequences contain cysteines or methionines proximal to nitrotyrosines, contrary to suggestions that these amino acid side chains prevent tyrosine nitration. More striking is the presence of a positively charged moiety near the sites of nitration, which is not observed for non-nitrated tyrosines. Together, these observations suggest a predictive tool of functionally important sites of nitration and that cellular nitrating conditions play a role in neurodegenerative changes in the brain.

  4. NITRATE REMOVAL FROM WATER USING SURFACE-MODIFIED ULTRAFILTRATION MEMBRANES

    OpenAIRE

    Habuda-Stanić, Mirna; Nujić, Marija; Santo, Vera

    2014-01-01

    Elevated nitrate concentrations in natural water sources are a worldwide concern due to the extensive levels of soil N-fertilization. This study investigates three commercially available polyethersulfone (PES) ultrafiltration (UF) membranes with different molecular weight cut-offs (5, 10, and 30 kDa), which we modified with a cationic surfactant, cetylpyridinium chloride to improve their nitrate removal. The nitrate removal efficiency of these membranes was examinated as functions of initial ...

  5. Protein Tyrosine Nitration in Chronic Intramuscular Parasitism: Immunohistochemical evaluation of Relationships Between Nitration, Fiber Types, and Ubiquitin

    Science.gov (United States)

    Previous studies from our laboratory demonstrated that the catabolic processes associated with the proinflammatory impact of protozoan parasitic infection in Holstein calves were significantly more evident in red postural muscle such as psoas major (PM) than locomotor muscles typified by white rectu...

  6. Peroxidase catalyzed nitration of tryptophan derivatives. Mechanism, products and comparison with chemical nitrating agents.

    Science.gov (United States)

    Sala, Alberto; Nicolis, Stefania; Roncone, Raffaella; Casella, Luigi; Monzani, Enrico

    2004-07-01

    The enzymatic nitration of tryptophan derivatives by oxidation of nitrite has been studied using lactoperoxidase and horseradish peroxidase, and compared with the chemical nitration produced by nitrogen dioxide and peroxynitrite. HPLC, mass spectra and NMR analysis of the mixture of products clearly show that nitration occurs at position 4-, 6-, 7-, and N1 of the indole ring, and nitrosation at position N1. Kinetic studies performed on peroxidase/NO2-/H2O2 systems showed substrate saturation behavior with all the tryptophan derivatives employed. The rate dependence on nitrite concentration was found to be linear with horseradish peroxidase while it exhibited saturation behavior with lactoperoxidase. The composition of the product mixture depends on the nitrating agent. While the production of 4-nitro, 6-nitro, 7-nitro and N1-nitro derivatives follows a similar trend, indicating that they are formed according to a similar mechanism, the ratio between the N1-nitroso derivative and other derivatives depends markedly on the nitrite concentration when tryptophan modification is performed by the peroxidase/H2O2/nitrite systems. Analysis of the data indicates that at low nitrite concentration the enzymatic reaction occurs through the classical peroxidase cycle. At high nitrite concentration the reaction proceeds through a different intermediate that we assume to be a protein bound peroxynitrite species.

  7. Immobilization of nitrate reductase onto epoxy affixed silver nanoparticles for determination of soil nitrates.

    Science.gov (United States)

    Sachdeva, Veena; Hooda, Vinita

    2015-08-01

    Epoxy glued silver nanoparticles were used as immobilization support for nitrate reductase (NR). The resulting epoxy/AgNPs/NR conjugates were characterized at successive stages of fabrication by scanning electron microscopy and fourier transform infrared spectroscopy. The immobilized enzyme system exhibited reasonably high conjugation yield (37.6±0.01 μg/cm(2)), with 93.54±0.88% retention of specific activity. Most favorable working conditions of pH, temperature and substrate concentration were ascertained to optimize the performance of epoxy/AgNPs/NR conjugates for soil nitrate quantification. The analytical results for soil nitrate determination were consistent, reliable and reproducible. Minimum detection limit of the method was 0.05 mM with linearity from 0.1 to 11.0 mM. The % recoveries of added nitrates (0.1 and 0.2 mM) wereEpoxy/AgNPs bound NR had a half-life of 18 days at 4 °C and retained 50% activity after 15 reuses. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. NITRATE REDUCTASE ACTIVITY DURING HEAT SHOCK IN WINTER WHEAT

    Directory of Open Access Journals (Sweden)

    Klimenko S.B.

    2006-03-01

    Full Text Available Nitrates are the basic source of nitrogen for the majority of plants. Absorption and transformation of nitrates in plants are determined by external conditions and, first of all, temperature and light intensity. The influence of the temperature increasing till +40 0С on activity of nitrate reductase was studied. It is shown, that the rise of temperature was accompanied by sharp decrease of activity nitrate reductase in leaves of winter wheat, what, apparently, occurred for the account deactivations of enzyme and due to its dissociation.

  9. Electrochemical Studies of Nitrate-Induced Pitting in Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Zapp, P.E.

    1998-12-07

    The phenomenon of pitting in carbon steel exposed to alkaline solutions of nitrate and chloride was studied with the cyclic potentiodynamic polarization technique. Open-circuit and pitting potentials were measured on specimens of ASTM A537 carbon steel in pH 9.73 salt solutions at 40 degrees Celsius, with and without the inhibiting nitrite ion present. Nitrate is not so aggressive a pitting agent as is chloride. Both nitrate and chloride did induce passive breakdown and pitting in nitrite-free solutions, but the carbon steel retained passivity in solutions with 0.11-M nitrite even at a nitrate concentration of 2.2 M.

  10. Endogenously Nitrated Proteins in Mouse Brain: Links To Neurodegenerative Disease

    Energy Technology Data Exchange (ETDEWEB)

    Sacksteder, Colette A.; Qian, Weijun; Knyushko, Tanya V.; Wang, Haixing H.; Chin, Mark H.; Lacan, Goran; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.; Squier, Thomas C.; Bigelow, Diana J.

    2006-07-04

    Increased nitrotyrosine modification of proteins has been documented in multiple pathologies in a variety of tissue types; emerging evidence suggests its additional role in redox regulation of normal metabolism. In order to identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic dataset identifying 7,792 proteins from whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in identification of 31 unique nitrotyrosine sites within 29 different proteins. Over half of the nitrated proteins identified have been reported to be involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces increased nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, characteristics consistent with peroxynitrite-induced tyrosine modification. More striking is the five-fold greater nitration of tyrosines having nearby basic sidechains, suggesting electrostatic attraction of basic groups with the negative charge of peroxynitrite. Together, these results suggest that elevated peroxynitrite generation plays a role in neurodegenerative changes in the brain and provides a predictive tool of functionally important sites of nitration.

  11. Regioselective nitration of aromatic substrates in zeolite cages

    Indian Academy of Sciences (India)

    T Esakkidurai; M Kumarraja; K Pitchumani

    2003-04-01

    Phenol is nitrated regioselectively by fuming nitric acid inside the cages of faujasite zeolites (dependent on the loading level) and a remarkable orthoselectivity is observed in solid state nitration. Toluene and chlorobenzene also containing ortho-/para-orienting substituents, undergo faster nitration, though the regioselectivity is less significant in zeolite media. The results are explained on the basis of diffusion and binding of phenol inside zeolite, which facilitate regioselectivity (and which is absent in toluene and chlorobenzene). Other advantages of employing zeolites as media for mild and selective nitration are also highlighted.

  12. Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles

    DEFF Research Database (Denmark)

    Jørgensen, BB; Gallardo, VA

    1999-01-01

    communities of large Thioploca species live along the Pacific coast of South America and in other upwelling areas of high organic matter sedimentation with bottom waters poor in oxygen and rich in nitrate. Each cell of these thioplocas harbors a large liquid vacuole which is used as a storage for nitrate...... with a concentration of lip to 506 mM. The nitrate is used as an electron acceptor for sulfide oxidation and the bacteria may grow autotrophically or mixotrophically using acetate or other organic molecules as carbon source. The filaments stretch up into the overlying seawater, from which they take up nitrate...

  13. Hot Spots and Persistence of Nitrate in Aquifers Across Scales

    Directory of Open Access Journals (Sweden)

    Dipankar Dwivedi

    2016-01-01

    Full Text Available Nitrate-N (NO3 -- N is one of the most pervasive contaminants in groundwater. Nitrate in groundwater exhibits long-term behavior due to complex interactions at multiple scales among various geophysical factors, such as sources of nitrate-N, characteristics of the vadose zone and aquifer attributes. To minimize contamination of nitrate-N in groundwater, it is important to estimate hot spots (>10 mg/L of NO3 -- N, trends and persistence of nitrate-N in groundwater. To analyze the trends and persistence of nitrate-N in groundwater at multiple spatio-temporal scales, we developed and used an entropy-based method along with the Hurst exponent in two different hydrogeologic settings: the Trinity and Ogallala Aquifers in Texas at fine (2 km × 2 km, intermediate (10 km × 10 km and coarse (100 km × 100 km scales. Results show that nitrate-N exhibits long-term persistence at the intermediate and coarse scales. In the Trinity Aquifer, overall mean nitrate-N has declined with a slight increase in normalized marginal entropy (NME over each decade from 1940 to 2008; however, the number of hot spots has increased over time. In the Ogallala Aquifer, overall mean nitrate-N has increased with slight moderation in NME since 1940; however, the number of hot spots has significantly decreased for the same period at all scales.

  14. Anoxic Activated Sludge Monitoring with Combined Nitrate and Titrimetric Measurements

    DEFF Research Database (Denmark)

    Petersen, B.; Gernaey, Krist; Vanrolleghem, P.A.

    2002-01-01

    An experimental procedure for anoxic activated sludge monitoring with combined nitrate and titrimetric measurements is proposed and evaluated successfully with two known carbon sources, (-)acetate and dextrose. For nitrate measurements an ion-selective nitrate electrode is applied to allow...... was with the carbon source in excess, since excess nitrate provoked nitrite build-up thereby complicating the data interpretation. A conceptual model could quantitatively describe the experimental observations and thus link the experimentally measured proton production with the consumption of electron acceptor...... and carbon source during denitrification....

  15. Significant accumulation of nitrate in Chinese semi-humid croplands

    Science.gov (United States)

    Zhou, Junyu; Gu, Baojing; Schlesinger, William H.; Ju, Xiaotang

    2016-04-01

    Soil nitrate is important for crop growth, but it can also leach to groundwater causing nitrate contamination, a threat to human health. Here, we report a significant accumulation of soil nitrate in Chinese semi-humid croplands based upon more than 7000 samples from 141 sites collected from 1994 to 2015. In the 0-4 meters depth of soil, total nitrate accumulation reaches 453 ± 39, 749 ± 75, 1191 ± 89, 1269 ± 114, 2155 ± 330 kg N ha-1 on average in wheat, maize, open-field vegetables (OFV), solar plastic-roofed greenhouse vegetables (GHV) and orchard fields, respectively. Surprisingly, there is also a comparable amount of nitrate accumulated in the vadose-zone deeper than 4 meters. Over-use of N fertilizer (and/or manure) and a declining groundwater table are the major causes for this huge nitrate reservoir in the vadose-zone of semi-humid croplands, where the nitrate cannot be denitrified due to the presence of oxygen and lack of carbon sources. Future climatic change with more extreme rainfall events would increase the risk of accumulated nitrate moving downwards and threatening groundwater nitrate contamination.

  16. Chronic constipation in hemiplegic patients

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To assess the prevalence of bowel dysfunction in hemiplegic patients, and its relationship with the site of neurological lesion, physical immobilization and pharmacotherapy.METHODS: Ninety consecutive hemiplegic patients and 81 consecutive orthopedic patients were investigated during physical motor rehabilitation in the same period, in the same center and on the same diet. All subjects were interviewed ≥ 3 mo after injury using a questionnaire inquiring about bowel habits before injury and at the time of the interview. Patients' mobility was evaluated by the Adapted Patient Evaluation Conference System. Drugs considered for the analysis were nitrates, angiogenic converting enzyme (ACE) inhibitors,calcium antagonists, anticoagulants, antithrombotics,antidepressants, anti-epileptics.RESULTS: Mobility scores were similar in the two groups. De novo constipation (OR = 5.36) was a frequent outcome of the neurological accident.Hemiplegics showed an increased risk of straining at stool (OR: 4.33), reduced call to evacuate (OR: 4.13),sensation of incomplete evacuation (OR: 3.69), use of laxatives (OR: 3.75). Logistic regression model showed that constipation was significantly and independently associated with hemiplegia. A positive association was found between constipation and use of nitrates and antithrombotics in both groups. Constipation was not related to the site of brain injury.CONCLUSION: Chronic constipation is a possible outcome of cerebrovascular accidents occurring in 30% of neurologically stabilized hemiplegic patients.Its onset after a cerebrovascular accident appears to be independent from the injured brain hemisphere,and unrelated to physical inactivity. Pharmacological treatment with nitrates and antithrombotics may represent an independent risk factor for developing chronic constipation.

  17. Nitration of pollen aeroallergens by nitrate ion in conditions simulating the liquid water phase of atmospheric particles.

    Science.gov (United States)

    Ghiani, Alessandra; Bruschi, Maurizio; Citterio, Sandra; Bolzacchini, Ezio; Ferrero, Luca; Sangiorgi, Giorgia; Asero, Riccardo; Perrone, Maria Grazia

    2016-12-15

    Pollen aeroallergens are present in atmospheric particulate matter (PM) where they can be found in coarse biological particles such as pollen grains (aerodynamic diameter dae>10μm), as well as fragments in the finest respirable particles (PM2.5; daeNitration of tyrosine residues in pollen allergenic proteins can occur in polluted air, and inhalation and deposition of these nitrated proteins in the human respiratory tract may lead to adverse health effects by enhancing the allergic response in population. Previous studies investigated protein nitration by atmospheric gaseous pollutants such as nitrogen dioxide and ozone. In this work we report, for the first time, a study on protein nitration by nitrate ion in aqueous solution, at nitrate concentrations and pH conditions simulating those occurring in the atmospheric aerosol liquid water phase. Experiments have been carried out on the Bovine serum albumin (BSA) protein and the recombinant Phleum pratense allergen (Phl p 2) both in the dark and under UV-A irradiation (range 4-90Wm(-2)) to take into account thermal and/or photochemical nitration processes. For the latter protein, modifications in the allergic response after treatment with nitrate solutions have been evaluated by immunoblot analyses using sera from grass-allergic patients. Experimental results in bulk solutions showed that protein nitration in the dark occurs only in dilute nitrate solutions and under very acidic conditions (pHnitration is always observed (at pH0.5-5) under UV-A irradiation, both in dilute and concentrated nitrate solutions, being significantly enhanced at the lowest pH values. In some cases, protein nitration resulted in an increase of the allergic response. Copyright © 2016. Published by Elsevier B.V.

  18. Multi-scale study of the interaction mechanisms of aquo-uranyl ions with titanium oxide surfaces (powders and monocrystals); Etude multi-echelle des mecanismes d'interaction des ions aquo uranyle avec les surfaces de l'oxyde de titane (poudres et monocristaux)

    Energy Technology Data Exchange (ETDEWEB)

    Vandenborre, J

    2005-12-01

    The aim of this work is the study, at a molecular scale, of the sorption mechanisms corresponding to UO{sub 2}{sup 2+} /TiO{sub 2} system. The first step of the study is the hydrated solid characterization and the second step is the sorption mechanisms study. The work is performed using a multi-scale approach, which is composed by three parts. At first, we have obtained macroscopic data corresponding to the uranyl retention on the solid. Moreover, we have used CD-MUSIC model in order to calculate the surface acidity constants of the hydrated solid. In a second part, we have performed a multi-spectroscopic study (TRLFS, XPS, DRIFT, SHG) in order to characterize the system at a molecular scale. Finally, all these results were obtained on the solid TiO{sub 2} under different forms (rutile or anatase phases and (110), (001), (111) rutile single crystals). From the structural results, we have determined that there are two sorption sites towards the free uranyl ion onto the titania surface, whatever the studied solid (powder and single crystal). Moreover, these two reactive sorption sites don't present the same reactivity towards free uranyl ion: the more reactive sorption site is assigned to a bridging-bridging oxygen atoms and the less reactive sorption site is assigned to a bridging-top oxygen atoms. Thus, using this methodology, we can conclude that it is possible to understand the powder surface properties using the single crystals surface results. Finally, with the multi-scale approach, we have used the spectroscopic results obtained on UO{sub 2}{sup 2+}/TiO{sub 2} system as constraints during macroscopic data simulation using a surface complexation model (CCM). (author)

  19. New infrared spectroscopic database for bromine nitrate

    Science.gov (United States)

    Wagner, Georg; Birk, Manfred

    2016-08-01

    Fourier transform infrared measurements of bromine nitrate have been performed in the spectral region 675-1400 cm-1 at 0.014 cm-1 spectral resolution. Absorption cross sections were derived from 38 spectra covering the temperature range from 203 to 296 K and air pressure range from 0 to 190 mbar. For line-by-line analysis, further spectra were recorded at 0.00094 cm-1 spectral resolution at 223 and 293 K. The sample was synthesized from ClONO2 and Br2. Band strengths of the bands ν3 around 803 cm-1 and ν2 around 1286 cm-1 were determined from three pure BrONO2 measurements at different temperatures and pressures. Number densities in the absorption cell were derived from pressure measurements of the purified sample taking into account small amounts of impurities determined spectroscopically. Resulting band strengths are Sν3 = 2.872(52) × 10-17 cm2 molec-1 cm-1 and Sν2 = 3.63(15) × 10-17 cm2 molec-1 cm-1. Absorption cross sections of all measurements were scaled to these band strengths. Further data reduction was achieved with an interpolation scheme based on two-dimensional polynomials in ln(pressure) and temperature. The database is well-suited for remote-sensing application and should reduce the atmospheric bromine nitrate error budget substantially.

  20. {gamma}-radiolysis of uranous nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bisel, Isabelle; Lebouille, Odile; Rossetti, Thomas [CEA ValRHo - BP 17171 - 30207 Bagnols sur Ceze (France)

    2008-07-01

    Full text of publication follows: The knowledge of uranous nitrate solutions stability under radiolysis effect is of interest for all the processes aiming its co-conversion into a solid form with other actinides. In the presence of hydrazine, the oxidation of U(IV) to U(VI) under {gamma}-radiolysis ({sup 137}Cs) is due to the reaction with water radiolysis products, mainly hydrogen peroxide. Its kinetic law is of order 0. In addition, the zero order hydrazine consumption reaction, leads to the accumulation of hydrazoic acid related to its oxidation by nitrous acid himself generated by the radiolysis of the nitric acid. Lastly, the increase of acidity of the solution with a stoichiometry of 1.5 compared to uranium indicates multiple reactions. In absence of hydrazine, uranous nitrate is very quickly oxidized by the nitric and solutions acidity increases according to a complex mechanism catalysed by the nitrous acid. Results are not found to be sensitive to dose rate between 10 and 300 Gy/min. (authors)