WorldWideScience

Sample records for chronic osmotic minipump

  1. Chronic infusion of opiate peptides to rat cerebrospinal fluid with osmotic minipumps.

    Science.gov (United States)

    Saland, L C; Ortiz, E; Samora, A

    1984-09-01

    Beta-endorphin-related opiate peptides or the opiate antagonist naloxone were chronically infused for periods of 24 to 48 hours to the lateral cerebral ventricle of adult male rats using Alza osmotic minipumps. Previous studies have suggested a "chemotactic"-like effect of opiate peptides for supraependymal macrophages in the region of the third ventricle of the brain. The present study demonstrates a stimulatory effect of beta-endorphin infusion on the appearance of lymphocyte and neutrophil-like cells, in addition to macrophages, in the region of the third ventricle, suggestive of an intracerebral inflammatory response. None of the other molecules, including alpha-endorphin, methionine-enkephalin, naloxone, or sterile saline produced similar cellular responses after infusion, although some of the latter substances may have induced the appearance of supraependymal neuron-like cells in the area. Observations suggest that the chronic presence of beta-endorphin, a biologically active opiate peptide, will interact with cells of the immune system, which have the ability to gain access to the cerebrospinal fluid. PMID:6091499

  2. Desensitisation of 5-HT autoreceptors upon pharmacokinetically monitored chronic treatment with citalopram

    NARCIS (Netherlands)

    Cremers, TIFH; Spoelstra, EN; Bosker, FJ; Mork, A; den Boer, JA; Westerink, BHC; Wikstrom, HV

    2000-01-01

    Rats were chronically treated with the selective serotonin re-uptake inhibitor citalopram [1-(3-dimethylaminopropyl)-1-(4-fluorophenyl)-5-phtalancarbonitril], by means of osmotic minipumps. Using an infusion concentration of 50 mg/ml citalopram, steady-state plasma concentrations of approximately 0.

  3. Baroreflex impairment precedes hypertension during chronic cerebroventricular infusion of hypertonic sodium chloride in rats.

    OpenAIRE

    Buñag, R D; Miyajima, E

    1984-01-01

    Osmotic minipumps were implanted chronically for continuous 11-d infusion of hypertonic sodium chloride (NaCl) into the third cerebral ventricle (ICV) of awake rats to determine whether baroreflex sensitivity would be altered. Systolic and mean pressures, recorded from aortic catheters on day 11 while the rats were anesthetized with alpha-chloralose, were significantly higher in rats infused with artificial cerebrospinal fluid (CSF) containing hypertonic NaCl than in controls similarly infuse...

  4. Evaluating the control: minipump implantation and breathing behavior in the neonatal rat.

    Science.gov (United States)

    Kidder, Ian J; Mudery, Jordan A; Barreda, Santiago; Taska, David J; Bailey, E Fiona

    2016-09-01

    We evaluated genioglossus (GG) gross motoneuron morphology, electromyographic (EMG) activities, and respiratory patterning in rat pups allowed to develop without interference (unexposed) and pups born to dams subjected to osmotic minipump implantation in utero (saline-exposed). In experiment 1, 48 Sprague-Dawley rat pups (Charles-River Laboratories), ages postnatal day 7 (P7) through postnatal day 10 (P10), were drawn from two experimental groups, saline-exposed (n = 24) and unexposed (n = 24), and studied on P7, P8, P9, or P10. Pups in both groups were sedated (Inactin hydrate, 70 mg/kg), and fine-wire electrodes were inserted into the GG muscle of the tongue and intercostal muscles to record EMG activities during breathing in air and at three levels of normoxic hypercapnia [inspired CO2 fraction (FiCO2 ): 0.03, 0.06, and 0.09]. Using this approach, we assessed breathing frequency, heart rate, apnea type, respiratory event types, and respiratory stability. In experiment 2, 16 rat pups were drawn from the same experimental groups, saline-exposed (n = 9) and unexposed (n = 7), and used in motoneuron-labeling studies. In these pups a retrograde dye was injected into the GG muscle, and the brain stems were subsequently harvested and sliced. Labeled GG motoneurons were identified with microscopy, impaled, and filled with Lucifer yellow. Double-labeled motoneurons were reconstructed, and the number of primary projections and soma volumes were calculated. Whereas pups in each group exhibited the same number (P = 0.226) and duration (P = 0.093) of respiratory event types and comparable motoneuron morphologies, pups in the implant group exhibited more central apneas and respiratory instability relative to pups allowed to develop without interference. PMID:27402557

  5. Application of a two-phase thermosyphon loop with minichannels and a minipump in computer cooling

    Directory of Open Access Journals (Sweden)

    Bieliński Henryk

    2016-03-01

    Full Text Available This paper focuses on the computer cooling capacity using the thermosyphon loop with minichannels and minipump. The one-dimensional separate model of two-phase flow and heat transfer in a closed thermosyphon loop with minichannels and minipump has been used in calculations. The latest correlations for minichannels available in literature have been applied. This model is based on mass, momentum, and energy balances in the evaporator, rising tube, condenser and the falling tube. A numerical analysis of the mass flux and heat transfer coefficient in the steady state has been presented.

  6. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization.

    OpenAIRE

    Blevins, JE; Thompson, BW; Anekonda, VT; Ho, JM; Graham, JL; Roberts, ZS; Hwang, BH; K. Ogimoto; Wolden-Hanson, T; Nelson, J.; Kaiyala, KJ; Havel, PJ; Bales, KL; Morton, GJ; Schwartz, MW

    2016-01-01

    Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated...

  7. Measurement of affective state during chronic nicotine treatment and withdrawal by affective taste reactivity in mice: the role of endocannabinoids.

    Science.gov (United States)

    Wing, Victoria C; Cagniard, Barbara; Murphy, Niall P; Shoaib, Mohammed

    2009-10-01

    Despite tobacco being highly addictive, it is unclear if nicotine has significant affective properties. To address this, we studied taste reactions to gustatory stimuli, palatable sucrose and unpalatable quinine, which are believed to reflect ongoing affective state. Taste reactivity was assessed during chronic nicotine administration and spontaneous withdrawal and the role of the endogenous cannabinoids was also investigated. C57BL6J mice were implanted with intraoral fistula to allow passive administration of solutions. In the first study, taste reactivity was tracked throughout chronic vehicle or nicotine (12 mg/kg/day) infusion via osmotic minipumps and spontaneous withdrawal following removal of minipumps. In the second study, the endocannabinoid CB1-receptor antagonist AM251 (1, 3 and 10mg/kg, intraperitoneal) or vehicle was acutely administered before taste reactivity measurement during chronic nicotine administration. Chronic nicotine treatment and spontaneous withdrawal did not influence taste reactions to sucrose or quinine. AM251 decreased positive reactions to sucrose and increased negative reactions to quinine. The effects of AM251 were respectively attenuated and enhanced in nicotine infused mice. These results suggest chronic nicotine exposure and withdrawal has no apparent affective sequelae, as probed by taste reactivity, and thus may not explain the difficulty tobacco-users have in achieving abstinence. In contrast, endocannabinoids elevate affective state in drug-naïve animals and changes in endogenous endocannabinoid tone may underlie compensations in affective state during chronic nicotine exposure. PMID:19540830

  8. Mini-pump: method of diabetic control during minor surgery under general anaesthesia.

    OpenAIRE

    Barnett, A. H.; Robinson, M. H.; Harrison, J. H.; Watkins, P. J.

    1980-01-01

    A simple method for maintaining diabetic control during and after minor surgery requiring a general anaesthetic was studied in 20 insulin-treated diabetics. Long-acting insulin was omitted on the night before the operation, and a mini-pump delivering insulin at a rate of 0.5 units/h was strapped to the arm early on the morning of the operation regardless of the time of operation. Insulin was infused at this rate throughout the day, the usual evening dose of insulin given and followed by suppe...

  9. Transcutaneous RF-Powered Implantable Minipump Driven by a Class-E Transmitter

    OpenAIRE

    Moore, William H.; Holschneider, Daniel P.; Givrad, Tina K.; Maarek, Jean-Michel I.

    2006-01-01

    We describe the design and testing of an inductive coupling system used to power an implantable minipump for applications in ambulating rats. A 2 MHz class-E oscillator driver powered a coil transmitter wound around a 33-cm-diameter rat cage. A receiver coil, a filtered rectifier, and a voltage-sensitive switch powered the implant. The implant DC current at the center of the primary coil (5.1 V) exceeded the level required to activate the solenoid valve in the pump. The variations of the impl...

  10. Investigating depression-like and metabolic parameters in a chronic low-grade inflammation model

    DEFF Research Database (Denmark)

    Fischer, C. W.; Elfving, B.; Lund, S.;

    2012-01-01

    that elevated markers of inflammation predict a poor response to treatment. Furthermore, increasing evidences show that metabolic abnormalities such as obesity and diabetes mellitus type 2 are associated with a low-grade inflammation. Objectives: The aim of this study is to investigate the effects of a systemic...... low-grade inflammation induced by lipopolysaccharide (LPS) on adult Sprague-Dawley rats on depression-like and metabolic parameters. Methods: Chronic infusion of LPS (at a high, medium and low dose) for 28 days was performed by using subcutaneously implanted osmotic minipumps (Alzet...... values. However, a high dose of LPS caused an increase in liver weight. Analysis of cytokine and mRNA expression levels is currently being carried out and these results are pending. Our preliminary results indicate that a low dose of LPS can produce depression-like behavior, without inducing metabolic...

  11. Astrocytes Are an Early Target in Osmotic Demyelination Syndrome

    OpenAIRE

    Gankam Kengne, Fabrice; Nicaise, Charles; Soupart, Alain; Boom, Alain; Schiettecatte, Johan; Pochet, Roland; Brion, Jean Pierre; Decaux, Guy

    2011-01-01

    Abrupt osmotic changes during rapid correction of chronic hyponatremia result in demyelinative brain lesions, but the sequence of events linking rapid osmotic changes to myelin loss is not yet understood. Here, in a rat model of osmotic demyelination syndrome, we found that massive astrocyte death occurred after rapid correction of hyponatremia, delineating the regions of future myelin loss. Astrocyte death caused a disruption of the astrocyte-oligodendrocyte network, rapidly upregulated infl...

  12. Osmotic Dehydration of Fruits

    OpenAIRE

    Guiné, Raquel; Barroca, Maria João

    2009-01-01

    The need for increasing improvements in the quality of food products conducted to an increased interest in osmotic treatment. This technology involves the partial dehydration of a water-rich solid foodstuff, either whole or in pieces, through immersion in an osmotic solution. In fact, osmotic treatment is applied with the goal of modifying the composition of food material through partial water removal and impregnation of solutes, without affecting the structural integrity of products. Three k...

  13. Saltstone Osmotic Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Ralph L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, Kenneth L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRN

    2013-09-23

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR- 2013-0004.

  14. Chronic citalopram administration causes a sustained suppression of serotonin synthesis in the mouse forebrain.

    Directory of Open Access Journals (Sweden)

    Gerard Honig

    Full Text Available BACKGROUND: Serotonin (5-HT is a neurotransmitter with important roles in the regulation of neurobehavioral processes, particularly those regulating affect in humans. Drugs that potentiate serotonergic neurotransmission by selectively inhibiting the reuptake of serotonin (SSRIs are widely used for the treatment of psychiatric disorders. Although the regulation of serotonin synthesis may be an factor in SSRI efficacy, the effect of chronic SSRI administration on 5-HT synthesis is not well understood. Here, we describe effects of chronic administration of the SSRI citalopram (CIT on 5-HT synthesis and content in the mouse forebrain. METHODOLOGY/PRINCIPAL FINDINGS: Citalopram was administered continuously to adult male C57BL/6J mice via osmotic minipump for 2 days, 14 days or 28 days. Plasma citalopram levels were found to be within the clinical range. 5-HT synthesis was assessed using the decarboxylase inhibition method. Citalopram administration caused a suppression of 5-HT synthesis at all time points. CIT treatment also caused a reduction in forebrain 5-HIAA content. Following chronic CIT treatment, forebrain 5-HT stores were more sensitive to the depleting effects of acute decarboxylase inhibition. CONCLUSIONS/SIGNIFICANCE: Taken together, these results demonstrate that chronic citalopram administration causes a sustained suppression of serotonin synthesis in the mouse forebrain. Furthermore, our results indicate that chronic 5-HT reuptake inhibition renders 5-HT brain stores more sensitive to alterations in serotonin synthesis. These results suggest that the regulation of 5-HT synthesis warrants consideration in efforts to develop novel antidepressant strategies.

  15. Saltstone Osmotic Pressure

    International Nuclear Information System (INIS)

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR-2013-0004. Simulated saltstone typically has very low permeability (Dixon et al. 2008) and pore water that contains a large concentration of dissolved salts (Flach and Smith 2013). Pore water in simulated saltstone has a high salt concentration relative to pore water in concrete and groundwater. This contrast in salt concentration can generate high osmotic pressures if simulated saltstone has the properties of a semipermeable membrane. Estimates of osmotic pressure using results from the analysis of pore water collected from simulated saltstone show that an osmotic pressure up to 2790 psig could be generated within the saltstone. Most semi-permeable materials are non-ideal and have an osmotic efficiency 3, KNO3, Na3PO4x12H 2O, and K3PO4 when exposed to a dilute solution. Typically hydraulic head is considered the only driving force for groundwater in groundwater models. If a low permeability material containing a concentrated salt solution is present in the hydrogeologic sequence large osmotic pressures may develop and lead to misinterpretation of groundwater flow and solute transport. The osmotic pressure in the semi-permeable material can significantly impact groundwater flow in the vicinity of the semi-permeable material. One possible outcome is that groundwater

  16. Neuropathological characterization of spinal motor neuron degeneration processes induced by acute and chronic excitotoxic stimulus in vivo.

    Science.gov (United States)

    Ramírez-Jarquín, Uri Nimrod; Tapia, Ricardo

    2016-09-01

    Motor neuron (MN) diseases are characterized by progressive cell degeneration, and excitotoxicity has been postulated as a causal factor. Using two experimental procedures for inducing excitotoxic spinal MN degeneration in vivo, by acute and chronic overactivation of α-amino-3-hydroxy-5-methyl-4-isoxazoleacetic acid (AMPA) receptors, we characterized the time course of the neuropathological changes. Electron transmission microscopy showed that acute AMPA perfusion by microdialysis caused MN swelling 1.5h after surgery and lysis with membrane rupture as early as 3h; no cleaved caspase 3 was detected by immunochemistry. Chronic AMPA infusion by osmotic minipumps induced a slow degeneration process along 5days, characterized by progressive changes: endoplasmic reticulum swelling, vacuolization of cytoplasm, vacuole fusion and cell membrane rupture. Quantification of these ultrastructural alterations showed that the increase of vacuolated area was at the expense of the nuclear area. Caspase 3 cleavage was observed since the first day of AMPA infusion. We conclude that acute AMPA-induced excitotoxicity induces MN loss by necrosis, while the progress of degeneration induced by chronic infusion is slow, starting with an early apoptotic process followed by necrosis. In both the acute and chronic procedures a correlation could be established between the loss of MN by necrosis, but not by caspase 3-linked apoptosis, and severe motor deficits and hindlimb paralysis. Our findings are relevant for understanding the mechanisms of neuron death in degenerative diseases and thus for the design of pharmacological therapeutic strategies. PMID:27320208

  17. Slow release delivery of rioprostil by an osmotic pump inhibits the formation of acute aspirin-induced gastric lesions in dogs and accelerates the healing of chronic lesions without incidence of side effects.

    Science.gov (United States)

    Katz, L B; Shriver, D A

    1989-10-01

    Rioprostil, a primary alcohol prostaglandin E1 analog, inhibits gastric acid secretion and prevents gastric lesions induced by a variety of irritants in experimental animals. Because rioprostil is relatively short-acting, it would be of significant benefit clinically if its duration of action could be extended to allow once daily dosing. This investigation demonstrates that when administered via an osmotically driven pump (Osmet, Alza Corp.), rioprostil prevents the acute effects of aspirin on the gastric mucosa of dogs, accelerates the healing of aspirin-induced gastric lesions, and heals preexisting aspirin-induced gastric lesions during chronic administration of aspiring. The potency of rioprostil against acute gastric lesion formation was greatest when delivered from a 24-hr release pump (ED50 = 0.77 micrograms/kg/24 hr) and was 37 times greater than when administered as a single oral bolus. In addition, this activity occurred at doses which had little or no gastric antisecretory activity in betazole-stimulated Heidenhain pouch dogs. When delivered from a 24-hr pump, rioprostil (100 micrograms/kg/24 hr) healed preexisting aspirin-induced gastric lesions within 8 days after removal of aspirin, or after 15 days during continued daily aspirin administration. Additional studies determined that administration of rioprostil at doses of 720, 1440, or 2160 micrograms/kg/24 hr (935-2805 times the gastroprotective ED50 in 24 hr pumps) was well tolerated, with only slight, transient increases in body temperature, softening of the stools, and mild sedation at the highest dose. Administration of rioprostil daily for 5 days at 960 micrograms/kg/24 hr from 24-hr release pumps was also well tolerated by all dogs with no evidence of any accumulation of effect of rioprostil. In summary, administration of rioprostil via an osmotic pump increases its potency and duration of action against the gastric lesion-inducing effect of aspirin, and maintains a wide ratio of safety. PMID

  18. Neurodegeneration in an Animal Model of Chronic Amyloid-beta Oligomer Infusion Is Counteracted by Antibody Treatment Infused with Osmotic Pumps.

    Science.gov (United States)

    Sajadi, Ahmadali; Provost, Chloé; Pham, Brendon; Brouillette, Jonathan

    2016-01-01

    Decline in hippocampal-dependent explicit memory (memory for facts and events) is one of the earliest clinical symptom of Alzheimer's disease (AD). It is well established that synapse loss and ensuing neurodegeneration are the best predictors for memory impairments in AD. Latest studies have emphasized the neurotoxic role of soluble amyloid-beta oligomers (Aβo) that begin to accumulate in the human brain approximately 10 to 15 yr before the clinical symptoms become apparent. Many reports indicate that soluble Aβo correlate with memory deficits in AD models and humans. The Aβo-induced neurodegeneration observed in neuronal and brain slice cultures has been more challenging to reproduce in many animal models. The model of repeated Aβo infusions shown here overcome this issue and allow addressing two key domains for developing new disease modifying therapies: identify biological markers to diagnose early AD, and determine the molecular mechanisms underpinning Aβo-induced memory deficits at the onset of AD. Since soluble Aβo aggregate relatively fast into insoluble Aβ fibrils that correlate poorly with the clinical state of patients, soluble Aβo are prepared freshly and injected once per day during six days to produce marked cell death in the hippocampus. We used cannula specially design for simultaneous infusions of Aβo and continuous infusion of Aβo antibody (6E10) in the hippocampus using osmotic pumps. This innovative in vivo method can now be used in preclinical studies to validate the efficiency of new AD therapies that might prevent the deposition and neurotoxicity of Aβo in pre-dementia patients. PMID:27585306

  19. Region-specific up-regulation of oxytocin receptor binding in the brain of mice following chronic nicotine administration.

    Science.gov (United States)

    Zanos, Panos; Georgiou, Polymnia; Metaxas, Athanasios; Kitchen, Ian; Winsky-Sommerer, Raphaelle; Bailey, Alexis

    2015-07-23

    Nicotine addiction is considered to be the main preventable cause of death worldwide. While growing evidence indicates that the neurohypophysial peptide oxytocin can modulate the addictive properties of several abused drugs, the regulation of the oxytocinergic system following nicotine administration has so far received little attention. Here, we examined the effects of long-term nicotine or saline administration on the central oxytocinergic system using [(125)I]OVTA autoradiographic binding in mouse brain. Male, 7-week old C57BL6J mice were treated with either nicotine (7.8 mg/kg daily; rate of 0.5 μl per hour) or saline for a period of 14-days via osmotic minipumps. Chronic nicotine administration induced a marked region-specific upregulation of the oxytocin receptor binding in the amygdala, a brain region involved in stress and emotional regulation. These results provide direct evidence for nicotine-induced neuroadaptations in the oxytocinergic system, which may be involved in the modulation of nicotine-seeking as well as emotional consequence of chronic drug use. PMID:26037668

  20. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Harnish Patel

    2012-04-01

    Full Text Available Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable controlled drug delivery systems and could be employed as oral drug delivery systems. Various patents available for osmotic drug delivery system like Rose-Nelson pump, Higuchi leeper pump, Higuchi Theeuwes pump, Elementary Osmotic pump etc. ODDS are useful for poorly soluble drug, for pulsatile drug release, zero order release. Various techniques available for preparation of ODDS include push pull osmotic Pump, osmotic Brusting osmotic pump, liquid oral osmotic system, sandwiched osmotic tablets , delayed delivery osmotic device, monolithic osmotic System and controlled porosity osmotic Pump. Osmotically controlled oral drug delivery systems utilize osmotic pressure for controlled delivery of active agents. These systems can be utilized for systemic as well as targeted delivery of drugs. The release of drugs from osmotic systems is governed by various formulation factors such as solubility and osmotic pressure of the core components, size of the delivery orifice, and nature of the rate-controlling membrane. In this Paper mainly focused on the Osmotic System with example, the basic component of osmotic system and evaluation parameter of the osmotic drug delivery system.

  1. Application of non-evaporation getter to ion minipump%非蒸散型吸气剂在微型离子泵中的应用

    Institute of Scientific and Technical Information of China (English)

    李城钰; 齐京; 陈旭

    2009-01-01

    为确保小尺寸超高真空密封器件的高可靠和长寿命,开发了一种带非蒸散型吸气剂的微型复合离子泵(Mini-Combination Ion Pumps with NEG).在新建的微型离子泵性能测试系统上,研究了非蒸散型吸气剂对器件存储和微型离子泵启动特性的影响.模拟了微型离子泵与小型真空器件集成为一体时可能遇到不同气体负载时的实际情况,讨论了新结果的可能应用.%A miniature combination ion pump with non-evaporable getter (NEG) was developed in order to ensure the extreme high reliability and long service life for the closed ultra-high vacuum devices of small size.The influences of the NEG on the storage of the devices and starting characteristics of the minipump were investigated on a newly developed performance testing system.The actual situation under different gas loads in case the minipump and small-sized vacuum devices are integrated together was simulated and discussed.

  2. Equilibrium Electro-osmotic Instability

    CERN Document Server

    Rubinstein, Isaak

    2014-01-01

    Since its prediction fifteen years ago, electro-osmotic instability has been attributed to non-equilibrium electro-osmosis related to the extended space charge which develops at the limiting current in the course of concentration polarization at a charge-selective interface. This attribution had a double basis. Firstly, it has been recognized that equilibrium electro-osmosis cannot yield instability for a perfectly charge-selective solid. Secondly, it has been shown that non-equilibrium electro-osmosis can. First theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge-selectivity for the sake of simplicity and so did the subsequent numerical studies of various time-dependent and nonlinear features of electro-osmotic instability. In this letter, we show that relaxing the assumption of perfect charge-selectivity (tantamount to fixing the electrochemical potential in the solid) allows for equilibrium electro-osmotic instability. Moreover, we s...

  3. Osmotic water transport in aquaporins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric;

    2013-01-01

    molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, P(S), is proportional to 1 - σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel...... sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mM of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured......Abstract  We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute...

  4. Motor Alterations Induced by Chronic 4-Aminopyridine Infusion in the Spinal Cord In vivo: Role of Glutamate and GABA Receptors

    Science.gov (United States)

    Lazo-Gómez, Rafael; Tapia, Ricardo

    2016-01-01

    Motor neuron (MN) degeneration is the pathological hallmark of MN diseases, a group of neurodegenerative disorders clinically manifested as muscle fasciculations and hyperreflexia, followed by paralysis, respiratory failure, and death. Ample evidence supports a role of glutamate-mediated excitotoxicity in motor death. In previous work we showed that stimulation of glutamate release from nerve endings by perfusion of the K+-channel blocker 4-aminopyridine (4-AP) in the rat hippocampus induces seizures and neurodegeneration, and that AMPA infusion in the spinal cord produces paralysis and MN death. On these bases, in this work we have tested the effect of the chronic infusion of 4-AP in the spinal cord, using implanted osmotic minipumps, on motor activity and on MN survival, and the mechanisms underlying this effect. 4-AP produced muscle fasciculations and motor deficits assessed in two motor tests, which start 2–3 h after the implant, which ameliorated spontaneously within 6–7 days, but no neurodegeneration. These effects were prevented by both AMPA and NMDA receptors blockers. The role of GABAA receptors was also explored, and we found that chronic infusion of bicuculline induced moderate MN degeneration and enhanced the hyperexcitation produced by 4-AP. Unexpectedly, the GABAAR agonist muscimol also induced motor deficits and failed to prevent the MN death induced by AMPA. We conclude that motor alterations induced by chronic 4-AP infusion in the spinal cord in vivo is due to ionotropic glutamate receptor overactivation and that blockade of GABAergic neurotransmission induces MN death under chronic conditions. These results shed light on the role of glutamatergic and GABAergic neurotransmission in the regulation of MN excitability in the spinal cord. PMID:27242406

  5. Role of Osmotic Adjustment in Plant Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Gebre, G.M.

    2001-01-11

    Successful implementation of short rotation woody crops requires that the selected species and clones be productive, drought tolerant, and pest resistant. Since water is one of the major limiting factors in poplar (Populus sp.) growth, there is little debate for the need of drought tolerant clones, except on the wettest of sites (e.g., lower Columbia River delta). Whether drought tolerance is compatible with productivity remains a debatable issue. Among the many mechanisms of drought tolerance, dehydration postponement involves the maintenance of high leaf water potential due to, for example, an adequate root system. This trait is compatible with productivity, but requires available soil moisture. When the plant leaf water potential and soil water content decline, the plant must be able to survive drought through dehydration tolerance mechanisms, such as low osmotic potential or osmotic adjustment. Osmotic adjustment and low osmotic potential are considered compatible with growth and yield because they aid in the maintenance of leaf turgor. However, it has been shown that turgor alone does not regulate cell expansion or stomatal conductance and, therefore, the role of osmotic adjustment is debated. Despite this finding, osmotic adjustment has been correlated with grain yield in agronomic crop species, and gene markers responsible for osmotic adjustment are being investigated to improve drought tolerance in productive progenies. Although osmotic adjustment and low osmotic potentials have been investigated in several forest tree species, few studies have investigated the relationship between osmotic adjustment and growth. Most of these studies have been limited to greenhouse or container-grown plants. Osmotic adjustment and rapid growth have been specifically associated in Populus and black spruce (Picea mariuna (Mill.) B.S.P.) progenies. We tested whether these relationships held under field conditions using several poplar clones. In a study of two hybrid poplar

  6. Efficiency of osmotic pipe flows

    DEFF Research Database (Denmark)

    Haaning, Louise Sejling; Jensen, Kaare Hartvig; Helix Nielsen, Claus;

    2013-01-01

    We present experiments and theory for flows of sugar or salt solutions in cylindrical tubes with semipermeable walls (hollow fiber membranes) immersed in water, quantifying the strength of the osmotic driving force in relation to the dimensionless parameters that specify the system. The pumping e...

  7. Osmotic Effects in Sludge Dewatering

    DEFF Research Database (Denmark)

    Keiding, Kristian; Rasmussen, Michael R.

    2003-01-01

    A model of filtration dewatering is presented. The model is based on the d’Arcy flow equation in which the resistance to filtration is described by the Corzeny–Carman equation and the driving force is the difference between the external pressure and the osmotic pressure of the filter cake. It has...

  8. Controlled porosity solubility modulated osmotic pump tablets of gliclazide.

    Science.gov (United States)

    Banerjee, Arti; Verma, P R P; Gore, Subhash

    2015-06-01

    A system that can deliver drug at a controlled rate is very important for the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Poorly water-soluble drug with pH-dependent solubility such as gliclazide (GLZ) offers challenges in the controlled-release formulation because of low dissolution rate and poor bioavailability. Solid dispersion (SD) of GLZ consisted of hydroxypropyl cellulose (HPC-SSL) as a polymeric solubilizer was manufactured by hot melt extrusion (HME) technology. Then, controlled porosity osmotic pump (CPOP) tablet of gliclazide was designed to deliver drug in a controlled manner up to 16 h. The developed formulation was optimized for type and level of pore former and coating weight gain. The optimized formulation was found to exhibit zero order kinetics independent of pH and agitation speed but depends on osmotic pressure of dissolution media indicated that mechanism of drug release was osmotic pressure. The in vivo performance prediction of developed formulation using convolution approach revealed that the developed formulation was superior to the existing marketed extended-release formulation in terms of attaining steady state plasma levels and indicated adequate exposure in translating hypoglycemic response. The prototype solubilization method combined with controlled porosity osmotic pump based technique could provide a unique way to increase dissolution rate and bioavailability of many poorly water-soluble, narrow therapeutic index drugs used in diabetes, cardiovascular diseases, etc. PMID:25378281

  9. Extra pontine osmotic demyelination syndrome

    OpenAIRE

    Zunga, Pervaiz M.; Farooq, Omar; Dar, Mohd I.; Dar, Ishrat H; Rashid, Samia; Rather, Abdul Q.; Basu, Javid A; Ashraf, Mohammed; Jahangeer A. Bhat

    2015-01-01

    The osmotic demyelination syndrome (ODS) has been identified as a complication of the rapid correction of hyponatremia for decades. However, in recent years, a variety of other medical conditions have been associated with the development of ODS, independent of changes in serum sodium which cause a rapid changes in osmolality of the interstitial (extracellular) compartment of the brain leading to dehydration of energy-depleted cells with subsequent axonal damage that occurs in characteristic a...

  10. Equilibrium Electro-osmotic Instability

    OpenAIRE

    Rubinstein, Isaak; Zaltzman, Boris

    2014-01-01

    Since its prediction fifteen years ago, electro-osmotic instability has been attributed to non-equilibrium electro-osmosis related to the extended space charge which develops at the limiting current in the course of concentration polarization at a charge-selective interface. This attribution had a double basis. Firstly, it has been recognized that equilibrium electro-osmosis cannot yield instability for a perfectly charge-selective solid. Secondly, it has been shown that non-equilibrium elect...

  11. Auxin response under osmotic stress.

    Science.gov (United States)

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment. PMID:27052306

  12. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Bao [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Ma, Le [Department of Public Health, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Miao, Yu-Wang [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Lu, Yan [Department of Clinical Laboratory, Sanaitang Hospital, Lanzhou 730030 (China); Song, Xin-Ai [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-09-01

    The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play a critical role in the generation and maintenance of sympathetic nerve activity. The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. This study was designed to determine whether inhibition of the angiotensin-converting enzyme (ACE) in the PVN modulates cytokines and attenuates oxidative stress (ROS) in the RVLM, and decreases the blood pressure and sympathetic activity in renovascular hypertensive rats. Renovascular hypertension was induced in male Sprague–Dawley rats by the two-kidney one-clip (2K1C) method. Renovascular hypertensive rats received bilateral PVN infusion with ACE inhibitor lisinopril (LSP, 10 μg/h) or vehicle via osmotic minipump for 4 weeks. Mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma proinflammatory cytokines (PICs) were significantly increased in renovascular hypertensive rats. The renovascular hypertensive rats also had higher levels of ACE in the PVN, and lower level of interleukin-10 (IL-10) in the RVLM. In addition, the levels of PICs, the chemokine MCP-1, the subunit of NAD(P)H oxidase (gp91{sup phox}) and ROS in the RVLM were increased in hypertensive rats. PVN treatment with LSP attenuated those changes occurring in renovascular hypertensive rats. Our findings suggest that the beneficial effects of ACE inhibition in the PVN in renovascular hypertension are partly due to modulation cytokines and attenuation oxidative stress in the RVLM. - Highlights: • Chronic ACE inhibition in PVN on renovascular hypertension was investigated. • 2K1C resulted in sympathoexcitation, increased plasma PICs and hypertension. • 2K1C rats had higher levels of cytokines and reactive oxygen species (ROS) in RVLM. • Chronic inhibiting PVN ACE attenuates cytokines and ROS in RVLM in hypertension.

  13. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension

    International Nuclear Information System (INIS)

    The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play a critical role in the generation and maintenance of sympathetic nerve activity. The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. This study was designed to determine whether inhibition of the angiotensin-converting enzyme (ACE) in the PVN modulates cytokines and attenuates oxidative stress (ROS) in the RVLM, and decreases the blood pressure and sympathetic activity in renovascular hypertensive rats. Renovascular hypertension was induced in male Sprague–Dawley rats by the two-kidney one-clip (2K1C) method. Renovascular hypertensive rats received bilateral PVN infusion with ACE inhibitor lisinopril (LSP, 10 μg/h) or vehicle via osmotic minipump for 4 weeks. Mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma proinflammatory cytokines (PICs) were significantly increased in renovascular hypertensive rats. The renovascular hypertensive rats also had higher levels of ACE in the PVN, and lower level of interleukin-10 (IL-10) in the RVLM. In addition, the levels of PICs, the chemokine MCP-1, the subunit of NAD(P)H oxidase (gp91phox) and ROS in the RVLM were increased in hypertensive rats. PVN treatment with LSP attenuated those changes occurring in renovascular hypertensive rats. Our findings suggest that the beneficial effects of ACE inhibition in the PVN in renovascular hypertension are partly due to modulation cytokines and attenuation oxidative stress in the RVLM. - Highlights: • Chronic ACE inhibition in PVN on renovascular hypertension was investigated. • 2K1C resulted in sympathoexcitation, increased plasma PICs and hypertension. • 2K1C rats had higher levels of cytokines and reactive oxygen species (ROS) in RVLM. • Chronic inhibiting PVN ACE attenuates cytokines and ROS in RVLM in hypertension

  14. Casein Micelle Dispersions under Osmotic Stress

    OpenAIRE

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic press...

  15. [Effect of osmotic pressure on nitrification].

    Science.gov (United States)

    Zheng, Ping; Wu, Ming-Sheng

    2006-01-01

    The effect of osmotic pressure on nitrification was investigated in the internal-loop air-lift nitrifying reactor. When influent ammonia concentration is kept at 420mg x L(-1) and influent osmotic pressure is increased from 4.3 to 18.8 x 10(5) Pa, the ammonia conversion of the nitrifying bioreactor is maintained between 93% and 100%. After influent osmotic pressure is further increased to 19.2 x 10(5)Pa, the ammonia conversion goes down to 69.2%. The influence of osmotic pressure on nitrification takes place without any alarm and the critical osmotic pressure is between 18.8 x 10(5) and 19.2 x 10(5) Pa. During osmotic stress, the nitrifying bacterial populations in the activated sludge become simplified, the cell size becomes smaller, the inner membrane becomes less and some unknown inclusion particles are formed. The cell structure is restored as soon as the osmotic pressure is removed. Addition of potassium is able to relieve the effect of osmotic pressure on nitrification. The nitrifying activity of the activated sludge is stimulated by the osmotic stress, and the specific ammonia conversion is increased from 0.083 kg x kg(-1) x d(-1) to 0.509 kg x kg(-1) x d(-1) and 2.569 kg x kg(-1) x d(-1), respectively. PMID:16572857

  16. Osmotic water transport through carbon nanotube membranes

    OpenAIRE

    Kalra, Amrit; Garde, Shekhar; Hummer, Gerhard

    2003-01-01

    We use molecular dynamics simulations to study osmotically driven transport of water molecules through hexagonally packed carbon nanotube membranes. Our simulation setup comprises two such semipermeable membranes separating compartments of pure water and salt solution. The osmotic force drives water flow from the pure-water to the salt-solution compartment. Monitoring the flow at molecular resolution reveals several distinct features of nanoscale flows. In particular, thermal fluctuatio...

  17. Osmotic dehydration of fish: principal component analysis

    OpenAIRE

    Lončar Biljana Lj.; Pezo Lato L.; Lević Ljubinko B.; Filipović Vladimir S.; Nićetin Milica R.; Knežević Violeta M.; Kuljanin Tatjana A.

    2014-01-01

    Osmotic treatment of the fish Carassius gibelio was studied in two osmotic solutions: ternary aqueous solution - S1, and sugar beet molasses - S2, at three solution temperatures of 10, 20 and 30oC, at atmospheric pressure. The aim was to examine the influence of type and concentration of the used hypertonic agent, temperature and immersion time on the water loss, solid gain, dry mater content, aw and content of minerals (Na, K, Ca and Mg). S2 solution has p...

  18. Extra pontine osmotic demyelination syndrome.

    Science.gov (United States)

    Zunga, Pervaiz M; Farooq, Omar; Dar, Mohd I; Dar, Ishrat H; Rashid, Samia; Rather, Abdul Q; Basu, Javid A; Ashraf, Mohammed; Bhat, Jahangeer A

    2015-01-01

    The osmotic demyelination syndrome (ODS) has been identified as a complication of the rapid correction of hyponatremia for decades. However, in recent years, a variety of other medical conditions have been associated with the development of ODS, independent of changes in serum sodium which cause a rapid changes in osmolality of the interstitial (extracellular) compartment of the brain leading to dehydration of energy-depleted cells with subsequent axonal damage that occurs in characteristic areas. Slow correction of the serum sodium concentration and additional administration of corticosteroids seems to be a major prevention step in ODS patients. In the current report we aimed to share a rare case which we observed in our hospital. A 65 year old female admitted as altered sensorium with history of vomiting, diarrhea was managed with intravenous fluids for 2 days at a peripheral health centre. Patient was referred to our centre with encephalopathy, evaluated and found to have hyponatremia and hypokalemia rest of biochemical parameters and septic profile were normal. Patient's electrolyte disturbances were managed as per guidelines but encephalopathy persisted. Supportive treatment was continued and patient was discharged after 2 wks of stay in hospital after gaining full sensorium and neurological functions. PMID:26124552

  19. Collective osmotic shock in ordered materials.

    Science.gov (United States)

    Zavala-Rivera, Paul; Channon, Kevin; Nguyen, Vincent; Sivaniah, Easan; Kabra, Dinesh; Friend, Richard H; Nataraj, S K; Al-Muhtaseb, Shaheen A; Hexemer, Alexander; Calvo, Mauricio E; Miguez, Hernan

    2012-01-01

    Osmotic shock in a vesicle or cell is the stress build-up and subsequent rupture of the phospholipid membrane that occurs when a relatively high concentration of salt is unable to cross the membrane and instead an inflow of water alleviates the salt concentration gradient. This is a well-known failure mechanism for cells and vesicles (for example, hypotonic shock) and metal alloys (for example, hydrogen embrittlement). We propose the concept of collective osmotic shock, whereby a coordinated explosive fracture resulting from multiplexing the singular effects of osmotic shock at discrete sites within an ordered material results in regular bicontinuous structures. The concept is demonstrated here using self-assembled block copolymer micelles, yet it is applicable to organized heterogeneous materials where a minority component can be selectively degraded and solvated whilst ensconced in a matrix capable of plastic deformation. We discuss the application of these self-supported, perforated multilayer materials in photonics, nanofiltration and optoelectronics. PMID:22120413

  20. Inverse osmotic process for radioactive laundry waste

    International Nuclear Information System (INIS)

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount. (Furukawa, Y.)

  1. Bilirubin Encephalopathy in a Domestic Shorthair Cat With Increased Osmotic Fragility and Cholangiohepatitis.

    Science.gov (United States)

    Contreras, E T; Giger, U; Malmberg, J L; Quimby, J M; Schaffer, P A

    2016-05-01

    A 7-month-old female domestic shorthair cat was diagnosed with chronic regenerative hemolytic anemia characterized by increased osmotic fragility of unknown etiology. At 13 months of age, the cat was evaluated for acute collapse. The cat was icteric with severe hyperbilirubinemia but no hematocrit changes. Severe obtundation and lateral recumbency progressed to tetraparesis and loss of proprioception in all 4 limbs, and a cerebellar or brainstem lesion was suspected. Postmortem examination revealed suppurative cholangiohepatitis and acute neuronal necrosis in the nuclei of the brainstem and cerebellum, consistent with bilirubin encephalopathy. This is the first known occurrence of cholangiohepatitis and bilirubin encephalopathy in an adult cat with chronic hemolytic anemia. Although rare, bilirubin encephalopathy should be considered a possible sequela to hyperbilirubinemia in adult patients. It remains unknown whether increased osmotic fragility was related to the cholangiohepatopathy. PMID:26354310

  2. Dependence of osmotic pressure on solution properties

    International Nuclear Information System (INIS)

    Hydrostatic pressure, temperature, salt concentration, and the chemical composition of the salt are parameters affecting solution properties. Pressure and temperature have little effect on osmosis, but osmotic pressure variations due to type of dissolved salt may be significant, especially at high concentrations. For a given salt solution, concentration variations cause large differences in osmotic pressure. A representative difference in concentration across a clay layer in a relatively shallow groundwater system might be 100 to 1,000 ppm. When expressed as ppm NaCl, this difference could cause a head difference of 0.8 to 8 meters of water if one of the rock bodies were closed to fluid escape

  3. Osmotic dehydration of fish: principal component analysis

    Directory of Open Access Journals (Sweden)

    Lončar Biljana Lj.

    2014-01-01

    Full Text Available Osmotic treatment of the fish Carassius gibelio was studied in two osmotic solutions: ternary aqueous solution - S1, and sugar beet molasses - S2, at three solution temperatures of 10, 20 and 30oC, at atmospheric pressure. The aim was to examine the influence of type and concentration of the used hypertonic agent, temperature and immersion time on the water loss, solid gain, dry mater content, aw and content of minerals (Na, K, Ca and Mg. S2 solution has proven to be the best option according to all output variables.[ Projekat Ministarstva nauke Republike Srbije, br. TR 31055

  4. Strange Attractors Characterizing the Osmotic Instability

    CERN Document Server

    Tzenov, Stephan I

    2014-01-01

    In the present paper a simple dynamical model for computing the osmotically driven fluid flow in a variety of complex, non equilibrium situations is derived from first principles. Using the Oberbeck-Boussinesq approximation, the basic equations describing the process of forward osmosis have been obtained. It has been shown that these equations are very similar to the ones used to model the free Rayleigh-Benard convection. The difference is that while in the case of thermal convection the volume expansion is driven by the coefficient of thermal expansion, the key role for the osmotic instability is played by the coefficient of isothermal compressibility. In addition, it has been shown that the osmotic process represents a propagation of standing waves with time-dependent amplitudes and phase velocity, which equals the current velocity of the solvent passing through the semi-permeable membrane. The evolution of the amplitudes of the osmotic waves is exactly following the dynamics of a strange attractor of Loren...

  5. Magnetically Guided Propulsion of Osmotic Motors

    Science.gov (United States)

    Vidal, Glenn; Rinaldi, Carlos; Córdova-Figueroa, Ubaldo

    2010-11-01

    Propulsion of artificial nano- and micro-scale objects induced by chemical reactions is one of the most exciting challenges in colloidal physics. Recent experiments have shown that directed motion of catalytic motors is hindered by their rotary Brownian motion, preventing its potential to be fully realized. The present work investigates the magnetically guided propulsion of a colloidal particle--the osmotic motor-- immersed in a dispersion of colloidal `bath' particles subject to an unidirectional magnetic field using Brownian dynamics simulation. The osmotic motor is propelled by a chemical reaction that consumes bath particles over a portion of its surface. The non-equilibrium microstructure of bath particles induced by the surface reaction creates an `osmotic pressure' imbalance on the motor's surface causing it to move to regions of lower bath particle concentration. The strength of the magnetic field is controlled by the Langevin parameter, which physically measures the relative importance of magnetic to Brownian torques, and dictates the directionality of the osmotic motor. The translational self-diffusivity is measured for different reaction speeds, particle sizes, bath particle concentrations, and magnetic dipole orientations. Finally, a theory to determine the long-time self-diffusivity and time-averaged particle velocity is developed and compared to the simulation results.

  6. Physics of Bacteria During Osmotic Shock

    Science.gov (United States)

    Price, Jordan; Klug, William

    Bacteria combat hypoosmotic shocks by opening mechanosensitive ion channels located within the inner membrane. These channels are believed to act as ``emergency release valves,'' reducing transient pressure during the shock by regulating solute and water flux. Recent experiments have shown that cell survivability depends strongly on channel populations and the rate of osmotic shock. However, the understanding of the physical mechanisms behind osmotic protection remains unclear. We investigate how channel deletions, variations in shock rate, and cell envelope mechanics affect survivability by constructing theoretical elasticity and transport models. We find that reducing the number of channels and applying faster shocks significantly increases the time-dependent stress of the cell membrane and wall. This result provides insight into physical mechanisms that govern cell failure, including membrane rupture and wall fracture.

  7. Pulsatile lipid vesicles under osmotic stress

    CERN Document Server

    Chabanon, Morgan; Liedberg, Bo; Parikh, Atul N; Rangamani, Padmini

    2016-01-01

    The response of lipid bilayers to osmotic stress is an important part of cellular function. Previously, in [Oglecka et al. 2014], we reported that cell-sized giant unilamellar vesicles (GUVs) exposed to hypotonic media, respond to the osmotic assault by undergoing a cyclical sequence of swelling and bursting events, coupled to the membrane's compositional degrees of freedom. Here, we seek to deepen our quantitative understanding of the essential pulsatile behavior of GUVs under hypotonic conditions, by advancing a comprehensive theoretical model for vesicle dynamics. The model quantitatively captures our experimentally measured swell-burst parameters for single-component GUVs, and reveals that thermal fluctuations enable rate dependent pore nucleation, driving the dynamics of the swell-burst cycles. We further identify new scaling relationships between the pulsatile dynamics and GUV properties. Our findings provide a fundamental framework that has the potential to guide future investigations on the non-equili...

  8. Thermo-Osmotic Flow in Thin Films

    Science.gov (United States)

    Bregulla, Andreas P.; Würger, Alois; Günther, Katrin; Mertig, Michael; Cichos, Frank

    2016-05-01

    We report on the first microscale observation of the velocity field imposed by a nonuniform heat content along the solid-liquid boundary. We determine both radial and vertical velocity components of this thermo-osmotic flow field by tracking single tracer nanoparticles. The measured flow profiles are compared to an approximate analytical theory and to numerical calculations. From the measured slip velocity we deduce the thermo-osmotic coefficient for both bare glass and Pluronic F-127 covered surfaces. The value for Pluronic F-127 agrees well with Soret data for polyethylene glycol, whereas that for glass differs from literature values and indicates the complex boundary layer thermodynamics of glass-water interfaces.

  9. Thermo-osmotic flow in thin films

    CERN Document Server

    Bregulla, Andreas; Günther, Katrin; Mertig, Michael; Cichos, Frank

    2016-01-01

    We report on the first micro-scale observation of the velocity field imposed by a non-uniform heat content along the solid/liquid boundary. We determine both radial and vertical velocity components of this thermo-osmotic flow field by tracking single tracer nanoparticles. The measured flow profiles are compared to an approximate analytical theory and to numerical calculations. From the measured slip velocity we deduce the thermo-osmotic coefficient for both bare glass and Pluronic F-127 covered surfaces. The value for Pluronic F-127 agrees well with Soret data for polyethylene glycol, whereas that for glass differs from literature values and indicates the complex boundary layer thermodynamics of glass-water interfaces.

  10. Osmotically-assisted desalination method and system

    Science.gov (United States)

    Achilli, Andrea; Childress, Amy E.; Cath, Tzahi Y.

    2014-08-12

    Systems and methods for osmotically assisted desalination include using a pressurized concentrate from a pressure desalination process to pressurize a feed to the desalination process. The depressurized concentrate thereby produced is used as a draw solution for a pressure-retarded osmosis process. The pressure-retarded osmosis unit produces a pressurized draw solution stream that is used to pressurize another feed to the desalination process. In one example, the feed to the pressure-retarded osmosis process is impaired water.

  11. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  12. Asymmetric Membrane Osmotic Capsules for Terbutaline Sulphate

    OpenAIRE

    Gobade, N. G.; Marina Koland; K H Harish

    2012-01-01

    The aim of the present study was to design an asymmetric membrane capsule, an osmotic pump-based drug delivery system of ethyl cellulose for controlled release of terbutaline sulphate. asymmetric membrane capsules contains pore-forming water soluble additive, sorbitol in different concentrations in the capsule shell membrane, which after coming in contact with water, dissolves, resulting in an in situ formation of a microporous structure. The terbutaline sulphate is a β-adrenoreceptor agonist...

  13. Hydrothermal Carbonization of Spent Osmotic Solution (SOS Generated from Osmotic Dehydration of Blueberries

    Directory of Open Access Journals (Sweden)

    Kaushlendra Singh

    2014-09-01

    Full Text Available Hydrothermal carbonization of spent osmotic solution (SOS, a waste generated from osmotic dehydration of fruits, has the potential of transformation into hydrochars, a value-added product, while reducing cost and overall greenhouse gas emissions associated with waste disposal. Osmotic solution (OS and spent osmotic solution (SOS generated from the osmotic dehydration of blueberries were compared for their thermo-chemical decomposition behavior and hydrothermal carbonization. OS and SOS samples were characterized for total solids, elemental composition, and thermo-gravimetric analysis (TGA. In addition, hydrothermal carbonization was performed at 250 °C and for 30 min to produce hydrochars. The hydrochars were characterized for elemental composition, Brunauer-Emmett-Teller (BET surface area, particle shape and surface morphology. TGA results show that the SOS sample loses more weight in the lower temperature range than the OS sample. Both samples produced, approximately, 40%–42% (wet-feed basis hydrochar during hydrothermal carbonization but with different properties. The OS sample produced hydrochar, which had spherical particles of 1.79 ± 1.30 μm diameter with a very smooth surface. In contrast, the SOS sample produced hydrochar with no definite particle shape but with a raspberry-like surface.

  14. Osmotic pressure of matter and vacuum energy

    CERN Document Server

    Volovik, G E

    2009-01-01

    The walls of the box which contains matter represent a membrane that allows the relativistic quantum vacuum to pass but not matter. That is why the pressure of matter in the box may be considered as the analog of the osmotic pressure. However, we demonstrate that the osmotic pressure of matter is modified due to interaction of matter with vacuum. This interaction induces the nonzero negative vacuum pressure inside the box, as a result the measured osmotic pressure becomes smaller than the matter pressure. As distinct from the Casimir effect, this induced vacuum pressure is the bulk effect and does not depend on the size of the box. This effect dominates in the thermodynamic limit of the infinite volume of the box. Analog of this effect has been observed in the dilute solution of 3He in liquid 4He, where the superfluid 4He plays the role of the non-relativistic quantum vacuum, and 3He atoms play the role of matter.

  15. Osmotic Pressure in Ionic Microgel Dispersions

    Science.gov (United States)

    Denton, Alan R.; Tang, Qiyun

    2015-03-01

    Microgels are microscopic gel particles, typically 10-1000 nm in size, that are swollen by a solvent. Hollow microgels (microcapsules) can encapsulate cargo, such as dye molecules or drugs, in their solvent-filled cavities. Their sensitive response to environmental conditions (e.g., temperature, pH) and influence on flow properties suit microgels to widespread applications in the chemical, pharmaceutical, food, and consumer care industries. When dispersed in water, polyelectrolyte gels become charged through dissociation of counterions. The electrostatic contribution to the osmotic pressure inside and outside of ionic microgels influences particle swelling and bulk materials properties, including thermodynamic, structural, optical, and rheological properties. Within the primitive and cell models of polyelectrolyte solutions, we derive an exact statistical mechanical formula for the contribution of mobile microions to the osmotic pressure within ionic microgels. Using Poisson-Boltzmann theory, we validate this result by explicitly calculating ion distributions across the surface of an ionic microgel and the electrostatic contribution to the osmotic pressure. Within a coarse-grained one-component model, we further chart the limits of the cell model for salty dispersions. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  16. Electro-osmotic flows inside triangular microchannels

    International Nuclear Information System (INIS)

    This work presents a numerical investigation of both pure electro-osmotic and combined electro-osmotic/pressure-driven flows inside triangular microchannels. A finite element analysis has been adopted to solve the governing equations for the electric potential and the velocity field, accounting for a finite thickness of the electric double layer. The influence of non-dimensional parameters such as the aspect ratio of the cross-section, the electrokinetic diameter and the ratio of the pressure force to the electric force on the flow behavior has been investigated. Numerical results point out that the velocity field is significantly influenced by the aspect ratio of the cross section and the electrokinetic diameter. More specifically, the aspect ratio plays an important role in determining the maximum volumetric flow rate, while the electrokinetic diameter is crucial to establishing the range of pressures that may be sustained by the electro-osmotic flow. Numerical results are also compared with two correlations available in the literature which enable to assess the volumetric flow rate and the pressure head for microchannels featuring a rectangular, a trapezoidal or an elliptical cross-section.

  17. OSMOTIC PUMP DRUG DELIVERY SYSTEM: A NOVAL APPROACH

    Directory of Open Access Journals (Sweden)

    Kashmir Singh

    2013-09-01

    Full Text Available Conventional drug delivery systems have little control over their drug release and almost no control over the effective concentration at the target site. The major problem associated with conventional drug delivery system is unpredictable plasma concentrations. Controlled drug delivery systems offer spatial control over the drug release. Osmotic pumps are most promising systems for controlled drug delivery. These systems are used for both oral administration and implantation. The present review is concerned with the study of drug release systems which are tablets coated with walls of controlled porosity. . Osmotic pump uses the basic principle of osmosis for release of drug(s. Osmotic pumps consist of an inner core containing drug and osmogens, coated with a semi permeable membrane. As the core absorbs water, it expands in volume, which pushes the drug solution out through the delivery ports. Osmotic pumps release drug at a rate that is independent of the pH and hydrodynamics of the dissolution medium. Various patents available for osmotic drug delivery system like Rose-Nelson pump, Higuchi-leeper pump, higuchi-theeuwes pump and elementary osmotic pump. In this paper, various types of osmotic pump and the basic components of  osmotic system tablets have been discussed briefly. Keywords: Osmosis, component of osmotic system, Osmotic pump

  18. Theoretical analysis of osmotic agents in peritoneal dialysis. What size is an ideal osmotic agent?

    Science.gov (United States)

    Rippe, B; Zakaria el-R; Carlsson, O

    1996-01-01

    In this article the difference between osmotic fluid flow (ultrafiltration) as driven by osmotic pressure and diffusion through thin leaky membranes is discussed. It is pointed out that water transport induced by osmosis is fundamentally different from the process of water diffusion. Applying modern hydrodynamic pore theory, the molar solute concentration and the solute concentration in grams per 100 mL, exerting the same initial transmembrane osmotic pressure as a 1% glucose solution, was investigated as a function of solute molecular weight (MW). It was then assumed, base on experimental data, that the major pathway responsible for the peritoneal osmotic barrier characteristics is represented by pores of radius approximately 47 A. With increasing solute radius, the osmotic reflection coefficient (sigma) and, hence, the osmotic efficiency per mole of solute will increase. However, simultaneously, the molar concentration per unit solute weight will decrease. The balance point between these two events apparently occurs at a solute MW of approximately 1 kDa. An additional advantage of using solutes of high MW as osmotic agents during peritoneal dialysis (PD), rather than increased osmotic efficiency per se, lies in the fact that large solutes, due to their low peritoneal diffusion capacity, will maintain a sustained rate of ultrafiltration (osmosis) over a prolonged period. To illustrate this, we have performed computer simulations of peritoneal fluid transport according to the three-pore model of peritoneal permselectivity. According to these simulations, 4% of an 800 Da polymer solution (+50 mmol/L above isotonicity) will produce the same cumulative amount of intraperitoneal fluid volume ultrafiltered (UF) during 360-400 minutes as 4% of a 2 kDa polymer solution (+20 mmol/L) or 6.5% of a 10 kDa polymer solution (+6.5 mmol/L) having the same electrolyte concentration as dialysis solutions conventionally used for PD. Similar cumulative UF volumes (during 400 minutes

  19. A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.

    Science.gov (United States)

    Feher, Joseph J.; Ford, George D.

    1995-01-01

    Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…

  20. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  1. Osmotic stress on nitrification in an airlift bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Jin Rencun [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Zheng Ping [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Mahmood, Qaisar [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Hu Baolan [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)]. E-mail: blhu@zju.edu.cn

    2007-07-19

    The effect of osmotic pressure on nitrification was studied in a lab-scale internal-loop airlift-nitrifying reactor. The reactor slowly adapted to the escalating osmotic pressure during 270 days operation. The conditions were reversed to the initial stage upon full inhibition of the process. Keeping influent ammonium concentration constant at 420 mg N L{sup -1} and hydraulic retention time at 20.7 h, with gradual increase in osmotic pressure from 4.3 to 18.8 x 10{sup 5} Pa by adding sodium sulphate, the ammonium removal efficiencies of the nitrifying bioreactor were maintained at 93-100%. Further increase in osmotic pressure up to 19.2 x 10{sup 5} Pa resulted in drop of the ammonium conversion to 69.2%. The osmotic pressure caused abrupt inhibition of nitrification without any alarm and the critical osmotic pressure value causing inhibition remained between 18.8 and 19.2 x 10{sup 5} Pa. Nitrite oxidizers were found more sensitive to osmotic stress as compared with ammonia oxidizers, leading to nitrite accumulation up to 61.7% in the reactor. The performance of bioreactor recovered gradually upon lowering the osmotic pressure. Scanning and transmission electron microscopy indicated that osmotic stress resulted in simplification of the nitrifying bacterial populations in the activated sludge as the cellular size reduced; the inner membrane became thinner and some unknown inclusions appeared within the cells. The microbial morphology and cellular structure restored upon relieving the osmotic pressure. Addition of potassium relieved the effect of osmotic pressure upon nitrification. Results demonstrate that the nitrifying reactor possesses the potential to treat ammonium-rich brines after acclimatization.

  2. Osmotic stress on nitrification in an airlift bioreactor

    International Nuclear Information System (INIS)

    The effect of osmotic pressure on nitrification was studied in a lab-scale internal-loop airlift-nitrifying reactor. The reactor slowly adapted to the escalating osmotic pressure during 270 days operation. The conditions were reversed to the initial stage upon full inhibition of the process. Keeping influent ammonium concentration constant at 420 mg N L-1 and hydraulic retention time at 20.7 h, with gradual increase in osmotic pressure from 4.3 to 18.8 x 105 Pa by adding sodium sulphate, the ammonium removal efficiencies of the nitrifying bioreactor were maintained at 93-100%. Further increase in osmotic pressure up to 19.2 x 105 Pa resulted in drop of the ammonium conversion to 69.2%. The osmotic pressure caused abrupt inhibition of nitrification without any alarm and the critical osmotic pressure value causing inhibition remained between 18.8 and 19.2 x 105 Pa. Nitrite oxidizers were found more sensitive to osmotic stress as compared with ammonia oxidizers, leading to nitrite accumulation up to 61.7% in the reactor. The performance of bioreactor recovered gradually upon lowering the osmotic pressure. Scanning and transmission electron microscopy indicated that osmotic stress resulted in simplification of the nitrifying bacterial populations in the activated sludge as the cellular size reduced; the inner membrane became thinner and some unknown inclusions appeared within the cells. The microbial morphology and cellular structure restored upon relieving the osmotic pressure. Addition of potassium relieved the effect of osmotic pressure upon nitrification. Results demonstrate that the nitrifying reactor possesses the potential to treat ammonium-rich brines after acclimatization

  3. Osmotic barrier of the parietal peritoneum.

    Science.gov (United States)

    Flessner, M F

    1994-11-01

    Fluid movement into the peritoneal cavity results after instillation of a hypertonic solution. Some investigators have assumed that the peritoneum is a significant barrier to small solutes and have predicted that fluid would be drawn by an osmotic gradient into the cavity from the tissue surrounding the peritoneal cavity, resulting in tissue hydrostatic pressures well below atmospheric pressure. Contrary to this, we have previously shown that protein and fluid cross the peritoneum and enter the tissue at the same rate during either isotonic or hypertonic dialysis. To investigate the nature of the osmotic barrier of the peritoneum, the hydrostatic pressure profiles were measured in the abdominal wall of the rat during conditions of either isotonicity or hypertonicity in the peritoneal cavity and constant intraperitoneal hydrostatic pressure (Pip). Measurements were made with a micropipette mounted on a micromanipulator and connected to a servo-null pressure measurement system. No interstitial pressures below atmospheric pressure were observed with either type of solution in the peritoneal cavity. For the three Pip values tested, there were few significant differences between the corresponding pressure profiles of isotonic or hypertonic solutions. It is concluded that the parietal peritoneum is not a functional barrier to small solutes, which are often used to raise the osmolality of intraperitoneal solutions. This finding also implies that the tissue interstitium underlying the parietal peritoneum is not the source of water flow into the cavity, which is observed during hypertonic dialysis. PMID:7977791

  4. Osmotic Power: A Fresh Look at an Old Experiment

    Science.gov (United States)

    Dugdale, Pam

    2014-01-01

    Electricity from osmotic pressure might seem a far-fetched idea but this article describes a prototype in Norway where the osmotic pressure generated between salt and fresh water drives a turbine. This idea was applied in a student investigation, where they were tasked with researching which alternative materials could be used for the…

  5. Osmotic origin of over pressures in shale formations: impact of osmotic efficiency models

    International Nuclear Information System (INIS)

    The ongoing research on the construction of a possible geological nuclear waste repository in shale formations raises the issue of the electrochemical interactions extensively studied in soil science between pore waters, solutes and clay mineral surfaces. These interactions are related to the negatively charged surfaces of clay platelets which generate the presence of the so-called electric double layer and the occurrence of anion exclusion. This feature suggests that clay formations may have a membrane behaviour. The assumption is supported by extended experimental works on samples in the 1970 and 1980 and more recently by field experiments proving the existence of osmotic behaviour in shales at the field scale i.e. in geological media. The osmotic theory developed in biophysics has been extended to geological situations through the observation that shales can behave as semi-permeable membranes. If the geological membrane is perfect, only water can flow in response to salinity gradients. In most case studies, the semi-permeable layer is not an ideal membrane and some solute transport takes place. Osmotic flow occurs when there is a concentration gradient within the geological medium which causes solute transport dominated by diffusion. The chemical potential drives the fluid flow from the low-concentration zones to the high-concentration ones. In order to account for this chemical potential driving force, an osmotic pressure term π (Pa) has to be added to the hydraulic potential h to describe fluid flow. Darcy law in one dimension is then modified. Osmotic effects are sometimes proposed to explain abnormal pressures in shales. The values of excess pressures that can be obtained by such processes are highly dependent on the a value. This efficiency coefficient is determined from electrochemical or mechanical analyses of the interaction between solutes and clay platelets. Different theories predicting the possible values of these coupling parameters are available

  6. Osmotic and motional properties of intracellular water as influenced by osmotic swelling and shrinkage of Xenopus oocytes.

    Science.gov (United States)

    Cameron, I L; Merta, P; Fullerton, G D

    1990-03-01

    Experiments were done on fully grown Xenopus oocytes to determine the extent and the properties of cellular water of hydration. The studies involved the osmotic shrinking and swelling of the oocytes under known osmotic pressure as well as proton NMR spectral, titration, and free induction decay analyses. Studies were done both on whole oocytes and on subcellular fractions. The results show that little if any of the oocyte water in situ has the motional or osmotic properties expected of pure "bulk" water. Four distinct water of hydration compartments were found and defined on the basis of distinct hydrogen bounding mechanisms. Some of the water in yolk platelets was found not to be in fast exchange with other water compartments. Osmotic shrinkage of oocytes caused an adaptive decrease in the bound water of hydration compartments. This osmotically induced decrease is attributed to decreased surface area available for the hydrogen bounding of water molecules on cellular proteins. PMID:2312616

  7. Analysing transfer phenomena in osmotic evaporation

    Directory of Open Access Journals (Sweden)

    Freddy Forero Longas

    2011-12-01

    Full Text Available Osmotic evaporation is a modification of traditional processes using membranes; by means of a vapour pressure differential, produced by a highly concentrated extraction solution, water is transferred through a hydrophobic membrane as vapour. This technique has many advantages over traditional processes, allowing work at atmospheric pressure and low temperatures, this being ideal for heatsensitive products. This paper presents and synthetically analyses the phenomena of heat and mass transfer which occurs in the process and describes the models used for estimating the parameters of interest, such as flow, temperature, heat transfer rate and the relationships that exist amongst them when hollow fibre modules are used, providing a quick reference tool and specific information about this process.

  8. Asymmetric membrane osmotic capsules for terbutaline sulphate

    Directory of Open Access Journals (Sweden)

    N G Gobade

    2012-01-01

    Full Text Available The aim of the present study was to design an asymmetric membrane capsule, an osmotic pump-based drug delivery system of ethyl cellulose for controlled release of terbutaline sulphate. asymmetric membrane capsules contains pore-forming water soluble additive, sorbitol in different concentrations in the capsule shell membrane, which after coming in contact with water, dissolves, resulting in an in situ formation of a microporous structure. The terbutaline sulphate is a β-adrenoreceptor agonist widely used in the treatment of asthma. The oral dosage regimen of terbutaline sulphate is 5 mg twice or thrice daily, the plasma half-life is approximate 3-4 h and it produces GI irritation with extensive first pass metabolism. Hence, terbutaline sulphate was chosen as a model drug with an aim to develop controlled release system. Different formulations of ethyl cellulose were prepared by phase inversion technique using different concentrations of sorbitol as pore forming agent. It was found that the thickness of the prepared asymmetric membrane capsules was increased with increase in concentration of ethyl cellulose and pore forming agent, i.e. sorbitol. The dye release study in water and 10% sodium chloride solution indicates that, the asymmetric membrane capsules follow osmotic principle to release content. The pores formed due to sorbitol were confirmed by microscopic observation of transverse section of capsule membrane. Data of in vitro release study of terbutaline sulphate from asymmetric membrane capsules indicated that, the capsules prepared with 10% and 12.5% of ethyl cellulose and 25% of sorbitol released as much as 97.44% and 76.27% in 12 h, respectively with zero order release rate. Hence asymmetric membrane capsule of 10% ethyl cellulose and 25% of sorbitol is considered as optimum for controlled oral delivery of terbutaline sulphate.

  9. Asymmetric membrane osmotic capsules for terbutaline sulphate.

    Science.gov (United States)

    Gobade, N G; Koland, Marina; Harish, K H

    2012-01-01

    The aim of the present study was to design an asymmetric membrane capsule, an osmotic pump-based drug delivery system of ethyl cellulose for controlled release of terbutaline sulphate. asymmetric membrane capsules contains pore-forming water soluble additive, sorbitol in different concentrations in the capsule shell membrane, which after coming in contact with water, dissolves, resulting in an in situ formation of a microporous structure. The terbutaline sulphate is a β-adrenoreceptor agonist widely used in the treatment of asthma. The oral dosage regimen of terbutaline sulphate is 5 mg twice or thrice daily, the plasma half-life is approximate 3-4 h and it produces GI irritation with extensive first pass metabolism. Hence, terbutaline sulphate was chosen as a model drug with an aim to develop controlled release system. Different formulations of ethyl cellulose were prepared by phase inversion technique using different concentrations of sorbitol as pore forming agent. It was found that the thickness of the prepared asymmetric membrane capsules was increased with increase in concentration of ethyl cellulose and pore forming agent, i.e. sorbitol. The dye release study in water and 10% sodium chloride solution indicates that, the asymmetric membrane capsules follow osmotic principle to release content. The pores formed due to sorbitol were confirmed by microscopic observation of transverse section of capsule membrane. Data of in vitro release study of terbutaline sulphate from asymmetric membrane capsules indicated that, the capsules prepared with 10% and 12.5% of ethyl cellulose and 25% of sorbitol released as much as 97.44% and 76.27% in 12 h, respectively with zero order release rate. Hence asymmetric membrane capsule of 10% ethyl cellulose and 25% of sorbitol is considered as optimum for controlled oral delivery of terbutaline sulphate. PMID:23204625

  10. Optimisation of mass transfer kinetics during osmotic dehydration of pork meat cubes in complex osmotic solution

    Directory of Open Access Journals (Sweden)

    Filipović Vladimir

    2014-01-01

    Full Text Available This paper presents the effects of different process temperature (20, 35 and 50 °C, immersion time (1, 3 and 5 hours and the concentration of sugar beet molasses + NaCl + sucrose water solution on osmotic dehydration of pork meat (M. triceps brachii cubes, shaped 1 x 1 x 1 cm, at atmospheric pressure. The main objective was to examine the influence of different parameters on the mass transfer kinetics during osmotic treatment. The observed system’s responses were: water loss, solid gain, and water activity. The optimum osmotic conditions (temperature of 40 °C, treatment time of 4.1 h and concentration 67 %, were determined using response surface method, by superimposing the contour plots of each process variable, and the responses were: water loss=0.46, solid gain=0.15, and water activity=0.79. Transport coefficients, for both solids and water transfer and energy of activation for all samples were also determined. [Projekat Ministarstva nauke Republike Srbije, br. TR-31055

  11. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  12. Osmotically regulated transport of proline by Lactobacillus acidophilus IFO 3532.

    Science.gov (United States)

    Jewell, J B; Kashket, E R

    1991-10-01

    We reported previously that, when exposed to high osmotic pressure, Lactobacillus acidophilus IFO 3532 cells accumulated N,N,N-trimethylglycine (glycine betaine), which serves as a compatible intracellular solute. When grown in medium with high osmotic pressure, these cells also accumulated one amino acid, proline. The uptake of [3H]proline by resting, glucose-energized cells was stimulated by increasing the osmotic pressure of the assay medium with 0.5 to 1.0 M KCl, 1.0 M NaCl, or 0.5 M sucrose. The accumulated [3H]proline was not metabolized further. In contrast, there was no osmotic stimulation of [3H]leucine uptake. The uptake of proline was activated rather than induced by exposure of the cells to high osmotic pressure. Only one proline transport system could be discerned from kinetics plots. The affinity of the carrier for proline remained constant over a range of osmotic pressures from 650 to 1,910 mosM (Kt, 7.8 to 15.5 mM). The Vmax, however, increased from 15 nmol/min/mg of dry weight in 0.5 M sucrose to 27 and 40 nmol/min/mg of dry weight in 0.5 M KCl and in 1.0 M KCl or NaCl, respectively. The efflux of proline from preloaded cells occurred rapidly when the osmotic pressure of the suspending buffer was lowered. PMID:1786048

  13. Development and optimization of buspirone oral osmotic pump tablet.

    Science.gov (United States)

    Derakhshandeh, K; Berenji, M Ghasemnejad

    2014-01-01

    The aim of the current study was to design a porous osmotic pump-based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance. PMID:25657794

  14. Self-assembly of silk fibroin under osmotic stress

    Science.gov (United States)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  15. Osmotically Regulated Transport of Proline by Lactobacillus acidophilus IFO 3532

    OpenAIRE

    Jewell, J. B.; Kashket, E R

    1991-01-01

    We reported previously that, when exposed to high osmotic pressure, Lactobacillus acidophilus IFO 3532 cells accumulated N,N,N-trimethylglycine (glycine betaine), which serves as a compatible intracellular solute. When grown in medium with high osmotic pressure, these cells also accumulated one amino acid, proline. The uptake of [3H]proline by resting, glucose-energized cells was stimulated by increasing the osmotic pressure of the assay medium with 0.5 to 1.0 M KCl, 1.0 M NaCl, or 0.5 M sucr...

  16. Mechanism of actuation in conducting polymers: Osmotic expansion

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben; West, Keld;

    2001-01-01

    Conducting polymers expand or contract when their redox state is changed. This expansion/contraction effect can be separated in an intrinsic part because of changes of the polymer backbone on reduction/oxidation and a part depending on the surrounding electrolyte phase, because of osmotic expansi...... and designing actuator experiments and when comparing experimental results from different sources.......Conducting polymers expand or contract when their redox state is changed. This expansion/contraction effect can be separated in an intrinsic part because of changes of the polymer backbone on reduction/oxidation and a part depending on the surrounding electrolyte phase, because of osmotic expansion...... of the polymer phase. The osmotic effect causes solvent molecules to move into the polymer in a number far in excess of those bound strongly in the solvation shell of the mobile ion, resulting in large volume changes. In this paper, a thermodynamic description of the osmotic expansion is worked out. The model...

  17. An evaluation of the osmotic method of controlling suction

    CERN Document Server

    Delage, Pierre

    2008-01-01

    Experimental techniques of testing the mechanical properties of unsaturated soils are complex and difficult to conduct. As a consequence, complete sets of parameters that characterise the behaviour of unsaturated soils remain scarce and necessary. In this context, it has been found useful to gather the information obtained after some years of practice of the osmotic technique of controlling suction. As compared to the more documented axis-translation technique, the osmotic technique has its own advantages and drawbacks that are discussed in this paper, together with some potential future developments. The osmotic method has been developed by soil scientists in the 1960s and adapted to geotechnical testing in the early 1970s. This paper presents the osmotic technique and comments on its advantages (including suction condition close to reality and higher suctions easily attained) and drawbacks (including some concern with the membrane resistance and some membrane effects in the suction/concentration calibration...

  18. Plant response to sunflower seeds to osmotic conditioning

    Directory of Open Access Journals (Sweden)

    Camila Santos Barros de Morais

    2014-10-01

    Full Text Available The aim of this study was to evaluate the effect of seeds osmotic conditioning in seedlings emergence and plants performance of sunflower. Three lots of seeds sunflower (Catissol, was submited to osmotic conditioning with polyethylene glycol solution, –2,0 MPa in aerated system, under 15 ºC for 8 hour and then was evaluated for germination tests and vigour. Under filed conditions was conducted emergency evaluations of seedling, plants development as well as the productivity and seeds quality, and the accumulation of nutrients in the seeds. The osmotic conditioning improve the survival of seedling, the dry matter mass to aerial part of plants from 60 days after sowing and oil content, in lots with low seeds physiological quality. The osmotic conditioning not increase the seeds yield but promotes the vigour of seeds produced, regardless of the lot used for sowing seeds.

  19. Osmotic pressure: resisting or promoting DNA ejection from phage

    CERN Document Server

    Jeembaeva, Meerim; Larsson, Frida; Evilevitch, Alex

    2008-01-01

    Recent in vitro experiments have shown that DNA ejection from bacteriophage can be partially stopped by surrounding osmotic pressure when ejected DNA is digested by DNase I on the course of ejection. We argue in this work by combination of experimental techniques (osmotic suppression without DNaseI monitored by UV absorbance, pulse-field electrophoresis, and cryo-EM visualization) and simple scaling modeling that intact genome (i.e. undigested) ejection in a crowded environment is, on the contrary, enhanced or eventually complete with the help of a pulling force resulting from DNA condensation induced by the osmotic stress itself. This demonstrates that in vivo, the osmotically stressed cell cytoplasm will promote phage DNA ejection rather than resisting it. The further addition of DNA-binding proteins under crowding conditions is shown to enhance the extent of ejection. We also found some optimal crowding conditions for which DNA content remaining in the capsid upon ejection is maximum, which correlates well...

  20. Experimental Support for a Predictive Osmotic Model of Clay Membranes

    International Nuclear Information System (INIS)

    Osmosis has been cited as a mechanism for explaining anomalously high fluid pressures in the subsurface. Clays and shales act as membranes, and osmotic flux across these units may result in pressures sufficiently high to explain these anomalies. The theoretical osmotic pressures as calculated solely from solution properties can be quite large; however, it is not yet resolved whether these geologic membranes are sufficiently ideal to generate such pressures

  1. Osmotic fragility test in heterozygotes for alpha and beta thalassaemia.

    OpenAIRE

    Maccioni, L; Cao, A

    1985-01-01

    This study shows that the combination of heterozygous beta thalassaemia and deletion heterozygous (-alpha/alpha alpha) or homozygous (-alpha/-alpha) alpha+ thalassaemia may result in the production of erythrocytes which have normal mean volume and haemoglobinisation but decreased osmotic fragility. Based on this finding and previous studies, which have shown that beta thalassaemia screening by the osmotic fragility test may miss a significant proportion of beta thalassaemia heterozygotes, we ...

  2. Osmotic Pressure and Packaging Structure of Caged DNA☆

    OpenAIRE

    Li, Zhidong; Wu, Jianzhong; Wang, Zhen-Gang

    2008-01-01

    We present a theoretical model for aqueous solutions of double-stranded (ds) DNA with explicit consideration of electrostatic interactions, excluded-volume effects, van der Waals attractions, and salt ions. With reasonable parameters estimated from the DNA structure and experimental data for electrolytes, we are able to reproduce the DNA osmotic pressure in the bulk in good agreement with experiment. The predicted DNA osmotic pressure in λ-bacteriophages is found to coincide with that of the ...

  3. Physiological and genetic responses of bacteria to osmotic stress.

    OpenAIRE

    Csonka, L N

    1989-01-01

    The capacity of organisms to respond to fluctuations in their osmotic environments is an important physiological process that determines their abilities to thrive in a variety of habitats. The primary response of bacteria to exposure to a high osmotic environment is the accumulation of certain solutes, K+, glutamate, trehalose, proline, and glycinebetaine, at concentrations that are proportional to the osmolarity of the medium. The supposed function of these solutes is to maintain the osmolar...

  4. Response of substances co-expressed in hypothalamic magnocellular neurons to osmotic challenges in normal and Brattleboro rats

    DEFF Research Database (Denmark)

    Bundzikova, J.; Pirnik, Z.; Zelena, D.;

    2008-01-01

    hydromineral homeostasis. Maintenance of the body hydromineral balance depends on the coordinated action of principal biologically active compounds, AVP and OXY, synthesized in the hypothalamic supraoptic and paraventricular nuclei. However, on the regulation of water-salt balance, other substances, co...... better understood in non-osmotic than osmotic functional circuits. Brattleboro strain of rats that does not express functional vasopressin was also included in this review. These animals suffer from chronic hypernatremia and hyperosmolality, accompanied by sustained increase in OXY mRNA in PVN and SON...... and OXY levels in plasma. They represent an important model of animals with constantly sustained osmolality, which in the future, will be utilizable for revealing the physiological importance of biologically active substances co-expressed with AVP and OXY, involved in the regulation of plasma...

  5. Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress?

    Science.gov (United States)

    Booth, I R; Higgins, C F

    1990-06-01

    Enteric bacteria have evolved an impressive array of mechanisms that allow the cell to grow at widely different external osmotic pressures. These serve two linked functions; firstly, they allow the cell to maintain a relatively constant turgor pressure which is essential for cell growth; and secondly they permit changes in cytoplasmic composition such that the accumulation of intracellular osmolytes required to restore turgor pressure does not impair enzyme function. The primary event in turgor regulation is the controlled accumulation of potassium and its counterion glutamate. At high external osmolarities the cytoplasmic levels of potassium glutamate can impair enzyme function. Rapid growth is therefore dependent upon secondary responses, principally the accumulation of compatible solutes, betaine (N-trimethylglycine), proline and trehalose. The accumulation of these solutes is achieved by the controlled activity of transport systems and enzymes in response to changes in external osmotic pressure. It has been proposed that the accumulation of potassium glutamate during turgor regulation acts as a signal for the activation of these systems [1,2]. This brief review will examine the evidence that control over the balance of cytoplasmic osmolytes is achieved by sensing of the intracellular potassium (and glutamate) concentration. PMID:1974769

  6. Formulation and Evaluation of Controlled Porosity Osmotic Pump Tablet of Zaltoprofen

    Directory of Open Access Journals (Sweden)

    Jadav Mukesh M.

    2012-05-01

    Full Text Available Zaltoprofen is a non steroidal anti inflammatory class of drug which has excellent effect on post-surgeryor post trauma chronic inflammation of the drug. So, Zaltoprofen may serve as a potent and superioranalgesic for the treatment of pain. Zaltoprofen has the dose of 80 mg three times a day which reducepatient compliance. For that in this present study, an attempt has been made to prepare the controlledrelease CPOP tablet twice a day. An inclusion complex was prepared by kneading method using HP-β-CD in order to increase solubility of the poorly water soluble drug. Then, this complex is used forpreparing the tablet with accessorial material. CPOP tablet containing Zaltoprofen were prepared bydirect compression method by using various osmotic agent like sodium bicarbonate, sodium chloride,mannitol and potassium carbonate. Cellulose acetate, Sorbitol and Poly Ethylene Glycol 400 wereselected for coating materials, and acetone: methanol (65:35 co-solvent was employed as the coatingmedium with 3% and 5% weight gain. Initially compatibility study was carried out using DSC and FTIRSpectrometric method. The blend was examined for pre-compression parameters like angle of repose,density, compressibility index and Hausner’s ratio. Formulated tablet also passes the various tabletparameters like hardness, friability, drug content, weight variation. From the result of in-vitro drugrelease study it was observed that as the amount of osmotic agent increased, amount of drug releaseincreased. Also increased in % weight gain decreased the % drug release. Batch Z4 containing sodiumbicarbonate as osmotic agent has shown 98.08% drug release compare to other batches so, accepted asoptimized batch. The above optimized batch Z4 was also evaluated by different pharmacokinetic modelslike Zero order, First order, Higuchi, Korsmeyer Peppas, and Hixson Crowell model. The results ofthese models have shown that the batch Z4 controls the drug release for 12 hr and follows

  7. Structure and osmotic pressure of ionic microgel dispersions

    Science.gov (United States)

    Hedrick, Mary M.; Chung, Jun Kyung; Denton, Alan R.

    2015-01-01

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model's limits in predicting osmotic pressures of salty dispersions.

  8. Structure and osmotic pressure of ionic microgel dispersions

    International Nuclear Information System (INIS)

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions

  9. Structure and osmotic pressure of ionic microgel dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Hedrick, Mary M. [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States); Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050 (United States); Chung, Jun Kyung; Denton, Alan R., E-mail: alan.denton@ndsu.edu [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States)

    2015-01-21

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions.

  10. Ionic Origin of Electro-osmotic Flow Hysteresis

    Science.gov (United States)

    Lim, Chun Yee; Lim, An Eng; Lam, Yee Cheong

    2016-02-01

    Electro-osmotic flow, the driving of fluid at nano- or micro- scales with electric field, has found numerous applications, ranging from pumping to chemical and biomedical analyses in micro-devices. Electro-osmotic flow exhibits a puzzling hysteretic behavior when two fluids with different concentrations displace one another. The flow rate is faster when a higher concentration solution displaces a lower concentration one as compared to the flow in the reverse direction. Although electro-osmotic flow is a surface phenomenon, rather counter intuitively we demonstrate that electro-osmotic flow hysteresis originates from the accumulation or depletion of pH-governing minority ions in the bulk of the fluid, due to the imbalance of electric-field-induced ion flux. The pH and flow velocity are changed, depending on the flow direction. The understanding of electro-osmotic flow hysteresis is critical for accurate fluid flow control in microfluidic devices, and maintaining of constant pH in chemical and biological systems under an electric field.

  11. Diffusion Magnetic Resonance Imaging May Provide Prognostic Information in Osmotic Demyelination Syndrome: Report of a Case

    Energy Technology Data Exchange (ETDEWEB)

    Dervisoglu, E.; Yegenaga, I.; Anik, Y.; Sengul, E.; Turgut, T. [Kocaeli Univ. (Turkey). Internal Medicine

    2006-03-15

    Hyponatremia and its rapid correction may cause osmotic demyelination syndrome (ODS) with damage to the pontine and extrapontine areas of the brain. The damage may become persistent or may regress and disappear during follow-up. We describe the case of a 35-year-old woman with chronic renal failure who was admitted to the emergency department with profound hyponatremia which was corrected rapidly after hemodialysis treatment. During follow-up, she developed quadriparesis and dysartria. Magnetic resonance imaging (MRI) demonstrated abnormalities characteristic of ODS in the pons as well as the basal ganglia with increased signal intensity on T2 and diffusion-weighted (DW) MRI and low apparent diffusion coefficient (ADC) values. After the sixth day, her clinical status improved progressively. Control MRI revealed rapid normalization of the ADC values during the first week and month parallel to the clinical improvement. However, the hyperintensities on T2-weighted images persisted. Four months later the MRI findings were completely normal. The close relationship between the ADC abnormality and the clinical status suggests that DW-MRI may be useful in predicting the prognosis of ODS. Keywords: Apparent diffusion coefficient; correction of hyponatremia; magnetic resonance imaging; osmotic demyelination.

  12. Synergistic effect of osmotic and oxidative stress in slow-developing cataract formation.

    Science.gov (United States)

    Chan, Alfred W H; Ho, Ye-shih; Chung, Sookja K; Chung, Stephen S M

    2008-11-01

    Diabetes is a major contributing factor in cataract development. In animal models where cataracts develop within days or weeks of diabetes it is well established that osmotic stress from the accumulation of sorbitol leads to cataract development. This mechanism might explain the rare cases of acute cataract sometimes found in patients with uncontrolled sustained hyperglycemia but cannot account for the vast majority of cataracts that developed after years of diabetes. Thus, a model that can simulate diabetic slow-developing cataract is needed. The contribution of osmotic and oxidative stress in cataract development in sorbitol dehydrogenase (SDH) deficient mice, a model for slow-developing cataract in diabetic patients was determined. Contribution of osmotic stress was assessed by HPLC measurement of sorbitol and by observing the effect of blocking sorbitol accumulation by aldose reductase (AR) null mutation in the SDH deficient mice. Contribution of oxidative stress was assessed by observing the effect of vitamin E treatment and the effect of null mutation of glutathione peroxidase-1 (Gpx-1) on cataract development in these mice. Lenticular sorbitol level was significantly increased in the SDH deficient mice, and blocking sorbitol accumulation by the AR null mutation prevented cataract development, demonstrating the contribution of osmotic stress in cataract development. SDH deficiency did not affect lens oxidative stress status. However, treatment with vitamin E significantly reduced the incidence of cataract, and Gpx-1 deficiency exacerbated cataract development in these mice. Our findings suggest that chronic oxidative stress impaired the osmoregulatory mechanism of the lens. This was not evident until modest increases in lens sorbitol increased the demand of its osmoregulatory function. This osmoregulatory dysfunction model is supported by the fact that the activity of Na+/K+-ATPase, the key regulator of cellular ions and water balance, was dramatically

  13. Studies of Protein Solution Properties Using Osmotic Pressure Measurements

    Science.gov (United States)

    Agena, S.; Bogle, David; Pusey, Marc; Agena, S.

    1998-01-01

    Examination of the protein crystallization process involves investigation of the liquid and solid state and a protein's properties in these states. Liquid state studies such as protein self association in solution by light scattering methods or other methods have been used to examine a protein Is properties and therefore its crystallization process and conditions. Likewise can osmotic pressure data be used to examine protein properties and various published osmotic pressure studies were examined by us to correlate osmotic pressure to protein solution properties. The solution behavior of serum albumin, alpha - chymotrypsin, beta - lactoglobulin and ovalbumin was examined over a range of temperatures, pH values and different salt types and concentrations. Using virial expansion and a local composition model the non ideal solution behavior in form of the activity coefficients (thermodynamic) was described for the systems. This protein activity coefficient data was related to a protein's solubility behavior and this process and the results will be presented.

  14. Determination of colloidal osmotic equation of state by dielectrophoresis

    Science.gov (United States)

    Mazza, Jacob; Huang, Hao; Ou-Yang, H. Daniel

    2015-03-01

    Osmotic equation of state [P(N,T)] describes both the mechanical properties and phase behavior of a colloidal suspension. As an alternative to sedimentation, we propose a new approach to determine P(N,T) by dielectrophoresis (DEP). Using fluorescence confocal microscopy, we obtain particle density profiles in order to determine the DEP force distribution when the particle concentration is low and the inter-particle interactions are negligible. From the known force distribution and Einstein's osmotic equilibrium equation, we can calculate P(N,T) from the particle density profile of interacting, charge-stabilized polystyrene latex particles under different salt concentrations and added neutral polymers. The osmotic equation of state for colloidal suspensions can then be crosschecked by sedimentation equilibrium.

  15. Identification of calmodulin released by osmotic shock of maize roots

    International Nuclear Information System (INIS)

    Exogenously applied calcium at low concentrations (10 mM and less) stimulates, while higher concentrations (greater than 20 mM) inhibit maize root growth. The phenothiazine calmodulin inhibitors chlorpromazine and trifluoperzine inhibit maize root growth and are reversible by calcium. The loss of acid-inducible growth after osmotic shock indicates that at least part of the complex associated the acid-induced growth is released. Since calmodulin (CaM) is a small protein (mol wt about 17 kD) found to play a pivotal role in Ca+2 regulated mechanisms, the material released from maize roots by osmotic shock was examined for the presence of CaM

  16. Osmotic demyelination syndrome with recent chemotherapy in normonatremic patient: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungjae; Baek, Hye Jin; Jung, Hyun Kyung; Kim, Seon Jeong; Lee, Yedaun; Lee, Kwaghwi; Ryu, Ji Hwa; Kim, Hong Dae [Dept. of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2014-11-15

    Osmotic demyelination syndrome (ODS), an acquired demyelinating condition of the central pons and/or other regions of the brain, is frequently associated with rapid correction of hyponatremia. There are several reports of ODS in other clinical setting such as malnutrition, alcoholism, transplantation, malignancy, and chronic debilitating illness. However, cases of ODS associated with chemotherapy have not been frequently reported. Here, we describe a case of ODS in a normonatremic patient recently underwent chemotherapy for colon cancer. The diagnosis was confirmed by MRI showing a typical T2 hyperintensity in the central pons. This case suggests that ODS is not always associated with hyponatremia and that ODS can have a favorable clinical and radiologic prognosis.

  17. Chronic pancreatitis

    Science.gov (United States)

    Chronic pancreatitis - chronic; Pancreatitis - chronic - discharge; Pancreatic insufficiency - chronic; Acute pancreatitis - chronic ... abuse over many years. Repeated episodes of acute pancreatitis can lead to chronic pancreatitis. Genetics may be ...

  18. Drying of red beetroot after osmotic pretreatment: Kinetics and quality considerations

    OpenAIRE

    Kowalski Stefan J.; Łechtańska Joanna M.

    2015-01-01

    This article presents experimental studies on drying kinetics and quality effects of red beetroot (Beta vulgaris L.) after convective drying with a preliminary osmotic pretreatment. The effects of the osmotic agent (NaCl) concentration and the osmotic bath time on the product colour and nutrient content preservation, the water activity, and rehydration ability after drying were analysed. Osmotic dehydration curves and Solid Gain (SG), Water Loss (WL), Weight Reduction (WR) were determined. It...

  19. Osmotic dehydration of mandarins: Influence of reutilized osmotic agent on behaviour and product quality

    Directory of Open Access Journals (Sweden)

    Maria Lobo Sapata

    2009-09-01

    Full Text Available   Background. Osmotic dehydration (OD is a technology that allows the concentration mainly of fruits and vegetables, without change of phase, through partial water removal, when immersed in a hypertonic solution of sugar, salt or others. It can be successfully applied to some products whose production is not fully marketed in fresh form. However, an additional process is necessary to stabilize the product. The process leads to the achievement of high quality alternative products, with an extended shelf-life, economy in storage and transport. The aim of this work was to study, at a pilot scale, the behaviour evaluation of a sucrose dehydration solution, during twelve OD reuses, and the quality of processed mandarins. Material and methods. The process was carried out using mandarins (Citrus reticulata Blanco cv Clementina Nova, from Algarve, Portugal, manually peeled and segments chemically skinned. In assays a 60°Brix sucrose solution was used, conducted in thermo- -stabilized baths, at 45°C, 16 h, 40 oscillations per minute and a fruit:solution ratio of 1:2 (m/m. After each OD cycle, the solution was filtered and reconcentred to 60°Brix by sucrose addition, and adjusted to original volume. The osmodehydrated mandarins were stabilized by pasteurization. The drying solution behaviour and mandarins’ quality were assessed through different physical, chemical and microbiological analysis. Results. The factorial discriminate analysis allowed to distinguish a different behaviour between the original and final dehydration sucrose solution during OD processes, but did not affect its desiccant power, only a high pollutant load development explained by BOD5 values. The results of osmodehydrated mandarins showed that stability was achieved by “combined process” with pasteurization. Conclusions. The resultslead to concludethat osmotic dehydration process is a good option to improve mandarin’s stabilization, after pasteurization

  20. A Simple Membrane Osmometer System & Experiments that Quantitatively Measure Osmotic Pressure

    Science.gov (United States)

    Marvel, Stephen C.; Kepler, Megan V.

    2009-01-01

    It is important for students to be exposed to the concept of osmotic pressure. Understanding this concept lays the foundation for deeper discussions that lead to more theoretical aspects of water movement associated with the concepts of free energy, water potential, osmotic potential, pressure potential, and osmotic adjustment. The concept of…

  1. Osmotic generation of 'anomalous' fluid pressures in geological environments

    Science.gov (United States)

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  2. An analysis of electro-osmotic and magnetohydrodynamic heat pipes

    International Nuclear Information System (INIS)

    Mechanically simple methods of improving heat transport in heat pipes are investigated. These methods are electro-osmotic and magnetohydrodynamic augmentation. For the electro-osmotic case, a detailed electrokinetic model is used. The electrokinetic model used includes the effects of pore surface curvature and multiple ion diffusivities. The electrokinetic model is extended to approximate the effects of elevated temperature. When the electro-osmotic model is combined with a suitable heat-pipe model, it is found that the electro-osmotic pump should be a thin membrane. Arguments are provided that support the use of a volatile electrolyte. For the magnetohydrodynamic case, a brief investigation is provided. A quasi-one-dimensional hydromagnetic duct flow model is used. This hydromagnetic model is extended to approximate flow effects unique to heat pipes. When combined with a suitable heat pipe model, it is found that there is no performance gain for the case considered. In fact, there are serious pressure-distribution problems that have not been previously recognized. Potential solutions to these pressure-distribution problems are suggested

  3. Osmotic pressure of the cutaneous surface fluid of Rana esculenta

    DEFF Research Database (Denmark)

    Hviid Larsen, Erik; Ramløv, Hans

    /Kg, n = 16. Osmolality of lymph was, 239 ± 4 mosmol/Kg, n = 8. Thus the flow of water across the epidermis would be in the direction from CSF to the interstitial fluid driven by the above osmotic gradients and/or coupled to the inward active Na+ flux via the slightly hyperosmotic paracellular...

  4. Mass Transfer During Osmotic Dehydration Using Acoustic Cavitation

    Institute of Scientific and Technical Information of China (English)

    孙宝芝; 淮秀兰; 姜任秋; 刘登瀛

    2005-01-01

    An experimental study on intensifying osmotic dehydration was carried out in a state of nature and with acoustic cavitation of different cavitating intensity (0.5A, 0.TA and 0.9A) respectively, in which the material is apple slice of 5 mm thickness. The result showed that acoustic cavitation remarkably enhanced the osmotic dehydration, and the water loss was accelerated with the increase of cavitating intensity. The water diffusivity coefficients ranged from 1.8 × 10-10 m2.s-1 at 0.5A to 2.6 × 10-10 m2.s-1 at 0.9A, and solute diffusivity coefficients ranged from 3.5×10-11 m2.s-1 at 0.5A to 4.6×10-11 m2.s-1 at 0.9A. On the basis of experiments, a mathematical model was established about mass transfer during osmotic dehydration, and the numerical simulation was carried out. The calculated results agree well with experimental data, and represent the rule of mass transfer during osmotic dehydration intensified by acoustic cavitation.

  5. An Overview on Osmotic Controlled Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Thummar A

    2013-06-01

    Full Text Available This paper reviews constructed drug delivery systems applying osmotic principles for controlled drugrelease from the formulation. Osmotic devices which are tablets coated with walls of controlled porosityare the most promising strategy based systems for controlled drug delivery. In contrast to commontablets, these pumps provide constant (zero order drug release rate. When these systems are exposed towater, low levels of water soluble additive is leached from polymeric material i.e. semipermeablemembrane and drug releases in a controlled manner over an extended period of time. The main clinicalbenefits of oral osmotic drug delivery system are their ability to improve treatment tolerability andpatient compliance. These advantages are mainly driven by the capacity to deliver drugs in a sustainedmanner, independent of the drug chemical properties, of the patient’s physiological factors or followingfood intake. This review brings out the theoretical concept of drug delivery, history, advantages anddisadvantages of the delivery systems, types of oral osmotic drug delivery systems, factors affecting thedrug delivery system and marketed products.

  6. Root water extraction under combined water and osmotic stress

    NARCIS (Netherlands)

    Jong van Lier, de Q.; Dam, van J.C.; Metselaar, K.

    2009-01-01

    Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The

  7. Vocal Fold Epithelial Response to Luminal Osmotic Perturbation

    Science.gov (United States)

    Sivasankar, Mahalakshmi; Fisher, Kimberly V.

    2007-01-01

    Purpose: Dry-air challenges increase the osmolarity of fluid lining the luminal surface of the proximal airway. The homeostasis of surface fluid is thought to be essential for voice production and laryngeal defense. Therefore, the authors hypothesized that viable vocal fold epithelium would generate a water flux to reduce an osmotic challenge (150…

  8. Osmotic Stressing, Membrane Leakage, and Fluorescence: An Introductory Biochemistry Demonstration

    Science.gov (United States)

    Seu, Kalani J.

    2015-01-01

    A fluorescence demonstration is described that incorporates several fundamental aspects of an introductory biochemistry course. A variation of a known leakage assay is utilized to prepare vesicles containing a quenched fluorophore. The vesicles are exposed to several osmotic environments ranging from isotonic to hypotonic. The degree of vesicle…

  9. A semi-automatic device for measuring osmotic pressures (1962)

    International Nuclear Information System (INIS)

    A cryoscopic apparatus for measuring osmotic pressure in small samples (0.1 ml) is described. The sample is frozen by air cooled dry ice or liquid nitrogen; the temperature is measured by a thermistor resistance and a recording millivoltmeter. (author)

  10. Self-consistent unstirred layers in osmotically driven flows

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Bohr, Tomas; Bruus, Henrik

    2010-01-01

    on both sides of the membrane remain well mixed due to an external stirring mechanism. We investigate the effects of concentration boundary layers on the efficiency of osmotic pumping processes in the absence of external stirring, i.e. when all advection is provided by the osmosis itself. This case...

  11. Drying of red beetroot after osmotic pretreatment: Kinetics and quality considerations

    Directory of Open Access Journals (Sweden)

    Kowalski Stefan J.

    2015-09-01

    Full Text Available This article presents experimental studies on drying kinetics and quality effects of red beetroot (Beta vulgaris L. after convective drying with a preliminary osmotic pretreatment. The effects of the osmotic agent (NaCl concentration and the osmotic bath time on the product colour and nutrient content preservation, the water activity, and rehydration ability after drying were analysed. Osmotic dehydration curves and Solid Gain (SG, Water Loss (WL, Weight Reduction (WR were determined. It was proved that drying of beetroot with osmotic pretreatment contributes to shorter drying time, smaller water activity, higher retention of betanin, better colour preservation, and a greater degree of water resorption.

  12. Chronic Diarrhea

    Science.gov (United States)

    ... infections that cause chronic diarrhea be prevented? Chronic Diarrhea What is chronic diarrhea? Diarrhea that lasts for more than 2-4 ... represent a life-threatening illness. What causes chronic diarrhea? Chronic diarrhea has many different causes; these causes ...

  13. Design of an osmotic pressure sensor for sensing an osmotically active substance

    Science.gov (United States)

    Ch, Nagesh; Paily, Roy P.

    2015-04-01

    A pressure sensor based on the osmosis principle has been designed and demonstrated successfully for the sensing of the concentration levels of an osmotically active substance. The device is fabricated using the bulk micro-machining technique on a silicon on insulator (SOI) substrate. The substrate has a square cavity on the bottom side to fill with the reference glucose solution and a silicon (Si) membrane on the top side for the actuation. Two sets of devices, having membrane thicknesses of 10 µm and 25 µm, but the same area of 3 mm ×3 mm, are fabricated. The cavity is filled with a glucose solution of 100 mg dL-1 and it is sealed with a semi-permeable membrane made up of cellulose acetate material. The glucose solution is employed to prove the functionality of the device and it is tested for different glucose concentration levels, ranging from 50 mg dL-1 to 450 mg dL-1. The output voltage obtained for the corresponding glucose concentration levels ranges from -6.7 mV to 22.7 mV for the 10 µm device and from -1.7 mV to 4 mV for the 25 µm device. The device operation was simulated using the finite element method (FEM) and the finite volume method (FVM), and the simulation and experimental results match closely. A response time of 40 min is obtained in the case of the 10 µm device compared to one of 30 min for the 25 µm device. The response times obtained for these devices are found to be small compared to those in similar works based on the osmosis principle. This pressure sensor has the potential to provide controlled drug delivery if it can be integrated with other microfluidic devices.

  14. The safety of osmotically acting cathartics in colonic cleansing

    DEFF Research Database (Denmark)

    Nyberg, Caroline; Hendel, J.; Nielsen, O.H.

    2010-01-01

    Efficient cleansing of the colon before a colonoscopy or a radiological examination is essential. The osmotically acting cathartics (those given the Anatomical Therapeutic Chemical code A06AD) currently used for this purpose comprise products based on three main substances: sodium phosphate......, combinations of polyethylene glycol and electrolyte lavage solutions (PEG-ELS), and magnesium citrate. All these preparations give adequate cleansing results and have similar profiles in terms of the frequency and type of mild to moderate adverse effects. However, serious adverse events, such as severe...... hyperphosphatemia and irreversible kidney damage owing to acute phosphate nephropathy, have been reported after use of sodium-phosphate-based products. The aim of this Review is to provide an update on the potential safety issues related to the use of osmotically acting cathartics, especially disturbances of renal...

  15. Giant Osmotic Pressure in the Forced Wetting of Hydrophobic Nanopores

    Science.gov (United States)

    Michelin-Jamois, Millan; Picard, Cyril; Vigier, Gérard; Charlaix, Elisabeth

    2015-07-01

    The forced intrusion of water in hydrophobic nanoporous pulverulent material is of interest for quick storage of energy. With nanometric pores the energy storage capacity is controlled by interfacial phenomena. With subnanometric pores, we demonstrate that a breakdown occurs with the emergence of molecular exclusion as a leading contribution. This bulk exclusion effect leads to an osmotic contribution to the pressure that can reach levels never previously sustained. We illustrate, on various electrolytes and different microporous materials, that a simple osmotic pressure law accounts quantitatively for the enhancement of the intrusion and extrusion pressures governing the forced wetting and spontaneous drying of the nanopores. Using electrolyte solutions, energy storage and power capacities can be widely enhanced.

  16. Swelling and osmotic flow in a potential host rock

    International Nuclear Information System (INIS)

    Measurements of osmotic and hydraulic permeability are reported for a series of tests conducted on Opalinus Clay samples from the Mont Terri underground research laboratory in the Jura Mountains of NE Switzerland. Osmotic flow was observed across discs of this clay-shale separating 0,245 M NaCl solution from distilled water. Pressure transients monitored during constant flow rate testing were analysed to give permeability and specific storage values. The mean permeability normal to bedding of the two Opalinus Clay specimens was 7,9 x 10-21 m2. The mean specific storage based on all reliable determinations was 4,1 x 10-4 m-1. Values calculated from the steady-state pressure gradients established during constant flow rate testing were very close to those obtained by mathematical analysis of pressure transients. The calculation of the transients was carried out using a new model of flow and solute transport which included terms for the osmotic coupling. The form of the pressure transients and the magnitude of the strain seen during the tests lead to a revision to the definition of solid phase compressibility to incorporate a term dependent upon the osmotic coupling coefficient. Steady-state osmotic flow rates were in the range 0,1 to 0,6 μL.hr-1 when the specimens were placed between a sodium chloride solution with a theoretical osmotic pressure of 1,19 MPa and distilled water. Transient flow rates were substantially larger. Membrane efficiencies were found to be relatively low, ranging from 1% to 6% (mean around 4%). The mean osmotic permeability normal to bedding was 3,5 x 10-22 m2. Specific storage and pore compressibility values were substantially larger than anticipated, suggesting that the volumetric strain of the clay-shale under the conditions of laboratory testing must be largely determined by quasi-elastic deformation processes such as swelling and crack dilation. To test this hypothesis, a 3D swelling test was performed on a cubic specimen of the same

  17. Osmotic demyelination syndrome with a dysequilibrium syndrome: reversible MRI findings

    International Nuclear Information System (INIS)

    Neurological disorders may be seen in end-stage renal disease patients due to uraemia or to complications of dialysis. A dysequilibrium syndrome may be seen, usually soon after or towards the end of haemodialysis. This group of patients has no particular findings on MRI. On the other hand, the osmotic demyelination syndrome has definitive MRI findings, not to date reported with the dysequilibrium syndrome. We report a patient with end-stage renal disease and the dysequilibrium syndrome who showed findings of osmotic demyelination on MRI. The patient had a convulsion after a first haemodialysis, with quadriparesis and hyperactive deep tendon reflexes and bilateral Babinski signs. The upper motor neurone signs lasted for a week. Meanwhile, he was also dysarthric and had dysphagia. He recovered neurologically without any residuum following appropriate treatment and there was improvement on MRI. (orig.)

  18. Osmotic stress affects functional properties of human melanoma cell lines

    CERN Document Server

    La Porta, Caterina A M; Pasini, Maria; Laurson, Lasse; Alava, Mikko J; Zapperi, Stefano; Amar, Martine Ben

    2015-01-01

    Understanding the role of microenvironment in cancer growth and metastasis is a key issue for cancer research. Here, we study the effect of osmotic pressure on the functional properties of primary and metastatic melanoma cell lines. In particular, we experimentally quantify individual cell motility and transmigration capability. We then perform a circular scratch assay to study how a cancer cell front invades an empty space. Our results show that primary melanoma cells are sensitive to a low osmotic pressure, while metastatic cells are less. To better understand the experimental results, we introduce and study a continuous model for the dynamics of a cell layer and a stochastic discrete model for cell proliferation and diffusion. The two models capture essential features of the experimental results and allow to make predictions for a wide range of experimentally measurable parameters.

  19. Osmotically driven flows in microchannels separated by a semipermeable membrane

    Science.gov (United States)

    Bruus, Henrik; Hartvig Jensen, Kaare; Bohr, Tomas

    2008-11-01

    Osmotically driven flows in microchannels are studied experimentally and theoretically. The propagation of the front of sugar solutions has been measured using dye and particle tracking in 200 μm wide and 50, 100, and 200 μm high polymer-based microchannels. Each of these microchannels was separated by a semipermeable membrane from a reservoir containing pure water. We have also established a theoretical model of this system. In the limit of low axial flow resistance, our model predicts the propagation speed of the sugar front as a function of sugar concentration and channel geometry. The theoretical predictions agree well with the measurements. Our motivations for studying osmotically driven flows are that they are believed to be responsible for the translocation of sugar in plants and that they can be used as the driving mechanism in micropumps with no moveable parts.[5mm] This work was supported by the Danish National Research Foundation, Grant No. 74.

  20. Quorum sensing regulates the osmotic stress response in Vibrio harveyi.

    Science.gov (United States)

    van Kessel, Julia C; Rutherford, Steven T; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James; Bassler, Bonnie L

    2015-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress. PMID:25313392

  1. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection

    Science.gov (United States)

    Lemay, Serge G.; Panja, Debabrata; Molineux, Ian J.

    2013-02-01

    A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been interpreted in terms of the decrease in free energy of the densely packed DNA associated with genome ejection. Here we detail a simple model of genome ejection in terms of the hydrostatic and osmotic pressures inside the phage, a bacterium, and a buffer solution or culture medium. We argue that the hydrodynamic flow associated with the water movement from the buffer solution into the phage capsid and further drainage into the bacterial cytoplasm, driven by the osmotic gradient between the bacterial cytoplasm and culture medium, provides an alternative mechanism for phage genome ejection in vivo; the mechanism is perfectly consistent with phage genome ejection in vitro.

  2. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection

    CERN Document Server

    Lemay, Serge G; Molineux, Ian J

    2012-01-01

    A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly \\textit{in vitro}, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been interpreted in terms of the decrease in free energy of the densely packed DNA associated with genome ejection. Here we detail a simple model of genome ejection in terms of the hydrostatic and osmotic pressures inside the phage, a bacterium, and a buffer solution/culture medium. We argue that the hydrodynamic flow associated with the water movement from the buffer solution into the phage capsid and further drainage into the bacterial cytoplasm, driven by the osmotic gradient between the bacterial cytoplasm and culture medium, provides an alternative mechanism for phage genome ejection \\textit{in vivo}; the mechanism is perfectly consistent with phage genome ejection \\textit{in vitro}.

  3. OPTIMIZATION OF OSMOTIC DEHYDRATION PROCESS OF PUMPKIN IN TERNARY SOLUTIONS

    OpenAIRE

    Ruth R. Bambicha; Miriam E. Agnelli; Rodolfo H. Mascheroni

    2012-01-01

    By applying the methodology of response surface analysis (RSM) optimum conditions were determined for maximum WL (water loss) and WR (weight reduction), and minimal SG (solute gain), NMC (normalized moisture content) and change of color (CC) for the osmotic dehydration (OD) of pumpkin (Cucurbita Moschata) in ternary solutions (water/sucrose/sodium chloride) carried out in 32 executions (n) by application of a Face-Centered Central Composite Design (CCF) that evaluated the effect of experiment...

  4. CONTROLLED-POROSITY OSMOTIC PUMP TABLETS-AN OVERVIEW

    OpenAIRE

    AJAY BABU,PRASADA RAO. VIJAYA RATNA

    2013-01-01

    Conventional drug delivery systems have little control over their drug release and almost no control over the effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable controlled drug deliver...

  5. A Case of Osmotic Demyelination Presenting with Severe Hypernatremia

    OpenAIRE

    Han, Min Jee; Kim, Do Hyoung; Kim, Young Hwa; Yang, In Mo; Park, Joon Hyung; Hong, Moon Ki

    2015-01-01

    Osmotic demyelination syndrome is a demyelinating disorder associated with rapid correction of hyponatremia. But, it rarely occurs in acute hypernatremia, and it leads to permanent neurologic symptoms and is associated with high mortality. A 44-year-old woman treated with alternative medicine was admitted with a history of drowsy mental status. Severe hypernatremia (197mEq/L) with hyperosmolality (415mOsm/kgH2O) was evident initially and magnetic resonance imaging revealed a high signal inten...

  6. Anisotropic electro-osmotic flow over super-hydrophobic surfaces

    OpenAIRE

    Bahga, Supreet S.; Vinogradova, Olga I.; Bazant, Martin Z.

    2009-01-01

    Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces containing trapped gas bubbles, have the potential to greatly enhance electrokinetic phenomena. Existing theories assume either homogeneous flat surfaces or patterned surfaces with thin double layers (compared to the texture correlation length) and thus predict simple surface-averaged, isotropic flows (independent of orientation). By analyzing electro-osmotic flows over striped slip-stick surfaces with ar...

  7. FORMULATION AND EVALUATION OF CONTROLLED POROSITY OSMOTIC TABLETS OF LORNOXICAM

    Directory of Open Access Journals (Sweden)

    A. Uma Maheswari*, K. Elango, Daisy Chellakumari, K. Saravanan and Anglina Jeniffer Samy

    2012-06-01

    Full Text Available The aim of the present study is to formulate and evaluate controlled release formulation of lornoxicam based on osmotic technology. Lornoxicam, a potent non-steroidal anti-inflammatory drug (NSAID with shorter half life, makes the development of sustained release (SR dosage forms extremely advantageous. However, due to its weak acidic nature, its release from SR delivery system is limited to the lower GIT which consequently leads to a delayed onset of its analgesic action. Basic pH modifier tromethamine and wicking agent SLS were incorporated into the core tablet to create basic environmental pH inside the tablets, which provide complete drug release that starts in the stomach to rapidly alleviate the painful symptoms and continue in the intestine to maintain protracted analgesic effect. The effect of different formulation variables namely level of osmogen (mannitol in the core tablet and level of pore former (sorbitol in the coating membrane on in-vitro release was studied. Lornoxicam release from controlled porosity osmotic pump was directly proportional to the pore former (sorbitol and level of osmogen (mannitol. Drug release from the developed formulations was independent of pH and agitational intensity and was dependent on osmotic pressure of the release media. Results of SEM studies showed the formation of pores in the membrane from where the drug release occurred. The optimized formulation was found to release the drug in zero order and found to be stable upon stability studies.

  8. Simultaneous measurement of peritoneal glucose and free water osmotic conductances.

    Science.gov (United States)

    La Milia, V; Limardo, M; Virga, G; Crepaldi, M; Locatelli, F

    2007-09-01

    Ultrafiltration (UF) failure is one of the most important causes of long-term peritoneal dialysis (PD) failure in patients. Osmotic forces acting across small and ultra-small pores generate a UF with solutes through the small pore and free water transport (FWT) through the ultra-small pore. The ability of glucose to exert an osmotic pressure sufficient to cause UF is the so-called 'osmotic conductance to glucose' (OCG) of the peritoneal membrane. Our study proposes a simple method to determine both the OCG and FWT. In 50 patients on PD, a Double Mini-Peritoneal Equilibration Test (Double Mini-PET), consisting of two Mini-PET, was performed consecutively. A solution of 1.36% glucose was used for the first test, whereas a solution of 3.86% glucose was used for the second test. The sodium removal values and the differences in UF between the two tests were used to calculate FWT and the OCG. Patients with UF failure showed significant reductions not only in the OCG and the FWT but also of UF of small pores. The Double Mini-PET is simple, fast, and could become useful to evaluate patients on PD in everyday clinical practice. PMID:17609692

  9. Osmotically controlled drug delivery system with associated drugs.

    Science.gov (United States)

    Gupta, Brahma Prakash; Thakur, Navneet; Jain, Nishi P; Banweer, Jitendra; Jain, Surendra

    2010-01-01

    Conventional drug delivery systems have slight control over their drug release and almost no control over the effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the controlled or modified release drug delivery systems. They include dosage forms for oral and transdermal administration as well as injectable and implantable systems. For most of drugs, oral route remains as the most acceptable route of administration. Certain molecules may have low oral bioavailability because of solubility or permeability limitations. Development of an extended release dosage form also requires reasonable absorption throughout the gastro-intestinal tract (GIT). Among the available techniques to improve the bioavailability of these drugs fabrication of osmotic drug delivery system is the most appropriate one. Osmotic drug delivery systems release the drug with the zero order kinetics which does not depend on the initial concentration and the physiological factors of GIT. This review brings out new technologies, fabrication and recent clinical research in osmotic drug delivery. PMID:21486532

  10. Active osmotic exchanger for advanced filtration at the nano scale

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lyderic

    2015-11-01

    One of the main functions of the kidney is to remove the waste products of an organism, mostly by excreting concentrated urea while reabsorbing water and other molecules. The human kidney is capable of recycling about 200 liters of water per day, at the relatively low cost of 0.5 kJ/L (standard dialysis requiring at least 150 kJ/L). Kidneys are constituted of millions of parallel filtration networks called nephrons. The nephrons of all mammalian kidneys present a specific loop geometry, the Loop of Henle, that is believed to play a key role in the urinary concentrating mechanism. One limb of the loop is permeable to water and the other contains sodium pumps that exchange with a common interstitium. In this work, we take inspiration from this osmotic exchanger design to propose new nanofiltration principles. We first establish simple analytical results to derive general operating principles, based on coupled water permeable pores and osmotic pumps. The best filtration geometry, in terms of power required for a given water recycling ratio, is comparable in many ways to the mammalian nephron. It is not only more efficient than traditional reverse osmosis systems, but can also work at much smaller pressures (of the order of the blood pressure, 0.13 bar, as compared to more than 30 bars for pressure-retarded osmosis systems). We anticipate that our proof of principle will be a starting point for the development of new filtration systems relying on the active osmotic exchanger principle.

  11. FORMULATION AND EVALUATION OF BACLOFEN CONTROLLED POROSITY OSMOTIC PUMP TABLETS

    Directory of Open Access Journals (Sweden)

    Indarapu Rajendra Prasad

    2013-06-01

    Full Text Available In the present study, attempts were made to develop and evaluate the controlled porosity osmotic pump (CPOP based drug delivery system of sparingly water soluble drug Baclofen. Formulation variables, such as, levels of solubility enhancer, ratio of drug to osmogents, coat thickness of semi permeable membrane (SPM and level of pore former were found to affect the drug release from the developed formulations. Cellulose acetate was used as the semi permeable membrane. Drug release was directly proportional to the level of the solubility enhancer, osmotic pressure generated by osmotic agent and level of pore former; however, was inversely proportional to the coat thickness of SPM. Drug release from developed formulations was independent of pH and agitation intensities of release media. Burst strength of the exhausted shells decreased with increase in the level of pore former. This system was found to deliver Baclofen at a zero-order rate. The optimized formulations were subjected to stability studies as per ICH guidelines, and formulations were found to be stable after 45days study.

  12. Osmotically driven flows in microchannels separated by a semipermeable membrane.

    Science.gov (United States)

    Jensen, Kåre Hartvig; Lee, Jinkee; Bohr, Tomas; Bruus, Henrik

    2009-07-21

    We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 microm wide and 50-200 microm deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental results and the predictions of the model. Our motivation for studying osmotically driven microflows is that they are believed to be responsible for the translocation of sugar in plants through the phloem sieve element cells. Also, we suggest that osmotic elements can act as on-chip integrated pumps with no movable parts in lab-on-a-chip systems. PMID:19568680

  13. Development and Optimization of Cefaclor Gastroretentive Osmotic control release Tablets

    Directory of Open Access Journals (Sweden)

    Prasad Garrepally

    2014-03-01

    Full Text Available The purpose of this present research work was to development and optimization of different formulations of osmotic control gastroretentive tablets containing Cefaclor. The cefaclor osmotic control gastroretentive tablets was formulated by 3 step process involve core tablet, coating and pore forming. Core tablets were formulated by using different polymers HPMC, polyox and sodium CMC alone and in combination. Initially drug excipients interactions were carried by using FTIR spectra; results showed that there was no interaction. Twelve different formulations of cefaclor osmotic control gastroretentive were prepared and characterized for flow properties and physical properties. Results of these parameters were within the Pharmacopoeial limits. Floating behaviour of all formulations was reported to be less than 100sec of floating lag time and greater than 12hr of duration of floating. F 7 formulation was selected as a optimised based on in vitro drug release studies. It showed the drug release patters similar to that of theoretical release. In vitro dissolution data of all formulation were fit into different kinetic models to know the mechanism of drug release; results revealed that the optimised F 7 formulation gave perfect zero order type of drug transport. Finally, stability studies were performed for optimised formulation and result revealed no significant difference between before and after storage for selected formula.

  14. Development and evaluation of microporous osmotic tablets of diltiazem hydrochloride

    Directory of Open Access Journals (Sweden)

    Afifa Bathool

    2012-01-01

    Full Text Available Microporous osmotic tablet of diltiazem hydrochloride was developed for colon targeting. These prepared microporous osmotic pump tablet did not require laser drilling to deliver the drug to the specific site of action. The tablets were prepared by wet granulation method. The prepared tablets were coated with microporous semipermeable membrane and enteric polymer using conventional pan coating process. The incorporation of sodium lauryl sulfate (SLS, a leachable pore-forming agent, could form in situ delivery pores while coming in contact with gastrointestinal medium. The effect of formulation variables was studied by changing the amounts of sodium alginate and NaCMC in the tablet core, osmogen, and that of pore-forming agent (SLS used in the semipermeable coating. As the amount of hydrophilic polymers increased, drug release rate prolonged. It was found that drug release was increased as the concentration of osmogen and pore-former was increased. Fourier transform infrared spectroscopy and Differential scanning calorimetry results showed that there was no interaction between drug and polymers. Scanning electron microscopic studies showed the formation of pores after predetermined time of coming in contact with dissolution medium. The formation of pores was dependent on the amount of pore former used in the semipermeable membrane. in vitro results showed acid-resistant, timed release at an almost zero order up to 24 hours. The developed osmotic tablets could be effectively used for prolonged delivery of Diltiazem HCl.

  15. Polyamine metabolism and osmotic stress. I. Relation to protoplast viability

    Science.gov (United States)

    Tiburcio, A. F.; Masdeu, M. A.; Dumortier, F. M.; Galston, A. W.

    1986-01-01

    Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, and Vigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro.

  16. Maximum efficiency of the electro-osmotic pump

    Science.gov (United States)

    Xu, Zuli; Miao, Jianying; Wang, Ning; Wen, Weijia; Sheng, Ping

    2011-06-01

    Electro-osmotic effect in a porous medium arises from the electrically charged double layer at the fluid-solid interface, whereby an externally applied electric field can give rise to fluid flow. The electro-osmotic pump (EOP) is potentially useful for a variety of engineering and biorelated applications, but its generally low efficiency is a negative factor in this regard. A study to determine the optimal efficiency of the EOP and the condition(s) under which it can be realized is therefore of scientific interest and practical importance. We present the results of a theoretical and experimental study on the maximum efficiency optimization of the electrokinetic effect in artificially fabricated porous media with controlled pore diameters. It is shown that whereas the EOP efficiency increases with decreasing channel diameter, from 4.5 to 2.5 μm for samples fabricated on oxidized silicon wafers as expected for the interfacial nature of the electro-osmotic effect, the opposite trend was observed for samples with much smaller channel diameters fabricated on anodized aluminum oxide films, with the pore surface coated with silica. These results are in agreement with the theoretical prediction, based on the competition between interfacial area and the no-slip flow boundary condition, that an optimal efficiency of ˜1% is attained at a microchannel diameter that is five times the Debye length, with a zeta potential of ˜100 mV.

  17. Recent experimental data may point to a greater role for osmotic pressures in the subsurface

    Science.gov (United States)

    Neuzil, C.E.; Provost, A.M.

    2009-01-01

    Uncertainty about the origin of anomalous fluid pressures in certain geologic settings has caused researchers to take a second look at osmosis, or flow driven by chemical potential differences, as a pressure-generating process in the subsurface. Interest in geological osmosis has also increased because of an in situ experiment by Neuzil (2000) suggesting that Pierre Shale could generate large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations, but they have not been systematically examined. In this paper we compile these data and explore their implications for osmotic pressure generation in subsurface systems. Rather than base our analysis on osmotic efficiencies, which depend strongly on concentration, we calculated values of a quantity we term osmotic specific surface area (Aso) that, in principle, is a property of the porous medium only. The Aso values are consistent with a surprisingly broad spectrum of osmotic behavior in argillaceous formations, and all the formations tested exhibited at least a modest ability to generate osmotic pressure. It appears possible that under appropriate conditions some formations can be highly effective osmotic membranes able to generate osmotic pressures exceeding 30 MPa (3 km of head) at porosities as high as ??0.1 and pressures exceeding 10 MPa at porosities as high as ??0.2. These findings are difficult to reconcile with the lack of compelling field evidence for osmotic pressures, and we propose three explanations for the disparity: (1) Our analysis is flawed and argillaceous formations are less effective osmotic membranes than it suggests; (2) the necessary subsurface conditions, significant salinity differences within intact argillaceous formations, are rare; or (3) osmotic pressures are unlikely to be detected and are not recognized when encountered. The last possibility, that

  18. CYP2J2-Derived Epoxyeicosatrienoic Acids Suppress Endoplasmic Reticulum Stress in Heart Failure

    OpenAIRE

    Wang, Xingxu; Ni, Li; Yang, Lei; Duan, Quanlu; Chen, Chen; Edin, Matthew L.; Zeldin, Darryl C.; WANG, DAO WEN

    2014-01-01

    Prolonged endoplasmic reticulum (ER) stress causes apoptosis and is associated with heart failure. Whether CYP2J2 and its arachidonic acid metabolites [epoxyeicosatrienoic acids (EETs)] have a protective influence on ER stress and heart failure has not been studied. Assays of myocardial samples from patients with end-stage heart failure showed evidence of ER stress. Chronic infusion of isoproterenol (ISO) or angiotensin II (AngII) by osmotic mini-pump induced cardiac hypertrophy and heart fai...

  19. Storage of osmotically treated entomopathogenic nematode Steinernema carpocapsae

    Institute of Scientific and Technical Information of China (English)

    SHI-PENG FENG; RI-CHOU HAN; XUE-HONG QIU; LI CAO; JING-HUA CHEN; GUO-HONG WANG

    2006-01-01

    The infective juveniles (IJs) of Steinernema carpocapsae 'All' were osmotically stressed by a mixture of ionic (fortified artificial seawater) and non-ionic (3.2 mol/Lglycerol) solutions to establish a method for osmotic storage of entomopathogenic nematodes.Seven combinations (termed solution A to G) with different proportions of these two solutions were tested, with sterile extra pure water (sepH2O, termed solution H) as a control. The mortality of the IJs at a concentration of 5 × 105 IJ/mL in the solutions A to G, and H were 13.2%,16.2%, 16.7%, 13.5%, 25.2%, 31.6%, 44.6%, and 1.0%, respectively, after 21 days storage at 25℃. Most of the IJs shrunk and stopped motility after 6-9 hours incubation at 25℃ in solutions A to D. Based on the results, solutions A to D and H were chosen to further test the osmotic survival of the IJs at different IJ concentrations (5×105, 2.5 × 105, 2000 IJ/mL) and incubation temperature (30℃, 25℃, 10℃). The resulting IJs were exposed to a high temperature assay (45℃ for 4 h, HTA). Osmotically stressed IJs showed improved heat tolerance. The mortality of the IJs increased with the increasing concentrations of the test IJs and the storage temperatures after exposing to the HTA. More than 88.4%, 62.3% or 2.4% of the treated IJs died at the above three IJ concentrations, respectively. At the three IJ concentrations (2 000 IJs/mL, 2.5 × 105 IJs/mL or 5 × 105 IJs/mL), the highest mortality was recorded in solution D (11.6%, 85.9% or 98.0%, respectively), and the lowest mortality in solution B (2.4%, 62.3% or 86.6%, respectively). No untreated IJs survived after the heat treatment. During 42 days storage at 10℃, the IJs mortality in the solutions A to D and H were 7.19%, 5.97%,4.41%, 4.34%, and 4.34% respectively, and showed no significant differences. In conclusion,solutions enhances the heat tolerance. The mortality of the IJs after HTA increased with the increasing concentrations of the test IJs and the storage

  20. SAXS investigations on lipid membranes under osmotic stress

    International Nuclear Information System (INIS)

    Full text: In this work we, experimentally, investigate the interactions between lipid bilayers. A structural characterization is performed by small angle x-ray scattering (SAXS) on multilamellar systems under known osmotic pressure. Changes in the composition of membranes can modify their mechanical properties and structural parameters, like the flexibility of these membranes, which plays a key role on the determination of the tridimensional organization of bilayers. The membranes are composed of soya lecithin, where the major component is DPPC (Dipalmitoylphosphatidylcholine), and fatty acids are incorporated to the membrane in different concentrations, in order to turn the membrane more fluid. The membranes are inserted in a solution of PVP [poly(vinyl-pyrrolidone) - 40000] and the polymer will apply an osmotic pressure on them. The osmotic pressure is controlled by preparing PVP solutions of desired composition and, as we know the concentration of polymer in solution, we can obtain the intensity of the osmotic pressure. SAXS experiments were done in order to determine the distance between the bilayer. From the position of the Bragg peaks, the lamellar periodicity (the thickness of the membranes plus their distance of separation) was determined. Using theoretical model for the form and structure factors we fitted those experimental data and determined the thickness of the membranes. The distance between the membranes was controlled by the osmotic pressure (P) applied to the membranes and, for a given pressure, we determine the distance between the bilayers (a) on equilibrium. The experimental curve P(a) is theoretically described by the different contributions from van der Waals, hydration and fluctuation forces. From the fitting of experimental curves, relevant parameters characterizing the strength of the different interactions are obtained, such as Hamaker and rigidity constant [2, 3]. We observe that the separation between the bilayers on equilibrium is

  1. Osmotic Properties of Charged Cylinders: Critical Evaluation of Counterion Condensation Theory

    OpenAIRE

    Hansen, Per Lyngs; Podgornik, Rudi; Parsegian, V. Adrian

    2000-01-01

    The osmotic coefficient of B-DNA in water may, in moderately dilute solutions, deviate as much as 100 % from predictions based on a simple 'counterion condensation' theory. We determine the results for osmotic properties via a cell model description of the ionic atmosphere near a cylindrical polyelectrolyte. The cell model predictions for the osmotic properties disagree with predictions based on simple condensation theory, but are in surprisingly good harmony with experimental findings. We ar...

  2. Advances in understanding of osmotic dehydration and vacuum impregnation of fruits

    OpenAIRE

    Tylewicz, Urszula

    2011-01-01

    Osmotic Dehydration and Vacuum Impregnation are interesting operations in the food industry with applications in minimal fruit processing and/or freezing, allowing to develop new products with specific innovative characteristics. Osmotic dehydration is widely used for the partial removal of water from cellular tissue by immersion in hypertonic (osmotic) solution. The driving force for the diffusion of water from the tissue is provided by the differences in water chemical potential between ...

  3. Formulation and evaluation of verapamil hydrochloride osmotic controlled release matrix tablets

    OpenAIRE

    Vidyadhara, S.; R. L. C. Sasidhar; V Uma Maheswara Rao; C. H. Showri Babu; D. Lakshmi Harika

    2014-01-01

    Osmotically controlled oral drug delivery systems utilize osmotic pressure as energy source for the controlled delivery of drugs, independent of pH and hydrodynamic conditions of gastrointestinal tract (GIT). The present study was aimed to develop osmotic controlled extended release formulations of verapamil hydrochloride an angiotensin II receptor antagonist with anti-hypertensive activity. Verapamil hydrochloride matrix tablets were prepared by direct compression process using hydroxypropyl...

  4. Development and Evaluation of Swellable Elementary Osmotic Pump Tablet of Glipizide

    OpenAIRE

    Preethi N; Sujatha S

    2013-01-01

    A novel type of elementary osmotic pump [EOP] tablet for efficient delivery of poorly water-soluble drug, glipizide has been designed. Drug release from the system, called Swellable Elementary Osmotic Pump [SEOP], is through a delivery orifice in the form of a very fine dispersion, ready for dissolution and absorption. SEOP tablets were prepared by compressing the mixture of micronized drug and excipients into convex tablet. The effect of wetting agent, swelling agent, osmotic agent and hydro...

  5. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution.

    Science.gov (United States)

    Shi, Yan; Xiong, Dangsheng; Liu, Yuntong; Wang, Nan; Zhao, Xiaoduo

    2016-08-01

    The potential of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) hydrogels as articular cartilage replacements was in vitro evaluated by using a macromolecule-based solution to mimic the osmotic environment of cartilage tissue. The effects of osmotic pressure solution on the morphology, crystallinity, swelling, mechanical and friction properties of PVA/PVP hydrogels were investigated by swelling them in non-osmotic and osmotic pressure solutions. The results demonstrated that swelling ratio and equilibrium water content were greatly reduced by swelling in osmotic solution, and the swelling process was found to present pseudo-Fickian diffusion character. The crystallization degree of hydrogels after swelling in osmotic solution increased more significantly when it compared with that in non-osmotic solution. After swelling in osmotic solution for 28days, the compressive tangent modulus and storage modulus of hydrogels were significantly increased, and the low friction coefficient was reduced. However, after swelling in the non-osmotic solution, the compressive tangent modulus and friction coefficient of hydrogels were comparable with those of as-prepared hydrogels. The better material properties of hydrogels in vivo than in vitro evaluation demonstrated their potential application in cartilage replacement. PMID:27157740

  6. An osmotic model of the growing pollen tube.

    Directory of Open Access Journals (Sweden)

    Adrian E Hill

    Full Text Available Pollen tube growth is central to the sexual reproduction of plants and is a longstanding model for cellular tip growth. For rapid tip growth, cell wall deposition and hardening must balance the rate of osmotic water uptake, and this involves the control of turgor pressure. Pressure contributes directly to both the driving force for water entry and tip expansion causing thinning of wall material. Understanding tip growth requires an analysis of the coordination of these processes and their regulation. Here we develop a quantitative physiological model which includes water entry by osmosis, the incorporation of cell wall material and the spreading of that material as a film at the tip. Parameters of the model have been determined from the literature and from measurements, by light, confocal and electron microscopy, together with results from experiments made on dye entry and plasmolysis in Lilium longiflorum. The model yields values of variables such as osmotic and turgor pressure, growth rates and wall thickness. The model and its predictive capacity were tested by comparing programmed simulations with experimental observations following perturbations of the growth medium. The model explains the role of turgor pressure and its observed constancy during oscillations; the stability of wall thickness under different conditions, without which the cell would burst; and some surprising properties such as the need for restricting osmotic permeability to a constant area near the tip, which was experimentally confirmed. To achieve both constancy of pressure and wall thickness under the range of conditions observed in steady-state growth the model reveals the need for a sensor that detects the driving potential for water entry and controls the deposition rate of wall material at the tip.

  7. Central pontine myelinolysis with meticulous correction of hyponatraemia in chronic alcoholics.

    Science.gov (United States)

    Malhotra, Konark; Ortega, Luis

    2013-01-01

    Central pontine myelinolysis is a demyelinating disorder that arises due to osmolar disturbances in the cerebral microenvironment characterised by loss of the myelin sheath of neurons. The diffusion-weighting imaging sequence of MRI is the most sensitive diagnostic imaging modality for myelinolysis. The rapid correction of hyponatraemia by >20-25 mmol/L/48 h has been known for a long time as a prime cause of osmotic demyelination. Various other comorbidities in hyponatraemic patients are well known that can lead to osmotic demyelination such as alcoholism, hypoxaemia, severe liver disease, malignancy, burns, liver transplantation and malnutrition. Chronic alcohol abusers with additional liver disease and malnutrition have altered osmotic equilibrium at baseline that predisposes them to osmotic demyelination. We suggest a more cautious and meticulous approach should be followed in these patients to avoid the dreaded complication. PMID:23813514

  8. Sporadic hypokalemic paralysis caused by osmotic diuresis in diabetes mellitus.

    Science.gov (United States)

    Vishnu, Venugopalan Y; Kattadimmal, Anoop; Rao, Suparna A; Kadhiravan, Tamilarasu

    2014-07-01

    A wide variety of neurological manifestations are known in patients with diabetes mellitus. We describe a 40-year-old man who presented with hypokalemic paralysis. On evaluation, we found that the cause of the hypokalemia was osmotic diuresis induced by marked hyperglycemia due to undiagnosed diabetes mellitus. The patient had an uneventful recovery with potassium replacement, followed by glycemic control with insulin. Barring a few instances of symptomatic hypokalemia in the setting of diabetic emergencies, to our knowledge uncomplicated hyperglycemia has not been reported to result in hypokalemic paralysis. PMID:24472241

  9. The osmotic tissue expander: a three-year clinical experience.

    Science.gov (United States)

    Obdeijn, Miryam C; Nicolai, Jean-Philippe A; Werker, Paul M N

    2009-09-01

    Closure of defects after trauma or excision of neoplasms is a basic skill in plastic surgery. Local, regional and distant flaps lead to additional scars. Skin recruitment by serial excision or skin expansion is a less damaging option for defects that must be closed. Advantages of tissue expansion include good colour and texture match. Disadvantages are the need for a second operation, use of an implant with the attendant risk of infection, time needed for inflation of the device, repeat visits to the clinic, and punctures to inflate the expander. To overcome the last disadvantage, an osmotic expander was developed in Germany in 1999 by OSMED GmbH (Ilmenau). PMID:18755643

  10. Optimization of process parameters for osmotic dehydration of papaya cubes

    OpenAIRE

    S.K. Jain; R. C. Verma; Murdia, L. K.; Jain, H. K.; Sharma, G. P.

    2010-01-01

    Process temperature (30, 40 and 50 °C), syrup concentration (50, 60 and 70o Brix) and process time (4, 5 and 6 h) for osmotic dehydration of papaya (Carica papaya) cubes were optimized for the maximum water loss and optimum sugar gain by using response surface methodology. The peeled and pre-processed papaya cubes of 1 cm size were immersed in sugar syrup at constant temperature water bath having syrup to papaya cubes ratio of 4:1 (w/w). The cubes were removed from bath at pre-decided time, r...

  11. Lithium clearance in chronic nephropathy

    DEFF Research Database (Denmark)

    Kamper, A L; Holstein-Rathlou, N H; Leyssac, P P;

    1989-01-01

    1. Lithium clearance measurements were made in 72 patients with chronic nephropathy of different aetiology and moderate to severely reduced renal function. 2. Lithium clearance was strictly correlated with glomerular filtration rate, and there was no suggestion of distal tubular reabsorption of...... lithium or influence of osmotic diuresis. 3. Fractional reabsorption of lithium was reduced in most patients with glomerular filtration rates below 25 ml/min. 4. Calculated fractional distal reabsorption of sodium was reduced in most patients with glomerular filtration rates below 50 ml/min. 5. Lithium...... lithium clearance may be a measure of the delivery of sodium and water from the renal proximal tubule. With this assumption it was found that adjustment of the sodium excretion in chronic nephropathy initially takes place in the distal parts of the nephron (loop of Henle, distal tubule and collecting duct...

  12. Augmentation of peristaltic microflows through electro-osmotic mechanisms

    International Nuclear Information System (INIS)

    The present work aims to theoretically establish that the employment of an axial electric field can substantially augment the rate of microfluidic transport occurring in peristaltic microtubes. For theoretical analysis, shape evolution of the tube is taken to be arbitrary, except for the fact that the characteristic wavelength is assumed to be significantly greater than the average radius of cross section. First, expressions for the velocity profile within the tube are derived and are subsequently utilized to obtain variations in the net flow rate across the same, as a function of the pertinent system parameters. Subsequently, the modes of interaction between the electro-osmotic and peristaltic mechanisms are established through the variations in the time-averaged flow rates for zero pressure rise and the pressure rise for zero time-averaged flow rates, as expressed in terms of the occlusion number, characteristic electro-osmotic velocity and the peristaltic wave speed. From the simulation predictions, it is suggested that a judicious combination of peristalsis and an axial electrokinetic body force can drastically enhance the time-averaged flow rate, provided that the occlusion number is relatively small

  13. Thermal and Osmotic Tolerance of 'Irukandji' Polyps: Cubozoa; Carukia barnesi.

    Directory of Open Access Journals (Sweden)

    Robert Courtney

    Full Text Available This research explores the thermal and osmotic tolerance of the polyp stage of the Irukandji jellyfish Carukia barnesi, which provides new insights into potential polyp habitat suitability. The research also targets temperature, salinity, feeding frequency, and combinations thereof, as cues for synchronous medusae production. Primary findings revealed 100% survivorship in osmotic treatments between 19 and 46‰, with the highest proliferation at 26‰. As salinity levels of 26‰ do not occur within the waters of the Great Barrier Reef or Coral Sea, we conclude that the polyp stage of C. barnesi is probably found in estuarine environments, where these lower salinity conditions commonly occur, in comparison to the medusa stage, which is oceanic. Population stability was achieved at temperatures between 18 and 31°C, with an optimum temperature of 22.9°C. We surmise that C. barnesi polyps may be restricted to warmer estuarine areas where water temperatures do not drop below 18°C. Asexual reproduction was also positively correlated with feeding frequency. Temperature, salinity, feeding frequency, and combinations thereof did not induce medusae production, suggesting that this species may use a different cue, possibly photoperiod, to initiate medusae production.

  14. Osmotic concentration of polypeptides from hemofiltrate of uremic patients.

    Science.gov (United States)

    Ehrlich, K; Holland, F; Turnham, T; Klein, E

    1980-07-01

    Hemofiltrate from uremic patients was concentrated 15- to 40-fold by osmotic removal of water across a reverse osmosis membrane which retains salts and proteins. Salts and low molecular weight components were removed from the concentrate by partial dialysis using a highly impermeable cellulose membrane. Following this desalting step, 100- to 500-fold concentration could be achieved by evaporation at low pressure. The concentrate was fractionated on Sephadex G15 columns. Fractions were tested for their toxicity to human cells in culture. Fractions containing components with molecular weights greater than 700 daltons inhibited 3H-thymidine incorporation into the DNA of HeLa and skin fibroblast cells more than did low molecular weight peptides and an iso-osmolar control. Components eluting in the molecular weight range of angiotensin I and vitamin B-12 were most inhibitory. These studies show that hemofiltrate from uremic patients is a readily available source of toxic polypeptides. The osmotic concentration and gel chromatographic procedures described should make available large amounts of these molecules for further studies. PMID:7408253

  15. Electro-osmotic flow enhancement in carbon nanotube membranes.

    Science.gov (United States)

    Mattia, Davide; Leese, Hannah; Calabrò, Francesco

    2016-02-13

    In this work, experimental evidence of the presence of electro-osmotic flow (EOF) in carbon nanotube membranes with diameters close to or in the region of electrical double layer overlap is presented for two different electrolytes for the first time. No EOF in this region should be present according to the simplified theoretical framework commonly used for EOF in micrometre-sized channels. The simplifying assumptions concern primarily the electrolyte charge density structure, based on the Poisson-Boltzmann (P-B) equation. Here, a numerical analysis of the solutions for the simplified case and for the nonlinear and the linearized P-B equations is compared with experimental data. Results show that the simplified solution produces a significant deviation from experimental data, whereas the linearized solution of the P-B equation can be adopted with little error compared with the full P-B case. This work opens the way to using electro-osmotic pumping in a wide range of applications, from membrane-based ultrafiltration and nanofiltration (as a more efficient alternative to mechanical pumping at the nanoscale) to further miniaturization of lab-on-a-chip devices at the nanoscale for in vivo implantation. PMID:26712647

  16. Does osmotic distillation change the isotopic relation of wines?

    Directory of Open Access Journals (Sweden)

    Schmitt Matthias

    2014-01-01

    Full Text Available Currently partial alcohol reduction of wine is in the focus of research worldwide. There are several technologies available to achieve this target. These techniques are either based on distilling or membrane processes. Osmotic distillation, one of the possibilities, is a quite modern membrane process that can be used. During that process, wine is pumped in counter flow to water along a micro porous, hydrophobic membrane. The volatile components of the wine can permeate that membrane and are dissolved in water. The driving force of that process is the vapor pressure difference between the volatiles on the wine and water side of the membrane. The aim of this work was to determine if the alcohol reduction by osmotic distillation can change the isotopic relation in a wine. Can this enological practice change the composition of a wine in a way that an illegal water addition is simulated? Different wines were reduced by 2% alcohol v/v with varying process parameters. The isotopic analysis of the O 16/18 ratio in the wine were performed according to the OIV methods (353/2009 These analyses showed that the isotopic ratio is modified by an alcohol reduction of 2% v/v in a way that corresponds to an addition of 4–5% of external water.

  17. Osmotically driven flows in microchannels separated by a semipermeable membrane

    CERN Document Server

    Jensen, Kaare Hartvig; Bohr, Tomas; Bruus, Henrik

    2008-01-01

    We perform experimental investigations of osmotically driven flows in artificial microchannels by studying the dynamics and structure of the front of a sugar solution traveling in 200 um wide and 50-200 um deep microchannels. We find that the sugar front travels with constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance, predicts that the sugar front indeed should travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed and a linear relation between the sugar concentration and the speed. We thus find good agreement between the experimental results and the predictions of the model. Our motivation for studying osmotically driven flows is that they are believed to be responsible for the translocation of sugar in plants through the phloem sieve element cells. Also, we ...

  18. Chronic intrastriatal dopamine infusions in rats with unilateral lesions of the substantia nigra

    International Nuclear Information System (INIS)

    This study examined the effects of continuously supplied dopamine delivered directly into the dopamine-deficient striatum. Rats received unilateral lesions of the substantia nigra by stereotaxic administration of 6-hydroxydopamine and were tested for apomorphine-induced rotational behavior and general activity. Osmotic mini-pumps were filled with dopamine in various concentrations, implanted subcutaneously and connected to a cannula implanted directly into the striatum. The system delivered solution at a rate of .5 μl/hr for two weeks. Dopamine in a dosage of 0.5 μg/per hour reduced apomorphine-induced rotational behavior by a mean of 52 +/- 5.8% (mean +/- SEM n=20) with a maximal individual decrease of 99%. There was no change in general activity or increase in stereotype behavior. Infusions of vehicle solutions did not decrease rotational behavior. Spread of the infused dopamine and its metabolites was estimated by adding 3H-dopamine to the pumps in tracer quantities. Radioactivity was highly concentrated at the infusion site and decreased rapidly within a few mm from the infusion site. Continuous infusion methods may eventually prove to be effective in the treatment of nigro-striatal degenerative disease. 12 references, 4 figures

  19. Chronic intrastriatal dopamine infusions in rats with unilateral lesions of the substantia nigra

    Energy Technology Data Exchange (ETDEWEB)

    Hargraves, R.; Freed, W.J.

    1987-03-09

    This study examined the effects of continuously supplied dopamine delivered directly into the dopamine-deficient striatum. Rats received unilateral lesions of the substantia nigra by stereotaxic administration of 6-hydroxydopamine and were tested for apomorphine-induced rotational behavior and general activity. Osmotic mini-pumps were filled with dopamine in various concentrations, implanted subcutaneously and connected to a cannula implanted directly into the striatum. The system delivered solution at a rate of .5 ..mu..l/hr for two weeks. Dopamine in a dosage of 0.5 ..mu..g/per hour reduced apomorphine-induced rotational behavior by a mean of 52 +/- 5.8% (mean +/- SEM n=20) with a maximal individual decrease of 99%. There was no change in general activity or increase in stereotype behavior. Infusions of vehicle solutions did not decrease rotational behavior. Spread of the infused dopamine and its metabolites was estimated by adding /sup 3/H-dopamine to the pumps in tracer quantities. Radioactivity was highly concentrated at the infusion site and decreased rapidly within a few mm from the infusion site. Continuous infusion methods may eventually prove to be effective in the treatment of nigro-striatal degenerative disease. 12 references, 4 figures.

  20. Preparation and In Vitro/In Vivo Evaluation of Vinpocetine Elementary Osmotic Pump System

    Directory of Open Access Journals (Sweden)

    Meiying Ning

    2011-01-01

    Full Text Available Preparation and in vitro and in vivo evaluation of vinpocetine (VIN elementary osmotic pump (EOP formulations were investigated. A method for the preparation of VIN elementary osmotic pump tablet was obtained by adding organic acid additives to increase VIN solubility. VIN was used as the active pharmaceutical ingredient, lactose and mannitol as osmotic agent. Citric acid was used as increasing API solubility and without resulting in the API degradation. It is found that the VIN release rate was increasing with the citric acid amount at a constant range. Cellulose acetate 398-3 was employed as semipermeable membrane containing polyethylene glycol 6000 and diethyl-o-phthalate as pore-forming agent and plasticizer for controlling membrane permeability. In addition, a clear difference between the pharmacokinetic patterns of VIN immediate release and VIN elementary osmotic pump formulations was revealed. The area under the plasma concentration-time curve after oral administration of elementary osmotic pump formulations was equivalent to VIN immediate release formulation. Furthermore, significant differences found for mean residence time, elimination half-life, and elimination rate constant values corroborated prolonged release of VIN from elementary osmotic pump formulations. These results suggest that the VIN osmotic pump controlled release tablets have marked controlled release characters and the VIN osmotic pump controlled release tablets and the normal tablets were bioequivalent.

  1. The osmotic pressure of 3He-4He mixtures along the phase separation curve

    International Nuclear Information System (INIS)

    The osmotic pressure of 3He-4He mixtures was measured along the phase separation curve at temperatures up to 500 mK by balancing it with the fountain pressure of pure 4He. The usefullness of the secondary osmotic pressure thermometer was reinvestigated. (Auth.)

  2. Renal blood flow, early distal sodium, and plasma renin concentrations during osmotic diuresis

    DEFF Research Database (Denmark)

    Leyssac, P P; Holstein-Rathlou, N H; Skøtt, O

    2000-01-01

    significant inverse relationship between superficial nephron ED(NaCl) and PRC. We conclude that ED(Na) decreases during osmotic diuresis, suggesting that the increase in PRC was mediated by the macula densa. The results suggest that the natriuresis during osmotic diuresis is a result of impaired sodium...

  3. Sedimentation equilibria of ferrofluids: II. Experimental osmotic equations of state of magnetite colloids

    NARCIS (Netherlands)

    Luigjes, B.; Thies-Weesie, D.M.E.; Erné, B.H.; Philipse, A.P.

    2012-01-01

    The first experimental osmotic equation of state is reported for well-defined magnetic colloids that interact via a dipolar hard-sphere potential. The osmotic pressures are determined from the sedimentation equilibrium concentration profiles in ultrathin capillaries using a low-velocity analytical c

  4. ‘Wine Glass’ sign in recurrent postpartum hypernatremic osmotic cerebral demyelination

    OpenAIRE

    Saroja, Aralikatte O.; Karkal R Naik; Rajendra V Mali; Sanjeeva R Kunam

    2013-01-01

    Osmotic demyelination syndrome resulting from postpartum hypernatremia is a recently described entity wherein young women present with hypernatremic encephalopathy and white matter hyperintensities along with quadriparesis from rhabdomyolysis. It is an acute monophasic condition with acute hypernatremia occurring during puerperium with good recovery in majority of the patients with treatment. To the best of our knowledge, recurrent postpartum hypernatremia with encephalopathy, osmotic demyeli...

  5. Colloid osmotic pressure in decompensated cirrhosis. A 'mirror image' of portal venous hypertension

    DEFF Research Database (Denmark)

    Henriksen, J H

    1985-01-01

    Colloid osmotic pressure in plasma (IIP) and ascitic fluid (IIA) and hydrostatic pressures in the hepatoportal system were measured simultaneously in 20 patients with decompensated cirrhosis. IIP was significantly decreased (mean, 21 mm Hg, versus normal, 30 mm Hg; P less than 0.01), and IIA was....../IIP (r = -0.77, P less than 0.001). WHV--IVCP was in most patients in the same order as and closely correlated to effective colloid osmotic pressure (IIP--IIA) (r = 0.88, P less than 0.001). No relationship was found between WHV--IVCP and IIP. The results indicate that a fall in colloid osmotic pressure...... in the interstitial space and ascitic fluid is related to and most likely secondary to the elevated portal pressure in decompensated cirrhosis. Effective colloid osmotic pressure may therefore be regarded as a 'mirror image' of transmural portal pressure. The role of colloid osmotic pressure in the...

  6. Design and Development of Osmotic Drug Delivery System for Anti-Hypertensive Agent

    Directory of Open Access Journals (Sweden)

    Shah N

    2013-04-01

    Full Text Available Controlled porosity osmotic tablet of Atenolol prepared and evaluated in this study. Atenolol is v lowsoluble drug. So it is difficult to formulate osmotic tablet of Atenolol which gives drug release up to 24hr at zero order. To get desired dissolution profile various formulation parameters like osmogenconcentration, level of weight gain and level of pore former concentration were studied. Polysorbate 80was added as solubilizer to increase its dissolution rate and get drug release up to 24 hr at zero order. Asconcentration of solubilizer increases, dissolution rate increases. Final optimized formulation wasstudied for effect of pH of dissolution media, agitation intensity and osmotic pressure of dissolutionmedia. There is no effect of pH of dissolution media and agitation intensity on dissolution. There issignificant effect of osmotic pressure on dissolution confirms that prepared Atenolol tablet gives drugrelease in osmotically control manner.

  7. ENHANCING OSMOTIC DEHYDRATION WITH ACOUSTIC CAVITATION%声空化强化渗透脱水

    Institute of Scientific and Technical Information of China (English)

    孙宝芝; 姜任秋; 淮秀兰; 李斌; 刘登瀛

    2004-01-01

    An experimental study was carried out to enhance osmotic dehydration of fruits--apples using acoustic cavitation. The variation in water losses and dry matter gain rates of materials with solute concentration, cavitation intensity, the thickness of materials and treating time segment during osmotic dehydration was discussed, at the same time, the influence of different materials on mass transfer during osmotic dehydration using acoustic cavitation was investigated. The results showed that water losses rates of materials were remarkably increased during osmotic dehydration using acoustic cavitation, but dry matter gain rates increased very little. Meanwhile the physical mechanism of enhanced mass transfer during osmotic dehydration with acoustic cavitation was clarified on the basis of analyzing the experimental results.

  8. Osmotic pressure induced tensile forces in tendon collagen

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J.; Fratzl, Peter

    2015-01-01

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  9. Effect of osmotic pressure to bioimpedance indexes of erythrocyte suspensions

    Science.gov (United States)

    Melnikov, A. A.; Nikolaev, D. V.; Malahov, M. V.; Smirnov, A. V.

    2012-12-01

    In the paper we studied effects of osmotic modification of red blood cells on bioimpedance parameters of erythrocyte suspension. The Cole parameters: the extracellular (Re) and intracellular (Ri) fluid resistance, the Alpha parameter, the characteristic frequency (Fchar) and the cell membranes capacitance (Cm) of concentrated erythrocyte suspensions were measured by bioimpedance analyser in the frequency range 5 - 500 kHz. Erythrocytes were incubated in hypo-, hyper- and isoosmotic solutions to achieve changes in cell volume. It was found that Re and Alpha increased in the suspensions with low osmolarity and decreased in the hypertonic suspensions. Ri, Fchar and Cm were higher in the hyperosmotic and were lower in the hypoosmotic suspensions. Correlations of all BIS parameters with MCV were obtained, but multiple regression analysis showed that only Alpha parameter was independently related to MCV (β=0.77, p=0.01). Thus Alpha parameter may be related the mean corpuscular volume of cells.

  10. Effect of osmotic pressure to bioimpedance indexes of erythrocyte suspensions

    International Nuclear Information System (INIS)

    In the paper we studied effects of osmotic modification of red blood cells on bioimpedance parameters of erythrocyte suspension. The Cole parameters: the extracellular (Re) and intracellular (Ri) fluid resistance, the Alpha parameter, the characteristic frequency (Fchar) and the cell membranes capacitance (Cm) of concentrated erythrocyte suspensions were measured by bioimpedance analyser in the frequency range 5 – 500 kHz. Erythrocytes were incubated in hypo-, hyper- and isoosmotic solutions to achieve changes in cell volume. It was found that Re and Alpha increased in the suspensions with low osmolarity and decreased in the hypertonic suspensions. Ri, Fchar and Cm were higher in the hyperosmotic and were lower in the hypoosmotic suspensions. Correlations of all BIS parameters with MCV were obtained, but multiple regression analysis showed that only Alpha parameter was independently related to MCV (β=0.77, p=0.01). Thus Alpha parameter may be related the mean corpuscular volume of cells.

  11. Osmotically driven flows in microchannels separated by a semipermeable membrane

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Lee, J.; Bohr, Tomas;

    2009-01-01

    We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 mu m wide and 50-200 mu...... m deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance......, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental...

  12. The effect of chronic osmotic disturbance on the concentrations of cations in cerebrospinal fluid.

    Science.gov (United States)

    Bradbury, M W; Kleeman, C R

    1969-09-01

    1. Adult cats were rendered hypo- and hypernatraemic by peritoneal dialysis. These states were maintained for periods of 2-5 days.2. The concentrations in cerebrospinal fluid (c.s.f.) of the cations, potassium, calcium and magnesium all decreased in the hyponatraemic animals and increased in the hypernatraemic animals. These shifts in c.s.f. cation concentrations did not relate to plasma changes in the same cations, which were often in the opposite direction.3. The relations of the cation concentrations to c.s.f. sodium were not linear and, in the cases of calcium and magnesium, the relevant cation concentration related better to the square rather than the first power of the c.s.f. sodium concentration.4. Brain water changed much less in the hypo- and hypernatraemic animals than might be anticipated from the shifts in blood osmolarity, plasma sodium concentration and muscle water.5. Isotonicity of the fluids in brain with blood plasma and c.s.f. appeared to be largely maintained by loss or gain of sodium and chloride ions by this tissue.6. The c.s.f. results may be partly due to a constant influx of the cation in question being diluted with more formed c.s.f. in hyponatraemia and less c.s.f. in hypernatraemia, but the deviations from linearity in the plots of c.s.f. cation against c.s.f. sodium suggest the influence of other factors. PMID:5352043

  13. GABA not only a neurotransmitter: osmotic regulation by GABAAR signalling

    Directory of Open Access Journals (Sweden)

    Tiziana Cesetti

    2012-01-01

    Full Text Available In neurons the anionic channel γ-aminobutyric (GABA A receptor (GABAAR plays a central role in mediating both the neurotrophic and neurotransmitter role of GABA. Activation of this receptor by GABA also affects the function of non-neuronal cells in the central nervous system (CNS, as GABAARs are expressed in mature macroglia and in almost all progenitor types, including neural stem cells. The relevance of GABA signalling in non-neuronal cells has been comparatively less investigated than in neurons. However, it is becoming increasingly evident that these cells are direct targets of GABA regulation. In non-neuronal cells GABAAR activation leads to influx or efflux of chloride (Cl- depending on the electrochemical gradient. Ion transport is indissolubly associated to water fluxes across the plasma membrane and plays a key role in brain physiology. Therefore, GABAAR could affect osmotic tension in the brain by modulating ion gradients. In addition, since water movements also occur through specialized water channels and transporters, GABAAR signalling could affect the movement of water also by regulating the function of the channels and transporters involved, thereby affecting not only the direction of the water fluxes but also their dynamics. This regulation has consequences at the cellular level as it modulates cell volume and activates multiple intracellular signalling mechanisms important for cell proliferation, maturation and survival. It may also have consequences at the systemic level. For example, it may indirectly control neuronal excitability, by regulating the extracellular space and interstitial concentration of Cl-, and contribute to brain water homeostasis. Therefore, GABAergic osmotic regulation should be taken into account during the treatment of pathologies requiring the administration of GABAAR modulators and for the development of therapies for diseases causing water unbalance in the brain.

  14. Atrial natriuretic peptide mediates oxytocin secretion induced by osmotic stimulus.

    Science.gov (United States)

    Chriguer, Rosengela S; Antunes-Rodrigues, José; Franci, Celso R

    2003-02-15

    Atrial natriuretic peptide (ANP), first discovered in the heart, has been also detected in various brain regions involved in the control of cardiovascular function and water and sodium balance. The anteroventral region of the third ventricle (AV3V) and the subfornical organ (SFO) have ANP-immunoreactive projections towards the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Extracellular fluid (ECF) hyperosmolality stimulates the secretion of oxytocin (OT) which induces ANP release by the atrium. On the other hand, passive immunoneutralization of ANP reduces OT secretion in response to ECF hypertonicity. Previous studies have shown the co-localization of ANP and OT in PVN and SON neurons and in the periventricular region, as well as the presence of ANPergic and oxytocinergic neurons in the median eminence. The aim of the present study was to investigate the OT and ANP content in the SON and PVN of the hypothalamus and in the posterior pituitary (PP) after an osmotic stimulus that induces OT secretion. The results showed that intracerebroventricular microinjection of normal rabbit serum (NRS) or of ANP antiserum followed or not by an intraperitoneal injection of isotonic saline did not alter OT secretion or OT content in the PVN, SON, and PP; passive ANP immunoneutralization reduced the basal content of ANP in the PVN, SON, and PP of animals in a situation of isotonicity; the ANP antiserum inhibited the increase of OT secretion and content of OT and ANP in the PVN, SON and PP induced by the osmotic stimulus. Thus, the increase in plasma OT and oxytocinergic neurons of the hypothalamus-posterior pituitary system in response to hypertonicity depends on the action of endogenous ANP, i.e., ECF hypertonicity must activate ANPergic neurons which directly or indirectly stimulate OT release. PMID:12576148

  15. Osmotic pressure of ionic liquids in an electric double layer: Prediction based on a continuum model

    Science.gov (United States)

    Moon, Gi Jong; Ahn, Myung Mo; Kang, In Seok

    2015-12-01

    An analysis has been performed for the osmotic pressure of ionic liquids in the electric double layer (EDL). By using the electromechanical approach, we first derive a differential equation that is valid for computing the osmotic pressure in the continuum limit of any incompressible fluid in EDL. Then a specific model for ionic liquids proposed by Bazant et al. [M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett. 106, 046102 (2011), 10.1103/PhysRevLett.106.046102] is adopted for more detailed computation of the osmotic pressure. Ionic liquids are characterized by the correlation and the steric effects of ions and their effects are analyzed. In the low voltage cases, the correlation effect is dominant and the problem becomes linear. For this low voltage limit, a closed form formula is derived for predicting the osmotic pressure in EDL with no overlapping. It is found that the osmotic pressure decreases as the correlation effect increases. The osmotic pressures at the nanoslit surface and nanoslit centerline are also obtained for the low voltage limit. For the cases of moderately high voltage with high correlation factor, approximate formulas are derived for estimating osmotic pressure values based on the concept of a condensed layer near the electrode. In order to corroborate the results predicted by analytical studies, the full nonlinear model has been solved numerically.

  16. A high pressure cell for simultaneous osmotic pressure and x-ray diffraction measurements

    International Nuclear Information System (INIS)

    In this paper, we report on a novel osmotic cell, developed to simultaneously subject a sample to osmotic stress and measure structural changes by small angle x-ray diffraction. The osmotic cell offers many advantages over more conventional methods of osmotically stressing soft materials to measure their structural response. In particular, a full osmotic analysis can be performed with a single small sample (25 μl). This reduces sample handling and the associated systematic errors, as well as enabling tight control and monitoring of the thermodynamic environment during osmosis, thereby increasing measurement precision. The cell design enables control of osmotic pressure to ±0.04 bar over a pressure range of 1-100 bar, and temperature control to ±0.05 deg. C. Under these conditions, the lattice spacing in lyotropic structures was resolved to better than ±0.005 A. Using the osmotic cell, we demonstrate good agreement with previous conventional measurements on the energy of dehydrating the fluid lamellar phase of dioleoylphosphatidylcholine in water.

  17. An overview of osmotic power generation and its scope in Pakistan

    International Nuclear Information System (INIS)

    The need of introducing innovative power generation methods is increasing rapidly. The conventional fuel driven methods not only require heavy financial investments, they have also been held responsible for many natural calamities faced by the human population. While the research on better utilizing the renewable resources such as wind, tidal and wave energy etc is underway, the Osmotic Power has been commercially introduced as a new fuel-free energy resource. The energy in the osmotic power is derived from the difference in salt concentration between the fresh water and the salt water. In an osmotic power plant, the river water is used as the fresh water and the sea water is treated as the salt water for getting electric power through osmosis. While the hydroelectric dams can threat irrigation activities in some areas by blocking the water supply, the osmotic plants are situated at locations where the river water falls into the sea and hence cause no water hold-ups. In this paper, we take an in-depth look into the technical methods and the associated challenges of the osmotic power generation. We highlight the scope of osmotic power in Pakistan. We identify important geographical locations in the country which can be ideal for setting up an osmotic power station. (author)

  18. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Zhu, Jianhua

    2010-04-16

    Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root-bending assay have previously identified salt overly sensitive (sos) mutants of Arabidopsis that fall into five loci, SOS1 to SOS5. These loci are required for the regulation of ion homeostasis or cell expansion under salt stress, but do not play a major role in plant tolerance to the osmotic stress component of soil salinity or drought. Here we report an additional sos mutant, sos6-1, which defines a locus essential for osmotic stress tolerance. sos6-1 plants are hypersensitive to salt stress and osmotic stress imposed by mannitol or polyethylene glycol in culture media or by water deficit in the soil. SOS6 encodes a cellulose synthase-like protein, AtCSLD5. Only modest differences in cell wall chemical composition could be detected, but we found that sos6-1 mutant plants accumulate high levels of reactive oxygen species (ROS) under osmotic stress and are hypersensitive to the oxidative stress reagent methyl viologen. The results suggest that SOS6/AtCSLD5 is not required for normal plant growth and development but has a critical role in osmotic stress tolerance and this function likely involves its regulation of ROS under stress. © 2010 Blackwell Publishing Ltd.

  19. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  20. Proline, glycine betaine, total phenolics and pigment contents in response to osmotic stress in maize seedlings

    Directory of Open Access Journals (Sweden)

    SAJJAD MOHARRAMNEJAD

    2015-12-01

    Full Text Available In order to evaluate the fresh weight, RWC, pigment content, total phenolics, proline and glycine betaine responses of maize inbred lines to osmotic stress, a factorial experiment was carried out under laboratory conditions with two maize inbred lines (B73 and MO17 and two osmotic stress levels induced by PEG (control and -0.6 MPa. Fresh weight significantly decreased under drought stress. On the basis of percent inhibition in fresh weight at the osmotic stress MO17 was ranked as tolerant (inhibition 45.30%, and B73 drought sensitive (inhibition more than 50%. Leaf relative water content (RWC was significantly decreased in both inbred lines under osmotic stress. The pigment concentrations were substantially declined in both maize inbreds under osmotic stressed conditions. However, this reduction was less in B73 than MO17. Osmoitc stress declined the levels of total phenolics in both maize inbreds. On the other hand, the osmotic stress markedly enhanced the levels of proline and glycine betaine in both maize inbreds, but this was more pronounced in MO17. The present results showed that osmotic stress retards the growth and some biochemical attributes of maize inbreds. In conclusion, the level of proline and glycine betaine in maize could improve drought tolerance.

  1. Oral supplementation of vitamin E reduces osmotic fragility of RBC in hemolytic anemic patients with G6PD deficiency

    International Nuclear Information System (INIS)

    Vitamin E has role in maintaining the integrity of red cell member by preventing oxidation of polyunsaturated fatty acids, thus protects cells from oxidative stress-induced lysis in G6PD deficiency. Changes in osmotic fragility of RBC and some absolute values like MCV, MCH and MCHC may occur in haemolytic anaemic patients with G6PD deficiency. To observe the effects of vitamin E supplementation on these changes in order to evaluate the role of this anti-oxidant vitamin in reducing chronic haemolysis in G6PD deficient patients. A total number of 102 subjects with age ranged of 5 to 40 years of both sexes were included in the study. Among them 68 were G6PD enzyme deficient patients, of whom 34 were in supplemented group (experimental group) and 34 were in non-supplemented group (control group). The supplemented group received vitamin E supplementation for 60 consecutive days at a dose of 800 IU/day for adult and 400 IU/day for children ?12 years (in a divided dose, i.e., 4 times daily). Age and sex matched 34 apparently healthy subjects with normal blood G6PD level were taken to observe the base line data (healthy control) and also for comparison. All the G6PD deficient patients were selected from Out Patient Department (OPD) of Haematology, Banglabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh from July 2005 to June 2006 and all healthy subjects were selected from personal contact. Blood G6PD level, osmotic fragility of RBC were measured by standard techniques and MCV, MCH, and MCHC were obtained by calculation. All the parameters were measured on day 1 of their first visit and also were on day 60 in deficient group. Data were compared among the deficient groups, also in supplemented group just before and after supplementation. Analysis of data was done by appropriate statistical method. Mean starting and completing points of osmotic fragility of RBC were significantly higher but MCV. MCH, MCHC were significantly lower in patients suffering from

  2. Osmotic coefficients of water for thorium nitrate solutions at 25, 37, and 50oC

    International Nuclear Information System (INIS)

    Vapor pressure osmometry was used to measure osmotic coefficients of water for thorium nitrate solutions at 25, 37, and 50oC and at molalities up to 0.2 mol·kg-1. The data were fitted to three- and four-parameter equations containing limiting-law terms for a 4:1 electrolyte. The variation of the osmotic coefficients as a function of temperature was found to be small. The results are compared to published values for the osmotic coefficients. (author)

  3. Osmotic stress-regulated the expression of glutathione peroxidase 3 in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    MIAO YuChen; GUO JingGong; LIU ErTao; LI Kun; DAI Jie; WANG PengCheng; CHEN Jia; SONG ChunPeng

    2007-01-01

    Gene expression of glutathione peroxidase 3 (ATGPX3) in response to osmotic stress was analyzed in Arabidopsis using ATGPX3 promoter-glucuronidase (GUS) transgenic plants. High levels of GUS expression were detected under osmotic stress in ATGPX3 promoter-GUS transgenic plants. Compared with the wild type, the growth and development of ATGPX3 mutants (atgpx3-1) were more sensitive to mannitol. In addition, the expression of RD29A, ABI1, ABI2 and RbohD in atgpx3-1 was induced by ABA stress. These results suggest that ATGPX3 might be involved in the signal transduction of osmotic stress.

  4. Posttranscriptional osmotic regulation of the sigma(s) subunit of RNA polymerase in Escherichia coli.

    OpenAIRE

    Muffler, A; Traulsen, D D; Lange, R. de; Hengge-Aronis, R

    1996-01-01

    The sigma(s) subunit of RNA polymerase (encoded by the rpoS gene) is a master regulator in a complex regulatory network that governs the expression of many stationary-phase-induced and osmotically regulated genes in Escherichia coli. rpoS expression is itself osmotically regulated by a mechanism that operates at the posttranscriptional level. Cells growing at high osmolarity already exhibit increased levels of sigma(s) during the exponential phase of growth. Osmotic induction of rpoS can be t...

  5. INVESTIGATION OF ULTRASOUND WAVES ON PRETREATMENT OF OSMOTIC DEHYDRATION OF CARROT SLICES

    OpenAIRE

    Tahmasebi, Soheila; Mirzaee, Somaye; Kaviyani, Mehdi; Tabrizi, Mahsa; Shariati, Mohammad

    2014-01-01

    In this study, carrot slices were put in glucose osmotic 50% at 1, 2 and 3 hr. Ultrasound waves, frequency 40 kH power 30 w/l, passed through container of osmotic solution and carrot slices. The results revealed that significant increasing of dry matter of sample by using ultrasound waves.pre osmotic time had a significant on dry material by increasing from 1to 3 hr.sample treated by ultrasound waves lost water faster and their final dry solid was significantly more than control (without ultr...

  6. Physicochemical characteristics of guava “Paluma” submitted to osmotic dehydration

    OpenAIRE

    Roselene Ferreira Oliveira; Lia Mara Moterlle; Edmar Clemente

    2014-01-01

    The aim of this work was to evaluate the conservation post process osmotic of guava stored temperature at 5oC. Guava (Psidium guajava L.), red variety “Paluma” minimally processed by mild osmotic dehydration, were packaged in polyethylene terephthalate (PET) and stored temperature at 5ºC. Non-treated guava, packed in PET trays, was used as control. The treatment used was osmotic dehydration in sucrose syrup at 60ºBrix and physicochemical determinations were pH, total soluble solids (TSS), tot...

  7. Oral push-pull osmotic pumps of pentazocine hydrochloride: Development and evaluation

    Directory of Open Access Journals (Sweden)

    Mishra B

    2006-01-01

    Full Text Available The present study was aimed to formulate and evaluate oral osmotic pumps of pentazocine HCl that are expected to deliver the drug as solution for prolonged period of time with reduced frequency of drug administration and reduced side effects. Push-Pull osmotic pumps of pentazocine HCl were prepared using different formulation variables like diameter of pores, presence of surfactant in formulation core, addition of osmopolymer pectin and presence/absence of water-soluble polymer (carboxymethylcellulose sodium. Fabricated osmotic pumps were evaluated for weight variation, coating thickness, pore diameter, drug content and in vitro release studies. Release rates were found to be independent of size of pores, agitation intensity, and pH of the release medium. The presence of surfactant, water-soluble polymer and osmopolymer (pectin affected the drug release significantly. Almost all the osmotic pumps gave controlled and prolonged drug release profiles beyond 2 h of lag phase.

  8. Selection and characterization of tomato plants for osmotic stress tolerance derived from a gamma ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kwon Kyoo; Jung, Yu Jin [Hankyong National University, Anseong (Korea, Republic of)

    2010-09-15

    The present study has been performed to select the osmotic tolerant lines using polyethylene glycol (PEG 6000)through an in vitro and in vivo mutagensis with a gamma-ray. During the screening, we selected three mutant lines that seemed to confer elevated osmotic tolerance in high concentrations of PEG 6000. Fruits of these mutants (Os-HK101, Os-HK102 and Os-HK103) were those of the wild type. Also the chlorophyll contents were few decreased more in the three mutant lines than the WT plants. Our results suggest that the Os-HK101 is characterized as osmotic stress tolerance considering the sugar concentration and lycopine content. It is expected that the result of this study can be used for breeding more competitive species with respect to contents in sugar or functional chemicals from the selected osmotic resistant lines.

  9. The osmotic second virial coefficient and the Gibbs-McMillan-Mayer framework

    DEFF Research Database (Denmark)

    Mollerup, J.M.; Breil, Martin Peter

    2009-01-01

    . The independent variables of the solvents are temperature, pressure, and chemical potentials. The derivatives in the Gibbs-McMillan-Mayer framework are transformed into derivatives in the Gibbs framework. This offers the possibility for an interpretation and correlation of the osmotic second virial......The osmotic second virial coefficient is a key parameter in light scattering, protein crystallisation. self-interaction chromatography, and osmometry. The interpretation of the osmotic second virial coefficient depends on the set of independent variables. This commonly includes the independent...... is an independent variable. A Taylor expansion is applied to the osmotic pressure of a solution where one of the solutes is a small molecule, a salt for instance, that equilibrates between the two phases. Other solutes are retained. Solvents are small molecules that equilibrate between the two phases...

  10. Erythrocyte Osmotic Fragility and Excitability Score in Rabbit fed Hibiscus Sabdariffa in Graded Level.

    Science.gov (United States)

    Adenkola, A Y; Oluremi, O I A

    2014-01-01

    This study was conducted for 10 weeks with the aim of investigating the erythrocyte membrane integrity as measured by erythrocyte osmotic fragility and excitability scores of rabbits fed graded level of Hibiscus sabdariffa calyx (HSC). Twenty weaners' rabbit of both sexes were used for the study and were placed on four experimental diets which contain the following percentages of HSC 0 %, 25 %, 50 %, 75 %, as feed additive and were added at 0 g, 62.5 g, 125 g, 187.5 g designated as T1, T2, T3 and T4 experimental diets. Excitability scores were measured weekly as described by Voisnet et al. (1997). At the end of the experiment, the rabbits were slaughtered by severing the jugular vein. A Blood sample (2 ml) was collected from each rabbit into sampled bottles, containing the Na EDTA as anticoagulant for hematological analysis. Packed cell volume (PCV) Haemoglobin concentration (Hb), Total red blood cell (RBC) count, Total leukocyte count as well as differential leukocyte was determined using standard method. The percentage haemolysis recorded at 0.3 % to 0.8 % was significantly (P < 0.05) higher in rabbits in T1 compared to the remaining 3 diets. The result of excitability score shows that rabbit on diet 1 and 2 had a lower value which was significantly (P < 0.05) lower than rabbits on diets 3 and 4 with a value of 65.5 ± 5.0 and 70.00 ± 5.50 % respectively. In conclusion this study demonstrated for the first time that chronic administration of HSC improves haematological parameters, brain mood and function as well as maintaining erythrocyte membrane integrity. PMID:26196576

  11. Osmotic Pressure of Aqueous Chondroitin Sulfate Solution: A Molecular Modeling Investigation

    OpenAIRE

    Bathe, Mark; Rutledge, Gregory C.; Grodzinsky, Alan J.; TIDOR, BRUCE

    2005-01-01

    The osmotic pressure of chondroitin sulfate (CS) solution in contact with an aqueous 1:1 salt reservoir of fixed ionic strength is studied using a recently developed coarse-grained molecular model. The effects of sulfation type (4- vs. 6-sulfation), sulfation pattern (statistical distribution of sulfate groups along a chain), ionic strength, CS intrinsic stiffness, and steric interactions on CS osmotic pressure are investigated. At physiological ionic strength (0.15 M NaCl), the sulfation typ...

  12. The Osmotic Coefficient of Rod-like Polyelectrolytes: Computer Simulation, Analytical Theory, and Experiment

    OpenAIRE

    Deserno, M.; Holm, C; Blaul, J.; Ballauff, M.; Rehahn, M.

    2001-01-01

    The osmotic coefficient of solutions of rod-like polyelectrolytes is considered by comparing current theoretical treatments and simulations to recent experimental data. The discussion is restricted to the case of monovalent counterions and dilute, salt-free solutions. The classical Poisson-Boltzmann solution of the cell model correctly predicts a strong decrease in the osmotic coefficient, but upon closer look systematically overestimates its value. The contribution of ion-ion-correlations ar...

  13. Irreversible injury of isolated adult rat myocytes. Osmotic fragility during metabolic inhibition.

    OpenAIRE

    Ganote, C. E.; Vander Heide, R. S.

    1988-01-01

    Isolated myocytes can be established as a valid model for studying changes in cytoskeletal proteins during the development of irreversible injury only if isolated cells develop lesions similar to those that occur during irreversible injury to intact hearts, specifically osmotic fragility and subsarcolemmal blebs. In the first experiment, isolated cells were irreversibly injured by metabolic inhibition with 5 mM Iodoacetic acid (IAA) and 6 mM amobarbital (Amy). Osmotic fragility of control and...

  14. Osmotic Stress Induces Oxidative Cell Damage to Rhesus Macaque Spermatozoa1

    OpenAIRE

    McCarthy, Megan J.; Baumber, Julie; Kass, Philip H.; Meyers, Stuart A.

    2009-01-01

    Cryopreservation introduces extreme temperature and osmolality changes that impart lethal and sublethal effects on spermatozoa survival. Additionally, evidence indicates that the osmotic stress induced by cryopreservation causes oxidative stress to spermatozoa as well. Our objective was to determine the effect of reactive oxygen species (ROS) on rhesus macaque (Macaca mulatta) sperm function and to determine whether osmotic stress elicits the production of ROS. In the first experiment, the xa...

  15. The Na/K pump, Cl ion, and osmotic stabilization of cells

    OpenAIRE

    Armstrong, Clay M.

    2003-01-01

    An equation for membrane voltage is derived that takes into account the electrogenicity of the Na/K pump and is valid dynamically, as well as in the steady state. This equation is incorporated into a model for the osmotic stabilization of cells. The results emphasize the role of the pump and membrane voltage in lowering internal Cl− concentration, thus making osmotic room for vital substances that must be sequestered in the cell.

  16. Effect of process variables on the osmotic dehydration of star-fruit slices

    OpenAIRE

    Camila Dalben Madeira Campos; Ana Carla Kawazoe Sato; Renata Valeriano Tonon; Míriam Dupas Hubinger; Rosiane Lopes da Cunha

    2012-01-01

    The objective of this work was to study the effect of blanching and the influence of temperature, solution concentration, and the initial fruit:solution ratio on the osmotic dehydration of star-fruit slices. For blanching, different concentrations of citric and ascorbic acids were studied. The samples immersed in 0.75% citric acid presented little variation in color in relation to the fresh star-fruit. Osmotic dehydration was carried out in an incubator with orbital shaking, controlled temper...

  17. Proteomic Analysis of Erythritol-Producing Yarrowia lipolytica from Glycerol in Response to Osmotic Pressure.

    Science.gov (United States)

    Yang, Li-Bo; Dai, Xiao-Meng; Zheng, Zhi-Yong; Zhu, Li; Zhan, Xiao-Bei; Lin, Chi-Chung

    2015-07-01

    Osmotic pressure is a critical factor for erythritol production with osmophilic yeast. Protein expression patterns of an erythritol-producing yeast, Yarrowia lipolytica, were analyzed to identify differentially-expressed proteins in response to osmotic pressure. In order to analyze intracellular protein levels quantitatively, two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Y. lipolytica cultured under low (3.17 osmol/kg) and high (4.21 osmol/kg) osmotic pressures. Proteomic analyses allowed identification of 54 differentially-expressed proteins among the proteins distributed in the range of pI 3-10 and 14.4-97.4 kDa molecular mass between the osmotic stress conditions. Remarkably, the main proteins were involved in the pathway of energy, metabolism, cell rescue, and stress response. The expression of such enzymes related to protein and nucleotide biosynthesis was inhibited drastically, reflecting the growth arrest of Y. lipolytica under hyperosmotic stress. The improvement of erythritol production under high osmotic stress was due to the significant induction of a range of crucial enzymes related to polyols biosynthesis, such as transketolase and triosephosphate isomerase, and the osmotic stress responsive proteins like pyridoxine-4-dehydrogenase and the AKRs family. The polyols biosynthesis was really related to an osmotic response and a protection mechanism against hyperosmotic stress in Y. lipolytica. Additionally, the high osmotic stress could also induce other cell stress responses as with heat shock and oxidation stress responses, and these responsive proteins, such as the HSPs family, catalase T, and superoxide dismutase, also had drastically increased expression levels under hyperosmotic pressure. PMID:25737116

  18. The osmotic stress response of split influenza vaccine particles in an acidic environment

    OpenAIRE

    Choi, Hyo-Jick; Kim, Min-Chul; Kang, Sang-Moo; Montemagno, Carlo D.

    2013-01-01

    Oral influenza vaccine provides an efficient means of preventing seasonal and pandemic disease. In this work, the stability of envelope-type split influenza vaccine particles in acidic environments has been investigated. Owing to the fact that hyper-osmotic stress can significantly affect lipid assembly of vaccine, osmotic stress-induced morphological change of split vaccine particles, in conjunction with structural change of antigenic proteins, was investigated by the use of stopped-flow lig...

  19. Osmotic dehydration of red cabbage in sugar beet molasses: Mass transfer kinetics

    OpenAIRE

    Filipčev Bojana V.; Lević Ljubinko B.; Koprivica Gordana B.; Mišljenović Nevena M.; Kuljanin Tatjana A.

    2009-01-01

    The paper describes a study of osmotic dehydration of red cabbage in sugar beet molasses of different concentrations (40, 60 and 80%) at 50°C and under atmospheric pressure. The best results were obtained at the sugar beet molasses of 80% as an osmotic medium. The most important kinetic parameters of the process were determined: water loss, solid uptake, weight reduction, normalized solid content and normalized moisture content. The kinetic parameters were determined after 1, 3 and 5 hours. M...

  20. FORMULATION AND EVALUATION OF CONTROLLED POROSITY OSMOTIC DRUG DELIVERY SYSTEM OF METOPROLOL SUCCINATE

    OpenAIRE

    Hardik Patel* and M. M. Patel

    2012-01-01

    Controlled porosity osmotic tablet of metoprolol succinate prepared and evaluated in this study. Metoprolol succinate is very high soluble drug, so complete drug release obtained very fast. It is difficult to formulate osmotic tablet of Metoprolol succinate which gives drug release up to 24 hr at zero order. To get desired dissolution profile various formulation parameters like osmogen concentration, level of weight gain and level of pore former concentration were studied. Hypromellose was ad...

  1. Development and Optimization of Osmotically Controlled Asymmetric Membrane Capsules for Delivery of Solid Dispersion of Lycopene

    OpenAIRE

    2014-01-01

    The aim of the present investigation is to develop and statistically optimize the osmotically controlled asymmetric membrane capsules of solid dispersion of lycopene. Solid dispersions of lycopene with β-cyclodextrin in different ratios were prepared using solvent evaporation method. Solubility studies showed that the solid dispersion with 1 : 5 (lycopene : β-cyclodextrin) exhibited optimum solubility (56.25 mg/mL) for osmotic controlled delivery. Asymmetric membrane capsules (AMCs) were prep...

  2. Active Osmotic Exchanger for Efficient Nanofiltration Inspired by the Kidney

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lydéric

    2016-07-01

    In this paper, we investigate the physical mechanisms underlying one of the most efficient filtration devices: the kidney. Building on a minimal model of the Henle loop—the central part of the kidney filtration—we investigate theoretically the detailed out-of-equilibrium fluxes in this separation process in order to obtain absolute theoretical bounds for its efficiency in terms of separation ability and energy consumption. We demonstrate that this separation process operates at a remarkably small energy cost as compared to traditional sieving processes while working at much smaller pressures. This unique energetic efficiency originates in the double-loop geometry of the nephron, which operates as an active osmotic exchanger. The principles for an artificial-kidney-inspired filtration device could be readily mimicked based on existing soft technologies to build compact and low-energy artificial dialytic devices. Such a "kidney on a chip" also points to new avenues for advanced water recycling, targeting, in particular, sea-water pretreatment for decontamination and hardness reduction.

  3. Rationalization of Sucrose Solution Using During the Fruit Osmotic Dehydration

    Directory of Open Access Journals (Sweden)

    Mirko Babić

    2009-12-01

    Full Text Available The model of sustainable energy production of dried fruit conducted by using combined technology – the model that has been developed at the Faculty of Agriculture in Novi Sad – includes osmotic dehydration of fruit in sucrose solution. During the process of dehydration the moisture content of the solution is increased due to mass transfer of moisture from fruit. This article examines different models of recycling and concentrating of the solution. Thus, the model for concentrating of the solution has been chosen according to this analysis, and it has been applied within its own technology. Evaporators of the low temperature solution have been used and they are based on the solar energy source. Two types of devices have been made on the basis of the heating process of evaporating. One type is filled with the stainless steel shavings, while the other type is based on the fillings by plates. The paper presents the evaluation model of the benefits of this concentrating manner as well as the evaluation criterion of the evaporators’ fillings types. The energy support used here was an original solar air heater of semi-concentrated type.

  4. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang

    2015-11-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  5. Osmotic shock as alternative method to control Acanthaster planci

    Institute of Scientific and Technical Information of China (English)

    Jairo Rivera-Posada; Leigh Owens

    2014-01-01

    Objective:To test six osmotic stressors as alternative methods to control Acanthaster planci (A. planci) outbreaks by exploiting their incapacity to tolerate drastic changes in osmolarity. Finding more effective ways to control A. planci outbreaks is one of the most immediate and effective ways by which to reverse rapid declines in the abundance of live coral cover in the Indo-Pacific. Methods: A total of 10 mL of each of the following chemicals: sodium chloride, ethylenediaminetetraacetic acid, sodium carbonate, sodium cholate, sodium deoxycholate, urea and mannitol were injected into individual healthy sea stars to examine which chemicals induced disease and death. Results:Four out of six chemicals used in this study induced disease. Sodium chloride, sodium cholate, sodium deoxycholate and ethylenediaminetetraacetic acid are capable of inducing death in injected sea stars offering an alternative option to control A. planci outbreaks. Conclusions: Hyperosmotic stress is a viable alternative to control A. planci outbreaks as massive cell death results when acute hypertonicity exceeds a certain level.

  6. Miniature osmotic actuators for controlled maxillofacial distraction osteogenesis

    Science.gov (United States)

    Li, Yu-Hsien; Su, Yu-Chuan

    2010-06-01

    We have successfully demonstrated miniature actuators that are capable of converting chemical potential directly into steady mechanical movements for maxillofacial distraction osteogenesis. Pistons and diaphragms powered by osmosis are employed to provide the desired linear and volumetric displacements for bone distraction and potentially the release of bone morphogenetic proteins, respectively. The cylindrical-shaped miniature actuators are composed of polymeric materials and fabricated by molding and assembly processes. In the prototype demonstration, vapor-permeable thermoplastic polyurethane was employed as the semi-permeable material. 3 cm long actuators with piston and diaphragm radii of 1 mm and 500 µm, respectively, were fabricated and characterized. The maximum distraction force from the piston-type actuator is found to be 6 N while the piston travels at a constant velocity of 32 µm h-1 (or 0.77 mm/day) for about 1 week. Meanwhile, the release rate from the diaphragm-type actuator is measured to be constant, 0.15 µl h-1 (or 3.6 µl/day), throughout the experiment. Moreover, the sizes and output characteristics of the self-regulating actuators could readily be tailored to realize optimal distraction rate, rhythm and osteogenic activity. As such, the demonstrated miniature osmotic actuators could potentially serve as versatile apparatuses for maxillofacial distraction osteogenesis and fulfill the needs of a variety of implantable and biomedical applications.

  7. Osmotically induced cytosolic free Ca(2+) changes in human neutrophils.

    Science.gov (United States)

    Morris, M R; Doull, I J; Hallett, M B

    2001-02-01

    Cytosolic free Ca(2+) concentration in neutrophils was measured by ratiometric fluorometry of intracellular fura2. Increasing the extracellular osmolarity, by either NaCl (300-600 mM) or sucrose (600-1200 mM), caused a rise in cytosolic free Ca(2+) (Delta(max) approximately equal to 600 nM). This was not due to cell lysis as the cytosolic free Ca(2+) concentration was reversed by restoration of isotonicity and a second rise in cytosolic free Ca(2+) could be provoked by repeating the change in extracellular osmolarity. Furthermore, the rise in cytosolic free Ca(2+) concentration occurred in the absence of extracellular Ca(2+), demonstrating that release of intracellular fura2 into the external medium did not occur. The osmotically-induced rise in cytosolic free Ca(2+) was not inhibited by either the phospholipase C-inhibitor U73122, or the microfilament inhibitor cytochalasin B, suggesting that neither signalling via inositol tris-phosphate or the cytoskeletal system were involved. However, the rise in cytosolic free Ca(2+) may have resulted from a reduction in neutrophil water volume in hyperosmotic conditions. As these rises in cytosolic Ca(2+) (Delta(max) approximately equal to 600 nM) were large enough to provoke changes in neutrophil activity, we propose that conditions which removes cell water may similarly elevate cytosolic free Ca(2+) to physiologically important levels. PMID:11341979

  8. The effects of osmotic stress on human platelets.

    Science.gov (United States)

    Armitage, W J; Parmar, N; Hunt, C J

    1985-05-01

    The effect of osmotic stress on human platelets was investigated at 0, 25, and 37 degrees C. The osmolality of the suspending plasma was decreased by adding water or increased by adding sodium chloride or sucrose. After 5 min, isotonicity was restored by dilution with an excess of isotonic phosphate-buffered saline. After centrifugation, the platelets were resuspended in autologous plasma and then incubated for 1 hr at 37 degrees C before assaying the active transport of 5-hydroxytryptamine (5-HT) and the hypotonic stress response. Anisosmotic conditions had a greater effect on the extent of volume reversal in the hypotonic stress test than on 5-HT uptake. At 25 degrees C, only moderate degrees of hypotonicity (0.25 osmol/kg) or hypertonicity (0.59 osmol/kg) were sufficient to depress the hypotonic stress response. In general, platelets tolerated departures from isotonic conditions better at 0 degree C than at the higher temperatures. Furthermore, at 0 and 25 degrees C approximately equiosmolal concentrations of sucrose and sodium chloride depressed the hypotonic stress response to similar extents, but at 37 degrees C high osmolalities (greater than 2 osmol/kg) were tolerated better when the additive was sucrose than when it was sodium chloride. Platelets shrank when subjected to hyperosmotic conditions, but their discoid shape and the peripheral band of microtubules were maintained. PMID:3980588

  9. Miniature osmotic actuators for controlled maxillofacial distraction osteogenesis

    International Nuclear Information System (INIS)

    We have successfully demonstrated miniature actuators that are capable of converting chemical potential directly into steady mechanical movements for maxillofacial distraction osteogenesis. Pistons and diaphragms powered by osmosis are employed to provide the desired linear and volumetric displacements for bone distraction and potentially the release of bone morphogenetic proteins, respectively. The cylindrical-shaped miniature actuators are composed of polymeric materials and fabricated by molding and assembly processes. In the prototype demonstration, vapor-permeable thermoplastic polyurethane was employed as the semi-permeable material. 3 cm long actuators with piston and diaphragm radii of 1 mm and 500 µm, respectively, were fabricated and characterized. The maximum distraction force from the piston-type actuator is found to be 6 N while the piston travels at a constant velocity of 32 µm h−1 (or 0.77 mm/day) for about 1 week. Meanwhile, the release rate from the diaphragm-type actuator is measured to be constant, 0.15 µl h−1 (or 3.6 µl/day), throughout the experiment. Moreover, the sizes and output characteristics of the self-regulating actuators could readily be tailored to realize optimal distraction rate, rhythm and osteogenic activity. As such, the demonstrated miniature osmotic actuators could potentially serve as versatile apparatuses for maxillofacial distraction osteogenesis and fulfill the needs of a variety of implantable and biomedical applications.

  10. Chronic Bronchitis

    Science.gov (United States)

    Bronchitis is an inflammation of the bronchial tubes, the airways that carry air to your lungs. It ... chest tightness. There are two main types of bronchitis: acute and chronic. Chronic bronchitis is one type ...

  11. Pulsatile arginine vasopressin release from the rat hypothalamo neurohypophyseal system during osmotic stimulation.

    Directory of Open Access Journals (Sweden)

    Ohno,Norihito

    1981-06-01

    Full Text Available Arginine vasopressin (AVP was released in vitro in a pulsatile pattern from the hypothalamo-neurohypophyseal system (HNS and from the hypothalamus during continuous hyperosmotic stimuli with NaCl or fructose. No significant difference was found in the AVP pulse frequency between the two kinds of hyperosmotic agents. AVP was released from the HNS in a dose-related manner under NaCl stimulation. When the neural lobe was stimulated with NaCl or fructose, a clear AVP pulse pattern was not apparent. Urea failed to evoke a significant AVP release from the neural lobe or HNS. A stepwise increase in NaCl stimulation from 5 to 25 mEq induced a AVP response from the HNS and hypothalamus similar to that under constant stimulation at 25 mEq NaCl. This phenomenon was also found with fructose or sucrose. These results suggest that AVP release from the HNS during continuous osmotic stimulation has a pulsatile pattern regardless of the hyperosmotic substance or osmotic pressure. This AVP release accurately reflects the physiological function of the hypothalamus without modulation in the neural lobe. These results also suggest that the total amount of AVP was related to the osmotic pressure or the osmotic substance but that the frequency of the pulse release was not, moreover, that the AVP release depends not only on the absolute osmotic pressure, but also on the changing rate of osmotic pressure.

  12. Effect on effective diffusion coefficients and investigation of shrinkage during osmotic dehydration of apricot

    Energy Technology Data Exchange (ETDEWEB)

    Togrul, Inci Turk; Ispir, Ayse [Firat University, Engineering Faculty, Department of Chemical Engineering, 23279 Elazig (Turkey)

    2007-10-15

    This article represents the results of the variation in density and shrinkage of apricots during its osmotic dehydration. Shrinkage was investigated by means of dimensionless volume, diameter and length. Various osmotic agents such as sucrose, glucose, fructose, maltodextrin and sorbitol were used. It was found that the shrinkage of apricots could be well correlated with the moisture content of the sample during osmotic dehydration. The relationship between dimensionless parameters and moisture content was investigated by using eight non-linear models for each osmotic agent. It was find that the following proposed model can be confidently use for explaining the effect of shrinkage during osmotic dehydration of apricots.V/V{sub 0},D/D{sub 0},L/L{sub 0},{rho}/{rho}{sub 0}=a+b. exp (cX)+d. exp (e.X{sup f})In addition, the osmotic dehydration kinetics of apricots with and without shrinkage was studied. The effective diffusivities calculated from the diffusional model with and without shrinkage varied from 10.342 x 10{sup -9} m{sup 2}/s to 5.139 x 10{sup -9} and from 1.755 x 10{sup -10} and 0.767 x 10{sup -10} m{sup 2}/s, respectively. (author)

  13. EFFECT OF TABLET FORMULATION VARIABLES ON TRAMADOL HCL ELEMENTARY OSMOTIC PUMP TABLET

    Directory of Open Access Journals (Sweden)

    Basani Gavaskar

    2010-12-01

    Full Text Available Osmotic drug delivery system utilize osmotic pressure as a energy source and driving force for delivery of drugs, pH presence of food under physiological factors may affect drug release from conventional controlled release system (Matrices and reservoirs, where as drug release from osmotic system is independent of these factors to a large extent. The aim of the current study was to formulate elementary osmotic pump tablets of water soluble Tramadol HCl. Formulation were prepared based on wet granulation method, coated with cellulose acetate solution containing varying amount of Dibutylphthalate (DBP, and Polyethylene glycol 400 (PEG-400. Drug release from the osmotic drug delivery system was studied using USP Type I Paddle type apparatus. The excipients of physio-chemical property of the drug were determined by DSC (Differential scanning calorimetry. The optimized formulation was subjected to accelerated stability testing as per ICH guidelines. Optimization results indicated that to a certain extent drug release was less effected by the orifice size, concentration of coating solution and coating weight. DSC showed the excipients used in the formulation did not alter physicochemical properties of the drug. The results confirmed that the factors responsible for drug release were osmotic agents (core and orifice size membrane.

  14. Chronic gastritis

    OpenAIRE

    Sipponen, Pentti; Maaroos, Heidi-Ingrid

    2015-01-01

    Abstract Prevalence of chronic gastritis has markedly declined in developed populations during the past decades. However, chronic gastritis is still one of the most common serious pandemic infections with such severe killing sequelae as peptic ulcer or gastric cancer. Globally, on average, even more than half of people may have a chronic gastritis at present. Helicobacter pylori infection in childhood is the main cause of chronic gastritis, which microbial origin is the key for the understand...

  15. Chronic prostatitis

    OpenAIRE

    Erickson, Bradley A.; Schaeffer, Anthony J.; Le, Brian

    2008-01-01

    Chronic prostatitis can cause pain and urinary symptoms, and usually occurs without positive bacterial cultures from prostatic secretions (known as chronic abacterial prostatitis or chronic pelvic pain syndrome, CP/CPPS). Bacterial infection can result from urinary tract instrumentation, but the cause and natural history of CP/CPPS are unknown.

  16. Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure

    Science.gov (United States)

    Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.

  17. Applications of Electro-Osmotic Transport in the Processing of Textiles

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.F.; Krueger, R.; Hopper, R.; Cherepy, N.

    1999-11-29

    We report development of a pilot process for the industrial rinsing of fabrics. This process combines hydraulic (pressure-driven) transport with electro-osmotic transport. It reduces the total amount of water required in certain rinsing operations by a factor of about five. Cotton exhibits an electro-osmotic transport coefficient of about 6 x 10{sup -9} m{sup 2}/s-V resulting from a partial ionization of hydroxyl groups on the cellulose polymer substrate. This process applies a field transverse to the fabric to effect the movement of water in the spaces between the 10 {micro}m cotton fibers which constitute the yam. The field strength is adjusted so that the induced electro-osmotic flux is comparable to a pressure-driven flux, which moves preferentially in the more open channels between the yams. For a fixed current density, solution conductivity and electro-osmotic transport vary inversely. The process is most practical for removal of liquids of relatively low conductivity (<500 {micro}S/cm). For removal of solutions of conductivity greater than 1200 {micro}S/cm, the rate of electro-osmotic flow may be too low to benefit the rinsing process if current densities are restricted to practical levels of about 30 mA/cm{sup 2}. Electra-osmotic transport may have important applications in wet processing of extremely fine textiles, such as micro fiber fabrics. In addition to rinsing, electro-osmotic transport may also be used to speed the penetration of chemicals and dyestuffs that are applied to the surface of wet textiles.

  18. Wheat can acclimate to seawater by pretreatment with kinetin and spermine through osmotic adjustment and solutes allocation

    OpenAIRE

    Heshmat S. Aldesuquy; Baka, Zakaria A; Berdees M. Mickky

    2013-01-01

    A key issue in salt adaptation is the osmotic adjustment, therefore, during ear emergence the effect of exogenous application of kinetin and spermine on osmotic pressure (OP) and solutes allocation (total soluble sugars, total soluble nitrogen, proline, organic acids and inorganic ions (Na +, K +, Ca 2+, Mg 2+ and Cl -) were quantified in flag leaf of wheat plants irrigated by seawater at 25%. Seawater salinity induced significant increase in osmotic pressure. Furthermore, seawater stress ind...

  19. Interaction of prechilling, temperature, osmotic stress, and light in Picea abies seed germination

    International Nuclear Information System (INIS)

    A multi-factor experimental approach and proportional odds model was used to study interactions between five environmental factors significant to Norway spruce seed germination: prechilling (at +4.5 °C), suboptimal temperatures (+12 and +16 °C), osmotically induced water stress (–0.3 Mpa and 0 Mpa), prolonged white light, and short-period far-red light. Temperature and osmotic stress interacted with one another in the germination of seeds: the effect of osmotic stress being stronger at +16 °C than at +12 °C. In natural conditions, this interaction may prevent germination early in the summer when soil dries and temperature increases. Prolonged white light prevented germination at low temperature and low osmotic potential. Inhibitory effect was less at higher temperatures and higher osmotic potential, as well as after prechilling. Short-period far-red light did not prevent germination of unchilled seeds in darkness. Prechilling tended to make seeds sensitive to short pulses of far-red light, an effect which depended on temperature: at +12 °C the effect on germination was promotive, but at +16 °C, inhibitory and partly reversible by white light. It seems that Norway spruce seeds may have adapted to germinate in canopy shade light rich in far-red. The seeds may also have evolved mechanisms to inhibit germination in prolonged light

  20. Early selection of kabuli chickpea genotypes (Cicer arietinum L. tolerant to osmotic water stress

    Directory of Open Access Journals (Sweden)

    Kamel Ben Mbarek

    2013-05-01

    Full Text Available Eight " kabuli " chickpea genotypes Beja1, Amdoun1, Nayer, Kasseb, Bochra, FLP96-114C, FLP88-42C and Chetoui were germinated, in two in vitro culture media, particularly, agar and filter paper Watman n°2 and under tree osmotic water pressures (OWP: -0,33; -4 and -8 bars induced by PEG8000. On filter paper, germination appeared more accelerated with a higher rate compared to the agar media. Osmotic water stress has negatively affected the seeds germination and the seedlings vegetative development parameters. Osmotic water pressure - 8 bars completely inhibited seeds germination on filter paper media. On the other hand, on agar media, it caused a feeble germination rate and a stunting of the seedlings. A broad genotypic variability of the chickpea cultivars was revealed toward the osmotic water stress. Tolerance index to osmotic water stress revealed three groups of cultivars: (1 Nayer and Kasseb are tolerant, (2 Bochra, FLIP88-42C and Chetoui are fairly tolerant and (3 Amdoun1, Beja1 and FLIP96-114C are sensitive to this abiotic stress.

  1. Early osmotic adjustment responses in drought-resistant and drought-sensitive oilseed rape

    Institute of Scientific and Technical Information of China (English)

    Sarah Hatzig; L Irina Zaharia; Suzanne Abrams; Marie Hohmann; Laurie Legoahec; Alain Bouchereau; Nathalie Nesi; Rod J.Snowdon

    2014-01-01

    The impact of osmotic stress on growth, physiolo-gy, and metabolism of winter oilseed rape (Brassica napus L.) was investigated by detailed analysis of biomass traits, hormone metabolites and osmolytes in two genetical y unrelated drought-tolerant genotypes and two unrelated drought-sensitive genotypes. Seedlings were grown in vitro under control ed conditions and osmotic stress was simulated by applying a gradual treatment with polyethylene glycol (PEG 6000), fol owed by hypo-osmotic treatment of variants used for metabolite determination. The results provide a basis for the identification of reliable selection criteria for drought resistance in oilseed rape. The in vitro cultivation system established during this study enabled effective discrimination of early osmotic stress responses between drought-resistant and-susceptible oilseed rape genotypes that also show large differences in relative seed yield under drought conditions in the field. Clear physiological and metabolic differences were observed between the drought-resistant and drought-sensitive genotypes, suggesting that osmotic adjustment is a key component of drought response in oilseed rape. Unexpected-ly, however, the drought-resistant genotypes did not show typical hormonal adjustment and osmolyte accumulation, suggesting that they possess alternative physiological mech-anisms enabling avoidance of stress symptoms.

  2. Physicochemical characteristics of guava “Paluma” submitted to osmotic dehydration

    Directory of Open Access Journals (Sweden)

    Roselene Ferreira Oliveira

    2014-09-01

    Full Text Available The aim of this work was to evaluate the conservation post process osmotic of guava stored temperature at 5oC. Guava (Psidium guajava L., red variety “Paluma” minimally processed by mild osmotic dehydration, were packaged in polyethylene terephthalate (PET and stored temperature at 5ºC. Non-treated guava, packed in PET trays, was used as control. The treatment used was osmotic dehydration in sucrose syrup at 60ºBrix and physicochemical determinations were pH, total soluble solids (TSS, total titratable acidity (TTA, reducing sugars (RS, total sugars (TS and parameters related to colour read (a*, chroma (c*, yellow (b*, luminosity (L* of the fresh and osmotically dehydrated guava slices. The dehydrated fruits lost about 34.45% of water, concentrating contents of soluble solids, total and reducing sugars, when compared to control samples. The pH value remained around 3.76 for the OD fruits and 3.87 for the fresh fruits. The colour of the dehydrated fruits was more intense than the control samples’. The guava slices osmotic dehydration had 21 days of shelf life, showed physicochemical characteristics significantly superior to the control samples’, having a stable and high quality product as a result.

  3. Changes of DHN1 expression and subcellular distribution in A. delicisoa cells under osmotic stress

    Institute of Scientific and Technical Information of China (English)

    QIU; Quansheng; (邱全胜); WANG; Zezhou(王泽宙); CAI; Qigui(蔡起贵); JIANG; Rongxi(姜荣锡)

    2002-01-01

    The changes of DHN1 expression and subcellular distribution in A. delicisoa cells under osmotic stress were studied by using GFP as a reporter molecule. Through creating the Xba I and BamH I restriction sites at the ends of dhn1 by PCR, the expression vector for the fusion protein DHN1-mGFP4 was constructed by cloning dhn1 into plasmid pBIN-35SmGFP4. Then the DHN1-mGFP4 expression vector was transformed into A. delicisoa suspension cells by microprojectile bombardment method. Bright green fluorescence of GFP which shows the high-level expression of DHN1-mGFP4 was visualized after culture for 10 h. However, the green fluorescence was only located within the nucleus. By increasing the culture medium osmotic potential, the green fluorescence was visualized in the cytoplasm (mainly around the plasma membranes). The generation of GFP fluorescence in the cytoplasm was also promoted by increasing the medium osmotic potential. Moreover, GFP green fluorescence was abolished by protein synthesis inhibitor dicyclohexylcarbodiimid, indicating that the cytoplasmic DHN1 was newly synthesized under osmotic stress. Furthermore, ABA promoted the presence of green fluorescence in the cytoplasm, and the GFP fluorescence was visualized within a shorter time under a higher osmotic potential.

  4. Osmotic stress at the barley root affects expression of circadian clock genes in the shoot.

    Science.gov (United States)

    Habte, Ermias; Müller, Lukas M; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2014-06-01

    The circadian clock is an important timing system that controls physiological responses to abiotic stresses in plants. However, there is little information on the effects of the clock on stress adaptation in important crops, like barley. In addition, we do not know how osmotic stress perceived at the roots affect the shoot circadian clock. Barley genotypes, carrying natural variation at the photoperiod response and clock genes Ppd-H1 and HvELF3, were grown under control and osmotic stress conditions to record changes in the diurnal expression of clock and stress-response genes and in physiological traits. Variation at HvELF3 affected the expression phase and shape of clock and stress-response genes, while variation at Ppd-H1 only affected the expression levels of stress genes. Osmotic stress up-regulated expression of clock and stress-response genes and advanced their expression peaks. Clock genes controlled the expression of stress-response genes, but had minor effects on gas exchange and leaf transpiration. This study demonstrated that osmotic stress at the barley root altered clock gene expression in the shoot and acted as a spatial input signal into the clock. Unlike in Arabidopsis, barley primary assimilation was less controlled by the clock and more responsive to environmental perturbations, such as osmotic stress. PMID:24895755

  5. Osmotic coefficients and apparent molar volumes of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in alcohols

    International Nuclear Information System (INIS)

    Highlights: • Physical and osmotic properties of [HMim][TfO] in alcohols are reported. • Apparent molar properties and osmotic coefficients were obtained. • Apparent molar volumes were fitted using a Redlich–Meyer type equation. • The osmotic coefficients were modeled with the Extended Pitzer and the MNRTL models. -- Abstract: In this work, density for the binary mixtures of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate in alcohols (1-propanol, or 2-propanol, or 1-butanol, or 2-butanol, or 1-pentanol) was measured at T = 323.15 K and atmospheric pressure. From this property, the corresponding apparent molar volumes were calculated and fitted to a Redlich–Meyer type equation. For these mixtures, the osmotic and activity coefficients, and vapor pressures of these binary systems were also determined at the same temperature using the vapor pressure osmometry technique. The experimental osmotic coefficients were modeled by the Extended Pitzer model of Archer. The parameters obtained in this correlation were used to calculate the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures

  6. Osmotic and apparent molar properties of binary mixtures alcohol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid

    International Nuclear Information System (INIS)

    Highlights: ► Osmotic and physical properties of binary mixtures {alcohol + [BMim][TfO]} were measured. ► From experimental data, apparent molar properties and osmotic coefficients were calculated. ► The apparent properties were fitted using a Redlich–Meyer type equation. ► The osmotic coefficients were correlated using the Extended Pitzer model. -- Abstract: In this work, physical properties (densities and speeds of sound) for the binary systems {1-propanol, or 2-propanol, or 1-butanol, or 2-butanol, or 1-pentanol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate} were experimentally measured from T = (293.15 to 323.15) K and at atmospheric pressure. These data were used to calculate the apparent molar volume and apparent molar isentropic compression which were fitted to a Redlich–Meyer type equation. This fit was used to obtain the corresponding apparent molar properties at infinite dilution. On the other hand, the osmotic and activity coefficients and vapor pressures of these binary mixtures were also determined at T = 323.15 K using the vapor pressure osmometry technique. The Extended Pitzer model of Archer was employed to correlate the experimental osmotic coefficients. From the parameters obtained in the correlation, the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures were calculated

  7. Development and Optimization of Elementary osmotic pump tablet of Nicardipine Hydrochloride using central composite experimental Design

    Directory of Open Access Journals (Sweden)

    Mehta Teja

    2013-09-01

    Full Text Available Elementary Osmotic Pumps (EOP consists of osmotic core (coated with a semipermeable membrane (SPM and a small orifice is created in the membrane. The objective of the present study was to develop an optimized EOP tablets containing inclusion complex of Nicardipine Hydrochloride (NH using central composite design. Amount of osmotic agent (X1 and size of delivery orifice (X2 were selected as independent variables. Formulations were prepared by direct compression method and evaluated for % Cumulative Drug Release (% CDR at 540min. as dependent variables. Amount of osmotic agent and size of delivery orifice had a significant effect on % CDR. The results of multiple linear regression analysis revealed that EOP tablets should be prepared using an optimum concentration of osmotic agent and size of delivery orifice to achieve a zero order drug release. Contour plots as well as response surface plots were constructed to show the effects of X1 and X2 on % CDR. A model was validated for accurate prediction of % CDR by performing checkpoint analysis. The computer optimization process, contour plots and response surface plots predicted at the concentration of independent variables X1 and X2 (50mg and 0.8mm respectively, for maximized response. The drug release from the developed formulation was found independent of pH and agitational intensity. The above optimized batch was also evaluated by different pharmacokinetic models. Stability study of optimized batch was conducted at accelerated conditions for six month and it was found to be stable.

  8. Osmotic damage as a predictor of motility loss during convective desiccation of bovine sperm.

    Science.gov (United States)

    Sitaula, Ranjan; Jimenez, Jorge; Bhowmick, Sankha

    2013-12-01

    Current state-of-the art technologies are lagging in the application of desiccation storage to mammalian cells using nonreducing sugars. For bovine sperm, motility is irreversibly lost before reaching a sufficiently low moisture content necessary for preservation. It is hypothesized that much of the damage during drying is related to the osmotic stress encountered due to increased osmolarity of the extracellular environment. To test this hypothesis, we subjected sperm to liquid hyperosmotic environments for varying time-periods and measured their motility. We then extracted parameters for two models for motility loss based on these experiments: a first-order rate injury model (Fast or Slow) and a multi-modal (MM) injury model. The MM injury model incorporated an additional function accounting for damage induced by a time-independent osmotic change. Based on these models, we predicted sperm motility loss measured from natural and forced convective desiccation experiments. The MM injury model was able to closely bracket motility loss for desiccation as an osmotic change event with time-independent and time-dependent components. While the mechanistic basis of osmotic damage requires further exploration, the model can serve as a bracketing tool for predicting motility loss during desiccation based on excipients designed to minimize osmotic damage. PMID:24835367

  9. Flow cytometric determination of osmotic behaviour of animal erythrocytes toward their engineering for drug delivery

    Directory of Open Access Journals (Sweden)

    Kostić Ivana T.

    2015-01-01

    Full Text Available Despite the fact that the methods based on the osmotic properties of the cells are the most widely used for loading of drugs in human and animal erythrocytes, data related to the osmotic properties of erythrocytes derived from animal blood are scarce. This work was performed with an aim to investigate the possibility of use the flow cytometry as a tool for determination the osmotic behaviour of porcine and bovine erythrocytes, and thus facilitate the engineering of erythrocytes from animal blood to be drug carriers. The method of flow cytometry successfully provided the information about bovine and porcine erythrocyte osmotic fragility, and made the initial steps in assessment of erythrocyte shape in a large number of erythrocytes. Although this method is not able to confirm the swelling of pig erythrocytes, it indicated to the differences in pig erythrocytes that had basic hematological parameters inside and outside the reference values. In order to apply/use the porcine and bovine erythrocytes as drug carriers, the method of flow cytometry, confirming the presence of osmotically different fractions of red blood cells, indicated that various amounts of the encapsulated drug in porcine and bovine erythrocytes can be expected.

  10. Chronic migraine.

    Science.gov (United States)

    Schwedt, Todd J

    2014-01-01

    Chronic migraine is a disabling neurologic condition that affects 2% of the general population. Patients with chronic migraine have headaches on at least 15 days a month, with at least eight days a month on which their headaches and associated symptoms meet diagnostic criteria for migraine. Chronic migraine places an enormous burden on patients owing to frequent headaches; hypersensitivity to visual, auditory, and olfactory stimuli; nausea; and vomiting. It also affects society through direct and indirect medical costs. Chronic migraine typically develops after a slow increase in headache frequency over months to years. Several factors are associated with an increased risk of transforming to chronic migraine. The diagnosis requires a carefully performed patient interview and neurologic examination, sometimes combined with additional diagnostic tests, to differentiate chronic migraine from secondary headache disorders and other primary chronic headaches of long duration. Treatment takes a multifaceted approach that may include risk factor modification, avoidance of migraine triggers, drug and non-drug based prophylaxis, and abortive migraine treatment, the frequency of which is limited to avoid drug overuse. This article provides an overview of current knowledge regarding chronic migraine, including epidemiology, risk factors for its development, pathophysiology, diagnosis, management, and guidelines. The future of chronic migraine treatment and research is also discussed. PMID:24662044

  11. Controlled Porosity Solubility Modulated Osmotic Pump Tablets of Gliclazide

    OpenAIRE

    Banerjee, Arti; Verma, P.R.P.; Gore, Subhash

    2014-01-01

    A system that can deliver drug at a controlled rate is very important for the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Poorly water-soluble drug with pH-dependent solubility such as gliclazide (GLZ) offers challenges in the controlled-release formulation because of low dissolution rate and poor bioavailability. Solid dispersion (SD) of GLZ consisted of hydroxypropyl cellulose (HPC-SSL) as a polymeric solubilizer was manufactured by hot melt extrusion ...

  12. Temperature and pressure dependent osmotic pressure in liquid sodium-cesium alloys

    International Nuclear Information System (INIS)

    The evaluation of the osmotic pressure in terms of the concentration fluctuations of mixtures and the equations of state of the pure liquids is considered. The temperature and pressure dependent experimentally measured concentration-concentration correlations in the long wavelength limit of liquid sodium-cesium alloys are used to demonstrate the appreciable dependence of the temperature and pressure on the osmotic pressure as a function of concentration. Introducing interchange energies as functions of temperature and pressure, our analysis is consistent with the Flory model. Thus, a formalism for evaluating the state dependent osmotic pressure is developed and our numerical work is considered to be an extension of the calculations of Rashid and March in the sense that a temperature and pressure dependent interchange energy parameter that more closely parameterizes the state dependent concentration fluctuations in the liquid alloys, is used. (author)

  13. Development and Evaluation of Extended Release Formulation of Tramadol Hydrochloride Based on Osmotic Technology

    Directory of Open Access Journals (Sweden)

    Patel JB

    2013-05-01

    Full Text Available Extended release formulation of Tramadol Hydrochloride based on osmotic technology was developedand evaluated. Target release profile was selected and different variables were optimized to achieve it.Formulation variables such as osmotic agent, plasticizer and coating thickness of semi-permeablemembrane were found to markedly affect drug release. Tramadol hydrochloride release was directlyproportional to the level of osmogent and plasticizer but inversely proportional to the level of coatingthickness of semi-permeable membrane. Drug release from developed formulation was independent ofpH and agitation intensity but dependent on osmotic pressure of release media. The optimizedformulation was compared with marketed product CONTRAMAL SR and accelerated stability studywas also carried out for 6 months.

  14. Recommendation to use iso-osmotic contrast medium in interventional treatment

    International Nuclear Information System (INIS)

    With the rapid development of imaging diagnostic and interventional therapeutic techniques, the contrast medium (CM) has been used more and more common in clinical practice, and meanwhile more and more attention has been paid to the CM-related adverse events. Contrast induced nephropathy (CN) is the most common CM-related adverse event, and CM-related neurotoxicity has already attracted the physicians' attention. The osmotic pressure of the iso-osmotic contrast medium (IOCM) is quite the same as that of the plasma, and therefore its safety is higher than that of low-osmotic contrast medium (LOCM), the patient's tolerance to IOCM is better than that to LOCM. For this reason, the use of IOCM should be strongly recommended in interventional procedures, which is of great significance to the reduction of the occurrence of CM-related adverse events. (authors)

  15. ′Wine Glass′ sign in recurrent postpartum hypernatremic osmotic cerebral demyelination

    Directory of Open Access Journals (Sweden)

    Aralikatte O Saroja

    2013-01-01

    Full Text Available Osmotic demyelination syndrome resulting from postpartum hypernatremia is a recently described entity wherein young women present with hypernatremic encephalopathy and white matter hyperintensities along with quadriparesis from rhabdomyolysis. It is an acute monophasic condition with acute hypernatremia occurring during puerperium with good recovery in majority of the patients with treatment. To the best of our knowledge, recurrent postpartum hypernatremia with encephalopathy, osmotic demyelination, and rhabdomyolysis has not been described. We present a young lady who had two episodes of reversible postpartum hypernatremic encephalopathy with rhabdomyolysis. Cerebral magnetic resonance imaging (MRI before treatment revealed osmotic demyelination on both occasions. During first admission MRI revealed hyperintensities in internal capsule and corpus callosum, and at second admission revealed more extensive white matter hyperintensity, which simulated the ′wine glass′ appearance.

  16. Impact of oxidative and osmotic stresses on Candida albicans biofilm formation.

    Science.gov (United States)

    Pemmaraju, Suma C; Padmapriya, Kumar; Pruthi, Parul A; Prasad, R; Pruthi, Vikas

    2016-09-01

    Candida albicans possesses an ability to grow under different host-driven stress conditions by developing robust protective mechanisms. In this investigation the focus was on the impact of osmotic (2M NaCl) and oxidative (5 mM H2O2) stress conditions during C. albicans biofilm formation. Oxidative stress enhanced extracellular DNA secretion into the biofilm matrix, increased the chitin level, and reduced virulence factors, namely phospholipase and proteinase activity, while osmotic stress mainly increased extracellular proteinase and decreased phospholipase activity. Fourier transform infrared and nuclear magnetic resonance spectroscopy analysis of mannan isolated from the C. albicans biofilm cell wall revealed a decrease in mannan content and reduced β-linked mannose moieties under stress conditions. The results demonstrate that C. albicans adapts to oxidative and osmotic stress conditions by inducing biofilm formation with a rich exopolymeric matrix, modulating virulence factors as well as the cell wall composition for its survival in different host niches. PMID:27472386

  17. Chronic inflammatory polyneuropathy

    Science.gov (United States)

    Polyneuropathy - chronic inflammatory; CIDP; Chronic inflammatory demyelinating polyneuropathy ... of the body equally. Chronic inflammatory demyelinating polyneuropathy (CIDP) is the most common chronic neuropathy caused by ...

  18. Chronic pancreatitis

    OpenAIRE

    Kocher, Hemant M; Froeling, Fieke EM

    2008-01-01

    Chronic pancreatitis is characterised by long-standing inflammation of the pancreas owing to a wide variety of causes, including recurrent acute attacks of pancreatitis. Chronic pancreatitis affects 3–9 people in 100,000; 70% of cases are alcohol-induced.

  19. Chronic pancreatitis

    OpenAIRE

    Kocher, Hemant M; Kadaba, Raghu

    2011-01-01

    Chronic pancreatitis is characterised by long-standing inflammation of the pancreas due to a wide variety of causes, including recurrent acute attacks of pancreatitis. Chronic pancreatitis affects between 3 and 9 people in 100,000; 70% of cases are alcohol-induced.

  20. OSMOTIC DEHYDRATION KINETICS OF GUAVAS IN MALTOSE SOLUTIONS WITH CALCIUM SALT*

    Directory of Open Access Journals (Sweden)

    S. DI S. MASTRANTONIO

    2009-03-01

    Full Text Available

    The osmotic dehydration kinetics of guavas in maltose solutions at 40 and 60ºBrix, with addition of 0, 0.6 and 1.2% of calcium lactate was studied in this paper and the final product quality was evaluated. The experiments were carried out up to 60 hours and samples were taken for analysis at different times to evaluate guavas weight reduction, water loss and sugar gain and to characterize the product according to its texture and color. After 24 hours of process the mass transfer of water and sugar between the osmotic solution and the fruit was negligible, showing that process equilibrium was reached. The increase of sugar concentration in the osmotic solution showed strong influence on the dehydration process, increasing the water loss and reducing sugar gain. The presence of calcium ions in the osmotic solution also influenced the kinetics of mass transfer and showed a strong influence on fruit texture. Higher values of stress and strain at failure were obtained when calcium lactate was employed. The effect of the different osmotic treatments on the color parameters was also investigated and significant changes were observed in the values of chroma C* and hue H* due to sugar concentration and calcium addition.

    KEYWORDS: Osmotic dehydration; kinetics; guava; maltose; calcium lactate.

  1. Use of Different Kinds of Solutes Alternative to Sucrose in Osmotic Dehydration of Yacon

    Directory of Open Access Journals (Sweden)

    Bethania Brochier

    2015-02-01

    Full Text Available The present work aimed to evaluate glycerol, maltodextrin, polydextrose and sorbitol for the osmotic dehydration of yacon for diabetics, keeping its properties as prebiotic. Osmotic dehydration was carried out using a yacon to 33% concentrated syrup weight ratio of 1:12, with magnetic stirring at 23ºC and atmospheric pressure. The best results were achieved for glycerol and sorbitol with 80 ± 4% and 81± 1% of water removal and increase of 3.73 ± 0.11 and 4.30 ± 0.16 times in total soluble solids respectively. Maltodextrin did not promote dehydration.

  2. Use of Different Kinds of Solutes Alternative to Sucrose in Osmotic Dehydration of Yacon

    OpenAIRE

    Bethania Brochier; Ligia Damasceno Ferreira Marczak; Caciano Pelayo Zapata Noreña

    2015-01-01

    The present work aimed to evaluate glycerol, maltodextrin, polydextrose and sorbitol for the osmotic dehydration of yacon for diabetics, keeping its properties as prebiotic. Osmotic dehydration was carried out using a yacon to 33% concentrated syrup weight ratio of 1:12, with magnetic stirring at 23ºC and atmospheric pressure. The best results were achieved for glycerol and sorbitol with 80 ± 4% and 81± 1% of water removal and increase of 3.73 ± 0.11 and 4.30 ± 0.16 times in total soluble sol...

  3. Mathematical modelling of the osmotic dehydration of cherry tomato (Lycopersicon esculentum var. cerasiforme)

    OpenAIRE

    Patricia Moreira AZOUBEL; Murr Fernanda E. Xidieh

    2000-01-01

    Osmotic dehydration of cherry tomato as influenced by osmotic agent (sodium chloride and a mixed sodium chloride and sucrose solutions) and solution concentration (10 and 25% w/w) at room temperature (25°C) was studied. Kinetics of water loss and solids uptake were determined by a two parameter model, based on Fick's second law and applied to spherical geometry. The water apparent diffusivity coefficients obtained ranged from 2.17x10-10 to 11.69x10-10 m²/s.

  4. Influence on concentration of sugar on mass transfer of pineapple slices during osmotic dehydration

    OpenAIRE

    Khanom, S.A.A.; Rahman, M.M.; Uddin, M.B.

    2014-01-01

    Osmotic drying is a partial dehydration process to give the product a quality improvement over the conventional drying process. The experiment was conducted for studying water loss(WL), sugar gain(SG), weight reduction(WR) and total solid(TS) during osmotic dehydration of pineapple slices (10 mm thick) in different concentration of sugar (40%, 50% and 60%) up to 6 hours at room temperature. It was found that increasing the concentration of the sugar solution used resulted in increased rates o...

  5. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots.

    Science.gov (United States)

    Ma, Jianhui; Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Jiang, Lina; Shao, Yun; Tong, Doudou; Li, Chunxi

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  6. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo

    KAUST Repository

    Fujii, Hiroaki

    2011-01-10

    Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved in osmotic stress signaling. However, due to functional redundancy, their contribution to osmotic stress responses remained unclear. In this report, we constructed an Arabidopsis line carrying mutations in all 10 members of the SnRK2 family. The decuple mutant snrk2.1/2/3/4/5/6/7/8/9/10 grew poorly under hyperosmotic stress conditions but was similar to the wild type in culture media in the absence of osmotic stress. The mutant was also defective in gene regulation and the accumulation of abscisic acid (ABA), proline, and inositol 1,4,5-trisphosphate under osmotic stress. In addition, analysis of mutants defective in the ABA-activated SnRK2s (snrk2.2/3/6) and mutants defective in the rest of the SnRK2s (snrk2.1/4/5/7/8/9/10) revealed that SnRK2s are a merging point of ABA-dependent and -independent pathways for osmotic stress responses. These results demonstrate critical functions of the SnRK2s in mediating osmotic stress signaling and tolerance.

  7. The hemolytic component of cancer anemia: effects of osmotic and metabolic stress on the erythrocytes of rats bearing multifocal inoculations of the Walker 256 tumor

    Directory of Open Access Journals (Sweden)

    Vido A.A.

    2000-01-01

    Full Text Available Cancer anemia is classified as an anemia of chronic diseases, although it is sometimes the first symptom of cancer. Cancer anemia includes a hemolytic component, important in the terminal stage when even transfused cells are rapidly destroyed. The presence of a chronic component and the terminal complications of the illness limit studies of the hemolytic component. A multifocal model of tumor growth was used here to simulate the terminal metastatic dissemination stage (several simultaneous inoculations of Walker 256 cells. The hemolytic component of anemia began 3-4 days after inoculation in 100% of the rats and progressed rapidly thereafter: Hb levels dropped from 14.9 ± 0.02 to 8.7 ± 0.06 from days 7 to 11 (~5 times the physiologically normal rate in rats in the absence of bleeding. The development of anemia was correlated (r2 = 0.86 with the development of other systemic effects such as anorexia. There was a significant decrease in the osmotic fragility of circulating erythrocytes: the NaCl concentration causing 50% lysis was reduced from 4.52 ± 0.06 to 4.10 ± 0.01 (P<0.01 on day 7, indicating a reduction in erythrocyte volume. However, with mild metabolic stress (4-h incubation at 37oC, the erythrocytes showed a greater increase in osmotic fragility than the controls, suggesting marked alteration of erythrocyte homeostasis. These effects may be due to primary plasma membrane alterations (transport and/or permeability and/or may be secondary to metabolic changes. This multifocal model is adequate for studying the hemolytic component of cancer anemia since it is rapid, highly reproducible and causes minimal animal suffering.

  8. Carbamazepine solubility enhancement in tandem with swellable polymer osmotic pump tablet: A promising approach for extended delivery of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Hadjira Rabti

    2014-06-01

    Full Text Available Elementary osmotic pump (EOP is a unique extended release (ER drug delivery system based on the principle of osmosis. It has the ability to minimize the amount of the drug, accumulation and fluctuation in drug level during chronic uses. Carbamazepine (CBZ, a poorly water-soluble antiepileptic drug, has serious side effects on overdoses and chronic uses. The aim of the present study was to design a new EOP tablet of CBZ containing a solubility enhancers and swellable polymer to reduce its side effects and enhance the patient compliance. Firstly, a combination of solubilizing carriers was selected to improve the dissolution of the slightly soluble drug. Then, designing the new EOP tablet and investigating the effect of different variables of core and coat formulations on drug release behavior by single parameter optimization and by Taguchi orthogonal design with analysis of variance (ANOVA, respectively. The results showed that CBZ solubility was successfully enhanced by a minimum amount of combined polyvinyl pyrrolidone (PVP K30 and sodium lauryl sulfate (SLS. The plasticizer amount and molecular weight (MW together with the osmotic agent amount directly affect the release rate whereas the swellable polymer amount and viscosity together with the semi-permeable membrane (SPM thickness inversely influence the release rate. In addition, the tendency of following zero order kinetics was mainly affected by the coat components rather than those of the core. Further, orifice size does not have any significant effect on the release behavior within the range of 0.1 mm to 0.8 mm. In this study we report the successful formulation of CBZ-EOP tablets, which were similar to the marketed product Tegretol CR 200 and able to satisfy the USP criterion limits and to deliver about 80% of CBZ at a rate of approximately zero order for up to 12 h.

  9. Mucus Hyperconcentration as a Unifying Aspect of the Chronic Bronchitic Phenotype.

    Science.gov (United States)

    Button, Brian; Anderson, Wayne H; Boucher, Richard C

    2016-04-01

    Abnormalities in mucus production and qualitative properties such as mucus hydration are central to the pathophysiology of airway disease including cystic fibrosis, asthma, and chronic bronchitis. In vitro air-liquid interface epithelial cell cultures demonstrate direct relationships between mucociliary transport, periciliary liquid (PCL) height, and mucus concentration (expressed as percent solids or partial osmotic pressure). In health, the osmotic modulus/pressure of the PCL exceeds that of the mucus layer, resulting in efficient, low-friction movement of mucus. In disease, through multiple mechanisms, the osmotic pressure of the mucus begins to exceed basal PCL values, resulting in compression of the cilia and slowing of mucus transport. The in vivo data in both cystic fibrosis and chronic bronchitis parallel in vitro data demonstrating that when mucus osmotic pressure is increased, mucociliary clearance is decreased. In chronic bronchitis, there is a direct correlation between FEV1 and percent solids of mucus, demonstrating a strong relationship between disease progression and mucus abnormalities. Animal models, based mechanistically on raised sodium absorption (and therefore water absorption) from airway surfaces, mimic the pathophysiology of chronic obstructive pulmonary disease. Collectively, these data suggest the importance of mucus concentration in the pathogenesis of airway disease. It is important to understand the precise mechanisms that result in mucus hyperconcentration, for example, mucin overproduction versus abnormal regulation of ion/water transport, which may be unique to and characteristic of each disease phenotype. The measurement of mucus concentration may be a simple method to diagnose chronic bronchitis, monitor its progression, and serve as a biomarker for development of new therapies. PMID:27115951

  10. Infl uence of thermal treatment on the stability of phenolic compounds and the microbiological quality of sucrose solution following osmotic dehydration of highbush blueberry fruits

    OpenAIRE

    Anna Kucner; Agnieszka Papiewska; Robert Klewicki; Michał Sójka; Elżbieta Klewicka

    2014-01-01

    Background. Osmotic dehydration is a process of the partial removal of water which is based on immersion of material having cellular structure in a hypertonic solution. Osmotic dehydration is used as a pretreatment for the dehydration of foods before they are subjected to further processing such as freezing, freeze drying, vacuum drying. Management of spent syrup is one of the most important problems related to osmotic dewatering. Osmotic solutions are heavily polluted with of carbohydrates, ...

  11. Chronic cholecystitis

    Science.gov (United States)

    ... foods may relieve symptoms in people. However, the benefit of a low-fat diet has not been proven. Alternative Names Cholecystitis - chronic Images Cholecystitis, CT scan Cholecystitis, cholangiogram Cholecystolithiasis Gallstones, cholangiogram Cholecystogram References Wang ...

  12. Chronic Pain

    Science.gov (United States)

    ... who have chronic pain may also have low self-esteem, depression, and anger. Causes & Risk Factors What causes ... as stretching and strengthening activities) and low-impact exercise (such as walking, swimming, or biking) can help ...

  13. Chronic Meningitis

    Science.gov (United States)

    ... School Lunch Lines FDA Cracks Down on Antibacterial Soaps Health Tip: Schedule a Back-to-School Dental ... the Professional Version Meningitis Introduction to Meningitis Acute Bacterial Meningitis Viral Meningitis Noninfectious Meningitis Recurrent Meningitis Chronic ...

  14. Chronic Pericarditis

    Science.gov (United States)

    ... Sugar Control Helps Fight Diabetic Eye Disease Are 'Workaholics' Prone to OCD, Anxiety? ALL NEWS > Resources First ... weeks after heart surgery) and is considered subacute. Causes Usually, the cause of chronic effusive pericarditis is ...

  15. Osmotic Gradients Induce Bio-reminiscent Morphological Transformations in Giant Unilamellar Vesicles

    Directory of Open Access Journals (Sweden)

    KamilaOglecka

    2012-05-01

    Full Text Available We report observations of large-scale, in-plane and out-of-plane membrane deformations in giant uni- and multilamellar vesicles composed of binary and ternary lipid mixtures in the presence of net transvesicular osmotic gradients. The lipid mixtures we examined consisted of binary mixtures of DOPC and DPPC lipids and ternary mixtures comprising POPC, sphingomyelin, and cholesterol over a range of compositions – both of which produce co-existing phases for selected ranges of compositions at room temperature under thermodynamic equilibrium. In the presence of net osmotic gradient, we find that the in-plane phase separation potential of these mixtures is non-trivially altered and a variety of out-of-plane morphological remodeling occurs. The repertoire of membrane deformations we observe display striking resemblance to their biological counterparts in live cells encompassing vesiculation, membrane fission and fusion, tubulation and pearling, as well as expulsion of entrapped vesicles from multicompartmental GUV architectures through large, self-healing transient pores. These observations suggest that the forces introduced by simple osmotic gradients across membrane boundaries could act as a trigger for shape-dependent membrane and vesicle trafficking activities. We speculate that such coupling of osmotic gradients with membrane properties might have provided lipid-mediated mechanisms during the early evolution of membrane compartmentalization in the absence of osmoregulatory protein machinery.

  16. Osmotic Pressure in the Physics Course for Students of the Life Sciences

    Science.gov (United States)

    Hobbie, Russell K.

    1974-01-01

    Discusses the use of an ideal gas model to explain osmotic equilibrium and nonequilibrium flows through an ideal semipermeable membrane. Included are a justification of the relationship between an ideal gas and a dilute solution, a review of the irreversible thermodynamic flow, and some sample applications to physiology. (CC)

  17. Relationship between osmotic pressure of the blood and secretion of sweat

    Science.gov (United States)

    Montuori, A.

    1978-01-01

    Experiments with cats show that the thermic secretion of sweat represents a specific case of a general law: The central nervous apparatus that controls the secretion of sweat begins to function when the osmotic pressure of the blood drops below normal.

  18. Effect of process variables on the osmotic dehydration of star-fruit slices

    Directory of Open Access Journals (Sweden)

    Camila Dalben Madeira Campos

    2012-06-01

    Full Text Available The objective of this work was to study the effect of blanching and the influence of temperature, solution concentration, and the initial fruit:solution ratio on the osmotic dehydration of star-fruit slices. For blanching, different concentrations of citric and ascorbic acids were studied. The samples immersed in 0.75% citric acid presented little variation in color in relation to the fresh star-fruit. Osmotic dehydration was carried out in an incubator with orbital shaking, controlled temperature, and constant shaking at 120 rpm. The influence of process variables was studied in trials defined by a complete 23 central composite design. In general, water loss and solids gain were positively influenced by temperature and by solution concentration. Nevertheless, lower temperatures reduced water loss throughout the osmotic dehydration process. An increase in the amount of dehydrating solution (initial fruit:solution ratio slightly influenced the evaluated responses. The process carried out at 50 ºC with a solution concentration of 50% resulted in a product with lower solids gain and greater water loss. Under these conditions, blanching minimized the effect of the osmotic treatment on star-fruit browning, and therefore the blanched fruits showed little variation in color in relation to the fresh fruit.

  19. Osmotic pressure and aggregate shape in BSA/Poly(Ethylene Glycol)-Lipid/Dextran solutions

    OpenAIRE

    Castelletto, Valeria; Hamley, Ian W.; Clifton, Luke. A.; Green, Rebecca J.

    2008-01-01

    Osmotic pressure and aggregate shape in BSA/Poly(Ethylene Glycol)-Lipid/Dextran solutions correspondance: Corresponding author. Tel.: +44 113 343 7595; fax: +44 113 343 6551. (Castelletto, Valeria) (Castelletto, Valeria) School of Chemistry--> , Food Biosciences and Pharmacy--> , The University of Reading--> , P.O. Box 226--> , Whiteknights--> , Reading--> - UNIT...

  20. Effect of Pulsed Electric Field Pre-Treatment on Osmotic Dehydration of Strawberries

    Science.gov (United States)

    The objective of this research was to study the effect of pulsed electric fields (PEF) as a pre-treatment on osmotic dehydration characteristics and quality of strawberries. The studied PDF treatment conditions included three strengths of electric field (1.0, 2.0, 3.0 Kw/cm) and three numbers of pu...

  1. Recent development in osmotic dehydration of fruit and vegetables: a review.

    Science.gov (United States)

    Chandra, Suresh; Kumari, Durvesh

    2015-01-01

    Osmotic dehydration of fruits and vegetables is achieved by placing the solid/semi solid, whole or in pieces, in a hypertonic solution (sugar and/or salt) with a simultaneous counter diffusion of solutes from the osmotic solution into the tissues. Osmotic dehydration is recommended as a processing method to obtain better quality of food products. Partial dehydration allows structural, nutritional, sensory, and other functional properties of the raw material to be modified. However, the food industry uptake of osmotic dehydration of foods has not been extensive as expected due to the poor understanding of the counter current flow phenomena associated with it. However, these flows are in a dynamic equilibrium with each other and significantly influence the final product in terms of preservation, nutrition, and organoleptic properties. The demand of healthy, natural, nutritious, and tasty processed food products continuously increases, not only for finished products, but also for ingredient to be included in complex foods such as ice cream, cereals, dairy, confectionaries, and bakery products. PMID:24915357

  2. Proteomic analysis of rice leaves shows the different regulations to osmotic stress and stress signals.

    Science.gov (United States)

    Shu, Lie-Bo; Ding, Wei; Wu, Jin-Hong; Feng, Fang-Jun; Luo, Li-Jun; Mei, Han-Wei

    2010-11-01

    Following the idea of partial root-zone drying (PRD) in crop cultivation, the morphological and physiological responses to partial root osmotic stress (PROS) and whole root osmotic stress (WROS) were investigated in rice. WROS caused stress symptoms like leaf rolling and membrane leakage. PROS stimulated stress signals, but did not cause severe leaf damage. By proteomic analysis, a total of 58 proteins showed differential expression after one or both treatments, and functional classification of these proteins suggests that stress signals regulate photosynthesis, carbohydrate and energy metabolism. Two other proteins (anthranilate synthase and submergence-induced nickel-binding protein) were upregulated only in the PROS plants, indicating their important roles in stress resistance. Additionally, more enzymes were involved in stress defense, redox homeostasis, lignin and ethylene synthesis in WROS leaves, suggesting a more comprehensive regulatory mechanism induced by osmotic stress. This study provides new insights into the complex molecular networks within plant leaves involved in the adaptation to osmotic stress and stress signals. PMID:20977656

  3. Development and Optimization of Osmotically Controlled Asymmetric Membrane Capsules for Delivery of Solid Dispersion of Lycopene

    Directory of Open Access Journals (Sweden)

    Nitin Jain

    2014-01-01

    Full Text Available The aim of the present investigation is to develop and statistically optimize the osmotically controlled asymmetric membrane capsules of solid dispersion of lycopene. Solid dispersions of lycopene with β-cyclodextrin in different ratios were prepared using solvent evaporation method. Solubility studies showed that the solid dispersion with 1 : 5 (lycopene : β-cyclodextrin exhibited optimum solubility (56.25 mg/mL for osmotic controlled delivery. Asymmetric membrane capsules (AMCs were prepared on glass mold pins via dip coating method. Membrane characterization by scanning electron microscopy showed inner porous region and outer dense region. Central composite design response surface methodology was applied for the optimization of AMCs. The independent variables were ethyl cellulose (X1, glycerol (X2, and NaCl (X3 which were varied at different levels to analyze the effect on dependent variables (percentage of cumulative drug release (Y1 and correlation coefficient of drug release (Y2. The effect of independent variables on the response was significantly influential. The F18 was selected as optimized formulation based on percentage of CDR (cumulative drug release of 85.63% and correlation coefficient of 0.9994. The optimized formulation was subjected to analyze the effect of osmotic pressure and agitational intensity on percentage of CDR. The drug release was independent of agitational intensity but was dependent on osmotic pressure of dissolution medium.

  4. Salt tolerance of Beta macrocarpa is associated with efficient osmotic adjustment and increased apoplastic water content.

    Science.gov (United States)

    Hamouda, I; Badri, M; Mejri, M; Cruz, C; Siddique, K H M; Hessini, K

    2016-05-01

    The chenopod Beta macrocarpa Guss (wild Swiss chard) is known for its salt tolerance, but the mechanisms involved are still debated. In order to elucidate the processes involved, we grew wild Swiss chard exposed to three salinity levels (0, 100 and 200 mm NaCl) for 45 days, and determined several physiological parameters at the end of this time. All plants survived despite reductions in growth, photosynthesis and stomatal conductance in plants exposed to salinity (100 and 200 mm NaCl). As expected, the negative effects of salinity were more pronounced at 200 mm than at 100 mm NaCl: (i) leaf apoplastic water content was maintained or increased despite a significant reduction in leaf water potential, revealing the halophytic character of B. macrocarpa; (ii) osmotic adjustment occurred, which presumably enhanced the driving force for water extraction from soil, and avoided toxic build up of Na(+) and Cl(-) in the mesophyll apoplast of leaves. Osmotic adjustment mainly occurred through accumulation of inorganic ions and to a lesser extent soluble sugars; proline was not implicated in osmotic adjustment. Overall, two important mechanisms of salt tolerance in B. macrocarpa were identified: osmotic and apoplastic water adjustment. PMID:26588061

  5. Low-frequency oscillations of the impedance of electrolyte moving in an electro-osmotic regime

    Science.gov (United States)

    Kompan, M. E.; Malyshkin, V. G.; Goffman, V. G.

    2014-07-01

    The impedance of a liquid electrolyte has been studied under the conditions of electro-osmotic flow. It is found that the impedance exhibits oscillations in the region of subhertz frequencies, which are related to resonant mechanical oscillations arising in the flow. Assumptions concerning the type of these resonant oscillations are formulated based on the observed spectrum of impedance oscillations.

  6. Osmotic Effects on the Electrical Properties of Arabidopsis Root Hair Vacuoles in Situ1

    Science.gov (United States)

    Lew, Roger R.

    2004-01-01

    To assess the role of the vacuole in responses to hyperosmotic and hypo-osmotic stress, the electrical properties of the vacuole were measured in situ. A double-barrel micropipette was inserted into the vacuole for voltage clamping. A second double-barrel micropipette was inserted into the cytoplasm to provide a virtual ground that separated the electrical properties of the vacuole from those of the plasma membrane. Osmotic stress causes immediate electrical responses at the plasma membrane (Lew RR [1996] Plant Physiol 97: 2002-2005) and ion flux changes and turgor recovery (Shabala SN, Lew RR [2002] 129: 290-299) in Arabidopsis root cells. In situ, the vacuole also responds rapidly to changes in extracellular osmotic potential. Hyperosmotic treatment caused a very large increase in the ionic conductance of the vacuole. Hypo-osmotic treatment did not affect the vacuolar conductance. In either case, the vacuolar electrical potential was unchanged. Taken in concert with previous studies of changes at the plasma membrane, these results demonstrate a highly coordinated system in which the vacuole and plasma membrane are primed to respond immediately to hyperosmotic stress before changes in gene expression. PMID:14730070

  7. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain

    DEFF Research Database (Denmark)

    Burgess, Catherine M.; Gianotti, Andrea; Gruzdev, Nadia;

    2016-01-01

    human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and...

  8. A simple relation for the concentration dependence of osmotic pressure and depletion thickness in polymer solutions

    NARCIS (Netherlands)

    Fleer, G.J.; Skvortsov, A.M.; Tuinier, R.

    2007-01-01

    We propose simple expressions II/IIo = 1 + and (omega/omega(ex))(3 alpha-1) and (delta(0)/delta)(2) = 1 + (omega/omega(ex))(2 alpha) for the osmotic pressure II and the depletion thickness 6 as a function of the polymer concentration omega. Here, IIo and delta 0 correspond to the dilute limit, and o

  9. Proteomic Analysis of Rice Leaves Shows the Different Regulations to Osmotic Stress and Stress Signals

    Institute of Scientific and Technical Information of China (English)

    Lie-Bo Shu; Wei Ding; Jin-Hong Wu; Fang-Jun Feng; Li-Jun Luo; Han-Wei Mei

    2010-01-01

    Following the idea of partial root-zone drying(PRD)in crop cultivation,the morphological and physiological responses to partial root osmotic stress(PROS)and whole root osmotic stress(WROS)were investigated in rice.WROS caused stress symptoms like leaf rolling and membrane leakage.PROS stimulated stress signals,but did not cause severe leaf damage.By proteomic analysis,a total of 58 proteins showed differential expression after one or both treatments,and functional classification of these proteins suggests that stress signals regulate photosynthesis,carbohydrate and energy metabolism.Two other proteins(anthranilate synthase and submergence-induced nickel-binding protein)were upregulated only in the PROS plants,indicating their important roles in stress resistance.Additionally,more enzymes were involved in stress defense,redox homeostasis,lignin and ethylene synthesis in WROS leaves,suggesting a more comprehensive regulatory mechanism induced by osmotic stress.This study provides new insights into the complex molecular networks within plant leaves involved in the adaptation to osmotic stress and stress signals.

  10. Phenotypic characterization of Corynebacterium glutamicum under osmotic stress conditions using elementary mode analysis.

    Science.gov (United States)

    Rajvanshi, Meghna; Venkatesh, K V

    2011-09-01

    Corynebacterium glutamicum, a soil bacterium, is used to produce amino acids such as lysine and glutamate. C. glutamicum is often exposed to osmolality changes in its medium, and the bacterium has therefore evolved several adaptive response mechanisms to overcome them. In this study we quantify the metabolic response of C. glutamicum under osmotic stress using elementary mode analysis (EMA). Further, we obtain the optimal phenotypic space for the synthesis of lysine and formation of biomass. The analysis demonstrated that with increasing osmotic stress, the flux towards trehalose formation and energy-generating pathways increased, while the flux of anabolic reactions diminished. Nodal analysis indicated that glucose-6-phosphate, phosphoenol pyruvate, and pyruvate nodes were capable of adapting to osmotic stress, whereas the oxaloacetic acid node was relatively unresponsive. Fewer elementary modes were active under stress indicating the rigid behavior of the metabolism in response to high osmolality. Optimal phenotypic space analysis revealed that under normal conditions the organism optimized growth during the initial log phase and lysine and trehalose formation during the stationary phase. However, under osmotic stress, the analysis demonstrated that the organism operates under suboptimal conditions for growth, and lysine and trehalose formation. PMID:21132515

  11. FORMULATION AND EVALUATION OF CONTROLLED POROSITY OSMOTIC DRUG DELIVERY SYSTEM OF METOPROLOL SUCCINATE

    Directory of Open Access Journals (Sweden)

    Hardik Patel* and M. M. Patel

    2012-06-01

    Full Text Available Controlled porosity osmotic tablet of metoprolol succinate prepared and evaluated in this study. Metoprolol succinate is very high soluble drug, so complete drug release obtained very fast. It is difficult to formulate osmotic tablet of Metoprolol succinate which gives drug release up to 24 hr at zero order. To get desired dissolution profile various formulation parameters like osmogen concentration, level of weight gain and level of pore former concentration were studied. Hypromellose was added as release retardant to reduce its dissolution rate and get drug release up to 24 hr at zero order. As concentration of release retardant increases, dissolution rate decreases. Final optimized formulation with hypromellose was studied for effect of pH of dissolution media, agitation intensity and osmotic pressure of dissolution media. There is no effect of above variables on dissolution confirms that prepared metoprolol succinate tablet gives drug release with osmotic mechanism. Final optimized formulation complies with the USP criteria for the dissolution of metoprolol succinate extended release tablet.

  12. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum

    DEFF Research Database (Denmark)

    O'Donnell, Natalie H.; Møller, Birger Lindberg; Neale, Alan D.;

    2013-01-01

    . Given that finely regulating soil moisture under controlled conditions is notoriously difficult, we exposed sorghum plants to varying degrees of osmotic stress by growing them for different lengths of time in hydroponic solutions containing polyethylene glycol (PEG). Plants grown in medium containing 20...

  13. TRPV Ion Channels and Sensory Transduction of Osmotic and Mechanical Stimuli in Mammals

    Science.gov (United States)

    Liedtke, Wolfgang

    In signal transduction in metazoan cells, ion channels of the transient receptor potential (TRP) family have been identified as responding to diverse external and internal stimuli, amongst them osmotic stimuli. This chapter will highlight findings on the TRP vanilloid (TRPV) subfamily - both vertebrate and invertebrate members. Of the six mammalian TRPV channels, TRPV1, 2 and 4 have been demonstrated to function in transduction of osmotic stimuli. TRPV channels have been found to function in cellular as well as systemic osmotic homeostasis in vertebrates. Invertebrate TRPV channels - five in Caenorhabditis elegans and two in Drosophila - have been shown to play a role in mechanosensation such as hearing and proprioception in Drosophila and nose touch in C. elegans, and in the response to osmotic stimuli in C. elegans. In a striking example of evolutionary conservation of function, mammalian TRPV4 has been found to rescue osmo- and mechano-sensory deficits of the TRPV mutant strain osm-9 in C. elegans, despite the fact that the respective proteins share not more than 26% orthology.

  14. How to deal with visco-elastic properties of cellular tissues during osmotic dehydration

    NARCIS (Netherlands)

    Oliver, L.; Betoret, N.; Fito, P.; Meinders, M.B.J.

    2012-01-01

    In this work, vacuum impregnated apple discs with different isotonic solutions (sucrose and trehalose) were equilibrated during osmotic dehydration (55°Brix glucose at 40 °C). Changes in sample composition (water and soluble solid contents), weight and volume are analysed. A mathematical model is pr

  15. Differential osmotic behavior of water components in living skeletal muscle resolved by 1H-NMR.

    Science.gov (United States)

    Kimura, Masako; Takemori, Shigeru; Yamaguchi, Maki; Umazume, Yoshiki

    2005-08-01

    Using frog sartorius muscle, we observed transverse relaxation processes of (1)H-NMR signals from myowater. The process could be well described by four characteristic exponentials: the extremely slow exponential of relaxation time constant T(2) > 0.4 s, the slow one of T(2) approximately 0.15 s, the intermediate one of 0.03 s isotonic extracellular solution affected only the extremely slow exponential, linearly increasing its amplitude and gradually increasing its T(2) toward that of the bulk solution (1.7 s). Therefore, this exponential should represent extracellular surplus solution independently of the other exponentials. At two thirds to three times the isotonicity, the amplitude of the intermediate exponential showed normal osmotic behavior in parallel with the volume change of the myofilament lattice measured with x-ray diffraction. In the same tonicity range, the amplitude of the rapid exponential showed converse osmotic behavior. Lower tonicities increased the amplitude of only the slow exponential. Studied tonicities did not affect the T(2) values. The distinct osmotic behavior indicated that each characteristic exponential could be viewed as a distinct water group. In addition, the converse osmotic behavior suggested that the rapid exponential would not be a static water layer on the macromolecule surface. PMID:15894647

  16. Comparison of the compressive yield response of aggregated suspensions: Pressure filtration, centrifugation, and osmotic consolidation

    International Nuclear Information System (INIS)

    The compressive rheological responses of suspensions containing flocculated kaolin, alumina (average particle sizes of 0.2 and 0.5 microm), and hydrous zirconia (average particle sizes of 8, 57, and 139 nm) particles have been measured using three different techniques: pressure filtration, volume fraction profile during centrifugation, and sediment height during centrifugation at multiple spinning speeds. While the volume fraction profile technique appears to be experimentally most robust, equivalent responses are found using the different techniques, indicating that the compressive yield stress is a material property of a given suspension. The compressive yield stress of each suspension increases rapidly with volume fraction but cannot be generally described using simple power-law or exponential fits. The compressive yield stress also increases with the inverse square of particle size. The packing behavior of the suspensions undergoing osmotic consolidation is compared with the mechanical compressive yield response. Some suspensions exhibited the same packing behavior as in the mechanical techniques, while others consistently packed to higher densities during osmotic consolidation. Although equivalent osmotic and mechanical loads do not always result in the same volume fractions, the similar increases in volume fraction with applied driving force suggest that both the osmotic and mechanical techniques are controlled by the force needed to rearrange the particle network

  17. Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR.

    Science.gov (United States)

    Wu, Li; Yin, Xianzhen; Guo, Zhen; Tong, Yajun; Feng, Jing; York, Peter; Xiao, Tiqiao; Chen, Min; Gu, Jingkai; Zhang, Jiwen

    2016-03-10

    Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent). The microstructure and chemical change of membranes hydrated for 0, 5, 10 and 30min were measured using SR-FTIR, combined with scanning electronic microscopy and atom force microscopy. The SR-FTIR microspectroscopy results indicated that there was a major change at the absorption range of 2700-3100cm(-1) in the membranes after different periods of hydration time. The absorption bands at 2870-2880cm(-1) and 2950-2960cm(-1) were assigned to represent CA and PEG, respectively. The chemical group signal distribution illustrated by the ratio of PEG to CA demonstrated that the trigger of drug release in the preliminary stage was due to the rapid transfer of PEG into liquid medium with a sharp decrease of PEG in the membranes. The SR-FTIR mapping results have demonstrated the hydration induced material transfer in the membranes of osmotic pump tablets and enabled reassessment of the drug release mechanism of membrane controlled osmotic pump systems. PMID:26802550

  18. Osmotic actuation for microfluidic components in point-of-care applications

    KAUST Repository

    Chen, Yu-Chih

    2013-01-01

    We present a novel design of micropumps and valves driven by osmotic force for point-of-care applications. Although there have been significant progresses in microfluidic components and control devices such as fluidic diodes, switches, resonators and digital-to-analog converters, the ultimate power source still depends on bulky off-chip components, which are expensive and cannot be easily miniaturized. For point-of-care applications, it is critical to integrate all the components in a compact size at low cost. In this work, we report two key active components actuated by osmotic mechanism for total integrated microfluidic system. For the proof of concept, we have demonstrated valve actuation, which can maintain stable ON/OFF switching operations under 125 kPa back pressure. We have also implemented an osmotic pump, which can pump a high flow rate over 30 μL/min for longer than 30 minutes. The experimental data demonstrates the possibility and potential of applying osmotic actuation in point-of-care disposable microfluidics. © 2013 IEEE.

  19. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase

    Science.gov (United States)

    Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  20. Estimating contribution of anthocyanin pigments to osmotic adjustment during winter leaf reddening.

    Science.gov (United States)

    Hughes, Nicole M; Carpenter, Kaylyn L; Cannon, Jonathan G

    2013-01-15

    The association between plant water stress and synthesis of red, anthocyanin pigments in leaves has led some plant biologists to propose an osmotic function of leaf reddening. According to this hypothesis, anthocyanins function as a solute in osmotic adjustment (OA), contributing to depression of osmotic potential (Ψ(π)) and maintenance of turgor pressure during drought-stressed conditions. Here we calculate the percent contribution of anthocyanin to leaf Ψ(π) during OA in two angiosperm evergreen species, Galax urceolata and Gaultheria procumbens. Both species exhibit dramatic leaf reddening under high light during winter, concomitant with declines in leaf water potential and accumulation of solutes. Data previously published by the authors on osmotic potential at full turgor (Ψ(π,100)) of G. urceolata and G. procumbens leaves before and after leaf reddening were used to estimate OA. In vivo molar concentrations of anthocyanin, glucose, fructose, and sucrose measured from the same individuals were converted to pressure equivalents using the Ideal Gas Law, and percent contribution to OA was estimated. Estimated mean OA during winter was -0.7MPa for G. urceolata and -0.8MPa for G. procumbens. In vivo concentrations of anthocyanin (3-10mM) were estimated to account for ∼2% of OA during winter, and comprised <0.7% of Ψ(π,100) in both species. Glucose, fructose, and sucrose combined accounted for roughly 50 and 80% of OA for G. urceolata and G. procumbens, respectively, and comprised ∼20% of Ψ(π,100). We observed that a co-occurring, acyanic species (Vinca minor) achieved similar OA without synthesizing anthocyanin. We conclude that anthocyanins represent a measurable, albeit meager, component of OA in red-leafed evergreen species during winter. However, due to their low concentrations, metabolic costliness relative to other osmolytes, and striking red color (unnecessary for an osmotic function), it is unlikely that they are synthesized solely for an

  1. Membrane permeability characteristics and osmotic tolerance limits of sea urchin (Evechinus chloroticus) eggs.

    Science.gov (United States)

    Adams, Serean L; Kleinhans, F W; Mladenov, Philip V; Hessian, Paul A

    2003-08-01

    Development of effective cryopreservation protocols relies on knowledge of the fundamental cryobiological characteristics for a particular cell type. These characteristics include osmotic behaviour, membrane permeability characteristics, and osmotic tolerance limits. Here, we report on measures of these characteristics for unfertilized and fertilised eggs of the sea urchin (Evechinus chloroticus). In NaCl solutions of varying osmolalities, sea urchin eggs behaved as ideal linear osmometers. The osmotically inactive volume (vb) was similar for unfertilized and fertilised eggs, 0.367+/-0.008 (mean+/-SE) and 0.303+/-0.007, respectively. Estimates of water solubility (Lp) and solute permeability (Ps) and their respective activation energies (Ea) for unfertilized and fertilised eggs were determined following exposure to cryoprotectant (CPA) solutions at different temperatures. Irrespective of treatment, fertilised eggs had higher values of Lp and Ps. The presence of a CPA decreased Lp. Among CPAs, solute permeability was highest for propylene glycol followed by dimethyl sulphoxide and then ethylene glycol. Measures of osmotic tolerance limits of the eggs revealed unfertilized eggs were able to tolerate volumetric changes of -20% and +30% of their equilibrium volume; fertilised eggs were able to tolerate changes +/-30%. Using membrane permeability data and osmotic tolerance limits, we established effective methods for loading and unloading CPAs from the eggs. The results of this study establish cryobiological characteristics for E. chloroticus eggs of use for developing an effective cryopreservation protocol. The approach we outline can be readily adapted for determining cryobiological characteristics of other species and cell types, as an aid to successful cryopreservation. PMID:12963407

  2. FORMULATION, EVALUATION AND OPTIMIZATION OF OSMOTIC DRUG DELIVERY SYSTEM FOR A HIGHLY INSOLUBLE DRUG

    Directory of Open Access Journals (Sweden)

    Sharma anurag R

    2012-05-01

    Full Text Available The present study focuses on the preparation of push pull osmotic drug delivery system for a highlyinsoluble drug, an antipsychotic category. The main aim is to improve the site specification and toprovide the controlled release of drug for once-a-day drug delivery system with zero order drug releaseprofile with applying drug release kinetic modelling. The push pull osmotic tablets were prepared by wetgranulation method; the drug layer consists of the drug, osmotic agent, suspension agent and in pushlayer extender, osmotic agent and pigment to distinguish push layer form drug layer. The coating wascarried out by cellulose acetate (CA and plasticizer was used as propylene glycol. This study evaluatesthat regardless of the drug properties which do not significantly affect the drug delivery, the releasekinetics is mainly controlled by some factors as, the plasticizer proportion in the membrane, the osmoticagent proportion and the drug layer polymer grade. The influence of each factor was investigateddefining their acceptability range. Results shows that tablet made by PEO200K and diluents used in druglayer and PEO7000K and sodium chloride in push layer with 10% of CA coating, the plasticizer contentwas upto 20% to 30% and 0.8mm of orifice diameter. Results, shows that the use of suspension agent indrug layer affects the drug release. The formulation batch F13 was taken as ideal optimized batch and itfollows the zero order drug release. On the basis of results the effect of orifice diameter, polymerconcentration in drug layer, coating composition and plasticizer amount was tested and promising resultswere found. The drug release was independent of pH but dependent on the osmotic pressure of thedissolution medium. The release kinetics followed the Zero order model.

  3. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    Science.gov (United States)

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality. PMID:27107175

  4. Chronic, Constant-Rate, Gastric Drug Infusion in Nontethered Rhesus Macaques (Macaca mulatta)

    OpenAIRE

    Strait, Karen R; Orkin, Jack L; Anderson, Daniel C.; Muly, E. Chris

    2010-01-01

    As part of a study of antipsychotic drug treatment in monkeys, we developed a technique to provide chronic, constant-rate, gastric drug infusion in nontethered rhesus macaques. This method allowed us to mimic the osmotic release oral delivery system currently used in humans for continuous enteral drug delivery. Rhesus macaques (n = 5) underwent gastric catheter placement by laparotomy. After the catheters were secured to the stomach, the remaining catheter length was exited through the latera...

  5. Enhanced activation of RVLM-projecting PVN neurons in rats with chronic heart failure

    OpenAIRE

    Xu, Bo; Zheng, Hong; Patel, Kaushik P.

    2012-01-01

    Previous studies have indicated that there is increased activation of the paraventricular nucleus (PVN) in rats with chronic heart failure (CHF); however, it is not clear if the preautonomic neurons within the PVN are specifically overactive. Also, it is not known if these neurons have altered responses to baroreceptor or osmotic challenges. Experiments were conducted in rats with CHF (6–8 wk after coronary artery ligation). Spontaneously active neurons were recorded in the PVN, of which 36% ...

  6. Calculating osmotic pressure of xylitol solutions from molality according to UNIFAC model and measuring it with air humidity osmometry.

    Science.gov (United States)

    Yu, Lan; Zhan, Tingting; Zhan, Xiancheng; Wei, Guocui; Tan, Xiaoying; Wang, Xiaolan; Li, Chengrong

    2014-11-01

    The osmotic pressure of xylitol solution at a wide concentration range was calculated according to the UNIFAC model and experimentally determined by our newly reported air humidity osmometry. The measurements from air humidity osmometry were compared with UNIFAC model calculations from dilute to saturated solution. Results indicate that air humidity osmometry measurements are comparable to UNIFAC model calculations at a wide concentration range by two one-sided test and multiple testing corrections. The air humidity osmometry is applicable to measure the osmotic pressure and the osmotic pressure can be calculated from the concentration. PMID:24032449

  7. Joint effects of osmotic and matric suctions on hydro-mechanical behaviour of Boom Clay

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. One long-term management option of the Belgian Agency for the Management of Radioactive Waste and Fissile Materials (ONDRAF/NIRAS) is the direct underground disposal of Eurobitum Bituminized radioactive Waste (BW) in Boom Clay. In Geological disposal conditions, contact of the BW which contains large amounts of highly soluble NaNO3 with groundwater will result in water uptake and swelling of the waste and in subsequent diffusion of the dissolved salt through the host clay formation. Within the framework of the compatibility of Boom Clay with large amounts of nitrate-bearing bituminized radioactive waste an experimental research program have been started to investigate the effect of the leaching of large amounts of sodium nitrate on hydro-mechanical behaviour of Boom Clay. Change of pore water chemistry can affect clays through a variety of adsorption/desorption phenomena driven by osmotic suction (concentration) effects and cationic exchange mechanisms. For Boom Clay the dominant cation present is sodium ion Na+ at a concentration of about 10-2 mol/l. Therefore, when Boom Clay is exposed to NaNO3, cation exchange effects are expected to be negligible compared to osmotic suction effects. Indeed, two processes are expected to take place, chemical consolidation and chemically induced consolidation. Chemical consolidation occurs due to the transfer of mass of water and salt from the pore space into the inter-lamellar space and/or external surface of clusters and vice versa. Chemically induced consolidation is due to the osmotic flow of water out of the sample that takes place in response to the chemical (concentration) gradient. The relevance of osmotic suction effects has been addressed by Mokni (2011) and a formulation has been proposed for the analysis of deformation induced by osmotic processes in double structure porous media. The formulation is based on the distinction within the material of a microstructural

  8. Inefficacy of osmotic backwash induced by sodium chloride salt solution in controlling SWRO membrane fouling

    Science.gov (United States)

    Farooque, A. Mohammed; Al-Jeshi, Subhi; Saeed, Mohamed O.; Alreweli, Ali

    2014-12-01

    A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and therefore minimizing/eliminating the need for chemical cleaning. SWRO membranes were deliberately fouled by feeding seawater from an open intake located on the Arabian Gulf Coast without dosing chemicals. The fouled membranes were subjected to offline cleaning with the salt solution of up to 25 % concentration. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning. Similarly, online osmotic backwash was found to be not only ineffective in removing foulants from membrane surfaces but actually increased the fouling rate, as indicated by faster fouling rates compared to other cases. Although the driving force required for the osmotic backwash existed, the generated back flow proved to be insufficient to detach foulants from membrane surfaces. During the study period, the average SWRO membrane flux was maintained between 19 and 23 LMH, whereas the average generated back flow flux by high salt concentration solution was only 11 LMH, which was not adequate to remove foulants from membrane surfaces. Moreover, it seems that the membrane configuration as well as inherent microstructure of SWRO membrane places certain constraints on the osmotic backwash process and renders osmotic backwash ineffective in tackling SWRO membrane fouling. Hence, chemical cleaning is essential to restore SWRO membrane performance whenever fouling occurs, and the use of highly concentrated salt solution does not have any significant benefit. Membrane autopsy revealed only an insignificant accumulation of biofouling layer despite the absence of disinfection. However, it was shown that culturable biofilm bacteria species

  9. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    Katarzyna Cyganek

    2013-06-01

    Full Text Available The aim of the study was to assess the role of salicylic acid (SA and abscisic acid (ABA in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1 and drought resistant (CS wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM or ABA (0.1 μM to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa. The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant

  10. Chronic myelogenous leukemia (CML)

    Science.gov (United States)

    CML; Chronic myeloid leukemia; Chronic granulocytic leukemia; Leukemia - chronic granulocytic ... nuclear disaster. It takes many years to develop leukemia from radiation exposure. Most people treated for cancer ...

  11. Chronic obstructive pulmonary disease

    Science.gov (United States)

    ... airways disease; Chronic obstructive lung disease; Chronic bronchitis; Emphysema; Bronchitis - chronic ... a protein called alpha-1 antitrypsin can develop emphysema. Other risk factors for COPD are: Exposure to ...

  12. Modification of radiation damage to acetylcholinesterase of shadow red discs by changing the osmotic power of the irradiation medium

    International Nuclear Information System (INIS)

    The model of erythrocyte membrane acetylcholinesterase was used to study the effect of the ion medium osmotic power, created by KCl, on radiation inactivation and postradiation additional damage to the enzyme in the course of ageing of shadow red discs

  13. Genetically modified cyanobacterium Nostoc muscorum overproducing proline in response to salinity and osmotic stresses

    Indian Academy of Sciences (India)

    Santosh Bhargava

    2006-06-01

    In the parent Nostoc muscorum an active proline oxidase enzyme is required to assimilate exogenous proline as a fixed nitrogen source. Cyanobacterial mutants, resistant to growth inhibitory action of proline analogue L-azetidine-2-carboxylate (Ac-R), were deficient in proline oxidase activity, and were over-accumulators of proline. Proline over-accumulation, resulting either from mutational acquisition of the Ac-R phenotype, or from salinity-induced uptake of exogenous proline, confirmed enhanced salinity/osmotic tolerance in the mutant strain. The nitrogenase activity and photosynthetic O2 evolution of the parent were sensitive to both salinity as well as osmotic stresses than of Ac-R mutant strain. In addition, the mutation to Ac-resistant phenotype showed no alteration in salinity inducible potassium transport system in the cyanobacterium

  14. Ion and solvent Transport in Polypyrrole: Experimental Test of Osmotic Model

    DEFF Research Database (Denmark)

    Velmurugu, Yogambigai; Skaarup, Steen

    Ion and solvent transport in the conjugated polymer actuator material, polypyrrole, doped with the immobile anion dodecyl benzene sulphonate, has been investigated by simultaneous cyclic voltammetry and Electrochemical Quartz Crystal Microbalance measurements. The purpose was to elucidate the pre...... from almost pure cation transport to ca. equal amount of anion transport; exchanging Br- for Cl- ions has only negligible effect at lower concentrations at equal osmotic pressures. Ca. 4 H2O molecules are tightly bound to each Na+ ion at concentrations <1M....... precise nature of the mobile species during redox cycling, and to seek confirmation for the osmotic mechanism of actuation. Three testable aspects of the model were confirmed: The number of inserted H2O molecules decreases with electrolyte concentration; at the same time the mechanism gradually changes...

  15. Laboratory Characterization of Chemico-osmotic, Hydraulic and Diffusion Properties of Rocks: Apparatus Development

    International Nuclear Information System (INIS)

    Excess fluid pressures induced by chemical osmosis in natural formations may have a significant influence on groundwater systems in a geological time scale. Examinations of the possibility and duration times require characterization of the chemico-osmotic, hydraulic and diffusion properties of representative formation media under field conditions. To develop a laboratory apparatus for chemical osmosis experiments that simulates in-situ conditions, typical litho-static and background pore pressures, a fundamental concept of the chemical osmosis experiment using a closed fluid circuit system (referred to as a closed system hereafter) was revisited. Coupled processes in the experiment were examined numerically. In preliminary experiments at atmospheric pressure a chemical osmosis experiment using the closed system was demonstrated. An approximation method for determining the chemico-osmotic property was attempted. Based on preliminary examinations, an experimental system capable of loading the confining and pore pressures on the sample was thus developed. (authors)

  16. Mass transfer and microbiological profile of pork meat dehydrated in two different osmotic solutions

    Directory of Open Access Journals (Sweden)

    Plavšić Dragana V.

    2012-01-01

    Full Text Available The effects of osmotic dehydration on mass transfer properties and microbiological profile were investigated in order to determine the usefulness of this technique as pre-treatment for further treatment of meat. Process was studied in two solutions (sugar beet molasses, and aqueous solution of sodium chloride and sucrose, at two temperatures (4 and 22°C at atmospheric pressure. The most significant parameters of mass transfer were determined after 300 minutes of the dehydration. The water activity (aw values of the processed meat were determined, as well as the change of the microbiological profile between the fresh and dehydrated meat. At the temperature of 22°C the sugar beet molasses proved to be most suitable as an osmotic solution, despite the greater viscosity.

  17. Second sound, osmotic pressure, and Fermi-liquid parameters in 3He-4He solutions

    International Nuclear Information System (INIS)

    Second-sound velocities and osmotic pressures are analyzed to obtain the first experimental values for the Landau compressibility parameter F0/sup s/ in 3He-4He solutions. Data are presented as a function of pressure and 3He concentration, and are compared to theoretical predictions. The square of the second-sound velocity at finite temperature is found to be accurately proportional to the internal energy of a perfect Fermi gas. Using inertial effective masses given by the Landau-Pomeranchuk theory, the square of the velocity is found to separate into two parts: a temperature-dependent part characterized completely by ideal Fermi-gas behavior and a temperature-independent part containing all the Fermi-liquid corrections. This is related to a similar separation found in the osmotic pressure

  18. Sedimentation equilibria of ferrofluids: II. Experimental osmotic equations of state of magnetite colloids

    International Nuclear Information System (INIS)

    The first experimental osmotic equation of state is reported for well-defined magnetic colloids that interact via a dipolar hard-sphere potential. The osmotic pressures are determined from the sedimentation equilibrium concentration profiles in ultrathin capillaries using a low-velocity analytical centrifuge, which is the subject of the accompanying paper I. The pressures of the magnetic colloids, measured accurately to values as low as a few pascals, obey Van ’t Hoff’s law at low concentrations, whereas at increasing colloid densities non-ideality appears in the form of a negative second virial coefficient. This virial coefficient corresponds to a dipolar coupling constant that agrees with the coupling constant obtained via independent magnetization measurements. The coupling constant manifests an attractive potential of mean force that is significant but yet not quite strong enough to induce dipolar chain formation. Our results disprove van der Waals-like phase behavior of dipolar particles for reasons that are explained. (paper)

  19. Experimental Verification of Overlimiting Current by Surface Conduction and Electro-osmotic Flow in Microchannels

    CERN Document Server

    Nam, Sungmin; Heo, Joonseong; Lim, Geunbae; Bazant, Martin Z; Sung, Gunyong; Kim, Sung Jae

    2014-01-01

    Possible mechanisms of overlimiting current in unsupported electrolytes, exceeding diffusion limitation, have been intensely studied for their fundamental significance and applications to desalination, separations, sensing, and energy storage. In bulk membrane systems, the primary physical mechanism is electro-convection, driven by electro-osmotic instability on the membrane surface. It has recently been predicted that confinement by charged surfaces in microchannels or porous media favors two new mechanisms, electro-osmotic flow (EOF) and surface conduction (SC), driven by large electric fields in the depleted region acting on the electric double layers on the sidewalls. Here, we provide the first direct evidence for the transition from SC to EOF above a critical channel height, using in situ particle tracking and current-voltage measurements in a micro/nanofluidic device. The dependence of the over-limiting conductance on channel depth (d) is consistent with theoretical predictions, scaling as d^-1 for SC a...

  20. ESR (electron spin resonance)-determined osmotic behavior of bull spermatozoa

    Energy Technology Data Exchange (ETDEWEB)

    Du, J.; Kleinhans, F.W.; Spitzer, V.J.; Critser, J.K. (Methodist Hospital, Indianapolis, IN (USA). Dept. of Medical Research); Horstman, L. (Purdue Univ., Lafayette, IN (USA). School of Veterinary Medicine); Mazur, P. (Oak Ridge National Lab., TN (USA))

    1990-01-01

    Our laboratories are pursuing a fundamental approach to the problems of semen cryopreservation. For many cell types (human red cells, yeast, HeLa) it has been demonstrated that there is an optimum cooling rate for cryopreservation. Faster rates allow insufficient time for cell dehydration and result in intracellular ice formation and cell death. It is possible to predict this optimal rate provided that the cell acts as an ideal osmometer and several other cell parameters are known such as the membrane hydraulic conductivity. It is the purpose of this work to examine the osmotic response of bull sperm to sucrose and NaCl utilizing electron spin resonance (ESR) to measure cell volume. For calibration purposes we also measured the ESR response of human red cells (RBC), the osmotic response of which is well documented with other methods. 15 refs., 1 fig.

  1. From a thin film model for passive suspensions towards the description of osmotic biofilm spreading

    CERN Document Server

    Trinschek, Sarah; Thiele, Uwe

    2016-01-01

    Biofilms are ubiquitous macro-colonies of bacteria that develop at various interfaces (solid-liquid, solid-gas or liquid-gas). The formation of biofilms starts with the attachment of individual bacteria to an interface, where they proliferate and produce a slimy polymeric matrix - two processes that result in colony growth and spreading. Recent experiments on the growth of biofilms on agar substrates under air have shown that for certain bacterial strains, the production of the extracellular matrix and the resulting osmotic influx of nutrient-rich water from the agar into the biofilm are more crucial for the spreading behaviour of a biofilm than the motility of individual bacteria. We present a model which describes the biofilm evolution and the advancing biofilm edge for this spreading mechanism. The model is based on a gradient dynamics formulation for thin films of biologically passive liquid mixtures and suspensions, supplemented by bioactive processes which play a decisive role in the osmotic spreading o...

  2. Effect of Electro-Osmotic Flow on Energy Conversion on Superhydrophobic Surfaces

    CERN Document Server

    Seshadri, Gowrishankar

    2013-01-01

    It has been suggested that superhydrophobic surfaces, due to the presence of a no-shear zone, can greatly enhance transport of surface charges, leading to a considerable increase in the streaming potential. This could find potential use in micro-energy harvesting devices. In this paper, we show using analytical and numerical methods, that when a streaming potential is generated in such superhydrophobic geometries, the reverse electro-osmotic flow and hence current generated by this, is significant. A decrease in streaming potential compared to what was earlier predicted is expected. We also show that, due to the electro-osmotic streaming-current, a saturation in both the power extracted and efficiency of energy conversion is achieved in such systems for large values of the free surface charge densities. Nevertheless, under realistic conditions, such microstructured devices with superhydrophobic surfaces have the potential to even reach energy conversion efficiencies only achieved in nanostructured devices so ...

  3. Osmotic forces and gap junctions in spreading depression: a computational model

    Science.gov (United States)

    Shapiro, B. E.

    2001-01-01

    In a computational model of spreading depression (SD), ionic movement through a neuronal syncytium of cells connected by gap junctions is described electrodiffusively. Simulations predict that SD will not occur unless cells are allowed to expand in response to osmotic pressure gradients and K+ is allowed to move through gap junctions. SD waves of [K+]out approximately 25 to approximately 60 mM moving at approximately 2 to approximately 18 mm/min are predicted over the range of parametric values reported in gray matter, with extracellular space decreasing up to approximately 50%. Predicted waveform shape is qualitatively similar to laboratory reports. The delayed-rectifier, NMDA, BK, and Na+ currents are predicted to facilitate SD, while SK and A-type K+ currents and glial activity impede SD. These predictions are consonant with recent findings that gap junction poisons block SD and support the theories that cytosolic diffusion via gap junctions and osmotic forces are important mechanisms underlying SD.

  4. Sedimentation equilibria of ferrofluids: II. Experimental osmotic equations of state of magnetite colloids.

    Science.gov (United States)

    Luigjes, Bob; Thies-Weesie, Dominique M E; Erné, Ben H; Philipse, Albert P

    2012-06-20

    The first experimental osmotic equation of state is reported for well-defined magnetic colloids that interact via a dipolar hard-sphere potential. The osmotic pressures are determined from the sedimentation equilibrium concentration profiles in ultrathin capillaries using a low-velocity analytical centrifuge, which is the subject of the accompanying paper I. The pressures of the magnetic colloids, measured accurately to values as low as a few pascals, obey Van 't Hoff's law at low concentrations, whereas at increasing colloid densities non-ideality appears in the form of a negative second virial coefficient. This virial coefficient corresponds to a dipolar coupling constant that agrees with the coupling constant obtained via independent magnetization measurements. The coupling constant manifests an attractive potential of mean force that is significant but yet not quite strong enough to induce dipolar chain formation. Our results disprove van der Waals-like phase behavior of dipolar particles for reasons that are explained. PMID:22617544

  5. Plasma osmotic and electrolyte concentrations of largemouth bass from some acidic Florida lakes

    Energy Technology Data Exchange (ETDEWEB)

    Canfield, D.E. Jr.; Maceina, M.J.; Nordlie, F.G.; Shireman, J.V.

    1985-05-01

    Five acidic clear (pH 3.7-4.9), three acidic colored (pH 4.1-4.6), and three neutral (pH 6.9-7.3) north-central Florida lakes were surveyed in 1983 to determine plasma osmotic and electrolyte concentrations, growth, and coefficients of condition for largemouth bass Micropterus salmoides floridanus. Plasma osmotic concentrations averaged greater than 273 milliosmoles/kg in fish from acidic colored and circumneutral lakes, but averaged less than 269 milliosmoles/kg in four of the acidic clear lakes. Growth and coefficients of condition of largemouth bass > 305 mm total length in the acidic lakes were significantly lower than in the neutral lakes. Reductions in fish growth and condition, however, could be related to either acidic conditions or lake trophic status. 29 references, 3 tables.

  6. Recovery of leaf elongation during short term osmotic stress correlates with osmotic adjustment and cell turgor restoration in different durum wheat cultivars

    International Nuclear Information System (INIS)

    In order to investigate the responses of leaf elongation rate (LER), turgor and osmotic adjustment (OA) during a short-term stress (7 hours) imposed by PEG6000 and a recovery phase, three durum wheat (Triticum durum L.) varieties (Inrat; MBB; and OZ ) were grown in aerated nutrient solutions. Leaf elongation kinetics of leaf 3 was estimated using LVDT. Turgor was estimated using a cell pressure probe; osmotic potential as well as total sugars and potassium (K+) concentrations were estimated from expressed sap of elongation zone. Growth recovered rapidly and then stabilised at a lower value. A significant difference was found in % recovery of LER between the varieties. The cessation of growth after stress coincided with a decrease in turgor followed by a recovery period reaching control values in MBB and Inrat. A strong correlation (R2 = 0.83) between the reduction in turgor (turgor) and % recovery of LER was found at 7 hours after stress. The difference in the partial recovery of LER between varieties was thus related to the capacity of partial turgor recovery. Partial turgor recovery is associated with sugar or K+ based OA which indicates its importance in maintaining high LER values under water deficit. (author)

  7. Influence of osmotic pressure on the growth of three species of the genus Zoophthora

    Directory of Open Access Journals (Sweden)

    Jerzy Piątkowski

    2013-12-01

    Full Text Available Strains accomodated in the genus Zoophthora are very sensitive to osmotic value of their habitat. Hipertonical molarity of buffers and NaCl decreases the growth, but this effect strongly depends on the species tested and on the kind of buffer. In 0.66% phtalan buffer the growth of Z. lanceolata is completely stopped whereas Z. psyllae and Z. aphrophora is inhibited only in 50% comparing to the control.

  8. Osmotic and pH transmembrane gradients control the lytic power of melittin.

    OpenAIRE

    Benachir, T; Lafleur, M

    1996-01-01

    Transmembrane osmotic gradients applied on large unilamellar 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles were used to modulate the potency of melittin to induce leakage. Melittin, an amphipathic peptide, changes the permeability of vesicles, as studied using the release of entrapped calcein, a fluorescent marker. A promotion of the ability of melittin to induce leakage was observed when a hyposomotic gradient (i.e., internal salt concentration higher than the external one) was imposed o...

  9. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.

    Science.gov (United States)

    Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity. PMID:20711754

  10. Translocation of DNA Molecules through Nanopores with Salt Gradients: The Role of Osmotic Flow

    Science.gov (United States)

    Hatlo, Marius M.; Panja, Debabrata; van Roij, René

    2011-08-01

    Recent experiments of translocation of double-stranded DNA through nanopores [M. Wanunu , Nature Nanotech. 5, 160 (2009)NNAABX1748-338710.1038/nnano.2009.379] reveal that the DNA capture rate can be significantly influenced by a salt gradient across the pore. We show that osmotic flow combined with electrophoretic effects can quantitatively explain the experimental data on the salt-gradient dependence of the capture rate.

  11. Osmotic stress stimulates phosphorylation and cellular expression of heat shock proteins in rhesus macaque sperm.

    Science.gov (United States)

    Cole, Julie A; Meyers, Stuart A

    2011-01-01

    The cryosurvival of sperm requires cell signaling mechanisms to adapt to anisotonic conditions during the freezing and thawing process. Chaperone proteins heat shock protein 70 (HSP 70) and heat shock protein 90 (HSP 90; recently renamed HSPA and HSPC, respectively) facilitate some of these cell signaling events in somatic cells. Sperm were evaluated for their cellular expression and levels of phosphorylation of both HSP 70 and HSP 90 under anisotonic conditions as a potential model for cell signaling during the cryopreservation of macaque spermatozoa. In order to monitor the level of stress, the motility and viability parameters were evaluated at various time points. Cells were then either prepared for phosphoprotein enrichment or indirect immunocytochemistry. As controls, the phosphoserine, phosphothreonine, and phosphotyrosine levels were measured under capacitation and cryopreservation conditions and were compared with the phosphoprotein levels expressed under osmotic conditions. As expected, there was an increase in the level of tyrosine phosphorylation under capacitation and cryopreservation conditions. There was also a significant increase in the level of all phosphoproteins under hyperosmotic conditions. There was no change in the level of expression of HSP 70 or 90 under osmotic stress conditions as measured by Western blot. The enrichment of phosphoproteins followed by Western immunoblotting revealed an increase in the phosphorylation of HSP 70 but not HSP 90 under osmotic stress conditions. Indirect immunofluorescence localized HSP 70 to the postacrosomal region of sperm, and the level of membrane expression of HSP 70 was significantly affected by anisotonic conditions, as measured by flow cytometry. Taken together, these results suggest a differential role for HSP 70 and HSP 90 during osmotic stress conditions in rhesus macaque sperm. PMID:21088232

  12. Effects of Micromachining Processes on Electro-Osmotic Flow Mobility of Glass Surfaces

    OpenAIRE

    Norihisa Miki; Koichi Hishida; Reiko Kuriyama; Yohei Sato; Yosuke Koga

    2013-01-01

    Silica glass is frequently used as a device material for micro/nano fluidic devices due to its excellent properties, such as transparency and chemical resistance. Wet etching by hydrofluoric acid and dry etching by neutral loop discharge (NLD) plasma etching are currently used to micromachine glass to form micro/nano fluidic channels. Electro-osmotic flow (EOF) is one of the most effective methods to drive liquids into the channels. EOF mobility is affected by a property of the micromachined ...

  13. Effect of osmotic stress on spontaneous calcium sparks in rat ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Hong XIE; Pei-hong ZHU

    2006-01-01

    Aim: To study whether the volume of cardiomyocytes and their functions would change under severe pathological conditions or osmotic stress. To clarify the role of ryanodine receptors/calcium release channels (RyRs) in the functional change, the effect of osmotic stress on spontaneous Ca2+ sparks in rat ventricular myocytes was investigated. Methods: A laser scanning confocal microscope was used to detect spontaneous Ca2+ sparks of intact or saponin permeabilized myocytes loaded with Fluo-4. High and low tonicity was obtained by adding sucrose and reducing NaCl concentration in the external medium, respectively. Results: In intact myocytes the frequency of Ca2+ sparks was increased and decreased by hyperosmotic (1.5 T) and hyposmotic (0.6 T) exposure, respectively. In addition, hyperosmotic exposure increased the temporal parameters and decreased the spatial parameter of Ca2+ sparks, while opposite changes occurred with hyposmotic exposure. The spatio-temporal properties of Ca2+ sparks were slightly affected by altering [K+]i (50-200 mmol/L) in saponin permeabilized myocytes in the presence of 8% dextran. It was observed that the spatio-temporal parameters of the Ca2+ sparks in permeabilized myocytes were dose-dependently altered by dextran. The propagating velocity of Ca2+ waves in intact and permeabilized myocyte was also affected by osmotic pressure or dextran. Conclusion: The effect of osmotic stress on the frequency of spontaneous Ca2+ sparks might be ascribed to the change of myoplasmic Ca2+ and Ca2+ content in the sarcoplasmic reticulum, while the effect on the spatio-temporal properties is caused by the alteration of Ca2+ diffusion mainly resulting from the morphological change of the myocytes.

  14. Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges.

    Directory of Open Access Journals (Sweden)

    Rebecca Schroeter

    Full Text Available The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl, and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes, the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.

  15. Application of a new contrast medium (iopamidol) of low osmotic activity in peripheric arteriography

    Energy Technology Data Exchange (ETDEWEB)

    Konya, A.; Kovacs, K.

    1985-06-01

    In 51 patients a total of 80 arteriographic examinations was carried out with a new contrast medium (iopamidol - Iopamirosup(R) Bracco) which has low osmotic activity. It is concluded that iopamidol is excellently suited for the purpose of peripheric angiography. The examination can be carried out without general or epidural anaesthesia and catheterization without premedication. In spite of the higher cost, its advantageous characteristics justify the application of this new contrast material.

  16. Response of photosynthesis, Translocation and 14C partitioning in sugarbeet plants exposed to osmotic shock

    International Nuclear Information System (INIS)

    The immediate response of sugarbeet plants to an osmotic shock caused by plant exposure to salinity was investigated. CO2 fixation was remarkably inhibited within one hour after application. Translocation patterns of control and treated plants and the partitioning of 14C among photosynthates are also presented. It is suggested that the differences obtained are results of solution concentration following a severe water loss. (author)

  17. Management Of Large Scale Osmotic Dehydration Solution Using The Pearsons Square Algorithm

    OpenAIRE

    Oladejo Duduyemi; P.O. Ngoddy; B.I.O. Ade-Omowaye

    2015-01-01

    ABSTRACT Osmotic dehydration is a widely researched and advantageous pre-treatment process in food preservation but has not enjoyed industrial acceptance because if its highly concentrated and voluminous effluent. The Pearsons square algorithm was employed to give a focussed attack to the problem by developing a user-friendly template for reconstituting effluents for recycling purposes using Java script programme. Outflow from a pilot scale plant was reactivated and introduced into a scheme o...

  18. Influence of Salt and Osmotic Stress on Germination of Different Wheat Cultivars

    OpenAIRE

    Jovovic, Mirjana; Lucic, Aleksandra Govedarica; Tesanovic, Dejana; Tunguz, Vesna

    2015-01-01

     The aim of this research was to identify the cultivars of winter wheat which tolerate drought and increased salinity at the germination stage. The testing was carried out under controlled conditions with an aim to test reaction of 5 different cultivars of winter wheat to salinity and osmotic stress during the early stage of a seedling's growth. The test included examination of energy of germination and percentage of germination seeds. After being sterilized in 96% Ethanol and rinsed with dis...

  19. Bioequivalence of Sandoz methylphenidate osmotic-controlled release tablet with Concerta® (Janssen-Cilag)

    OpenAIRE

    Schapperer, Elisabeth; Daumann, Heike; Lamouche, Stéphane; Thyroff-Friesinger, Ursula; Viel, François; Weitschies, Werner

    2015-01-01

    The aim was to assess the bioequivalence of Sandoz methylphenidate osmotic-controlled release (OCR) tablets (Sandoz [Methylphenidate[ MPH OCR) with Concerta®, a methylphenidate formulation indicated for the treatment of attention deficit/hyperactivity disorder (ADHD). Four open-label, randomized, single-dose, two-way crossover bioequivalence studies were conducted in healthy subjects: three fasting studies with 54-, 36- and 18-mg doses of methylphenidate, and one fed study with the 54-mg dose...

  20. DEVELOPMENT AND IN-VITRO EVALUATION OF METOPROLOL SUCCINATE CONTROLLED POROSITY OSMOTIC PUMP TABLETS

    OpenAIRE

    Veeramalla Anil Kumar; Madishetty Vamshikrishna; Indarapu Rajendra Prasad; Gudikandula Raj Kumar; Kadari Srinivas

    2013-01-01

    In the present research work, attempts were made to develop and evaluate Sustained release formulation of Metoprolol succinate based on osmotic technology.As Metoprolol is a short acting drug, developed formulation provides the advantages of controlled release formulations. The developed formulation provides advantages of less steps of manufacturing procedure, no need of laser drilling, and economical. All of these made the procedure easily amenable to mass production using conventional table...

  1. How to Squeeze a Sponge: Casein Micelles under Osmotic Stress, a SAXS Study

    OpenAIRE

    Bouchoux, Antoine; Gésan-Guiziou, Geneviève; Pérez, Javier; Cabane, Bernard

    2010-01-01

    By combining the osmotic stress technique with small-angle x-ray scattering measurements, we followed the structural response of the casein micelle to an overall increase in concentration. When the aqueous phase that separates the micelles is extracted, they behave as polydisperse repelling spheres and their internal structure is not affected. When they are compressed, the micelles lose water and shrink to a smaller volume. Our results indicate that this compression is nonaffine, i.e., some p...

  2. FORMULATION AND EVALUATION OF SELF PORE FORMING OSMOTIC TABLETS OF GLIPIZIDE

    OpenAIRE

    Mangukia Dhruv K; Asija Sangeeta R; Patel Chirag J; Patel Jaimin R; Sojitra Ishita S

    2012-01-01

    The purpose of this study was to formulate and evaluate self pore forming osmotically controlled drug delivery system of Glipizide. Glipizide is an oral hypoglycemic agent which belongs to BCS class II with relatively short elimination half life of 2-4 hours. Main objective to formulate this system was to achieve zero order release for Glipizide. The present study was also aimed to develop a system that would reduce the frequency of dosing and thus increases patient compliance. Cellulose acet...

  3. Development and Evaluation of Swellable Elementary Osmotic Pump Tablet of Glipizide

    Directory of Open Access Journals (Sweden)

    Preethi N

    2013-10-01

    Full Text Available A novel type of elementary osmotic pump [EOP] tablet for efficient delivery of poorly water-soluble drug, glipizide has been designed. Drug release from the system, called Swellable Elementary Osmotic Pump [SEOP], is through a delivery orifice in the form of a very fine dispersion, ready for dissolution and absorption. SEOP tablets were prepared by compressing the mixture of micronized drug and excipients into convex tablet. The effect of wetting agent, swelling agent, osmotic agent and hydrophobic plasticizer on the release rate were investigated. The release behavior of glipizide from different formulations of this dosage forms were studied at pH 6.8 for a period of 24 hours. The drug release profile from osmotic devices showed that the type of polymer in the core formulation can markedly affect the drug release. When the amount of HPMC E50-LV was increased from 30 to 60 mg, decrease in drug release was observed. Increasing the amount of wetting agent to an optimum level of 45 mg significantly increased the release rate and improved zero order release pattern of glipizide. Increasing the concentration of Dibutylphthalate [DBP-30%] in the semi permeable membrane of the device retarded the release rate of glipizide but gave best results at the 20% concentration. Based on the SEM studies, optimized orifice diameter was found to be 500µm. Compared with the marketed Glipizide extended release tablet; GF2 gave the best release rate for 24 hours. The bioavailability studies for glipizide SEOP and Glipizide extended release tablet was carried out in albino rabbits and there was a good in-vivo and in-vitro correlation for GF2 as shown by the higher Cmax and AUC values. Thus a novel SEOP was successfully formulated for glipizide to achieve zero order drug release over a period of 24 hours.

  4. Testing of the Osmotic Membrane Pressure Actuator (OMPA) principle for autonomous water choking

    OpenAIRE

    Mammadli, Ruslan

    2011-01-01

    This Master thesis is a part of OMPA (Osmotic Membrane Pressure Actuator) which Is initiated andpatented by Statoil ASA Porsgrunn research centre at Feb. 27, 2007 (US). The objective of the OMPA project is to develop a self regulating autonomous valve that can be used in oil wells. The work was completely carried out at Statoil research centre in Porsgrunn under the supervision of Lene Amundsen from Statoil and Professor Harald Asheim from Trondheim, NTNU.This project contains two parts. The ...

  5. THE RESPONSE STRATEGY OF MAIZE, PEA AND BROAD BEAN PLANTS TO DIFFERENT OSMOTIC POTENTIAL STRESS

    OpenAIRE

    Hamdia M. Abd El-Samad; SHADADD M.A.K.

    2013-01-01

    This investigation was conducted to study the tolerance strategy of maize, broad bean and pea plants to salinity stress with exogenous applications of proline or phenylalanine on seed germination and seedlings growth. From the results obtained, it can be observed that osmotic stress affected adversely the rate of germination in maize, broad bean and pea plants. The excessive inhibition was more prominent at higher concentration of NaCl. The seeds and grains tested were exhibited some differen...

  6. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    Directory of Open Access Journals (Sweden)

    Kumari Sunita

    2011-10-01

    Full Text Available Abstract Background Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought. Results RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed. Conclusions The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene

  7. Assessment of wheat cultivars for drought tolerance via osmotic stress imposed at early seedling growth stages

    OpenAIRE

    Baloch, Muhammad Jurial; Dunwell, Jim; Khakwani, Abdul Aziz; Dennett, Mike; Jatoi, Wajid Ali; Channa, Siraj Ahmed

    2012-01-01

    A study was conducted in the Department of Plant Breeding and Genetics,Sindh Agriculture University, Tandojam, Pakistan during the year 2009. Sixteen spring wheat cultivars (Triticum aestivum L.) were screened under osmotic stress with three treatments i.e. control-no PEG (polyethylene glycol), 15 percent and 25 percent PEG-6000 solution. The analysis of variance indicated significant differences among treatments for all seedling traits except seed germination percentage. Varieties also di...

  8. Application of a new contrast medium (iopamidol) of low osmotic activity in peripheric arteriography

    International Nuclear Information System (INIS)

    In 51 patients a total of 80 arteriographic examinations was carried out with a new contrast medium (iopamidol - Iopamirosup(R) Bracco) which has low osmotic activity. It is concluded that iopamidol is excellently suited for the purpose of peripheric angiography. The examination can be carried out without general or epidural anaesthesia and catheterization without premedication. In spite of the higher cost, its advantageous characteristics justify the application of this new contrast material. (L.E.)

  9. Formulation and process optimization of multiparticulate pulsatile system delivered by osmotic pressure-activated rupturable membrane.

    Science.gov (United States)

    Hung, Sheng-Feng; Hsieh, Chien-Ming; Chen, Ying-Chen; Lin, Cheng-Mao; Ho, Hsiu-O; Sheu, Ming-Thau

    2015-03-01

    In this study, a multiparticulate pulsatile drug delivery system activated by a rupturable controlled-release membrane (Eudragit(®) RS) via osmotic pressure (with NaCl as the osmogent) was developed and characterized for omeprazole, omeprazole sodium, and propranolol HCl which have different water solubilities. Multiparticulates in pellet form for incorporation with or without the osmogent were manufactured by three methods and then used to coat a polymeric membrane. Results demonstrated that drug/osmogent-containing pellets manufactured by the extrusion/spheronization method with incorporation of the osmogent were optimal. The lag time (tL) to initiate pulsatile release is regulated by tL=l(2)/(6×D), which is dependent on the coating levels (l(2)) and plasticizer content (D). The pulsatile release pattern was found to be dependent on the osmotic pressure (osmogent), drug solubility, and mechanical properties of the polymeric membrane (elasticity and toughness). Omeprazole with lower water solubility could not generate sufficient osmotic pressure to create a crack in the membrane to activate pulsatile release, whereas the two other model drugs with higher solubilities could. But adsorption of omeprazole sodium on Eudragit(®) RS via charge-charge interactions led the its incomplete release. Finally, with 4% osmogent of NaCl added, a lag time in a range from 0 to 12h proportionally regulated by varying both the membrane thickness and plasticizer level initiated the complete pulsatile release of propranolol HCl. In conclusion, a multiparticulate pulsatile drug delivery system activated by a rupturable controlled-release membrane via osmotic pressure was successfully developed, and clinical applications of chronotherapy with drugs like propranolol HCl are expected. PMID:25575473

  10. Optimizing Solute-Solute Interactions in the GLYCAM06 and CHARMM36 Carbohydrate Force Fields Using Osmotic Pressure Measurements.

    Science.gov (United States)

    Lay, Wesley K; Miller, Mark S; Elcock, Adrian H

    2016-04-12

    GLYCAM06 and CHARMM36 are successful force fields for modeling carbohydrates. To correct recently identified deficiencies with both force fields, we adjusted intersolute nonbonded parameters to reproduce the experimental osmotic coefficient of glucose at 1 M. The modified parameters improve behavior of glucose and sucrose up to 4 M and improve modeling of a dextran 55-mer. While the modified parameters may not be applicable to all carbohydrates, they highlight the use of osmotic simulations to optimize force fields. PMID:26967542

  11. Osmotic and curvature stress affect PEG-induced fusion of lipid vesicles but not mixing of their lipids.

    OpenAIRE

    Malinin, Vladimir S.; Frederik, Peter; Lentz, Barry R

    2002-01-01

    Poly (ethylene glycol) (PEG) in the external environment of membrane vesicles creates osmotic imbalance that leads to mechanical stress in membranes and may induce local membrane curvature. To determine the relative importance of membrane stress and curvature in promoting fusion, we monitored contents mixing (CM) and lipid mixing (LM) between different sized vesicles under a variety of osmotic conditions. CM between highly curved vesicles (SUV, 26 nm diameter) was up to 10 times greater than ...

  12. Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress

    OpenAIRE

    Xiuli Hu; Nana Li; Liuji Wu; Chunqi Li; Chaohai Li; Li Zhang; Tianxue Liu; Wei Wang

    2015-01-01

    Abscisic acid (ABA) regulates various developmental processes and stress responses in plants. Protein phosphorylation/dephosphorylation is a central post-translational modification (PTM) in ABA signaling. However, the phosphoproteins regulated by ABA under osmotic stress remain unknown in maize. In this study, maize mutant vp5 (deficient in ABA biosynthesis) and wild-type Vp5 were used to identify leaf phosphoproteins regulated by ABA under osmotic stress. Up to 4052 phosphopeptides, correspo...

  13. The Effects of Osmotic Potential on Ammonification, Immobilization, Nitrous Oxide Production, and Nitrification Rates in Penoyer Soil

    OpenAIRE

    Low, Andrew P.

    1996-01-01

    An isotopic dilution method was used to test the effects of osmotic potential, (IJ' ,), upon nitrification, ammonification, N-immobilization, and nitrous oxide production rates in soil at solute concentrations encountered in Penoyer soil. A nitrification potential assay was also performed to approximate maximum nitrification rates. Nitrification potential rates in soil slurries exponentially declined in response to decreased osmotic potential. However, nitrification was independent of salt...

  14. Relationship between osmotic stress and polyamines conjugated to the deoxyribonucleic acid-protein in wheat seedling roots

    Institute of Scientific and Technical Information of China (English)

    LIU; Huaipan; JI; Xiu'e; YU; Bingjun

    2006-01-01

    The contents of covalently conjugated polyamines (CC-PAs) and noncovalently conjugated polyamines (NCC-PAs) to deoxyribonucleic acid-protein (DNP) isolated from wheat (Triticum aestivum L.) seedling roots under osmotic stress were detected. Results showed that after osmotic stress treatment for 7 d, the levels in NCC-spermine (NCC-Spm) and NCC-spermidine (NCC-Spd) of drought-tolerant Yumai No. 18 cv. increased more markedly than that of drought-sensitive Yangmai No. 9 cv., while the NCC-putrescine (NCC-Put) could not be statistically detected in two cultivars. Exogenous Spm treatment alleviated osmotic stress injury to Yangmai No. 9 cv. seedlings, coupled with marked increases of NCC-Spm and NCC-Spd levels of this cultivar. Under PEG osmotic stress, the concomitant treatment of drought-tolerant Yumai No. 18 cv.seedlings with methylglyoxyl-bis (guanylhydrazone) (MGBG), an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), aggravated osmotic stress injury to this cultivar, coupled with market decreases of the NCC-Spm and NCC- Spd levels. The levels in CC-Put and CC-Spd of drought-tolerant Yumai No. 18 cv. increased more markedly than that of drought-sensitive Yangmai No. 9 cv. Under osmotic stress. The treatment of drought-tolerant Yumai No. 18 cv. seedlings with phenanthrolin (o-Phen), an inhibitor of transglutaminase (TGase), aggravated osmotic stress injury to this cultivar, coupled with a reduction of sum contents of CC-Put+CC-Spd. These results suggested that NCC-Spm and NCC-Spd, together with CC-Put and CC-Spd, in DNP of roots could enhance tolerance of the wheat seedlings to osmotic stress.

  15. A time-released osmotic pump fabricated by compression-coated method: Formulation screen, mechanism research and pharmacokinetic study

    OpenAIRE

    Tiegang Xin; Yang Zhao; Hengpan Jing; Wenji Zhang; Yunyun Gao; Xinggang Yang; Xukai Qu; Weisan Pan

    2014-01-01

    In this investigation, time-released monolithic osmotic pump (TMOP) tablets containing diltiazem hydrochloride (DIL) were prepared on the basis of osmotic pumping mechanism. The developed dosage forms were coated by Kollidon®SR-Polyethylene Glycol (PEG) mixtures via compression-coated technology instead of spray-coating method to form the outer membrane. For more efficient formulation screening, a three-factor five-level central composite design (CCD) was introduced to explore the optimal TMO...

  16. Study on Osmotic Pressure and Liquid-Liquid Equilibria for Micelle, Colloid and Microemulsion Systems by Yukawa Potential

    Institute of Scientific and Technical Information of China (English)

    FU,Dong(付东); LU,Jiu-Fang(陆九芳); WU,Wei(吴畏); Li,Yi-Gui(李以圭)

    2004-01-01

    An equation of state (EOS) was established to study the osmotic pressure and liquid-liquid equilibria for micelle,colloid and microemulsion systems. The Carnahan-Starling equation was used for the hard sphere repulsion. The Yukawa potential was used to describe both the attractive dispersion and the double-layer repulsion. By using the established EOS, the osmotic pressures for charged colloid, uncharged micelle, uncharged and weakly charged microemuslion, the phase equilibria for uncharged micelle and charged colloid systems were studied.

  17. DEVELOPMENT AND EVALUATION OF PUSH-PULL BASED OSMOTIC DELIVERY SYSTEM FOR ROPINIROLE

    Directory of Open Access Journals (Sweden)

    Adarsh Shah et al

    2012-09-01

    Full Text Available Ropinirole hydrochloride is indicated in Parkinson’s disease and Restless leg syndrome. In advanced Parkinson’s disease the usual dose of Ropinirole hydrochloride is 0.25 to 5 mg three to four times a day. Hence, an attempt was made to develop a once-a-day controlled release Osmotic drug delivery system. This may offer significant patient benefits by providing enhanced efficacy and reduced side effects and may also reduce the number of daily doses compared to conventional therapies. An oral push-pull system that can deliver Ropinirole hydrochloride for extended period of time has been developed and characterized. A bilayer osmotic drug delivery system was developed using drilling technique. The push layer swells releasing the drug at a controlled rate. An optimized system was selected to study the effect of pH of dissolution medium and the effect of agitation intensity. The drug release was found to follow zero order kinetics. The developed push-pull osmotic system showed the desired once-a-day release kinetic.

  18. Effect of osmotic pressure on ganglioside-cholesterol-DOPC lipid mixture

    International Nuclear Information System (INIS)

    By means of small-angle X-ray scattering (SAXS) method, we have studied the structure of the lipid mixtures of monosialoganglioside (GMI)-cholesterol-dioleoyl-phosphatidylcholine (DOPC) system as a model of lipid raft. The samples were small uni-lamellar vesicle (SUV) except for GMI sample. The osmotic pressure was changed with varying the polyvinylpyrrolidone (PVP) concentration in the range from 0 to 25 % w/w. The increase of the PVP concentration is known to reduce the lamellar spacing due to the increase of the osmotic pressure. On the other hand the polar head region of GMI was shown to be highly hydrophilic by the presence of oligosaccharide chain containing one sialic acid residue. In the cases of the GMI micelle and GMI-cholesterol SUV the presence of PVP affects little on those aggregate structures. In the case of the SUVs of cholesterol-DOPC the stacking of the bilayers was induced with the increase of PVP concentration, especially at high cholesterol content. In the case of the SUVs of GMI-cholesterol-DOPC the multi-lamellar stacking was suppressed, but a minor change of the SUV structure was induced. The present results suggest that the coexistence of GMI and cholesterol affords the lipid bilayer a resistance to the osmotic stress and avoids a multi-layered stacking

  19. Effects of osmotic pressure, temperature and stocking density on survival and sexual reproduction of Craspedacusta sowerbii.

    Science.gov (United States)

    Zhang, Yuan-Wei; Pan, Xiao-Fu; Wang, Xiao-Ai; Jiang, Wan-Sheng; Liu, Qian; Yang, Jun-Xing

    2016-03-18

    The effects of osmotic pressure, temperature and stocking density on medusae survival of Craspedacusta sowerbii were examined. The medusae were shown to be sensitive to the variations of osmotic pressure. And the survival time was osmotic pressure. The peak survival time of >200 h was recorded at 0.2 mOsm/L. Comparing with 27℃ and 32℃ treatments, 23℃ treatment yielded lower activities at a range of 8-13/min. However, there was a longer survival time. A non-linear relationship existed between survival time and stocking density. Lower density resulted in larger body size. And sexual reproduction resumed after breeding for >22 days. Newly-formed polyps and medusae appeared subsequently but only in the higher-density groups of 10, 14 and 18 ind./L. It suggested that the number of newly-formed polyps and medusae was highly dependent on stocking density. That is, a higher stocking density produced more organisms. However, newly-formed medusae died within one month and none grew a diameter of >5 mm. PMID:27029866

  20. Both water intoxication and osmotic BBB disruption increase brain water content in rats.

    Science.gov (United States)

    Kozler, P; Riljak, V; Pokorný, J

    2013-01-01

    Our previous experiments revealed that water intoxication and osmotic BBB disruption in the rat allow penetration of high-molecular substances into the brain and that resulting changes in the internal environment of the CNS lead to pathological development, such as the loss of integrity of myelin. The aim of the present study was to determine whether the previously described phenomena are associated with increased water content in the brain. To answer the question following methods were used: a) water intoxication: intraperitoneal administration of distilled water, b) osmotic BBB disruption: application of mannitol (20 %) selectively into the internal carotid artery, c) brain wet weight was measured after decapitation, and subsequently (after six days in thermostat set at 86 °C) the dry weight were estimated d) in animals with 20 % and 30 % hyperhydration the degree of myelin deterioration was estimated e) animal locomotor activity was tested by continuous behavior tracking and analysis. Brain water content after water intoxication and following the administration of mannitol was higher than in the control group. Different degrees of hyperhydration led to different levels of brain water content and to different degrees of myelin impairment. Hyperhydration corresponding to 20 % of the body weight brought about lower locomotor activity. Increased water content in the brain after the BBB osmotic disruption is surprising because this method is frequently used in the clinical practice. PMID:24329706

  1. Effect of drought and abscisic acid application on the osmotic adjustment of four wheat cultivars

    International Nuclear Information System (INIS)

    The accumulation of osmolytes in leaf tissues and the abscisic acid-induced stomatal closure are well-recognized mechanisms associated with drought tolerance in crop plants. We determine the response in terms of osmotic potential and the contents of leaf proline, glycine betaine and soluble sugar at booting and grain filling stages of four wheat (Triticum aestivum L.) cultivars to drought and exogenously applied abscisic acid (ABA) in a pot study. Leaf sample were collected 3, 6 and 9 days after drought induction and at 48 and 72 h of re-watering (recovery). Marked decreases in osmotic potential associated with the accumulation of proline, glycine betaine and soluble sugars occurred under conditions of drought stress Accession 011320 was most sensitive to drought and showed the largest decrease in osmotic potential and least accumulation of proline, sugar and glycine betaine The inhibitory effects of drought stress were ameliorated by exogenous application of ABA. This ameliorating effect was more pronounced at the booting than at grain filling stage particularly in the sensitive accession 011320. Upon rewatering the recovery from drought stress was found to be greater in case of abscisic acid application. The leaf praline content is seen to be a suitable indicator for selecting drought-tolerant genotypes. (author)

  2. Osmotic stress-dependent serine phosphorylation of the histidine kinase homologue DokA

    Directory of Open Access Journals (Sweden)

    Oehme Felix

    2001-03-01

    Full Text Available Abstract Background Two-component systems consisting of histidine kinases and their corresponding receivers are widespread in bacterial signal transduction. In the past few years, genes coding for homologues of two-component systems were also discovered in eukaryotic organisms. DokA, a homologue of bacterial histidine kinases, is an element of the osmoregulatory pathway in the amoeba Dictyostelium. The work described here addresses the question whether DokA is phosphorylated in vivo in response to osmotic stress. Results We have endogenously overexpressed individual domains of DokA to investigate post-translational modification of the protein in response to osmotic shock in vivo. Dictyostelium cells were labeled with [32P]-orthophosphate, exposed to osmotic stress and DokA fragments were subsequently isolated by immunoprecipitation. Thus, a stress-dependent phosphorylation could be demonstrated, with the site of phosphorylation being located in the kinase domain. We demonstrate biochemically that the phosphorylated amino acid is serine, and by mutational analysis that the phosphorylation reaction is not due to an autophosphorylation of DokA. Furthermore, mutation of the conserved histidine did not affect the osmostress-dependent phosphorylation reaction. Conclusions A stimulus-dependent serine phosphorylation of a eukaryotic histidine kinase homologue was demonstrated for the first time in vivo. That implies that DokA, although showing typical structural features of a bacterial two-component system, might be part of a eukaryotic signal transduction pathway that involves serine/threonine kinases.

  3. Formulation development and evaluation of controlled porosity osmotic pump delivery system for oral delivery of atenolol

    Directory of Open Access Journals (Sweden)

    Garvendra S Rathore

    2012-01-01

    Full Text Available In the present study, we developed and evaluated the controlled porosity osmotic pump (CPOP based drug delivery system of sparingly water soluble drug atenolol (ATL. We selected target release profile and optimized different variables to help us achieve this. Formulation variables, such as, the levels of solubility enhancer (0-15% w/w of drug, ratio of the drug to the osmogents, coat thickness of the semipermeable membrane (SPM and level of pore former (0-20% w/w of polymer were found to effect the drug release from the developed formulations. Cellulose acetate (CA 398-10 was used as the semipermeable membrane containing polyethylene glycol 400 as the Cplasticizer. ATL release was directly proportional to the level of the solubility enhancer, osmotic pressure generated by osmotic agent and level of pore former; however, was inversely proportional to the coat thickness of SPM. Drug release from developed formulations was independent of the pH and agitation intensities of release media. Burst strength of the exhausted shells decreased with increase in the level of pore former. The optimized formulations were subjected to stability studies as per International Conference on Harmonisation (ICH guidelines, and formulations were found to be stable after 3 months study. Steady-state plasma levels of drug were predicted by the method of superposition.

  4. Design and development of controlled porosity osmotic tablet of diltiazem hydrochloride

    Directory of Open Access Journals (Sweden)

    Sadhana R Shahi

    2012-01-01

    Full Text Available The present work aims towards the design and development of extended release formulation of freely water-soluble drug diltiazem hydrochloride (DLTZ based on osmotic technology by using controlled porosity approach. DLTZ is an ideal candidate for a zero-order drug delivery system because it is freely water-soluble and has a short half-life (2-3 h. Sodium chloride (Osmogen was added to the core tablet to alter the solubility of DLTZ in an aqueous medium. Cellulose acetate (CA and sorbitol were used as semipermeable membrane and pore former, respectively. The effect of different formulation variables namely concentration of osmogen in the core tablet, % pore former, % weight gain, pH of the dissolution medium and agitation intensity on the in vitro release was studied. DLTZ release was directly proportional to % pore former and inversely proportional to % weight gain. The optimized formulation (F8 delivered DLTZ independent of pH and agitation intensity for 12 h at the upper level concentration of % pore former (25% w/w and middle level concentration of % weight gain (6% w/w. The comparative study of elementary osmotic pump (EOP and controlled porosity osmotic pump revealed that it superior than conventional EOP and also easier and cost effective to formulate.

  5. Ectopic Expression of FaDREB2 Enhances Osmotic Tolerance in Paper Mulberry

    Institute of Scientific and Technical Information of China (English)

    Mei-Ru Li; Yan Li; Hong-Qing Li; Guo-Jiang Wu

    2011-01-01

    Dehydration-responsive element binding (DREB) proteins are a subfamily of AP2/ERF transcription factors that have been shown to improve tolerance to osmotic stresses in plants.To improve the osmotic stress tolerance of paper mulberry (Broussonetia papyrifera L.Vent),an economically important tree,we transformed it with a plasmid carrying tall fescue (Festuca arundinacea Schreb) FaDREB2 under the control of CaMV 35S.The ectopic expression of FaDREB2 did not cause growth retardation,and the paper mulberry seedlings expressing FaDREB2 showed higher salt and drought tolerance than wild-type plants (WT).After 13 d of withholding water,or 15 d in the presence of 250 mM NaCI,all the WT plants died,while the plants expressing FaDREB2 survived.The FaDREB2 transgenic plants had higher leaf water and chlorophyll contents,accumulated more proline and soluble sugars,and had less membrane damage than the WT plants under high salt and water-deficient conditions.Taken together,the results indicate the feasibility of improving tolerance to multiple environmental stresses in paper mulberry seedlings via genetic engineering,by introducing FaDREB2,which promotes the increased accumulation of osmolytes (soluble sugars and proline),to counter osmotic stresses caused by abiotic factors.

  6. Effect of osmotic pressure on ganglioside-cholesterol-DOPC lipid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Onai, Teruaki; Hirai, Mitsuhiro [Department of Physics, Gunma University, Maebashi 371-8510 (Japan)

    2007-10-15

    By means of small-angle X-ray scattering (SAXS) method, we have studied the structure of the lipid mixtures of monosialoganglioside (G{sub MI})-cholesterol-dioleoyl-phosphatidylcholine (DOPC) system as a model of lipid raft. The samples were small uni-lamellar vesicle (SUV) except for G{sub MI} sample. The osmotic pressure was changed with varying the polyvinylpyrrolidone (PVP) concentration in the range from 0 to 25 % w/w. The increase of the PVP concentration is known to reduce the lamellar spacing due to the increase of the osmotic pressure. On the other hand the polar head region of G{sub MI} was shown to be highly hydrophilic by the presence of oligosaccharide chain containing one sialic acid residue. In the cases of the G{sub MI} micelle and G{sub MI}-cholesterol SUV the presence of PVP affects little on those aggregate structures. In the case of the SUVs of cholesterol-DOPC the stacking of the bilayers was induced with the increase of PVP concentration, especially at high cholesterol content. In the case of the SUVs of G{sub MI}-cholesterol-DOPC the multi-lamellar stacking was suppressed, but a minor change of the SUV structure was induced. The present results suggest that the coexistence of G{sub MI} and cholesterol affords the lipid bilayer a resistance to the osmotic stress and avoids a multi-layered stacking.

  7. Fos response of fetal sheep anterior circumventricular organs to osmotic challenge in late gestation.

    Science.gov (United States)

    McDonald, T J; Li, C; Nijland, M J; Caston-Balderrama, A; Ross, M G

    1998-08-01

    We hypothesized that the anterior circumventricular organs (ACVO) and the supraoptic (SON) and hypothalamic paraventricular nuclei (PVN), among other structures that play a role in sensing extracellular body fluid volume and composition in postnatal animals (as demonstrated by Fos protein production by the immediate-early gene c-fos), would show similar activation in fetal sheep during an osmotic challenge. The brains of 10 fetal sheep [6 treated, 4 controls; 129-131 days of gestational age (dGA) = 0.87 gestation] were immunostained for Fos. Seventy-five minutes before tissue collection the dams were given intravenous 20% mannitol (1 ml . min-1 . kg-1 for 10 min). Subsequently, the ACVO, SON, and PVN were scored for the amount of neuronal Fos immunostaining. The subfornical organ (SFO; 24.5 +/- 9.0 vs. 1.7 +/- 1.2), the organum vasculosum of the lamina terminalis (OVLT; 26.8 +/- 5.6 vs. 7.0 +/- 2.0), the SON (39.8 +/- 3.0 vs. 0.15 +/- 0.1), and the PVN (59.8 +/- 7.9 vs. 0.7 +/- 0.7) had increases (P oxytocin (OT) indicated that AVP- but not OT-immunopositive neurons in SON and PVN respond to osmotic challenge. These results demonstrate that the SFO, OVLT, SON, and PVN are activated by osmotic challenge in fetal sheep at 130 dGA. PMID:9683450

  8. Osmotic coefficients of alcoholic mixtures containing BMpyrDCA: Experimental determination and correlation

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Osmotic coefficients of alcohols with BMpyrDCA ionic liquid are determined. • Experimental data were correlated with Extended Pitzer model of Archer and MNRTL. • Mean molal activity coefficients and excess Gibbs free energies were calculated. • The results have been interpreted in terms of interactions. - Abstract: The vapour pressure osmometry technique (VPO) has been used to obtain the osmotic coefficients of the binary mixtures of the primary and secondary alcohols 1-propanol, 2-propanol, 1-butanol, 2-butanol and 1-pentanol with the ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide, BMpyrDCA. From these coefficients, the corresponding activity coefficients and vapour pressures of the mixtures have been also determined. The results have been discussed in terms of solute–solvent and ion–ion interactions and have been compared with those taken from literature in order to analyse the influence of the anion or cation constituting the ionic liquid. For the treatment of the experimental data, the Extended Pitzer model of Archer and the MNRTL model have been applied, obtaining standard deviations from the experimental osmotic coefficients lower than 0.015 and 0.065, respectively. From the parameters obtained with the Extended Pitzer model or Archer, the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures have been calculated

  9. Vapour pressures and osmotic coefficients of binary mixtures containing alcohol and pyrrolidinium-based ionic liquids

    International Nuclear Information System (INIS)

    Highlights: • Osmotic coefficients of alcohols with pyrrolidinium ILs are determined. • Experimental data were correlated with extended Pitzer model of Archer and MNRTL. • Mean molal activity coefficients and excess Gibbs free energies were calculated. • The results have been interpreted in terms of interactions. -- Abstract: The osmotic and activity coefficients and vapour pressures of mixtures containing primary (1-propanol, 1-butanol and 1-pentanol) and secondary (2-propanol and 2-butanol) alcohols with pyrrolidinium-based ionic liquids (1-butyl-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide, C4MpyrNTf2, and 1-butyl-1-methyl pyrrolidinium trifluoromethanesulfonate, C4MpyrTFO) have been experimentally determined at T = 323.15 K. For the experimental measurements, the vapour pressure osmometry technique has been used. The results on the influence of the structure of the alcohol and of the anion of the ionic liquid on the determined properties have been discussed and compared with literature data. For the correlation of the osmotic coefficients obtained, the Extended Pitzer model of Archer and the Modified Non-Random Two Liquids model were applied. The mean molal activity coefficients and the excess Gibbs energy for the studied mixtures were calculated from the parameters obtained in the correlation

  10. Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress.

    Science.gov (United States)

    Gustavs, Lydia; Eggert, Anja; Michalik, Dirk; Karsten, Ulf

    2010-07-01

    Growth of five aeroterrestrial green algal strains (Trebouxiophyceae) in response to changing water availabilities-caused by osmotic (ionic) and matric (desiccation) stresses-was investigated in comparison with a freshwater and a marine strain. All investigated algae displayed good growth under brackish conditions while four out of the five aeroterrestrial strains even grew well under full marine conditions (28-40 psu). The comparison between growth responses in liquid medium, on solid agarose, and on glass fiber filters at 100% air humidity indicated a broad growth tolerance of aeroterrestrial algae towards diminished water availability. While two aeroterrestrial strains even grew better on solid medium which mimics natural biofilm conditions, the aquatic strains showed significant growth inhibition under matric stress. Except Stichococcus sp., which contained the C6-polyol sorbitol, all other aeroterrestrial green algae investigated synthesized and accumulated the C5-polyol ribitol in response to osmotic stress. Using (13)C NMR spectroscopy and HPLC, it could be verified that ribitol functions as an osmotically regulated organic solute. This is the first proof of ribitol in free-living aeroterrestrial green algae. The biochemical capability to synthesize polyols under environmental stress conditions seems to support algal life outside aquatic habitats. PMID:19585217

  11. Formulation and evaluation of verapamil hydrochloride osmotic controlled release matrix tablets

    Directory of Open Access Journals (Sweden)

    S Vidyadhara

    2014-01-01

    Full Text Available Osmotically controlled oral drug delivery systems utilize osmotic pressure as energy source for the controlled delivery of drugs, independent of pH and hydrodynamic conditions of gastrointestinal tract (GIT. The present study was aimed to develop osmotic controlled extended release formulations of verapamil hydrochloride an angiotensin II receptor antagonist with anti-hypertensive activity. Verapamil hydrochloride matrix tablets were prepared by direct compression process using hydroxypropyl methylcellulose (HPMC K 15M as polymeric material and mannitol as osmogen at varied concentrations. The matrix tablets were further coated with different compositions of ethylcellulose7cps and polyethylene glycol (PEG-4000 by pan coating method. Physical parameters such as weight uniformity, drug content, hardness and friability were evaluated for uncoated tablets and were found to be within I. P limits. The coating thickness and percentage of coating applied for various tablets were also evaluated. The optimized coated tablets were further subjected to micro drilling on the upper face to get 0.5 μm orifice diameter. All the tablets were further subjected to dissolution studies by using USP apparatus II with 6.8 pH phosphate buffer as medium. These studies indicated that all the tablets were found to release the drug up to 12 hours, while coated tablets with orifice found to release the drug at zero order rate, which was in good agreement with peppas n > 0.9.

  12. Water fluxes and encapsulation efficiency in double emulsions: impact of emulsification and osmotic pressure unbalance.

    Science.gov (United States)

    Nollet, Maxime; Mercé, Manuel; Laurichesse, Eric; Pezon, Annaïck; Soubabère, Olivier; Besse, Samantha; Schmitt, Véronique

    2016-03-30

    We study the influence of the emulsification process on encapsulation efficiency of drugs in double water-in-oil-in-water emulsions. Two drugs were used, first vitamin B12 which can be considered as a model drug and secondly a suspension of Cydia pomonella Granulovirus (CpGV), a virus used in organic agriculture to protect fruits against the Carpocapse insect. Encapsulation is measured by classical UV-Vis spectroscopy method. Additionally we show that rheology is a useful tool to determine water exchanges during emulsification. In a two-step emulsification process, using rotor-stator mixers, encapsulation reaches high levels, close to 100% whatever the flowing regime. This encapsulation decreases only if two conditions are fulfilled simultaneously: (i) during the second emulsification step the flow is turbulent and (ii) it leads to excessive fragmentation inducing formation of too small drops. We also investigate the effect of a deliberate loss of osmotic pressure balance on the encapsulation and characterize the induced water fluxes. We show that encapsulation of vitamin B12 is not affected by the osmotic pressure unbalance, while water exchanges, if they exist, are very fast and aim at restoring equilibrium. As a consequence, the emulsification efficiency is not very sensitive to osmotic stresses provided that the interfaces resist mechanically. PMID:26936127

  13. In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago

    Directory of Open Access Journals (Sweden)

    Nina M. Soares-Cavalcanti

    2012-01-01

    Full Text Available Plants experience various environmental stresses, but tolerance to these adverse conditions is a very complex phenomenon. The present research aimed to evaluate a set of genes involved in osmotic response, comparing soybean and medicago with the well-described Arabidopsis thaliana model plant. Based on 103 Arabidopsis proteins from 27 categories of osmotic stress response, comparative analyses against Genosoja and Medicago truncatula databases allowed the identification of 1,088 soybean and 1,210 Medicago sequences. The analysis showed a high number of sequences and high diversity, comprising genes from all categories in both organisms. Genes with unknown function were among the most representative, followed by transcription factors, ion transport proteins, water channel, plant defense, protein degradation, cellular structure, organization & biogenesis and senescence. An analysis of sequences with unknown function allowed the annotation of 174 soybean and 217 Medicago sequences, most of them concerning transcription factors. However, for about 30% of the sequences no function could be attributed using in silico procedures. The establishment of a gene set involved in osmotic stress responses in soybean and barrel medic will help to better understand the survival mechanisms for this type of stress condition in legumes.

  14. Molecular sieving action of the cell membrane during gradual osmotic hemolysis

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, R.D. II

    1977-05-01

    Rat erythrocytes were hemolyzed by controlled gradual osmotic hemolysis to study cell morphology and hemoglobin loss from individual cells. Results suggest that each increase in the rate of loss of a protein from the cells during the initial phases of controlled gradual osmotic hemolysis is caused by the passage of a previously impermeable species across the stressed membrane. Similarly, during the final stages of controlled gradual osmotic hemolysis, each sharp decrease in the rate of loss of a protein corresponds to the termination of a molecular flow. A theoretical model is described that predicts the molecular sieving of soluble globular proteins across the stressed red cell membrane. Hydrophobic interactions occur between the soluble proteins and the lipid bilayer portion of the cell membrane. A spectrin network subdivides the bilayer into domains that restrict the insertion of large molecules into the membrane. Other membrane proteins affect soluble protein access to the membrane. Changes in the loss curves caused by incubation of red cells are discussed in terms of the model.

  15. Theoretical and Experimental Investigations of the Potential of Osmotic Energy for Power Production

    Directory of Open Access Journals (Sweden)

    Adel O. Sharif

    2014-08-01

    Full Text Available This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%–80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved.

  16. Regulation of Aquaporin Z osmotic permeability in ABA tri-block copolymer

    Directory of Open Access Journals (Sweden)

    Wenyuan Xie

    2015-08-01

    Full Text Available Aquaporins are transmembrane water channel proteins present in biological plasma membranes that aid in biological water filtration processes by transporting water molecules through at high speeds, while selectively blocking out other kinds of solutes. Aquaporin Z incorporated biomimetic membranes are envisaged to overcome the problem of high pressure needed, and holds great potential for use in water purification processes, giving high flux while keeping energy consumption low. The functionality of aquaporin Z in terms of osmotic permeability might be regulated by factors such as pH, temperature, crosslinking and hydrophobic thickness of the reconstituted bilayers. Hence, we reconstituted aquaporin Z into vesicles that are made from a series of amphiphilic block copolymers PMOXA-PDMS-PMOXAs with various hydrophobic molecular weights. The osmotic permeability of aquaporin Z in these vesicles was determined through a stopped-flow spectroscopy. In addition, the temperature and pH value of the vesicle solutions were adjusted within wide ranges to investigate the regulation of osmotic permeability of aquaporin Z through external conditions. Our results show that aquaporin Z permeability was enhanced by hydrophobic mismatch. In addition, the water filtration mechanism of aquaporin Z is significantly affected by the concentration of H+ and OH- ions.

  17. Effect of seawater immersion on plasma osmotic pressure and electrolyte balance following open chest trauma

    Institute of Scientific and Technical Information of China (English)

    李辉; 鹿尔驯; 虞积耀; 王大鹏; 马聪

    2002-01-01

    To explore the effect of seawater immersion on serum osmotic pressure and electrolytes balance following chest trauma in dogs. Methods: Twenty-five healthy adult dogs were used in the experiment. A canine model of right open pneumothorax was established by chest puncturing on all animals. Animals were divided into three groups: a control group (n = 10) with chest trauma without any immersion;a seawater group ( n = 10) immersed in seawater after chest trauma and a normal saline group ( n = 5 ) immersed in normal saline solution following chest trauma. Blood samples were taken at different time intervals to determine plasma osmotic pressure and electrolytes. The hemodynamic changes were also recorded. Results: Mortality in the seawater group was much higher than that of the control group and the normal saline group. The mean survival time in the seawater group lasted only 45 minutes, while in the control group and the normal saline group the average survival time was more than 4 hours (P < 0.01 ). One of the most important causes of death was hypernatremia and high osmolality. Severe electrolytes imbalance was observed in seawater group.Hypernatremia and high osmolality were the most significant factors of high mortality in the seawater group. Conclusions: Seawater immersion after chest trauma appears to be associated with severe electrolyte imbalance as well as high osmotic pressure, These may be the risk factors leading to fatal outcome.

  18. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.

    Science.gov (United States)

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik

    2015-12-01

    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. PMID:26614803

  19. FORMULATION AND EVALUATION OF SELF PORE FORMING OSMOTIC TABLETS OF GLIPIZIDE

    Directory of Open Access Journals (Sweden)

    Mangukia Dhruv K

    2012-04-01

    Full Text Available The purpose of this study was to formulate and evaluate self pore forming osmotically controlled drug delivery system of Glipizide. Glipizide is an oral hypoglycemic agent which belongs to BCS class II with relatively short elimination half life of 2-4 hours. Main objective to formulate this system was to achieve zero order release for Glipizide. The present study was also aimed to develop a system that would reduce the frequency of dosing and thus increases patient compliance. Cellulose acetate was used as a film forming polymer. PEG 400 was used as plasticizer. Potassium chloride was used as pore forming agent. Acetone and methanol were used as solvent. Combinations of Mannitol-Fructose, Mannitol-Sucrose and Lactose-Sucrose were used as osmotic agents. This system was developed in two stages: (a formulation of core tablet and (b coating of tablet core. Core tablets were evaluated for content uniformity, hardness and weight variation while coated tablets were evaluated for film thickness and in vitro release study.Effect of varying the concentration of pore forming agent on release rate was studied. Effect of various osmogens differing in osmotic pressure on release rate was also evaluated.

  20. Osmotic stress tolerance, PGP traits and RAPD analysis of Bradyrhizobium japonicum strains

    Directory of Open Access Journals (Sweden)

    Marinković Jelena

    2013-01-01

    Full Text Available The osmotic stress tolerance of B. japonicum strains assessed according to their persistence in PEG solution. The lowest tolerance to osmotic stress was observed in strain 511 (43.3%, and the highest tolerance was observed for strain D216 (3.3% growth reduction in presence of PEG. PGP traits of B. japonicum strains were tested. None of five B. japonicum strains produced siderophore, strains 511 and 518 had the urease ability, and only B. japonicum 518 strain showed the ability to solubilize insoluble tricalcium phosphate. RAPD analysis, using AP10, BC318, AF14 and SPH1 primers, indicated genetic differences between Bradyrhizobium strains. The first group (strains 3, 6 and 518 showed more than 80% similarity. Strains 511 and D216 formed separate clusters. Difference between strains D216 and the other strains were more than 60%, with maximum value of 72% in comparison with strain 511. Plant-growth promoting (PGP traits, osmotic stress tolerance and RAPD analysis highlighted strain D216 as useful for further investigation of B. japonicum impact on drought reduction in symbiosis with soybean. [Projekat Ministarstva nauke Republike Srbije, br. TR 31022 i br. TR 31072

  1. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti

    International Nuclear Information System (INIS)

    Intracellular accumulation of glycine betaine has been shown to confer an enhanced level of osmotic stress tolerance in Rhizobium meliloti. In this study, the authors used a physiological approach to investigate the mechanism by which glycine betaine is accumulated in osmotically stressed R. meliloti. Results from growth experiments, 14C labeling of intermediates, and enzyme activity assays are presented. The results provide evidence for the pathway of biosynthesis and degradation of glycine betaine and the osmotic effects on this pathway. High osmolarity in the medium decreased the activities of the enzymes involved in the degradation of glycine betaine but not those of enzymes that lead to its biosynthesis from choline. Thus, the concentration of the osmoprotectant glycine betaine is increased in stressed cells. This report demonstrates the ability of the osmolarity of the growth medium to regulate the use of glycine betaine as a carbon and nitrogen source or as an osmoprotectant. The mechanisms of osmoregulation in R. meliloti and Escherichia coli are compared

  2. Theoretical and Experimental Investigations of the Potential of Osmotic Energy for Power Production †

    Science.gov (United States)

    Sharif, Adel O.; Merdaw, Ali A.; Aryafar, Maryam; Nicoll, Peter

    2014-01-01

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%–80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved. PMID:25110959

  3. Theoretical and experimental investigations of the potential of osmotic energy for power production.

    Science.gov (United States)

    Sharif, Adel O; Merdaw, Ali A; Aryafar, Maryam; Nicoll, Peter

    2014-01-01

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%-80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved. PMID:25110959

  4. Low back pain - chronic

    Science.gov (United States)

    Nonspecific back pain; Backache - chronic; Lumbar pain - chronic; Pain - back - chronic; Chronic back pain - low ... Low back pain is common. Almost everyone has back pain at some time in their life. Often, the exact cause of ...

  5. Chronic Pelvic Pain

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Chronic Pelvic Pain Home For Patients Search FAQs Chronic Pelvic Pain ... Pain FAQ099, August 2011 PDF Format Chronic Pelvic Pain Gynecologic Problems What is chronic pelvic pain? What ...

  6. Employees with Chronic Pain

    Science.gov (United States)

    ... Home | Accommodation and Compliance Series: Employees with Chronic Pain By Beth Loy, Ph.D. Preface Introduction Information ... at http://AskJAN.org/soar. Information about Chronic Pain How prevalent is chronic pain? Chronic pain has ...

  7. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    Science.gov (United States)

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. PMID:26889752

  8. Erythropoietin treatment does not compromise cardiovascular function in chronic renal failure

    DEFF Research Database (Denmark)

    Haedersdal, C; Mehlsen, J; Stenver, Doris Irene;

    1994-01-01

    The anemia in patients with chronic renal failure can be corrected through treatment with recombinant human erythropoietin treatment. This correction is associated with changes in the rheologic variables, which could explain the changes in hemodynamics found by many investigators. The authors have...... followed up 11 patients with chronic renal failure on hemodialysis before and during six months of therapy with erythropoietin. The measurements were made before treatment, after four months of therapy, and after six months of therapy. The measurements included hematocrit, osmotic resistance of the red...

  9. Chronic coughing

    International Nuclear Information System (INIS)

    Chronic coughing was acknowledged to result from pathological state of the respiratory organs. Cardiac diseases could be accompanied by coughing as well. It was recommended to perform x-ray examinations, including biomedical radiography of the chest, computerized tomography, scintiscanning with 67Ga-citrate, bronchi examination in order to exclude heart disease. The complex examination permitted to detect localization and type of the changes in the lungs and mediastinum, to distinguish benign tumor from malignant one

  10. From microgravity to osmotic conditions: mechanical integration of plant cells in response to stress

    Science.gov (United States)

    Wojtaszek, Przemyslaw; Kasprowicz, Anna; Michalak, Michal; Janczara, Renata; Volkmann, Dieter; Baluska, Frantisek

    Chemical reactions and interactions between molecules are commonly thought of as being at the basis of Life. Research of recent years, however, is more and more evidently indicating that physical forces are profoundly affecting the functioning of life at all levels of its organiza-tion. To detect and to respond to such forces, plant cells need to be integrated mechanically. Cell walls are the outermost functional zone of plant cells. They surround the individual cells, and also form a part of the apoplast. In cell suspensions, cell walls are embedded in the cul-ture medium which can be considered as a superapoplast. Through physical and chemical interactions they provide a basis for the structural and functional cell wall-plasma membrane-cytoskeleton (WMC) continuum spanning the whole cell. Here, the working of WMC contin-uum, and the participation of signalling molecules, like NO, would be presented in the context of plant responses to stress. In addition, the effects of the changing composition of WMC continuum will be considered, with particular attention paid to the modifications of the WMC components. Plant cells are normally adapted to changing osmotic conditions, resulting from variable wa-ter availability. The appearance of the osmotic stress activates adaptory mechanisms. If the strength of osmotic stress grows relatively slowly over longer period of time, the cells are able to adapt to conditions that are lethal to non-adapted cells. During stepwise adaptation of tobacco BY-2 suspension cells to the presence of various osmotically active agents, cells diverged into independent, osmoticum type-specific lines. In response to ionic agents (NaCl, KCl), the adhe-sive properties were increased and randomly dividing cells formed clumps, while cells adapted to nonionic osmotica (mannitol, sorbitol, PEG) revealed ordered pattern of precisely positioned cell divisions, resulting in the formation of long cell files. Changes in the growth patterns were accompanied by

  11. Effect of pore structure on chemico-osmotic, diffusion and hydraulic properties of mud-stones

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. An in-situ experiment by Neuzil (2000) has obtained the substantial proof of chemical osmosis in natural clayey formation. Chemical osmosis in clayey formations has thus received attention in recent years in the context of geological disposal of radioactive waste. Chemical osmosis is the diffusion of water through a semi-permeable membrane driven by the difference of chemical potentials between solutions to compensate the difference of water potentials, increasing the other potential differences, such as the pressure difference. Accordingly, the chemical osmosis could generate localized, abnormal fluid pressures in geological formations where formation media act as semi-permeable membranes and groundwater salinity is not uniform. Without taking account of the chemical osmosis, groundwater flow modeling may mislead the prediction of the groundwater flow direction. Therefore the possibility of chemical osmosis needs to be identified for potential host formations for radioactive waste repositories. The chemico-osmotic property of formation media is an essential parameter to identify the possibility of chemical osmosis in the formation; however, the diffusion and hydraulic properties are also fundamental parameters to estimate the duration of chemical osmosis since they control the spatial variation of salinity and the dissipation of osmotically induced pressures. In order to obtain the chemico-osmotic, diffusion and hydraulic parameters from a rock sample, this study developed a laboratory experimental system capable of performing chemical osmosis and permeability experiments. A series of experiments were performed on mud-stones. The chemico-osmotic parameter of each rock sample was further interpreted by the osmotic efficiency model proposed by Bresler (1973) to examine the pore structure inherent in rocks. Diatomaceous and siliceous mud-stone samples were obtained from drill cores taken from the Koetoi and Wakkanai

  12. Chronic Insomnia

    OpenAIRE

    Buysse, Daniel J.

    2008-01-01

    Ms. F, a 42-year-old divorced woman, presents for evaluation of chronic insomnia. She complains of difficulty falling asleep, often 30 minutes or longer, and difficulty maintaining sleep during the night, with frequent awakenings that often last 30 minutes or longer. These symptoms occur nearly every night, with only one or two “good” nights per month. She typically goes to bed around 10:00 p.m. to give herself adequate time for sleep, and she gets out of bed around 7:00 a.m. on work days and...

  13. 声空强化渗透脱水过程质扩散研究%Mass Transfer During Osmotic Dehydration Using Acoustic Cavitation

    Institute of Scientific and Technical Information of China (English)

    孙宝芝; 淮秀兰; 姜任秋; 刘登瀛

    2005-01-01

    An experimental study on intensifying osmotic dehydration was carried out in a state of nature and with acoustic cavitation of different cavitating intensity (0.5A, 0.TA and 0.9A) respectively, in which the material is apple slice of 5 mm thickness. The result showed that acoustic cavitation remarkably enhanced the osmotic dehydration, and the water loss was accelerated with the increase of cavitating intensity. The water diffusivitymodel was established about mass transfer during osmotic dehydration, and the numerical simulation was carried out. The calculated results agree well with experimental data, and represent the rule of mass transfer during osmotic dehydration intensified by acoustic cavitation.

  14. Global analysis of the yeast osmotic stress response by quantitative proteomics.

    Science.gov (United States)

    Soufi, Boumediene; Kelstrup, Christian D; Stoehr, Gabriele; Fröhlich, Florian; Walther, Tobias C; Olsen, Jesper V

    2009-11-01

    Information on extracellular signals and conditions is often transduced by biological systems using cascades of protein phosphorylation that affect the activity of enzymes, the localization of proteins and gene expression. A model to study signal transduction is the response of the yeast Saccharomyces cerevisiae to osmotic changes as it shares many central themes with information processing modules in higher eukaryotes. Despite considerable progress in our understanding of this pathway, the scale and dynamics of this system have not been addressed systematically yet. Here, we report a comprehensive, quantitative, and time-resolved analysis using high-resolution mass spectrometry of phospho-proteome and proteome changes in response to osmotic stress in yeast. We identified 5534 unique phosphopeptide variants and 3383 yeast proteins. More than 15% of the detected phosphorylation site status changed more than two-fold within 5 minutes of treatment. Many of the corresponding phosphoproteins are involved in the early response to environmental stress. Surprisingly, we find that 158 regulated phosphorylation sites are potential substrates of basophilic kinases as opposed to the classical proline-directed MAP kinase network implicated in stress response mechanisms such as p38 and HOG pathways. Proteome changes reveal an increase in abundance of more than one hundred proteins after 20 min of salt stress. Many of these are involved in the cellular response to increased osmolarity, which include proteins used for glycerol production that is up-regulated to counterbalance the increased osmolarity of the salt containing growth medium. Although the overall relationship between our proteome and published mRNA changes is poor we find an excellent correlation between the subset of osmotic shock up-regulated proteins and their corresponding mRNA changes. PMID:19823750

  15. Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater.

    Science.gov (United States)

    Li, Xue; Cai, Tao; Chen, Chunyan; Chung, Tai-Shung

    2016-02-01

    Osmotic power holds great promise as a clean, sustainable and largely unexploited energy resource. Recent membrane development for pressure-retarded osmosis (PRO) is making the osmotic power generation more and more realistic. However, severe performance declines have been observed because the porous layer of PRO membranes is fouled by the feed stream. To overcome it, a negatively charged antifouling PRO hollow fiber membrane has been designed and studied in this work. An antifouling polymer, derived from hyperbranched polyglycerol and functionalized by α-lipoic acid and succinic anhydride, was synthesized and grafted onto the polydopamine (PDA) modified poly(ether sulfone) (PES) hollow fiber membranes. In comparison to unmodified membranes, the charged hyperbranched polyglycerol (CHPG) grafted membrane is much less affected by organic deposition, such as bovine serum albumin (BSA) adsorption, and highly resistant to microbial growths, demonstrated by Escherichia coli adhesion and Staphylococcus aureus attachment. CHPG-g-TFC was also examined in PRO tests using a concentrated wastewater as the feed. Comparing to the plain PES-TFC and non-charged HPG-g-TFC, the newly developed membrane exhibits not only the smallest decline in water flux but also the highest recovery rate. When using 0.81 M NaCl and wastewater as the feed pair in PRO tests at 15 bar, the average power density remains at 5.6 W/m(2) in comparison to an average value of 3.6 W/m(2) for unmodified membranes after four PRO runs. In summary, osmotic power generation may be sustained by properly designing and anchoring the functional polymers to PRO membranes. PMID:26630043

  16. Negatively Charged Hyperbranched Polyglycerol Grafted Membranes for Osmotic Power Generation from Municipal Wastewater

    KAUST Repository

    Li, Xue

    2015-11-18

    Osmotic power holds great promise as a clean, sustainable and largely unexploited energy resource. Recent membrane development for pressure-retarded osmosis (PRO) is making the osmotic power generation more and more realistic. However, severe performance declines have been observed because the porous layer of PRO membranes is fouled by the feed stream. To overcome it, a negatively charged antifouling PRO hollow fiber membrane has been designed and studied in this work. An antifouling polymer, derived from hyperbranched polyglycerol and functionalized by α-lipoic acid and succinic anhydride, was synthesized and grafted onto the polydopamine (PDA) modified poly(ether sulfone) (PES) hollow fiber membranes. In comparison to unmodified membranes, the charged hyperbranched polyglycerol (CHPG) grafted membrane is much less affected by organic deposition, such as bovine serum albumin (BSA) adsorption, and highly resistant to microbial growths, demonstrated by E. coli adhesion and S. aureus attachment. CHPG-g-TFC was also examined in PRO tests using a concentrated wastewater as the feed. Comparing to the plain PES-TFC and non-charged HPG-g-TFC, the newly developed membrane exhibits not only the smallest decline in water flux but also the highest recovery rate. When using 0.81 M NaCl and wastewater as the feed pair in PRO tests at 15 bar, the average power density remains at 5.6 W/m2 in comparison to an average value of 3.6 W/m2 for unmodified membranes after four PRO runs. In summary, osmotic power generation may be sustained by properly designing and anchoring the functional polymers to PRO membranes.

  17. Core structure, internal osmotic pressure and irreversible structural changes of chromaffin granules during osmometer behaviour.

    Science.gov (United States)

    Südhof, T C

    1982-01-01

    In the adrenal medullary cells, catecholamines are stored in and secreted from specialized secretory vesicles, the chromaffin granules. In order to gain some understanding of both functions of chromaffin granules, it is important to characterize their biophysical organization. Using isolated bovine chromaffin granules we have investigated the osmometer behaviour of chromaffin granules by 31P-NMR and fluorescence spectroscopy, by turbidity measurements and by electron-microscopic determination of chromaffin granule size distributions. On the basis of the osmometer model we have formulated equations predicting the behaviour of the native catecholamine fluorescence quenching and of the size of chromaffin granules a a function of osmolarity and have shown experimentally that the granules' behaviour conforms to these. It was possible to estimate the osmotic activity of the chromaffin granule core solution and the mean absolute water space in chromaffin granules from the determination of the size distributions as a function of osmotic pressure. With NMR spectroscopy a selective line-broadening of the alpha-resonances was observed with increasing osmolarities, while the gamma-phosphorus resonances remained virtually unchanged. Possibly there is an increase in core viscosity with osmolarity which affects only the alpha- and beta-phosphorus groups. While suspending chromaffin granules from lower to higher osmolarities causes no lysis, moving them back to their original osmolarity at which they were previously stable lyses them, thereby releasing a maximum of 70% of their releasable protein. This 'hyperosmolar' lysis is independent of preincubation times in the higher osmolarities and of the absolute dilution applied but depends on dilution beyond the 405 to 322 mosM sucrose range. Under the experiment conditions no uptake of sucrose from the medium into the granules could be measured, thereby suggesting that hyperosmolar lysis is a phenomenon not due to solute penetration

  18. Compression and lubrication of salt free polyelectrolyte microgel particles in highly compressed suspensions by counterion osmotic pressure

    Science.gov (United States)

    Sokoloff, J. B.

    2015-06-01

    The compression of polyelectrolyte microgel particles in a salt-free highly compressed colloid due to osmotic pressure outside of the particles due to counterions located there is studied for a model based on a quasi-analytic solution of the Poisson-Boltzmann equation and a model for the gel elasticity based on counterion osmotic pressure inside the particles and polymer elasticity (of entropic origin). It is found that for particles of radius of the order of a tenth of a micron, the counterion osmotic pressure should play a significant role in the compression of the particles, especially particles which do not have a corona (i.e., nonlinked polymer chains attached to their surface). The presence of a corona of monomer density smaller than that of the core of the microgel reduces the contribution of the osmotic pressure due to counterions outside of the microgel. It is also demonstrated that counterion osmotic pressure outside the particles can provide a significant contribution to the lubrication of the interface between the particles and a surface along which the compressed colloid is made to slide, for sufficiently slow velocities.

  19. An experimental approach to assess Corbicula fluminea (Müller, 1774) resistance to osmotic stress in estuarine habitats

    Science.gov (United States)

    Ferreira-Rodríguez, Noé; Pardo, Isabel

    2016-07-01

    Corbicula fluminea arrived in the Miño Estuary in 1989 and, from there, colonized more than 150 km upstream. Our aim was to test the capacity of C. fluminea to cope with osmotic stress conditions previously to invade new freshwater habitats through estuaries. Based on previously collected information, the experiment aims to study the response of the species to marine osmotic stress, evaluated by survival and behaviour. Experiments determined the resistance by the species to various levels of osmotic stress, and recovery time after exposure to high salinity levels, representative of the temporal and spatial salinity variation existing in the estuary. Under osmotic stress the semi-maximum response was reached after 19 days exposure. The species tolerance range, measured by individual maintained activity, was at salinity ∼20 when exposed to winter temperatures, while when animals were exposed to summer ones its tolerance was reduced to salinity lower than 15. C. fluminea show a large physiological flexibility to cope with salinity variations in estuaries. In summer, the temperature increases the metabolic rate thus making the species more vulnerable to osmotic stress exposure. These findings are relevant to preventing new invasions through ship ballast waters ensuring complete mortality if individuals are retained for >26 days.

  20. Integrin-like Protein Is Involved in the Osmotic Stress-induced Abscisic Acid Biosynthesis in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Bing Lü; Feng Chen; Zhong-Hua Gong; Hong Xie; Jian-Sheng Liang

    2007-01-01

    We studied the perception of plant cells to osmotic stress that leads to the accumulation of abscisic acid (ABA) in stressed Arabidopsis thaliana L. cells. A significant difference was found between protoplasts and cells in terms of their responses to osmotic stress and ABA biosynthesis, implying that cell wall and/or cell wall-plasma membrane interaction are essential in identifying osmotic stress. Western blotting and immunofluorescence localization experiments, using polyclonal antibody against human integrin β1, revealed the existence of a protein similar to the integrin protein of animals in the suspension-cultured cells located in the plasma membrane fraction.Treatment with a synthetic pentapeptide, Gly-Arg-Gly-Asp-Ser (GRGDS), which contains an RGD domain and interacts specifically with integrin protein and thus blocks the cell wall-plasma membrane interaction, significantly inhibited osmotic stress-induced ABA biosynthesis in cells, but not in protoplasts. These results demonstrate that cell wall and/or cell wall-plasma membrane interaction mediated by integrin-like proteins played important roles in osmotic stress-induced ABA biosynthesis in Arabidopsis thaliana.

  1. Role of Cold Shock Proteins in Growth of Listeria monocytogenes under Cold and Osmotic Stress Conditions▿

    OpenAIRE

    Schmid, Barbara; Klumpp, Jochen; Raimann, Eveline; Loessner, Martin J; Stephan, Roger; Tasara, Taurai

    2009-01-01

    The gram-positive bacterium Listeria monocytogenes is a food-borne pathogen of both public health and food safety significance. It possesses three small, highly homologous protein members of the cold shock protein (Csp) family. We used gene expression analysis and a set of mutants with single, double, and triple deletions of the csp genes to evaluate the roles of CspA, CspB, and CspD in the cold and osmotic (NaCl) stress adaptation responses of L. monocytogenes. All three Csps are dispensable...

  2. Measurement of water filtration in skeletal muscle in man by an osmotic transient method

    DEFF Research Database (Denmark)

    Palm, T; Nielsen, S L; Lassen, N A

    1983-01-01

    Water filtration in the human forearm was determined with a new method using a hyperoncotic transient of albumin solution infused into the brachial artery. Baseline dilution of labelled albumin in deep forearm vein plasma in excess of the contribution from arterial blood and from infusate was...... assumed to originate from extravascular water filtered into the blood by the transient. The filtration coefficient (Fc) was determined as the ratio between filtered water and increase in colloid osmotic pressure in the blood samples, and gives the filtrative water permeability in the exchange areas of the...

  3. Feasibility of optimizing trimetazidine dihydrochloride release from controlled porosity osmotic pump tablets of directly compressed cores

    OpenAIRE

    Habib, Basant A.; Randa T. Abd El Rehim; Nour, Samia A.

    2013-01-01

    The aim of this study was to develop and optimize Trimetazidine dihydrochloride (TM) controlled porosity osmotic pump (CPOP) tablets of directly compressed cores. A 23 full factorial design was used to study the influence of three factors namely: PEG400 (10% and 25% based on coating polymer weight), coating level (10% and 20% of tablet core weight) and hole diameter (0 “no hole” and 1 mm). Other variables such as tablet cores, coating mixture of ethylcellulose (4%) and dibutylphthalate (2%) i...

  4. Response of wheat to combined high temperature and osmotic stresses during maturation. Plant photosynthesis and productivity

    OpenAIRE

    Nazeer Hussain Shah; G.M. Paulsen

    1999-01-01

    High temperature and drought are usually investigated singly, although they frequently occur simultaneously in nature.Our objectives were to compare effects of high temperature and osmotic injury on photosynthesis and productivity of wheat during grain filling and to ascertain interactions between the combined stresses. Plants (cv. Len) were grown uniformly until anthesis, and treatments of 15/10, 25/20, and 35/30oC and -0.01 or -0.41 MPa were imposed until maturity. Photosynthesis, leaf area...

  5. Osmotic pressure and polymer size in semidilute polymer solutions under good-solvent conditions.

    Science.gov (United States)

    Pelissetto, Andrea

    2008-07-28

    We consider the lattice Domb-Joyce model at a value of the coupling for which scaling corrections approximately vanish and determine the universal scaling functions associated with the osmotic pressure and the polymer size for semidilute polymer solutions (c/c( *)self-avoiding walks. We show that for c/c( *) greater than or approximately equal 6 simulations of lattice self-avoiding walks give results that are affected by strong scaling corrections even for chain lengths as large as 1000: The self-avoiding walk model is therefore unsuitable for the determination of universal properties of polymer solutions deep in the semidilute regime. PMID:18681672

  6. Consolidation Properties of Highly Plastic Clay During Osmotic Pressure Consolidation Test

    Institute of Scientific and Technical Information of China (English)

    魏静; 王建华

    2003-01-01

    For the very soft clay with high water content, its void ratio, compressibility coefficient and permeability varied with stress during consolidation. It is necessary to use large strain consolidation based on the permeabilityvoid ratio relationship and effective stressvoid ratio relationship to analyze these properties. To overcome the disadvantages of conventional oedometer test, and determine the effective stressvoid relations of this kind of soil, osmotic pressure consolidation test for highly plastic clay study and the expression of permeabilityvoid ratio are performed. Therefore, the decided properties will be reasonably used for solving the large strain consolidation equation.

  7. Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress

    Science.gov (United States)

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Miltner, Anja; Wick, Lukas Y.; Kästner, Matthias

    2016-01-01

    Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440. Three systematically manipulated scenarios allowed us to cover the effects of (i) substrate diffusion, (ii) substrate diffusion and autonomous bacterial dispersal, and (iii) substrate diffusion and autonomous as well as mediated bacterial dispersal along glass fiber networks mimicking fungal hyphae. To quantify the relative importance of the different spatial processes, we compared these heterogeneous scenarios to a reference value obtained for each ΔΨo by means of a quasi-optimal scenario in which degraders were ab initio homogeneously distributed. Substrate diffusion as the sole spatial process was insufficient to counteract the disadvantage due to spatial degrader heterogeneity at ΔΨo ranging from 0 to −1 MPa. In this scenario, only 13.8−21.3% of the quasi-optimal biodegradation performance could be achieved. In the same range of ΔΨo values, substrate diffusion in combination with bacterial dispersal allowed between 68.6 and 36.2% of the performance showing a clear downwards trend with decreasing ΔΨo. At −1.5 MPa, however, this scenario performed worse than the diffusion scenario, possibly as a result of energetic disadvantages associated with flagellum synthesis and emerging requirements to exceed a critical population density to resist osmotic stress. Network-mediated bacterial dispersal kept biodegradation

  8. Effect of osmotic pretreatment on air drying characteristics and colour of pepper (Capsicum spp) cultivars

    OpenAIRE

    Falade, Kolawole Olumuyiwa; Oyedele, Olaniyi O.

    2010-01-01

    Air-drying characteristics of fresh and osmotically pretreated (40°B, 50°B and 60°B sucrose solutions for 9 h) four pepper cultivars namely, Rodo (Capsicum annuum), Shombo (Capsicum frutescens), Bawa (Capsicum frutenscens) and Tatashe (Capsicum annuum), and CIE L*a*b* parameters of air-dried (50, 60, 70 and 80 °C) peppers were investigated. Moisture diffusivity and activation energy (Ea) were calculated from Fick’s law and analogous Arrhenius equation, respectively. Colour difference, chroma ...

  9. The influence of genotype and osmotic stress on germination and seedling of maize

    OpenAIRE

    Mandić V.; Bijelić Z.; Krnjaja V.; Tomić Z.; Simić A.; Ružić-Muslić D.; Gogić M.

    2014-01-01

    The aim of this research was to estimate the influence of different NaCl osmotic solutions (0, -0.3 MPa, -0.6 MPa, -0.9 MPa, -1.2 MPa, -1.5 MPa) on seed germination, and early seedling growth in two maize hybrid different maturity groups (ZP 560 - FAO 500 and ZP 666 - FAO 600). Germination was tested in sterile plastic vessels on filter paper moistened with different NaCl solutions, in the dark at 20 ± 1°C, in laboratory. Results of ANOVA indicated that hyb...

  10. Response of Wheat to Combined High Temperature and Osmotic Stress During Maturation. II. Plant Water Relations

    OpenAIRE

    Nazeer Hussain Shah; Gary M. Paulsen

    2000-01-01

    High temperature and drought affect plant processes individually and may interact to alter water relations. Our objectives were to ascertain the effect of high temperature and osmotic stress and to identify interactions between them on water relation of wheat (Triticum aestivum L. cv. Len). Plants that were grown uniformly until anthesis were subjected to 15/10, 25/20 or 35/30 °C and -0.01 or 0.41 Mpa water stress and were sampled weekly until maturity. Relative water content (RWC) of flag le...

  11. Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress.

    Science.gov (United States)

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Miltner, Anja; Wick, Lukas Y; Kästner, Matthias

    2016-01-01

    Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440. Three systematically manipulated scenarios allowed us to cover the effects of (i) substrate diffusion, (ii) substrate diffusion and autonomous bacterial dispersal, and (iii) substrate diffusion and autonomous as well as mediated bacterial dispersal along glass fiber networks mimicking fungal hyphae. To quantify the relative importance of the different spatial processes, we compared these heterogeneous scenarios to a reference value obtained for each ΔΨo by means of a quasi-optimal scenario in which degraders were ab initio homogeneously distributed. Substrate diffusion as the sole spatial process was insufficient to counteract the disadvantage due to spatial degrader heterogeneity at ΔΨo ranging from 0 to -1 MPa. In this scenario, only 13.8-21.3% of the quasi-optimal biodegradation performance could be achieved. In the same range of ΔΨo values, substrate diffusion in combination with bacterial dispersal allowed between 68.6 and 36.2% of the performance showing a clear downwards trend with decreasing ΔΨo. At -1.5 MPa, however, this scenario performed worse than the diffusion scenario, possibly as a result of energetic disadvantages associated with flagellum synthesis and emerging requirements to exceed a critical population density to resist osmotic stress. Network-mediated bacterial dispersal kept biodegradation almost

  12. Osmotic Homeostasis

    OpenAIRE

    Danziger, John; Zeidel, Mark L.

    2014-01-01

    Alterations in water homeostasis can disturb cell size and function. Although most cells can internally regulate cell volume in response to osmolar stress, neurons are particularly at risk given a combination of complex cell function and space restriction within the calvarium. Thus, regulating water balance is fundamental to survival. Through specialized neuronal “osmoreceptors” that sense changes in plasma osmolality, vasopressin release and thirst are titrated in order to achieve water bala...

  13. Atypical Chronic Myelogenous Leukemia

    Science.gov (United States)

    ... myeloproliferative neoplasms, leukemia , and other conditions . Chronic Myelomonocytic Leukemia Key Points Chronic myelomonocytic leukemia is a disease ... chance of recovery) and treatment options. Chronic myelomonocytic leukemia is a disease in which too many myelocytes ...

  14. Living with Chronic Bronchitis

    Science.gov (United States)

    ... from the NHLBI on Twitter. Living With Chronic Bronchitis If you have chronic bronchitis, you can take steps to control your symptoms. ... and a pneumonia vaccine. If you have chronic bronchitis, you may benefit from pulmonary rehabilitation (PR). PR ...

  15. Osmotic stress induced by sodium chloride, sucrose or trehalose improves cryotolerance and developmental competence of porcine oocytes

    DEFF Research Database (Denmark)

    Lin, Lin; Kragh, Peter Michael; Purup, Stig; Kuwayama, Masashige; Du, Yutao; Zhang, Xiuqing; Yang, Huanming; Bolund, Lars; Callesen, Henrik; Vajta, Gabor

    2009-01-01

    Cl with those of concentrated solutions of two non-permeable osmotic agents, namely sucrose and trehalose, on the cryotolerance and developmental competence of porcine oocytes. In Experiment 1, porcine in vitro-matured cumulus-oocyte complexes (COCs; n = 1200) were exposed to 588 mOsmol NaCl, sucrose or...... trehalose solutions for 1 h, allowed to recover for a further 1 h, vitrified, warmed and subjected to parthenogenetic activation. Both Day 2 (where Day 0 is the day of activation) cleavage and Day 7 blastocyst rates were significantly increased after NaCl, sucrose and trehalose osmotic treatments compared......%, respectively). Cell numbers of Day 6 blastocysts were higher in the control and NaCl-treated groups compared with the sucrose- and trehalose-treated groups. In conclusion, treatment of porcine oocytes with osmotic stress improved developmental competence after vitrification combined with parthenogenetic...

  16. Downregulation of the taurine transporter TauT during hypo-osmotic stress in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Hansen, Daniel Bloch; Friis, Martin Barfred; Hoffmann, Else Kay;

    2012-01-01

    The present work was initiated to investigate regulation of the taurine transporter TauT by reactive oxygen species (ROS) and the tonicity-responsive enhancer binding protein (TonEBP) in NIH3T3 mouse fibroblasts during acute and long-term (4 h) exposure to low-sodium/hypo-osmotic stress. Taurine...... influx is reduced following reduction in osmolarity, keeping the extracellular Na(+) concentration constant. TonEBP activity is unaltered, whereas TauT transcription as well as TauT activity are significantly reduced under hypo-osmotic conditions. In contrast, TonEBP activity and TauT transcription are...... ROS under hypo-osmotic, low-sodium conditions, whereas the TauT mRNA level is unaffected. Acute exposure to ROS reduces taurine uptake as a result of modulated TauT transport kinetics. Thus, swelling-induced ROS production could account for the reduced taurine uptake under low...

  17. Pregnancy Outcome with Intrauterine Insemination in Patients with Unexplained Recurrent Abortion Whose Partners Have Abnormal Hypo-Osmotic Swelling Test

    Directory of Open Access Journals (Sweden)

    Talie Kazerooni

    2009-09-01

    Full Text Available Background: Recurrent abortion is defined as three or moreconsecutive pregnancy losses. We aimed to determine the relationshipbetween male sperm parameters and hypo-osmoticswelling score and recurrent abortion. We also studiedwhether washing of spermatozoa and intrauterine inseminationin patients with recurrent miscarriage and low score hypoosmoticswelling test in male partners could improve the outcomeof pregnancy.Methods: Between February 2003 and September 2006 ingynecology clinics affiliated to Shiraz University of MedicalSciences, 176 women with a history of recurrent abortionand their male partners were selected as study group. And159 healthy and fertile couples without a history of recurrentabortion were selected as control group. The relationship betweenmale sperm parameters and hypo-osmotic swelling testand recurrent spontaneous abortion in their female partnerswas evaluated after intrauterine insemination for those withabnormal hypo-osmotic swelling test. Outcome of pregnancyin patients with recurrent abortion whose male partners hadlow score hypo-osmotic swelling test was evaluated afterintrauterine insemination.Results: Low scores of hypo-osmotic swelling test weremore frequently seen in the study group than the controls:116 (65% versus 24 (15%. The mean hypo-osmotic swellingscore was significantly lower in the study group(P< 0.001. The outcome of pregnancy improved after intrauterineinsemination in those with low score hypoosmoticswelling test. The pregnancy success rate in thetreated group (pregnant with intrauterine insemination was77.77% while in the untreated group (pregnant without intrauterineinsemination was 30.76% with a success rateratio of 2.04.Conclusion: There was a positive relationship between lowhypo-osmotic swelling test score in male partners and recurrentabortion in their wives. Intrauterine insemination improvedthe outcome of pregnancy in these couples.

  18. Electro-osmotic pumping and ion-concentration polarization based on conical nanopores

    Science.gov (United States)

    Yeh, Hung-Chun; Chang, Chih-Chang; Yang, Ruey-Jen

    2015-06-01

    A numerical investigation is performed into the characteristics of an electro-osmotic pump consisting of a negatively charged conical nanopore. It is shown that the dependence of the flow rectification effect on the bias direction is the reverse of that of the ion current rectification effect. Moreover, the nozzle mode (i.e., the bias is applied from the base side of the nanopore to the tip side) has a higher flow rate compared to the diffuser mode (i.e., the bias is applied from the tip side of the nanopore to the base side). The results showed that the ion-concentration polarization effect occurred inside the conical nanopore, resulting in surface conduction dominating in the ionic current. The ions inside the nanopore are depleted and enriched under the nozzle mode and the diffuser mode, respectively. As a result, the electro-osmotic pump yields a greater pumping pressure, flow rate, and energy conversion efficiency when operating in the nozzle mode. In addition, we also investigated the flow rate rectification behavior for the conical nanopore. The best flow rate rectification factor in this work is 2.06 for an electrolyte concentration of 10-3M .

  19. Solvent activity in electrolyte solutions from molecular simulation of the osmotic pressure

    Science.gov (United States)

    Kohns, Maximilian; Reiser, Steffen; Horsch, Martin; Hasse, Hans

    2016-02-01

    A method for determining the activity of the solvent in electrolyte solutions by molecular dynamics simulations is presented. The electrolyte solution is simulated in contact with the pure solvent. Between the two phases, there is a virtual membrane, which is permeable only for the solvent. In the simulation, this is realized by an external field which acts only on the solutes and confines them to a part of the simulation volume. The osmotic pressure, i.e., the pressure difference between both phases, is obtained with high accuracy from the force on the membrane, so that reliable data on the solvent activity can be determined. The acronym of the new method is therefore OPAS (osmotic pressure for activity of solvents). The OPAS method is verified using tests of varying complexity. This includes a comparison of results from the OPAS method for aqueous NaCl solutions to results from the literature which were obtained with other molecular simulation methods. Favorable agreement is observed not only for the solvent activity but also for the activity coefficient of NaCl, which is obtained by application of the Gibbs-Duhem equation.

  20. Non-equilibrium molecular dynamics simulation of the unstirred layer in the osmotically driven flow

    Science.gov (United States)

    Konno, Keito; Itano, Tomoaki; Seki, Masako

    2015-11-01

    We studied the solvent flows driven by the osmotic pressure difference across the semi-permeable membrane. The flow penetrating from the low concentration side transports away solutes adjacent of the membrane, so that the concentration is reduced significantly only at the vicinity of the membrane. It is expected that the relatively low solute concentration develops into a thin boundary layer in the vicinity of the membrane in the case of absence of external stirring process, which is termed as un-stirred layer (USL). To investigate concentration distribution in USL, we carried out non-equilibrium molecular dynamics simulations. The flows driven by th osmotic pressure are idealized as 2 dimensional hard disk model, which is composed of solvent and solute molecules. The membrane is modeled as a medium composed of stationary parallel rods distributed by a spatial interval, which is less than the diameter of the solute molecules. The following results were obtained from the numerical simulation. First, the thickness of USL, which was estimated from the obtained concentration distribution, is on the order of a length determined by mean free path. Second, USL was semicircle the center of which is on the end of pore of membrane.

  1. Response of Osmotic Adjustment of Lactobacillus bulgaricus to NaCl Stress

    Institute of Scientific and Technical Information of China (English)

    Li Chun; Liu Li-bo; Sun Di; Chen Jing; Liu Ning

    2012-01-01

    Growth and osmotic response of Lactobacillus bulgaricus ATCC 11842 under hyperosmotic constraint were investigated in a chemically defined medium (CDM) and MRS medium. NaCl could inhibit the growth of L. bulgaricus which decreased with increasing NaCl concentration. In the MRS, NaCl of 1.0 mol·L-1 was the biggest salt stress concentration; in the CDM, 0.8 mol·L-1 was the biggest inhibition concentration. In contrast to what was observed in other lactic acid bacteria, proline, glycine betaine and related molecules were unable to relieve inhibition of growth of L. bulgaricus under osmotic constraint. This was correlated to the absence of sequences homologous to the genes coding for glycine-betaine and/or proline transporters described in Lactococcus lactis and Bacillus subtilis. The amino acid aspartate and alanine were proved to be osmoprotective under NaCl stress. Addition of peptone (0.25% w/v) in the presence of salt led to a stimulation of the growth, as the decrease of the lag time and generation time, and the final biomass increased from 0.31 to 0.64.

  2. Effect of medium osmotic potential on callus induction and shoot regeneration in flax anther culture.

    Science.gov (United States)

    Chen, Yurong; Dribnenki, Paul

    2004-11-01

    Development of an efficient and cost-effective doubled haploid production system in flax (Linum usitatissimum L.) is the prerequisite for the application of doubled haploid technology in a practical breeding program. Pre-culture of anthers on a medium containing 15% sucrose for 2-7 days before transfer to the same medium containing 6% sucrose for a total of 28 days culture period significantly increased shoot regeneration for all four genotypes evaluated. Moreover, pre-culture of anthers on medium containing 15% sucrose for 2-7 days was sufficient to dramatically reduce the frequency of shoot regeneration from somatic tissues and thereby to increase the frequency of microspore-derived plants in flax anther culture. Furthermore, replacing 15% sucrose with 6% sucrose and 9% polyethylene glycol (PEG), or 3% sucrose and 12% PEG, in pre-culture medium did not significantly affect callus induction and shoot regeneration. The results indicate that sucrose may act as carbon/energy source as well as an osmotic regulator in flax anther culture. Sucrose as an osmotic regulator may be replaced by a non-metabolizable osmoticum: PEG. The implication of this study in flax anther culture and breeding is discussed. PMID:15235814

  3. Simultaneous Determination of Hydrochlorothiazide and Losartan Potassium in Osmotic Pump Tablets by Microemulsion Liquid Chromatography.

    Science.gov (United States)

    Li, Liangxing; Lai, Caiyun; Xuan, Xueyi; Gao, Chongkai; Li, Ning

    2016-09-01

    A rapid and efficient oil-in-water microemulsion liquid chromatographic (MELC) method has been optimized and validated for the determination of hydrochlorothiazide (HCT) and losartan potassium (LOP) in osmotic pump tablets. Samples were injected into a C18 (150 mm × 4.6 mm ID, 5 µm particle size) analytical column, which was maintained at 30°C. The most effective MELC system had a mobile phase consisting of 95% (v/v) of 3.0% (w/w) SDS, 6.0% (w/w) n-butanol, 0.8% (w/w) n-octane, 90.2% (w/w) water and 5% (v/v) acetonitrile (pH 5). The flow rate was 1.0 mL min(-1) and UV detection was performed at 265 nm. Linearity ranged from 2.5 to 12.5 µg mL(-1) for HCT and 10.0-60.0 µg mL(-1) for LOP (r > 0.999 for both drugs). The proposed method was rapid, precise (RSDs < 1.4%) and accurate (98.9% recovery for HCT and 101% recovery for LOP). It is applicable to simultaneous determination of HCT and LOP in osmotic pump tablets. PMID:27334292

  4. Proteomic analysis of cross protection provided between cold and osmotic stress in Listeria monocytogenes.

    Science.gov (United States)

    Pittman, Joseph R; Buntyn, Joe O; Posadas, Gabriel; Nanduri, Bindu; Pendarvis, Ken; Donaldson, Janet R

    2014-04-01

    Listeria monocytogenes is a Gram-positive, foodborne pathogen responsible for approximately 28% of all food-related deaths each year in the United States. L. monocytogenes infections are linked to the consumption of minimally processed ready-to-eat (RTE) products such as cheese, deli meats, and cold-smoked finfish products. L. monocytogenes is resistant to stresses commonly encountered in the food-processing environment, including low pH, high salinity, oxygen content, and various temperatures. The purpose of this study was to determine if cells habituated at low temperatures would result in cross-protective effects against osmotic stress. We found that cells exposed to refrigerated temperatures prior to a mild salt stress treatment had increased survival in NaCl concentrations of 3%. Additionally, the longer the cells were pre-exposed to cold temperatures, the greater the increase in survival in 3% NaCl. A proteomics analysis was performed in triplicate in order to elucidate mechanisms involved in cold-stress induced cross protection against osmotic stress. Proteins involved in maintenance of the cell wall and cellular processes, such as penicillin binding proteins and osmolyte transporters, and processes involving amino acid metabolism, such as osmolyte synthesis, transport, and lipid biosynthesis, had the greatest increase in expression when cells were exposed to cold temperatures prior to salt. By gaining a better understanding of how this pathogen adapts physiologically to various environmental conditions, improvements can be made in detection and mitigation strategies. PMID:24564473

  5. Thermal and Osmotic Tolerance of ‘Irukandji’ Polyps: Cubozoa; Carukia barnesi

    Science.gov (United States)

    Courtney, Robert; Browning, Sally; Northfield, Tobin; Seymour, Jamie

    2016-01-01

    This research explores the thermal and osmotic tolerance of the polyp stage of the Irukandji jellyfish Carukia barnesi, which provides new insights into potential polyp habitat suitability. The research also targets temperature, salinity, feeding frequency, and combinations thereof, as cues for synchronous medusae production. Primary findings revealed 100% survivorship in osmotic treatments between 19 and 46‰, with the highest proliferation at 26‰. As salinity levels of 26‰ do not occur within the waters of the Great Barrier Reef or Coral Sea, we conclude that the polyp stage of C. barnesi is probably found in estuarine environments, where these lower salinity conditions commonly occur, in comparison to the medusa stage, which is oceanic. Population stability was achieved at temperatures between 18 and 31°C, with an optimum temperature of 22.9°C. We surmise that C. barnesi polyps may be restricted to warmer estuarine areas where water temperatures do not drop below 18°C. Asexual reproduction was also positively correlated with feeding frequency. Temperature, salinity, feeding frequency, and combinations thereof did not induce medusae production, suggesting that this species may use a different cue, possibly photoperiod, to initiate medusae production. PMID:27441693

  6. Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration.

    Science.gov (United States)

    Nowacka, M; Tylewicz, U; Laghi, L; Dalla Rosa, M; Witrowa-Rajchert, D

    2014-02-01

    The present work investigates how ultrasound pretreatment modulates the effects of osmotic dehydration (OD) on the water state and microstructure of kiwifruit. Kiwifruit slices (10mm thick) were subjected to ultrasonic waves in a water bath at a frequency of 35 kHz for 10, 20 and 30 min. OD process was then carried out by immersing the samples in 61.5% sucrose solution equilibrated at 25°C for a contact period of 0, 10, 20, 30, 60 and 120 min. The partition of water into the cellular tissue structures (vacuole, cytoplasm, extracellular spaces and cell wall) was investigated by Time Domain Nuclear Magnetic Resonance (TD-NMR). In parallel, the microstructure of kiwifruits slices was examined using a Scanning Electron Microscope. The results showed that US pretreatment performed for more than 10 min had a positive effect on the mass exchange caused by osmotic dehydration. A creation of microchannels and an increase of the average cross-section area of cells were observed when the samples were pretreated with US before OD. TD-NMR showed a slight redistribution of water through the substructures of the cells, as a function of the length of the US pretreatment applied. PMID:24099537

  7. The osmotic behaviour of toad skin epithelium (Bufo viridis). an electron microprobe analysis.

    Science.gov (United States)

    Rick, R; Dörge, A; Katz, U; Bauer, R; Thurau, K

    1980-05-01

    The effect of saline adaptation on the intracellular Na, K, Cl, P concentrations and dry weight content of the toad skin epithelium (Bufo viridis) was studied using the technique of electron microprobe analysis. The measurements were performed on isolated abdominal skins either directly after dissection or after additional incubation in Ussing-type chambers. Adaptations of the toads to increasing NaCl concentrations for 7 days resulted in increased blood plasma osmolarity and a parallel increase in the cellular electrolyte, P and dry weight concentrations of the epithelium, the K increase representing the most significant fraction of the intracellular osmolarity increase. No evidence was obtained to show that the nucleus and cytoplasm reacted differently from each other and all living epithelial cell types basically showed the same response. Incubation of the isolated skins under control conditions showed a drastic inhibition of the transepithelial Na transport after adaptation to high salinities. In spite of the large variations in the transport rate almost identical intracellular electrolyte concentrations were observed. In tap water adapted toads the average cellular concentrations were 8.8 mmole/kg wet weight for Na, 109.6 for K, 41.5 for Cl, and 135.3 for P, respectively. Incubation of the skin with Ringer's solution of different osmolarities demonstrated that the epithelial cells are in osmotic equilibrium with the inner bathing solution. The results are consistent with the view that the osmotic adaptation is mainly accomplished by the movement of water. PMID:7191092

  8. Chloroplast osmotic adjustment allows for acclimation of photosynthesis to low water potentials

    International Nuclear Information System (INIS)

    Previously in this laboratory, studies indicated that photosynthesis (PS) of chloroplasts isolated from spinach plants which underwent osmotic adjustment during in situ water deficits was inhibited less at low osmotic potentials (Psi/sub s/) in vitro than PS of plastids isolated from well watered plants. In this study, an attempt was made to determine if chloroplast acclimation to low Psi/sub s/ was associated with in situ stromal solute accumulation. During a 14d stress cycle, in situ stromal volume was estimated by measuring (using the 3H2O, 14C-sorbitol silicon oil centrifugation technique) the stromal space of plastids in solutions which had the Psi/sub s/ adjusted to the leaf Psi/sub s/. During the first lid of the cycle, stromal volume did not decline, despite a decrease of over 20% in the leaf RWC. After this time, stromal volume dropped rapidly. In situ stromal Psi/sub s/ was also estimated during a stress cycle. These studies indicated that stromal Psi/sub s/ was lowered by net solute accumulation. The data presented in this report suggest that chloroplast acclimation to low Psi/sub s/ may involve stromal solute accumulation and volume maintenance during cell water loss

  9. The gap between crystalline and osmotic swelling of Na-montmorillonite: a Monte Carlo study.

    Science.gov (United States)

    Meleshyn, Artur; Bunnenberg, Claus

    2005-01-15

    Although the swelling of clay during moistening is a broadly experienced occurrence, the mechanisms driving it and especially the reason for the existence of a peculiar gap between crystalline and osmotic swelling of Na-montmorillonite are not yet fully understood. We obtained a deeper insight by means of Monte Carlo simulations of Na-montmorillonite swelling, which yield the swelling curve, interaction energies between and characteristic positions of structural atoms and water molecules. We find that a chainlike structure consisting of Na cations, water molecules, and oxygens of substituted tetrahedrons of neighboring mineral layers is formed in the interlayer space of Na-montmorillonite at a layer spacing of approximately 19 A, where experimental investigations show termination of crystalline swelling. Such a persistent structure may lock the interlayer space, until excess water is able to break this chain by osmotic forces. We suggest that its formation is the reason for the existence of a gap in layer spacings between approximately 19 and approximately 40 A, which have been named "forbidden" layer spacings in experimental studies. PMID:15740215

  10. DEVELOPMENT AND IN-VITRO EVALUATION OF METOPROLOL SUCCINATE CONTROLLED POROSITY OSMOTIC PUMP TABLETS

    Directory of Open Access Journals (Sweden)

    Veeramalla Anil Kumar

    2013-04-01

    Full Text Available In the present research work, attempts were made to develop and evaluate Sustained release formulation of Metoprolol succinate based on osmotic technology.As Metoprolol is a short acting drug, developed formulation provides the advantages of controlled release formulations. The developed formulation provides advantages of less steps of manufacturing procedure, no need of laser drilling, and economical. All of these made the procedure easily amenable to mass production using conventional tablet machines. Metoprolol 50mg core formulation was prepared using osmogents and coated with different coating formulae to optimize film former (cellulose acetate: pore former (sorbitol ratio. The effect of different formulation variables namely, membrane weight gain, and amount of pore former in the membrane, were studied. Metoprolol release was inversely proportional to the membrane weight (coating thickness but directly related to the initial amount of pore former (sorbitol in the membrane. All polymers and excipients used in optimized formula were found to be compatible with the drug and it was confirmed by FT-IR studies. Drug release from the developed formulations was independent of pH and agitational intensity. The drug release from formulation was proved as dependent on osmotic pressure only. The number of pores was directly proportional to the amount of pore former in the membrane. The manufactured formulations were stable after 45 days of accelerated stability studies.

  11. Analysis of electro-osmotic flow in a microchannel with undulated surfaces

    CERN Document Server

    Yoshida, Hiroaki; Washizu, Hitoshi

    2016-01-01

    The electro-osmotic flow through a channel between two undulated surfaces induced by an external electric field is investigated. The gap of the channel is very small and comparable to the thickness of the electrical double layers. A lattice Boltzmann simulation is carried out on the model consisting of the Poisson equation for electrical potential, the Nernst--Planck equation for ion concentration, and the Navier--Stokes {\\color{black}equations} for flows of the electrolyte solution. An analytical model that predicts the flow rate is also derived under the assumption that the channel width is very small compared with the characteristic length of the variation along the channel. The analytical results are compared with the numerical results obtained by using the lattice Boltzmann method. In the case of a constant surface charge density along the channel, the variation of the channel width reduces the electro-osmotic flow, and the flow rate is smaller than that of a straight channel. In the case of a surface ch...

  12. Electro-osmotic fluxes in multi-well electro-remediation processes.

    Science.gov (United States)

    López-Vizcaíno, Rubén; Sáez, Cristina; Mena, Esperanza; Villaseñor, Jose; Cañizares, Pablo; Rodrigo, Manuel A

    2011-01-01

    In recent years, electrokinetic techniques on a laboratory scale have been studied but few applications have been assessed at full-scale. In this work, a mock-up plant with two rows of three electrodes positioned in semipermeable electrolyte wells has been used to study the electro-osmotic flux distribution. Water accumulated in the cathodic wells when an electric voltage gradient was applied between the two electrode-well rows. Likewise, slight differences in the water flux were observed depending on the position and number of electrodes used and on the voltage gradient applied. Results show that the electro-osmotic flow did not increase proportionally with the number of electrodes used. During the start-up of the study, there was an abrupt change in the current density, pH and conductivity of the soil portions closest to electrodic wells due to electrokinetic processes. These differences can be explained in terms of the complex current distributions from anode and cathode rows. PMID:22029697

  13. Pulsed Vacuum Osmotic Dehydration of Cherry Tomatoes: Impact on Physicochemical Properties and Probiotics Entrapment

    Directory of Open Access Journals (Sweden)

    Pheeraya CHOTTANOM

    2016-03-01

    Full Text Available Osmotic dehydration (OD and pulsed vacuum osmotic dehydration (PVOD were employed to assess the various properties of partially-dehydrated tomatoes. Ascorbic acid and lycopene degradation and color and texture change were determined. The mastership incorporation of probiotics (Lactobacillus acidophilus TISTR 1338 into tomatoes was also investigated. OD mediums (20, 40 and 60 Brix consisted of a mixture of formulated tomato extract (FTE and probiotic cell suspension. PVOD promoting mass transfer was clearly observed in a short-time process compared with OD. The physical and chemical properties of the tomatoes changed significantly after the dehydration processes, especially those of ascorbic acid content compared with lycopene. A more than 50 % loss of ascorbic acid was noted, starting at 10 g /100 g tomatoes of water loss. The hardness values significantly increased, while chroma values decreased. The cell entrapment on the tomatoes was in the range of 8 - 9 log CFU/g tomatoes. The highest entrapment of the probiotic bacteria was found in the long-time process (12 h conducted with 20 Brix FTE for the PVOD and OD processes, while entrapment was decreased by the short-time process (6 h. Using high solution concentration resulted in lower cell entrapment. However, cell entrapment could be increased by using the vacuum process. These results will provide a platform that encourages the inclusion of probiotics in high quality fresh-cut products and semi-moist products. These products can then be considered as alternative probiotic food choice for consumers.

  14. Preservation of Supported Lipid Membrane Integrity from Thermal Disruption: Osmotic Effect.

    Science.gov (United States)

    Zhu, Tao; Jiang, Zhongying; Ma, Yuqiang; Hu, Yong

    2016-03-01

    Preservation of structural integrity under various environmental conditions is one major concern in the development of the supported lipid membrane (SLM)-based devices. It is common for SLMs to experience temperature shifts from manufacture, processing, storage, and transport to operation. In this work, we studied the thermal adaption of the supported membranes on silica substrates. Homogenous SLMs with little defects were formed through the vesicle fusion method. The mass and fluidity of the bilayers were found to deteriorate from a heating process but not a cooling process. Fluorescence characterizations showed that the membranes initially budded as a result of heating-induced lipid lateral area expansion, followed by the possible fates including maintenance, retraction, and fission, among which the last contributes to the irreversible compromise of the SLM integrity and spontaneous release of the interlipid stress accumulated. Based on the mechanism, we developed a strategy to protect SLMs from thermal disruption by increasing the solute concentration in medium. An improved preservation of the membrane mass and fluidity against the heating process was observed, accompanied by a decrease in the retraction and fission of the buds. Theoretical analysis revealed a high osmotic energy penalty for the fission, which accounts for the depressed disruption. This osmotic-based protection strategy is facile, solute nonspecific, and long-term efficient and has little impact on the original SLM properties. The results may help broaden SLM applications and sustain the robustness of SLM-based devices under multiple thermal conditions. PMID:26886864

  15. Management Of Large Scale Osmotic Dehydration Solution Using The Pearsons Square Algorithm

    Directory of Open Access Journals (Sweden)

    Oladejo Duduyemi

    2015-01-01

    Full Text Available ABSTRACT Osmotic dehydration is a widely researched and advantageous pre-treatment process in food preservation but has not enjoyed industrial acceptance because if its highly concentrated and voluminous effluent. The Pearsons square algorithm was employed to give a focussed attack to the problem by developing a user-friendly template for reconstituting effluents for recycling purposes using Java script programme. Outflow from a pilot scale plant was reactivated and introduced into a scheme of operation for continuous OD of fruits and vegetables. Screened and re-concentrated effluent were subjected to statistical analysis in comparison to initial concentrations solution at confidence limit of p0.05. The template proven to be an adequate representation of the Pearsons square algorithm it is sufficiently good in reconstituting used osmotic solutions for repetitive usage. This protocol if adopted in the industry is not only environmentally friendly but also promises significant economic improvement of OD process. Application Recycling of non-reacting media and as a template for automation in continuous OD processing.

  16. Osmotic Effect of Conditioning on Seeds of Tomato (Solanum Lycopersicum L. Santa Clara Variety

    Directory of Open Access Journals (Sweden)

    Brigitte Liliana Moreno Medina

    2013-12-01

    Full Text Available The tomato (Solanum lycopersicum L. is one of the most important vegetables in the world, taking into account its nutritional potential and high economic value. In this crop the quality of seed depends on various factors, one of which is its physiology, which is determined by a germination and viability test. Osmotic seed conditioning is reported to be a technique for improving the physiological quality through the uniformity of the germination percentage. For this reason, the objective of this research was to evaluate the osmotic conditioning on tomato seeds of the Santa Clara variety. Using treatments of four doses of potassium nitrate (0, 100, 200 and 400 mg L-1 , the seeds were imbibitioned for 24 hours in solution and then washed with distilled water. They were placed in petri dishes in random order with three replications for a total of 12 experimental units, consisting of 35 seeds. The method seeks to hydrate the seeds with a solution of given concentration and for a period of time, in order to activate the seed metabolism. The best result was obtained with the treatment of 200 mg L-1 of potassium nitrate, followed by 400 mg L-1 , represented by a lower TMG , lower and higher PG VMG.

  17. Estimating thermo-osmotic coefficients in clay-rocks: II. In situ experimental approach.

    Science.gov (United States)

    Trémosa, J; Gonçalvès, J; Matray, J M; Violette, S

    2010-02-01

    Water flow in compacted shales is expected to be modified by thermo-osmosis when a thermal gradient exists. However this coupled-flow process is poorly characterized since no experiments on non-remoulded clay-rocks are found in the literature. This paper presents a set of thermo-osmosis experiments carried out in an equipped borehole installed in the Liassic argillite at the Institut for Radiological protection and Nuclear Safety (IRSN) underground research laboratory (URL) of Tournemire (southeastern France). A numerical model - including coupled-flow equations, mass conservation laws, thermal expansion and changes of water properties with temperature - was developed for the interpretation of these experiments. A thermo-osmotic response was deduced from the pressure evolution in the test interval after temperature pulses (+2.5, +5.1, and +9 degrees C). The values of thermo-osmotic permeability determined during the experiments range between 6x10(-12) and 2x10(-10)m(2)K(-1)s(-1), depending on the pulse temperature and uncertainties on the model parameters. A sensitivity analysis on several model parameters was performed to constrain these uncertainties. PMID:19861223

  18. Controlling the extent of viral genome release by a combination of osmotic stress and polyvalent cations

    Science.gov (United States)

    Jin, Yan; Knobler, Charles M.; Gelbart, William M.

    2015-08-01

    While several in vitro experiments on viral genome release have specifically studied the effects of external osmotic pressure and of the presence of polyvalent cations on the ejection of DNA from bacteriophages, few have systematically investigated how the extent of ejection is controlled by a combination of these effects. In this work we quantify the effect of osmotic pressure on the extent of DNA ejection from bacteriophage lambda as a function of polyvalent cation concentration (in particular, the tetravalent polyamine spermine). We find that the pressure required to completely inhibit ejection decreases from 38 to 17 atm as the spermine concentration is increased from 0 to 1.5 mM. Further, incubation of the phage particles in spermine concentrations as low as 0.15 mM—the threshold for DNA condensation in bulk solution—is sufficient to significantly limit the extent of ejection in the absence of osmolyte; for spermine concentrations below this threshold, the ejection is complete. In accord with recent investigations on the packaging of DNA in the presence of a condensing agent, we observe that the self-attraction induced by the polyvalent cation affects the ordering of the genome, causing it to get stuck in a broad range of nonequilibrated structures.

  19. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui

    2014-04-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  20. Microwave-Osmotic/Microwave-Vacuum Drying of Whole Cranberries: Comparison with Other Methods.

    Science.gov (United States)

    Wray, Derek; Ramaswamy, Hosahalli S

    2015-12-01

    A novel drying method for frozen-thawed whole cranberries was developed by combining microwave osmotic dehydration under continuous flow medium spray (MWODS) conditions with microwave vacuum finish-drying. A central composite rotatable design was used to vary temperature (33 to 67 °C), osmotic solution concentration (33 to 67 °B), contact time (5 to 55 min), and flow rate (2.1 to 4.1 L/min) in order to the determine the effects of MWODS input parameters on quality of the dried berry. Quality indices monitored included colorimetric and textural data in addition to anthocyanin retention and cellular structure. Overall it was found that the MWODS-MWV process was able to produce dried cranberries with quality comparable to freeze dried samples in much shorter time. Additionally, cranberries dried via the novel process exhibited much higher quality than those dried via either vacuum or convective air drying in terms of color, anthocyanin content, and cellular structure. PMID:26565564

  1. Trehalose enhances osmotic tolerance and suppresses lysophosphatidylcholine-induced acrosome reaction in ram spermatozoon.

    Science.gov (United States)

    Ahmad, E; Naseer, Z; Aksoy, M; Küçük, N; Uçan, U; Serin, I; Ceylan, A

    2015-09-01

    This study was aimed to investigate the influence of trehalose on osmotic tolerance and the ability of ram spermatozoon to undergo acrosome reaction induced by lysophosphatidylcholine (LPC). In experiment 1, the diluted ejaculates were exposed to anisosmotic fructose solutions (70, 500, 750 and 1000 mOsm l(-1) ) with or without 50 mm trehalose. The presence of trehalose in hyperosmotic conditions enhanced (P TCG only or TCG containing either 50 or 100 mm trehalose. The acrosome reaction was induced by LPC. The percentage of acrosome-reacted spermatozoon was less (P < 0.05) in trehalose-supplemented groups compared to control. In experiment 3, the ejaculates were cryopreserved in an extender containing 0 mm (control), 50 mm or 100 mm trehalose. Supplementation of extender with trehalose, either 50 mm or 100 mm, enhanced the cryosurvival rate (P < 0.05) compared to the control. In conclusion, the presence of trehalose in anisosmotic conditions enhances the osmotic tolerance, cryosurvival rate of ram spermatozoon and suppresses their ability to undergo LPC and cryo-induced acrosome reaction. PMID:25269572

  2. Osmotically driven membrane process for the management of urban runoff in coastal regions

    KAUST Repository

    Li, Zhenyu

    2014-01-01

    An osmotic detention pond was proposed for the management of urban runoff in coastal regions. Forward osmosis was employed as a bridge to utilize natural osmotic energy from seawater for concentrating and reusing urban runoff water, and as a barrier to reject runoff-derived contaminants. The process was demonstrated by a lab scale testing using synthetic urban runoff (as the feed solution) and synthetic seawater (as the draw solution). The submerged forward osmosis process was conducted under neutral, acidic and natural organic matter fouling condition, respectively. Forward osmosis flux decline was mainly attributed to the dilution of seawater during a semi-batch process in lab scale testing. However, it is possible to minimize flux decrease by maintaining a constant salinity at the draw solution side. Various changes in urban runoff water quality, including acidic conditions (acid rain) and natural organic matter presence, did not show significant effects on the rejection of trace metals and phosphorus, but influenced salt leakage and the rejection of nitrate and total nitrogen. Rejection of trace metals varied from 98% to 100%, phosphorus varied from 97% to 100, nitrate varied from 52% to 94% and total nitrogen varied from 65% to 85% under different feed water conditions. The work described in this study contributes to an integrated system of urban runoff management, seawater desalination and possible power generation in coastal regions to achieve a sustainable solution to the water-energy nexus. © 2013 Elsevier Ltd.

  3. Influence of β - cyclodextrin complexation on lovastatin release from osmotic pump tablets (OPT

    Directory of Open Access Journals (Sweden)

    Mehramizi A.

    2007-05-01

    Full Text Available An extended-release osmotic dosage form was designed and the effect of β-cyclodextrin (BCD inclusion complexation on the solubility of lovastatin in aqueous media was investigated. The lovastatin BCD solid systems were prepared by kneading method. The elementary osmotic pumps (EOPs were prepared with lovastatin BCD complex with cellulose acetate (CA and polyethylene glycol as plasticizer. The effect of the BCD molar ratio on enhancement of lovastatin dissolution rate and the influences of various parameters (e.g. drug –BCD ratio, molecular weight and amount of PVP, coating weight gain on drug release profiles were investigated. The solubility and dissolution rates of lovastatin were significantly increased by using inclusion complexation. It was found that PVP K90 was a suitable hydrophilic polymer with thickening effect and had profoundly positive effect on drug release. The present results confirmed that dissolution rate of lovastatin BCD were greatly enhanced and this system has suitable solubility behavior in EOP tablet formulations.

  4. Disorders of the colloid-osmotic blood condition and methods of their correction during angiography in children

    International Nuclear Information System (INIS)

    Results of angiography complication frequency reduction via patient preparation for osmotic stress (that is, introduction of radiopaque media bolus) are presented in the paper. Examination of children aged 5 monthes up to 14 years subjected to angiography under general anestesia has shown that during children preparation for angiography the specific infusion therapy corrects initial colloid-osmotic disorder in blood plasma and prevents action of hyperosmolalic radiopaque media. Occurance of critical values of hyperosmolality and hypooncia is not observed in contrast to control experiments, and it prevents development of some complications

  5. Influence of osmotic processes on the excess-hydraulic head measured in the Toarcian/Domerian argillaceous formation of Tournemire

    International Nuclear Information System (INIS)

    In the framework of the studies dealing on ability to store radioactive wastes in argillaceous formations, signification of interstitial pressures is an important point to understand water and solutes transport. In very low permeability argillaceous formations, like those studied in the Callovo-Oxfordian of the Paris basin by ANDRA, pore pressure is frequently higher than the theoretical hydrostatic pressure or than the pressure in the surrounding aquifers. Such an overpressure is also measured in the Toarcian/Domerian argillaceous formation (k = 10-21m2), studied by the IRSN in the underground research laboratory of Tournemire (Aveyron, France). The hydraulic head profile has been specified in this manuscript and found to present a 30 ±10 m excess head. This excess-head can be due to compaction disequilibrium of the argillaceous formation, diagenetic evolution of the rock, tectonic compression, changes in hydrodynamic boundary conditions or osmotic processes. Amongst these potential causes, chemical osmosis and thermo-osmosis, a fluid flow under a chemical concentration and a temperature gradient, respectively, are expected to develop owing to the small pore size and the electrostatic interactions related to the charged surface of clay minerals. The goal of the work presented here was to study and quantify the contribution of each cause to the measured excess-head. Chemo-osmotic and thermo-osmotic permeabilities were obtained by experiments and using theoretical models. Theoretical models are based on the reproduction of the interactions occurring between the charged surface of clay minerals and pore solution and their up-scaling at the representative elementary volume macroscopic scale. Chemical osmosis phenomenon is related to anionic exclusion and the determination of the chemo-osmotic efficiency requires the resolution of an electrical interactions model. A triple-layer-model which considers diffuse layers overlapping was improved during this thesis to be

  6. Chronic urticaria

    Directory of Open Access Journals (Sweden)

    Sandeep Sachdeva

    2011-01-01

    Full Text Available Chronic urticaria (CU is a disturbing allergic condition of the skin. Although frequently benign, it may sometimes be a red flag sign of a serious internal disease. A multitude of etiologies have been implicated in the causation of CU, including physical, infective, vasculitic, psychological and idiopathic. An autoimmune basis of most of the ′idiopathic′ forms is now hypothesized. Histamine released from mast cells is the major effector in pathogenesis and it is clinically characterized by wheals that have a tendency to recur. Laboratory investigations aimed at a specific etiology are not always conclusive, though may be suggestive of an underlying condition. A clinical search for associated systemic disease is strongly advocated under appropriate circumstances. The mainstay of treatment remains H1 antihistaminics. These may be combined with complementary pharmacopeia in the form of H2 blockers, doxepin, nifedipine and leukotriene inhibitors. More radical therapy in the form of immunoglobulins, plasmapheresis and cyclophosphamide may be required for recalcitrant cases. Autologous transfusion and alternative remedies like acupuncture have prospects for future. A stepwise management results in favorable outcomes. An update on CU based on our experience with patients at a tertiary care centre is presented.

  7. Modelling the coupled chemico-osmotic and advective-diffusive transport of nitrate salts in the Callovo-Oxfordian clay

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Fine-grained saturated porous materials can act as a semi-permeable osmotic membrane when exposed to a solute concentration gradient. The ions diffusion is hindered while water movement towards higher concentrations takes place in the semi-permeable membrane. The capacity of the fine-grained porous material to act as a semi permeable osmotic membrane is referred to as the osmotic efficiency (its value is 1 when the membranes is ideal, less than 1 when the membrane is leaky, allowing diffusion). The efficiency to retain ions in solution is dependent on the thickness of the diffuse double layer which itself depends on the solution concentration in the membrane. Clay rich formations have been shown to act as non-ideal semi-permeable membrane. Andra is investigating the Callovo-Oxfordian clay as a host rock for intermediate-level to high-level radioactive waste. In this context, it has been feared that osmotic water flows generated by the release of sodium nitrate salt in high concentrations, out of intermediate radioactive bituminous waste, could induce important over-pressures. The latest would eventually lead to fracturing of the host rock around the waste disposal drifts. The purpose of the present study was to develop a simulation code with the capacity to assess the potential impact of osmosis on: the re-saturation of the waste disposal drifts, the pressure evolution and the solute transport in and around a waste disposal drift. A chemo-osmotic coupled flow and transport model was implemented using the FlexPDE-finite element library. Our model is based on the chemo-osmotic formulation developed by Bader and Kooi, 2005. The model has been extended to highly concentrated solutions based on Pitzer's equation. In order to assess the impact of osmotic flow on the re-saturation time, the model was also designed to allow unsaturated flow modelling. The model configuration consists of an initially unsaturated 2D

  8. Osmotic pressure in Ca/Na montmorillonite dispersions: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. In the past, clay-water systems have been extensively studied. due to its importance in agricultural as well as technological applications. A more recent use of clay is as sealing material for nuclear waste. The success for such a containment depends on the clay structure and its swelling properties. This means that the clay should be able to sustain considerable changes in the surrounding ground water including salinities of glacial melt water as well as sea water, while still being an effective hydraulic barrier. We have approached this problem using statistical mechanical simulation techniques. The osmotic pressure in Ca/Na montmorillonite dispersions has been calculated via Monte Carlo simulations. For a clay system in equilibrium with pure water, Monte Carlo simulations predict a large swelling when the clay counterions are monovalent, while in presence of divalent counterions a limited swelling is predicted with an aqueous layer between the clay lamellae of about 1 nm - in excellent agreement with SAXS data. Montmorillonite in contact with a salt reservoir with e.g. both Na and Ca counterions will only show a modest swelling unless the Na+ concentration in the bulk is several orders of magnitude larger than the Ca2+ concentration. This is true both for a clay repository surrounded by ground water as well as sea water of high salinity. The limited swelling of clay in presence of divalent counterions is a consequence of ion-ion correlations, which both reduce the entropic repulsion and give rise to an attractive component in the total osmotic pressure. Ion-ion correlations also favour divalent counterions when competing with monovalent ones. This is an important aspect for the retention of radioactive charged species. A more fundamental result of ion-ion correlations is that the osmotic pressure as a function of clay sheet separation becomes non-monotonic - which indicates the possibility of a phase separation

  9. Preparation and characterization of silymarin synchronized-release microporous osmotic pump tablets

    Directory of Open Access Journals (Sweden)

    Zeng QP

    2016-01-01

    Full Text Available Qi-ping Zeng,* Zhi-hong Liu,* Ai-wen Huang, Jing Zhang, Hong-tao Song Department of Pharmacy, Fuzhou General Hospital of Nanjing Command PLA, Fuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: The pharmacological activity of herbal medicine is an overall action of each component in accordance with their original proportion. An efficient, sustained, and controlled-release drug delivery system of herbal medicine should ensure the synchronized drug release of each active component during the entire release procedure. In this study, silymarin (SM, a poorly soluble herbal medicine, was selected as a model drug to develop a synchronized-release drug delivery system: an SM microporous osmotic pump (MPOP tablet. The SM was conjugated with phospholipid (SM phytosome complex, SM-PC to improve the solubility, and the difference in the apparent octanol–water partition coefficient between the two components was significantly reduced. The dissolution rate of SM-PC was significantly higher than SM active pharmaceutical ingredients and was the same as that of the commercial SM capsule. The SM-PC was used to generate the MPOP tablet. SM was mixed with poly(ethylene oxide and sodium chloride (an osmotic agent to form the MPOP core, followed by coating with cellulose acetate and poly(ethylene oxide to generate the SM MPOP. The results demonstrated that SM MPOP could synchronically and sustainably release the five active components within 12 hours (the similar coefficient f2 between two components was >65, and the average cumulative release rate was 85%. Fitting of the drug-release curve showed a zero-order release profile for SM MPOP. Our study showed that the phytosome complex technique combined with the MPOP system will achieve synchronized release of the various active components of herbal medicine and have potential applications in developing sustained release preparations in herbal medicine. Keywords: silymarin

  10. The Photosynthesis, Na+/K+ Homeostasis and Osmotic Adjustment of Atriplex canescens in Response to Salinity

    Science.gov (United States)

    Pan, Ya-Qing; Guo, Huan; Wang, Suo-Min; Zhao, Bingyu; Zhang, Jin-Lin; Ma, Qing; Yin, Hong-Ju; Bao, Ai-Ke

    2016-01-01

    Atriplex canescens (fourwing saltbush) is a C4 perennial fodder shrub with excellent resistance to salinity. However, the mechanisms underlying the salt tolerance in A. canescens are poorly understood. In this study, 5-weeks-old A. canescens seedlings were treated with various concentrations of external NaCl (0–400 mM). The results showed that the growth of A. canescens seedlings was significantly stimulated by moderate salinity (100 mM NaCl) and unaffected by high salinity (200 or 400 mM NaCl). Furthermore, A. canescens seedlings showed higher photosynthetic capacity under NaCl treatments (except for 100 mM NaCl treatment) with significant increases in net photosynthetic rate and water use efficiency. Under saline conditions, the A. canescens seedlings accumulated more Na+ in either plant tissues or salt bladders, and also retained relatively constant K+ in leaf tissues and bladders by enhancing the selective transport capacity for K+ over Na+ (ST value) from stem to leaf and from leaf to bladder. External NaCl treatments on A. canescens seedlings had no adverse impact on leaf relative water content, and this resulted from lower leaf osmotic potential under the salinity conditions. The contribution of Na+ to the leaf osmotic potential (Ψs) was sharply enhanced from 2% in control plants to 49% in plants subjected to 400 mM NaCl. However, the contribution of K+ to Ψs showed a significant decrease from 34% (control) to 9% under 400 mM NaCl. Interestingly, concentrations of betaine and free proline showed significant increase in the leaves of A. canescens seedlings, these compatible solutes presented up to 12% of contribution to Ψs under high salinity. These findings suggest that, under saline environments, A. canescens is able to enhance photosynthetic capacity, increase Na+ accumulation in tissues and salt bladders, maintain relative K+ homeostasis in leaves, and use inorganic ions and compatible solutes for osmotic adjustment which may contribute to the

  11. The use of the rapid osmotic fragility test as an additional test to diagnose canine immune-mediated haemolytic anaemia

    DEFF Research Database (Denmark)

    Paes, Geert; Paepe, Dominique; Meyer, Evelyne;

    2013-01-01

    Background: Diagnosing canine immune-mediated haemolytic anaemia (IMHA) is often challenging because all currently available tests have their limitations. Dogs with IMHA often have an increased erythrocyte osmotic fragility (OF), a characteristic that is sometimes used in the diagnosis of IMHA. S...

  12. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang

    2015-05-20

    A novel pressure retarded osmosis−membrane distillation (PRO−MD) hybrid process has been experimentally conceived for sustainable production of renewable osmotic power and clean water from various waters. The proposed PRO−MD system may possess unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic energy from freshwater but also from wastewater. When employing a 2 M NaCl MD concentrate as the draw solution, ultrahigh power densities of 31.0 W/m2 and 9.3 W/m2 have been demonstrated by the PRO subsystem using deionized water and real wastewater brine as the feeds, respectively. Simultaneously, high purity potable water with a flux of 32.5−63.1 L/(m2.h) can be produced by the MD subsystem at 40−60 °C without any detrimental effects of fouling. The energy consumption in the MD subsystem might be further reduced by applying a heat exchanger in the hybrid system and using low-grade heat or solar energy to heat up the feed solution. The newly developed PRO−MD hybrid process would provide insightful guidelines for the exploration of alternative green technologies for renewable osmotic energy and clean water production.

  13. Changes in content of free, conjugated and bound polyamines and osmotic adjustment in adaptation of vetiver grass to water deficit.

    Science.gov (United States)

    Zhou, Qiang; Yu, Bingjun

    2010-06-01

    Osmotic adjustment and alteration of polyamines (PAs) have been suggested to play roles in plant adaptation to water deficit/drought stress. In this study, the changes in cell intactness, photosynthesis, compatible solutes and PAs [including putrescine (Put), spermidine (Spd) and spermine (Spm) each in free, conjugated and bound forms] were investigated in leaves of vetiver grass exposed to different intensity of water deficit stress and subsequent rewatering. The results showed that, when vetiver grass was exposed to the moderate (20% and 40% PEG-6000 solutions) and severe (60% PEG solution) water deficit for 6days, the plant injury degree (expressed as the parameters of plant growth, cell membrane integrity, water relations and photosynthesis) increased and contents of free and conjugated Put decreased with the rise of PEG concentration. Under the moderate water deficit, the plants could survive by the reduced osmotic potential (psi(s)), increased free and conjugated Spd and Spm in leaves. After subsequent rewatering, the osmotic balance was re-established, most of the above investigated physiological parameters were fully or partly recovered to the control levels. However, it was not the case for the severely-stressed and rewatering plants. It indicates that, vetiver grass can cope well with the moderate water deficit/drought stress by using the strategies of osmotic adjustment and maintenance of total contents of free, conjugated and bound PAs in leaves. PMID:20363642

  14. Wheat can acclimate to seawater by pretreatment with kinetin and spermine through osmotic adjustment and solutes allocation

    Directory of Open Access Journals (Sweden)

    Heshmat S. Aldesuquy

    2013-08-01

    Full Text Available A key issue in salt adaptation is the osmotic adjustment, therefore, during ear emergence the effect of exogenous application of kinetin and spermine on osmotic pressure (OP and solutes allocation (total soluble sugars, total soluble nitrogen, proline, organic acids and inorganic ions (Na+, K+, Ca2+, Mg2+ and Cl- were quantified in flag leaf of wheat plants irrigated by seawater at 25%. Seawater salinity induced significant increase in osmotic pressure. Furthermore, seawater stress induced marked increase in total soluble sugars, total soluble nitrogen, proline, organic acids, as well as Na+, K+, Ca++, Mg++, Cl- and P+++ in wheat flag leaf. On the other hand, seawater decreased SPR, SAR and PAR in flag leaves of wheat plants. Grain priming with kinetin, spermine or their interaction appeared to mitigate the ill effect of seawater on wheat plants by increasing its own capability to be more tolerant against seawater salinity by inducing additional increase in osmotic pressure and the osmolytes concentrations in flag leaf during ear emergence. Moreover, the effect was more pronounced with the interaction of kinetin and spermine treatment.

  15. Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts

    Science.gov (United States)

    Behzadi, Shahed; Rosenauer, Christine; Kappl, Michael; Mohr, Kristin; Landfester, Katharina; Crespy, Daniel

    2016-06-01

    The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials.The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01882c

  16. Identification of QTLs for shoot and root growth under ionic-osmotic stress in Lotus, using a RIL population

    DEFF Research Database (Denmark)

    Quero, Gastón; Gutíerrez, Lucía; Lascano, Ramiro;

    2014-01-01

    The genus Lotus includes a group of forage legume species including genotypes of agronomic interest and model species. In this work, an experimental hydroponic growth system allowed the discrimination of growth responses to ionic-osmotic stress in a population of recombinant inbred lines (RILs...

  17. Multi-detector CT enterography with iso-osmotic mannitol as oral contrast for detecting small bowel disease

    Institute of Scientific and Technical Information of China (English)

    Lian-He Zhang; Shi-Zheng Zhang; Hong-Jie Hu; Min Gao; Ming Zhang; Qian Cao; Qiao-wei Zhang

    2005-01-01

    AIM: To assess the feasibility and usefulness of multi-detector CT enterography with orally administered iso-osmotic mannitol as negative contrast in demonstrating small bowel disease.METHODS: Thirteen volunteers and 38 patients with various kinds of small bowel disease were examined. We administered about 1 500 mL iso-osmotic mannitol as negative contrast agent and then proceeded with helical CT scanning on a Siemens Sensation 16 scanner. All volunteers and patients were interviewed about their tolerance of the procedure. Two radiologists postprocessed imaging data with MPR, thin MIP, VRT and INSPACE when necessary and then interpreted the scans,and adequacy of luminal distention was evaluated on a four-point scale. Demonstration of features of various kinds of small bowel disease was analyzed.RESULTS: The taste of iso-osmotic mannitol is good (slightly sweet) and acceptable by all. Small bowel distention was excellent and moderate in most volunteers and patients. CT features of many kinds of diseases such as tumors, Crohn's disease,and small bowel obstruction,etc. were clearly displayed.CONCLUSION: Multi-detector CT enterography with iso-osmotic mannitol as negative contrast to distend the small bowel is a simple, rapid, noninvasive and effective method of evaluating small bowel disease.

  18. The Balance of Fluid and Osmotic Pressures across Active Biological Membranes with Application to the Corneal Endothelium.

    Science.gov (United States)

    Cheng, Xi; Pinsky, Peter M

    2015-01-01

    The movement of fluid and solutes across biological membranes facilitates the transport of nutrients for living organisms and maintains the fluid and osmotic pressures in biological systems. Understanding the pressure balances across membranes is crucial for studying fluid and electrolyte homeostasis in living systems, and is an area of active research. In this study, a set of enhanced Kedem-Katchalsky (KK) equations is proposed to describe fluxes of water and solutes across biological membranes, and is applied to analyze the relationship between fluid and osmotic pressures, accounting for active transport mechanisms that propel substances against their concentration gradients and for fixed charges that alter ionic distributions in separated environments. The equilibrium analysis demonstrates that the proposed theory recovers the Donnan osmotic pressure and can predict the correct fluid pressure difference across membranes, a result which cannot be achieved by existing KK theories due to the neglect of fixed charges. The steady-state analysis on active membranes suggests a new pressure mechanism which balances the fluid pressure together with the osmotic pressure. The source of this pressure arises from active ionic fluxes and from interactions between solvent and solutes in membrane transport. We apply the proposed theory to study the transendothelial fluid pressure in the in vivo cornea, which is a crucial factor maintaining the hydration and transparency of the tissue. The results show the importance of the proposed pressure mechanism in mediating stromal fluid pressure and provide a new interpretation of the pressure modulation mechanism in the in vivo cornea. PMID:26719894

  19. The Balance of Fluid and Osmotic Pressures across Active Biological Membranes with Application to the Corneal Endothelium.

    Directory of Open Access Journals (Sweden)

    Xi Cheng

    Full Text Available The movement of fluid and solutes across biological membranes facilitates the transport of nutrients for living organisms and maintains the fluid and osmotic pressures in biological systems. Understanding the pressure balances across membranes is crucial for studying fluid and electrolyte homeostasis in living systems, and is an area of active research. In this study, a set of enhanced Kedem-Katchalsky (KK equations is proposed to describe fluxes of water and solutes across biological membranes, and is applied to analyze the relationship between fluid and osmotic pressures, accounting for active transport mechanisms that propel substances against their concentration gradients and for fixed charges that alter ionic distributions in separated environments. The equilibrium analysis demonstrates that the proposed theory recovers the Donnan osmotic pressure and can predict the correct fluid pressure difference across membranes, a result which cannot be achieved by existing KK theories due to the neglect of fixed charges. The steady-state analysis on active membranes suggests a new pressure mechanism which balances the fluid pressure together with the osmotic pressure. The source of this pressure arises from active ionic fluxes and from interactions between solvent and solutes in membrane transport. We apply the proposed theory to study the transendothelial fluid pressure in the in vivo cornea, which is a crucial factor maintaining the hydration and transparency of the tissue. The results show the importance of the proposed pressure mechanism in mediating stromal fluid pressure and provide a new interpretation of the pressure modulation mechanism in the in vivo cornea.

  20. Chronic pain after hysterectomy

    DEFF Research Database (Denmark)

    Brandsborg, B; Nikolajsen, L; Kehlet, Henrik;

    2008-01-01

    BACKGROUND: Chronic pain is a well-known adverse effect of surgery, but the risk of chronic pain after gynaecological surgery is less established. METHOD: This review summarizes studies on chronic pain following hysterectomy. The underlying mechanisms and risk factors for the development of chronic...... post-hysterectomy pain are discussed. RESULTS AND CONCLUSION: Chronic pain is reported by 5-32% of women after hysterectomy. A guideline is proposed for future prospective studies. Udgivelsesdato: 2008-Mar...

  1. Untying chronic pain

    OpenAIRE

    Häuser, Winfried; Wolfe, Frederik; Henningsen, Peter; Schmutzer, Gabriele; Brähler, Elmar; Hinz, Andreas

    2014-01-01

    Background: Chronic pain is a major public health problem. The impact of stages of chronic pain adjusted for disease load on societal burden has not been assessed in population surveys. Methods: A cross-sectional survey with 4360 people aged ≥ 14 years representative of the German population was conducted. Measures obtained included demographic variables, presence of chronic pain (based on the definition of the International Association for the Study of Pain), chronic pain stages (by chronic ...

  2. Electro-osmotic flow of a second-grade fluid in a porous microchannel subject to an AC electric field

    Institute of Scientific and Technical Information of China (English)

    MISRA J.C.; CHANDRA S.

    2013-01-01

    Studies on electro-osmotic flows of various types of fluids in microcharmel are of great importance owing to their multifold applications in the transport of liquids,particularly when the ionized liquid flows with respect to a charged surface in the presence of an external electric field.In the case of viscoelastic fluids,the volumetric flow rate differs significantly from that of Newtonian fluids,even when the flow takes place under the same pressure gradient and the same electric field.With this end in view,this paper is devoted to a study concerning the flow pattern of an electro-osmotic flow in a porous microchannel,which is under the action of an alternating electric field.The influence of various rheologieal and electro-osmotic parameters,e.g.,the Reynolds number,Debye-Huckel parameter,shape factor and fluid viscoelasticity on the kinematics of the fluid,has been investigated for a second-grade viscoelastic fluid.The problem is first treated by using analytical methods,but the quantitative estimates are obtained numerically with the help of the software MATHEMATICA.The results presented here are applicable to the cases where the channel height is much greater than the thickness of the electrical double layer comprising the Stern and diffuse layers.The study reveals that a larger value of the Debye-Huckel parameter creates sharper profile near the wall and also that the velocity of electro-osmotic flow increases as the permeability of the porous microchannel is enhanced.The study further shows that the electro-osmotic flow dominates at lower values of Reynolds number.The results presented here will be quite useful to validate the observations of experimental investigations on the characteristics of electro-osmotic flows and also the results of complex numerical models that are necessary to deal with more realistic situations,where electro-osmotic flows come into the picture,as in blood flow in the micro-circulatory system subject to an electric field.

  3. Osmotic stress confers enhanced cell integrity to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2

    Directory of Open Access Journals (Sweden)

    Alberto eScoma

    2016-05-01

    Full Text Available Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea contaminated environments is negligible. Recent laboratory evidences highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs. In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain A. borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg-1, respectively were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg-1, or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively, under atmospheric or increased HP (0.1 and 10MPa. Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1MPa in hyperosmosis-acclimated cells and at 10MPa under isosmotic conditions, supporting the hypothesis that ectoine synthesis may be primarily triggered by HP rather than osmotic stress. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-day incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in

  4. Ultrafast High-pressure AC Electro-osmotic Pumps for Portable Biomedical Microfluidics

    CERN Document Server

    Huang, Chien-Chih; Thorsen, Todd

    2009-01-01

    This paper details the development of an integrated AC electro-osmotic (ACEO) microfluidic pump for dilute electrolytes consisting of a long serpentine microchannel lined with three dimensional (3D) stepped electrode arrays. Using low AC voltage (1 Volt rms, 1 kHz), power (5 mW) and current (3.5 mA) in water, the pump is capable of generating a 1.4 kPa head pressure, a 100-fold increase over prior ACEO pumps, and a 1.37 mm/sec effective slip velocity over the electrodes without flow reversal. The integrated ACEO pump can utilize low ionic strength solutions such as distilled water as the working solution to pump physiological strength (100 mM) biological solutions in separate microfluidic devices, with potential applications in portable or implantable biomedical microfluidic devices. As a proof-of-concept experiment, the use of the ACEO pumps for DNA hybridization in a microfluidic microarray is demonstrated.

  5. Macroscopic electric field and osmotic pressure in ultracentrifugal sedimentation-diffusion equilibria of charged colloids

    International Nuclear Information System (INIS)

    Sedimentation-diffusion (SD) equilibria from analytical ultracentrifugation of well-characterized charged silica spheres in ethanol deviate strongly from a barometric profile and demonstrate the existence and substantial effects of a recently predicted internal macroscopic electric field (van Roij 2003 J. Phys.: Condens. Matter 15 S3569). Experimental SD-profiles yield the gradient of the electrostatic potential energy of the colloids, which clearly manifests an almost homogeneous macroscopic electric field. Electrochemical Donnan potential measurements confirm a difference in electrical potential between the top and bottom of the profiles. A 'non-barometric' limiting law derived from electroneutrality explains the trends in the SD-profiles quite well. Our analysis of osmotic pressures (obtained from integrating SD-profiles) beyond this simple law includes, among other things, colloid-ion attractions and extra volume terms in the free energy

  6. Suppression of nano-channel ion conductance by electro-osmotic flow

    CERN Document Server

    Liu, Yang; Zhu, Xin; Ran, Qiushi; Dutton, Robert

    2016-01-01

    This theoretical study concerns a basic understanding of ion transport in nano-channels that have weakly overlapping electric double layers. Numerical simulations reveal that the electro-osmotic flow (EOF) interplays with the concentration-polarization process and drives the ion depletion zone into the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. Further analysis are conducted based on a 1-D, long channel model, and analytic expressions derived to quantitatively account for the EOF-driven ion depletion process. A limiting-conductance behavior is revealed as intrinsically different from the classical limiting-current behavior.

  7. The Response Strategy of Maize, Pea and Broad Bean Plants to Different Osmotic Potential Stress

    Directory of Open Access Journals (Sweden)

    Hamdia M. Abd El-Samad

    2013-08-01

    Full Text Available This investigation was conducted to study the tolerance strategy of maize, broad bean and pea plants to salinity stress with exogenous applications of proline or phenylalanine on seed germination and seedlings growth. From the results obtained, it can be observed that osmotic stress affected adversely the rate of germination in maize, broad bean and pea plants. The excessive inhibition was more prominent at higher concentration of NaCl. The seeds and grains tested were exhibited some differential responses to salinity, in a manner that the inhibitory effect of salinity on seed germination ran in the order, maize higher than broad bean and the later was higher than pea plant. Treatment with proline or phenylalanine (100 ppm significantly increased these seed germination and seedlings growth characteristics even at lowest salinity level tested.

  8. Development and In Vitro Evaluation of Osmotically Controlled Oral Drug Delivery System of Carvedilol

    Directory of Open Access Journals (Sweden)

    Kumar Guarve

    2009-07-01

    Full Text Available The aim of the current study was to design a controlled porosity osmotic pump capsule of carvedilol .The capsule contains pore-forming water-soluble additives, which after coming in contact with water, dissolve, resulting in an in situ formation of a micro porous structure. The effect of different formulation variables, namely, ratio of drug to osmogent, solubilizing agent and level of pore former, different environmental media and stirring rate on the in vitro release was studied. Cellulose acetate (CA was used as the semi permeable membrane. It was found that drug release rate increased with the increase in amount of osmogent and solubilizing and independent of different environmental media and stirring rate. Carvedilol release was, directly proportional to the level of pore former, glycerin, in the membrane. This system was found to deliver carvedilol at a zero-order rate.

  9. Biochemical and ultrastructural properties of osmotically lysed rat-liver mitochondria.

    Science.gov (United States)

    Caplan, A I; Greenawalt, J W

    1966-12-01

    Isolated rat-liver mitochondria were osmotically lysed by suspension and washing 3 times in cold, distilled water. Pellets obtained by centrifugation at 105,000 g for 30 min were resuspended, fixed with glutaraldehyde and OsO(4), and embedded in Epon 812. Thin sections show the presence of two distinct membranous populations, each of which is relatively homogeneous in size and appearance. Swollen mitochondria ( approximately 1.5 micro in diameter), which have been stripped of their outer membranes, are largely devoid of matrix and normal matrix granules and are referred to as "ghosts." The smaller (0.2 to 0.4 micro in diameter), empty appearing, vesicular elements, derived primarily from the outer mitochondrial membrane, can be differentiated from the ghosts on the basis of their smaller size and complete absence of internal structures, especially cristae. Each membranous element is enclosed by a single, continuous membrane; the "double membrane" organization typical of intact mitochondria is not observed. These findings indicate that the outer membrane of rat-liver mitochondria is spatially dissociated from the inner mitochondrial membrane by osmotic lysis of the mitochondria in distilled water. Three parameters of structural and functional significance in freshly isolated rat-liver mitochondria have been correlated with the structural alterations observed: (a) chemical composition (total protein, lipid phosphate and total phosphate), (b) specific and total activities of marker enzymes for mitochondrial matrix and membranes (malate dehydrogenase (MDH), D-beta-hydroxybutyrate dehydrogenase (BDH) and cytochromes), and (c) integrated multienzyme functions (respiration, phosphorylation, and contraction). The data presented indicate that all mitochondrial membranes are completely conserved in the crude ghost preparation and that, in addition, about (1/3) of the matrix proteins (estimated by assays for MDH activity and protein) are retained. The study of integrated

  10. Influence of osmotic distillation on membrane absorption for the treatment of high strength ammonia wastewater

    Institute of Scientific and Technical Information of China (English)

    WANG Guan-ping; SHI Han-chang; SHEN Zhi-song

    2004-01-01

    Osmotic distillation(OD) was found to be a coupled process in membrane absorption(MA) for the treatment of high strength ammonia wastewater. As a result, ammonia could not be concentrated in absorption solution(AS) as expected. The inhibition of the coupled OD in MA process was investigated as well as various factors affecting the inhibition. The results indicated that the coupled OD can be effectively inhibited by heating concentrated solution and cooling dilute solution. It was also found that experimental minimum inhibition temperature difference(MITD) between concentrated and dilute solutions was different when using polyvinylidene fluoride(PVDF)and polypropylene(PP) membranes respectively, which could be ascribed to material properties, such as OD and membrane distillation (MD) coefficients of the membranes. Experimental MITDs were found to be higher than theoretical MITDs which were calculated using a simplified method.

  11. Isolated extra pontine myelinolysis – a rare imaging appearance of osmotic demyelination syndrome

    Directory of Open Access Journals (Sweden)

    D. Rajitha

    2014-01-01

    Full Text Available Rapid correction of hyponatraemia leads to serious neurological complications, like osmotic demyelination syndrome (ODS. In ODS, magnetic resonance imaging (MRI often reveals features of pontine myelinolysis, that may occur in isolation or may, sometimes be associated with extrapontine myelinolysis. Isolated extrapontine myelinolysis is rare. We report the case of a 53-year-old lady brought to the emergency service with vomitings, and altered sensorium. She was found to have profound hyponatraemia (serum sodium 110 meq/L. Correction of hyponatremia was done with slow intravenous infusion of 3% sodium chloride. However, inadvertant, concomitant oral administration of salt led to overcorrection with serum sodium going upto 150 meq/L. She developed quadriplegia, depressed level of consciousness and respiratory failure and required ventilatory support. MRI brain showed features of isolated extrapontine myelinolysis.

  12. Miniaturized osmotic pump for oromucosal drug delivery with external readout station.

    Science.gov (United States)

    Herrlich, Simon; Lorenz, Thomas; Marker, Michael; Spieth, Sven; Messner, Stephan; Zengerle, Roland

    2011-01-01

    We report on a miniaturized, exchangeable drug delivery cartridge for Parkinson's Disease which is integrated in a partial removable prosthesis. An osmotic pumping principle uses saliva to release constantly a separately stored drug to the buccal mucosa, thus avoiding first pass metabolism and drug plasma level fluctuations. Therapeutic relevant information and fill level of the cartridge can be determined before and after usage with an external readout station. The selected material combinations of the cartridge fulfill both, functional and regulatory aspects as well as requirements for assembly and packaging, e.g. thermal fusion bonding, solvent bonding and capillary stop bonding. By using the cartridge, highly precise release rates over 97% of its storage capacity with a rate deviation of only 1.1% can be achieved. PMID:22256291

  13. Non-steady electro-osmotic flow of a micropolar fluid in a microchannel

    International Nuclear Information System (INIS)

    We formulated the initial-boundary-value problem of non-steady electro-osmotic flow of a micropolar fluid in a rectangular microchannel of height much larger than the Debye length and length much larger the height. Solving the governing differential equations numerically when a spatially uniform electric field is applied as an impulse of finite magnitude, we found that the effect is instantaneous on the flow, just as for simple Newtonian fluids. The decay times of the fluid velocity and the microrotation, however, are smaller in micropolar fluids than in simple Newtonian fluids. The maximum magnitude of microrotation decreases as the micropolarity increases. The effect of microrotation on the stress tensor is more dominant than that of the fluid speed, and a threshold effect with respect to the magnitude of the zeta potential is evident in the spatial profile of the couple stress tensor. We expect similar trends even when the applied electric field varies over some finite interval of time.

  14. Topology and shape optimization of induced-charge electro-osmotic micropumps

    DEFF Research Database (Denmark)

    Gregersen, Misha Marie; Okkels, Fridolin; Bazant, M. Z.; Bruus, Henrik

    2009-01-01

    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing...... conventional electrokinetic models with an artificial design field to describe the transition from the liquid electrolyte to the solid dielectric. Using this design field, we have succeeded in applying the method of topology optimization to find system geometries with non-trivial topologies that maximize the...... design field. Our results show the importance of the topology and shape of the dielectric solid in ICEO systems and point to new designs of ICEO micropumps with significantly improved performance....

  15. Measurement of osmotic second virial coefficients by zonal size-exclusion chromatography.

    Science.gov (United States)

    Winzor, Donald J

    2016-07-01

    Numerical simulation of protein migration reflecting linear concentration dependence of the partition isotherm has been used to invalidate a published procedure for measuring osmotic second virial coefficients (B22) by zonal exclusion chromatography. Failure of the zonal procedure to emulate its frontal chromatographic counterpart reflects ambiguity about the solute concentration that should be used to replace the applied concentration in the rigorous quantitative expression for frontal migration; the recommended use of the peak concentration in the eluted zone is incorrect on theoretical grounds. Furthermore, the claim for its validation on empirical grounds has been traced to the use of inappropriate B22 magnitudes as the standards against which the experimentally derived values were being tested. PMID:27095059

  16. Microbial fuel cells and osmotic membrane bioreactors have mutual benefits for wastewater treatment and energy production.

    Science.gov (United States)

    Hou, Dianxun; Lu, Lu; Ren, Zhiyong Jason

    2016-07-01

    This study demonstrates that microbial fuel cells (MFCs) and osmotic membrane bioreactors (OMBRs) can be mutually beneficial when integrated together for wastewater treatment. When connecting MFCs with OMBRs, the solute buildup increased conductivity and buffer capacity, which greatly increased MFC power density from 3 W/m(3) up to 11.5 W/m(3). In turn, the MFCs conditioned and reduced sludge production and therefore reduced forward osmosis (FO) membrane fouling. The MFC-OMBR equipped with new thin-film composite (TFC) membrane showed excellent organic (>95%) and phosphorus removal (>99%) and therefore maintained effluent sCOD below 20 mg/L. However, the nitrogen removal was limited due to the negative surface charge of the thin-film composite membrane and solution chemistry, which led to higher flux of ammonium toward the OMBR draw solution. Further studies are needed to improve nitrogen removal, reduce fouling, and optimize system integration. PMID:27105032

  17. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor.

    Science.gov (United States)

    Li, Fang; Cheng, Qianxun; Tian, Qing; Yang, Bo; Chen, Qianyuan

    2016-07-01

    Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake. PMID:27089532

  18. Erythropoietin treatment does not compromise cardiovascular function in chronic renal failure

    DEFF Research Database (Denmark)

    Haedersdal, C; Mehlsen, J; Stenver, Doris Irene;

    1994-01-01

    The anemia in patients with chronic renal failure can be corrected through treatment with recombinant human erythropoietin treatment. This correction is associated with changes in the rheologic variables, which could explain the changes in hemodynamics found by many investigators. The authors have...... followed up 11 patients with chronic renal failure on hemodialysis before and during six months of therapy with erythropoietin. The measurements were made before treatment, after four months of therapy, and after six months of therapy. The measurements included hematocrit, osmotic resistance of the red...... were unchanged. The conclude that, in spite of changes in rheologic variables, increasing viscosity of the blood and thus possibly increasing the peripheral resistance, these had no effect on the cardiovascular state. Erythropoietin treatment improves the subjective well-being in patients on chronic...

  19. Experimental and theoretical investigations of non-Newtonian electro-osmotic driven flow in rectangular microchannels.

    Science.gov (United States)

    Huang, Yi; Chen, Juzheng; Wong, TeckNeng; Liow, Jong-Leng

    2016-07-20

    With the development of microfluidics, electro-osmotic (EO) driven flow has gained intense research interest as a result of its unique flow profile and the corresponding benefits in its application in the transportation of sensitive samples. Sensitive samples, such as DNA, are incapable of enduring strong flow shear induced by conventional hydrodynamic driven methods. EO driven flow is thus a niche area. However, even though there are a few research studies focusing on bio-fluidic samples related to EO driven flow, the majority of them are merely theoretical modeling without solid evidence from experiments due to the inherent complex rheological behavior of the bio-fluids. Challenges occur when the EO driven mechanism meets with complex rheology; vital questions such as can the zeta potential still be assumed to be constant when dealing with fluids with complex rheology? and "Does the shear thinning effect enhance electro-osmotic driven flow?" need to be answered. We conducted experiments using current monitoring and microscopy fluorescence methods, and developed a theoretical model by coupling a generalized Smoluchowski approach with the power-law constitutive model. We calculated the zeta potential and compared the experimental results with modeling to answer the questions. The results show a reduction of zeta potential in the presence of PEO aqueous solutions. A constant zeta potential is also indicated by varying the PEO concentration and the electric field strength.The shear thinning effect is also addressed via experimental data and theoretical calculations. The results show a promising enhancement of the EO driven velocity due to the shear thinning effect. PMID:27381295

  20. The lateral intercellular space as osmotic coupling compartment in isotonic transport.

    Science.gov (United States)

    Larsen, E H; Willumsen, N J; Møbjerg, N; Sørensen, J N

    2009-01-01

    Solute-coupled water transport and isotonic transport are basic functions of low- and high-resistance epithelia. These functions are studied with the epithelium bathed on the two sides with physiological saline of similar composition. Hence, at transepithelial equilibrium water enters the epithelial cells from both sides, and with the reflection coefficient of tight junction being larger than that of the interspace basement membrane, all of the water leaves the epithelium through the interspace basement membrane. The common design of transporting epithelia leads to the theory that an osmotic coupling of water absorption to ion flow is energized by lateral Na(+)/K(+) pumps. We show that the theory accounts quantitatively for steady- and time dependent states of solute-coupled fluid uptake by toad skin epithelium. Our experimental results exclude definitively three alternative theories of epithelial solute-water coupling: stoichiometric coupling at the molecular level by transport proteins like SGLT1, electro-osmosis and a 'junctional fluid transfer mechanism'. Convection-diffusion out of the lateral space constitutes the fundamental problem of isotonic transport by making the emerging fluid hypertonic relative to the fluid in the lateral intercellular space. In the Na(+) recirculation theory the 'surplus of solutes' is returned to the lateral space via the cells energized by the lateral Na(+)/K(+) pumps. We show that this theory accounts quantitatively for isotonic and hypotonic transport at transepithelial osmotic equilibrium as observed in toad skin epithelium in vitro. Our conclusions are further developed for discussing their application to solute-solvent coupling in other vertebrate epithelia such as small intestine, proximal tubule of glomerular kidney and gallbladder. Evidence is discussed that the Na(+) recirculation theory is not irreconcilable with the wide range of metabolic cost of Na(+) transport observed in fluid-transporting epithelia. PMID:18983444

  1. Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes.

    Science.gov (United States)

    Ye, R G; Verkman, A S

    1989-01-24

    A quantitative description of transmembrane water transport requires specification of osmotic (Pf) and diffusional (Pd) water permeability coefficients. Methodology has been developed to measure Pf and Pd simultaneously on the basis of the sensitivity and rapid response of the fluorophore aminonaphthalenetrisulfonic acid (ANTS) to solution H2O/D2O content. Cells loaded with ANTS in an H2O buffer were subjected to an inward osmotic gradient with a D2O buffer in a stopped-flow apparatus. The time courses of cell volume (giving Pf) and H2O/D2O content (giving Pd) were recorded with dual photomultiplier detection of scattered light intensity and ANTS fluorescence, respectively. The method was validated by using sealed red cell ghosts and artificial liposomes reconstituted with the pore-forming agent gramicidin D. At 25 degrees C, red cell ghost Pf was 0.021 cm/s with Pd 0.005 cm/s (H2O/D2O exchange time 7.9 ms). Pf and Pd were inhibited by 90% and 45% upon addition of 0.5 mM HgCl2. The activation energy for Pd increased from 5.1 kcal/mol to 10 kcal/mol with addition of HgCl2 (18-35 degrees C). In 90% phosphatidylcholine (PC)/10% cholesterol liposomes prepared by bath sonication and exclusion chromatography, Pf and Pd were 5.1 X 10(-4) and 6.3 X 10(-4) cm/s, respectively (23 degrees C). Addition of gramicidin D (0.1 micrograms/mg of PC) resulted in a further increment in Pf and Pd of 7 X 10(-4) and 3 X 10(-4) cm/s, respectively. These results validate the new methodology and demonstrate its utility for rapid determination of Pf/Pd in biological membranes and in liposomes reconstituted with water channels. PMID:2540807

  2. Development of asymmetric membrane capsules of metformin hydrochloride for oral osmotic controlled drug delivery

    Directory of Open Access Journals (Sweden)

    Venkatesh Teja Banala

    2014-01-01

    Full Text Available Asymmetric membrane capsules are one of the novel osmotic delivery devices which offer the delivery of a wide range of drugs in a controlled manner. In the present work, we developed a semi-automatic process by fabricating a hydraulic assisted mechanical robotic arm for the manufacturing of asymmetric membrane capsules and the process was validated in comparison with the manual procedure of manufacturing. The capsule walls were made by dip coating phase inversion process using cellulose acetate butyrate as polymer and propylene glycol as plasticizer/pore forming agent. The comparative examination of physical parameters in manual and semi-automatic process confirmed the consistency, reproducibility and efficiency of the semi-automatic process over manual procedure. The resulting asymmetric membrane wall was evaluated by scanning electron microscopy studies revealed the thin dense region supported on a thicker porous region. Fourier transform infrared studies showed phase inversion of the asymmetric membrane as compared to plain membrane. Osmotic release study and in vitro behavior was studied for controlled delivery of metformin hydrochloride as a model drug. In vitro release studies of the formulations showed that drug release was dependent on the concentration of pore forming agent, level of osmogents and independent of the media pH and agitation. The effect of the process variables on the drug release was optimized using 2 3 full factorial design and the release kinetics of the optimized formulation confirmed zero order kinetics with a controlled drug delivery of 13 h and the mechanism of drug release was found to be super case II transport.

  3. Expression Analysis of Proline Metabolism-related Genes From Halophyte Arabis stelleri under Osmotic Stress Conditions

    Institute of Scientific and Technical Information of China (English)

    Yuchul Jung; Sukchan Lee; Jungan Park; Yunjung Choi; Jin-Gweon Yang; Donggiun Kim; Beom-Gi Kim; Kyunghee Roh; Dong-Hee Lee; Chung-Kyoon Auh

    2010-01-01

    Arabis stelleri var.japonica evidenced stronger osmotic stress tolerance than Arabidopsis thaliana.Using an A.thaliana microarray chip,we determined changes in the expression of approximately 2 800genes between A.stelleri plants treated with 0.2 M mannitol versus mock-treated plants.The most significant changes in the gene expression patterns were in genes defining cellular components or in genes associated with the endomembrane system,stimulus response,stress response,chemical stimulus response,and defense response.The expression patterns of three de novo proline biosynthesis enzymes were evaluated in A.stelleri var.japonica seedlings treated with 0.2 M mannitol,0.2 M sorbitol,and 0.2 M NaCl.The expression of Δ1-pyrroline-5-carboxylate synthetase was not affected by NaCl stress but was similarly induced by mannitol and sorbitol.The proline dehydrogenase gene,which is known to be repressed by dehydration stress and induced by free L-proline,was induced at an early stage by mannitol treatment,but the level of proline dehydrogenase was increased later by treatment with both mannitol and NaCl.The level of free L-proline accumulation increased progressively in response to treatments with mannitol,sorbitol,and NaCl.Mannitol induced L-proline accumulation more rapidly than NaCl or sorbitol.These findings demonstrate that the osmotic tolerance of the novel halophyte,Arabis stelleri,is associated with the accumulation of L-proline.

  4. Filtration coefficient of the axon membrane as measured with hydrostatic and osmotic methods.

    Science.gov (United States)

    Vargas, F F

    1968-01-01

    The hydraulic conductivity of the membranes surrounding the giant axon of the squid, Dosidicus gigas, was measured. In some axons the axoplasm was partially removed by suction. Perfusion was then established by insertion of a second pipette. In other axons the axoplasm was left intact and only one pipette was inserted. In both groups hydrostatic pressure was applied by means of a water column in a capillary manometer. Displacement of the meniscus in time gave the rate of fluid flowing across the axon sheath. In both groups osmotic differences across the membrane were established by the addition of a test molecule to the external medium which was seawater. The hydraulic conductivity determined by application of hydrostatic pressure was 10.6 +/- 0.8.10(-8) cm/sec cm H(2)O in perfused axons and 3.2 +/- 0.6.10(-8) cm/sec cm H(2)O in intact axons. When the driving force was an osmotic pressure gradient the conductivity was 4.5 +/- 0.6 x 10(-10) cm/sec cm H(2)O and 4.8 +/- 0.9 x 10(-10) cm/sec cm H(2)O in perfused and intact axons, respectively. A comparable result was found when the internal solution was made hyperosmotic. The fluid flow was a linear function of the hydrostatic pressure up to 70 cm of water. Glycerol outflux and membrane conductance were increased 1.6 and 1.1 times by the application of hydrostatic pressure. These increments do not give an explanation of the difference between the filtration coefficients. Other possible explanations are suggested and discussed. PMID:5642470

  5. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    KAUST Repository

    Zaher, A.

    2015-09-29

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices\\' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  6. Applicability of a novel osmotic membrane bioreactor using a specific draw solution in wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Nguyen Cong [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Chen, Shiao-Shing, E-mail: f10919@ntut.edu.tw [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Nguyen, Hau Thi [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Ngo, Huu Hao, E-mail: h.ngo@uts.edu.au [School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007 (Australia); Guo, Wenshan [School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007 (Australia); Hao, Chan Wen [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Lin, Po-Hsun [New Materials Research and Development Dept., China Steel Corporation, Taiwan, ROC (China)

    2015-06-15

    This study aims to develop a new osmotic membrane bioreactor by combining a moving bed biofilm reactor (MBBR) with forward osmosis membrane bioreactor (FOMBR) to treat wastewater. Ethylenediaminetetraacetic acid disodium salt coupled with polyethylene glycol tert-octylphenyl ether was used as an innovative draw solution in this membrane hybrid system (MBBR–OsMBR) for minimizing the reverse salt flux and maintaining a healthy environment for the microorganism community. The results showed that the hybrid system achieved a stable water flux of 6.94 L/m{sup 2} h and low salt accumulation in the bioreactor for 68 days of operation. At a filling rate of 40% (by volume of the bioreactor) of the polyethylene balls used as carriers, NH{sub 4}{sup +}-N and PO{sub 4}{sup 3−}-P were almost removed (> 99%) while producing relatively low NO{sub 3}{sup −}-N and NO{sub 2}{sup −}-N in the effluent (e.g. < 0.56 and 0.96 mg/L, respectively). Furthermore, from analysis based on scanning electron microscopy, Fourier transform infrared spectroscopy, and fluorescence emission–excitation matrix spectrophotometry, there was a thin gel-like fouling layer on the FO membrane, which composed of bacteria as well as biopolymers and protein-like substances. Nonetheless, the formation of these fouling layers of the FO membrane in MBBR–OsMBR was reversible and removed by a physical cleaning technique. - Highlights: • A novel osmotic membrane bioreactor (MBBR–OsMBR) using a novel draw solution (DS) was developed. • The MBBR–OsMBR system successfully reduced membrane fouling. • EDTA sodium coupled with Triton X-100 as novel DS resulted in low salt accumulation. • Nitrification and denitrification were well performed in a biocarrier. • The MBBR–OsMBR could remarkably remove phosphorus.

  7. A novel microfluidic valve controlledby induced charge electro-osmotic flow

    Science.gov (United States)

    Wang, Chengfa; Song, Yongxin; Pan, Xinxiang; Li, Dongqing

    2016-07-01

    In this paper, a novel microfluidic valve by utilizing induced charge electro-osmotic flow (ICEOF) is proposed and analyzed. The key part of the microfluidic valve is a Y-shaped microchannel. A small metal plate is placed at each corner of the junction of the Y-shaped microchannel. When a DC electrical field is applied through the channels, electro-osmotic flows occur in the channels, and two vortices will be formed near each of the metal plates due to the ICEOF. The two vortices behave like virtual ‘blocking columns’ to restrain and direct the flow in the Y-channel. In this paper, effects of the length of the metal plates, the applied voltages, the width of the microchannel, the zeta potential of the non-metal microchannel wall, and the orientation of the branch channels on the flow switching between two outlet channels are numerically investigated. The results show that the flow switching between the two outlet channels can be flexibly achieved by adjusting the applied DC voltages. The critical switching voltage (CSV), under which one outlet channel is closed, decreases with the increase in the metal plate length and the orientation angle of the outlet channels. The CSV, however, increases with the increase in the inlet voltage, the width of the microchannel, and the absolute value of the zeta potential of the non-metal microchannel wall. Compared with other types of micro-valves, the proposed micro-valve is simple in structure without any moving parts. Only a DC power source is needed for its actuation, thus it can operate automatically by controlling the applied voltages.

  8. Effects of sodium on nitrate uptake and osmotic adjustment of Suaeda physophora

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Na+ ions play an important role in the growth of halophyte. The effect of Na+ ions on nitrate uptake and osmotic adjustment in the euhalophyte Suaeda physophora was investigated under glasshouse conditions. Seedlings were exposed to 1 mmol/L NaCl (control),300 mmol/L NaCl,150 mmol/L NaCl plus 150 mmol/L KCl or 300 mmol/L KCl treatments for 24 d. Dry weight was not affected greatly by different salt treatments,but water content and succulence in leaves of S. physophora were significantly increased at 300 mmol/L NaCl and 150 mmol/L NaCl plus 150 mmol/L KCl treatments. The concentrations of Na+ and NO3’ in leaves of S. physophora were the highest at 150 mmol/L NaCl plus 150 mmol/L KCl,but lowest at 300 mmol/L KCl treatment. Moreover,the increase of NO3’ concentration did not result in the decrease of Cl-concentration at 150 mmol/L NaCl plus 150 mmol/L KCl treatments. The estimated contribution of NO3’ to osmotic potential (CNO3) in leaves of S. physophora was 9.8% at 150 mmol/L NaCl plus 150 mmol/L KCl,and CNa and CCl were 31.0% and 23.3%,respectively. However,CNO3,CNa and CCl were respectively 1.6%,7.9% and 11.9% at 300 mmol/L KCl treatment. It is concluded that Na+ stimulates NO3’ absorption and the stimulation is independent on the internal or the external Cl-concentration in the euhalophyte S. physo-phora. These characteristics may explain the high levels of N in leaves of saline desert plants in arid ecosystem.

  9. Azotemia protects the brain from osmotic demyelination on rapid correction of hyponatremia

    Directory of Open Access Journals (Sweden)

    Murtaza F Dhrolia

    2014-01-01

    Full Text Available Osmotic demyelination syndrome (ODS is a dreadful, irreversible and well-recognized clinical entity that classically occurs after rapid correction of hyponatremia. However, it has been observed that when hyponatremia is rapidly corrected in azotemic patients by hemodialysis (HD, patients do not necessarily develop ODS. We studied the effect of inadvertent rapid correction of hyponatremia with HD in patients with azotemia. Fifty-two azotemic patients, who underwent HD at the Sindh Institute of Urology and Transplantation, having pre-HD serum sodium level <125 mEq/L and post-HD serum sodium levels that increased by ≥12 mEq/L from their pre-dialysis level, were studied. Serum sodium was analyzed before and within 24 h after a HD session. HD was performed using bicarbonate solution, with the sodium concentration being 140 meq/L. The duration of the dialysis session was based on the discretion of the treating nephrologist. Patients were examined for any neurological symptoms or signs before and after HD and for up to two weeks. Magnetic resonance imaging was performed in required cases. None of the 52 patients with azotemia, despite inadvertent rapid correction of hyponatremia with HD, developed ODS. This study suggests that patients with azotemia do not develop ODS on rapid correction of hyponatremia by HD, which suggests a possible protective role of azotemia on the brain from osmotic demyelination. However, the mechanism by which azotemia protects the brain from demyelination in humans is largely hypothetical and further studies are needed to answer this question.

  10. Oscillatory electro-osmotic flow through a slit channel with slipping stripes on walls

    International Nuclear Information System (INIS)

    A theoretical model is presented in this paper for time-oscillating electro-osmotic flow through a plane channel bounded by two parallel plates, which are patterned with periodic stripes of distinct hydrodynamic slippage and wall potential. The flow is driven by oscillatory pressure gradient and electric field of the same frequency in the axial direction. Flows that are longitudinal or transverse to the stripes are investigated. Based on the Debye–Hückel approximation, and assuming Stokes flow, the electric potential and the velocity fields are found by the methods of eigenfunction expansion and point collocation. The phenomenological coefficients of the Onsager relations for the fluid and current fluxes are deduced as functions of the channel height, the area fraction of wall with slippage, the intrinsic slip length, the Debye parameter, the zeta potentials and the oscillation parameter. Considering several kinds of wall patterns, we extend the theoretical limits in the steady-flow regime to the oscillatory-flow regime. For a uniformly charged wall, the effective slip length obtained from the hydrodynamic problem can still be used directly in the electro-osmotic flow as if the wall were uniformly slipping. When the slipping stripes are perfectly slipping but uncharged, the presence of such stripes will always have a decreasing effect on the streaming conductance, unlike the steady case in which it gives no net effect on the flow in the limit of a very thin double layer. Furthermore, we confirm the presence of a threshold frequency, beyond which the flow will diminish significantly. The slipping fraction of the wall will always introduce a phase lag to the response and lower the threshold frequency. Increasing the wall potential in the presence of slippage can appreciably increase the streaming conductance and the phase lag. (paper)

  11. Applicability of a novel osmotic membrane bioreactor using a specific draw solution in wastewater treatment

    International Nuclear Information System (INIS)

    This study aims to develop a new osmotic membrane bioreactor by combining a moving bed biofilm reactor (MBBR) with forward osmosis membrane bioreactor (FOMBR) to treat wastewater. Ethylenediaminetetraacetic acid disodium salt coupled with polyethylene glycol tert-octylphenyl ether was used as an innovative draw solution in this membrane hybrid system (MBBR–OsMBR) for minimizing the reverse salt flux and maintaining a healthy environment for the microorganism community. The results showed that the hybrid system achieved a stable water flux of 6.94 L/m2 h and low salt accumulation in the bioreactor for 68 days of operation. At a filling rate of 40% (by volume of the bioreactor) of the polyethylene balls used as carriers, NH4+-N and PO43−-P were almost removed (> 99%) while producing relatively low NO3−-N and NO2−-N in the effluent (e.g. < 0.56 and 0.96 mg/L, respectively). Furthermore, from analysis based on scanning electron microscopy, Fourier transform infrared spectroscopy, and fluorescence emission–excitation matrix spectrophotometry, there was a thin gel-like fouling layer on the FO membrane, which composed of bacteria as well as biopolymers and protein-like substances. Nonetheless, the formation of these fouling layers of the FO membrane in MBBR–OsMBR was reversible and removed by a physical cleaning technique. - Highlights: • A novel osmotic membrane bioreactor (MBBR–OsMBR) using a novel draw solution (DS) was developed. • The MBBR–OsMBR system successfully reduced membrane fouling. • EDTA sodium coupled with Triton X-100 as novel DS resulted in low salt accumulation. • Nitrification and denitrification were well performed in a biocarrier. • The MBBR–OsMBR could remarkably remove phosphorus

  12. Trypanosome Lytic Factor-1 Initiates Oxidation-stimulated Osmotic Lysis of Trypanosoma brucei brucei.

    Science.gov (United States)

    Greene, Amy Styer; Hajduk, Stephen L

    2016-02-01

    Human innate immunity against the veterinary pathogen Trypanosoma brucei brucei is conferred by trypanosome lytic factors (TLFs), against which human-infective T. brucei gambiense and T. brucei rhodesiense have evolved resistance. TLF-1 is a subclass of high density lipoprotein particles defined by two primate-specific apolipoproteins: the ion channel-forming toxin ApoL1 (apolipoprotein L1) and the hemoglobin (Hb) scavenger Hpr (haptoglobin-related protein). The role of oxidative stress in the TLF-1 lytic mechanism has been controversial. Here we show that oxidative processes are involved in TLF-1 killing of T. brucei brucei. The lipophilic antioxidant N,N'-diphenyl-p-phenylenediamine protected TLF-1-treated T. brucei brucei from lysis. Conversely, lysis of TLF-1-treated T. brucei brucei was increased by the addition of peroxides or thiol-conjugating agents. Previously, the Hpr-Hb complex was postulated to be a source of free radicals during TLF-1 lysis. However, we found that the iron-containing heme of the Hpr-Hb complex was not involved in TLF-1 lysis. Furthermore, neither high concentrations of transferrin nor knock-out of cytosolic lipid peroxidases prevented TLF-1 lysis. Instead, purified ApoL1 was sufficient to induce lysis, and ApoL1 lysis was inhibited by the antioxidant DPPD. Swelling of TLF-1-treated T. brucei brucei was reminiscent of swelling under hypotonic stress. Moreover, TLF-1-treated T. brucei brucei became rapidly susceptible to hypotonic lysis. T. brucei brucei cells exposed to peroxides or thiol-binding agents were also sensitized to hypotonic lysis in the absence of TLF-1. We postulate that ApoL1 initiates osmotic stress at the plasma membrane, which sensitizes T. brucei brucei to oxidation-stimulated osmotic lysis. PMID:26645690

  13. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    Science.gov (United States)

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications. PMID:25113310

  14. Effects of nitric oxide system and osmotic stress on Aquaporin-1 in the postnatal heart.

    Science.gov (United States)

    Netti, Vanina A; Iovane, Agustina N; Vatrella, Mariana C; Zotta, Elsa; Fellet, Andrea L; Balaszczuk, Ana M

    2016-07-01

    Aquaporin-1 (AQP1) is expressed in the heart and its relationship with NO system has not been fully explored. The aims of this work were to study the effects of NO system inhibition on AQP1 abundance and localization and evaluate AQP1 S-nitrosylation in a model of water restriction during postnatal growth. Rats aged 25 and 50days (n=15) were divided in: R: water restriction; C: water ad libitum; RL: L-NAME (4mg/kgday)+water restriction; CL: L-NAME+water ad libitum. AQP1 protein levels, immunohistochemistry and S-nitrosylation (colocalization of AQP1 and S-nitrosylated cysteines by confocal microscopy) were determined in cardiac tissue. We also evaluated the effects of NO donor sodium nitroprusside (SNP) on osmotic water permeability of cardiac membrane vesicles by stopped-flow spectrometry. AQP1 was present in cardiac vascular endothelium and endocardium in C and CL animals of both ages. Cardiac AQP1 levels were increased in R50 and RL50 and appeared in cardiomyocyte plasma membrane. No changes in AQP1 abundance or localization were observed in R25, but RL25 group showed AQP1 presence on cardiomyocyte sarcolemma. AQP1 S-nitrosylation was increased in R25 group, without changes in the 50-day-old group. Cardiac membrane vesicles expressing AQP1 presented a high water permeability coefficient and pretreatment with SNP decreased water transport. Age-related influence of NO system on AQP1 abundance and localization in the heart may affect cardiac water homeostasis during hypovolemic state. Increased AQP1 S-nitrosylation in the youngest group may decrease osmotic water permeability of cardiac membranes, having a negative impact on cardiac water balance. PMID:27261598

  15. Preparation and characterization of silymarin synchronized-release microporous osmotic pump tablets.

    Science.gov (United States)

    Zeng, Qi-ping; Liu, Zhi-hong; Huang, Ai-wen; Zhang, Jing; Song, Hong-tao

    2016-01-01

    The pharmacological activity of herbal medicine is an overall action of each component in accordance with their original proportion. An efficient, sustained, and controlled-release drug delivery system of herbal medicine should ensure the synchronized drug release of each active component during the entire release procedure. In this study, silymarin (SM), a poorly soluble herbal medicine, was selected as a model drug to develop a synchronized-release drug delivery system: an SM microporous osmotic pump (MPOP) tablet. The SM was conjugated with phospholipid (SM phytosome complex, SM-PC) to improve the solubility, and the difference in the apparent octanol-water partition coefficient between the two components was significantly reduced. The dissolution rate of SM-PC was significantly higher than SM active pharmaceutical ingredients and was the same as that of the commercial SM capsule. The SM-PC was used to generate the MPOP tablet. SM was mixed with poly(ethylene) oxide and sodium chloride (an osmotic agent) to form the MPOP core, followed by coating with cellulose acetate and poly(ethylene) oxide to generate the SM MPOP. The results demonstrated that SM MPOP could synchronically and sustainably release the five active components within 12 hours (the similar coefficient f 2 between two components was >65), and the average cumulative release rate was 85%. Fitting of the drug-release curve showed a zero-order release profile for SM MPOP. Our study showed that the phytosome complex technique combined with the MPOP system will achieve synchronized release of the various active components of herbal medicine and have potential applications in developing sustained release preparations in herbal medicine. PMID:26889080

  16. Osmotic stress changes the expression and subcellular localization of the Batten disease protein CLN3.

    Directory of Open Access Journals (Sweden)

    Amanda Getty

    Full Text Available Juvenile CLN3 disease (formerly known as juvenile neuronal ceroid lipofuscinosis is a fatal childhood neurodegenerative disorder caused by mutations in the CLN3 gene. CLN3 encodes a putative lysosomal transmembrane protein with unknown function. Previous cell culture studies using CLN3-overexpressing vectors and/or anti-CLN3 antibodies with questionable specificity have also localized CLN3 in cellular structures other than lysosomes. Osmoregulation of the mouse Cln3 mRNA level in kidney cells was recently reported. To clarify the subcellular localization of the CLN3 protein and to investigate if human CLN3 expression and localization is affected by osmotic changes we generated a stably transfected BHK (baby hamster kidney cell line that expresses a moderate level of myc-tagged human CLN3 under the control of the human ubiquitin C promoter. Hyperosmolarity (800 mOsm, achieved by either NaCl/urea or sucrose, dramatically increased the mRNA and protein levels of CLN3 as determined by quantitative real-time PCR and Western blotting. Under isotonic conditions (300 mOsm, human CLN3 was found in a punctate vesicular pattern surrounding the nucleus with prominent Golgi and lysosomal localizations. CLN3-positive early endosomes, late endosomes and cholesterol/sphingolipid-enriched plasma membrane microdomain caveolae were also observed. Increasing the osmolarity of the culture medium to 800 mOsm extended CLN3 distribution away from the perinuclear region and enhanced the lysosomal localization of CLN3. Our results reveal that CLN3 has multiple subcellular localizations within the cell, which, together with its expression, prominently change following osmotic stress. These data suggest that CLN3 is involved in the response and adaptation to cellular stress.

  17. Effects of acetazolamide and anordiol on osmotic water permeability in AQPI-cRNA injected Xenopus oocyte

    Institute of Scientific and Technical Information of China (English)

    BingMA; YangXIANG; Sheng-meiMU; TaoLI; He-mingYU; Xue-junLI

    2004-01-01

    AIM: To study the effects of acetazolamide and anordiol on osmotic water permeability in aquaporin 1 (AQP1)-cRNA injected Xenopus oocyte and their mechanisms. METHODS: AQP1 gene constructed in pBluescript was transcripted into cRNA in vitro and then the cRNA was injected in Xenopus oocytes. The effects of acetazolamide and anordiol on the water transport function of AQP1 were observed by assaying the osmotic swelling of oocytes.In addition, their effects on protein expression of AQP1 were quantitatively investigated by Western blotting method.RESULTS: After incubation for 15 min or 72 h, acetazolamide, a carbonic anhydrase inhibitor, equally reduced the water permeability of AQPI-cRNA injected oocyte in a dose-dependent manner. After incubation for 72 h, anordiol,an antiestrogen with partial estrogenic activity, reduced the osmotic water permeability dose dependently as well;however, no discernable action was observed after incubation with anordiol for 15 min. The Western blotting analysis showed that acetazolamide did not influence the protein expression of AQP1. However, after incubation for 72 h with anordiol (10 μmol/L), the quantity of AQP1 in the oocyte membrane was decreased dramatically(P<0.05). CONCLUSION: Both acetazolamide and anordiol inhibited the osmotic water permeability of AQP1-cRNA injected oocyte, but their mechanisms were different. Acetazolamide functionally inhibited the osmotic water permeability of AQP1, whereas anordiol primarily decreased the amount of AQP1 protein in the oocyte membrane.

  18. Analysis of unsaturated clayey materials hydration incorporating the effect of thermo-osmotic flow

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The hydraulic gradient is the main physical phenomenon influencing the movement of water in permeable porous media. It is, however, not the only one. Figure 1 presents the main kinds of flow that can occur in a porous media alongside with the corresponding gradient responsible for the movements. The word 'law' is generally used for the diagonal terms associated with the direct flow phenomena, and the name 'effect' is reserved to the non-diagonal ones, called also 'coupled processes'. Lippmann (1907) discovered and named the phenomenon of thermo-osmosis. He discovered it experimentally by separating a volume of water into two parts by means of a membrane. Different temperatures were held in the two regions of the system. The thermal gradient caused a flow of water through the membrane from the cold to the hot side. In permeable reservoirs, the non-diagonal coefficients are relatively small and negligible compared to the diagonal terms. That is the reason why the coupled processes are generally ignored when analyzing problems in aquifers. However, in non-isothermal problems involving low permeability media and/or low hydraulic gradients thermo-osmosis may play a more influential role. Srivastava and Avasthi (1975) and Horseman and McEwen (1996) showed that water flux due to thermo-osmosis can easily exceed Darcy flux in low permeability clays. The 'phenomenological coefficient' that links each flow with the corresponding driving gradient must be measured experimentally. Accounting for thermo-osmosis is assuming that the transport of heat may modify the transport of fluids. The counterpart phenomenon of thermo-osmosis is thermo-filtration, which reflects the influence of a pressure gradient on heat flow. Thermo-osmosis and thermo-filtration are generally formulated as reciprocal relations, so that the coupled conductivity terms related to each phenomenon are set equal. Thermo-osmotic effects have been studied in the

  19. Osmotic properties of binary mixtures 1-butyl-1-methylpyrrolidinium dicyanamide and 1-methyl-3-octylimidazolium chloride with water: Effect of aggregation of ions

    International Nuclear Information System (INIS)

    Graphical abstract: Osmotic properties of binary mixture of two ionic liquids (ILs): 1-butyl-1-methyl pyrrolidinium dicyanamide and 1-methyl-3-octylimidazolium chloride with water was reported by using vapour pressure osmometry (VPO) method. - Highlights: • Osmotic properties of binary mixture of ionic liquids (ILs) with water by using vapour pressure osmometry (VPO) method. • The experimental osmotic coefficients were well correlated by Archer extension of Pitzer model. • From the experimental osmotic coefficient data the critical micellar concentration (cmc) of the ILs in water was estimated. • Mean molar activity coefficient and the excess Gibbs free energy was determine for the (ILs + water) binary mixture. - Abstract: In this work, the osmotic properties of the binary mixture of ionic liquids (ILs) and water were studied by using vapour pressure osmometry (VPO) method. We have used two ILs: 1-butyl-1-methyl pyrrolidinium dicyanamide and 1-methyl-3-octylimidazolium chloride. The aqueous solution of NaCl was used as the reference solution to precisely measure the osmotic coefficients of the above systems. We have calculated the activity of water in the above systems and the change of vapour pressure of water due to the addition of ILs in water. The experimental osmotic coefficients were correlated by the Archer extension of Pitzer model. The parameters of this Archer extension of Pitzer model were found from this data fitting. From the experimental osmotic coefficient value we have estimated the critical micellar concentration (cmc) of ILs in water. The experimental values of osmotic coefficient in the above systems were compared with the literature and the reason of variation was explained, in terms of the aggregation of ILs in water

  20. Osmotic Stress Confers Enhanced Cell Integrity to Hydrostatic Pressure but Impairs Growth in Alcanivorax borkumensis SK2

    Science.gov (United States)

    Scoma, Alberto; Boon, Nico

    2016-01-01

    Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea oil-contaminated environments is negligible. Recent laboratory studies highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs). In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain Alcanivorax borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg-1, respectively) were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg-1, or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively), under atmospheric or increased HP (0.1 and 10 MPa). Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation) and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10 MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1 MPa in hyperosmosis-acclimated cells and at 10 MPa under isosmotic conditions. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-days incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in terms of hydrocarbon degradation was lowered by the effects of osmotic stress alone or combined with increased HP

  1. Chronic granulomatous disease

    Science.gov (United States)

    CGD; Fatal granulomatosis of childhood; Chronic granulomatous disease of childhood; Progressive septic granulomatosis ... In chronic granulomatous disease (CGD), immune system cells called ... some types of bacteria and fungi. This disorder leads to long- ...

  2. People Experiencing Chronic Homelessness

    Science.gov (United States)

    ... Experiencing Chronic Homelessness Share This: People Experiencing Chronic Homelessness We've made significant progress in our national ... the USICH newsletter. We know how to end homelessness. Let's do it, together. Sign up for our ...

  3. Chronic motor tic disorder

    Science.gov (United States)

    Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start at age 5 or 6 and get worse until age 12. They often improve during adulthood.

  4. Chronic Diarrhea in Children

    Science.gov (United States)

    ... can include cramping abdominal pain nausea or vomiting fever chills bloody stools Children with chronic diarrhea who have ... can include cramping, abdominal pain, nausea or vomiting, fever, chills, or bloody stools. Children with chronic diarrhea who ...

  5. "Chronic Lyme Disease"

    Science.gov (United States)

    ... Content Marketing Share this: Main Content Area "Chronic Lyme Disease" What is "chronic Lyme disease?" Lyme disease is an infection caused by ... J Med 357:1422-30, 2008). How is Lyme disease treated? For early Lyme disease, a short ...

  6. Prospects for conservative treatment of chronic subdural hematomas

    International Nuclear Information System (INIS)

    111In-DTPA was injected into the hematoma cavity before and after hematoma evacuation and irrigation in 12 cases of chronic subdural hematoma with comparatively mild symptoms. The radioactivity in the head was measure with time using a scintillation counter and the attenuation rate was obtained. The value measured hourly were expressed as ratios of the 1st measured value. Because of the properties of 111In-DTPA, this attenuation rate was considered to be the absorption rate of the liqid components of the hematoma. In 8 of the preoperative cases, the average measured values, were 84.8 +- 12.6% after 3 hours, 77.3 +- 12.1% after six hours, 34.5 +- 13.8% after 24 hours and 13.3 +- 13.5% after 48 hours. In six of the postoperative cases, the values were 70.4 +- 14.3% after 3 hours, 47.8 +- 10.8% after 6 hours, 12.4 +- 6.7% after 24 hours and 3.6 +- 2.0% after 48 hours. In a comparison between the two, the postoperative cases showed clearly advanced absorption with a significant difference at a risk factor of 0.1% or less in each case. This is because the osmotic pressure is the same for the liquid in the hematoma, the blood and the cerebrospinal fluid and an explanation based on this alone is difficult; it is neccessary to consider colloid osmotic pressure. When the radioactivities in the liquid in the hematoma, blood and cerebrospinal fluid were measured, the values for the blood were always higher than those for the cerebrospinal fluid and most of the absorption of the hematoma is considered to originate in the vascular bed in the hematoma cavity (sinusoidal channel layer). Therefore, for the conservative treatment of chronic subdural hematomas, it is necessary to consider methods which promote absorption of the hematoma. (J.P.N.)

  7. Prostaglandins and chronic inflammation

    OpenAIRE

    Aoki, Tomohiro; Narumiya, Shuh

    2012-01-01

    Chronic inflammation is the basis of various chronic illnesses including cancer and vascular diseases. However, much has yet to be learned how inflammation becomes chronic. Prostaglandins (PGs) are well established as mediators of acute inflammation, and recent studies in experimental animals have provided evidence that they also function in transition to and maintenance of chronic inflammation. One role PGs play in such processes is amplification of cytokine signaling. As such, PGs can facil...

  8. Chronic Inflammatory Demyelinating Polyneuropathy

    OpenAIRE

    Dimachkie, Mazen M.; Barohn, Richard J.

    2013-01-01

    Chronic Inflammatory polyneuropathies are an important group of neuromuscular disorders that present chronically and progress over more than 8 weeks, being referred to as chronic inflammatory demyelinating polyneuropathy (CIDP). Despite tremendous progress in elucidating disease pathogenesis, the exact triggering event remains unknown. Our knowledge regarding diagnosis and management of CIDP and its variants continues to expand, resulting in improved opportunities for identification and treat...

  9. New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress

    Directory of Open Access Journals (Sweden)

    Marty Francis

    2005-08-01

    Full Text Available Abstract Background The vegetative plant vacuole occupies >90% of the volume in mature plant cells. Vacuoles play fundamental roles in adjusting cellular homeostasis and allowing cell growth. The composition of the vacuole and the regulation of its volume depend on the coordinated activities of the transporters and channels localized in the membrane (named tonoplast surrounding the vacuole. While the tonoplast protein complexes are well studied, the tonoplast itself is less well described. To extend our knowledge of how the vacuole folds inside the plant cell, we present three-dimensional reconstructions of vacuoles from tobacco suspension cells expressing the tonoplast aquaporin fusion gene BobTIP26-1::gfp. Results 3-D reconstruction of the cell vacuole made possible an accurate analysis of large spanning folds of the vacuolar membrane under both normal and stressed conditions, and suggested interactions between surrounding plastids. Dynamic, high resolution 3-D pictures of the vacuole in tobacco suspension cells monitored under different growth conditions provide additional details about vacuolar architecture. The GFP-decorated vacuole is a single continuous compartment transected by tubular-like transvacuolar strands and large membrane surfaces. Cell culture under osmotic stress led to a complex vacuolar network with an increased tonoplast surface area. In-depth 3-D realistic inspections showed that the unity of the vacuole is maintained during acclimation to osmotic stress. Vacuolar unity exhibited during stress adaptation, coupled with the intimate associations of vacuoles with other organelles, suggests a physiological role for the vacuole in metabolism, and communication between the vacuole and organelles, respectively, in plant cells. Desiccation stress ensuing from PEG treatment generates "double" membrane structures closely linked to the tonoplast within the vacuole. These membrane structures may serve as membrane reservoirs for

  10. Osmotic Stress and Viscous Retardation of the Na,K-ATPase Ion Pump

    Science.gov (United States)

    Esmann, Mikael; Fedosova, Natalya U.; Marsh, Derek

    2008-01-01

    The transport function of the Na pump (Na,K-ATPase) in cellular ion homeostasis involves both nucleotide binding reactions in the cytoplasm and alternating aqueous exposure of inward- and outward-facing ion binding sites. An osmotically active, nonpenetrating polymer (poly(ethyleneglycol); PEG) and a modifier of the aqueous viscosity (glycerol) were used to probe the overall and partial enzymatic reactions of membranous Na,K-ATPase from shark salt glands. Both inhibit the steady-state Na,K-ATPase as well as Na-ATPase activity, whereas the K+-dependent phosphatase activity is little affected by up to 50% of either. Both Na,K-ATPase and Na-ATPase activities are inversely proportional to the viscosity of glycerol solutions in which the membranes are suspended, in accordance with Kramers' theory for strong coupling of fluctuations at the active site to solvent mobility in the aqueous environment. PEG decreases the affinity for Tl+ (a congener for K+), whereas glycerol increases that for the nucleotides ATP and ADP in the presence of NaCl but has little effect on the affinity for Tl+. From the dependence on osmotic stress induced by PEG, the aqueous activation volume for the Na,K-ATPase reaction is estimated to be ∼5–6 nm3 (i.e., ∼180 water molecules), approximately half this for Na-ATPase, and essentially zero for p-nitrophenol phosphatase. The change in aqueous hydrated volume associated with the binding of Tl+ is in the region of 9 nm3. Analysis of 15 crystal structures of the homologous Ca-ATPase reveals an increase in PEG-inaccessible water space of ∼22 nm3 between the E1-nucleotide bound forms and the E2-thapsigargin forms, showing that the experimental activation volumes for Na,K-ATPase are of a magnitude comparable to the overall change in hydration between the major E1 and E2 conformations of the Ca-ATPase. PMID:18055532

  11. Osmotic coefficients of aqueous solutions of four ionic liquids at T = (313.15 and 333.15) K

    International Nuclear Information System (INIS)

    Measurements of osmotic coefficients of BmimCl (1-butyl-3-methylimidazolium chloride), HmimCl (1-hexyl-3-methylimidazolium chloride), MmimMeSO4 (1,3-dimethylimidazolium methylsulfate), and BmimMeSO4 (1-butyl-3-methylimidazolium methylsulfate) with water at T = (313.15 and 333.15) K are reported in this work. Vapour pressure and activity data of all the studied binary systems are obtained from experimental data. The osmotic coefficients data are correlated using the extended Pitzer model of Archer and the modified NRTL (MNRTL) model and standard deviations obtained with both models are given too. The parameters obtained with the extended Pitzer model of Archer are used to calculate the mean molal activity coefficients

  12. Sodium Chloride Stress Induced Changes in Leaf Osmotic Adjustment of Trifoliate Orange (Poncirus trifoliata Seedlings Inoculated with Mycorrhizal Fungi

    Directory of Open Access Journals (Sweden)

    Ying-Ning ZOU

    2011-11-01

    Full Text Available Citrus plants are sensitive to salinity, and thus employing new approaches to alleviate salt damage are necessary. The present study evaluated the effect of two arbuscular mycorrhizal fungi (AMF, Glomus mosseae and G. versiforme, on leaf osmotic adjustment of trifoliate orange (Poncirus trifoliata seedings exposed to 100 mM NaCl. Salinity significantly inhibited mycorrhizal colonization, plant biomass and leaf relative water content, whereas the reduce of plant biomass was notably alleviated by the mycorrhizal colonization. Mycorrhizal seedlings exhibited significantly lower Na+ and Ca2+ concentrations, whilst also recorded higher K+ concentration and K+/Na+, Ca2+/Na+ and Mg2+/Na+ ratios at both salinity levels. Under salinity stress, mycorrhizal symbiosis markedly decreased sucrose concentrations of leaves and also increased glucose, fructose and proline concentrations of leaves. The results suggest that arbuscular mycorrhizas improved leaf osmotic adjustment responses of the seedlings to salt stress, thus enhancing salt tolerance of mycorrhizal plants.

  13. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions.

    Science.gov (United States)

    Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla

    2016-03-15

    The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. PMID:26575708

  14. Exact matrix treatment of an osmotic ensemble model of adsorption and pressure induced structural transitions in metal organic frameworks.

    Science.gov (United States)

    Dunne, Lawrence J; Manos, George

    2016-03-01

    Here we present an exactly treated quasi-one dimensional statistical mechanical osmotic ensemble model of pressure and adsorption induced breathing structural transformations of metal-organic frameworks (MOFs). The treatment uses a transfer matrix method. The model successfully reproduces the gas and pressure induced structural changes which are observed experimentally in MOFs. The model treatment presented here is a significant step towards analytical statistical mechanical treatments of flexible metal-organic frameworks. PMID:26514851

  15. Osmotic Drug Delivery to Ischemic Hindlimbs and Perfusion of Vasculature with Microfil for Micro-Computed Tomography Imaging

    OpenAIRE

    Liu, Xiaobing; Terry, Toya; Pan, Su; Yang, Zhongwei; Willerson, James T.; Dixon, Richard A. F.; Liu, Qi

    2013-01-01

    Preclinical research in animal models of peripheral arterial disease plays a vital role in testing the efficacy of therapeutic agents designed to stimulate microcirculation. The choice of delivery method for these agents is important because the route of administration profoundly affects the bioactivity and efficacy of these agents1,2. In this article, we demonstrate how to locally administer a substance in ischemic hindlimbs by using a catheterized osmotic pump. This pump can deliver a fixed...

  16. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress

    KAUST Repository

    Liu, Junwei

    2015-02-26

    Main conclusion: Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress.Abstract: Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.

  17. Effects of temperature and immersion time on diffusion of moisture and minerals during rehydration of osmotically treated pork meat cubes

    Directory of Open Access Journals (Sweden)

    Šuput Danijela Z.

    2015-01-01

    Full Text Available The aim of this work was to study the changes in osmotically treated pork meat during rehydration. Meat samples were osmotically treated in sugar beet molasses solution, at temperature of (23±2°C for 5 hours. After being osmotically treated, meat samples were rehydrated at constant temperature (20- 40°C during different times (15-60 min in distilled water. The effective diffusivity were between 8.35 and 9.11•10-10 (m2•s-1 for moisture, 6.30-6.94 • 10-10 (m2•s-1, for Na, 5.73-7.46 10-10 (m2•s-1, for K, 4.43-6.25 • 10-10 (m2•s-1, for Ca, 5.35-6.25 • 10-10 (m2•s-1, for Mg, 4.67-6.78 10-10 (m2•s-1, for Cu, 4.68-5.33 • 10-10 (m2•s-1, for Fe, 4.21-5.04 • 10-10 (m2•s-1, for Zn and 5.44-7.16 10-10 (m2•s-1, for Mn. Zugarramurdi and Lupin’s model was used to predict the equilibrium condition, which was shown to be appropriate for moisture uptake and solute loss during rehydration. [Projekat Ministarstva nauke Republike Srbije, br. TR-31055: Osmotic dehydration of food - energy and environmental aspects of sustainable production

  18. Chemical specificity in short-chain fatty acids and their analogues in increasing osmotic fragility in rat erythrocytes in vitro.

    OpenAIRE

    Mineo, Hitoshi; HARA Hiroshi

    2007-01-01

    We examined the role of the chemical specificity of short-chain fatty acids (SCFAs) and their derivatives in increasing osmotic fragility (OF) in rat red blood cells (RBCs). Except for formic acid, normal SCFAs with 2 to 8 carbons increased the OF in rat RBCs with increasing number of hydrocarbons in a dose-dependent manner. Replacement of the carboxylic group with sulfonic group inhibited, but did not abolish, the SCFA-mediated increase in OF. Introduction of another carboxylic group (dicarb...

  19. Genome-wide expression profiles of Pyropia haitanensis in response to osmotic stress by using deep sequencing technology

    OpenAIRE

    Wang, Li; Mao, Yunxiang; Kong, Fanna; Cao, Min; Sun, Peipei

    2015-01-01

    Background Pyropia haitanensis is an economically important marine crop grown in harsh intertidal habitats of southern China; it is also an excellent model system for studying mechanisms of stress tolerance. To understand the molecular mechanisms underlying osmotic tolerance and adaptation to intertidal environments, a comprehensive analysis of genome-wide gene expression profiles in response to dehydration and rehydration in Py. haitanensis was undertaken using digital gene expression profil...

  20. Membrane Transport Generated by the Osmotic and Hydrostatic Pressure. Correlation Relation for Parameters Lp, σ, and ω

    OpenAIRE

    Kargol, Marian; Kargol, Armin

    2000-01-01

    Standard approach to membrane transport generated by osmotic andhydrostatic pressures, developed by Kedem and Katchalsky, is based onprinciples of thermodynamics of irreversible processes. In this paper wepropose an alternative technique. We derive transport equations from fewfairly natural assumptions and a mechanistic interpretation of the flows.In particular we postulate that a sieve-type membrane permeability isdetermined by the pore sizes and these are random within certain range.Assumin...