WorldWideScience

Sample records for chromosomes human y

  1. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  2. The Divergence of Neandertal and Modern Human Y Chromosomes.

    Science.gov (United States)

    Mendez, Fernando L; Poznik, G David; Castellano, Sergi; Bustamante, Carlos D

    2016-04-07

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes-including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447-806 kya). This is ∼2.1 (95% CI: 1.7-2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups.

  3. The Divergence of Neandertal and Modern Human Y Chromosomes

    Science.gov (United States)

    Mendez, Fernando L.; Poznik, G. David; Castellano, Sergi; Bustamante, Carlos D.

    2016-01-01

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes—including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447–806 kya). This is ∼2.1 (95% CI: 1.7–2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. PMID:27058445

  4. Absence of Y chromosome in human placental site trophoblastic tumor.

    Science.gov (United States)

    Hui, Pei; Wang, Hanlin L; Chu, Peiguo; Yang, Bin; Huang, Jiaoti; Baergen, Rebecca N; Sklar, Jeffrey; Yang, Ximing J; Soslow, Robert A

    2007-10-01

    Placental site trophoblastic tumor is a neoplasm of extravillous intermediate trophoblast at the implantation site, preceded in the majority of cases by a female gestational event. Our pilot investigation suggested that the development of this tumor might require a paternally derived X chromosome and the absence of a Y chromosome. Twenty cases of placental site trophoblastic tumor were included in this study. Genotyping at 15 polymorphic loci and one sex determination locus was performed by multiplex PCR followed by capillary electrophoresis. X chromosome polymorphisms were determined by PCR amplification of exon 1 of the human androgen receptor gene using primers flanking the polymorphic CAG repeats within this region. Genotyping at 15 polymorphic loci was informative and paternal alleles were present in all tumors, confirming the trophoblastic origin of the tumors. The presence of an X chromosome and the absence of a Y chromosome were observed in all tumors. Among 13 cases in which analysis of the X chromosome polymorphism was informative, all but one demonstrated at least two X alleles and seven cases showed one identifiable paternal X allele. These results confirm a unique pathogenetic mechanism in placental site trophoblastic tumor, involving an exclusion of the Y chromosome from the genome and, therefore, a tumor arising from the trophectoderm of a female conceptus. As epigenetic regulations of imprinting during X chromosome inactivation are of significant biological implications, placental site trophoblastic tumor may provide an important model for studying the sex chromosome biology and the proliferative advantage conferred by the paternal X chromosome.

  5. Repeat Sequences and Base Correlations in Human Y Chromosome Palindromes

    Institute of Scientific and Technical Information of China (English)

    Neng-zhi Jin; Zi-xian Liu; Yan-jiao Qi; Wen-yuan Qiu

    2009-01-01

    On the basis of information theory and statistical methods, we use mutual information, n-tuple entropy and conditional entropy, combined with biological characteristics, to analyze the long range correlation and short range correlation in human Y chromosome palindromes. The magnitude distribution of the long range correlation which can be reflected by the mutual information is P5>P5a>P5b (P5a and P5b are the sequences that replace solely Alu repeats and all interspersed repeats with random uncorrelated sequences in human Y chromosome palindrome 5, respectively); and the magnitude distribution of the short range correlation which can be reflected by the n-tuple entropy and the conditional entropy is P5>P5a>P5b>random uncorrelated sequence. In other words, when the Alu repeats and all interspersed repeats replace with random uncorrelated sequence, the long range and short range correlation decrease gradually. However, the random uncorrelated sequence has no correlation. This research indicates that more repeat sequences result in stronger correlation between bases in human Y chromosome. The analyses may be helpful to understand the special structures of human Y chromosome palindromes profoundly.

  6. The human Y chromosome: a sole survivor

    NARCIS (Netherlands)

    Noordam, M.J.

    2012-01-01

    Het Y-chromosoom zorgt er niet alleen voor dat je man bent, maar is ook van groot belang voor de aanmaak van zaadcellen. Uit eerder onderzoek blijkt dat mannen met slecht zaad vaak stukjes van het Y-chromosoom missen. Michiel Noordam onderzocht of vermenigvuldiging van bepaalde grote delen van het Y

  7. Evaluating the relationship between spermatogenic silencing of the X chromosome and evolution of the Y chromosome in chimpanzee and human.

    Science.gov (United States)

    Mulugeta Achame, Eskeatnaf; Baarends, Willy M; Gribnau, Joost; Grootegoed, J Anton

    2010-12-14

    Chimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural selection acting on the MSY as a unit. Positive selection might involve the performance of the MSY in spermatogenesis. Chimpanzees have a highly polygamous mating behavior, so that sperm competition is thought to provide a strong selective force acting on the Y chromosome in the chimpanzee lineage. In consequence of evolution of the heterologous sex chromosomes in mammals, meiotic sex chromosome inactivation (MSCI) results in a transcriptionally silenced XY body in male meiotic prophase, and subsequently also in postmeiotic repression of the sex chromosomes in haploid spermatids. This has evolved to a situation where MSCI has become a prerequisite for spermatogenesis. Here, by analysis of microarray testicular expression data representing a small number of male chimpanzees and men, we obtained information indicating that meiotic and postmeiotic X chromosome silencing might be more effective in chimpanzee than in human spermatogenesis. From this, we suggest that the remarkable reorganization of the chimpanzee Y chromosome, compared to the human Y chromosome, might have an impact on its meiotic interactions with the X chromosome and thereby on X chromosome silencing in spermatogenesis. Further studies will be required to address comparative functional aspects of MSCI in chimpanzee, human, and other placental mammals.

  8. Evaluating the relationship between spermatogenic silencing of the X chromosome and evolution of the Y chromosome in chimpanzee and human.

    Directory of Open Access Journals (Sweden)

    Eskeatnaf Mulugeta Achame

    Full Text Available Chimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY, representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural selection acting on the MSY as a unit. Positive selection might involve the performance of the MSY in spermatogenesis. Chimpanzees have a highly polygamous mating behavior, so that sperm competition is thought to provide a strong selective force acting on the Y chromosome in the chimpanzee lineage. In consequence of evolution of the heterologous sex chromosomes in mammals, meiotic sex chromosome inactivation (MSCI results in a transcriptionally silenced XY body in male meiotic prophase, and subsequently also in postmeiotic repression of the sex chromosomes in haploid spermatids. This has evolved to a situation where MSCI has become a prerequisite for spermatogenesis. Here, by analysis of microarray testicular expression data representing a small number of male chimpanzees and men, we obtained information indicating that meiotic and postmeiotic X chromosome silencing might be more effective in chimpanzee than in human spermatogenesis. From this, we suggest that the remarkable reorganization of the chimpanzee Y chromosome, compared to the human Y chromosome, might have an impact on its meiotic interactions with the X chromosome and thereby on X chromosome silencing in spermatogenesis. Further studies will be required to address comparative functional aspects of MSCI in chimpanzee, human, and other placental mammals.

  9. Evaluating the relationship between spermatogenic silencing of the X chromosome and evolution of the Y chromosome in chimpanzee and human

    NARCIS (Netherlands)

    E.M. Achame; W.M. Baarends (Willy); J.H. Gribnau (Joost); J.A. Grootegoed (Anton)

    2010-01-01

    textabstractChimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural

  10. "Micro-deletions" of the human Y chromosome and their relationship with male infertility

    Institute of Scientific and Technical Information of China (English)

    Zheng Li; Christopher J Haines; Yibing Han

    2008-01-01

    The Y chromosome evolves from an autochromosome and accumulates male-related genes including sex-determining region of Y-chromosome (SRY) and several spermatogenesis-related genes.The human Y chromosome (60 Mb long) is largely composed of repeti-tive sequences that give it a heterochromatic appearance,and it consists of pseudoautosomal,euchromatic,and heterochromatic regions.Located on the two extremities of the Y chromosome,pseudoautosomal regions 1 and 2 (PAR1 and PAR2,2.6 Mb and 320 bp long,re-spectively) are homologs with the termini of the X chromosome.The euchromatic region and some of the repeat-rich heterochromatic parts of the Y chromosome are called "male-specific Y" (MSY),which occupy more than 95% of the whole Y chromosome.After evolu-tion,the Y chromosome becomes the smallest in size with the least number of genes but with the most number of copies of genes that are mostly spermatogenesis-related.The Y chromosome is characterized by highly repetitive sequences (including direct repeats,inverted repeats,and palindromes) and high polymorphism.Several gene rearrangements on the Y chromosome occur during evolution owing to its specific gene structure.The consequences of such rearrangements are not only loss but also gain of specific genes.One hundred and fifty three haplotypes have been discovered in the human Y chromosome.The structure of the Y chromosome in the GenBank belongs to haplotype R1.There are 220 genes (104 coding genes,111 pseudogenes,and 5 other uncategorized genes) according to the most recent count.The 104 coding genes encode a total of about 48 proteins/protein families (including putative proteins/protein families).Among them,16 gene products have been discovered in the azoospermia factor region (AZF) and are related to spermatogenesis.It has been dis-covered that one subset of gene rearrangements on the Y chromosome,"micro-deletions",is a major cause of male infertility in some populations.However,controversies exist about different Y

  11. Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome.

    Science.gov (United States)

    van Oven, Mannis; Van Geystelen, Anneleen; Kayser, Manfred; Decorte, Ronny; Larmuseau, Maarten H D

    2014-02-01

    During the last few decades, a wealth of studies dedicated to the human Y chromosome and its DNA variation, in particular Y-chromosome single-nucleotide polymorphisms (Y-SNPs), has led to the construction of a well-established Y-chromosome phylogeny. Since the recent advent of new sequencing technologies, the discovery of additional Y-SNPs is exploding and their continuous incorporation in the phylogenetic tree is leading to an ever higher resolution. However, the large and increasing amount of information included in the "complete" Y-chromosome phylogeny, which now already includes many thousands of identified Y-SNPs, can be overwhelming and complicates its understanding as well as the task of selecting suitable markers for genotyping purposes in evolutionary, demographic, anthropological, genealogical, medical, and forensic studies. As a solution, we introduce a concise reference phylogeny whereby we do not aim to provide an exhaustive tree that includes all known Y-SNPs but, rather, a quite stable reference tree aiming for optimal global discrimination capacity based on a strongly reduced set that includes only the most resolving Y-SNPs. Furthermore, with this reference tree, we wish to propose a common standard for Y-marker as well as Y-haplogroup nomenclature. The current version of our tree is based on a core set of 417 branch-defining Y-SNPs and is available online at http://www.phylotree.org/Y.

  12. Unique signatures of natural background radiation on human Y chromosomes from Kerala, India.

    Directory of Open Access Journals (Sweden)

    Sanjay Premi

    Full Text Available BACKGROUND: The most frequently observed major consequences of ionizing radiation are chromosomal lesions and cancers, although the entire genome may be affected. Owing to its haploid status and absence of recombination, the human Y chromosome is an ideal candidate to be assessed for possible genetic alterations induced by ionizing radiation. We studied the human Y chromosome in 390 males from the South Indian state of Kerala, where the level of natural background radiation (NBR is ten-fold higher than the worldwide average, and that from 790 unexposed males as control. RESULTS: We observed random microdeletions in the Azoospermia factor (AZF a, b and c regions in >90%, and tandem duplication and copy number polymorphism (CNP of 11 different Y-linked genes in about 80% of males exposed to NBR. The autosomal homologues of Y-linked CDY genes largely remained unaffected. Multiple polymorphic copies of the Y-linked genes showing single Y-specific signals suggested their tandem duplication. Some exposed males showed unilocus duplication of DAZ genes resulting in six copies. Notably, in the AZFa region, approximately 25% of exposed males showed deletion of the DBY gene, whereas flanking genes USP9Y and UTY remained unaffected. All these alterations were detected in blood samples but not in the germline (sperm samples. CONCLUSIONS: Exposure to high levels of NBR correlated with several interstitial polymorphisms of the human Y chromosome. CNPs and enhanced transcription of the SRY gene after duplication are envisaged to compensate for the loss of Y chromosome in some cells. The aforesaid changes, confined to peripheral blood lymphocytes, suggest a possible innate mechanism protecting the germline DNA from the NBR. Genome analysis of a larger population focusing on greater numbers of genes may provide new insights into the mechanisms and risks of the resultant genetic damages. The present work demonstrates unique signatures of NBR on human Y chromosomes

  13. Evolution of homologous sequences on the human X and Y chromosomes, outside of the meiotic pairing segment.

    OpenAIRE

    Bickmore, W A; Cooke, H J

    1987-01-01

    A sequence isolated from the long arm of the human Y chromosome detects a highly homologous locus on the X. This homology extends over at least 50 kb of DNA and is postulated to be the result of a transposition event between the X and Y chromosomes during recent human evolution, since homologous sequences are shown to be present on the X chromosome alone in the chimpanzee and gorilla.

  14. Y-chromosome evidence for no independent origin of mod-ern human in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    East Asia is one of the few regions in the world where a large number of human fossils have been unearthed. The continuity of hominid fossils in East Asia, particularly in China has been presented as strong evidence supporting an independent origin of modern humans in this area. To search for such evidence of a possible independent origin of modern humans in China, a total of 9988 male individuals were sam-pled across China. Three Y-chromosome biallelic markers (M89, M130 and YAP), which were located at the non-re- combinant region of Y-chromosome, were typed among the samples. Our result showed that all the individuals carry a mutation at one of the three loci. The three mutations (M89T, M130T, YAP+) coalesce to another mutation (M168T), which was originally derived from Africa about 31000 to 79000 years ago. In other words, all Y-chromosome samples from China, with no exception, were originally derived from a lineage of African origin. Hence, we conclude that even a very minor contribution of in situ hominid origin in China cannot be supported by the Y-chromosome evidence.

  15. In situ amplification of DNA fragments specific for human Y chromosome in cellular nuclei by PCR

    Institute of Scientific and Technical Information of China (English)

    张锡元; 姜海波; 李立家; 马琦; 杨建琪; 刘汀

    1996-01-01

    Using single primer pairs Y3 and Y4, in siru polymerase chain reaction (in situ PCR) was successfully performed on the specimen slides of peripheral leukocytes. By both of the direct digpxiginin-11-dUTP incorporation into PCR products with in situ PCR (direct in situ PCR) and in situ PCR followed by detection of in situ hybridization (indirect in siru PCR), DNA fragments specific for human Y chromosome were obviously amplified in cellular nuclei of specimens on the slides. The results were verified by Southern analysis. The methodology of in situ PCR and its application were discussed.

  16. Y-chromosome haplotype distribution in Han Chinese populations and modern human origin in East Asians

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We investigated the distribution of Y-chromosome haplotype using 19 Y-SNPs in Han Chinese populations from 22 provinces of China. Our data indicate distinctive patterns of Y chromosome between southern and northern Han Chinese populations. The southern populations are much more polymorphic than northern populations. The latter has only a subset of the southern haplotypes. This result confirms the genetic difference observed between southern and northern ethnic populations in East Asia. It supports the hypothesis that the first settlement of modern hu-mans of African origin occurred in the southern part of East Asia during the last Ice Age, and a northward migration led to the peopling of northern China.

  17. Y-chromosome haplotype distribution in Han Chinese populations and modern human origin in East Asians

    Institute of Scientific and Technical Information of China (English)

    KE; Yuehai

    2001-01-01

    [1]Cann, R. L., Stoneking, M., Wilson, A. C., Mitochondria DNA and human evolution, Nature, 1987, 325: 31-36.[2]Vigilant, L., Stoneking, M., Harpending, H. et al., African populations and the evolution of human mitochondrial DNA, Science, 1997, 253: 1503-1507.[3]Cavalli-Sforza, L. L., Piazza, M. P., The History and Geography of Human Genes, Princeton: Princeton University Press, 1994.[4]Brooks, A. S., Wood, B., Paleoanthropology, The Chinese side of the story, Nature, 1990, 344: 288-289.[5]Li, T., Etler, D. A., New middle Pleistocene hominid crania from Yunxian in China, Nature, 1992, 357: 404-407.[6]Wu, X. Z., Poirier, F. E., Human Evolution in China, Oxford: Oxford University Press, 1995.[7]Etler, D. A., The fossil evidence for human evolution in Asia, Annu. Rev. Anthropol., 1996, 25: 275-301.[8]Wolpoff, M. H., Interpretations of multiregional evolution, Science, 1996, 274: 704-707.[9]Stringer, C. B., Andrew, P., Genetic and fossil evidence for the origin of modern humans, Science ,1988, 239: 1263-1268.[10]Wilson, A. C.,Cann, R. L., The recent African genesis of humans, Scientific American, 1992, (4): 68-75.[11]Weng, Z., Yuan, Y., Du, R., Analysis of the genetic structure of human populations in China, Acta Anthropol. Sin. (in Chi-nese)1989, 8: 261-268.[12]Zhao, T., Zhang, G., Zhu, Y. et al., The distribution of immunoglobulin Gm allotypes in forty Chinese populations, Acta Anthropol. Sin. (in Chinese), 1986, 6: 1-8.[13]Chu, J. Y., Huang, W., Kuang, S. Q. et al., Genetic relationship of populations in China, Proc. Natl. Acad. Sci., 1998, 95: 11763-11768.[14]Jobling, M. A., Tyler-Smith, C., Fathers and sons: the Y chromosome and human evolution, Trends in Genetics,1995, 11: 449-455.[15]Oefner, P. J., Underhill, P. A., Comparative DNA sequencing by denaturing high-performance liquid chromatography (DHPLC), Am. J. Hum. Genet., 1995, 57: A266.[16]Oefner, P. J., Underhill, P. A., DNA mutation detection

  18. Genetic integrity of the human Y chromosome exposed to groundwater arsenic

    Directory of Open Access Journals (Sweden)

    Ali Sher

    2010-08-01

    Full Text Available Abstract Background Arsenic is a known human carcinogen reported to cause chromosomal deletions and genetic anomalies in cultured cells. The vast human population inhabiting the Ganges delta in West Bengal, India and Bangladesh is exposed to critical levels of arsenic present in the groundwater. The genetic and physiological mechanism of arsenic toxicity in the human body is yet to be fully established. In addition, lack of animal models has made work on this line even more challenging. Methods Human male blood samples were collected with their informed consent from 5 districts in West Bengal having groundwater arsenic level more than 50 μg/L. Isolation of genomic DNA and preparation of metaphase chromosomes was done using standard protocols. End point PCR was performed for established sequence tagged sites to ascertain the status of recombination events. Single nucleotide variants of candidate genes and amplicons were carried out using appropriate restriction enzymes. The copy number of DYZ1 array per haploid genome was calculated using real time PCR and its chromosomal localization was done by fluorescence in-situ hybridization (FISH. Results We studied effects of arsenic exposure on the human Y chromosome in males from different areas of West Bengal focusing on known recombination events (P5-P1 proximal; P5-P1 distal; gr/gr; TSPY-TSPY, b1/b3 and b2/b3, single nucleotide variants (SNVs of a few candidate Y-linked genes (DAZ, TTY4, BPY2, GOLGA2LY and the amplicons of AZFc region. Also, possible chromosomal reorganization of DYZ1 repeat arrays was analyzed. Barring a few microdeletions, no major changes were detected in blood DNA samples. SNV analysis showed a difference in some alleles. Similarly, DYZ1 arrays signals detected by FISH were found to be affected in some males. Conclusions Our Y chromosome analysis suggests that the same is protected from the effects of arsenic by some unknown mechanisms maintaining its structural and functional

  19. [Dicentric Y chromosome].

    Science.gov (United States)

    Abdelmoula, N Bouayed; Amouri, A

    2005-01-01

    Dicentric Y chromosomes are the most common Y structural abnormalities and their influence on gonadal and somatic development is extremely variable. Here, we report the third comprehensive review of the literature concerning dicentric Y chromosomes reported since 1994. We find 78 new cases for which molecular studies (PCR or FISH) have been widely applied to investigate SRY (68% of cases), GBY, ZFY, RFS4Y, GCY and different genes at AZF region. For dic(Yq), all cases (n = 20) were mosaic for 45,X and 4 of them were also mosaic for a 46,XY cell line. When breakpoints were available (15/20 cases), they were in Yp11. 50% of cases were phenotypic female and 20% phenotypic male while 20% of cases were reported with gonadal dysgenesis. Gonadal histology was defined in 8 cases but only in one case, gonadal tissu was genetically investigated because of gonadoblastoma. For dic(Yp) (n = 55), mosaicism concerned only 45,X cell line and was found in 50 cases while the remainder five cases were homogeneous. When breakpoints were available, it was at Yq11 in 50 cases and at Yq12 in two cases. 54% of cases were phenotypic female, 26% were phenotypic male and 18% were associated with genitalia ambiguous. SRY was analyzed in 33 cases, sequenced in 9 cases and was muted in only one case. Gonads were histologically explored in 34 cases and genetically investigated in 8 cases. Gonadoblastoma was found in only two cases. Through this review, it seems that phenotype-genotype correlations are still not possible and that homogeneous studies of dic(Y) in more patients using molecular tools for structural characterization of the rearranged Y chromosome and assessment of mosaicism in many organs are necessary to clarify the basis of the phenotypic heterogeneity of dicentric Y chromosomes and then to help phenotypic prediction of such chromosome rearrangement.

  20. An Extensive Analysis of Y-Chromosomal Microsatellite Haplotypes in Globally Dispersed Human Populations

    Science.gov (United States)

    Kayser, Manfred; Krawczak, Michael; Excoffier, Laurent; Dieltjes, Patrick; Corach, Daniel; Pascali, Vincente; Gehrig, Christian; Bernini, Luigi F.; Jespersen, Jørgen; Bakker, Egbert; Roewer, Lutz; de Knijff, Peter

    2001-01-01

    The genetic variance at seven Y-chromosomal microsatellite loci (or short tandem repeats [STRs]) was studied among 986 male individuals from 20 globally dispersed human populations. A total of 598 different haplotypes were observed, of which 437 (73.1%) were each found in a single male only. Population-specific haplotype-diversity values were .86–.99. Analyses of haplotype diversity and population-specific haplotypes revealed marked population-structure differences between more-isolated indigenous populations (e.g., Central African Pygmies or Greenland Inuit) and more-admixed populations (e.g., Europeans or Surinamese). Furthermore, male individuals from isolated indigenous populations shared haplotypes mainly with male individuals from their own population. By analysis of molecular variance, we found that 76.8% of the total genetic variance present among these male individuals could be attributed to genetic differences between male individuals who were members of the same population. Haplotype sharing between populations, ΦST statistics, and phylogenetic analysis identified close genetic affinities among European populations and among New Guinean populations. Our data illustrate that Y-chromosomal STR haplotypes are an ideal tool for the study of the genetic affinities between groups of male subjects and for detection of population structure. PMID:11254455

  1. The Y Chromosome

    Science.gov (United States)

    Offner, Susan

    2010-01-01

    The Y chromosome is of great interest to students and can be used to teach about many important biological concepts in addition to sex determination. This paper discusses mutation, recombination, mammalian sex determination, sex determination in general, and the evolution of sex determination in mammals. It includes a student activity that…

  2. Human Y chromosome microdeletion analysis by PCR multiplex protocols identifying only clinically relevant AZF microdeletions.

    Science.gov (United States)

    Vogt, Peter H; Bender, Ulrike

    2013-01-01

    PCR multiplex assays are the method of choice for quickly revealing genomic microdeletions in the large repetitive genomic sequence blocks on the long arm of the human Y chromosome. They harbor the Azoospermia Factor (AZF) genes, which cause male infertility when functionally disrupted. These protein encoding Y genes are expressed exclusively or predominantly during male germ cell development, i.e., at different phases of human spermatogenesis. They are located in three distinct genomic sequence regions designated AZFa, AZFb, and AZFc, respectively. Complete deletion of an AZF region, also called "classical" AZF microdeletion, is always associated with male infertility and a distinct testicular pathology. Partial AZF deletions including single AZF Y genes can cause the same testicular pathology as the corresponding complete deletion (e.g., DDX3Y gene deletions in AZFa), or might not be associated with male infertility at all (e.g., some BPY2, CDY1, DAZ gene deletions in AZFc). We therefore propose that a PCR multiplex assay aimed to reduce only those AZF microdeletions causing a specific testicular pathology-thus relevant for clinical applications. It only includes Sequence Tagged Site (STS) deletion markers inside the exon structures of the Y genes known to be expressed in male germ cells and located in the three AZF regions. They were integrated in a robust standard protocol for four PCR multiplex mixtures which also include the basic principles of quality control according to the strict guidelines of the European Molecular Genetics Quality Network (EMQN: http://www.emqn.org). In case all Y genes of one AZF region are deleted the molecular extension of this AZF microdeletion is diagnosed to be yes or no comparable to that of the "classical" AZF microdeletion by an additional PCR multiplex assay analyzing the putative AZF breakpoint borderlines.

  3. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Salido, E.C. (Faculty of Medicine, La Laguna (Spain)); Yen, P.H.; Koprivnikar, K.; Shapiro, L.J. (University of California School of Medicine, Torrence (United States)); Yu, Lohchung (Lawrence Livermore National Laboratory, CA (United States))

    1992-02-01

    Amelogenins, a family of extracellular matrix proteins of the dental enamel, are transiently but abundantly expressed by ameloblasts during tooth development. In this paper the authors report the characterization of the AMGX and AMGY genes on the short arms of the human X and Y chromosomes which encode the amelogenins. Their studies on the expression of the amelogenin genes in male developing tooth buds showed that both the AMGX and AMGY genes are transcriptionally active and encode potentially functional proteins. They have isolated genomic and cDNA clones form both the AMGX and AMGY loci and have studied the sequence organization of these two genes. Reverse transcriptase (RT)PCR amplification of the 5[prime] portion of the amelogenin transcripts revealed several alternatively spliced products. This information will be useful for studying the molecular basis of X-linked amelogenesis imperfecta, for understanding the evolution and regulation of gene expression on the mammalian sex chromosomes, and for investigating the role of amelogenin genes during tooth development.

  4. Y-chromosome polymorphism: Possible largest Y chromosome in man?

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, D.S.K.; Al-Awadi, S.A.; Bastaki, L. [Kuwait Medical Genetics Centre, Sulaibikat (Kuwait)] [and others

    1994-09-01

    The role of variations (inversions/deletion or duplication) in the heterochromatin in gonadal development and function, reproductive fitness, and malignant disease has been extensively studied. However, the causal-relationship of large Y (Yqh+) and repeated fetal loss has not been established unequivocally. An Arab couple (?Bedouin origin) with a history of repeated abortions were investigated. Karyotype analysis of the husband showed a very large Y chromosome, confirmed by GTG-, QFQ- and CBG-banding techniques. C-banding showed discontinuous distribution of the heterochromatin blocks separated by pale bands. The origin of the large heterochromatin segment could be due to tandem duplication of the Yq region or translocation (Yq:Yq). No other relatives (males) of the propositus have been available for investigation. Polymorphism of the Y chromosome could be attributed to evolutionary changes from an ancestral type, either by deletion or duplication of the heterochromatin segment. More detailed studies on isolated, aboriginal/tribal human populations will enable us to better understand the significance of the Y chromosome polymorphism.

  5. Novel gene acquisition on carnivore Y chromosomes.

    Directory of Open Access Journals (Sweden)

    William J Murphy

    2006-03-01

    Full Text Available Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced. We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority.

  6. [Y chromosome structural abnormalities and Turner's syndrome].

    Science.gov (United States)

    Ravel, C; Siffroi, J-P

    2009-06-01

    Although specifically male, the human Y chromosome may be observed in female karyotypes, mostly in women with Turner syndrome stigmata. In women with isolated gonadal dysgenesis but otherwise normal stature, the testis determining factor or SRY gene may have been removed from the Y chromosome or may be mutated. In other women with Turner syndrome, the karyotype is usually abnormal and shows a frequent 45,X/46,XY mosaicism. In these cases, the phenotype depends on the ratio between Y positive and 45,X cell lines in the body. When in mosaicism, Y chromosomes are likely to carry structural abnormalities which explain mitotic instability, such as the existence of two centromeres. Dicentric Y isochromosomes for the short arm (idic[Yp]) or ring Y chromosomes (r[Y]) are the most frequent abnormal Y chromosomes found in infertile patients and in Turner syndrome in mosaic with 45,X cells. Although monocentric, deleted Y chromosomes for the long arm and those carrying microdeletions in the AZF region are also instable and are frequently associated with a 45,X cell line. Management of infertile patients carrying such abnormal Y chromosomes must take into account the risk and the consequences of a mosaicism in the offspring.

  7. Genetics Home Reference: Y chromosome infertility

    Science.gov (United States)

    ... Home Health Conditions Y chromosome infertility Y chromosome infertility Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description Y chromosome infertility is a condition that affects the production of ...

  8. Temporal differentiation across a West-European Y-chromosomal cline: genealogy as a tool in human population genetics.

    Science.gov (United States)

    Larmuseau, Maarten H D; Ottoni, Claudio; Raeymaekers, Joost A M; Vanderheyden, Nancy; Larmuseau, Hendrik F M; Decorte, Ronny

    2012-04-01

    The pattern of population genetic variation and allele frequencies within a species are unstable and are changing over time according to different evolutionary factors. For humans, it is possible to combine detailed patrilineal genealogical records with deep Y-chromosome (Y-chr) genotyping to disentangle signals of historical population genetic structures because of the exponential increase in genetic genealogical data. To test this approach, we studied the temporal pattern of the 'autochthonous' micro-geographical genetic structure in the region of Brabant in Belgium and the Netherlands (Northwest Europe). Genealogical data of 881 individuals from Northwest Europe were collected, from which 634 family trees showed a residence within Brabant for at least one generation. The Y-chr genetic variation of the 634 participants was investigated using 110 Y-SNPs and 38 Y-STRs and linked to particular locations within Brabant on specific time periods based on genealogical records. Significant temporal variation in the Y-chr distribution was detected through a north-south gradient in the frequencies distribution of sub-haplogroup R1b1b2a1 (R-U106), next to an opposite trend for R1b1b2a2g (R-U152). The gradient on R-U106 faded in time and even became totally invisible during the Industrial Revolution in the first half of the nineteenth century. Therefore, genealogical data for at least 200 years are required to study small-scale 'autochthonous' population structure in Western Europe.

  9. The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution.

    Science.gov (United States)

    Blackmon, Heath; Demuth, Jeffery P

    2015-09-01

    Loss of the Y-chromosome is a common feature of species with chromosomal sex determination. However, our understanding of why some lineages frequently lose Y-chromosomes while others do not is limited. The fragile Y hypothesis proposes that in species with chiasmatic meiosis the rate of Y-chromosome aneuploidy and the size of the recombining region have a negative correlation. The fragile Y hypothesis provides a number of novel insights not possible under traditional models. Specifically, increased rates of Y aneuploidy may impose positive selection for (i) gene movement off the Y; (ii) translocations and fusions which expand the recombining region; and (iii) alternative meiotic segregation mechanisms (achiasmatic or asynaptic). These insights as well as existing evidence for the frequency of Y-chromosome aneuploidy raise doubt about the prospects for long-term retention of the human Y-chromosome despite recent evidence for stable gene content in older non-recombining regions.

  10. Characterization of a new aberration of the human Y chromosome by banding methods and DNA restriction endonuclease analysis.

    Science.gov (United States)

    Schmid, M; Gall, H; Schempp, W; Weber, L; Schmidtke, J

    1981-01-01

    Comparative cytogenetic analyses were performed with ten different banding methods on a previously undescribed, inherited structural aberration of a Y chromosome, and the results compared with those of normal Y chromosomes occurring in the same family. The value of the individual staining techniques in investigations of Y chromosomal aberrations is emphasized. The aberrant Y chromosome analyzed can be formally derived from an isodicentric Y chromosome for the short arm with a very terminal long-arm breakpoint, in which the centromere, an entire short arm, and the proximal region on one long arm was lost. This interpretation was confirmed by determining the amount of the two Y-specific DNA sequences (2.1 and 3.4 kb in length) by means of Hae III restriction endonuclease analysis. The karyotype-phenotype correlations in the men with this aberrant Y chromosome, especially the fertility dysfunctions (oligoasthenoteratozoospermia, cryptozoospermia), are discussed. The possibility of the existence of fertility factors involved in the control of spermatogenesis within the quinacrine-bright heterochromatic region of the Y long arm is presented.

  11. An updated phylogeny of the human Y-chromosome lineage O2a-M95 with novel SNPs.

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhang

    Full Text Available Though the Y-chromosome O2a-M95 lineage is one of the major haplogroups present in eastern Asian populations, especially among Austro-Asiatic speaking populations from Southwestern China and mainland Southeast Asia, to date its phylogeny lacks structure due to only one downstream SNP marker (M88 assigned to the lineage. A recent array-capture-based Y chromosome sequencing of Asian samples has yielded a variety of novel SNPs purportedly belonging to the O2a-M95 lineage, but their phylogenetic positions have yet to be determined. In this study, we sampled 646 unrelated males from 22 Austro-Asiatic speaking populations from Cambodia, Thailand and Southwestern China, and genotyped 12 SNP makers among the sampled populations, including 10 of the newly reported markers. Among the 646 males, 343 belonged to the O2a-M95 lineage, confirming the supposed dominance of this Y chromosome lineage in Austro-Asiatic speaking populations. We further characterized the phylogeny of O2a-M95 by defining 5 sub-branches: O2a1*-M95, O2a1a-F789, O2a1b*-F1252, O2a1b1*-M88 and O2a1b1a -F761. This updated phylogeny not only improves the resolution of this lineage, but also allows for greater tracing of the prehistory of human populations in eastern Asia and the Pacific, which may yield novel insights into the patterns of language diversification and population movement in these regions.

  12. An updated phylogeny of the human Y-chromosome lineage O2a-M95 with novel SNPs.

    Science.gov (United States)

    Zhang, Xiaoming; Kampuansai, Jatupol; Qi, Xuebin; Yan, Shi; Yang, Zhaohui; Serey, Bun; Sovannary, Tuot; Bunnath, Long; Aun, Hong Seang; Samnom, Ham; Kutanan, Wibhu; Luo, Xin; Liao, Shiyu; Kangwanpong, Daoroong; Jin, Li; Shi, Hong; Su, Bing

    2014-01-01

    Though the Y-chromosome O2a-M95 lineage is one of the major haplogroups present in eastern Asian populations, especially among Austro-Asiatic speaking populations from Southwestern China and mainland Southeast Asia, to date its phylogeny lacks structure due to only one downstream SNP marker (M88) assigned to the lineage. A recent array-capture-based Y chromosome sequencing of Asian samples has yielded a variety of novel SNPs purportedly belonging to the O2a-M95 lineage, but their phylogenetic positions have yet to be determined. In this study, we sampled 646 unrelated males from 22 Austro-Asiatic speaking populations from Cambodia, Thailand and Southwestern China, and genotyped 12 SNP makers among the sampled populations, including 10 of the newly reported markers. Among the 646 males, 343 belonged to the O2a-M95 lineage, confirming the supposed dominance of this Y chromosome lineage in Austro-Asiatic speaking populations. We further characterized the phylogeny of O2a-M95 by defining 5 sub-branches: O2a1*-M95, O2a1a-F789, O2a1b*-F1252, O2a1b1*-M88 and O2a1b1a -F761. This updated phylogeny not only improves the resolution of this lineage, but also allows for greater tracing of the prehistory of human populations in eastern Asia and the Pacific, which may yield novel insights into the patterns of language diversification and population movement in these regions.

  13. The DNA sequence of the human X chromosome

    OpenAIRE

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L; Jennifer L Ashurst; Fulton, Robert S.

    2005-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a...

  14. In silico prediction of structure and functions for some proteins of male-specific region of the human Y chromosome.

    Science.gov (United States)

    Saha, Chinmoy; Polash, Ahsan Habib; Islam, Md Tariqul; Shafrin, Farhana

    2013-12-01

    Male-specific region of the human Y chromosome (MSY) comprises 95% of its length that is functionally active. This portion inherits in block from father to male offspring. Most of the genes in the MSY region are involved in male-specific function, such as sex determination and spermatogenesis; also contains genes probably involved in other cellular functions. However, a detailed characterization of numerous MSY-encoded proteins still remains to be done. In this study, 12 uncharacterized proteins of MSY were analyzed through bioinformatics tools for structural and functional characterization. Within these 12 proteins, a total of 55 domains were found, with DnaJ domain signature corresponding to be the highest (11%) followed by both FAD-dependent pyridine nucleotide reductase signature and fumarate lyase superfamily signature (9%). The 3D structures of our selected proteins were built up using homology modeling and the protein threading approaches. These predicted structures confirmed in detail the stereochemistry; indicating reasonably good quality model. Furthermore the predicted functions and the proteins with whom they interact established their biological role and their mechanism of action at molecular level. The results of these structure-functional annotations provide a comprehensive view of the proteins encoded by MSY, which sheds light on their biological functions and molecular mechanisms. The data presented in this study may assist in future prognosis of several human diseases such as Turner syndrome, gonadal sex reversal, spermatogenic failure, and gonadoblastoma.

  15. Human male meiotic sex chromosome inactivation.

    Science.gov (United States)

    de Vries, Marieke; Vosters, Sanne; Merkx, Gerard; D'Hauwers, Kathleen; Wansink, Derick G; Ramos, Liliana; de Boer, Peter

    2012-01-01

    In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI), which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.

  16. Human male meiotic sex chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Marieke de Vries

    Full Text Available In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI, which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.

  17. Human Y Chromosome Haplogroup N: A Non-trivial Time-Resolved Phylogeography that Cuts across Language Families.

    Science.gov (United States)

    Ilumäe, Anne-Mai; Reidla, Maere; Chukhryaeva, Marina; Järve, Mari; Post, Helen; Karmin, Monika; Saag, Lauri; Agdzhoyan, Anastasiya; Kushniarevich, Alena; Litvinov, Sergey; Ekomasova, Natalya; Tambets, Kristiina; Metspalu, Ene; Khusainova, Rita; Yunusbayev, Bayazit; Khusnutdinova, Elza K; Osipova, Ludmila P; Fedorova, Sardana; Utevska, Olga; Koshel, Sergey; Balanovska, Elena; Behar, Doron M; Balanovsky, Oleg; Kivisild, Toomas; Underhill, Peter A; Villems, Richard; Rootsi, Siiri

    2016-07-07

    The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny. We evaluate geographic structure by using 16 distinguishing binary markers in 1,631 hg N Y chromosomes from a collection of 6,521 samples from 56 populations. The more southerly distributed sub-clade N4 emerged before N2a1 and N3, found mostly in the north, but the latter two display more elaborate branching patterns, indicative of regional contrasts in recent expansions. In particular, a number of prominent and well-defined clades with common N3a3'6 ancestry occur in regionally dissimilar northern Eurasian populations, indicating almost simultaneous regional diversification and expansion within the last 5,000 years. This patrilineal genetic affinity is decoupled from the associated higher degree of language diversity.

  18. Review of the Y chromosome and hypertension

    Directory of Open Access Journals (Sweden)

    D. Ely

    2000-06-01

    Full Text Available The Y chromosome from spontaneously hypertensive rats (SHR has a locus that raises blood pressure 20-25 mmHg. Associated with the SHR Y chromosome effect is a 4-week earlier pubertal rise of testosterone and dependence upon the androgen receptor for the full blood pressure effect. Several indices of enhanced sympathetic nervous system (SNS activity are also associated with the SHR Y chromosome. Blockade of SNS outflow reduced the blood pressure effect. Salt sensitivity was increased by the Y chromosome as was salt appetite which was SNS dependent. A strong correlation (r = 0.57, P<0.001 was demonstrable between plasma testosterone and angiotensin II. Coronary collagen increased with blood pressure and the presence of the SHR Y chromosome. A promising candidate gene for the Y effect is the Sry locus (testis determining factor, a transcription factor which may also have other functions.

  19. New native South American Y chromosome lineages.

    Science.gov (United States)

    Jota, Marilza S; Lacerda, Daniela R; Sandoval, José R; Vieira, Pedro Paulo R; Ohasi, Dominique; Santos-Júnior, José E; Acosta, Oscar; Cuellar, Cinthia; Revollo, Susana; Paz-Y-Miño, Cesar; Fujita, Ricardo; Vallejo, Gustavo A; Schurr, Theodore G; Tarazona-Santos, Eduardo M; Pena, Sergio Dj; Ayub, Qasim; Tyler-Smith, Chris; Santos, Fabrício R

    2016-07-01

    Many single-nucleotide polymorphisms (SNPs) in the non-recombining region of the human Y chromosome have been described in the last decade. High-coverage sequencing has helped to characterize new SNPs, which has in turn increased the level of detail in paternal phylogenies. However, these paternal lineages still provide insufficient information on population history and demography, especially for Native Americans. The present study aimed to identify informative paternal sublineages derived from the main founder lineage of the Americas-haplogroup Q-L54-in a sample of 1841 native South Americans. For this purpose, we used a Y-chromosomal genotyping multiplex platform and conventional genotyping methods to validate 34 new SNPs that were identified in the present study by sequencing, together with many Y-SNPs previously described in the literature. We updated the haplogroup Q phylogeny and identified two new Q-M3 and three new Q-L54*(xM3) sublineages defined by five informative SNPs, designated SA04, SA05, SA02, SA03 and SA29. Within the Q-M3, sublineage Q-SA04 was mostly found in individuals from ethnic groups belonging to the Tukanoan linguistic family in the northwest Amazon, whereas sublineage Q-SA05 was found in Peruvian and Bolivian Amazon ethnic groups. Within Q-L54*, the derived sublineages Q-SA03 and Q-SA02 were exclusively found among Coyaima individuals (Cariban linguistic family) from Colombia, while Q-SA29 was found only in Maxacali individuals (Jean linguistic family) from southeast Brazil. Furthermore, we validated the usefulness of several published SNPs among indigenous South Americans. This new Y chromosome haplogroup Q phylogeny offers an informative paternal genealogy to investigate the pre-Columbian history of South America.Journal of Human Genetics advance online publication, 31 March 2016; doi:10.1038/jhg.2016.26.

  20. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  1. Homologies between human and marmoset (Callithrix jacchus) chromosomes revealed by comparative chromosome painting

    Energy Technology Data Exchange (ETDEWEB)

    Sherlock, J.K.; Griffin, D.K.; Delhanty, J.D.A.; Parrington, J.M. [Univ. College London (United Kingdom)

    1996-04-15

    Regions of DNA homology between human and marmoset (Callithrix jacchus) chromosomes have been demonstrated using fluorescence in situ hybridization. All 24 chromosome paints and two centromere repeat sequences from Homo sapiens (HSA) have been annealed to previously G-banded metaphase spreads of Callithrix jacchus. All human paint probes, except Y, successfully hybridized to marmoset chromosomes. Fifteen of them hybridized to one region only, seven to two regions, and paint 1 to three regions. Homologies proposed from previous banding comparisons have been confirmed for HSA 2, 4-6, 10-12, 18, 19, 21, and X and partially confirmed for HSA 1 and 3, but were not in agreement for HSA 14 and 17. Human centromere repeat sequences for X and 18 did not hybridize to marmoset chromosomes. Because, at present, there is the confusing situation of several different numbering systems for marmoset chromosomes, we propose a new simpler nomenclature based on descending order of chromosome size. 25 refs., 3 figs.

  2. Genomic Dark Matter Illuminated: Anopheles Y Chromosomes.

    Science.gov (United States)

    Redmond, Seth N; Neafsey, Daniel E

    2016-08-01

    Hall et al. have strategically used long-read sequencing technology to characterize the structure and highly repetitive content of the Y chromosome in Anopheles malaria mosquitoes. Their work confirms that this important but elusive heterochromatic sex chromosome is evolving extremely rapidly and harbors a remarkably small number of genes.

  3. Localization of Sry gene on Y chromosome of Muntjac munticus vaginalis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The chromosomes 1, Y1, Y2 of Muntjac munticus vaginalis were isolated by fluorescence activated chromosome sorting and amplified by degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR). A primer pair within human Sry HMG box was designed and the Sry gene of the male M. m vaginalis was amplified. The product was cloned and sequenced. The result proved that Sry is located on chromosome Y2, which is the sex-determining chromosome in the male M. m vaginalis.

  4. Y chromosome in Turner syndrome: review of the literature

    Directory of Open Access Journals (Sweden)

    Rose Mary Rocco de Oliveira

    Full Text Available Turner syndrome (TS is one of the most common types of aneuploidy among humans, and is present in 1:2000 newborns with female phenotype. Cytogenetically, the syndrome is characterized by sex chromosome monosomy (45,X, which is present in 50-60% of the cases. The other cases present mosaicism, with a 45,X cell line accompanied by one or more other cell lines with a complete or structurally abnormal X or Y chromosome. The presence of Y-chromosome material in patients with dysgenetic gonads increases the risk of gonadal tumors, especially gonadoblastoma. The greatest concern is the high risk of developing gonadoblastoma or other tumors and virilization during puberty if chromosome Y-specific sequences are present. The role of the Y chromosome in human oncogenesis is still controversial. Even though gonadoblastoma is a benign tumor, it can undergo transformation into invasive dysgerminoma in 60% of the cases, and also into other, malignant forms of germ cell tumors. Although some authors have questioned the high incidence of gonadoblastoma (around 30%, the risk of developing any kind of gonadal lesion, whether tumoral or not, justifies investigation of Y-chromosome sequences by means of the polymerase chain reaction (PCR, a highly sensitive, low-cost and easy-to-perform technique. In conclusion, mosaicism of both the X and the Y chromosome is a common finding in TS, and detection of Y-chromosome-specific sequences in patients, regardless of their karyotype, is necessary in order to prevent the development of gonadal lesions.

  5. Molecular genetic evidence for the human settlement of the Pacific: analysis of mitochondrial DNA, Y chromosome and HLA markers.

    Science.gov (United States)

    Hagelberg, E; Kayser, M; Nagy, M; Roewer, L; Zimdahl, H; Krawczak, M; Lió, P; Schiefenhövel, W

    1999-01-29

    Present-day Pacific islanders are thought to be the descendants of Neolithic agriculturalists who expanded from island South-east Asia several thousand years ago. They speak languages belonging to the Austronesian language family, spoken today in an area spanning half of the circumference of the world, from Madagascar to Easter Island, and from Taiwan to New Zealand. To investigate the genetic affinities of the Austronesian-speaking peoples, we analysed mitochondrial DNA, HLA and Y-chromosome polymorphisms in individuals from eight geographical locations in Asia and the Pacific (China, Taiwan, Java, New Guinea highlands, New Guinea coast, Trobriand Islands, New Britain and Western Samoa). Our results show that the demographic expansion of the Austronesians has left a genetic footprint. However, there is no simple correlation between languages and genes in the Pacific.

  6. Expression of the human TSPY gene in the brains of transgenic mice suggests a potential role of this Y chromosome gene in neural functions

    Institute of Scientific and Technical Information of China (English)

    Tatsuo Kido; Stephanie Schubert; J(o)rg Schmidtke; Yun-Fai Chris Lau

    2011-01-01

    The testis specific protein Y-encoded (TSPY) is a member of TSPY/SET/NAPl superfamily, encoded within the gonadoblastoma locus on the Y chromosome. TSPY shares a highly conserved SET/NAP-domain responsible for protein-protein interaction among TSPY/SET/NAPl proteins.Accumulating data, so far, support the role of TSPY as the gonadoblastoma gene, involved in germ cell tumorigenesis. The X-chromosome homolog of TSPY, TSPX is expressed in various tissues at both fetal and adult stages, including the brain, and is capable of interacting with the multi-domain adapter protein CASK, thereby influencing the synaptic and transcriptional functions and developmental regulation of CASK in the brain and other neural tissues. Similar to TSPX, we demonstrated that TSPY could interact with CASK at its SET/NAP-domain in cultured cells. Transgenic mice harboring a human TSPY gene and flanking sequences showed specific expression of the human TSPYtransgene in both testis and brain. The neural expression pattern of the human TSPY gene overlapped with those of the endogenous mouse Cask and Tspx gene. Similarly with TSPX, TSPY was co-localized with CASK in neuronal axon fibers in the brain, suggesting a potential role(s) of TSPY in development and/or physiology of the nervous system.

  7. Different chromosome Y abnormalities in a case with short stature

    OpenAIRE

    Balkan, Mahmut; Fidanboy, Mehmet; Özbek, M. Nuri; Alp, M. Nail; Budak, Turgay

    2012-01-01

    We report a case with different chromosome Y abnormalities. Case was an 11-year-old boy, who was diagnosed with short stature, referred to laboratory of human medical genetics laboratory for genetic evaluation. Chromosomal analysis of the case was carried out on peripheral blood lymphocyte culture. Classic cytogenetic analysis (G and C banding) was confirmed by using fluorescence in situ hybridization analysis (FISH) technique. Cytogenetic and FISH analysis showed a mosaic 46,X,i(Yq)/45,X/47,...

  8. Human migration through bottlenecks from Southeast Asia into East Asia during Last Glacial Maximum revealed by Y chromosomes.

    Science.gov (United States)

    Cai, Xiaoyun; Qin, Zhendong; Wen, Bo; Xu, Shuhua; Wang, Yi; Lu, Yan; Wei, Lanhai; Wang, Chuanchao; Li, Shilin; Huang, Xingqiu; Jin, Li; Li, Hui

    2011-01-01

    Molecular anthropological studies of the populations in and around East Asia have resulted in the discovery that most of the Y-chromosome lineages of East Asians came from Southeast Asia. However, very few Southeast Asian populations had been investigated, and therefore, little was known about the purported migrations from Southeast Asia into East Asia and their roles in shaping the genetic structure of East Asian populations. Here, we present the Y-chromosome data from 1,652 individuals belonging to 47 Mon-Khmer (MK) and Hmong-Mien (HM) speaking populations that are distributed primarily across Southeast Asia and extend into East Asia. Haplogroup O3a3b-M7, which appears mainly in MK and HM, indicates a strong tie between the two groups. The short tandem repeat network of O3a3b-M7 displayed a hierarchical expansion structure (annual ring shape), with MK haplotypes being located at the original point, and the HM and the Tibeto-Burman haplotypes distributed further away from core of the network. Moreover, the East Asian dominant haplogroup O3a3c1-M117 shows a network structure similar to that of O3a3b-M7. These patterns indicate an early unidirectional diffusion from Southeast Asia into East Asia, which might have resulted from the genetic drift of East Asian ancestors carrying these two haplogroups through many small bottle-necks formed by the complicated landscape between Southeast Asia and East Asia. The ages of O3a3b-M7 and O3a3c1-M117 were estimated to be approximately 19 thousand years, followed by the emergence of the ancestors of HM lineages out of MK and the unidirectional northward migrations into East Asia.

  9. Two Y genes can replace the entire Y chromosome for assisted reproduction in the mouse.

    Science.gov (United States)

    Yamauchi, Yasuhiro; Riel, Jonathan M; Stoytcheva, Zoia; Ward, Monika A

    2014-01-03

    The Y chromosome is thought to be important for male reproduction. We have previously shown that, with the use of assisted reproduction, live offspring can be obtained from mice lacking the entire Y chromosome long arm. Here, we demonstrate that live mouse progeny can also be generated by using germ cells from males with the Y chromosome contribution limited to only two genes, the testis determinant factor Sry and the spermatogonial proliferation factor Eif2s3y. Sry is believed to function primarily in sex determination during fetal life. Eif2s3y may be the only Y chromosome gene required to drive mouse spermatogenesis, allowing formation of haploid germ cells that are functional in assisted reproduction. Our findings are relevant, but not directly translatable, to human male infertility cases.

  10. Hierarchical radial and polar organisation of chromosomes in human sperm.

    Science.gov (United States)

    Millan, N M; Lau, P; Hann, M; Ioannou, D; Hoffman, D; Barrionuevo, M; Maxson, W; Ory, S; Tempest, H G

    2012-10-01

    It is well established that chromosomes occupy distinct positions within the interphase nuclei, conferring a potential functional implication to the genome. In addition, alterations in the nuclear organisation patterns have been associated with disease phenotypes (e.g. cancer or laminopathies). The human sperm is the smallest cell in the body with specific DNA packaging and the mission of delivering the paternal genome to the oocyte during fertilisation. Studies of nuclear organisation in the sperm have postulated nonrandom chromosome position and have proposed a chromocentre model with the centromeres facing toward the interior and the telomeres toward the periphery of the nucleus. Most studies have assessed the nuclear address in the sperm longitudinally predominantly using centromeric or telomeric probes and to a lesser extent with whole chromosome paints. To date, studies investigating the radial organisation of human sperm have been limited. The purpose of this study was to utilise whole chromosome paints for six clinically important chromosomes (18, 19, 21, 22, X, and Y) to investigate nuclear address by assessing their radial and longitudinal nuclear organisation. A total of 10,800 sperm were analysed in nine normozoospermic individuals. The results have shown nonrandom chromosome position for all chromosomes using both methods of analysis. We present novel radial and polar analysis of chromosome territory localization within the human sperm nucleus. Specifically, a hierarchical organisation was observed radially with chromosomes organised from the interior to the periphery (chromosomes 22, 21, Y, X, 19, and 18 respectively) and polar organisation from the sperm head to tail (chromosomes X, 19, Y, 22, 21, and 18, respectively). We provide evidence of defined nuclear organisation in the human sperm and discuss the function of organisation and potential possible clinical ramifications of these results in regards to male infertility and early human development.

  11. [Familial, structural aberration of the Y chromosome with fertility disorders].

    Science.gov (United States)

    Gall, H; Schmid, M; Schmidtke, J; Schempp, W; Weber, L

    1985-11-01

    Cytogenetic studies on a patient with Klinefelter's syndrome revealed an inherited, structural aberration of the Y-chromosome which has not been described before. The aberrant Y-chromosome was characterized by eight different banding methods. The value of individual staining techniques in studies on Y-heterochromatin aberrations is emphasized. Analysis of the cytogenetic studies (banding methods, restriction endonuclease of DNA, and measurement of the length of the Y-chromosome) permits an interpretation to be made on how the aberrant Y-chromosome originated. The functions of the Y-chromosome are discussed. The decrease in fertility (cryptozoospermia) in the two brothers with the same aberrant Y-chromosome was striking.

  12. Recombination dynamics of a human Y-chromosomal palindrome: rapid GC-biased gene conversion, multi-kilobase conversion tracts, and rare inversions.

    Directory of Open Access Journals (Sweden)

    Pille Hallast

    Full Text Available The male-specific region of the human Y chromosome (MSY includes eight large inverted repeats (palindromes in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9-8.4×10(-4 events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased, and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages.

  13. Human male meiotic sex chromosome inactivation

    NARCIS (Netherlands)

    Vries, M. de; Vosters, S.; Merkx, G.F.M.; Hauwers, K.W.M. d'; Wansink, D.G.; Ramos, L.; Boer, P. de

    2012-01-01

    In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylate

  14. Estimating tempo and mode of Y chromosome turnover: explaining Y chromosome loss with the fragile Y hypothesis.

    Science.gov (United States)

    Blackmon, Heath; Demuth, Jeffery P

    2014-06-01

    Chromosomal sex determination is phylogenetically widespread, having arisen independently in many lineages. Decades of theoretical work provide predictions about sex chromosome differentiation that are well supported by observations in both XY and ZW systems. However, the phylogenetic scope of previous work gives us a limited understanding of the pace of sex chromosome gain and loss and why Y or W chromosomes are more often lost in some lineages than others, creating XO or ZO systems. To gain phylogenetic breadth we therefore assembled a database of 4724 beetle species' karyotypes and found substantial variation in sex chromosome systems. We used the data to estimate rates of Y chromosome gain and loss across a phylogeny of 1126 taxa estimated from seven genes. Contrary to our initial expectations, we find that highly degenerated Y chromosomes of many members of the suborder Polyphaga are rarely lost, and that cases of Y chromosome loss are strongly associated with chiasmatic segregation during male meiosis. We propose the "fragile Y" hypothesis, that recurrent selection to reduce recombination between the X and Y chromosome leads to the evolution of a small pseudoautosomal region (PAR), which, in taxa that require XY chiasmata for proper segregation during meiosis, increases the probability of aneuploid gamete production, with Y chromosome loss. This hypothesis predicts that taxa that evolve achiasmatic segregation during male meiosis will rarely lose the Y chromosome. We discuss data from mammals, which are consistent with our prediction.

  15. Chromosomal patterns in human malignant astrocytomas.

    Science.gov (United States)

    Rey, J A; Bello, M J; de Campos, J M; Kusak, M E; Ramos, C; Benitez, J

    1987-12-01

    Cytogenetic analysis by direct and/or in vitro preparations was performed on 34 malignant astrocytomas. Thirty tumors showed near-diploid chromosome numbers, whereas, tritetraploid chromosome complements were present in four tumors. The most frequent chromosomal changes implied numerical deviations by a gain of chromosomes #7, #19, and #20, and by losses of #10, #22, and Y. Structural rearrangements were present in stem- or side lines of 24 tumors. Although no common chromosomal rearrangement seems to exist among those tumors, chromosomes #1, #6, #7, and #9 were predominantly involved. Polysomy and structural rearrangements of chromosome #7 could be related to the overexpression of epidermal growth factor gene, previously observed in some malignant gliomas.

  16. Chromosome Variations And Human Behavior

    Science.gov (United States)

    Soudek, D.

    1974-01-01

    Article focused on the science of cytogenetics, which studied the transmission of the units of heredity called chromosomes, and considered the advantage of proper diagnosis of genetic diseases, treated on the chromosomal level. (Author/RK)

  17. Y chromosome microdeletions in Turkish infertile men

    Directory of Open Access Journals (Sweden)

    Zamani Ayse

    2006-01-01

    Full Text Available AIMS: To detect the frequency and types of both chromosomal abnormalities and Y chromosome microdeletions in infertile men attending to our university intracytoplasmic sperm injection ICSI/IVF centre and fertile control subjects in our patient population. SETTINGS AND DESIGN: A total of 50 infertile men who were referred to IVF center of Meram medical faculty were selected for the molecular azospermia factor (AZF screening program. MATERIALS AND METHODS: Karyotype analysis and polymerase chain reaction amplification using 15 Y-specific sequence-tagged sites of AZF region were done. RESULTS: The total prevalence of chromosomal abnormalities was found to be 10% (5/50, including 4 patients with numerical and 1 patient with structural abnormalities. Overall, 4 of the 50 patients tested (8% exhibited deletions of the Y chromosome, 3 of them being azospermic and 1 of them oligospermic men. The frequency of the microdeletions in subgroups with azospermia and oligozoospermia was found to be 10.7% (3/29 and 4.7% (1/21 respectively. Microdeletions of AZFb and AZFc regions were detected in all of the 4 patients. Neither AZFa nor AZFd microdeletions were indicated. CONCLUSIONS: Our findings suggest that one must know whether there is a genetic cause for male infertility before patients can be subjected to ISCI or testicular sperm extraction (TESE/ISCI treatment.

  18. Research on automatic human chromosome image analysis

    Science.gov (United States)

    Ming, Delie; Tian, Jinwen; Liu, Jian

    2007-11-01

    Human chromosome karyotyping is one of the essential tasks in cytogenetics, especially in genetic syndrome diagnoses. In this thesis, an automatic procedure is introduced for human chromosome image analysis. According to different status of touching and overlapping chromosomes, several segmentation methods are proposed to achieve the best results. Medial axis is extracted by the middle point algorithm. Chromosome band is enhanced by the algorithm based on multiscale B-spline wavelets, extracted by average gray profile, gradient profile and shape profile, and calculated by the WDD (Weighted Density Distribution) descriptors. The multilayer classifier is used in classification. Experiment results demonstrate that the algorithms perform well.

  19. The DNA sequence of the human X chromosome.

    Science.gov (United States)

    Ross, Mark T; Grafham, Darren V; Coffey, Alison J; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R; Burrows, Christine; Bird, Christine P; Frankish, Adam; Lovell, Frances L; Howe, Kevin L; Ashurst, Jennifer L; Fulton, Robert S; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C; Hurles, Matthew E; Andrews, T Daniel; Scott, Carol E; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P; Hunt, Sarah E; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Ainscough, Rachael; Ambrose, Kerrie D; Ansari-Lari, M Ali; Aradhya, Swaroop; Ashwell, Robert I S; Babbage, Anne K; Bagguley, Claire L; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E; Barlow, Karen F; Barrett, Ian P; Bates, Karen N; Beare, David M; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M; Brown, Andrew J; Brown, Mary J; Bonnin, David; Bruford, Elspeth A; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y; Clarke, Graham; Clee, Chris M; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G; Conquer, Jen S; Corby, Nicole; Connor, Richard E; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; Deshazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A; Hawes, Alicia; Heath, Paul D; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J; Huckle, Elizabeth J; Hume, Jennifer; Hunt, Paul J; Hunt, Adrienne R; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J; Joseph, Shirin S; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M; Loulseged, Hermela; Loveland, Jane E; Lovell, Jamieson D; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O'Dell, Christopher N; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V; Pearson, Danita M; Pelan, Sarah E; Perez, Lesette; Porter, Keith M; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A; Schlessinger, David; Schueler, Mary G; Sehra, Harminder K; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M; Shownkeen, Ratna; Skuce, Carl D; Smith, Michelle L; Sotheran, Elizabeth C; Steingruber, Helen E; Steward, Charles A; Storey, Roy; Swann, R Mark; Swarbreck, David; Tabor, Paul E; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C; d'Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L; Whiteley, Mathew N; Wilkinson, Jane E; Willey, David L; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L; Wray, Paul W; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J; Hillier, Ladeana W; Willard, Huntington F; Wilson, Richard K; Waterston, Robert H; Rice, Catherine M; Vaudin, Mark; Coulson, Alan; Nelson, David L; Weinstock, George; Sulston, John E; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A; Beck, Stephan; Rogers, Jane; Bentley, David R

    2005-03-17

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.

  20. Incidence of X and Y Chromosomal Aneuploidy in a Large Child Bearing Population

    OpenAIRE

    Samango-Sprouse, Carole; Kırkızlar, Eser; Hall, Megan P.; Lawson, Patrick; Demko, Zachary; Zneimer, Susan M.; Curnow, Kirsten J.; Gross, Susan; Gropman, Andrea

    2016-01-01

    Background X&Y chromosomal aneuploidies are among the most common human whole-chromosomal copy number changes, but the population-based incidence and prevalence in the child-bearing population is unclear. Methods This retrospective analysis of prospectively collected data leveraged a routine non-invasive prenatal test (NIPT) using parental genotyping to estimate the population-based incidence of X&Y chromosome variations in this population referred for NIPT (generally due to advanced maternal...

  1. A Plain English Map of the Human Chromosomes.

    Science.gov (United States)

    Offner, Susan

    1992-01-01

    Presents a chromosome map for 19 known chromosomes in human genetics. Describes the characteristics attributed to the genetic codes for each of the chromosomes and discusses the teaching applications of the chromosome map. (MDH)

  2. Polymorphic distribution of Y-chromosome haplotype and mitochondrial DNA in the Bouyei people in China

    Institute of Scientific and Technical Information of China (English)

    李永念; 左丽; 文波; 柯越海; 黄薇; 金力

    2004-01-01

    @@ In the evolution of humans, many kinds of mutations in the human genome have been accumulated, providing credible genetic evidence for the study of human origins and migrations. The "out-of-Africa" hypothesis of modern human evolution and the genetic origin of the Japanese has come about by studying mitochondrial DNA.l,2 Recently, researchers have recognized the power of Y-chromosome markers in resolving migratory patterns of modern humans as more and more Y-chromosome single nucleotide polymorphism markers have been found. The markers on the nonrecombinant part of the Y-chromosome allows for the reconstruction of intact haplotypes which are probably the best genetic tools to study human migrations. We can analyze the paternal history of some people in different areas by Y-chromosome haplotypes.

  3. The X and Y chromosome in meiosis: how and why they keep silent

    Institute of Scientific and Technical Information of China (English)

    Godfried W van der Heijden; Maureen Eijpe; Willy M Baarends

    2011-01-01

    The XX/XY sex chromosomal system of mammals,including human,challenges the chromosome pairing mechanism during male meiosis.Pairing and subsequent separation of homologous chromosomes generates haploid cells from diploid cells during the meiotic divisions.One of the basic requirements for recognition between homologous chromosomes is DNA sequence identity.Since the X and Y chromosome share little homology,their quest for each other is difficult,and has special characteristics.During the lengthy meiotic prophase,all autosomal chromosomes synapse,by forming a special protein structure called the synaptonemal complex,which connects the chromosomal axes.In contrast,the X and Y chromosome synapse only in the short homologous pseudoautosomal regions,and form the so-called XY body.

  4. Unusual maternal uniparental isodisomic x chromosome mosaicism with asymmetric y chromosomal rearrangement.

    Science.gov (United States)

    Lee, B Y; Kim, S Y; Park, J Y; Choi, E Y; Kim, D J; Kim, J W; Ryu, H M; Cho, Y H; Park, S Y; Seo, J T

    2014-01-01

    Infertile men with azoospermia commonly have associated microdeletions in the azoospermia factor (AZF) region of the Y chromosome, sex chromosome mosaicism, or sex chromosome rearrangements. In this study, we describe an unusual 46,XX and 45,X mosaicism with a rare Y chromosome rearrangement in a phenotypically normal male patient. The patient's karyotype was 46,XX[50]/45,X[25]/46,X,der(Y)(pter→q11.222::p11.2→pter)[25]. The derivative Y chromosome had a deletion at Yq11.222 and was duplicated at Yp11.2. Two copies of the SRY gene were confirmed by fluorescence in situ hybridization analysis, and complete deletion of the AZFb and AZFc regions was shown by multiplex-PCR for microdeletion analysis. Both X chromosomes of the predominant mosaic cell line (46,XX) were isodisomic and derived from the maternal gamete, as determined by examination of short tandem repeat markers. We postulate that the derivative Y chromosome might have been generated during paternal meiosis or early embryogenesis. Also, we suggest that the very rare mosaicism of isodisomic X chromosomes might be formed during maternal meiosis II or during postzygotic division derived from the 46,X,der(Y)/ 45,X lineage because of the instability of the derivative Y chromosome. To our knowledge, this is the first confirmatory study to verify the origin of a sex chromosome mosaicism with a Y chromosome rearrangement.

  5. Paradigm Lost: The Human Chromosome Story.

    Science.gov (United States)

    Unger, Lawrence; Blystone, Robert V.

    1996-01-01

    Discusses whether the discovery in 1956 that humans have a chromosome number of 46, as opposed to 47 or 48 as previously thought, fits into a paradigm shift of the Kuhnian type. Concludes that Kuhn probably would not have considered the chromosome number shift to be large enough to be a focus for one of his paradigms. (AIM)

  6. A gene catalogue of the euchromatic male-specific region of the horse Y chromosome: comparison with human and other mammals.

    Directory of Open Access Journals (Sweden)

    Nandina Paria

    Full Text Available Studies of the Y chromosome in primates, rodents and carnivores provide compelling evidence that the male specific region of Y (MSY contains functional genes, many of which have specialized roles in spermatogenesis and male-fertility. Little similarity, however, has been found between the gene content and sequence of MSY in different species. This hinders the discovery of species-specific male fertility genes and limits our understanding about MSY evolution in mammals. Here, a detailed MSY gene catalogue was developed for the horse--an odd-toed ungulate. Using direct cDNA selection from horse testis, and sequence analysis of Y-specific BAC clones, 37 horse MSY genes/transcripts were identified. The genes were mapped to the MSY BAC contig map, characterized for copy number, analyzed for transcriptional profiles by RT-PCR, examined for the presence of ORFs, and compared to other mammalian orthologs. We demonstrate that the horse MSY harbors 20 X-degenerate genes with known orthologs in other eutherian species. The remaining 17 genes are acquired or novel and have so far been identified only in the horse or donkey Y chromosomes. Notably, 3 transcripts were found in the heterochromatic part of the Y. We show that despite substantial differences between the sequence, gene content and organization of horse and other mammalian Y chromosomes, the functions of MSY genes are predominantly related to testis and spermatogenesis. Altogether, 10 multicopy genes with testis-specific expression were identified in the horse MSY, and considered likely candidate genes for stallion fertility. The findings establish an important foundation for the study of Y-linked genetic factors governing fertility in stallions, and improve our knowledge about the evolutionary processes that have shaped Y chromosomes in different mammalian lineages.

  7. Meiotic chromosome abnormalities in human spermatogenesis.

    Science.gov (United States)

    Martin, Renée H

    2006-08-01

    The last few years have witnessed an explosion in the information about chromosome abnormalities in human sperm and the meiotic events that predispose to these abnormalities. We have determined that all chromosomes are susceptible to nondisjunction, but chromosomes 21 and 22 and, especially, the sex chromosomes have an increased frequency of aneuploidy. Studies are just beginning on the effects of potential mutagens on the chromosomal constitution of human sperm. The effects of pesticides and cancer therapeutic agents have been reviewed. In the last decade, there has been a great impetus to study chromosome abnormalities in sperm from infertile men because the advent of intracytoplasmic sperm injection (ICSI) made it possible for these men to father pregnancies. A large number of studies have demonstrated that infertile men have an increased frequency of chromosomally abnormal sperm and children, even when they have a normal somatic karyotype. Meiotic studies on the pachytene stage of spermatogenesis have demonstrated that infertile men have impaired chromosome synapsis, a significantly decreased frequency of recombination, and an increased frequency of chromosomes completely lacking a recombination site. Such errors make these cells susceptible to meiotic arrest and the production of aneuploid gametes.

  8. Chromosome

    Science.gov (United States)

    Chromosomes are structures found in the center (nucleus) of cells that carry long pieces of DNA. DNA ... is the building block of the human body. Chromosomes also contain proteins that help DNA exist in ...

  9. New Y chromosomes and early stages of sex chromosome differentiation: sex determination in Megaselia

    Indian Academy of Sciences (India)

    Walther Traut

    2010-09-01

    The phorid fly Megaselia scalaris is a laboratory model for the turnover and early differentiation of sex chromosomes. Isolates from the field have an XY sex-determining mechanism with chromosome pair 2 acting as X and Y chromosomes. The sex chromosomes are homomorphic but display early signs of sex chromosome differentiation: a low level of molecular differences between X and Y. The male-determining function $(M)$, maps to the distal part of the Y chromosome’s short arm. In laboratory cultures, new Y chromosomes with no signs of a molecular differentiation arise at a low rate, probably by transposition of to these chromosomes. Downstream of the primary signal, the homologue of the Drosophila doublesex (dsx) is part of the sex-determining pathway while Sex-lethal (Sxl), though structurally conserved, is not.

  10. A Revised Map of the Human Chromosomes.

    Science.gov (United States)

    Offner, Susan

    1993-01-01

    Presents an updated map of the human chromosomes, building on a "plain English map" that was previously published. A brief summary of genes research is included in the gene explanations accompanying the map. (PR)

  11. Extreme patterns of variance in small populations: placing limits on human Y-chromosome diversity through time in the Vanuatu Archipelago.

    Science.gov (United States)

    Cox, M

    2007-05-01

    Small populations are dominated by unique patterns of variance, largely characterized by rapid drift of allele frequencies. Although the variance components of genetic datasets have long been recognized, most population genetic studies still treat all sampling locations equally despite differences in sampling and effective population sizes. Because excluding the effects of variance can lead to significant biases in historical reconstruction, variance components should be incorporated explicitly into population genetic analyses. The possible magnitude of variance effects in small populations is illustrated here via a case study of Y-chromosome haplogroup diversity in the Vanuatu Archipelago. Deme-based modelling is used to simulate allele frequencies through time, and conservative confidence bounds are placed on the accumulation of stochastic variance effects, including diachronic genetic drift and contemporary sampling error. When the information content of the dataset has been ascertained, demographic models with parameters falling outside the confidence bounds of the variance components can then be accepted with some statistical confidence. Here I emphasize how aspects of the demographic history of a population can be disentangled from stochastic variance effects, and I illustrate the extreme roles of genetic drift and sampling error for many small human population datasets.

  12. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    OpenAIRE

    Teruko Taketo

    2015-01-01

    The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resulta...

  13. Sex ratio in normal and disomic sperm: Evidence that the extra chromosome 21 preferentially segregates with the Y chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.K.; Millie, E.A.; Hassold, T.J. [Case Western Univ., Cleveland, OH (United States)]|[Univ. Hospitals of Cleveland, OH (United States)] [and others

    1996-11-01

    In humans, deviations from a 1:1 male:female ratio have been identified in both chromosomally normal and trisomic live births: among normal newborns there is a slight excess of males, among trisomy 18 live borns a large excess of females, and among trisomy 21 live borns an excess of males. These differences could arise from differential production of or fertilization by Y- or X-bearing sperm or from selection against male or female conceptions. To examine the proportion of Y- and X- bearing sperm in normal sperm and in sperm disomic for chromosomes 18 or 21, we used three-color FISH (to the X and Y and either chromosome 18 or chromosome 21) to analyze > 300,000 sperm from 24 men. In apparently normal sperm, the sex ratio was nearly 1:1 (148,074 Y-bearing to 148,657 X-bearing sperm), and the value was not affected by the age of the donor. Certain of the donors, however, had significant excesses of Y- or X-bearing sperm. In disomy 18 sperm, there were virtually identical numbers of Y- and X-bearing sperm; thus, the excess of females in trisomy 18 presumably is due to selection against male trisomic conceptions. In contrast, we observed 69 Y-bearing and 44 X-bearing sperm disomic for chromosome 21. This is consistent with previous molecular studies, which have identified an excess of males among paternally derived cases of trisomy 21, and suggests that some of the excess of males among Down syndrome individuals is attributable to a nondisjunctional mechanism in which the extra chromosome 21 preferentially segregates with the Y chromosome. 17 refs., 2 tabs.

  14. The prevalence of Y chromosome microdeletions in Pakistani infertile men

    Directory of Open Access Journals (Sweden)

    Rubina Tabassum Siddiqui

    2013-01-01

    Full Text Available Background: Microdeletions of the azoospermia factor locus of the long arm of Y chromosome are an etiological factor of severe oligozoospermia or azoospermia. Objective: The aim of this study was to investigate the prevalence of Y-chromosome microdeletions in AZF region and their role in infertility in Pakistani population. Materials and Methods: The type of deletions in AZF locus were detected in infertile men (n=113 and the association of Y chromosome microdeletions with male infertility was assessed by including men (50 with normal karyotype and having children. Y chromosome microdeletions were detected by multiplex PCR using 10 sequence tagged sites namely sY81, sY130, sY141, sY142, sY155, sY157, sY160, sY182, sY231, and sY202 that covered all three regions of AZF. Results: Individuals with severe oligozoospermia showed 2.86% deletion frequency in AZFc region as compared to azoospermic males (5.5%. Conclusion: The results of our study showed that deletions in Y chromosome are not playing major part in male infertility. Moreover, multiplex-PCR strategy might preferably be employed for the detection of Y chromosome microdeletions allied to male infertility.

  15. Engineered human dicentric chromosomes show centromere plasticity.

    Science.gov (United States)

    Higgins, Anne W; Gustashaw, Karen M; Willard, Huntington F

    2005-01-01

    The centromere is essential for the faithful distribution of a cell's genetic material to subsequent generations. Despite intense scrutiny, the precise genetic and epigenetic basis for centromere function is still unknown. Here, we have used engineered dicentric human chromosomes to investigate mammalian centromere structure and function. We describe three classes of dicentric chromosomes isolated in different cell lines: functionally monocentric chromosomes, in which one of the two genetically identical centromeres is consistently inactivated; functionally dicentric chromosomes, in which both centromeres are consistently active; and dicentric chromosomes heterogeneous with respect to centromere activity. A study of serial single cell clones from heterogeneous cell lines revealed that while centromere activity is usually clonal, the centromere state (i.e. functionally monocentric or dicentric) in some lines can switch within a growing population of cells. Because pulsed field gel analysis indicated that the DNA at the centromeres of these chromosomes did not change detectably, this switching of the centromere state is most likely due to epigenetic changes. Inactivation of one of the two active centromeres in a functionally dicentric chromosome was observed in a percentage of cells after treatment with Trichostatin A, an inhibitor of histone deacetylation. This study provides evidence that the activity of human centromeres, while largely stable, can be subject to dynamic change, most likely due to epigenetic modification.

  16. Gonadoblastoma and Y-chromosome fluorescence.

    Science.gov (United States)

    Lukusa, T; Fryns, J P; van den Berghe, H

    1986-04-01

    In this report we summarize our experience in 4 patients with 45,X/46,XY, one patient with 45,X/47,XYY mosaicism, and one patient with 46,XY karyotype and ambiguous external genitalia. In the 3 patients with a fluorescent Y-chromosome, the development of one or two gonadoblastomas was found, independent of the age of the patients at the time of examination. In the 3 patients with 45,X/46,XYnf mosaicism no gonadoblastoma was detected. This finding prompted us to review the data on patients reported with 45,X/46,XYnf mosaicism. Up to now, no patient with well documented 45,X/46,XYnf mosaicism and convincing evidence of development of gonadoblastoma has been reported. These data seem to confirm that alterations of the characteristic distal fluorescence of Yq may protect the dysgenetic gonad against tumoral degeneration in patients with 45,X/46,XY mosaicism. Possible mechanisms responsible for these changes in the oncogenic potential of Yq in relation with the Y chromosome fluorescence are discussed.

  17. Evolutionarily conserved sequences on human chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Kelly A.; Sheehan, John B.; Stokowski, Renee P.; Chen, Xiyin; Hosseini, Roya; Cheng, Jan-Fang; Fodor, Stephen P.A.; Cox, David R.; Patil, Nila

    2001-09-01

    Comparison of human sequences with the DNA of other mammals is an excellent means of identifying functional elements in the human genome. Here we describe the utility of high-density oligonucleotide arrays as a rapid approach for comparing human sequences with the DNA of multiple species whose sequences are not presently available. High-density arrays representing approximately 22.5 Mb of nonrepetitive human chromosome 21 sequence were synthesized and then hybridized with mouse and dog DNA to identify sequences conserved between humans and mice (human-mouse elements) and between humans and dogs (human-dog elements). Our data show that sequence comparison of multiple species provides a powerful empiric method for identifying actively conserved elements in the human genome. A large fraction of these evolutionarily conserved elements are present in regions on chromosome 21 that do not encode known genes.

  18. Y chromosome microdeletions in azoospermic patients with Klinefelter's syndrome

    Institute of Scientific and Technical Information of China (English)

    Anurag Mitra; Rima Dada; Rajeev Kumar; Narmada Prasad Gupta; Kiran Kucheria; Satish Kumar Gupta

    2006-01-01

    Aim: To study the occurrence of Y chromosome microdeletions in azoospermic patients with Klinefelter's syndrome (KFS). Methods: Blood and semen samples were collected from azoospermic patients with KFS (n = 14) and a control group of men of proven fertility (n = 13). Semen analysis was done according to World Health Organization (WHO) guidelines. Blood samples were processed for karyotyping, fluorescent in situ hybridization (FISH) and measurement of plasma follicle stimulating hormone (FSH) by radioimmunoassay. To determine Y chromosome microdeletions, polymerase chain reaction (PCR) of 16 sequence tagged sites (STS) and three genes (DFFRY, XKRY and RBM1 Y) was performed on isolated genomic DNA. Testicular fine needle aspiration cytology (FNAC) was done in selected cases. Results: Y chromosome microdeletions spanning the azoospermia factor (AZF)a and AZFb loci were found in four of the 14 azoospermic patients with KFS. Karyotype and FISH analysis revealed that, of the four cases showing Y chromosome microdeletion, three cases had a 47,XXY/46,XY chromosomal pattern and one case had a 46,XY/47,XXY/48,XXXY/48,XXYY chromosomal pattern. The testicular FNAC of one sample with Y chromosome microdeletion revealed Sertoli cell-only type of morphology. However, no Y chromosome microdeletions were observed in any of the 13 fertile men. All patients with KFS had elevated plasma FSH levels. Conclusion:Patients with KFS may harbor Y chromosome microdeletions and screening for these should be a part of their diagnostic work-up, particularly in those considering assisted reproductive techniques.

  19. Evolutionary interaction between W/Y chromosome and transposable elements.

    Science.gov (United States)

    Śliwińska, Ewa B; Martyka, Rafał; Tryjanowski, Piotr

    2016-06-01

    The W/Y chromosome is unique among chromosomes as it does not recombine in its mature form. The main side effect of cessation of recombination is evolutionary instability and degeneration of the W/Y chromosome, or frequent W/Y chromosome turnovers. Another important feature of W/Y chromosome degeneration is transposable element (TEs) accumulation. Transposon accumulation has been confirmed for all W/Y chromosomes that have been sequenced so far. Models of W/Y chromosome instability include the assemblage of deleterious mutations in protein coding genes, but do not include the influence of transposable elements that are accumulated gradually in the non-recombining genome. The multiple roles of genomic TEs, and the interactions between retrotransposons and genome defense proteins are currently being studied intensively. Small RNAs originating from retrotransposon transcripts appear to be, in some cases, the only mediators of W/Y chromosome function. Based on the review of the most recent publications, we present knowledge on W/Y evolution in relation to retrotransposable element accumulation.

  20. Different chromosome Y abnormalities in a case with short stature.

    Science.gov (United States)

    Balkan, Mahmut; Fidanboy, Mehmet; Özbek, M Nuri; Alp, M Nail; Budak, Turgay

    2012-12-01

    We report a case with different chromosome Y abnormalities. Case was an 11-year-old boy, who was diagnosed with short stature, referred to laboratory of human medical genetics laboratory for genetic evaluation. Chromosomal analysis of the case was carried out on peripheral blood lymphocyte culture. Classic cytogenetic analysis (G and C banding) was confirmed by using fluorescence in situ hybridization analysis (FISH) technique. Cytogenetic and FISH analysis showed a mosaic 46,X,i(Yq)/45,X/47,X,i(Yq)x2/47,XYY karyotype. Case, which was found interesting due to its rarity, is discussed with its clinical features and cytogenetic results, in the light of relevant source information. This case underlines the importance of karyotyping patients with unexplained short stature. This clinical report also will be helpful in defining the phenotypic range associated with these karyotypes.

  1. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y.

    Science.gov (United States)

    Tomaszkiewicz, Marta; Rangavittal, Samarth; Cechova, Monika; Campos Sanchez, Rebeca; Fescemyer, Howard W; Harris, Robert; Ye, Danling; O'Brien, Patricia C M; Chikhi, Rayan; Ryder, Oliver A; Ferguson-Smith, Malcolm A; Medvedev, Paul; Makova, Kateryna D

    2016-04-01

    The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species.

  2. Globally Divergent but Locally Convergent X- and Y-Chromosome Influences on Cortical Development.

    Science.gov (United States)

    Raznahan, Armin; Lee, Nancy Raitano; Greenstein, Deanna; Wallace, Gregory L; Blumenthal, Jonathan D; Clasen, Liv S; Giedd, Jay N

    2016-01-01

    Owing to their unique evolutionary history, modern mammalian X- and Y-chromosomes have highly divergent gene contents counterbalanced by regulatory features, which preferentially restrict expression of X- and Y-specific genes. These 2 characteristics make opposing predictions regarding the expected dissimilarity of X- vs. Y-chromosome influences on biological structure and function. Here, we quantify this dissimilarity using in vivo neuroimaging within a rare cohort of humans with diverse sex chromosome aneuploidies (SCAs). We show that X- and Y-chromosomes have opposing effects on overall brain size but exert highly convergent influences on local brain anatomy, which manifest across biologically distinct dimensions of the cerebral cortex. Large-scale online meta-analysis of functional neuroimaging data indicates that convergent sex chromosome dosage effects preferentially impact centers for social perception, communication, and decision-making. Thus, despite an almost complete lack of sequence homology, and opposing effects on overall brain size, X- and Y-chromosomes exert congruent effects on the proportional size of cortical systems involved in adaptive social functioning. These convergent X-Y effects (i) track the dosage of those few genes that are still shared by X- and Y-chromosomes, and (ii) may provide a biological substrate for the link between SCA and increased rates of psychopathology.

  3. Site-specific genetic engineering of the Anopheles gambiae Y chromosome.

    Science.gov (United States)

    Bernardini, Federica; Galizi, Roberto; Menichelli, Miriam; Papathanos, Philippos-Aris; Dritsou, Vicky; Marois, Eric; Crisanti, Andrea; Windbichler, Nikolai

    2014-05-27

    Despite its function in sex determination and its role in driving genome evolution, the Y chromosome remains poorly understood in most species. Y chromosomes are gene-poor, repeat-rich and largely heterochromatic and therefore represent a difficult target for genetic engineering. The Y chromosome of the human malaria vector Anopheles gambiae appears to be involved in sex determination although very little is known about both its structure and function. Here, we characterize a transgenic strain of this mosquito species, obtained by transposon-mediated integration of a transgene construct onto the Y chromosome. Using meganuclease-induced homologous repair we introduce a site-specific recombination signal onto the Y chromosome and show that the resulting docking line can be used for secondary integration. To demonstrate its utility, we study the activity of a germ-line-specific promoter when located on the Y chromosome. We also show that Y-linked fluorescent transgenes allow automated sex separation of this important vector species, providing the means to generate large single-sex populations. Our findings will aid studies of sex chromosome function and enable the development of male-exclusive genetic traits for vector control.

  4. [Dicentric Y chromosomes. First part: cytogenetic and molecular aspects].

    Science.gov (United States)

    Bouayed Abdelmoula, N; Amouri, A

    2005-01-01

    Dicentric Y chromosomes have been reviewed twice in 1994 by Hsu et al. and in 1995 by Tuck-Muller et al. who showed that dic(Y) are the most common Y structural abnormalities and that their influence on gonadal and somatic development is extremely variable. The prediction of their phenotypic consequences is often difficult because of the variety of genomic sequences concerned by duplications and deletions, because of the variable degrees of mosaicism (cell line 45,X in particular) and at the end, because of identification and analysis technical difficulties of the structure of the rearranged Y chromosome. The clinical specter of this cytogenetic abnormality is rather wide going from almost-normal or infertile males, to females with or without stigmas of Turner syndrome. Middle phenotypes consist of various degrees of genital ambiguities. However, clinical expression seems to be related to the genomic capital of the Y chromosome, mainly the Y genes involved in the control of the process of the determination of gonads (Yp) and spermatogenesis (Yq) as well as control of the growth and the skeletal development (Yp). Here, we report a third comprehensive review of the literature concerning dicentric Y chromosomes reported since 1994. In the light of previous reviews as well as the recent data of the genetic cartography of the Y chromosome, we try, in this first part, to determine characteristics of reported dicentric Y chromosomes as well as their chromosomal mechanics, their mitotic stability and finally their cytogenetic and molecular investigations.

  5. Detection of chromosomal abnormality and Y chromosome microdeletion in patients with azoospermia and oligozoospermia

    Institute of Scientific and Technical Information of China (English)

    Shi Yun-fang; Shao Min-jie; Zhang Ying; Zhang Xiu-ling; Li Yan

    2008-01-01

    Objective:To investigate the chromosomal abnormality and Y chromosome microdeletion in patients with azoospermia and oligozoospermia.Methods:Cytogenetic karyotype analysis and multiplex PCR were used to detect chromosomal abnormality and Y chromosome microdeletion in 99 azoospermic and 57 oligospermic patients(total 156).45 fertile men were includ-ed as controls.Results:31 patients were found with chromosomal abnormalities in 156 cases(31/156,19.9 %),20 cases showed 47,XXY,2 cases showed 46,XY/47,XXY,7 cases had Y chromosome structural abnormalities and 2 had autosomal chromosome abnormalities.There were significant differences between the frequency of AZF microde-letion in 125 cases with normal karyotype and 45 controls(P0.05).AZFa,AZFb,AZFa+b,AZFb+c,AZFa+b+d and AZFb+c+d mierodeletions were found in azoospermic patients.AZFb,AZFc,AZFd,AZFb+c+d and AZFc+d microdeletions were found in oligo-spermic patients.Conxlusion:The frequency of chromosomal abnormality was 19.9% and the frequency of Y chromosome mi-crodeletion was 15.2% in patient with azoospermia and oligozoospermia.We should pay close attention to this prob-lem.

  6. Small Supernumerary Marker Chromosomes in Human Infertility.

    Science.gov (United States)

    Armanet, Narjes; Tosca, Lucie; Brisset, Sophie; Liehr, Thomas; Tachdjian, Gérard

    2015-01-01

    Small supernumerary marker chromosomes (sSMC) are structurally abnormal chromosomes that cannot be unambiguously identified by banding cytogenetics. The objective of this study was to provide an overview of sSMC frequency and characterization in a context of infertility and to review the literature describing sSMC in relation with male and female infertility. Therefore, a systematic literature review on sSMC associated with infertility was conducted by means of a PubMed literature and a sSMC database (http://ssmc-tl.com/sSMC.html) search. A total of 234 patients with infertility were identified as carriers of sSMC. All chromosomes, except chromosomes 10, 19 and the X, were involved in sSMC, and in 72% the sSMC originated from acrocentric chromosomes. Euchromatic imbalances were caused by the presence of sSMC in 30% of the cases. Putative genes have been identified in only 1.2% of sSMC associated with infertility. The implication of sSMC in infertility could be due to a partial trisomy of some genes but also to mechanical effects perturbing meiosis. Further precise molecular and interphase-architecture studies on sSMC are needed in the future to characterize the relationship between this chromosomal anomaly and human infertility.

  7. The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary

    OpenAIRE

    Wienberg, Johannes; Jauch, Anna; Lüdecke, H J; Senger, G.; Horsthemke, B; Claussen, U.; Cremer, Thomas; Arnold, N; Lengauer, Christoph

    1994-01-01

    Fluorescencein situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescencein situ hybridization and comparative mapping of the chromosomes of ...

  8. Frequent gene conversion events between the X and Y homologous chromosomal regions in primates

    Directory of Open Access Journals (Sweden)

    Hirai Hirohisa

    2010-07-01

    Full Text Available Abstract Background Mammalian sex-chromosomes originated from a pair of autosomes. A step-wise cessation of recombination is necessary for the proper maintenance of sex-determination and, consequently, generates a four strata structure on the X chromosome. Each stratum shows a specific per-site nucleotide sequence difference (p-distance between the X and Y chromosomes, depending on the time of recombination arrest. Stratum 4 covers the distal half of the human X chromosome short arm and the p-distance of the stratum is ~10%, on average. However, a 100-kb region, which includes KALX and VCX, in the middle of stratum 4 shows a significantly lower p-distance (1-5%, suggesting frequent sequence exchanges or gene conversions between the X and Y chromosomes in humans. To examine the evolutionary mechanism for this low p-distance region, sequences of a corresponding region including KALX/Y from seven species of non-human primates were analyzed. Results Phylogenetic analysis of this low p-distance region in humans and non-human primate species revealed that gene conversion like events have taken place at least ten times after the divergence of New World monkeys and Catarrhini (i.e., Old World monkeys and hominoids. A KALY-converted KALX allele in white-handed gibbons also suggests a possible recent gene conversion between the X and Y chromosomes. In these primate sequences, the proximal boundary of this low p-distance region is located in a LINE element shared between the X and Y chromosomes, suggesting the involvement of this element in frequent gene conversions. Together with a palindrome on the Y chromosome, a segmental palindrome structure on the X chromosome at the distal boundary near VCX, in humans and chimpanzees, may mediate frequent sequence exchanges between X and Y chromosomes. Conclusion Gene conversion events between the X and Y homologous regions have been suggested, mainly in humans. Here, we found frequent gene conversions in the

  9. Strategies for sequencing human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.R.

    1996-06-01

    This project funded for four years (02.92 to 01.96) was a renewal of a project funded for 2.5 years (07.89 to 01.92). This report covers the period 07.89 to 07.94. The original project was entitled {open_quotes}Correlation of physical and genetic maps of Human Chromosome 16{close_quotes}. The aim over this period was to construct a cytogenetic-based physical map of chromosome 16, to enable integration of its physical and genetic maps. This was achieved by collaboration and isolation of new markers until each bin on the physical map contained a polymorphic marker on the linkage map. A further aim was to integrate all mapping data for this chromosome and to achieve contig closure over band q24.

  10. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  11. Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats

    NARCIS (Netherlands)

    K. Ballantyne (Kaye); A. Ralf (Arwin); R. Aboukhalid (Rachid); N.M. Achakzai (Niaz); T. Anjos (Tania); Q. Ayub (Qasim); J. Balažic (Jože); J. Ballantyne (Jack); D.J. Ballard (David); B. Berger (Burkhard); C. Bobillo (Cecilia); M. Bouabdellah (Mehdi); H. Burri (Helen); T. Capal (Tomas); S. Caratti (Stefano); J. Cárdenas (Jorge); F. Cartault (François); E.F. Carvalho (Elizeu); M. de Carvalho (Margarete); B. Cheng (Baowen); M.D. Coble (Michael); D. Comas (David); D. Corach (Daniel); M. D'Amato (Mauro); S. Davison (Sean); P. de Knijff (Peter); M.C.A. de Ungria (Maria Corazon); R. Decorte (Ronny); T. Dobosz (Tadeusz); B.M. Dupuy (Berit); S. Elmrghni (Samir); M. Gliwiński (Mateusz); S.C. Gomes (Sara); L. Grol (Laurens); C. Haas (Cordula); E. Hanson (Erin); J. Henke (Jürgen); L. Henke (Lotte); F. Herrera-Rodríguez (Fabiola); C.R. Hill (Carolyn); G. Holmlund (Gunilla); K. Honda (Katsuya); U.-D. Immel (Uta-Dorothee); S. Inokuchi (Shota); R. Jobling; M. Kaddura (Mahmoud); J.S. Kim (Jong); S.H. Kim (Soon); W. Kim (Wook); T.E. King (Turi); E. Klausriegler (Eva); D. Kling (Daniel); L. Kovačević (Lejla); L. Kovatsi (Leda); P. Krajewski (Paweł); S. Kravchenko (Sergey); M.H.D. Larmuseau (Maarten); E.Y. Lee (Eun Young); R. Lessig (Rüdiger); L.A. Livshits (Ludmila); D. Marjanović (Damir); M. Minarik (Marek); N. Mizuno (Natsuko); H. Moreira (Helena); N. Morling (Niels); M. Mukherjee (Meeta); P. Munier (Patrick); J. Nagaraju (Javaregowda); F. Neuhuber (Franz); S. Nie (Shengjie); P. Nilasitsataporn (Premlaphat); T. Nishi (Takeki); H.H. Oh (Hye); S. Olofsson (Sylvia); V. Onofri (Valerio); J. Palo (Jukka); H. Pamjav (Horolma); W. Parson (Walther); M. Petlach (Michal); C. Phillips (Christopher); R. Ploski (Rafal); S.P.R. Prasad (Samayamantri P.); D. Primorac (Dragan); G.A. Purnomo (Gludhug); J. Purps (Josephine); H. Rangel-Villalobos (Hector); K. Reogonekbała (Krzysztof); B. Rerkamnuaychoke (Budsaba); D.R. Gonzalez (Danel Rey); C. Robino (Carlo); L. Roewer (Lutz); A. de Rosa (Anna); A. Sajantila (Antti); A. Sala (Andrea); J.M. Salvador (Jazelyn); P. Sanz (Paula); C. Schmitt (Christian); A.K. Sharma (Anisha K.); D.A. Silva (Dayse); K.-J. Shin (Kyoung-Jin); T. Sijen (Titia); M. Sirker (Miriam); D. Siváková (Daniela); V. Škaro (Vedrana); C. Solano-Matamoros (Carlos); L. Souto (L.); V. Stenzl (Vlastimil); H. Sudoyo (Herawati); D. Syndercombe-Court (Denise); A. Tagliabracci (Adriano); D. Taylor (Duncan); A. Tillmar (Andreas); I.S. Tsybovsky (Iosif); C. Tyler-Smith (Chris); K. van der Gaag (Kristiaan); D. Vanek (Daniel); A. Völgyi (Antónia); D. Ward (Denise); P. Willemse (Patricia); E.P.H. Yap (Eric); Z-Y. Yong (Ze-Yie); I.Z. Pajnič (Irena Zupanič); M.H. Kayser (Manfred)

    2014-01-01

    textabstractRelevant for various areas of human genetics, Y-chromosomal short tandem repeats (Y-STRs) are commonly used for testing close paternal relationships among individuals and populations, and for male lineage identification. However, even the widely used 17-loci Yfiler set cannot resolve ind

  12. Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats

    DEFF Research Database (Denmark)

    Ballantyne, Kaye N; Ralf, Arwin; Aboukhalid, Rachid

    2014-01-01

    Relevant for various areas of human genetics, Y-chromosomal STRs (Y-STRs) are commonly used for testing close paternal relationships amongst individuals and populations, and for male lineage identification. However, even the widely used 17-loci Yfiler set cannot resolve individuals and population...

  13. Human Sperm Chromosome Analysis—Study on Human Sperm Chromosome Mutagenesis Induced by Carbon Disulfide

    Institute of Scientific and Technical Information of China (English)

    LEJUN-YI; FUXIAO-MIN

    1996-01-01

    The aim of this study was to investigate the effect CS2 of on human sperm chromosomal aberration.The human sperm/hamster egg fusion techniquse was used to analyze 203 human sperm chromosome complement form 9 healthy volunteers.The incidence of numerical aberration was 1.0%,and that of structural chromosome aberration was 5.9% and total abnormalities was 6.9%.Structural aberrations consisted of breaks,deletions, centric rings,fragments,and chromatid exchange.The results from high concentration group(10μmol·L-1 CS2)showed that the incidence of chromosomal aberration rate was significantly higher than that of the control group.The results indicate that high concentration of CS2 might directly cause mutatenesis f the germ cell.

  14. Sex chromosome mosaicism in males carrying Y chromosome long arm deletions.

    Science.gov (United States)

    Siffroi, J P; Le Bourhis, C; Krausz, C; Barbaux, S; Quintana-Murci, L; Kanafani, S; Rouba, H; Bujan, L; Bourrouillou, G; Seifer, I; Boucher, D; Fellous, M; McElreavey, K; Dadoune, J P

    2000-12-01

    Microdeletions of the long arm of the Y chromosome (Yq) are a common cause of male infertility. Since large structural rearrangements of the Y chromosome are commonly associated with a 45,XO/46,XY chromosomal mosaicism, we studied whether submicroscopic Yq deletions could also be associated with the development of 45,XO cell lines. We studied blood samples from 14 infertile men carrying a Yq microdeletion as revealed by polymerase chain reaction (PCR). Patients were divided into two groups: group 1 (n = 6), in which karyotype analysis demonstrated a 45,X/46,XY mosaicism, and group 2 (n = 8) with apparently a normal 46,XY karyotype. 45,XO cells were identified by fluorescence in-situ hybridization (FISH) using X and Y centromeric probes. Lymphocytes from 11 fertile men were studied as controls. In addition, sperm cells were studied in three oligozoospermic patients in group 2. Our results showed that large and submicroscopic Yq deletions were associated with significantly increased percentages of 45,XO cells in lymphocytes and of sperm cells nullisomic for gonosomes, especially for the Y chromosome. Moreover, two isodicentric Y chromosomes, classified as normal by cytogenetic methods, were detected. Therefore, Yq microdeletions may be associated with Y chromosomal instability leading to the formation of 45,XO cell lines.

  15. Homomorphic sex chromosomes and the intriguing Y chromosome of Ctenomys rodent species (Rodentia, Ctenomyidae).

    Science.gov (United States)

    Suárez-Villota, Elkin Y; Pansonato-Alves, José C; Foresti, Fausto; Gallardo, Milton H

    2014-01-01

    Unlike the X chromosome, the mammalian Y chromosome undergoes evolutionary decay resulting in small size. This sex chromosomal heteromorphism, observed in most species of the fossorial rodent Ctenomys, contrasts with the medium-sized, homomorphic acrocentric sex chromosomes of closely related C. maulinus and C. sp. To characterize the sequence composition of these chromosomes, fluorescent banding, self-genomic in situ hybridization, and fluorescent in situ hybridization with an X painting probe were performed on mitotic and meiotic plates. High molecular homology between the sex chromosomes was detected on mitotic material as well as on meiotic plates immunodetected with anti-SYCP3 and anti-γH2AX. The Y chromosome is euchromatic, poor in repetitive sequences and differs from the X by the loss of a block of pericentromeric chromatin. Inferred from the G-banding pattern, an inversion and the concomitant prevention of recombination in a large asynaptic region seems to be crucial for meiotic X chromosome inactivation. These peculiar findings together with the homomorphism of Ctenomys sex chromosomes are discussed in the light of the regular purge that counteracts Muller's ratchet and the probable mechanisms accounting for their origin and molecular homology.

  16. Increased sex chromosome expression and epigenetic abnormalities in spermatids from male mice with Y chromosome deletions.

    Science.gov (United States)

    Reynard, Louise N; Turner, James M A

    2009-11-15

    During male meiosis, the X and Y chromosomes are transcriptionally silenced, a process termed meiotic sex chromosome inactivation (MSCI). Recent studies have shown that the sex chromosomes remain substantially transcriptionally repressed after meiosis in round spermatids, but the mechanisms involved in this later repression are poorly understood. Mice with deletions of the Y chromosome long arm (MSYq-) have increased spermatid expression of multicopy X and Y genes, and so represent a model for studying post-meiotic sex chromosome repression. Here, we show that the increase in sex chromosome transcription in spermatids from MSYq- mice affects not only multicopy but also single-copy XY genes, as well as an X-linked reporter gene. This increase in transcription is accompanied by specific changes in the sex chromosome histone code, including almost complete loss of H4K8Ac and reduction of H3K9me3 and CBX1. Together, these data show that an MSYq gene regulates sex chromosome gene expression as well as chromatin remodelling in spermatids.

  17. A Case of ADHD and a Major Y Chromosome Abnormality

    Science.gov (United States)

    Mulligan, Aisling; Gill, Michael; Fitzgerald, Michael

    2008-01-01

    Background: ADHD is a common, heritable disorder of childhood. Sex chromosome abnormalities are relatively rare conditions that are sometimes associated with behavioral disorders. Method: The authors present a male child with ADHD and a major de-novo Y chromosome abnormality consisting of deletion of the long arm and duplication of the short arm.…

  18. Multiplex PCR Screening of Y Chromosome Microdeletions in Azoospermic Patients

    Institute of Scientific and Technical Information of China (English)

    Cong-yi YU; Guang-lun ZHUANG; Can-quan ZHOU; Ning SU; Qing-xue ZHANG; Dong-zi YANG

    2004-01-01

    Objective To develop a multiplex PCR protocol for routine screening of microdeletions on the Y chromosome Methods Five multiplex sets were established and Y chromosome microdeletions screening were carried out in 26 azoospermic men who undertook ICSI and 30 azoospermic men who undertook testicular biopsy. Results In 56 azoospermic men, 5 patients were found with AZFc/DAZ microdeletions,2 patients were accompanied by AZFc/DAZ and AZFb/RBM1 double microdeletion,and 1 patient had only single Sy153 microdeletion.Conclusion The multiplex PCR protocol presented in this study is an easy and reliable method for detecting microdeletions on the Y chromosome. Routine screening for microdeletions on the Y chromosome in azoospermic patients is essential.

  19. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes

    Directory of Open Access Journals (Sweden)

    Yu Jane-Fang

    2008-03-01

    Full Text Available Abstract Background The Azoospermia Factor c (AZFc region of the human Y chromosome is a unique product of segmental duplication. It consists almost entirely of very long amplicons, represented by different colors, and is frequently deleted in subfertile men. Most of the AZFc amplicons have high sequence similarity with autosomal segments, indicating recent duplication and transposition to the Y chromosome. The Deleted in Azoospermia (DAZ gene within the red-amplicon arose from an ancestral autosomal DAZ-like (DAZL gene. It varies significantly between different men regarding to its copy number and the numbers of RNA recognition motif and DAZ repeat it encodes. We used Southern analyses to study the evolution of DAZ and AZFc amplicons on the Y chromosomes of primates. Results The Old World monkey rhesus macaque has only one DAZ gene. In contrast, the great apes have multiple copies of DAZ, ranging from 2 copies in bonobos and gorillas to at least 6 copies in orangutans, and these DAZ genes have polymorphic structures similar to those of their human counterparts. Sequences homologous to the various AZFc amplicons are present on the Y chromosomes of some but not all primates, indicating that they arrived on the Y chromosome at different times during primate evolution. Conclusion The duplication and transposition of AZFc amplicons to the human Y chromosome occurred in three waves, i.e., after the branching of the New World monkey, the gorilla, and the chimpanzee/bonobo lineages, respectively. The red-amplicon, one of the first to arrive on the Y chromosome, amplified by inverted duplication followed by direct duplication after the separation of the Old World monkey and the great ape lineages. Subsequent duplication/deletion in the various lineages gave rise to a spectrum of DAZ gene structure and copy number found in today's great apes.

  20. Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system.

    Science.gov (United States)

    Grabowska-Joachimiak, Aleksandra; Kula, Adam; Książczyk, Tomasz; Chojnicka, Joanna; Sliwinska, Elwira; Joachimiak, Andrzej J

    2015-06-01

    Rumex hastatulus is the North American endemic dioecious plant with heteromorphic sex chromosomes. It is differentiated into two chromosomal races: Texas (T) race characterised by a simple XX/XY sex chromosome system and North Carolina (NC) race with a polymorphic XX/XY1Y2 sex chromosome system. The gross karyotype morphology in NC race resembles the derived type, but chromosomal changes that occurred during its evolution are poorly understood. Our C-banding/DAPI and fluorescence in situ hybridization (FISH) experiments demonstrated that Y chromosomes of both races are enriched in DAPI-positive sequences and that the emergence of polymorphic sex chromosome system was accompanied by the break of ancestral Y chromosome and switch in the localization of 5S rDNA, from autosomes to sex chromosomes (X and Y2). Two contrasting domains were detected within North Carolina Y chromosomes: the older, highly heterochromatinised, inherited from the original Y chromosome and the younger, euchromatic, representing translocated autosomal material. The flow-cytometric DNA estimation showed ∼3.5 % genome downsizing in the North Carolina race. Our results are in contradiction to earlier reports on the lack of heterochromatin within Y chromosomes of this species and enable unambiguous identification of autosomes involved in the autosome-heterosome translocation, providing useful chromosome landmarks for further studies on the karyotype and sex chromosome differentiation in this species.

  1. [DNA image-fluorimetry of individual human chromosomes].

    Science.gov (United States)

    Agafonova, N A; Sakuta, G A; Rozanov, Iu M; Shteĭn, G I; Kudriavtsev, B N

    2013-01-01

    Mucrofluorimetric method for the determination of DNA content in individual human chromosomes has been developed. The method is based on a preliminary identification of chromosomes with Hoechst 33258, followed by staining of the chromosomes with Feulgen reaction using Schiffs reagent type ethidium bromide-SO2, then measuring the fluorescence intensity of the chromosomes using an image analyzer. The method allows to determine the DNA content of individual chromosomes with accuracy up to 4.5 fg. DNA content of individual human chromosomes, their p-and q-arms as well as homologous chromosomes were measured using the developed method. It has been shown that the DNA content in the chromosomes of normal human karyotype is unstable. Fluctuations in the DNA content in some chromosomes can vary 35-40 fg.

  2. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes.

    Science.gov (United States)

    Soh, Y Q Shirleen; Alföldi, Jessica; Pyntikova, Tatyana; Brown, Laura G; Graves, Tina; Minx, Patrick J; Fulton, Robert S; Kremitzki, Colin; Koutseva, Natalia; Mueller, Jacob L; Rozen, Steve; Hughes, Jennifer F; Owens, Elaine; Womack, James E; Murphy, William J; Cao, Qing; de Jong, Pieter; Warren, Wesley C; Wilson, Richard K; Skaletsky, Helen; Page, David C

    2014-11-06

    We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism.

  3. The DNA sequence, annotation and analysis of human chromosome 3

    DEFF Research Database (Denmark)

    Muzny, Donna M; Scherer, Steven E; Kaul, Rajinder

    2006-01-01

    After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chr...

  4. Culture creates genetic structure in the Caucasus: Autosomal, mitochondrial, and Y-chromosomal variation in Daghestan

    Directory of Open Access Journals (Sweden)

    Harpending Henry C

    2008-07-01

    Full Text Available Abstract Background Near the junction of three major continents, the Caucasus region has been an important thoroughfare for human migration. While the Caucasus Mountains have diverted human traffic to the few lowland regions that provide a gateway from north to south between the Caspian and Black Seas, highland populations have been isolated by their remote geographic location and their practice of patrilocal endogamy. We investigate how these cultural and historical differences between highland and lowland populations have affected patterns of genetic diversity. We test 1 whether the highland practice of patrilocal endogamy has generated sex-specific population relationships, and 2 whether the history of migration and military conquest associated with the lowland populations has left Central Asian genes in the Caucasus, by comparing genetic diversity and pairwise population relationships between Daghestani populations and reference populations throughout Europe and Asia for autosomal, mitochondrial, and Y-chromosomal markers. Results We found that the highland Daghestani populations had contrasting histories for the mitochondrial DNA and Y-chromosome data sets. Y-chromosomal haplogroup diversity was reduced among highland Daghestani populations when compared to other populations and to highland Daghestani mitochondrial DNA haplogroup diversity. Lowland Daghestani populations showed Turkish and Central Asian affinities for both mitochondrial and Y-chromosomal data sets. Autosomal population histories are strongly correlated to the pattern observed for the mitochondrial DNA data set, while the correlation between the mitochondrial DNA and Y-chromosome distance matrices was weak and not significant. Conclusion The reduced Y-chromosomal diversity exhibited by highland Daghestani populations is consistent with genetic drift caused by patrilocal endogamy. Mitochondrial and Y-chromosomal phylogeographic comparisons indicate a common Near Eastern

  5. Demographic estimates from Y chromosome microsatellite polymorphisms: Analysis of a worldwide sample

    Directory of Open Access Journals (Sweden)

    Macpherson J

    2004-08-01

    Full Text Available Abstract Polymorphisms in microsatellites on the human Y chromosome have been used to estimate important demographic parameters of human history. We compare two coalescent-based statistical methods that give estimates for a number of demographic parameters using the seven Y chromosome polymorphisms in the HGDP-CEPH Cell Line Panel, a collection of samples from 52 worldwide populations. The estimates for the time to the most recent common ancestor vary according to the method used and the assumptions about the prior distributions of model parameters, but are generally consistent with other global Y chromosome studies. We explore the sensitivity of these results to assumptions about the prior distributions and the evolutionary models themselves.

  6. Y-chromosomal genes affecting male fertility: A review

    Science.gov (United States)

    Dhanoa, Jasdeep Kaur; Mukhopadhyay, Chandra Sekhar; Arora, Jaspreet Singh

    2016-01-01

    The mammalian sex-chromosomes (X and Y) have evolved from autosomes and are involved in sex determination and reproductive traits. The Y-chromosome is the smallest chromosome that consists of 2-3% of the haploid genome and may contain between 70 and 200 genes. The Y-chromosome plays major role in male fertility and is suitable to study the evolutionary relics, speciation, and male infertility and/or subfertility due to its unique features such as long non-recombining region, abundance of repetitive sequences, and holandric inheritance pattern. During evolution, many holandric genes were deleted. The current review discusses the mammalian holandric genes and their functions. The commonly encountered infertility and/or subfertility problems due to point or gross mutation (deletion) of the Y-chromosomal genes have also been discussed. For example, loss or microdeletion of sex-determining region, Y-linked gene results in XY males that exhibit female characteristics, deletion of RNA binding motif, Y-encoded in azoospermic factor b region results in the arrest of spermatogenesis at meiosis. The holandric genes have been covered for associating the mutations with male factor infertility. PMID:27536043

  7. Y-chromosomal genes affecting male fertility: A review

    Directory of Open Access Journals (Sweden)

    Jasdeep Kaur Dhanoa

    2016-07-01

    Full Text Available The mammalian sex-chromosomes (X and Y have evolved from autosomes and are involved in sex determination and reproductive traits. The Y-chromosome is the smallest chromosome that consists of 2-3% of the haploid genome and may contain between 70 and 200 genes. The Y-chromosome plays major role in male fertility and is suitable to study the evolutionary relics, speciation, and male infertility and/or subfertility due to its unique features such as long non-recombining region, abundance of repetitive sequences, and holandric inheritance pattern. During evolution, many holandric genes were deleted. The current review discusses the mammalian holandric genes and their functions. The commonly encountered infertility and/or subfertility problems due to point or gross mutation (deletion of the Y-chromosomal genes have also been discussed. For example, loss or microdeletion of sex-determining region, Y-linked gene results in XY males that exhibit female characteristics, deletion of RNA binding motif, Y-encoded in azoospermic factor b region results in the arrest of spermatogenesis at meiosis. The holandric genes have been covered for associating the mutations with male factor infertility.

  8. PREVALENCE OF Y CHROMOSOME MICRODELETIONS IN IRANIAN INFERTILE MEN

    Directory of Open Access Journals (Sweden)

    F. Akbari Asbagh

    2003-07-01

    Full Text Available This study was designed to determine the frequency of Y chromosome AZF (Azoospermia Factor subregions, microdeletions in patients with idiopathic nonobstructive azoospermia and severe oligozoospermia. Subjects included 40 men who had been referred to infertility clinics for assisted reproduction, 37 were azoospermic and 3 had severe oligospermia. Medical history and physical exam revealed no evidence of infection, obstruction of seminal tract, endocrine failure or chromosomal anomalies. Hormonal study was performed for all patients. Twenty six men had biopsies of the testes including 11 patients with hypospermatogenesis, 9 patients with maturation arrest, 4 patients with sertoli cell only syndrome and 2 patients with tubular sclerosis. In 14 men who did not have a testicular biopsy multiple, epididymal and testicular sperm aspirations under anesthesia failed and testicular sperm extraction was subsequently performed for ICSI. DNA was isolated from blood samples. Polymerase chain reaction (PCR amplification of 11 loci spanning the AZFa, AZFb and AZFc subregions of the Y chromosome using sY81, sY83, sY127, sY130, sY131, sY147, sY149, sY157, sY158, sY254 and sY276 was performed. Microdeletions of the Y chromosome were found in two of the patients (5%, who had azoospermia. Deletions were restricted to DAZ (deleted in azoospermia locus in AZFc subregion. One of the patients had a history of cryptorchidism and the second had undergone a left side varicocelectomy. Testicular pathology showed sertoli cell only syndrome in both of them. Our experience adds to the current logic that men with azoospermia or severe oligospermia should be evaluated for Yq11 microdeletions before deciding to operate varicoceles or else scheduling them for assisted reproductive techniques.

  9. Mapping genes on human chromosome 20

    Energy Technology Data Exchange (ETDEWEB)

    Keith, T.; Phipps, P.; Serino, K. [Collaborative Research, Inc., Waltham, MA (United States)] [and others

    1994-09-01

    While a substantial number of genes have been physically localized to human chromosome 20, few have been genetically mapped. In the process of developing a genetic linkage map of chromosome 20, we have mapped microsatellite polymorphisms associated with six genes. Three of these had highly informative polymorphisms (greater than 0.70) that were originally identified by other investigators. These include avian sarcoma oncogene homolog (SRC), ribophorin II (RPN2), and phosphoenolpyruvate carboxykinase (PCK1). Polymorphisms associated with two genes were determined following a screen of their DNA sequences in GenBank. These include dinucleotide polymorphisms in introl II of cystatin c (CST3) and in the promoter region of neuroendocrine convertase 2 (NEC2) with heterozygosities of 0.52 and 0.54, respectively. A sixth gene, prodynorphin (PDYN) was mapped following the identification of a dinucleotide repeat polymorphism (heterozygosity of 0.35) in a cosmid subclone from a YAC homologous to the original phage clone. CA-positive cosmid subclones from a YAC for an additional gene, guanine nucleotide binding protein, alpha (GNAS10), have been identified and sequencing is in progress. Similar efforts were utilized to identify a microsatellite polymorphism from a half-YAC cloned by W. Brown and localized by FISH to 20pter. This polymorphism is highly informative, with a heterozygosity of 0.83, and serves to delimit the genetic map of the short arm of this chromosome.

  10. Tracing the origin and geographic distribution of an ancestral form of the modern human Y chromosome Reconstrucción del origen y distribución geográfica de una forma ancestral del cromosoma Y del hombre moderno

    Directory of Open Access Journals (Sweden)

    CLAUDIO M BRAVI

    2001-03-01

    Full Text Available We screened a total of 841 Y chromosomes representing 36 human populations of wide geographical distribution for the presence of a Y-specific Alu insert (YAP+ chromosomes. The Alu element was found in 77 cases. We tested five biallelic and eight polyallelic markers in 70 out of the 77 YAP+ chromosomes. We could identify the existence of a hierarchical and chronological structuring of ancestral and derived YAP+ lineages giving rise to four haplogroups, 14 subhaplogroups and 60 haplotypes. Moreover, we propose a monophyletic origin for each one of the YAP+ lineages. Out-of-Africa and out_of-Asia models have been suggested to explain the origin and evolution of ancestral and derived YAP+ elements. We analyse the evidence supporting these two hypotheses and we conclude that the information available supports better the out-of-Africa modelSe buscó la presencia de un inserto Alu Y-específico (cromosomas YAP+ en un total de 841 cromosomas Y provenientes de 36 poblaciones humanas de amplia distribución geográfica. El elemento Alu se encontró en 77 casos. En 70 de los 77 cromosomas YAP+ se testificaron cinco marcadores bialélicos y ocho polialélicos. Se pudo identificar la existencia de una estructura jerárquica y cronológica de linajes YAP+ ancestrales y derivados, la cual generó cuatro haplogrupos, 14 subhaplogrupos, y 60 haplotipos. Se propone un origen monofilético para cada linaje YAP+. Dos modelos intentan explicar el origen y evolución de los cromosomas YAP+ ancestrales y derivados: (i origen del inserto Alu en Africa y posterior migración a otros continentes ("out-of-Africa"; (ii origen en Asia con subsecuente migración a otras áreas geográficas ("out-of-Asia". El análisis de la evidencia que apoya estos dos modelos nos permite sugerir que la hipótesis más probable es el origen africano con subsecuente dispersión fuera de Africa

  11. Y-chromosome diversity characterizes the Gulf of Oman.

    Science.gov (United States)

    Cadenas, Alicia M; Zhivotovsky, Lev A; Cavalli-Sforza, Luca L; Underhill, Peter A; Herrera, Rene J

    2008-03-01

    Arabia has served as a strategic crossroads for human disseminations, providing a natural connection between the distant populations of China and India in the east to the western civilizations along the Mediterranean. To explore this region's critical role in the migratory episodes leaving Africa to Eurasia and back, high-resolution Y-chromosome analysis of males from the United Arab Emirates (164), Qatar (72) and Yemen (62) was performed. The role of the Levant in the Neolithic dispersal of the E3b1-M35 sublineages is supported by the data, and the distribution and STR-based analyses of J1-M267 representatives points to their spread from the north, most likely during the Neolithic. With the exception of Yemen, southern Arabia, South Iran and South Pakistan display high diversity in their Y-haplogroup substructure possibly a result of gene flow along the coastal crescent-shaped corridor of the Gulf of Oman facilitating human dispersals. Elevated rates of consanguinity may have had an impact in Yemen and Qatar, which experience significant heterozygote deficiencies at various hypervariable autosomal STR loci.

  12. Flow karyotyping and sorting of human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.W.; Lucas, J.; Peters, D.; Pinkel, D.; Trask, B.; van den Engh, G.; Van Dilla, M.A.

    1986-07-16

    Flow cytometry and sorting are becoming increasingly useful as tools for chromosome classfication and for the detection of numerical and structural chromosome aberrations. Chromosomes of a single type can be purified with these tools to facilitate gene mapping or production of chromosome specific recombinant DNA libraries. For analysis of chromosomes with flow cytometry, the chromosomes are extracted from mitotic cells, stained with one or more fluorescent dyes and classified one-by-one according to their dye content(s). Thus, the flow approach is fundamentally different than conventional karyotyping where chromosomes are classified within the context of a metaphase spread. Flow sorting allows purification of chromosomes that can be distinguished flow cytometrically. The authors describe the basic principles of flow cytometric chromosome classification i.e. flow karyotyping, and chromosome sorting and describe several applications. 30 refs., 8 figs.

  13. Isolation and characterization of DNA probes for human chromosome 21.

    Science.gov (United States)

    Watkins, P C

    1990-01-01

    A coordinated effort to map and sequence the human genome has recently become a national priority. Chromosome 21, the smallest human chromosome accounting for less than 2% of the human genome, is an attractive model system for developing and evaluating genome mapping technology. Several strategies are currently being explored including the development of chromosome 21 libraries from somatic cell hybrids as reported here, the cloning of chromosome 21 in yeast artificial chromosomes (McCormick et al., 1989b), and the construction of chromosome 21 libraries using chromosome flow-sorting techniques (Fuscoe et al., 1989). This report describes the approaches used to identify DNA probes that are useful for mapping chromosome 21. Probes were successfully isolated from both phage and cosmid libraries made from two somatic cell hybrids that contain human chromosome 21 as the only human chromosome. The 15 cosmid clones from the WA17 library, reduced to cloned DNA sequences of an average size of 3 kb, total 525 kb of DNA which is approximately 1% of chromosome 21. From these clones, a set of polymorphic DNA markers that span the length of the long arm of chromosome 21 has been generated. All of the probes thus far analyzed from the WA17 libraries have been mapped to chromosome 21 both by physical and genetic mapping methods. It is therefore likely that the WA17 hybrid cell line contains human chromosome 21 as the only human component, in agreement with cytogenetic observation. The 153E7b cosmid libraries will provide an alternative source of cloned chromosome 21 DNA. Library screening techniques can be employed to obtain cloned DNA sequences from the same genetic loci of the two different chromosome 21s. Comparative analysis will allow direct estimation of DNA sequence variation for different regions of chromosome 21. Mapped DNA probes make possible the molecular analysis of chromosome 21 at a level of resolution not achievable by classical cytogenetic techniques (Graw et al

  14. A recent bottleneck of Y chromosome diversity coincides with a global change in culture

    DEFF Research Database (Denmark)

    Monika, Karmin; Saag, Lauri; Vicente, Mario;

    2015-01-01

    It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applyi...

  15. Y chromosomal variation tracks the evolution of mating systems in chimpanzee and bonobo.

    Directory of Open Access Journals (Sweden)

    Felix Schaller

    Full Text Available The male-specific regions of the Y chromosome (MSY of the human and the chimpanzee (Pan troglodytes are fully sequenced. The most striking difference is the dramatic rearrangement of large parts of their respective MSYs. These non-recombining regions include ampliconic gene families that are known to be important for male reproduction,and are consequently under significant selective pressure. However, whether the published Y-chromosomal pattern of ampliconic fertility genes is invariable within P. troglodytes is an open but fundamental question pertinent to discussions of the evolutionary fate of the Y chromosome in different primate mating systems. To solve this question we applied fluorescence in situ hybridisation (FISH of testis-specific expressed ampliconic fertility genes to metaphase Y chromosomes of 17 chimpanzees derived from 11 wild-born males and 16 bonobos representing seven wild-born males. We show that of eleven P. troglodytes Y-chromosomal lines, ten Y-chromosomal variants were detected based on the number and arrangement of the ampliconic fertility genes DAZ (deleted in azoospermia and CDY (chromodomain protein Y-a so-far never-described variation of a species' Y chromosome. In marked contrast, no variation was evident among seven Y-chromosomal lines of the bonobo, P. paniscus, the chimpanzee's closest living relative. Although, loss of variation of the Y chromosome in the bonobo by a founder effect or genetic drift cannot be excluded, these contrasting patterns might be explained in the context of the species' markedly different social and mating behaviour. In chimpanzees, multiple males copulate with a receptive female during a short period of visible anogenital swelling, and this may place significant selection on fertility genes. In bonobos, however, female mate choice may make sperm competition redundant (leading to monomorphism of fertility genes, since ovulation in this species is concealed by the prolonged anogenital

  16. Large-scale reconstruction of 3D structures of human chromosomes from chromosomal contact data.

    Science.gov (United States)

    Trieu, Tuan; Cheng, Jianlin

    2014-04-01

    Chromosomes are not positioned randomly within a nucleus, but instead, they adopt preferred spatial conformations to facilitate necessary long-range gene-gene interactions and regulations. Thus, obtaining the 3D shape of chromosomes of a genome is critical for understanding how the genome folds, functions and how its genes interact and are regulated. Here, we describe a method to reconstruct preferred 3D structures of individual chromosomes of the human genome from chromosomal contact data generated by the Hi-C chromosome conformation capturing technique. A novel parameterized objective function was designed for modeling chromosome structures, which was optimized by a gradient descent method to generate chromosomal structural models that could satisfy as many intra-chromosomal contacts as possible. We applied the objective function and the corresponding optimization method to two Hi-C chromosomal data sets of both a healthy and a cancerous human B-cell to construct 3D models of individual chromosomes at resolutions of 1 MB and 200 KB, respectively. The parameters used with the method were calibrated according to an independent fluorescence in situ hybridization experimental data. The structural models generated by our method could satisfy a high percentage of contacts (pairs of loci in interaction) and non-contacts (pairs of loci not in interaction) and were compatible with the known two-compartment organization of human chromatin structures. Furthermore, structural models generated at different resolutions and from randomly permuted data sets were consistent.

  17. A recent bottleneck of Y chromosome diversity coincides with a global change in culture

    KAUST Repository

    Karmin, Monika

    2015-04-30

    It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50–100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192–307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47–52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.

  18. Y Chromosome Regulation of Autism Susceptibility Genes

    Science.gov (United States)

    2009-06-01

    of chromatin immunoprecipitation and genome-wide promoter tiling microarray (ChIP-Chip) experiments with gonadal cells isolated from mouse embryos ...disorders: developmental disconnection syndromes. Curr Opin Neurobiol, 2007. 17(1): p. 103-11. 4. Kumar, R.A. and S.L. Christian , Genetics of autism... Christian , S.L., et al., Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder. Biol Psychiatry, 2008. 63(12): p. 1111

  19. A worldwide phylogeography for the human X chromosome.

    Directory of Open Access Journals (Sweden)

    Simone S Santos-Lopes

    Full Text Available BACKGROUND: We reasoned that by identifying genetic markers on human X chromosome regions where recombination is rare or absent, we should be able to construct X chromosome genealogies analogous to those based on Y chromosome and mitochondrial DNA polymorphisms, with the advantage of providing information about both male and female components of the population. METHODOLOGY/PRINCIPAL FINDINGS: We identified a 47 Kb interval containing an Alu insertion polymorphism (DXS225 and four microsatellites in complete linkage disequilibrium in a low recombination rate region of the long arm of the human X chromosome. This haplotype block was studied in 667 males from the HGDP-CEPH Human Genome Diversity Panel. The haplotypic diversity was highest in Africa (0.992+/-0.0025 and lowest in the Americas (0.839+/-0.0378, where no insertion alleles of DXS225 were observed. Africa shared few haplotypes with other geographical areas, while those exhibited significant sharing among themselves. Median joining networks revealed that the African haplotypes were numerous, occupied the periphery of the graph and had low frequency, whereas those from the other continents were few, central and had high frequency. Altogether, our data support a single origin of modern man in Africa and migration to occupy the other continents by serial founder effects. Coalescent analysis permitted estimation of the time of the most recent common ancestor as 182,000 years (56,700-479,000 and the estimated time of the DXS225 Alu insertion of 94,400 years (24,300-310,000. These dates are fully compatible with the current widely accepted scenario of the origin of modern mankind in Africa within the last 195,000 years and migration out-of-Africa circa 55,000-65,000 years ago. CONCLUSIONS/SIGNIFICANCE: A haplotypic block combining an Alu insertion polymorphism and four microsatellite markers on the human X chromosome is a useful marker to evaluate genetic diversity of human populations and

  20. A highly conserved pericentromeric domain in human and gorilla chromosomes.

    Science.gov (United States)

    Pita, M; Gosálvez, J; Gosálvez, A; Nieddu, M; López-Fernández, C; Mezzanotte, R

    2009-01-01

    Significant similarity between human and gorilla genomes has been found in all chromosome arms, but not in centromeres, using whole-comparative genomic hybridization (W-CGH). In human chromosomes, centromeric regions, generally containing highly repetitive DNAs, are characterized by the presence of specific human DNA sequences and an absence of homology with gorilla DNA sequences. The only exception is the pericentromeric area of human chromosome 9, which, in addition to a large block of human DNA, also contains a region of homology with gorilla DNA sequences; the localization of these sequences coincides with that of human satellite III. Since highly repetitive DNAs are known for their high mutation frequency, we hypothesized that the chromosome 9 pericentromeric DNA conserved in human chromosomes and deriving from the gorilla genome may thus play some important functional role.

  1. Genetic Diversity on the Human X Chromosome Does Not Support a Strict Pseudoautosomal Boundary.

    Science.gov (United States)

    Cotter, Daniel J; Brotman, Sarah M; Wilson Sayres, Melissa A

    2016-05-01

    Unlike the autosomes, recombination between the X chromosome and the Y chromosome is often thought to be constrained to two small pseudoautosomal regions (PARs) at the tips of each sex chromosome. PAR1 spans the first 2.7 Mb of the proximal arm of the human sex chromosomes, whereas the much smaller PAR2 encompasses the distal 320 kb of the long arm of each sex chromosome. In addition to PAR1 and PAR2, there is a human-specific X-transposed region that was duplicated from the X to the Y chromosome. The X-transposed region is often not excluded from X-specific analyses, unlike the PARs, because it is not thought to routinely recombine. Genetic diversity is expected to be higher in recombining regions than in nonrecombining regions because recombination reduces the effect of linked selection. In this study, we investigated patterns of genetic diversity in noncoding regions across the entire X chromosome of a global sample of 26 unrelated genetic females. We found that genetic diversity in PAR1 is significantly greater than in the nonrecombining regions (nonPARs). However, rather than an abrupt drop in diversity at the pseudoautosomal boundary, there is a gradual reduction in diversity from the recombining through the nonrecombining regions, suggesting that recombination between the human sex chromosomes spans across the currently defined pseudoautosomal boundary. A consequence of recombination spanning this boundary potentially includes increasing the rate of sex-linked disorders (e.g., de la Chapelle) and sex chromosome aneuploidies. In contrast, diversity in PAR2 is not significantly elevated compared to the nonPARs, suggesting that recombination is not obligatory in PAR2. Finally, diversity in the X-transposed region is higher than in the surrounding nonPARs, providing evidence that recombination may occur with some frequency between the X and Y chromosomes in the X-transposed region.

  2. Y fuse? Sex chromosome fusions in fishes and reptiles.

    Science.gov (United States)

    Pennell, Matthew W; Kirkpatrick, Mark; Otto, Sarah P; Vamosi, Jana C; Peichel, Catherine L; Valenzuela, Nicole; Kitano, Jun

    2015-05-01

    Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome.

  3. Y fuse? Sex chromosome fusions in fishes and reptiles.

    Directory of Open Access Journals (Sweden)

    Matthew W Pennell

    2015-05-01

    Full Text Available Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a that fusions are slightly deleterious, and (b that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome.

  4. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes.

    Science.gov (United States)

    Holubcová, Zuzana; Blayney, Martyn; Elder, Kay; Schuh, Melina

    2015-06-05

    Aneuploidy in human eggs is the leading cause of pregnancy loss and several genetic disorders such as Down syndrome. Most aneuploidy results from chromosome segregation errors during the meiotic divisions of an oocyte, the egg's progenitor cell. The basis for particularly error-prone chromosome segregation in human oocytes is not known. We analyzed meiosis in more than 100 live human oocytes and identified an error-prone chromosome-mediated spindle assembly mechanism as a major contributor to chromosome segregation defects. Human oocytes assembled a meiotic spindle independently of either centrosomes or other microtubule organizing centers. Instead, spindle assembly was mediated by chromosomes and the small guanosine triphosphatase Ran in a process requiring ~16 hours. This unusually long spindle assembly period was marked by intrinsic spindle instability and abnormal kinetochore-microtubule attachments, which favor chromosome segregation errors and provide a possible explanation for high rates of aneuploidy in human eggs.

  5. Scanning conductance microscopy investigations on fixed human chromosomes

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Lange, Jacob Moresco; Jensen, Linda Boye;

    2008-01-01

    Scanning conductance microscopy investigations were carried out in air on human chromosomes fixed on pre-fabricated SiO2 surfaces with a backgate. The point of the investigation was to estimate the dielectric constant of fixed human chromosomes in order to use it for microfluidic device...... optimization. The phase shift caused by the electrostatic forces, together with geometrical measurements of the atomic force microscopy (AFM) cantilever and the chromosomes were used to estimate a value,for the dielectric constant of different human chromosomes....

  6. Typing of Y chromosome SNPs with multiplex PCR methods

    DEFF Research Database (Denmark)

    Sanchez Sanchez, Juan Jose; Børsting, Claus; Morling, Niels

    2005-01-01

    We describe a method for the simultaneous typing of Y-chromosome single nucleotide polymorphism (SNP) markers by means of multiplex polymerase chain reaction (PCR) strategies that allow the detection of 35 Y chromosome SNPs on 25 amplicons from 100 to 200 pg of chromosomal deoxyribonucleic acid...... (DNA). Multiplex PCR amplification of the DNA was performed with slight modifications of standard PCR conditions. Single-base extension (SBE) was performed using the SNaPshot kit containing fluorescently labeled ddNTPs. The extended primers were detected on an ABI 3100 sequencer. The most important...... factors for the creation of larger SNP typing PCR multiplexes include careful selection of primers for the primary amplification and the SBE reaction, use of DNA primers with homogenous composition, and balancing the primer concentrations for both the amplification and the SBE reactions....

  7. Y-chromosome STR haplotypes in males from Greenland

    DEFF Research Database (Denmark)

    Hallenberg, Charlotte; Tomas Mas, Carmen; Simonsen, Bo;

    2009-01-01

    A total of 272 males from Greenland were typed for 11 Y-chromosome STRs DYS19, DYS385a/b, DYS389-I, DYS389-II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438 and DYS439 with the PowerPlex Y System (Promega). A total of 146 different haplotypes were observed and the haplotype diversity was 0.9887....

  8. Increased Y-chromosome detection by SRY duplexing

    DEFF Research Database (Denmark)

    Hansen, Morten Høgh; Clausen, Frederik Banch; Dziegiel, Morten Hanefeld

    2012-01-01

    Determining fetal sex noninvasively is dependent of a robust assay. We designed a novel SRY assay and combined it with a SRY assay from literature forming a duplex assay with the same fluorescent dye to increase detection of Y-chromosome at low cell-free fetal DNA or chimeric DNA concentrations....

  9. Human-chromosome alterations induced by argon laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Simi, S.; Colella, C. (Consiglio Nazionale delle Ricerche, Pisa (Italy). Lab. di Mutagenesi e Differenziamento); Agati, G.; Fusi, F. (Florence Univ. (Italy). Ist. di Farmacologia); Corsi, M.F.; Pratesi, R. (Consiglio Nazionale delle Ricerche, Florence (Italy). Lab. di Elettronica Quantistica); Tocco, G.A. (Naples Univ. (Italy). Ist. di Istologia ed Embrilogia)

    1984-07-01

    The possible occurrence of genetic damage arising from exposure of human cells to visible laser light has been evaluated in PHA-stimulated human lymphocytes. Aneuploidy and chromosome aberrations have been observed after exposure to an argon laser. These findings appear of special interest in view of the possible role of these chromosome alterations in carcinogenesis.

  10. Incidence of X and Y Chromosomal Aneuploidy in a Large Child Bearing Population

    Science.gov (United States)

    Kırkızlar, Eser; Hall, Megan P.; Demko, Zachary; Zneimer, Susan M.; Curnow, Kirsten J.; Gross, Susan; Gropman, Andrea

    2016-01-01

    Background X&Y chromosomal aneuploidies are among the most common human whole-chromosomal copy number changes, but the population-based incidence and prevalence in the child-bearing population is unclear. Methods This retrospective analysis of prospectively collected data leveraged a routine non-invasive prenatal test (NIPT) using parental genotyping to estimate the population-based incidence of X&Y chromosome variations in this population referred for NIPT (generally due to advanced maternal age). Results From 141,916 women and 29,336 men, 119 X&Y chromosomal abnormalities (prevalence: 1 in 1,439) were identified. Maternal findings include: 43 cases of 45,X (40 mosaic); 30 cases of 47,XXX (12 mosaic); 3 cases of 46,XX uniparental disomy; 2 cases of 46,XY/46,XX; 23 cases of mosaicism of unknown type; 2 cases of 47,XX,i(X)(q10). Paternal findings include: 2 cases of 47,XXY (1 mosaic); 10 cases of 47,XYY (1 mosaic); 4 partial Y deletions. Conclusions Single chromosome aneuploidy was present in one of every 1,439 individuals considered in this study, showing 47,XXX; 47,XX,i(X)(q10); 47,XYY; 47,XXY, partial Y deletions, and a high level of mosaicism for 45,X. This expands significantly our understanding of X&Y chromosomal variations and fertility issues, and is critical for families and adults affected by these disorders. This current and extensive information on fertility will be beneficial for genetic counseling on prenatal diagnoses as well as for newly diagnosed postnatal cases. PMID:27512996

  11. In silico detection of phylogenetic informative Y-chromosomal single nucleotide polymorphisms from whole genome sequencing data.

    Science.gov (United States)

    Van Geystelen, Anneleen; Wenseleers, Tom; Decorte, Ronny; Caspers, Maarten J L; Larmuseau, Maarten H D

    2014-11-01

    A state-of-the-art phylogeny of the human Y-chromosome is an essential tool for forensic genetics. The explosion of whole genome sequencing (WGS) data due to the rapid progress of next-generation sequencing facilities is useful to optimize and to increase the resolution of the phylogenetic Y-chromosomal tree. The most interesting Y-chromosomal variants to increase the phylogeny are SNPs (Y-SNPs) especially since the software to call them in WGS data and to genotype them in forensic assays has been optimized over the past years. The PENNY software presented here detects potentially phylogenetic interesting Y-SNPs in silico based on SNP calling data files and classifies them into different types according to their position in the currently used Y-chromosomal tree. The software utilized 790 available male WGS samples of which 172 had a high SNP calling quality. In total, 1269 Y-SNPs potentially capable of increasing the resolution of the Y-chromosomal phylogenetic tree were detected based on a first run with PENNY. Based on a test panel of 57 high-quality and 618 low-quality WGS samples, we could prove that these newly added Y-SNPs indeed increased the resolution of the phylogenetic Y-chromosomal analysis substantially. Finally, we performed a second run with PENNY whereby all samples including those of the test panel are used and this resulted in 509 additional phylogenetic promising Y-SNPs. By including these additional Y-SNPs, a final update of the present phylogenetic Y-chromosomal tree which is useful for forensic applications was generated. In order to find more convincing forensic interesting Y-SNPs with this PENNY software, the number of samples and variety of the haplogroups to which these samples belong needs to increase. The PENNY software (inclusive the user manual) is freely available on the website http://bio.kuleuven.be/eeb/lbeg/software.

  12. Construction and characterization of genomic libraries from specific human chromosomes.

    Science.gov (United States)

    Krumlauf, R; Jeanpierre, M; Young, B D

    1982-05-01

    Highly purified fractions of human chromosomes 21 and 22 were isolated from a suspension of metaphase chromosomes stained with ethidium bromide by using a fluorescence-activated cell sorter (FACS II). Two recombinant DNA libraries, representing chromosomes 21 and 22, were constructed by complete digestion of DNA from these fractions with EcoRI and insertion into the vector lambda gtWES lambda B. Twenty clones selected at random from the chromosome 22 library hybridized to EcoRI-digested human DNA, and five of these clones hybridized to single bands identical in size to the phage inserts. These five single-copy sequences and a clone coding for an 8S RNA isolated by screening the chromosome 22 library for expressed sequences were characterized in detail. Hybridization of all six clones to a panel of sorted chromosomes and hybrid cell lines confirmed the assignment of the sequences to chromosome 22. The sequences were localized to regions of chromosome 22 by hybridization to translocated chromosomes sorted from a cell line having a balanced translocation t(17;22)(p13;q11) and to hybrid cell lines containing the various portions of another translocation t(X;22)(q13;q112). Five clones reside on the long arm of chromosome 22 between q112 and pter, while one clone and an 18S rRNA gene isolated from the chromosome 22 library reside pter and g112. The construction of chromosome-specific libraries by this method has the advantage of being direct and applicable to nearly all human chromosomes and will be important in molecular analysis of human genetic diseases.

  13. Selection and fine mapping of chromosome-specific cDNAs: application to human chromosome 1.

    Science.gov (United States)

    Mancini, M; Sala, C; Rivella, S; Toniolo, D

    1996-12-01

    We have developed a methodology for identification and fine mapping of chromosome-specific transcripts. Combining digestion of DNA with different restriction enzymes, ligation to "bubble" linkers, and PCR amplification from Alu and "bubble" primers, we have synthesized human chromosome 1-specific sequences from DNA of a somatic cell hybrid, A9Neol. After hybridization to human fetal brain cDNA, we could efficiently capture chromosome 1-specific cDNAs. The cDNAs were sequenced and used as probes in hybridizations to high-density filters containing the arrayed CEPH Mega-YAC library and to the arrayed cDNA library from infant brain made by B. Soares, which has been extensively sequenced. By this approach we have been able to select chromosome 1-specific cDNAs, to map them to chromosome 1 YAC contigs, and to identify and map corresponding longer cDNAs and ESTs.

  14. 45,X mosaicism with Y chromosome presenting female phenotype.

    Science.gov (United States)

    Fukui, Shinji; Watanabe, Masato; Yoshino, Kaoru

    2015-07-01

    Prophylactic gonadectomy is recommended in patients with 45,X mosaicism with the Y chromosome and presenting a female phenotype because of the risk of gonadoblastoma development. The characteristics of this disorder remain unclear because of its low incidence. We report 4 patients with 45,X mosaicism with the Y chromosome and presenting complete female external genitalia. We analyzed the characteristics and the macroscopic and histopathological findings of their gonads and performed hormonal assays of the 4 patients. All 4 patients were referred to us with short stature as the chief complaint. Chromosomal studies revealed 45,X/47,XYY in 1, and the others had a 45,X/46,XY karyotype. Three patients (6 gonads) underwent laparoscopic bilateral gonadectomy. The macroscopic appearance of gonads of 1 patient was similar to an ovary, whereas gonads of the rest appeared as streak gonads. The histopathological findings revealed bilateral gonadoblastoma in 1 patient, although the macroscopic findings did not show tumor characteristics. It is impossible to distinguish the histopathological findings of gonads according to their macroscopic appearance among patients with 45,X mosaicism with the Y chromosome and presenting a female phenotype.

  15. Altered chromosome 6 in immortal human fibroblasts.

    Science.gov (United States)

    Hubbard-Smith, K; Patsalis, P; Pardinas, J R; Jha, K K; Henderson, A S; Ozer, H L

    1992-05-01

    Human diploid fibroblasts have a limited life span in vitro, and spontaneous immortalization is an extremely rare event. We have used transformation of human diploid fibroblasts by an origin-defective simian virus 40 genome to develop series of genetically matched immortal cell lines to analyze immortalization. Comparison of a preimmortal transformant (SVtsA/HF-A) with its uncloned and cloned immortalized derivatives (AR5 and HAL) has failed to reveal any major alteration involving the simian virus 40 genome. Karyotypic analysis, however, demonstrated that all of the immortal cell lines in this series have alterations of chromosome 6 involving loss of the portion distal to 6q21. The karyotypic analysis was corroborated by DNA analyses. Southern analysis demonstrated that only one copy of three proto-oncogene loci (ros1, c-myb, and mas1) on 6q was retained in immortal cells. Polymerase chain reaction analysis of the microsatellite polymorphism at 6q22 (D6S87) showed loss of heterozygosity. In addition, elevated expression of c-myb (6q22-23) was observed. We hypothesize that the region at and/or distal to 6q21 plays a role in immortalization, consistent with the presence of a growth suppressor gene.

  16. Altered chromosome 6 in immortal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard-Smith, K.; Pardinas, J.R.; Jha, K.K.; Ozer, H.L. (New Jersey Medical School, Newark, NJ (United States)); Patsalis, P.; Henderson, A.S. (City Univ. of New York, NY (United States))

    1992-05-01

    Human diploid fibroblasts have a limited life span in vitro, and spontaneous immortalization is an extremely rare event. We have used transformation of human diploid fibroblasts by an origin-defective simian virus 40 genome to develop series of genetically matched immortal cell lines to analyze immortalization. Comparison of a preimmortal transformant (SVtsA/HF-A) with its uncloned and cloned immortalized derivatives (AR5 and HAL) has failed to reveal any major alteration involving the simian virus 40 genome. Karyotypic analysis, however, demonstrated that all of the immortal cell lines in this series have alterations of chromosome 6 involving loss of the portion distal to 6q21. The karyotypic analysis was corroborated by DNA analyses. Southern analysis demonstrated that only one copy of three proto-oncogene loci (ros1, c-myb, and mas1) on 6q was retained in immortal cells. Polymerase chain reaction analysis of the microsatellite polymorphism at 6q22 (D6S87) showed loss of heterozygosity. In addition, elevated expression of c-myb (6q22-23) was observed. We hypothesize that the region at and/or distal to 6q21 plays a role in immortalization, consistent with the presence of a growth suppressor gene. 66 refs., 6 figs., 2 tabs.

  17. Effects of hepatitis B virus infection on human sperm chromosomes

    Institute of Scientific and Technical Information of China (English)

    Jian-Min Huang; Tian-Hua Huang; Huan-Ying Qiu; Xiao-Wu Fang; Tian-Gang Zhuang; Hong-Xi Liu; Yong-Hua Wang; Li-Zhi Deng; Jie-Wen Qiu

    2003-01-01

    AIM: To evaluate the level of sperm chromosome aberrations in male patients with hepatitis B, and to directly detect whether there are HBV DNA integrations in sperm chromosomes of hepatitis B patients.METHODS: Sperm chromosomes of 14 tested subjects (5healthy controls, 9 patients with HBV infection, including 1with acute hepatitis B, 2 with chronic active hepatitis B, 4with chronic persistent hepatitis B, 2 chronic HBsAg carriers with no clinical symptoms) were prepared using interspecific in vitro fertilization between zona-free golden hamster ova and human spermatozoa, and the frequencies of aberration spermatozoa were compared between subjects of HBV infection and controls. Fluorescence in situ hybridization (FISH) to sperm chromosome spreads was carried out with biotin-labeled full length HBV DNA probe to detect the specific HBV DNA sequences in the sperm chromosomes.RESULTS: The total frequency of sperm chromosome aberrations in HBV infection group (14.8%, 33/223) was significantly higher than that in the control group (4.3%,5/116). Moreover, the sperm chromosomes in HBV infection patients commonly presented stickiness, clumping, failure to staining, etc, which would affect the analysis of sperm chromosomes. Specific fluorescent signal spots for HBV DNA were seen in sperm chromosomes of one patient with chronic persistent hepatitis. In 9 (9/42) sperm chromosome complements containing fluorescent signal spots, one presented 5 obvious FISH spots, others presented 2 to 4signals. There was significant difference of fluorescence intensity among the signal spots. The distribution of signal sites among chromosomes was random.CONCLUSION: HBV infection can bring about mutagenic effects on sperm chromosomes. Integrations of viral DNA into sperm chromosomes which are multisites and nonspecific, can further increase the instability of sperm chromosomes. This study suggested that HBV infection can create extensively hereditary effects by alteration genetic constituent and

  18. Small supernumerary marker chromosomes (sSMC in humans; are there B chromosomes hidden among them

    Directory of Open Access Journals (Sweden)

    Ogilvie Caroline

    2008-06-01

    Full Text Available Abstract Background Small supernumerary marker chromosomes (sSMC and B-chromosomes represent a heterogeneous collection of chromosomes added to the typical karyotype, and which are both small in size. They may consist of heterochromatic and/or euchromatic material. Also a predominance of maternal transmission was reported for both groups. Even though sSMC and B-chromosomes show some similarity it is still an open question if B-chromosomes are present among the heterogeneous group of sSMC. According to current theories, sSMC would need drive, drift or beneficial effects to increase in frequency in order to become B chromosome. However, up to now no B-chromosomes were described in human. Results Here we provide first evidence and discuss, that among sSMC B-chromosomes might be hidden. We present two potential candidates which may already be, or may in future evolve into B chromosomes in human: (i sSMC cases where the marker is stainable only by DNA derived from itself; and (ii acrocentric-derived inverted duplication sSMC without associated clinical phenotype. Here we report on the second sSMC stainable exclusively by its own DNA and show that for acrocentric derived sSMC 3.9× more are familial cases than reported for other sSMC. Conclusion The majority of sSMC are not to be considered as B-chromosomes. Nonetheless, a minority of sSMC show similarities to B-chromosomes. Further studies are necessary to come to final conclusions for that problem.

  19. Nonrandom involvement of chromosomal segments in human hematologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J. D.

    1977-01-01

    The consistent occurrence of nonrandom chromosome changes in human malignancies suggests that they are not trivial epiphenomena. Whereas we do not understand their significance at present, one possible role which they may fulfill is to provide the chromosomally aberrant cells with a proliferative advantage as the result of alteration of the number and/or location of genes related to nucleic acid biosynthesis. It would be expected that the proliferative advantage provided by various chromosome aberrations differs in patients with different genetic constitutions.

  20. The finished DNA sequence of human chromosome 12.

    Science.gov (United States)

    Scherer, Steven E; Muzny, Donna M; Buhay, Christian J; Chen, Rui; Cree, Andrew; Ding, Yan; Dugan-Rocha, Shannon; Gill, Rachel; Gunaratne, Preethi; Harris, R Alan; Hawes, Alicia C; Hernandez, Judith; Hodgson, Anne V; Hume, Jennifer; Jackson, Andrew; Khan, Ziad Mohid; Kovar-Smith, Christie; Lewis, Lora R; Lozado, Ryan J; Metzker, Michael L; Milosavljevic, Aleksandar; Miner, George R; Montgomery, Kate T; Morgan, Margaret B; Nazareth, Lynne V; Scott, Graham; Sodergren, Erica; Song, Xing-Zhi; Steffen, David; Lovering, Ruth C; Wheeler, David A; Worley, Kim C; Yuan, Yi; Zhang, Zhengdong; Adams, Charles Q; Ansari-Lari, M Ali; Ayele, Mulu; Brown, Mary J; Chen, Guan; Chen, Zhijian; Clerc-Blankenburg, Kerstin P; Davis, Clay; Delgado, Oliver; Dinh, Huyen H; Draper, Heather; Gonzalez-Garay, Manuel L; Havlak, Paul; Jackson, Laronda R; Jacob, Leni S; Kelly, Susan H; Li, Li; Li, Zhangwan; Liu, Jing; Liu, Wen; Lu, Jing; Maheshwari, Manjula; Nguyen, Bao-Viet; Okwuonu, Geoffrey O; Pasternak, Shiran; Perez, Lesette M; Plopper, Farah J H; Santibanez, Jireh; Shen, Hua; Tabor, Paul E; Verduzco, Daniel; Waldron, Lenee; Wang, Qiaoyan; Williams, Gabrielle A; Zhang, Jingkun; Zhou, Jianling; Allen, Carlana C; Amin, Anita G; Anyalebechi, Vivian; Bailey, Michael; Barbaria, Joseph A; Bimage, Kesha E; Bryant, Nathaniel P; Burch, Paula E; Burkett, Carrie E; Burrell, Kevin L; Calderon, Eliana; Cardenas, Veronica; Carter, Kelvin; Casias, Kristal; Cavazos, Iracema; Cavazos, Sandra R; Ceasar, Heather; Chacko, Joseph; Chan, Sheryl N; Chavez, Dean; Christopoulos, Constantine; Chu, Joseph; Cockrell, Raynard; Cox, Caroline D; Dang, Michelle; Dathorne, Stephanie R; David, Robert; Davis, Candi Mon'Et; Davy-Carroll, Latarsha; Deshazo, Denise R; Donlin, Jeremy E; D'Souza, Lisa; Eaves, Kristy A; Egan, Amy; Emery-Cohen, Alexandra J; Escotto, Michael; Flagg, Nicole; Forbes, Lisa D; Gabisi, Abdul M; Garza, Melissa; Hamilton, Cerissa; Henderson, Nicholas; Hernandez, Omar; Hines, Sandra; Hogues, Marilyn E; Huang, Mei; Idlebird, DeVincent G; Johnson, Rudy; Jolivet, Angela; Jones, Sally; Kagan, Ryan; King, Laquisha M; Leal, Belita; Lebow, Heather; Lee, Sandra; LeVan, Jaclyn M; Lewis, Lakeshia C; London, Pamela; Lorensuhewa, Lorna M; Loulseged, Hermela; Lovett, Demetria A; Lucier, Alice; Lucier, Raymond L; Ma, Jie; Madu, Renita C; Mapua, Patricia; Martindale, Ashley D; Martinez, Evangelina; Massey, Elizabeth; Mawhiney, Samantha; Meador, Michael G; Mendez, Sylvia; Mercado, Christian; Mercado, Iracema C; Merritt, Christina E; Miner, Zachary L; Minja, Emmanuel; Mitchell, Teresa; Mohabbat, Farida; Mohabbat, Khatera; Montgomery, Baize; Moore, Niki; Morris, Sidney; Munidasa, Mala; Ngo, Robin N; Nguyen, Ngoc B; Nickerson, Elizabeth; Nwaokelemeh, Ogechi O; Nwokenkwo, Stanley; Obregon, Melissa; Oguh, Maryann; Oragunye, Njideka; Oviedo, Rodolfo J; Parish, Bridgette J; Parker, David N; Parrish, Julia; Parks, Kenya L; Paul, Heidie A; Payton, Brett A; Perez, Agapito; Perrin, William; Pickens, Adam; Primus, Eltrick L; Pu, Ling-Ling; Puazo, Maria; Quiles, Miyo M; Quiroz, Juana B; Rabata, Dina; Reeves, Kacy; Ruiz, San Juana; Shao, Hongmei; Sisson, Ida; Sonaike, Titilola; Sorelle, Richard P; Sutton, Angelica E; Svatek, Amanda F; Svetz, Leah Anne; Tamerisa, Kavitha S; Taylor, Tineace R; Teague, Brian; Thomas, Nicole; Thorn, Rachel D; Trejos, Zulma Y; Trevino, Brenda K; Ukegbu, Ogechi N; Urban, Jeremy B; Vasquez, Lydia I; Vera, Virginia A; Villasana, Donna M; Wang, Ling; Ward-Moore, Stephanie; Warren, James T; Wei, Xuehong; White, Flower; Williamson, Angela L; Wleczyk, Regina; Wooden, Hailey S; Wooden, Steven H; Yen, Jennifer; Yoon, Lillienne; Yoon, Vivienne; Zorrilla, Sara E; Nelson, David; Kucherlapati, Raju; Weinstock, George; Gibbs, Richard A

    2006-03-16

    Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.

  1. The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes.

    Science.gov (United States)

    Estandarte, Ana Katrina; Botchway, Stanley; Lynch, Christophe; Yusuf, Mohammed; Robinson, Ian

    2016-08-16

    Chromatin undergoes dramatic condensation and decondensation as cells transition between the different phases of the cell cycle. The organization of chromatin in chromosomes is still one of the key challenges in structural biology. Fluorescence lifetime imaging (FLIM), a technique which utilizes a fluorophore's fluorescence lifetime to probe changes in its environment, was used to investigate variations in chromatin compaction in fixed human chromosomes. Fixed human metaphase and interphase chromosomes were labeled with the DNA minor groove binder, DAPI, followed by measurement and imaging of the fluorescence lifetime using multiphoton excitation. DAPI lifetime variations in metaphase chromosome spreads allowed mapping of the differentially compacted regions of chromatin along the length of the chromosomes. The heteromorphic regions of chromosomes 1, 9, 15, 16, and Y, which consist of highly condensed constitutive heterochromatin, showed statistically significant shorter DAPI lifetime values than the rest of the chromosomes. Differences in the DAPI lifetimes for the heteromorphic regions suggest differences in the structures of these regions. DAPI lifetime variations across interphase nuclei showed variation in chromatin compaction in interphase and the formation of chromosome territories. The successful probing of differences in chromatin compaction suggests that FLIM has enormous potential for application in structural and diagnostic studies.

  2. Conserved synteny between pig chromosome 8 and human chromosome 4 but rearranged and distorted linkage maps

    Energy Technology Data Exchange (ETDEWEB)

    Ellegren, H.; Edfors-Lilja, I.; Anderson, L. (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)); Wintero, A.K. (Royal Veterinary and Agricultural Univ., Fredriksberg (Denmark))

    1993-09-01

    The porcine genes encoding interleukin 2, alcohol dehydrogenase (class I) gamma polypeptide, and osteopontin were mapped to chromosome 8 by linkage analysis. Together with previous assignments to this chromosome (the albumin, platelet-derived growth factor receptor A, and fibrinogen genes), an extensive syntenic homology with human chromosome 4 was discovered. Loci from about three-quarters of the q arm of human chromosome 4 are on pig chromosome 8. However, the linear order of the markers is not identical in the two species, and there are several examples of interspecific differences in the recombination fractions between adjacent markers. The conserved synteny between man and the pig gives strong support to a previous suggestion that a synteny group present in the ancestor of mammalian species has been retained on human chromosome 4q. Since loci from this synteny group are found on two cattle chromosomes, the bovine rearrangement must have occurred after the split of Suidae and Bovidae within Artiodactyla. 29 refs., 3 figs., 1 tab.

  3. Patterns of Y-chromosome diversity intersect with the Trans-New Guinea hypothesis.

    Science.gov (United States)

    Mona, Stefano; Tommaseo-Ponzetta, Mila; Brauer, Silke; Sudoyo, Herawati; Marzuki, Sangkot; Kayser, Manfred

    2007-11-01

    The island of New Guinea received part of the first human expansion out of Africa (>40,000 years ago), but its human genetic history remains poorly understood. In this study, we examined Y-chromosome diversity in 162 samples from the Bird's Head region of northwest New Guinea (NWNG) and compared the results with previously obtained data from other parts of the island. NWNG harbors a high level of cultural and linguistic diversity and is inhabited by non-Austronesian (i.e., Papuan)-speaking groups as well as harboring most of West New Guinea's (WNG) Austronesian-speaking groups. However, 97.5% of its Y-chromosomes belong to 5 haplogroups that originated in Melanesia; hence, the Y-chromosome diversity of NWNG (and, according to available data, of New Guinea as a whole) essentially reflects a local history. The remaining 2.5% belong to 2 haplogroups (O-M119 and O-M122) of East Asian origin, which were brought to New Guinea by Austronesian-speaking migrants around 3,500 years ago. Thus, the Austronesian expansion had only a small impact on shaping Y-chromosome diversity in NWNG, although the linguistic impact of this expansion to this region was much higher. In contrast, the expansion of Trans-New Guinea (TNG) speakers (non-Austronesian) starting about 6,000-10,000 years ago from the central highlands of what is now Papua New Guinea, presumably in combination with the expansion of agriculture, played a more important role in determining the Y-chromosome diversity of New Guinea. In particular, we identified 2 haplogroups (M-P34 and K-M254) as suggestive markers for the TNG expansion, whereas 2 other haplogroups (C-M38 and K-M9) most likely reflect the earlier local Y-chromosome diversity. We propose that sex-biased differences in the social structure and cultural heritage of the people involved in the Austronesian and the TNG expansions played an important role (among other factors) in shaping the New Guinean Y-chromosome landscape.

  4. Multiple Roles of the Y Chromosome in the Biology of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Roberto Piergentili

    2010-01-01

    to heat-induced male sterility; (5 it affects the behavior; and (6 it plays a role in genetic imprinting. In the present paper, all these Y-related phenotypes are described and a potential similarity with the human Y chromosome is drawn.

  5. Chromosomal mosaicism in human preimplantation embryos : a systematic review

    NARCIS (Netherlands)

    van Echten-Arends, Jannie; Mastenbroek, Sebastiaan; Sikkema-Raddatz, Birgit; Korevaar, Johanna C.; Heineman, Maas Jan; van der Veen, Fulco; Repping, Sjoerd

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is d

  6. Chromosomal mosaicism in human preimplantation embryos: a systematic review.

    NARCIS (Netherlands)

    Echten-Arends, J. van; Mastenbroek, S.; Sikkema-Raddatz, B.; Korevaar, J.C.; Heineman, M.J.; Veen, F. van der; Repping, S.

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is d

  7. Deficit of mitonuclear genes on the human X chromosome predates sex chromosome formation.

    Science.gov (United States)

    Dean, Rebecca; Zimmer, Fabian; Mank, Judith E

    2015-01-29

    Two taxa studied to date, the therian mammals and Caenorhabditis elegans, display underrepresentations of mitonuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions over the generality of the role of sexual conflict in shaping the distribution of mt-N genes. Here we tested whether mt-N genes moved off of the therian X chromosome following sex chromosome formation, consistent with the role of sexual conflict, or whether the paucity of mt-N genes on the therian X is a chance result of an underrepresentation on the ancestral regions that formed the X chromosome. We used a synteny-based approach to identify the ancestral regions in the platypus and chicken genomes that later formed the therian X chromosome. We then quantified the movement of mt-N genes on and off of the X chromosome and the distribution of mt-N genes on the human X and ancestral X regions. We failed to find an excess of mt-N gene movement off of the X. The bias of mt-N genes on ancestral therian X chromosomes was also not significantly different from the biases on the human X. Together our results suggest that, rather than conflict driving mt-N genes off of the mammalian X, random biases on chromosomes that formed the X chromosome could explain the paucity of mt-N genes in the therian lineage.

  8. Correlation of physical and genetic maps of human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.R.

    1991-01-01

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentially 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.

  9. Dielectrophoretic manipulation of human chromosomes in microfluidic channels: extracting chromosome dielectric properties

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Buckley, Sonia;

    2011-01-01

    An investigation of the dielectric properties of polyamine buffer prepared human chromosomes is presented in this paper. Chromosomes prepared in this buffer are only a few micrometers in size and shaped roughly like spherical discs. Dielectrophoresis was therefore chosen as the method...... of manipulation combined with a custom designed microfluidic system containing the required electrodes for dielectrophoresis experiments. Our results show that although this system is presently not able to distinguish between the different chromosomes, it can provide average data for the dielectric properties...... of human chromosomes in polyamine buffer. These can then be used to optimize system designs for further characterization and even sorting. The experimental data from the dielectrophoretic manipulation were combined with theoretical calculations to extract a range of values for the permittivity...

  10. Structure and evolution of the Y-chromosomal and mitochondrial DNA of cattle

    NARCIS (Netherlands)

    Verkaar, Edward Louis Christian

    2004-01-01

    The research described in this thesis is focused on the structure and evolution of the bovine Y-chromosome and the use of paternal markers in molecular diagnostics. The Y-chromosome has emerged together with the X-chromosome early during the evolution of the mammals by differentiation of a pair of a

  11. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  12. The third international workshop of human chromosome 5. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Third International Workshop on Human Chromosome 5 was held in Laguna Beach, California, March 5-8, 1994. The pace at which new mapping information has been published in the last year make almost any report outdated before publication. Much of the information in this report and the most recent data from the Human chromosome 5 Genome Center at U.C. Irvine on the physical map of chromosome 5 are accessible via a WWW server. For most loci referred to in this report that can be detected by Polymerase Chain Reaction, the sequences of the oligonucleotide primers are available and some primer sequences are provided in this report.

  13. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    Science.gov (United States)

    Taketo, Teruko

    2015-01-01

    The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.

  14. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    Directory of Open Access Journals (Sweden)

    Teruko Taketo

    2015-06-01

    Full Text Available The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.

  15. The tricky path to recombining X and Y chromosomes in meiosis.

    Science.gov (United States)

    Kauppi, Liisa; Jasin, Maria; Keeney, Scott

    2012-09-01

    Sex chromosomes are the Achilles' heel of male meiosis in mammals. Mis-segregation of the X and Y chromosomes leads to sex chromosome aneuploidies, with clinical outcomes such as infertility and Klinefelter syndrome. Successful meiotic divisions require that all chromosomes find their homologous partner and achieve recombination and pairing. Sex chromosomes in males of many species have only a small region of homology (the pseudoautosomal region, PAR) that enables pairing. Until recently, little was known about the dynamics of recombination and pairing within mammalian X and Y PARs. Here, we review our recent findings on PAR behavior in mouse meiosis. We uncovered unexpected differences between autosomal chromosomes and the X-Y chromosome pair, namely that PAR recombination and pairing occurs later, and is under different genetic control. These findings imply that spermatocytes have evolved distinct strategies that ensure successful X-Y recombination and chromosome segregation.

  16. Fourth international workshop on human chromosome 5. Final progress report

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, J.D.

    1996-12-31

    The Fourth International Workshop on Human Chromosome 5 was held in Manchester, UK on November 9--10, 1996 and was hosted by the University of Manchester. The major goals of the workshop were: (1) to collate the various genetic, cytogenetic and physical maps of human chromosome 5; (2) to integrate these maps and identify/correct discrepancies between them wherever possible; (3) to catalogue the sequence-ready contigs of the chromosome; (4) to co-ordinate the various sequencing efforts to avoid future duplication; (5) to establish the first (to the author`s knowledge) web site for the human chromosome 5 community which contains the above information in a readily accessible form.

  17. Human oocyte chromosome analysis: complicated cases and major pitfalls

    Indian Academy of Sciences (India)

    Bernd Rosenbusch; Michael Schneider; Hans Wilhelm Michelmann

    2008-08-01

    Human oocytes that remained unfertilized in programmes of assisted reproduction have been analysed cytogenetically for more than 20 years to assess the incidence of aneuploidy in female gametes. However, the results obtained so far are not indisputable as a consequence of difficulties in evaluating oocyte chromosome preparations. Because of the lack of guidelines, we decided to summarize for the first time, the possible pitfalls in human oocyte chromosome analysis. Therefore, we screened the material from our previous studies and compiled representative, complicated cases with recommendations for their cytogenetic classification. We point out that maturity and size of the oocyte are important parameters and that fixation artefacts, as well as the particular structure of oocyte chromosomes, may predispose one to misinterpretations. Moreover, phenomena related to oocyte activation and fertilization are illustrated and explained. This compilation may help to avoid major problems in future studies and contribute to a more precise, and uniform assessment of human oocyte chromosomes.

  18. Dose-Response Curve of Chromosome Aberrations in Human Lymphocytes Induced by Gamma-Rays

    Directory of Open Access Journals (Sweden)

    Y. Lusiyanti

    2013-12-01

    Full Text Available Chromosome aberration is a biomarker to predict the level of cell damage caused by exposure to ionizing radiation on human body. Dicentric chromosome is a specific chromosome aberration caused by ionizing radiation and is used as a gold standard biodosimetry of individuals over exposed to ionizing radiation. In radiation accident the dicentric assays has been applied as biological dosimetry to estimate radiation absorbed dose and also to confirm the radiation dose received to radiation workers.The purpose of this study was to generate a dose response curve of chromosome aberration (dicentric in human lymphocyte induced by gamma radiation. Peripheral blood samples from three non smoking healthy volunteers aged between 25-48 years old with informed consent were irradiated with dose between 0.1-4.0 Gy and a control using gamma teletherapy source. The culture procedure was conducted following the IAEA standard procedures with slight modifications. Analysis of dose-response curves used was LQ model Y = a + αD + βD2. The result showed that α and β values of the curve obtained were 0.018 ± 0.006 and 0.013 ± 0.002, respectively. Dose response calibration curve for dicentric chromosome aberrations in human lymphocytes induced by gamma-radiation fitted to linear quadratic model. In order to apply the dose response curve of chromosome aberration disentric for biodosimetry, this standar curve still need to be validated.

  19. What's in a name? Y chromosomes, surnames and the genetic genealogy revolution.

    Science.gov (United States)

    King, Turi E; Jobling, Mark A

    2009-08-01

    Heritable surnames are highly diverse cultural markers of coancestry in human populations. A patrilineal surname is inherited in the same way as the non-recombining region of the Y chromosome and there should, therefore, be a correlation between the two. Studies of Y haplotypes within surnames, mostly of the British Isles, reveal high levels of coancestry among surname cohorts and the influence of confounding factors, including multiple founders for names, non-paternities and genetic drift. Combining molecular genetics and surname analysis illuminates population structure and history, has potential applications in forensic studies and, in the form of 'genetic genealogy', is an area of rapidly growing interest for the public.

  20. Genetic population study of Y-chromosome markers in Benin and Ivory Coast ethnic groups.

    Science.gov (United States)

    Fortes-Lima, Cesar; Brucato, Nicolas; Croze, Myriam; Bellis, Gil; Schiavinato, Stephanie; Massougbodji, Achille; Migot-Nabias, Florence; Dugoujon, Jean-Michel

    2015-11-01

    Ninety-six single nucleotide polymorphisms (SNPs) and seventeen short tandem repeat (STRs) were investigated on the Y-chromosome of 288 unrelated healthy individuals from populations in Benin (Bariba, Yoruba, and Fon) and the Ivory Coast (Ahizi and Yacouba). We performed a multidimensional scaling analysis based on FST and RST genetic distances using a large extensive database of sub-Saharan African populations. There is more genetic homogeneity in Ivory Coast populations compared with populations from Benin. Notably, the Beninese Yoruba are significantly differentiated from neighbouring groups, but also from the Yoruba from Nigeria (FST>0.05; P<0.01). The Y-chromosome dataset presented here provides new valuable data to understand the complex genetic diversity and human male demographic events in West Africa.

  1. Evolutionarily different alphoid repeat DNA on homologous chromosomes in human and chimpanzee.

    OpenAIRE

    Jørgensen, A L; Laursen, H B; Jones, C; Bak, A L

    1992-01-01

    Centromeric alphoid DNA in primates represents a class of evolving repeat DNA. In humans, chromosomes 13 and 21 share one subfamily of alphoid DNA while chromosomes 14 and 22 share another subfamily. We show that similar pairwise homogenizations occur in the chimpanzee (Pan troglodytes), where chromosomes 14 and 22, homologous to human chromosomes 13 and 21, share one partially homogenized alphoid DNA subfamily and chromosomes 15 and 23, homologous to human chromosomes 14 and 22, share anothe...

  2. The human chromosome. Electron microscopic observations on chromatin fiber organization.

    Science.gov (United States)

    Abuelo, J G; Moore, D E

    1969-04-01

    Human lymphocytes were grown in short-term tissue culture and were arrested in metaphase with Colcemid. Their chromosomes were prepared by the Langmuir trough-critical point drying technique and were examined under the electron microscope. In addition, some chromosomes were digested with trypsin, Pronase, or DNase. The chromosomes consist entirely of tightly packed, 240 +/- 50-A chromatin fibers. Trypsin and Pronase treatments induce relaxation of fiber packing and reveal certain underlying fiber arrangements. Furthermore, trypsin treatment demonstrates that the chromatin fiber has a 25-50 A trypsin-resistant core surrounded by a trypsin-sensitive sheath. DNase digestion suggests that this core contains DNA.

  3. Characterization of the OmyY1 Region on the Rainbow Trout Y Chromosome

    Directory of Open Access Journals (Sweden)

    Ruth B. Phillips

    2013-01-01

    Full Text Available We characterized the male-specific region on the Y chromosome of rainbow trout, which contains both sdY (the sex-determining gene and the male-specific genetic marker, OmyY1. Several clones containing the OmyY1 marker were screened from a BAC library from a YY clonal line and found to be part of an 800 kb BAC contig. Using fluorescence in situ hybridization (FISH, these clones were localized to the end of the short arm of the Y chromosome in rainbow trout, with an additional signal on the end of the X chromosome in many cells. We sequenced a minimum tiling path of these clones using Illumina and 454 pyrosequencing. The region is rich in transposons and rDNA, but also appears to contain several single-copy protein-coding genes. Most of these genes are also found on the X chromosome; and in several cases sex-specific SNPs in these genes were identified between the male (YY and female (XX homozygous clonal lines. Additional genes were identified by hybridization of the BACs to the cGRASP salmonid 4x44K oligo microarray. By BLASTn evaluations using hypothetical transcripts of OmyY1-linked candidate genes as query against several EST databases, we conclude at least 12 of these candidate genes are likely functional, and expressed.

  4. Characterization of the OmyY1 region on the rainbow trout Y chromosome

    Science.gov (United States)

    Phillips, Ruth B.; DeKoning, Jenefer J.; Brunelli, Joseph P.; Faber-Hammond, Joshua J.; Hansen, John D.; Christensen, Kris A.; Renn, Suzy C.P.; Thorgaard, Gary H.

    2013-01-01

    We characterized the male-specific region on the Y chromosome of rainbow trout, which contains both sdY (the sex-determining gene) and the male-specific genetic marker, OmyY1. Several clones containing the OmyY1 marker were screened from a BAC library from a YY clonal line and found to be part of an 800 kb BAC contig. Using fluorescence in situ hybridization (FISH), these clones were localized to the end of the short arm of the Y chromosome in rainbow trout, with an additional signal on the end of the X chromosome in many cells. We sequenced a minimum tiling path of these clones using Illumina and 454 pyrosequencing. The region is rich in transposons and rDNA, but also appears to contain several single-copy protein-coding genes. Most of these genes are also found on the X chromosome; and in several cases sex-specific SNPs in these genes were identified between the male (YY) and female (XX) homozygous clonal lines. Additional genes were identified by hybridization of the BACs to the cGRASP salmonid 4x44K oligo microarray. By BLASTn evaluations using hypothetical transcripts of OmyY1-linked candidate genes as query against several EST databases, we conclude at least 12 of these candidate genes are likely functional, and expressed.

  5. Exploring the Y Chromosomal Ancestry of Modern Panamanians.

    Directory of Open Access Journals (Sweden)

    Viola Grugni

    Full Text Available Geologically, Panama belongs to the Central American land-bridge between North and South America crossed by Homo sapiens >14 ka ago. Archaeologically, it belongs to a wider Isthmo-Colombian Area. Today, seven indigenous ethnic groups account for 12.3% of Panama's population. Five speak Chibchan languages and are characterized by low genetic diversity and a high level of differentiation. In addition, no evidence of differential structuring between maternally and paternally inherited genes has been reported in isthmian Chibchan cultural groups. Recent data have shown that 83% of the Panamanian general population harbour mitochondrial DNAs (mtDNAs of Native American ancestry. Considering differential male/female mortality at European contact and multiple degrees of geographical and genetic isolation over the subsequent five centuries, the Y-chromosome Native American component is expected to vary across different geographic regions and communities in Panama. To address this issue, we investigated Y-chromosome variation in 408 modern males from the nine provinces of Panama and one indigenous territory (the comarca of Kuna Yala. In contrast to mtDNA data, the Y-chromosome Native American component (haplogroup Q exceeds 50% only in three populations facing the Caribbean Sea: the comarca of Kuna Yala and Bocas del Toro province where Chibchan languages are spoken by the majority, and the province of Colón where many Kuna and people of mixed indigenous-African-and-European descent live. Elsewhere the Old World component is dominant and mostly represented by western Eurasian haplogroups, which signal the strong male genetic impact of invaders. Sub-Saharan African input accounts for 5.9% of male haplotypes. This reflects the consequences of the colonial Atlantic slave trade and more recent influxes of West Indians of African heritage. Overall, our findings reveal a local evolution of the male Native American ancestral gene pool, and a strong but

  6. Y chromosome haplotype distribution of brown bears (Ursus arctos) in Northern Europe provides insight into population history and recovery.

    Science.gov (United States)

    Schregel, Julia; Eiken, Hans Geir; Grøndahl, Finn Audun; Hailer, Frank; Aspi, Jouni; Kojola, Ilpo; Tirronen, Konstantin; Danilov, Piotr; Rykov, Alexander; Poroshin, Eugene; Janke, Axel; Swenson, Jon E; Hagen, Snorre B

    2015-12-01

    High-resolution, male-inherited Y-chromosomal markers are a useful tool for population genetic analyses of wildlife species, but to date have only been applied in this context to relatively few species besides humans. Using nine Y-chromosomal STRs and three Y-chromosomal single nucleotide polymorphism markers (Y-SNPs), we studied whether male gene flow was important for the recent recovery of the brown bear (Ursus arctos) in Northern Europe, where the species declined dramatically in numbers and geographical distribution during the last centuries but is expanding now. We found 36 haplotypes in 443 male extant brown bears from Sweden, Norway, Finland and northwestern Russia. In 14 individuals from southern Norway from 1780 to 1920, we found two Y chromosome haplotypes present in the extant population as well as four Y chromosome haplotypes not present among the modern samples. Our results suggested major differences in genetic connectivity, diversity and structure between the eastern and the western populations in Northern Europe. In the west, our results indicated that the recovered population originated from only four male lineages, displaying pronounced spatial structuring suggestive of large-scale population size increase under limited male gene flow within the western subpopulation. In the east, we found a contrasting pattern, with high haplotype diversity and admixture. This first population genetic analysis of male brown bears shows conclusively that male gene flow was not the main force of population recovery.

  7. Globally dispersed Y chromosomal haplotypes in wild and domestic sheep.

    Science.gov (United States)

    Meadows, J R S; Hanotte, O; Drögemüller, C; Calvo, J; Godfrey, R; Coltman, D; Maddox, J F; Marzanov, N; Kantanen, J; Kijas, J W

    2006-10-01

    To date, investigations of genetic diversity and the origins of domestication in sheep have utilised autosomal microsatellites and variation in the mitochondrial genome. We present the first analysis of both domestic and wild sheep using genetic markers residing on the ovine Y chromosome. Analysis of a single nucleotide polymorphism (oY1) in the SRY promoter region revealed that allele A-oY1 was present in all wild bighorn sheep (Ovis canadensis), two subspecies of thinhorn sheep (Ovis dalli), European Mouflon (Ovis musimon) and the Barbary (Ammontragis lervia). A-oY1 also had the highest frequency (71.4%) within 458 domestic sheep drawn from 65 breeds sampled from Africa, Asia, Australia, the Caribbean, Europe, the Middle East and Central Asia. Sequence analysis of a second locus, microsatellite SRYM18, revealed a compound repeat array displaying fixed differences, which identified bighorn and thinhorn sheep as distinct from the European Mouflon and domestic animals. Combined genotypic data identified 11 male-specific haplotypes that represented at least two separate lineages. Investigation of the geographical distribution of each haplotype revealed that one (H6) was both very common and widespread in the global sample of domestic breeds. The remaining haplotypes each displayed more restricted and informative distributions. For example, H5 was likely founded following the domestication of European breeds and was used to trace the recent transportation of animals to both the Caribbean and Australia. A high rate of Y chromosomal dispersal appears to have taken place during the development of domestic sheep as only 12.9% of the total observed variation was partitioned between major geographical regions.

  8. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J; Han, C; Gordon, L A; Terry, A; Prabhakar, S; She, X; Xie, G; Hellsten, U; Chan, Y M; Altherr, M; Couronne, O; Aerts, A; Bajorek, E; Black, S; Blumer, H; Branscomb, E; Brown, N; Bruno, W J; Buckingham, J; Callen, D F; Campbell, C S; Campbell, M L; Campbell, E W; Caoile, C; Challacombe, J F; Chasteen, L A; Chertkov, O; Chi, H C; Christensen, M; Clark, L M; Cohn, J D; Denys, M; Detter, J C; Dickson, M; Dimitrijevic-Bussod, M; Escobar, J; Fawcett, J J; Flowers, D; Fotopulos, D; Glavina, T; Gomez, M; Gonzales, E; Goodstein, D; Goodwin, L A; Grady, D L; Grigoriev, I; Groza, M; Hammon, N; Hawkins, T; Haydu, L; Hildebrand, C E; Huang, W; Israni, S; Jett, J; Jewett, P B; Kadner, K; Kimball, H; Kobayashi, A; Krawczyk, M; Leyba, T; Longmire, J L; Lopez, F; Lou, Y; Lowry, S; Ludeman, T; Manohar, C F; Mark, G A; McMurray, K L; Meincke, L J; Morgan, J; Moyzis, R K; Mundt, M O; Munk, A C; Nandkeshwar, R D; Pitluck, S; Pollard, M; Predki, P; Parson-Quintana, B; Ramirez, L; Rash, S; Retterer, J; Ricke, D O; Robinson, D; Rodriguez, A; Salamov, A; Saunders, E H; Scott, D; Shough, T; Stallings, R L; Stalvey, M; Sutherland, R D; Tapia, R; Tesmer, J G; Thayer, N; Thompson, L S; Tice, H; Torney, D C; Tran-Gyamfi, M; Tsai, M; Ulanovsky, L E; Ustaszewska, A; Vo, N; White, P S; Williams, A L; Wills, P L; Wu, J; Wu, K; Yang, J; DeJong, P; Bruce, D; Doggett, N A; Deaven, L; Schmutz, J; Grimwood, J; Richardson, P; Rokhsar, D S; Eichler, E E; Gilna, P; Lucas, S M; Myers, R M; Rubin, E M; Pennacchio, L A

    2005-04-06

    Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes, and 3 RNA pseudogenes. These genes include metallothionein, cadherin, and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. While the segmental duplications of chromosome 16 are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events likely to have had an impact on the evolution of primates and human disease susceptibility.

  9. Investigation of extended Y chromosome STR haplotypes in Sardinia.

    Science.gov (United States)

    Lacerenza, D; Aneli, S; Di Gaetano, C; Critelli, R; Piazza, A; Matullo, G; Culigioni, C; Robledo, R; Robino, C; Calò, C

    2017-03-01

    Y-chromosomal variation of selected single nucleotide polymorphisms (SNPs) and 32 short tandem repeat (STR) loci was evaluated in Sardinia in three open population groups (Northern Sardinia, n=40; Central Sardinia, n=56; Southern Sardinia, n=91) and three isolates (Desulo, n=34; Benetutti, n=45, Carloforte, n=42). The tested Y-STRs consisted of Yfiler(®) Plus markers and the seven rapidly mutating (RM) loci not included in the YFiler(®) Plus kit (DYF399S1, DYF403S1ab, DYF404S1, DYS526ab, DYS547, DYS612, and DYS626). As expected, inclusion of additional Y-STR loci increased haplotype diversity (h), though complete differentiation of male lineages was impossible even by means of RM Y-STRs (h=0.99997). Analysis of molecular variance indicated that the three open populations were fairly homogeneous, whereas signs of genetic heterogeneity could be detected when the three isolates were also included in the analysis. Multidimensional scaling analysis showed that, even for extended haplotypes including RM Y-STR markers, Sardinians were clearly differentiated from populations of the Italian peninsula and Sicily. The only exception was represented by the Carloforte sample that, in accordance with its peculiar population history, clustered with Northern/Central Italian populations. The introduction of extended forensic Y-STR panels, including highly variable RM Y-STR markers, is expected to reduce the impact of population structure on haplotype frequency estimations. However, our results show that the availability of geographically detailed reference databases is still important for the assessment of the evidential value of a Y-haplotype match.

  10. Targeted sequencing of the human X chromosome exome.

    Science.gov (United States)

    Mondal, Kajari; Shetty, Amol Carl; Patel, Viren; Cutler, David J; Zwick, Michael E

    2011-10-01

    We used a RainDance Technologies (RDT) expanded content library to enrich the human X chromosome exome (2.5 Mb) from 26 male samples followed by Illumina sequencing. Our multiplex primer library covered 98.05% of the human X chromosome exome in a single tube with 11,845 different PCR amplicons. Illumina sequencing of 24 male samples showed coverage for 97% of the targeted sequences. Sequence from 2 HapMap samples confirmed missing data rates of 2-3% at sites successfully typed by the HapMap project, with an accuracy of at least ~99.5% as compared to reported HapMap genotypes. Our demonstration that a RDT expanded content library can efficiently enrich and enable the routine sequencing of the human X chromosome exome suggests a wide variety of potential research and clinical applications for this platform.

  11. Culture of human oocytes with granulocyte-macrophage colony-stimulating factor has no effect on embryonic chromosomal constitution

    DEFF Research Database (Denmark)

    Agerholm, Inge; Loft, Anne; Hald, Finn

    2010-01-01

    women donating 86 oocytes. The primary endpoint was to investigate the chromosomal constitution of human embryos (fluorescence in-situ hybridization analysis for chromosomes 13, 16, 18, 21, 22, X and Y) cultured with or without GM-CSF. The secondary endpoints were number of top-quality embryos (TQE......) and number of normally developed embryos evaluated morphologically on day 3. The cytogenetic analyses demonstrated non-inferiority and therefore the chromosomal constitution of human embryos cultured in vitro in the presence of 2 ng/ml GM-CSF was no worse than the control group cultured without GM-CSF. In...

  12. Y chromosome in Turner syndrome: detection of hidden mosaicism and the report of a rare X;Y translocation case.

    Science.gov (United States)

    Bispo, Adriana Valéria Sales; Burégio-Frota, Pollyanna; Oliveira dos Santos, Luana; Leal, Gabriela Ferraz; Duarte, Andrea Rezende; Araújo, Jacqueline; Cavalcante da Silva, Vanessa; Muniz, Maria Tereza Cartaxo; Liehr, Thomas; Santos, Neide

    2014-10-01

    Turner syndrome (TS) is a common genetic disorder in females associated with the absence of complete or parts of a second sex chromosome. In 5-12% of patients, mosaicism for a cell line with a normal or structurally abnormal Y chromosome is identified. The presence of Y-chromosome material is of medical importance because it results in an increased risk of developing gonadal tumours and virilisation. Molecular study and fluorescence in situ hybridisation approaches were used to study 74 Brazilian TS patients in order to determine the frequency of hidden Y-chromosome mosaicism, and to infer the potential risk of developing malignancies. Additionally, we describe one TS girl with a very uncommon karyotype 46,X,der(X)t(X;Y)(p22.3?2;q11.23) comprising a partial monosomy of Xp22.3?2 together with a partial monosomy of Yq11.23. The presence of cryptic Y-chromosome-specific sequences was detected in 2.7% of the cases. All patients with Y-chromosome-positive sequences showed normal female genitalia with no signs of virilisation. Indeed, the clinical data from Y-chromosome-positive patients was very similar to those with Y-negative results. Therefore, we recommend that the search for hidden Y-chromosome mosaicism should be carried out in all TS cases and not be limited to virilised patients or carriers of a specific karyotype.

  13. Engineering targeted chromosomal amplifications in human breast epithelial cells.

    Science.gov (United States)

    Springer, Simeon; Yi, Kyung H; Park, Jeenah; Rajpurohit, Anandita; Price, Amanda J; Lauring, Josh

    2015-07-01

    Chromosomal amplifications are among the most common genetic alterations found in human cancers. However, experimental systems to study the processes that lead to specific, recurrent amplification events in human cancers are lacking. Moreover, some common amplifications, such as that at 8p11-12 in breast cancer, harbor multiple driver oncogenes, which are poorly modeled by conventional overexpression approaches. We sought to develop an experimental system to model recurrent chromosomal amplification events in human cell lines. Our strategy is to use homologous-recombination-mediated gene targeting to deliver a dominantly selectable, amplifiable marker to a specified chromosomal location. We used adeno-associated virus vectors to target human MCF-7 breast cancer cells at the ZNF703 locus, in the recurrent 8p11-12 amplicon, using the E. coli inosine monophosphate dehydrogenase (IMPDH) enzyme as a marker. We applied selective pressure using IMPDH inhibitors. Surviving clones were found to have increased copy number of ZNF703 (average 2.5-fold increase) by droplet digital PCR and FISH. Genome-wide array comparative genomic hybridization confirmed that amplifications had occurred on the short arm of chromosome 8, without changes on 8q or other chromosomes. Patterns of amplification were variable and similar to those seen in primary human breast cancers, including "sawtooth" patterns, distal copy number loss, and large continuous regions of copy number gain. This system will allow study of the cis- and trans-acting factors that are permissive for chromosomal amplification and provide a model to analyze oncogene cooperativity in amplifications harboring multiple candidate driver genes.

  14. Assignment of the protein kinase C [delta] polypeptide gene (PRKCD) to human chromosome 3 and mouse chromosome 14

    Energy Technology Data Exchange (ETDEWEB)

    Huppi, K.; Siwarski, D.; Goodnight, J.; Mischak, H. (Molecular Genetics Section Lab. of Genetics, Bethesda, MD (United States))

    1994-01-01

    The protein kinase C (pkc) enzymes are a family of serine-threonine protein kinases, each encoded by a distinct and separate gene. The chromosomal locations of human PRKCA, PRKCB, and PRKCG have previously been established. The authors now report that PRKCD, a novel member of the pkc gene family, maps to human chromosome 3. The chromosomal location of Pkcd has also been determined in the mouse by analysis of recombination frequency in an interspecific panel of back-cross mice. They find that the locus encoding pkcd resides proximal to nucleoside phosphorylase (Np-2) and Tcra on mouse chromosome 14 in a region syntenic with human 3p. 9 refs., 2 tabs.

  15. Assignment of the protein kinase C delta polypeptide gene (PRKCD) to human chromosome 3 and mouse chromosome 14.

    Science.gov (United States)

    Huppi, K; Siwarski, D; Goodnight, J; Mischak, H

    1994-01-01

    The protein kinase C (pkc) enzymes are a family of serine-threonine protein kinases, each encoded by a distinct and separate gene. The chromosomal locations of human PRKCA, PRKCB, and PRKCG have previously been established. We now report that PRKCD, a novel member of the pkc gene family, maps to human chromosome 3. The chromosomal location of Pkcd has also been determined in the mouse by analysis of recombination frequency in an interspecific panel of backcross mice. We find that the locus encoding pkcd resides proximal to nucleoside phosphorylase (Np-2) and Tcra on mouse chromosome 14 in a region syntenic with human 3p.

  16. ASAR15, A cis-acting locus that controls chromosome-wide replication timing and stability of human chromosome 15.

    Directory of Open Access Journals (Sweden)

    Nathan Donley

    2015-01-01

    Full Text Available DNA replication initiates at multiple sites along each mammalian chromosome at different times during each S phase, following a temporal replication program. We have used a Cre/loxP-based strategy to identify cis-acting elements that control this replication-timing program on individual human chromosomes. In this report, we show that rearrangements at a complex locus at chromosome 15q24.3 result in delayed replication and structural instability of human chromosome 15. Characterization of this locus identified long, RNA transcripts that are retained in the nucleus and form a "cloud" on one homolog of chromosome 15. We also found that this locus displays asynchronous replication that is coordinated with other random monoallelic genes on chromosome 15. We have named this locus ASynchronous replication and Autosomal RNA on chromosome 15, or ASAR15. Previously, we found that disruption of the ASAR6 lincRNA gene results in delayed replication, delayed mitotic condensation and structural instability of human chromosome 6. Previous studies in the mouse found that deletion of the Xist gene, from the X chromosome in adult somatic cells, results in a delayed replication and instability phenotype that is indistinguishable from the phenotype caused by disruption of either ASAR6 or ASAR15. In addition, delayed replication and chromosome instability were detected following structural rearrangement of many different human or mouse chromosomes. These observations suggest that all mammalian chromosomes contain similar cis-acting loci. Thus, under this scenario, all mammalian chromosomes contain four distinct types of essential cis-acting elements: origins, telomeres, centromeres and "inactivation/stability centers", all functioning to promote proper replication, segregation and structural stability of each chromosome.

  17. The DNA Sequence And Comparative Analysis Of Human Chromosome5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, Steve; Gordon, Laurie A.; Scott, Duncan; Xie,Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black,Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan,Yee Man; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner,Kristen; Kimball, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou,Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar,Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Retterer, James; Rodriguez, Alex; Rogers,Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang,Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, SusanM.; Myers, Richard M.; Rubin, Edward M.

    2004-08-01

    Chromosome 5 is one of the largest human chromosomes and contains numerous intrachromosomal duplications, yet it has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding conservation with non-mammalian vertebrates, suggesting that they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-coding genes including the protocadherin and interleukin gene families. We also completely sequenced versions of the large chromosome-5-specific internal duplications. These duplications are very recent evolutionary events and probably have a mechanistic role in human physiological variation, as deletions in these regions are the cause of debilitating disorders including spinal muscular atrophy.

  18. The origin of the isolated population of the Faroe Islands investigated using Y chromosomal markers

    DEFF Research Database (Denmark)

    Jorgensen, Tove H; Buttenschön, Henriette N; Wang, August G;

    2004-01-01

    and the Norwegian, Swedish and Icelandic Y chromosomes but also some similarity with the Scottish and Irish Y chromosomes. Diversity measures and estimates of effective population sizes also suggest that the original gene pool of the settlers have been influenced by random genetic drift, thus complicating direct...

  19. Selection at the Y chromosome of the African Buffalo driven by rainfall

    NARCIS (Netherlands)

    Hooft, van W.F.; Greyling, B.J.; Prins, H.H.T.; Getz, W.M.; Bastos, A.D.S.

    2007-01-01

    Selection coefficients at the mammalian Y chromosome typically do not deviate strongly from neutrality. Here we show that strong balancing selection, maintaining intermediate frequencies of DNA sequence variants, acts on the Y chromosome in two populations of African buffalo (Syncerus caffer). Signi

  20. Dialkyl Phosphate Urinary Metabolites and Chromosomal Abnormalities in Human Sperm

    Science.gov (United States)

    Figueroa, Zaida I.; Young, Heather A.; Meeker, John D.; Martenies, Sheena E.; Barr, Dana Boyd; Gray, George; Perry, Melissa J.

    2015-01-01

    Background The past decade has seen numerous human health studies seeking to characterize the impacts of environmental exposures, such as organophosphate (OP) insecticides, on male reproduction. Despite an extensive literature on OP toxicology, many hormone-mediated effects on the testes are not well understood. Objectives This study investigated environmental exposures to OPs and their association with the frequency of sperm chromosomal abnormalities (i.e., disomy) among adult men. Methods Men (n=159) from a study assessing the impact of environmental exposures on male reproductive health were included in this investigation. Multi-probe fluorescence in situ hybridization (FISH) for chromosomes X, Y, and 18 was used to determine XX18, YY18, XY18 and total disomy in sperm nuclei. Urine was analyzed using gas chromatography coupled with mass spectrometry for concentrations of dialkyl phosphate (DAP) metabolites of OPs [dimethylphosphate (DMP); dimethylthiophosphate (DMTP); dimethyldithiophosphate (DMDTP); diethylphosphate (DEP); diethylthiophosphate (DETP); and diethyldithiophosphate (DEDTP)]. Poisson regression was used to model the association between OP exposures and disomy measures. Incidence rate ratios (IRRs) were calculated for each disomy type by exposure quartiles for most metabolites, controlling for age, race, BMI, smoking, specific gravity, total sperm concentration, motility, and morphology. Results A significant positive trend was seen for increasing IRRs by exposure quartiles of DMTP, DMDTP, DEP and DETP in XX18, YY18, XY18 and total disomy. A significant inverse association was observed between DMP and total disomy. Findings for total sum of DAP metabolites concealed individual associations as those results differed from the patterns observed for each individual metabolite. Dose-response relationships appeared nonmonotonic, with most of the increase in disomy rates occurring between the second and third exposure quartiles and without additional

  1. Positioning of human chromosomes in murine cell hybrids according to synteny.

    Science.gov (United States)

    Meaburn, Karen J; Newbold, Robert F; Bridger, Joanna M

    2008-12-01

    Chromosomes occupy non-random spatial positions in interphase nuclei. It remains unclear what orchestrates this high level of organisation. To determine how the nuclear environment influences the spatial positioning of chromosomes, we utilised a panel of stable mouse hybrid cell lines carrying a single, intact human chromosome. Eleven of 22 human chromosomes revealed an alternative location in hybrid nuclei compared to that of human fibroblasts, with the majority becoming more internally localised. Human chromosomes in mouse nuclei position according to neither their gene density nor size, but rather the position of human chromosomes in hybrid nuclei appears to mimic that of syntenic mouse chromosomes. These results suggest that chromosomes adopt the behaviour of their host species chromosomes and that the nuclear environment is an important determinant of the interphase positioning of chromosomes.

  2. [Developing a physical map of human chromosome 22]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M.I.

    1991-12-31

    We have developed bacterial F-factor based systems for cloning large fragments of human DNA in E. coli. In addition to large size, these systems are capable of maintaining human DNA with a high degree of stability. The cosmid size clones are called Fosmids and the clones containing larger inserts (100--200 kb) are called bacterial artificial chromosomes (BACs). The ultimate test of the effectiveness of cloning and mapping technology is the degree to which it can be efficiently applied to solve complex mapping problems. We, therefore, plan to use the large fragment cloning procedure as well as a variety of other approaches to generate a complete map of overlapping clones corresponding to human chromosome 22. We have thus far prepared two human chromosome 22 specific Fosmid libraries and we are in the process of constructing a chromosome 22 specific BAC library composed of fragments larger than 100 kb. We will further optimize the technology so that libraries of fragments larger than 200 kb can be readily prepared.

  3. (Developing a physical map of human chromosome 22)

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M.I.

    1991-01-01

    We have developed bacterial F-factor based systems for cloning large fragments of human DNA in E. coli. In addition to large size, these systems are capable of maintaining human DNA with a high degree of stability. The cosmid size clones are called Fosmids and the clones containing larger inserts (100--200 kb) are called bacterial artificial chromosomes (BACs). The ultimate test of the effectiveness of cloning and mapping technology is the degree to which it can be efficiently applied to solve complex mapping problems. We, therefore, plan to use the large fragment cloning procedure as well as a variety of other approaches to generate a complete map of overlapping clones corresponding to human chromosome 22. We have thus far prepared two human chromosome 22 specific Fosmid libraries and we are in the process of constructing a chromosome 22 specific BAC library composed of fragments larger than 100 kb. We will further optimize the technology so that libraries of fragments larger than 200 kb can be readily prepared.

  4. Y-chromosomal evidence for a limited Greek contribution to the Pathan population of Pakistan.

    Science.gov (United States)

    Firasat, Sadaf; Khaliq, Shagufta; Mohyuddin, Aisha; Papaioannou, Myrto; Tyler-Smith, Chris; Underhill, Peter A; Ayub, Qasim

    2007-01-01

    Three Pakistani populations residing in northern Pakistan, the Burusho, Kalash and Pathan claim descent from Greek soldiers associated with Alexander's invasion of southwest Asia. Earlier studies have excluded a substantial Greek genetic input into these populations, but left open the question of a smaller contribution. We have now typed 90 binary polymorphisms and 16 multiallelic, short-tandem-repeat (STR) loci mapping to the male-specific portion of the human Y chromosome in 952 males, including 77 Greeks in order to re-investigate this question. In pairwise comparisons between the Greeks and the three Pakistani populations using genetic distance measures sensitive to recent events, the lowest distances were observed between the Greeks and the Pathans. Clade E3b1 lineages, which were frequent in the Greeks but not in Pakistan, were nevertheless observed in two Pathan individuals, one of whom shared a 16 Y-STR haplotype with the Greeks. The worldwide distribution of a shortened (9 Y-STR) version of this haplotype, determined from database information, was concentrated in Macedonia and Greece, suggesting an origin there. Although based on only a few unrelated descendants, this provides strong evidence for a European origin for a small proportion of the Pathan Y chromosomes.

  5. Characterization of human PGD blastocysts with unbalanced chromosomal translocations and human embryonic stem cell line derivation?

    Science.gov (United States)

    Frydman, N; Féraud, O; Bas, C; Amit, M; Frydman, R; Bennaceur-Griscelli, A; Tachdjian, G

    2009-01-01

    Novel embryonic stem cell lines derived from embryos carrying structural chromosomal abnormalities obtained after preimplantation genetic diagnosis (PGD) are of interest to study in terms of the influence of abnormalities on further development. A total of 22 unbalanced blastocysts obtained after PGD were analysed for structural chromosomal defects. Morphological description and chromosomal status of these blastocysts was established and they were used to derive human embryonic stem cell (ESC) lines. An outgrowth of cells was observed for six blastocysts (6/22; 27%). For two blastocysts, the exact morphology was unknown since they were at early stage, and for four blastocysts, the inner cell mass was clearly visible. Fifteen blastocysts carried an unbalanced chromosomal defect linked to a reciprocal translocation, resulting in a positive outgrowth of cells for five blastocysts. One human ESC line was obtained from a blastocyst carrying a partial chromosome-21 monosomy and a partial chromosome-1 trisomy. Six blastocysts carried an unbalanced chromosomal defect linked to a Robertsonian translocation, and one showed a positive outgrowth of cells. One blastocyst carried an unbalanced chromosomal defect linked to an insertion and no outgrowth was observed. The efficiency of deriving human ESC lines with constitutional chromosomal disorders was low and probably depends on the initial morphological aspect of the blastocysts and/or the type of the chromosomal disorders.

  6. Lack of a Y-Chromosomal Complement in the Majority of Gestational Trophoblastic Neoplasms

    Directory of Open Access Journals (Sweden)

    Kai Lee Yap

    2010-01-01

    Full Text Available Gestational trophoblastic neoplasms (GTNs are a rare group of neoplastic diseases composed of choriocarcinomas, placental site trophoblastic tumors (PSTTs and epithelioid trophoblastic tumors (ETTs. Since these tumors are derivatives of fetal trophoblastic tissue, approximately 50% of GTN cases are expected to originate from a male conceptus and carry a Y-chromosomal complement according to a balanced sex ratio. To investigate this hypothesis, we carried out a comprehensive analysis by genotyping a relatively large sample size of 51 GTN cases using three independent sex chromosome genetic markers; Amelogenin, Protein Kinase and Zinc Finger have X and Y homologues that are distinguishable by their PCR product size. We found that all cases contained the X-chromosomal complement while only five (10% of 51 tumors harbored the Y-chromosomal complement. Specifically, Y-chromosomal signals were detected in one (5% of 19 choriocarcinomas, one (7% of 15 PSTTs and three (18% of 17 ETTs. The histopathological features of those with a Y-chromosome were similar to those without. Our results demonstrate the presence of a Y-chromosomal complement in GTNs, albeit a low 10% of cases. This shortfall of Y-chromosomal complements in GTNs may reinforce the notion that the majority of GTNs are derived from previous molar gestations.

  7. Interspecific Y chromosome variation is sufficient to rescue hybrid male sterility and is influenced by the grandparental origin of the chromosomes.

    Science.gov (United States)

    Araripe, L O; Tao, Y; Lemos, B

    2016-06-01

    Y chromosomes display population variation within and between species. Co-evolution within populations is expected to produce adaptive interactions between Y chromosomes and the rest of the genome. One consequence is that Y chromosomes from disparate populations could disrupt harmonious interactions between co-evolved genetic elements and result in reduced male fertility, sterility or inviability. Here we address the contribution of 'heterospecific Y chromosomes' to fertility in hybrid males carrying a homozygous region of Drosophila mauritiana introgressed in the Drosophila simulans background. In order to detect Y chromosome-autosome interactions, which may go unnoticed in a single-species background of autosomes, we constructed hybrid genotypes involving three sister species: Drosophila simulans, D. mauritiana, and D. sechellia. These engineered strains varied due to: (i) species origin of the Y chromosome (D. simulans or D. sechellia); (ii) location of the introgressed D. mauritiana segment on the D. simulans third chromosome, and (iii) grandparental genomic background (three genotypes of D. simulans). We find complex interactions between the species origin of the Y chromosome, the identity of the D. mauritiana segment and the grandparental genetic background donating the chromosomes. Unexpectedly, the interaction of the Y chromosome and one segment of D. mauritiana drastically reduced fertility in the presence of Ysim, whereas the fertility is partially rescued by the Y chromosome of D. sechellia when it descends from a specific grandparental genotype. The restoration of fertility occurs in spite of an autosomal and X-linked genome that is mostly of D. simulans origin. These results illustrate the multifactorial basis of genetic interactions involving the Y chromosome. Our study supports the hypothesis that the Y chromosome can contribute significantly to the evolution of reproductive isolation and highlights the conditional manifestation of infertility in

  8. Centromere inactivation on a neo-Y fusion chromosome in threespine stickleback fish.

    Science.gov (United States)

    Cech, Jennifer N; Peichel, Catherine L

    2016-12-01

    Having one and only one centromere per chromosome is essential for proper chromosome segregation during both mitosis and meiosis. Chromosomes containing two centromeres are known as dicentric and often mis-segregate during cell division, resulting in aneuploidy or chromosome breakage. Dicentric chromosome can be stabilized by centromere inactivation, a process which reestablishes monocentric chromosomes. However, little is known about this process in naturally occurring dicentric chromosomes. Using a combination of fluorescence in situ hybridization (FISH) and immunofluorescence combined with FISH (IF-FISH) on metaphase chromosome spreads, we demonstrate that centromere inactivation has evolved on a neo-Y chromosome fusion in the Japan Sea threespine stickleback fish (Gasterosteus nipponicus). We found that the centromere derived from the ancestral Y chromosome has been inactivated. Our data further suggest that there have been genetic changes to this centromere in the two million years since the formation of the neo-Y chromosome, but it remains unclear whether these genetic changes are a cause or consequence of centromere inactivation.

  9. Mapping the Stability of Human Brain Asymmetry across Five Sex-Chromosome Aneuploidies

    Science.gov (United States)

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L.; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N.

    2015-01-01

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. PMID:25568109

  10. Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies.

    Science.gov (United States)

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N; Raznahan, Armin

    2015-01-07

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry.

  11. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans.

    Science.gov (United States)

    Reardon, Paul Kirkpatrick; Clasen, Liv; Giedd, Jay N; Blumenthal, Jonathan; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin

    2016-02-24

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings.

  12. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-08-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  13. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    Science.gov (United States)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  14. Report on the Second International Workshop on Human Chromosome 9

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowski, D.J. [Brigham and Women`s Hospital, Boston, MA (United States); Armour, J. [Univ. of Leicester (England). Dept. of Genetics; Bale, A.E. [Yale Univ., New Haven, CT (United States). Dept. of Genetics] [and others

    1993-12-31

    The Second International Workshop on Human Chromosome 9 was held in Chatham, Massachusetts on April 18--20, 1993. Fifty-three abstracts were received and the data presented on posters. The purpose of the meeting was to bring together all interested investigators working on the map of chromosome 9, many of whom had disease-specific interests. After a brief presentation of interests and highlighted results, the meeting broke up into the following subgroups for production of consensus maps: 9p; 9cen-q32; 9q32 ter. A global mapping group also met. Reports of each of these working groups is presented in the summary.

  15. Construction of a genetic map of human chromosome 17 by use of chromosome-mediated gene transfer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiming; Gorman, P.A.; Rider, S.H.; Hedge, P.J.; Moore, G.; Prichard, C.; Sheer, D.; Solomon, E. (Imperial Cancer Research Fund, London (England))

    1988-11-01

    The authors used somatic-cell hybrids, containing as their only human genetic contribution part or all of chromosome 17, as donors for chromosome-mediated gene transfer. A total of 54 independent transfectant clones were isolated and analyzed by use of probes or isoenzymes for >20 loci located on chromosome 17. By combining the data from this chromosome-mediated gene transfer transfectant panel, conventional somatic-cell hybrids containing well-defined breaks on chromosome 17, and in situ hybridization they propose the following order for these loci; pter-(TP53-RNP2-D17S1)-(MYH2-MYH1)-D17Z1-CRYB1-(ERBA1-GCSF-NGL)-acute promyelocytic leukemia breakpoint-RNU2-HOX2-(NGFR-COLIAI-MPO)-GAA-UMPH-GHC-TK1-GALK-qter. Using chromosome-mediated gene transfer, they have also regionally localized the random probes D17S6 to D17S19 on chromosome 17.

  16. Mixed gonadal dysgenesis in a 45,X neonate with chromosome Y material in the dysgenetic gonad.

    Science.gov (United States)

    Karatza, Ageliki; Chrysis, Dionisios; Stefanou, Eunice-Georgia; Mantagos, Stefanos; Salakos, Christos

    2009-11-01

    We report on a neonate with a disorder of sex development, Prader 3-4 external genitalia and a palpable structure in the right inguinal canal suggestive of gonadal tissue. Chromosome studies on blood lymphocytes showed monosomy of chromosome X. Laparoscopy identified a streak-like gonad on the left side, unicorn uterus and a dysgenetic testis on the right, attached to a Fallopian tube. Because of the unilateral palpable gonad and the presence of ambiguous genitalia we investigated further for the presence of Y material. Quantitative fluorescent PCR analysis of material from the dysgenetic gonad and skin fibroblasts revealed the presence of chromosome Y-derived sequences, suggesting sex chromosome mosaicism. In 45,X/46,XY mosaicism, chromosome studies carried out on peripheral lymphocytes do not always reflect the proportion of cell lines in the gonads. The detection of Y chromosome material in a dysgenetic gonad is extremely significant, due to the high risk of malignant transformation.

  17. Buccal cell FISH and blood PCR-Y detect high rates of X chromosomal mosaicism and Y chromosomal derivatives in patients with Turner syndrome.

    Science.gov (United States)

    Freriks, Kim; Timmers, Henri J L M; Netea-Maier, Romana T; Beerendonk, Catharina C M; Otten, Barto J; van Alfen-van der Velden, Janiëlle A E M; Traas, Maaike A F; Mieloo, Hanneke; van de Zande, Guillaume W H J F L; Hoefsloot, Lies H; Hermus, Ad R M M; Smeets, Dominique F C M

    2013-09-01

    Turner syndrome (TS) is the result of (partial) X chromosome monosomy. In general, the diagnosis is based on karyotyping of 30 blood lymphocytes. This technique, however, does not rule out tissue mosaicism or low grade mosaicism in the blood. Because of the associated risk of gonadoblastoma, mosaicism is especially important in case this involves a Y chromosome. We investigated different approaches to improve the detection of mosaicisms in 162 adult women with TS (mean age 29.9 ± 10.3). Standard karyotyping identified 75 patients (46.3%) with a non-mosaic monosomy 45,X. Of these 75 patients, 63 underwent additional investigations including FISH on buccal cells with X- and Y-specific probes and PCR-Y on blood. FISH analysis of buccal cells revealed a mosaicism in 19 of the 63 patients (30.2%). In five patients the additional cell lines contained a (derivative) Y chromosome. With sensitive real-time PCR we confirmed the presence of this Y chromosome in blood in three of the five cases. Although Y chromosome material was established in ovarian tissue in two patients, no gonadoblastoma was found. Our results confirm the notion that TS patients with 45,X on conventional karyotyping often have tissue specific mosaicisms, some of which include a Y chromosome. Although further investigations are needed to estimate the risk of gonadoblastoma in patients with Y chromosome material in buccal cells, we conclude that FISH or real-time PCR on buccal cells should be considered in TS patients with 45,X on standard karyotyping.

  18. Chromosomal assignment of human DNA fingerprint sequences by simultaneous hybridization to arbitrarily primed PCR products from human/rodent monochromosome cell hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Jun; Sekiya, Takao [National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Navarro, J.M. [Burnham Institute, La Jolla, CA (United States)] [and others

    1996-05-15

    We have developed a technique for the simultaneous chromosomal assignment of multiple human DNA sequences from DNA fingerprints obtained by the arbitrarily primed polymerase chain reaction (AP-PCR). Radioactively labeled human AP-PCR products are hybridized to DNA fingerprints generated with the same arbitrary primer from human/rodent monochromosome cell hybrids after electroblotting to a nylong membrane. Human-specific hybridization bands in the human/rodent fingerprints unambiguously determine their chromosome of origin. We named this method simultaneous hybridization of arbitrarily primed PCR DNA fingerprinting products (SHARP). Using this approach, we determined the chromosomal origins of most major bands of human AP-PCR fingerprints obtained with two arbitrary primers. Altogether, the chromosomal localization of near 50 DNA fragments, comprehensive of all human chromosomes except chromosomes 21 and Y, was achieved in this simple manner. Chromosome assignment of fingerprint bands is essential for molecular karyotyping of cancer by AP-PCR DNA fingerprinting. The SHARP method provides a convenient and powerful tool for this purpose. 23 refs., 3 figs., 2 tabs.

  19. Systematic analysis of human protein complexes identifies chromosome segregation proteins.

    Science.gov (United States)

    Hutchins, James R A; Toyoda, Yusuke; Hegemann, Björn; Poser, Ina; Hériché, Jean-Karim; Sykora, Martina M; Augsburg, Martina; Hudecz, Otto; Buschhorn, Bettina A; Bulkescher, Jutta; Conrad, Christian; Comartin, David; Schleiffer, Alexander; Sarov, Mihail; Pozniakovsky, Andrei; Slabicki, Mikolaj Michal; Schloissnig, Siegfried; Steinmacher, Ines; Leuschner, Marit; Ssykor, Andrea; Lawo, Steffen; Pelletier, Laurence; Stark, Holger; Nasmyth, Kim; Ellenberg, Jan; Durbin, Richard; Buchholz, Frank; Mechtler, Karl; Hyman, Anthony A; Peters, Jan-Michael

    2010-04-30

    Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification-mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the gamma-tubulin ring complex--large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells.

  20. Chromosomal Aberrations in Humans Induced by Urban Air Pollution

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, Hannu; Gamborg, Michael O.

    1999-01-01

    We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes...... that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....

  1. A worldwide survey of human male demographic history based on Y-SNP and Y-STR data from the HGDP-CEPH populations

    NARCIS (Netherlands)

    W. Shi (Wentao); Q. Ayub (Qasim); M. Vermeulen (Mark); R.G. Shao (Rong Guang); S.B. Zuniga (Sofia); K. van der Gaag (Kristiaan); P. de Knijff (Peter); M.H. Kayser (Manfred); Y. Xue (Yali); C. Tyler-Smith (Chris)

    2010-01-01

    textabstractWe have investigated human male demographic history using 590 males from 51 populations in the Human Genome Diversity Project-Centre d'Étude du Polymorphisme Humain worldwide panel, typed with 37 Y-chromosomal Single Nucleotide Polymorphisms and 65 Y-chromosomal Short Tandem Repeats and

  2. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, Jane; Gordon, Laurie A.; Olsen, Anne; Terry, Astrid; Schmutz, Jeremy; Lamerdin, Jane; Hellsten, Uffe; Goodstein, David; Couronne, Olivier; Tran-Gyamfi, Mary; Aerts, Andrea; Altherr, Michael; Ashworth, Linda; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caenepeel, Sean; Carrano, Anthony; Caoile, Chenier; Chan, Yee Man; Christensen, Mari; Cleland, Catherine A.; Copeland, Alex; Dalin, Eileen; Dehal, Paramvir; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Garcia, Carmen; Georgescu, Anca M.; Glavina, Tijana; Gomez, Maria; Gonzales, Eldelyn; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Ho, Issac; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Larionov, Vladimer; Leem, Sun-Hee; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Malfatti, Stephanie; Martinez, Diego; McCready, Paula; Medina, Catherine; Morgan, Jenna; Nelson, Kathryn; Nolan, Matt; Ovcharenko, Ivan; Pitluck, Sam; Pollard, Martin; Popkie, Anthony P.; Predki, Paul; Quan, Glenda; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanine; Salamov, Asaf; Salazar, Angelica; She, Xinwei; Smith, Doug; Slezak, Tom; Solovyev, Victor; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wagner, Mark; Wheeler, Jeremy; Wu, Kevin; Xie, Gary; Yang, Joan; Dubchak, Inna; Furey, Terrence S.; DeJong, Pieter; Dickson, Mark; Gordon, David; Eichler, Evan E.; Pennacchio, Len A.; Richardson, Paul; Stubbs, Lisa; Rokhsar, Daniel S.; Myers, Richard M.; Rubin, Edward M.; Lucas, Susan M.

    2003-09-15

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G1C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9 percent of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25 percent of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, a nd segments of coding and non-coding conservation with the distant fish species Takifugu.

  3. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  4. The DNA sequence and biology of human chromosome 19.

    Science.gov (United States)

    Grimwood, Jane; Gordon, Laurie A; Olsen, Anne; Terry, Astrid; Schmutz, Jeremy; Lamerdin, Jane; Hellsten, Uffe; Goodstein, David; Couronne, Olivier; Tran-Gyamfi, Mary; Aerts, Andrea; Altherr, Michael; Ashworth, Linda; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caenepeel, Sean; Carrano, Anthony; Caoile, Chenier; Chan, Yee Man; Christensen, Mari; Cleland, Catherine A; Copeland, Alex; Dalin, Eileen; Dehal, Paramvir; Denys, Mirian; Detter, John C; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Garcia, Carmen; Georgescu, Anca M; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Ho, Isaac; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Larionov, Vladimer; Leem, Sun-Hee; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Malfatti, Stephanie; Martinez, Diego; McCready, Paula; Medina, Catherine; Morgan, Jenna; Nelson, Kathryn; Nolan, Matt; Ovcharenko, Ivan; Pitluck, Sam; Pollard, Martin; Popkie, Anthony P; Predki, Paul; Quan, Glenda; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanine; Salamov, Asaf; Salazar, Angelica; She, Xinwei; Smith, Doug; Slezak, Tom; Solovyev, Victor; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wagner, Mark; Wheeler, Jeremy; Wu, Kevin; Xie, Gary; Yang, Joan; Dubchak, Inna; Furey, Terrence S; DeJong, Pieter; Dickson, Mark; Gordon, David; Eichler, Evan E; Pennacchio, Len A; Richardson, Paul; Stubbs, Lisa; Rokhsar, Daniel S; Myers, Richard M; Rubin, Edward M; Lucas, Susan M

    2004-04-01

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G + C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  5. Chromosomal aberrations related to metastasis of human solid tumors

    Institute of Scientific and Technical Information of China (English)

    Lun-Xiu Qin

    2002-01-01

    The central role of sequential accumulation of genetic alterations during the development of cancer has been firmly established since the pioneering cytogenetic studies successfully defined recurrent chromosome changes in spedfic types of tumor. In the course of carcinogenesis, cells experience several genetic alterations that are associated with the transition from a preneoplastic lesion to an invasive tumor and finally to the metastatic state. Tumor progression is characterized by stepwise accumulation of genetic alterations.So does the dominant metastatic clone. Modern molecular genetic analyses have clarified that genomic changes accumulate during the development and progression of cancers. In comparison with the corresponding primary tumor,additional events of chromosomal aberrations (including gains or allelic losses) are frequently found in metastases, and the incidence of combined chromosomal alterations in the primary tumor, plus the occurrence of additional aberrations inthe distant metastases, correlated significantly with decreased postmetastatic survival. The deletions at 3p, 4p, 6q, 8p, 10q,11p, 11q, 12p, 13q, 16q, 17p, 18q, 21q, and 22q, as well as the over-representations at 1q, 8q, 9q, 14q and 15q, have been found to associate preferentially with the metastatic phenotype of human cancers. Among of them, the deletions on chromosomes 8p, 17p, 11p and 13p seem to be more significant, and more detail fine regions of them, including 8p11, 8p21-12, 8p22, 8p23, 17p13.3, 11p15.5, and 13q12-13 have been suggested harboring metastasis-suppressor genes.During the past decade, several human chromosomes have been functionally tested through the use of microcell-mediated chromosome transfer (MMCT), and metastasis-suppressor activities have been reported on chromosomes 1, 6, 7, 8, 10,11, 12, 16, and 17. However, it is not actually known at what stage of the metastatic cascade these alterations have occurred.There is still controversial with the association

  6. The mapping of novel genes to human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Buenaventura, J.M. [Sarah Lawrence College, Bronxville, NY (United States)

    1994-12-01

    The principle goal of our laboratory is the discovery of new genes on human chromosome 19. One of the strategies to achieve this goal is through the use of cDNA clones known as {open_quotes}expressed sequence tags{close_quotes} (ESTs). ESTs, short segments of sequence from a cDNA clone that correspond to the mRNA, occur as unique regions in the genome and, therefore, can be used as markers for specific positions. In collaboration with researchers from Genethon in France, fifteen cDNA clones from a normalized human infant brain cDNA library were tested and determined to map to chromosome 19. A verification procedure is then followed to confirm assignment to chromosome 19. First, primers for each cDNA clone are developed and then amplified by polymerase chain reaction from genomic DNA. Next, a {sup 32}P-radiolabeled probe is made by polymerase chain reaction for each clone and then hybridized against filters containing an LLNL chromosome 19-specific cosmid library to find putative locations on the chromosome. The location is then verified by running a polymerase chain reactions from the positive cosmids. With the Browser database at LLNL, additional information about the positive cosmids can be found. Through use of the BLAST database at the National Library of Medicine, homologous sequences to the clones can be found. Among the fifteen cDNA clones received from Genethon, all have been amplified by polymerase chain reaction. Three have turned out as repetitive elements in the genome. Ten have been mapped to specific locations on chromosome 19. Putative locations have been found for the remaining two clones and thus verification testing will proceed.

  7. Human interphase chromosomes: a review of available molecular cytogenetic technologies

    Directory of Open Access Journals (Sweden)

    Yurov Yuri B

    2010-01-01

    Full Text Available Abstract Human karyotype is usually studied by classical cytogenetic (banding techniques. To perform it, one has to obtain metaphase chromosomes of mitotic cells. This leads to the impossibility of analyzing all the cell types, to moderate cell scoring, and to the extrapolation of cytogenetic data retrieved from a couple of tens of mitotic cells to the whole organism, suggesting that all the remaining cells possess these genomes. However, this is far from being the case inasmuch as chromosome abnormalities can occur in any cell along ontogeny. Since somatic cells of eukaryotes are more likely to be in interphase, the solution of the problem concerning studying postmitotic cells and larger cell populations is interphase cytogenetics, which has become more or less applicable for specific biomedical tasks due to achievements in molecular cytogenetics (i.e. developments of fluorescence in situ hybridization -- FISH, and multicolor banding -- MCB. Numerous interphase molecular cytogenetic approaches are restricted to studying specific genomic loci (regions being, however, useful for identification of chromosome abnormalities (aneuploidy, polyploidy, deletions, inversions, duplications, translocations. Moreover, these techniques are the unique possibility to establish biological role and patterns of nuclear genome organization at suprachromosomal level in a given cell. Here, it is to note that this issue is incompletely worked out due to technical limitations. Nonetheless, a number of state-of-the-art molecular cytogenetic techniques (i.e multicolor interphase FISH or interpahase chromosome-specific MCB allow visualization of interphase chromosomes in their integrity at molecular resolutions. Thus, regardless numerous difficulties encountered during studying human interphase chromosomes, molecular cytogenetics does provide for high-resolution single-cell analysis of genome organization, structure and behavior at all stages of cell cycle.

  8. The first peopling of South America: new evidence from Y-chromosome haplogroup Q.

    Science.gov (United States)

    Battaglia, Vincenza; Grugni, Viola; Perego, Ugo Alessandro; Angerhofer, Norman; Gomez-Palmieri, J Edgar; Woodward, Scott Ray; Achilli, Alessandro; Myres, Natalie; Torroni, Antonio; Semino, Ornella

    2013-01-01

    Recent progress in the phylogenetic resolution of the Y-chromosome phylogeny permits the male demographic dynamics and migratory events that occurred in Central and Southern America after the initial human spread into the Americas to be investigated at the regional level. To delve further into this issue, we examined more than 400 Native American Y chromosomes (collected in the region ranging from Mexico to South America) belonging to haplogroup Q - virtually the only branch of the Y phylogeny observed in modern-day Amerindians of Central and South America - together with 27 from Mongolia and Kamchatka. Two main founding lineages, Q1a3a1a-M3 and Q1a3a1-L54(xM3), were detected along with novel sub-clades of younger age and more restricted geographic distributions. The first was also observed in Far East Asia while no Q1a3a1-L54(xM3) Y chromosome was found in Asia except the southern Siberian-specific sub-clade Q1a3a1c-L330. Our data not only confirm a southern Siberian origin of ancestral populations that gave rise to Paleo-Indians and the differentiation of both Native American Q founding lineages in Beringia, but support their concomitant arrival in Mesoamerica, where Mexico acted as recipient for the first wave of migration, followed by a rapid southward migration, along the Pacific coast, into the Andean region. Although Q1a3a1a-M3 and Q1a3a1-L54(xM3) display overlapping general distributions, they show different patterns of evolution in the Mexican plateau and the Andean area, which can be explained by local differentiations due to demographic events triggered by the introduction of agriculture and associated with the flourishing of the Great Empires.

  9. The first peopling of South America: new evidence from Y-chromosome haplogroup Q.

    Directory of Open Access Journals (Sweden)

    Vincenza Battaglia

    Full Text Available Recent progress in the phylogenetic resolution of the Y-chromosome phylogeny permits the male demographic dynamics and migratory events that occurred in Central and Southern America after the initial human spread into the Americas to be investigated at the regional level. To delve further into this issue, we examined more than 400 Native American Y chromosomes (collected in the region ranging from Mexico to South America belonging to haplogroup Q - virtually the only branch of the Y phylogeny observed in modern-day Amerindians of Central and South America - together with 27 from Mongolia and Kamchatka. Two main founding lineages, Q1a3a1a-M3 and Q1a3a1-L54(xM3, were detected along with novel sub-clades of younger age and more restricted geographic distributions. The first was also observed in Far East Asia while no Q1a3a1-L54(xM3 Y chromosome was found in Asia except the southern Siberian-specific sub-clade Q1a3a1c-L330. Our data not only confirm a southern Siberian origin of ancestral populations that gave rise to Paleo-Indians and the differentiation of both Native American Q founding lineages in Beringia, but support their concomitant arrival in Mesoamerica, where Mexico acted as recipient for the first wave of migration, followed by a rapid southward migration, along the Pacific coast, into the Andean region. Although Q1a3a1a-M3 and Q1a3a1-L54(xM3 display overlapping general distributions, they show different patterns of evolution in the Mexican plateau and the Andean area, which can be explained by local differentiations due to demographic events triggered by the introduction of agriculture and associated with the flourishing of the Great Empires.

  10. Contrasting patterns of X/Y polymorphism distinguish Carica papaya from other sex chromosome systems.

    Science.gov (United States)

    Weingartner, Laura A; Moore, Richard C

    2012-12-01

    The sex chromosomes of the tropical crop papaya (Carica papaya) are evolutionarily young and consequently allow for the examination of evolutionary mechanisms that drive early sex chromosome divergence. We conducted a molecular population genetic analysis of four X/Y gene pairs from a collection of 45 wild papaya accessions. These population genetic analyses reveal striking differences in the patterns of polymorphism between the X and Y chromosomes that distinguish them from other sex chromosome systems. In most sex chromosome systems, the Y chromosome displays significantly reduced polymorphism levels, whereas the X chromosome maintains a level of polymorphism that is comparable to autosomal loci. However, the four papaya sex-linked loci that we examined display diversity patterns that are opposite this trend: the papaya X alleles exhibit significantly reduced polymorphism levels, whereas the papaya Y alleles maintain greater than expected levels of diversity. Our analyses suggest that selective sweeps in the regions of the X have contributed to this pattern while also revealing geographically restricted haplogroups on the Y. We discuss the possible role sexual selection and/or genomic conflict have played in shaping the contrasting patterns of polymorphism found for the papaya X and Y chromosomes.

  11. Synteny mapping of five human chromosome 7 genes on bovine chromosomes 4 and 21.

    Science.gov (United States)

    Antoniou, E; Womack, J E; Grosz, M D

    1999-01-01

    Five genes on human chromosome 7 (HSA 7) were assigned to bovine chromosome 21 (BTA 21) and 4 (BTA 4) using a bovine-rodent somatic hybrid cell panel. These five genes were alpha-I subunit of adenylate cyclase-inhibiting G-protein (GNAI1), alpha/beta preprotachykinin (TAC1), reelin (RELN), c-AMP dependant protein kinase type II beta regulatory chain (PRKAR2B) and apolipoprotein A1 regulatory protein 1 (TFCOUP2). Four genes mapped to BTA 4 (GNAI1, TAC1, RELN, PRKAR2B) while one gene mapped to BTA 21 (TFCOUP2). This study confirms the synteny conservation between HSA 7 and BTA 4, finely maps the breakpoints of conserved synteny on HSA 7 and defines a new synteny conservation between HSA 7 and BTA 21.

  12. A comparison of Y-chromosomal lineage dating using either resequencing or Y-SNP plus Y-STR genotyping☆

    Science.gov (United States)

    Wei, Wei; Ayub, Qasim; Xue, Yali; Tyler-Smith, Chris

    2013-01-01

    We have compared phylogenies and time estimates for Y-chromosomal lineages based on resequencing ∼9 Mb of DNA and applying the program GENETREE to similar analyses based on the more standard approach of genotyping 26 Y-SNPs plus 21 Y-STRs and applying the programs NETWORK and BATWING. We find that deep phylogenetic structure is not adequately reconstructed after Y-SNP plus Y-STR genotyping, and that times estimated using observed Y-STR mutation rates are several-fold too recent. In contrast, an evolutionary mutation rate gives times that are more similar to the resequencing data. In principle, systematic comparisons of this kind can in future studies be used to identify the combinations of Y-SNP and Y-STR markers, and time estimation methodologies, that correspond best to resequencing data. PMID:23768990

  13. Construction and characterization of human chromosome 2-specific cosmid, fosmid, and PAC clone libraries

    Energy Technology Data Exchange (ETDEWEB)

    Gingrich, J.C.; Boehrer, D.M.; Garnes, J.A. [Lawrence Livermore National Lab., CA (United States)] [and others

    1996-02-15

    This article discusses the construction and characterization of three human chromosome 2-specific clone libraries. A chromosome 2-specific PAC library was also constructed from a hybrid cell line. The chromosome 2 coverage of each of the three libraries was further determined by PCR screening clone pools with 82 chromosome 2-specific STSs. 47 refs., 3 figs., 1 tab.

  14. The contribution of the Y chromosome to hybrid male sterility in house mice.

    Science.gov (United States)

    Campbell, Polly; Good, Jeffrey M; Dean, Matthew D; Tucker, Priscilla K; Nachman, Michael W

    2012-08-01

    Hybrid sterility in the heterogametic sex is a common feature of speciation in animals. In house mice, the contribution of the Mus musculus musculus X chromosome to hybrid male sterility is large. It is not known, however, whether F1 male sterility is caused by X-Y or X-autosome incompatibilities or a combination of both. We investigated the contribution of the M. musculus domesticus Y chromosome to hybrid male sterility in a cross between wild-derived strains in which males with a M. m. musculus X chromosome and M. m. domesticus Y chromosome are partially sterile, while males from the reciprocal cross are reproductively normal. We used eight X introgression lines to combine different X chromosome genotypes with different Y chromosomes on an F1 autosomal background, and we measured a suite of male reproductive traits. Reproductive deficits were observed in most F1 males, regardless of Y chromosome genotype. Nonetheless, we found evidence for a negative interaction between the M. m. domesticus Y and an interval on the M. m. musculus X that resulted in abnormal sperm morphology. Therefore, although F1 male sterility appears to be caused mainly by X-autosome incompatibilities, X-Y incompatibilities contribute to some aspects of sterility.

  15. Peopling of the North Circumpolar Region--insights from Y chromosome STR and SNP typing of Greenlanders.

    Directory of Open Access Journals (Sweden)

    Jill Katharina Olofsson

    Full Text Available The human population in Greenland is characterized by migration events of Paleo- and Neo-Eskimos, as well as admixture with Europeans. In this study, the Y-chromosomal variation in male Greenlanders was investigated in detail by typing 73 Y-chromosomal single nucleotide polymorphisms (Y-SNPs and 17 Y-chromosomal short tandem repeats (Y-STRs. Approximately 40% of the analyzed Greenlandic Y chromosomes were of European origin (I-M170, R1a-M513 and R1b-M343. Y chromosomes of European origin were mainly found in individuals from the west and south coasts of Greenland, which is in agreement with the historic records of the geographic placements of European settlements in Greenland. Two Inuit Y-chromosomal lineages, Q-M3 (xM19, M194, L663, SA01 and L766 and Q-NWT01 (xM265 were found in 23% and 31% of the male Greenlanders, respectively. The time to the most recent common ancestor (TMRCA of the Q-M3 lineage of the Greenlanders was estimated to be between 4,400 and 10,900 years ago (y. a. using two different methods. This is in agreement with the theory that the North Circumpolar Region was populated via a second expansion of humans in the North American continent. The TMRCA of the Q-NWT01 (xM265 lineage in Greenland was estimated to be between 7,000 and 14,300 y. a. using two different methods, which is older than the previously reported TMRCA of this lineage in other Inuit populations. Our results indicate that Inuit individuals carrying the Q-NWT01 (xM265 lineage may have their origin in the northeastern parts of North America and could be descendants of the Dorset culture. This in turn points to the possibility that the current Inuit population in Greenland is comprised of individuals of both Thule and Dorset descent.

  16. [Non-fluorescent Y chromosome in a 45,X/46,XY mosaic (author's transl)].

    Science.gov (United States)

    Kaluzewski, B; Jakubowski, L; Moruzgala, T; Bjanid, O; Romer, T E

    1978-09-01

    The case of a 18-year-old boy with small testes and deficient growth is reported. Histological examinations revealed an abnormal structure of the testicular tissue. The X chromatin test in buccal smears and the Y chromatin test in peripheral blood lymphocytes were negative. By chromosomal studies a 45,X/46,XY mosaicism was diagnosed. The Y chromosome did not show the typical fluorescence. Autoradiographic as well as Q- and G-banding techniques were performed in both the patient and his father. The patient's Y chromosome was shorter than his father's one, but longer than the non-fluorescent part of the paternal Y. The autoradiographic grain counts, Q- and G-band patterns showed a difference between the proband's Y chromosome and that of the father. The mechanism of the observed aberration is discussed.

  17. Novel Y-chromosome short tandem repeats in Sus scrofa and their variation in European wild boar and domestic pig populations

    DEFF Research Database (Denmark)

    Iacolina, Laura; Brajkovic, Vladimir; Canu, Antonio;

    2016-01-01

    Y-chromosome markers are important tools for studying male-specific gene flow within and between populations, hybridization patterns and kinship. However, their use in non-human mammals is often hampered by the lack of Y-specific polymorphic markers. We identified new male-specific short tandem r...

  18. The origin of the isolated population of the Faroe Islands investigated using Y chromosomal markers

    DEFF Research Database (Denmark)

    Jorgensen, Tove H; Buttenschön, Henriette N; Wang, August G;

    2004-01-01

    and the Norwegian, Swedish and Icelandic Y chromosomes but also some similarity with the Scottish and Irish Y chromosomes. Diversity measures and estimates of effective population sizes also suggest that the original gene pool of the settlers have been influenced by random genetic drift, thus complicating direct...... to analyse genetic diversity in the Faroese population and to compare this with the distribution of genotypes in the putative ancestral populations. Using a combination of genetic distance measures, assignment and phylogenetic analyses, we find a high degree of similarity between the Faroese Y chromosomes...

  19. Associations of Y-chromosome subdeletion gr/gr with the prevalence of Y-chromosome haplogroups in infertile patients.

    Science.gov (United States)

    Shahid, Mohammad; Dhillon, Varinderpal S; Khalil, Hesham Saleh; Sexana, Anubha; Husain, Syed Akhtar

    2011-01-01

    Microdeletions in azoospermia factor (AZF) region on distal Yq are associated with male infertility and spermatogenic failure due to intra-chromosomal homologous recombination between large nearly identical repeat amplicons and are found in ∼10% of azoospermic and severe oligozoospermic cases. Although AZFc is deleted in azoospermia or oligozoospermia, no definitive conclusion has been drawn for the role of partial AZFc deletions to spermatogenic failure. Therefore, this study is planned to investigate the role of gr/gr subdeletions in individuals with spermatogenic failure and to find its relationship with Y chromosome haplogroups (HGs) in infertile men from Indian population. It is a case-control study involving 236 azoospermic, 182 oligospermic and 240 healthy normozoospermic men. We found 18 gr/gr, 11 b1/b3 and 2 b2/b3 subdeletions in azoospermic patients and 12 gr/gr, 5 b1/b3 and 4 b2/b3 subdeletions in oligospermic patients. However, we also found seven gr/gr deletions in normozoospermic men. Seven patients each with spermatogenic arrest and oligospermia who carry gr/gr subdeletions have deleted DAZ3/DAZ4 genes. A total of 11 patients with sertoli cell-only syndrome (SCOS) and 5 oligospermic patients with gr/gr subdeletions also have DAZ1/DAZ2 genes deleted indicating that deletions of DAZ genes contributed differently to damage to spermatogenic process. L1 HG is found in patients showing b1/b3 subdeletions, whereas HG H1a2 and H1b were found in normozoospermic individuals with gr/gr subdeletions. Our results provide evidence of association between the occurrence of subdeletions and male infertility as well as the severity of the spermatogenic failure.

  20. DNA methylation profiling of human chromosomes 6, 20 and 22

    OpenAIRE

    Eckhardt, Florian; Lewin, Joern; Cortese, Rene; Rakyan, Vardhman K.; Attwood, John; Burger, Matthias; Burton, John; Cox, Tony V.; Davies, Rob; Down, Thomas A; Haefliger, Carolina; Horton, Roger; Howe, Kevin; Jackson, David K.; Kunde, Jan

    2006-01-01

    DNA methylation constitutes the most stable type of epigenetic modifications modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation reference profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of 6 annotation categories, revealed evolutionary conserved regions to be the predominant sites for differential DNA methyl...

  1. Multicolor FISHs for simultaneous detection of genes and DNA segments on human chromosomes.

    Science.gov (United States)

    Shimizu, Nobuyoshi; Maekawa, Masahiko; Asai, Satoko; Shimizu, Yoshiko

    2015-12-01

    We have developed a convenient multicolor fluorescent in situ hybridization (FISH) (five-, four-, three-, and two-color FISHs) for detecting specific genes/DNA segments on the human chromosomes. As a foundation of multicolor FISH, we first isolated 80 bacterial artificial chromosome (BAC) probes that specifically detect the peri-centromeres (peri-CEN) and subtelomeres (subTEL) of 24 different human chromosomes (nos. 1~22, X, and Y) by screening our homemade BAC library (Keio BAC library) consisting of 200,000 clones. Five-color FISH was performed using human DNA segments specific for peri-CEN or subTEL, which were labeled with five different fluorescent dyes [7-diethylaminocoumarin (DEAC): blue, fluorescein isothiocyanate (FITC): green, rhodamine 6G (R6G): yellow, TexRed: red, and cyanine5 (Cy5): purple]. To observe FISH signals under a fluorescence microscope, five optic filters were carefully chosen to avoid overlapping fluorescence emission. Five-color FISH and four-color FISH enabled us to accurately examine the numerical anomaly of human chromosomes. Three-color FISH using two specific BAC clones, that distinguish 5' half of oncogene epidermal growth factor receptor (EGFR) from its 3' half, revealed the amplification and truncation of EGFR in EGFR-overproducing cancer cells. Moreover, two-color FISH readily detected a fusion gene in leukemia cells such as breakpoint cluster region (BCR)/Abelson murine leukemia viral oncogene homologue (ABL) on the Philadelphia (Ph') chromosome with interchromosomal translocation. Some other successful cases such as trisomy 21 of Down syndrome are presented. Potential applications of multicolor FISH will be discussed.

  2. New insights into human nondisjunction of chromosome 21 in oocytes.

    Directory of Open Access Journals (Sweden)

    Tiffany Renee Oliver

    2008-03-01

    Full Text Available Nondisjunction of chromosome 21 is the leading cause of Down syndrome. Two risk factors for maternal nondisjunction of chromosome 21 are increased maternal age and altered recombination. In order to provide further insight on mechanisms underlying nondisjunction, we examined the association between these two well established risk factors for chromosome 21 nondisjunction. In our approach, short tandem repeat markers along chromosome 21 were genotyped in DNA collected from individuals with free trisomy 21 and their parents. This information was used to determine the origin of the nondisjunction error and the maternal recombination profile. We analyzed 615 maternal meiosis I and 253 maternal meiosis II cases stratified by maternal age. The examination of meiosis II errors, the first of its type, suggests that the presence of a single exchange within the pericentromeric region of 21q interacts with maternal age-related risk factors. This observation could be explained in two general ways: 1 a pericentromeric exchange initiates or exacerbates the susceptibility to maternal age risk factors or 2 a pericentromeric exchange protects the bivalent against age-related risk factors allowing proper segregation of homologues at meiosis I, but not segregation of sisters at meiosis II. In contrast, analysis of maternal meiosis I errors indicates that a single telomeric exchange imposes the same risk for nondisjunction, irrespective of the age of the oocyte. Our results emphasize the fact that human nondisjunction is a multifactorial trait that must be dissected into its component parts to identify specific associated risk factors.

  3. The gene for human glutaredoxin (GLRX) is localized to human chromosome 5q14

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, C.A.; Holmgren, A. [Karolinska Inst., Stockholm (Sweden); Bajalica, S.; Lagercrantz, J. [Karolinska Hospital, Stockholm (Sweden)

    1996-03-05

    Glutaredoxin is a small protein (12 kDa) catalyzing glutathione-dependent disulfide oxidoreduction reactions in a coupled system with NADPH, GSH, and glutathione reductase. A cDNA encoding the human glutaredoxin gene (HGMW-approved symbol GLRX) has recently been isolated and cloned from a human fetal spleen cDNA library. The screening of a human fetal spleen cDNA library. The screening of a human genomic library in Charon 4A led to the identification of three genomic clones. Using fluorescence in situ hybridization to metaphase chromosomes with one genomic clone as a probe, the human glutaredoxin gene was localized to chromosomal region 5q14. This localization at chromosome 5 was in agreement with the somatic cell hybrid analysis, using DNA from a human-hamster and a human-mouse hybrid panel and using a human glutaredoxin cDNA as a probe. 13 refs., 2 figs.

  4. A global analysis of Y-chromosomal haplotype diversity for 23 STR loci

    DEFF Research Database (Denmark)

    Purps, Josephine; Siegert, Sabine; Willuweit, Sascha

    2014-01-01

    In a worldwide collaborative effort, 19,630 Y-chromosomes were sampled from 129 different populations in 51 countries. These chromosomes were typed for 23 short-tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DY...

  5. Dosage Effects of X and Y Chromosomes on Language and Social Functioning in Children with Supernumerary Sex Chromosome Aneuploidies: Implications for Idiopathic Language Impairment and Autism Spectrum Disorders

    Science.gov (United States)

    Lee, Nancy Raitano; Wallace, Gregory L.; Adeyemi, Elizabeth I.; Lopez, Katherine C.; Blumenthal, Jonathan D.; Clasen, Liv S.; Giedd, Jay N.

    2012-01-01

    Background: Supernumerary sex chromosome aneuploidies (X/Y-aneuploidies), the presence of extra X and/or Y chromosomes, are associated with heightened rates of language impairments and social difficulties. However, no single study has examined different language domains and social functioning in the same sample of children with tri-, tetra-, and…

  6. Chromosome segregation regulation in human zygotes : Altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex

    NARCIS (Netherlands)

    Van De Werken, C.; Avo Santos, M.; Laven, J. S E; Eleveld, C.; Fauser, B. C J M; Lens, S. M A; Baart, E. B.

    2015-01-01

    STUDY QUESTION Are the kinase feedback loops that regulate activation and centromeric targeting of the chromosomal passenger complex (CPC), functional during mitosis in human embryos? SUMMARY ANSWER Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal

  7. Human estrogen sulfotransferase gene (STE): Cloning, structure, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Her, Chengtao; Aksoy, I.A.; Weinshilboum, M. [Mayo Foundation, Rochester, MI (United States)] [and others

    1995-09-01

    Sulfation is an important pathway in the metabolism of estrogens. We recently cloned a human liver estrogen sulfotransferase (EST) cDNA. We have now determined the structure and chromosomal localization of the EST gene, STE, as a step toward molecular genetic studies of the regulation of EST in humans. STE spans approximately 20 kb and consists of 8 exons, ranging in length from 95 to 181 bp. The locations of most exon-intron splice junctions within STE are identical to those found in a human phenol ST (PST) gene, STM, and in a rat PST gene. In addition, the locations of five STE introns are also conserved in the human dehydroepiandrosterone (DBEA) ST gene, STD. The 5{prime} flanking region of STE contains one CCAAT and two TATA sequences. The location of one of the TATA box elements is in excellent agreement with the site of transcription initiation as determined by 5{prime}-rapid amplification of cDNA ends. STE was mapped to human chromosome 4q13.1 by fluorescence in situ hybridization. Cloning and structural characterization of STE will now make it possible to study potential molecular genetic mechanisms involved in the regulation of EST in human tissues. 50 refs., 6 figs., 1 tab.

  8. Culture of human oocytes with granulocyte-macrophage colony-stimulating factor has no effect on embryonic chromosomal constitution

    DEFF Research Database (Denmark)

    Agerholm, Inge; Loft, Anne; Hald, Finn;

    2010-01-01

    The effect on ploidy rate in donated human oocytes after in-vitro culture with recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF; 2 ng/ml) from fertilization until day 3 was examined in a multicentre, prospective placebo-controlled and double-blinded study including 73......) and number of normally developed embryos evaluated morphologically on day 3. The cytogenetic analyses demonstrated non-inferiority and therefore the chromosomal constitution of human embryos cultured in vitro in the presence of 2 ng/ml GM-CSF was no worse than the control group cultured without GM-CSF. In-vitro...... women donating 86 oocytes. The primary endpoint was to investigate the chromosomal constitution of human embryos (fluorescence in-situ hybridization analysis for chromosomes 13, 16, 18, 21, 22, X and Y) cultured with or without GM-CSF. The secondary endpoints were number of top-quality embryos (TQE...

  9. Y-chromosomal diversity in the population of Guinea-Bissau: a multiethnic perspective

    Directory of Open Access Journals (Sweden)

    Jobling Mark A

    2007-07-01

    Full Text Available Abstract Background The geographic and ethnolinguistic differentiation of many African Y-chromosomal lineages provides an opportunity to evaluate human migration episodes and admixture processes, in a pan-continental context. The analysis of the paternal genetic structure of Equatorial West Africans carried out to date leaves their origins and relationships unclear, and raises questions about the existence of major demographic phenomena analogous to the large-scale Bantu expansions. To address this, we have analysed the variation of 31 binary and 11 microsatellite markers on the non-recombining portion of the Y chromosome in Guinea-Bissau samples of diverse ethnic affiliations, some not studied before. Results The Guinea-Bissau Y chromosome pool is characterized by low haplogroup diversity (D = 0.470, sd 0.033, with the predominant haplogroup E3a*-M2 shared among the ethnic clusters and reaching a maximum of 82.2% in the Mandenka people. The Felupe-Djola and Papel groups exhibit the highest diversity of lineages and harbor the deep-rooting haplogroups A-M91, E2-M75 and E3*-PN2, typical of Sahel's more central and eastern areas. Their genetic distinction from other groups is statistically significant (P = 0.01 though not attributable to linguistic, geographic or religious criteria. Non sub-Saharan influences were associated with the presence of haplogroup R1b-P25 and particular lineages of E3b1-M78. Conclusion The predominance and high diversity of haplogroup E3a*-M2 suggests a demographic expansion in the equatorial western fringe, possibly supported by a local agricultural center. The paternal pool of the Mandenka and Balanta displays evidence of a particularly marked population growth among the Guineans, possibly reflecting the demographic effects of the agriculturalist lifestyle and their putative relationship to the people that introduced early cultivation practices into West Africa. The paternal background of the Felupe-Djola and Papel

  10. Evaluation of 12 Y-chromosome STR loci in Western Mediterranean populations

    DEFF Research Database (Denmark)

    Rodriguez, V.; Tomas, Carmen; Sanchez, Juan J.;

    2008-01-01

    With the aim to establish a Y-STR haplotype database, a total of 554 males from seven Western Mediterranean populations were genotyped for the 12 Y-chromosome STR loci (minimal haplotype extended by loci DYS437, DYS438 and DYS439) included in the Powerplex Y System (Promega). Among the 554 males ...

  11. Molecular mapping of the putative gonadoblastoma locus on the Y chromosome.

    Science.gov (United States)

    Salo, P; Kääriäinen, H; Petrovic, V; Peltomäki, P; Page, D C; de la Chapelle, A

    1995-11-01

    Based on the high incidence of gonadoblastoma in females with XY gonadal dysgenesis or 45,X/46,XY mosaicism, the existence of a susceptibility locus on the Y chromosome (GBY) has been postulated. We attempted to map GBY by making use of a recently developed dense map of Y-chromosomal sequence-tagged sites (STSs). In two female patients with gonadoblastoma, small marker chromosomes contained portions of the Y chromosome, and a single region of overlap could be defined extending from probe pDP97 in interval 4B, which contains the centromere, to marker sY182 in interval 5E of the proximal long arm. This interval is contained in a YAC contig that comprises approximately 4 Mb of DNA. Our findings confirm the previous localization of GBY and greatly refine it. The localization of GBY overlaps with the region to which a putative growth determinant, GCY, was recently assigned.

  12. Y chromosomes of 40% Chinese descend from three Neolithic super-grandfathers.

    Science.gov (United States)

    Yan, Shi; Wang, Chuan-Chao; Zheng, Hong-Xiang; Wang, Wei; Qin, Zhen-Dong; Wei, Lan-Hai; Wang, Yi; Pan, Xue-Dong; Fu, Wen-Qing; He, Yun-Gang; Xiong, Li-Jun; Jin, Wen-Fei; Li, Shi-Lin; An, Yu; Li, Hui; Jin, Li

    2014-01-01

    Demographic change of human populations is one of the central questions for delving into the past of human beings. To identify major population expansions related to male lineages, we sequenced 78 East Asian Y chromosomes at 3.9 Mbp of the non-recombining region, discovered >4,000 new SNPs, and identified many new clades. The relative divergence dates can be estimated much more precisely using a molecular clock. We found that all the Paleolithic divergences were binary; however, three strong star-like Neolithic expansions at ∼6 kya (thousand years ago) (assuming a constant substitution rate of 1×10(-9)/bp/year) indicates that ∼40% of modern Chinese are patrilineal descendants of only three super-grandfathers at that time. This observation suggests that the main patrilineal expansion in China occurred in the Neolithic Era and might be related to the development of agriculture.

  13. Y chromosomes of 40% Chinese descend from three Neolithic super-grandfathers.

    Directory of Open Access Journals (Sweden)

    Shi Yan

    Full Text Available Demographic change of human populations is one of the central questions for delving into the past of human beings. To identify major population expansions related to male lineages, we sequenced 78 East Asian Y chromosomes at 3.9 Mbp of the non-recombining region, discovered >4,000 new SNPs, and identified many new clades. The relative divergence dates can be estimated much more precisely using a molecular clock. We found that all the Paleolithic divergences were binary; however, three strong star-like Neolithic expansions at ∼6 kya (thousand years ago (assuming a constant substitution rate of 1×10(-9/bp/year indicates that ∼40% of modern Chinese are patrilineal descendants of only three super-grandfathers at that time. This observation suggests that the main patrilineal expansion in China occurred in the Neolithic Era and might be related to the development of agriculture.

  14. Chromosome surveys of human populations: between epidemiology and anthropology.

    Science.gov (United States)

    de Chadarevian, Soraya

    2014-09-01

    It is commonly held that after 1945 human genetics turned medical and focussed on the individual rather than on the study of human populations that had become discredited. However, a closer look at the research practices at the time quickly reveals that human population studies, using old and new tools, prospered in this period. The essay focuses on the rise of chromosome analysis as a new tool for the study of human populations. It reviews a broad array of population studies ranging from newborn screening programmes to studies of isolated or 'primitive' people. Throughout, it highlights the continuing role of concerns and opportunities raised by the propagation of atomic energy for civilian and military uses, the collection of large data bases and computers, and the role of international organisations like the World Health Organisation and the International Biological Programme in shaping research agendas and carving out a space for human heredity in the postwar era.

  15. Non-meiotic chromosome instability in human immature oocytes.

    Science.gov (United States)

    Daina, Gemma; Ramos, Laia; Rius, Mariona; Obradors, Albert; Del Rey, Javier; Giralt, Magda; Campillo, Mercedes; Velilla, Esther; Pujol, Aïda; Martinez-Pasarell, Olga; Benet, Jordi; Navarro, Joaquima

    2014-02-01

    Aneuploidy has been a major issue in human gametes and is closely related to fertility problems, as it is known to be present in cleavage stage embryos and gestational losses. Pre-meiotic chromosome abnormalities in women have been previously described. The aim of this study is to assess the whole-chromosome complement in immature oocytes to find those abnormalities caused by mitotic instability. For this purpose, a total of 157 oocytes at the germinal vesicle or metaphase I stage, and discarded from IVF cycles, were analysed by CGH. Fifty-six women, between 18 and 45 years old (mean 32.5 years), including 32 IVF patients (25-45 years of age) and 24 IVF oocyte donors (18-33 years of age), were included in the study. A total of 25/157 (15.9%) of the oocytes analysed, obtained from three IVF clinics, contained chromosome abnormalities, including both aneuploidy (24/157) and structural aberrations (9/157). Independently of the maternal age, the incidence of abnormal oocytes which originated before meiosis is 15.9%, and these imbalances were found in 33.9% of the females studied. This work sheds light on the relevance of mitotic instability responsible for the generation of the abnormalities present in human oocytes.

  16. Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, P.E.; Gosden, J.; Lawson, D. [Western General Hospital, Edinburgh (United Kingdom)] [and others

    1996-04-15

    Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize and spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.

  17. DNA Commission of the International Society of Forensic Genetics: recommendations on forensic analysis using Y-chromosome short tandem repeats

    DEFF Research Database (Denmark)

    Gill, P.; Brenner, C.; Brinkmann, B.;

    2001-01-01

    During the past few years the DNA commission of the International Society of Forensic Genetics has published a series of documents providing guidelines and recommendations concerning the application of DNA polymorphisms to the problems of human identification. This latest report addresses a relat...... a relatively new area, namely Y-chromosome polymorphisms, with particular emphasis on short tandem repeats (STRs). This report addresses nomenclature, use of allelic ladders, population genetics and reporting methods Udgivelsesdato: 2001/12...

  18. Prediction of the Y-Chromosome Haplogroups Within a Recently Settled Turkish Population in Sarajevo, Bosnia and Herzegovina.

    Science.gov (United States)

    Doğan, Serkan; Doğan, Gŭlşen; Ašić, Adna; Besić, Larisa; Klimenta, Biljana; Hukić, Mirsada; Turan, Yusuf; Primorac, Dragan; Marjanović, Damir

    2016-04-01

    Analysis of Y-chromosome haplogroup distribution is widely used when investigating geographical clustering of different populations, which is why it plays an important role in population genetics, human migration patterns and even in forensic investigations. Individual determination of these haplogroups is mostly based on the analysis of single nucleotide polymorphism (SNP) markers located in the non-recombining part of Y-chromosome (NRY). On the other hand, the number of forensic and anthropology studies investigating short tandem repeats on the Y-chromosome (Y-STRs) increases rapidly every year. During the last few years, these markers have been successfully used as haplogroup prediction methods, which is why they have been used in this study. Previously obtained Y-STR haplotypes (23 loci) from 100 unrelated Turkish males recently settled in Sarajevo were used for the determination of haplogroups via 'Whit Athey's Haplogroup Predictor' software. The Bayesian probability of 90 of the studied haplotypes is greater than 92.2% and ranges from 51.4% to 84.3% for the remaining 10 haplotypes. A distribution of 17 different haplogroups was found, with the Y- haplogroup J2a being most prevalent, having been found in 26% of all the samples, whereas R1b, G2a and R1a were less prevalent, covering a range of 10% to 15% of all the samples. Together, these four haplogroups account for 63% of all Y-chromosomes. Eleven haplogroups (E1b1b, G1, I1, I2a, I2b, J1, J2b, L, Q, R2, and T) range from 2% to 5%, while E1b1a and N are found in 1% of all samples. Obtained results indicate that a large majority of the Turkish paternal line belongs to West Asia, Europe Caucasus, Western Europe, Northeast Europe, Middle East, Russia, Anatolia, and Black Sea Y-chromosome lineages. As the distribution of Y-chromosome haplogroups is consistent with the previously published data for the Turkish population residing in Turkey, it was concluded that the analyzed population could also be recognized as

  19. Preleptotene chromosome condensation stage in human foetal and neonatal testes.

    Science.gov (United States)

    Luciani, J M; Devictor, M; Stahl, A

    1977-04-01

    A preleptotene stage of chromosome condensation analogous to that already described in various plants and in the oocytes of several animal species has been observed in the human foetal testis. Contrary to what has been previously described, this stage in the testis is not followed by decondensation leading to leptotene filaments. This observation underlines the problem of the precise significance of this stage and its relation to initiation of meiosis. It is suggested that meiosis may be initiated during this condensation phase and that the male germ cell, despite its XY chromosome constitution, tends to evolve towards meiosis. This proposal pleads in favour of both the role of somatic cells in the inhibition of meiosis in the male foetus and the role of environmental factors rather than genetic constitution of the germ cell in meiotic induction.

  20. HACking the centromere chromatin code: insights from human artificial chromosomes.

    Science.gov (United States)

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  1. Gonadoblastomas in 45,X/46,XY mosaicism: analysis of Y chromosome distribution by fluorescence in situ hybridization.

    Science.gov (United States)

    Iezzoni, J C; Von Kap-Herr, C; Golden, W L; Gaffey, M J

    1997-08-01

    Gonadoblastomas are composed of nests of neoplastic germ cells and sex cord derivatives surrounded by ovarian-type stroma. These tumors are found almost exclusively in persons with gonadal dysgenesis associated with a Y chromosome or Y chromosome fragment, and accordingly, the Y chromosome has been implicated in gonadoblastoma oncogenesis. To evaluate this association, we used two-color fluorescence in situ hybridization with chromosome-specific probes to determine the distribution of the X and Y chromosomes in the tumor nests and surrounding stromal cells in paraffin tissue sections of three gonadoblastomas in two patients with gonadal dysgenesis and 45,X/46,XY mosaicism. Statistical analysis of the data from the fluorescence in situ hybridization demonstrated that in all three gonadoblastomas, the proportion of nuclei with a Y chromosome signal was significantly higher in the tumor cells than in the nontumoral cells of the surrounding stroma (P<.001). These results suggest that Y chromosome material participates in gonadoblastoma tumorigenesis.

  2. SCREENING OF PRESENCE OF EXTRA Y CHROMOSOME IN AGGRESSIVE TALL MALES OF NORTH INDIAN REGION

    Directory of Open Access Journals (Sweden)

    Balreet kaur

    2015-09-01

    Full Text Available Background: Aggression has been hypothesised with biological instinctual theory, frustration theory and social learning theory. The biological instinctual theory was based on hereditary factors and is associated with XYY syndrome. Objectives: To find out the presence of extra Y chromosome in aggressive taller males of north Indian region. Materials and Methods: Buss and Perry questionnaire was used to find out the aggression of the subjects. The height was measured with the help of metallic tape. Quinacrine dihydrochloride and Macllvaines Buffer was used to stain the buccal smear slide for the general screening of the number of Y chromosomes. The conventional metaphase was prepared for the confirmation of number of Y chromosomes and the slides were stained with giemsa. Observations: The aggression was found more in taller males and they had no extra Y chromosome. Conclusions: Extra Y chromosome may be the cause of aggression and more height in males. But in the present study of males of north Indian region no extra Y chromosome was found in aggressive and taller males.

  3. The Prevalence of Y Chromosome Microdeletions in Iranian Infertile Men with Azoospermia and Severe Oligospermia

    Directory of Open Access Journals (Sweden)

    Fahimeh Asadi

    2017-01-01

    Full Text Available Objective Microdeletions of the Y chromosome long arm are the most common molecular genetic causes of severe infertility in men. They affect three regions including azoospermia factors (AZFa, AZFb and AZFc, which contain various genes involved in spermatogenesis. The aim of the present study was to reveal the patterns of Y chromosome microdeletions in Iranian infertile men referred to Royan Institute with azoospermia/ severe oligospermia. Materials and Methods Through a cross-sectional study, 1885 infertile men referred to Royan Institute with azoospermia/severe oligospermia were examined for Y chromosome microdeletions from March 2012 to March 2014. We determined microdeletions of the Y chromosome in the AZFa, AZFb and AZFc regions using multiplex Polymerase chain reaction and six different Sequence-Tagged Site (STS markers. Results Among the 1885 infertile men, we determined 99 cases of Y chromosome microdeletions (5.2%. Among 99 cases, AZFc microdeletions were found in 70 cases (70.7%; AZFb microdeletions in 5 cases (5%; and AZFa microdeletions in only 3 cases (3%. AZFbc microdeletions were detected in 18 cases (18.1% and AZFabc microdeletions in 3 cases (3%. Conclusion Based on these data, our results are in agreement with similar studies from other regions of the world as well as two other recent studies from Iran which have mostly reported a frequency of less than 10% for Y chromosome microdeletions.

  4. Genetic admixture, relatedness, and structure patterns among Mexican populations revealed by the Y-chromosome.

    Science.gov (United States)

    Rangel-Villalobos, H; Muñoz-Valle, J F; González-Martín, A; Gorostiza, A; Magaña, M T; Páez-Riberos, L A

    2008-04-01

    Y-linked markers are suitable loci to analyze genetic diversity of human populations, offering knowledge of medical, forensic, and anthropological interest. In a population sample of 206 Mestizo males from western Mexico, we analyzed two binary loci (M3 and YAP) and six Y-STRs, adding to the analysis data of Mexican Mestizos and Amerindians, and relevant worldwide populations. The paternal ancestry estimated in western Mexican-Mestizos was mainly European (60-64%), followed by Amerindian (25-21%), and African ( approximately 15%). Significant genetic heterogeneity was established between Mestizos from western (Jalisco State) and northern Mexico (Chihuahua State) compared with Mexicans from the center of the Mexican Republic (Mexico City), this attributable to higher European ancestry in western and northern than in central and southeast populations, where higher Amerindian ancestry was inferred. This genetic structure has important implications for medical and forensic purposes. Two different Pre-Hispanic evolutionary processes were evident. In Mesoamerican region, populations presented higher migration rate (N(m) = 24.76), promoting genetic homogeneity. Conversely, isolated groups from the mountains and canyons of the Western and Northern Sierra Madre (Huichols and Tarahumaras, respectively) presented a lower migration rate (N(m) = 10.27) and stronger genetic differentiation processes (founder effect and/or genetic drift), constituting a Pre-Hispanic population substructure. Additionally, Tarahumaras presented a higher frequency of Y-chromosomes without Q3 that was explained by paternal European admixture (15%) and, more interestingly, by a distinctive Native-American ancestry. In Purepechas, a special admixture process involving preferential integration of non-Purepecha women in their communities could explain contrary genetic evidences (autosomal vs. Y-chromosome) for this tribe.

  5. Sequence and expression analysis of gaps in human chromosome 20

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Seemann, Stefan; Mang, Yuan;

    2012-01-01

    The finished human genome-assemblies comprise several hundred un-sequenced euchromatic gaps, which may be rich in long polypurine/polypyrimidine stretches. Human chromosome 20 (chr 20) currently has three unfinished gaps remaining on its q-arm. All three gaps are within gene-dense regions and....../or overlap disease-associated loci, including the DLGAP4 locus. In this study, we sequenced ~99% of all three unfinished gaps on human chr 20, determined their complete genomic sizes and assessed epigenetic profiles using a combination of Sanger sequencing, mate pair paired-end high-throughput sequencing...... and chromatin, methylation and expression analyses. We found histone 3 trimethylated at Lysine 27 to be distributed across all three gaps in immortalized B-lymphocytes. In one gap, five novel CpG islands were predominantly hypermethylated in genomic DNA from peripheral blood lymphocytes and human cerebellum...

  6. Rapid cloning and bioinformatic analysis of spinach Y chromosome-specific EST sequences

    Indian Academy of Sciences (India)

    Chuan-Liang Deng; Wei-Li Zhang; Ying Cao; Shao-Jing Wang; Shu-Fen Li; Wu-Jun Gao; Long-Dou Lu

    2015-12-01

    The genome of spinach single chromosome complement is about 1000 Mbp, which is the model material to study the molecular mechanisms of plant sex differentiation. The cytological study showed that the biggest spinach chromosome (chromosome 1) was taken as spinach sex chromosome. It had three alleles of sex-related , m and . Many researchers have been trying to clone the sex-determining genes and investigated the molecular mechanism of spinach sex differentiation. However, there are no successful cloned reports about these genes. A new technology combining chromosome microdissection with hybridization-specific amplification (HSA) was adopted. The spinach Y chromosome degenerate oligonucleotide primed-PCR (DOP-PCR) products were hybridized with cDNA of the male spinach flowers in florescence. The female spinach genome was taken as blocker and cDNA library specifically expressed in Y chromosome was constructed. Moreover, expressed sequence tag (EST) sequences in cDNA library were cloned, sequenced and bioinformatics was analysed. There were 63 valid EST sequences obtained in this study. The fragment size was between 53 and 486 bp. BLASTn homologous alignment indicated that 12 EST sequences had homologous sequences of nucleic acids, the rest were new sequences. BLASTx homologous alignment indicated that 16 EST sequences had homologous protein-encoding nucleic acid sequence. The spinach Y chromosome-specific EST sequences laid the foundation for cloning the functional genes, specifically expressed in spinach Y chromosome. Meanwhile, the establishment of the technology system in the research provided a reference for rapid cloning of other biological sex chromosome-specific EST sequences.

  7. Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes.

    Science.gov (United States)

    Hall, Andrew Brantley; Papathanos, Philippos-Aris; Sharma, Atashi; Cheng, Changde; Akbari, Omar S; Assour, Lauren; Bergman, Nicholas H; Cagnetti, Alessia; Crisanti, Andrea; Dottorini, Tania; Fiorentini, Elisa; Galizi, Roberto; Hnath, Jonathan; Jiang, Xiaofang; Koren, Sergey; Nolan, Tony; Radune, Diane; Sharakhova, Maria V; Steele, Aaron; Timoshevskiy, Vladimir A; Windbichler, Nikolai; Zhang, Simo; Hahn, Matthew W; Phillippy, Adam M; Emrich, Scott J; Sharakhov, Igor V; Tu, Zhijian Jake; Besansky, Nora J

    2016-04-12

    Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes.

  8. Birth of a new gene on the Y chromosome of Drosophila melanogaster.

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Vicoso, Beatriz; Russo, Claudia A M; Swenor, Bonnielin; Clark, Andrew G

    2015-10-06

    Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes.

  9. Human Chromosome 21: Mapping of the chromosomes and cloning of cDNAs

    Energy Technology Data Exchange (ETDEWEB)

    Antonarakis, S.E.

    1991-09-01

    The objective of the research funded by DOE grant DE-FG02-89ER60857 from 6/15/89 to 8/31/91 was to contribute to the physical mapping of human chromosome 21 (HC21) by cloning large fragments of DNA into Yeast Artificial Chromosomes (YACs) and identify YACs that map on HC21. A total of 54 sequence tagged sites (STS) have been developed and mapped in our laboratory to HC21 and can be used as initial reference points for YAC identification and construction of overlapping clones. A small YAC library was constructed which is HC21 specific. DNA from somatic cell hybrid WAV17 or from flow-sorted HC21 was partially digested with EcoRI, ligated into vectors PJS97, PJS98, and YACs have been obtained with average size insert of more than 300 kb. This library has been deposited in D. Patterson's lab for the Joint YAC screening effort. Additional YAC libraries from ICI Pharmaceuticals or from Los Alamos National Laboratories have been screened with several STS and positive YACs have been identified. Work in progress includes screening of YAC libraries in order to construct overlapping clones, characterization of the cloning ends of YACs, characterization of additional STS and cloning of HC21 specific cDNAs. 15 refs., 2 figs., 5 tabs.

  10. Mapping of guanylin to murine chromosome 4 and human chromosome 1p34-p35

    Energy Technology Data Exchange (ETDEWEB)

    Sciaky, D.; Cohen, M.B. [Univ. of Cincinnati, OH (United States); Jenkins, N.A. [Mammalian Genetics Lab., Frederick, MD (United States)] [and others

    1995-03-20

    Guanylin is a 15-amino-acid peptide similar in structure and in function to ST{sub a}, the heat stable enterotoxin of enterotoxigenic Escherichia coli (4). Both guanylin and ST{sub a} bind guanylyl cyclase-C (GC-C), resulting in increased levels of intracellular cGMP and induction of Cl- secretion (4) via the cystic fibrosis transmembrane regulator (CFM) (2). Guanylin is a highly regulated intestinal gene that is differentially expressed along the duodenal-to-colonic and villus-to-crypt axes. Guanylin mRNA abundance is maximal in the distal small intestine and proximal colon, where the mRNA is detected mainly in differentiated villus epithelial cells and superficial colonic epithelial cells, respectively. The murine guanylin gene (Guca2) has been isolated and sequenced; the gene is 1.7 kb and consists of 3 exons. We report here the mapping of Guca2 to mouse chromosome 4 by linkage analysis and to human chromosome region 1p34-p35 using fluorescence in situ hybridization (FISH). 20 refs., 2 figs.

  11. Interstitial and terminal deletion of chromosome Y in a male individual with cryptozoospermia.

    Science.gov (United States)

    Duell, T; Mathews, S; Wunderlich, B; Mittermüller, J; Schmetzer, H

    1998-04-01

    A constitutional de-novo deletion of the long arm of the Y chromosome was detected by standard cytogenetic analysis in a 38-year old male who, except for small testes and cryptozoospermia, was phenotypically normal. The deletion was further characterized by fluorescent in-situ hybridization (FISH) and digital image analysis using contigs of overlapping yeast artificial chromosome (YAC) clones, spanning almost the entire Y chromosome. These results showed that the deletion involved a large interstitial segment on the proximal long arm of the Y chromosome (Yq11.1-->Yq11.22) as well as a more distal portion of the Y chromosome, including the entire heterochromatic region (Yq11.23-->qter). The breakpoints as determined by the YAC probes were defined within the published Vergnaud intervals so that region 6B and 6C was mostly retained. However, the AZFc region harbouring the DAZ locus on distal subinterval 6F was lost in the deletion, making the absence of this region the most probable location for the patient's infertility. The data underline the usefulness of FISH as an alternative technique to conventional banding for the refined detection of chromosome Y deletions/rearrangements.

  12. Chromosome Aberration in Human Blood Lymphocytes Exposed to Energetic Protons

    Science.gov (United States)

    Hada, M.; George, Kerry A.; Cucinotta, F. A.

    2008-01-01

    During space flight, astronauts are exposed to a space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/micrometer. and doses ranged from 0.2 to 3 Gy. Over this energy the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction produces such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are LET dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.

  13. Transillumination spatially modulated illumination microscopy for human chromosome imaging

    Science.gov (United States)

    Pitris, Costas; Heracleous, Peter; Patsalis, Philippos

    2005-03-01

    Human chromosome analysis is an essential task in cytogenetics, especially in prenatal screening, genetic syndrome diagnosis, cancer pathology research and mutagen dosimetry. Chromosomal analysis begins with the creation of a karyotype, which is a layout of chromosome images organized by decreasing size in pairs. Both manual and automatic classification of chromosomes are limited by the resolution of the microscope and imaging system used. One way to improve the results of classification and even detect subtleties now remaining undetected, is to enhance the resolution of the images. It is possible to achieve lateral resolution beyond the classical limit, by using spatially modulated illumination (SMI) in a wide-field, non-confocal microscope. In this case, the sample is illuminated with spatially modulated light, which makes normally inaccessible high-resolution information visible in the observed image by shifting higher frequencies within the OTF limits of the microscope. Although, SMI microscopes have been reported in the past, this manuscript reports the development of a transillumination microscope for opaque, non-fluorescent samples. The illumination path consisted of a light source illuminating a ruled grating which was subsequently imaged on the sample. The grating was mounted on a rotating and translating stage so that the magnification and rotation of the pattern could be adjusted. The imaging lens was a 1.25 NA oil immersion objective. Test samples showed resolution improvement, as judged from a comparison of the experimentally obtained FWHM. Further studies using smaller fringe distance or laser interference pattern illumination will be evaluated to further optimize the SMI results.

  14. Induction of chromosomal aberrations in human lymphocytes by fission neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcia Augusta da; Coelho, Paulo Rogerio Pinto; Bartolini, Paolo; Okazaki, Kayo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: kokazaki@ipen.br

    2009-07-01

    Chromosome aberrations induced by sparsely ionizing radiation (low-LET) are well known and cytogenetic analyses of irradiated human lymphocytes have been widely applied to biological dosimetry. However, much less is known about chromosome aberrations induced by densely ionizing radiation (high LET), such as that of alpha particles or neutrons. Such particles induce DNA strand breaks, as well as chromosome breakage and rearrangements of high complexity. This damage is more localized and less efficiently repaired than after X- or {gamma}-ray irradiation. This preferential production of complex aberrations by densely ionizing radiation is related to the unique energy deposition patterns, which produces highly localized multiple DNA damage at the chromosomal level. A better knowledge of the interactions between different types of radiation and cellular DNA is of importance, not only from the radiobiological viewpoint but also for dosimetric and therapeutic purposes. The objective of the present study was to analyse the cytogenetic effects of fission neutrons on peripheral blood lymphocytes in order to evaluate structural and numerical aberrations and number of cells in the different mitotic cycles. So, blood samples from five healthy donors, 22-25 years old, of both sexes, were irradiated in the Research Reactor IEA-R1 of our Institute (IPEN/CNEN-SP) with thermal and fast neutrons at doses of 0.2; 0.3; 0.5 and 1.0 Gy. The {gamma} contribution to the total absorbed dose was about 30%. These doses were monitored by thermoluminescent dosemeters: LiF-600 (for neutrons) and LiF-700 (for {gamma}-rays). The data concerning structural aberrations were evaluated with regard to three parameters: percentage of cells with aberrations, number of aberrations/cell and number of dicentric/cell. The cytogenetic results showed an increase in the three parameters after irradiation with neutrons, as a function of radiation dose. Apparently, there was no influence of neutrons on the

  15. Chromosome aberrations in human blood lymphocytes exposed to energetic protons

    Science.gov (United States)

    Hada, Megumi; George, Ms Kerry; Cucinotta, Francis A.

    During space flight, astronauts are exposed to space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and are therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/µm. and doses ranged from 0.2 to 3 Gy. Over this energy range the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction products such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are energy dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.

  16. Progress towards construction of a total restriction fragment map of a human chromosome.

    NARCIS (Netherlands)

    H. Vissing; F.G. Grosveld (Frank); E. Solomon; G. Moore; N. Lench; N. Shennan; R. Williamson

    1987-01-01

    textabstractWe present an approach to the construction of an overlapping restriction fragment map of a single human chromosome. A genomic cosmid library genome was constructed from a mouse-human hybrid cell line containing chromosome 17 as its only human genetic component. Cosmids containing human i

  17. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome.

    Science.gov (United States)

    Thévenin, Annelyse; Ein-Dor, Liat; Ozery-Flato, Michal; Shamir, Ron

    2014-09-01

    Genomes undergo changes in organization as a result of gene duplications, chromosomal rearrangements and local mutations, among other mechanisms. In contrast to prokaryotes, in which genes of a common function are often organized in operons and reside contiguously along the genome, most eukaryotes show much weaker clustering of genes by function, except for few concrete functional groups. We set out to check systematically if there is a relation between gene function and gene organization in the human genome. We test this question for three types of functional groups: pairs of interacting proteins, complexes and pathways. We find a significant concentration of functional groups both in terms of their distance within the same chromosome and in terms of their dispersal over several chromosomes. Moreover, using Hi-C contact map of the tendency of chromosomal segments to appear close in the 3D space of the nucleus, we show that members of the same functional group that reside on distinct chromosomes tend to co-localize in space. The result holds for all three types of functional groups that we tested. Hence, the human genome shows substantial concentration of functional groups within chromosomes and across chromosomes in space.

  18. High-speed AFM of human chromosomes in liquid

    Science.gov (United States)

    Picco, L. M.; Dunton, P. G.; Ulcinas, A.; Engledew, D. J.; Hoshi, O.; Ushiki, T.; Miles, M. J.

    2008-09-01

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  19. Chromosome region-specific libraries for human genome analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Fa-Ten.

    1991-01-01

    We have made important progress since the beginning of the current grant year. We have further developed the microdissection and PCR- assisted microcloning techniques using the linker-adaptor method. We have critically evaluated the microdissection libraries constructed by this microtechnology and proved that they are of high quality. We further demonstrated that these microdissection clones are useful in identifying corresponding YAC clones for a thousand-fold expansion of the genomic coverage and for contig construction. We are also improving the technique of cloning the dissected fragments in test tube by the TDT method. We are applying both of these PCR cloning technique to human chromosomes 2 and 5 to construct region-specific libraries for physical mapping purposes of LLNL and LANL. Finally, we are exploring efficient procedures to use unique sequence microclones to isolate cDNA clones from defined chromosomal regions as valuable resources for identifying expressed gene sequences in the human genome. We believe that we are making important progress under the auspices of this DOE human genome program grant and we will continue to make significant contributions in the coming year. 4 refs., 4 figs.

  20. Small supernumerary marker chromosomes (sSMC) in humans; are there B chromosomes hidden among them

    OpenAIRE

    Ogilvie Caroline; Kosyakova Nadezda; Mrasek Kristin; Liehr Thomas; Vermeesch Joris; Trifonov Vladimir; Rubtsov Nikolai

    2008-01-01

    Abstract Background Small supernumerary marker chromosomes (sSMC) and B-chromosomes represent a heterogeneous collection of chromosomes added to the typical karyotype, and which are both small in size. They may consist of heterochromatic and/or euchromatic material. Also a predominance of maternal transmission was reported for both groups. Even though sSMC and B-chromosomes show some similarity it is still an open question if B-chromosomes are present among the heterogeneous group of sSMC. Ac...

  1. Chromosome territories, X;Y translocation and Premature Ovarian Failure: is there a relationship?

    Directory of Open Access Journals (Sweden)

    Betri Enrico

    2009-09-01

    Full Text Available Abstract Background Premature ovarian failure (POF is a secondary hypergonadotrophic amenorrhea occurring before the age of 40 and affecting 1-3% of females. Chromosome anomalies account for 6-8% of POF cases, but only few cases are associated with translocations involving X and Y chromosomes. This study shows the cytogenetic and molecular analysis of a POF patient came to our attention as she developed a left ovary choriocarcinoma at the age of 10 and at 14 years of age she presented secondary amenorrhea with elevated levels of gonadotropins. Results Breakpoint position on X and Y chromosomes was investigated using Fluorescent In Situ Hybridisation (FISH with a panel of specific BAC probes, microsatellite analysis and evaluation of copy number changes and loss of heterozigosity by Affymetrix® GeneChip platform (Santa Clara, CA, USA. Patient's karyotype resulted 46, X, der(Yt(X;Y(q13.1;q11.223. X inactivation study was assessed by RBA banding and showed preferential inactivation of derivative chromosome. The reciprocal spatial disposition of sexual chromosome territories was investigated using whole chromosome painting and centromeres probes: patient's results didn't show a significant difference in comparison to normal controls. Conclusion The peculiar clinical case come to our attention highlighted the complexity of POF aetiology and of the translocation event, even if our results seem to exclude any effect on nuclear organisation. POF phenotype could be partially explained by skewed X chromosome inactivation that influences gene expression.

  2. Genetic dosage and position effect of small supernumerary marker chromosome (sSMC) in human sperm nuclei in infertile male patient.

    Science.gov (United States)

    Olszewska, Marta; Wanowska, Elzbieta; Kishore, Archana; Huleyuk, Nataliya; Georgiadis, Andrew P; Yatsenko, Alexander N; Mikula, Mariya; Zastavna, Danuta; Wiland, Ewa; Kurpisz, Maciej

    2015-11-30

    Chromosomes occupy specific distinct areas in the nucleus of the sperm cell that may be altered in males with disrupted spermatogenesis. Here, we present alterations in the positioning of the human chromosomes 15, 18, X and Y between spermatozoa with the small supernumerary marker chromosome (sSMC; sSMC(+)) and spermatozoa with normal chromosome complement (sSMC(-)), for the first time described in the same ejaculate of an infertile, phenotypically normal male patient. Using classical and confocal fluorescent microscopy, the nuclear colocalization of chromosomes 15 and sSMC was analyzed. The molecular cytogenetic characteristics of sSMC delineated the karyotype as 47,XY,+der(15)(pter->p11.2::q11.1->q11.2::p11.2->pter)mat. Analysis of meiotic segregation showed a 1:1 ratio of sSMC(+) to sSMC(-) spermatozoa, while evaluation of sperm aneuploidy status indicated an increased level of chromosome 13, 18, 21 and 22 disomy, up to 7 × (2.7 - 15.1). Sperm chromatin integrity assessment did not reveal any increase in deprotamination in the patient's sperm chromatin. Importantly, we found significant repositioning of chromosomes X and Y towards the nuclear periphery, where both chromosomes were localized in close proximity to the sSMC. This suggests the possible influence of sSMC/XY colocalization on meiotic chromosome division, resulting in abnormal chromosome segregation, and leading to male infertility in the patient.

  3. Multiplex PCR and minisequencing of SNPs--a model with 35 Y chromosome SNPs

    DEFF Research Database (Denmark)

    Sanchez, Juan J; Børsting, Claus; Hallenberg, Charlotte;

    2003-01-01

    We have developed a robust single nucleotide polymorphism (SNPs) typing assay with co-amplification of 25 DNA-fragments and the detection of 35 human Y chromosome SNPs. The sizes of the PCR products ranged from 79 to 186 base pairs. PCR primers were designed to have a theoretical Tm of 60 +/- 5...... degrees C at a salt concentration of 180 mM. The sizes of the primers ranged from 19 to 34 nucleotides. The concentration of amplification primers was adjusted to obtain balanced amounts of PCR products in 8mM MgCl2. For routine purposes, 1 ng of genomic DNA was amplified and the lower limit...... was approximately 100 pg DNA. The minisequencing reactions were performed simultaneously for all 35 SNPs with fluorescently labelled dideoxynucleotides. The size of the minisequencing primers ranged from 19 to 106 nucleotides. The minisequencing reactions were analysed by capillary electrophoresis and multicolour...

  4. Isolation and comparative mapping of a human chromosome 20-specific alpha-satellite DNA clone.

    Science.gov (United States)

    Baldini, A; Archidiacono, N; Carbone, R; Bolino, A; Shridhar, V; Miller, O J; Miller, D A; Ward, D C; Rocchi, M

    1992-01-01

    We have isolated and characterized a human genomic DNA clone (PZ20, locus D20Z2) that identifies, under high-stringency hybridization conditions, an alphoid DNA subset specific for chromosome 20. The specificity was determined using fluorescence in situ hybridization. Sequence analysis confirmed our previously reported data on the great similarity between the chromosome 20 and chromosome 2 alphoid subsets. Comparative mapping of pZ20 on chimpanzee and gorilla chromosomes, also performed under high-stringency conditions, indicates that the alphoid subset has ancestral sequences on chimpanzee chromosome 11 and gorilla chromosome 19. However, no hybridization was observed to chromosomes 21 in the great apes, the homolog of human chromosome 20.

  5. Mutability of Y-chromosomal microsatellites: Rates, characteristics, molecular bases, and rorensic implications

    NARCIS (Netherlands)

    K. Ballantyne (Kaye); M.A. Goedbloed (Miriam); R.N. Fang (Rixun); O. Schaap (Onno); O. Lao Grueso (Oscar); A. Wollstein (Andreas); Y. Choi (Ying); K. van Duijn (Kate); M. Vermeulen (Mark); S. Brauer (Silke); R. Decorte (Ronny); M. Poetsch (Micaela); N. von Wurmb-Schwark (Nicole); P. de Knijff (Peter); D. Labuda (Damian); H. Vézina (Hélne); H. Knoblauch (Hans); R. Lessig (Rüdiger); L. Roewer (Lutz); R. Ploski (Rafal); T. Dobosz (Tadeusz); J. Henke (Jürgen); M.R. Furtado (Manohar); M.H. Kayser (Manfred)

    2010-01-01

    textabstractNonrecombining Y-chromosomal microsatellites (Y-STRs) are widely used to infer population histories, discover genealogical relationships, and identify males for criminal justice purposes. Although a key requirement for their application is reliable mutability knowledge, empirical data ar

  6. Gene structure of the human DDX3 and chromosome mapping of its related sequences.

    Science.gov (United States)

    Kim, Y S; Lee, S G; Park, S H; Song, K

    2001-10-31

    The human DDX3 gene (GenBank accession No. U50553) is the human homologue of the mouse Ddx3 gene and is a member of the gene family that contains DEAD motifs. Previously, we mapped the gene to the Xp11.3-11.23. In this report, we describe the structural organization of the human DDX3 gene. It consisted of 17 exons that span approximately 16 kb. An Alu element was present in the intron 13. Its organization was the same as that of the human DBY gene, a closely related sequence present on the Y chromosome. We also identified two processed pseudogenes (DDX3) with a sequence that is highly homologous to those of DDX3 cDNAs, but contain a translation termination codon within its open-reading frame. Pseudogenes are mapped on human chromosomes 4 and X, respectively. In this paper, we discuss the relationships between DDX3 and its related sequences that have been isolated.

  7. Loss of Y-chromosome does not correlate with age at onset of head and neck carcinoma: a case-control study

    Energy Technology Data Exchange (ETDEWEB)

    Silva Veiga, L.C. [Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP (Brazil); Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Bérgamo, N.A. [Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO (Brazil); Reis, P.P. [Departamento de Cirurgia e Ortopedia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP (Brazil); Kowalski, L.P. [Departamento de Cirurgia de Cabeça e Pescoço e Otorrinolaringologia, Hospital A.C. Camargo, São Paulo, SP (Brazil); Rogatto, S.R. [Laboratório NeoGene, Departamento de Urologia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP (Brazil); Departamento de Pesquisa, Hospital A.C. Camargo,Fundação Antônio Prudente, São Paulo, SP (Brazil)

    2012-01-20

    Loss of Y-chromosome has been correlated with older age in males. Furthermore, current evidence indicates that Y-chromosome loss also occurs in several human tumors, including head and neck carcinomas. However, the association between Y nullisomy and the occurrence of neoplasias in elderly men has not been well established. In the present study, the association between Y-chromosome loss and head and neck carcinomas was evaluated by comparison to cells from peripheral blood lymphocytes and normal mucosa of cancer-free individuals matched for age using dual-color fluorescence in situ hybridization. Twenty-one patients ranging in age from 28 to 68 years were divided into five-year groups for comparison with 16 cancer-free individuals matched for age. The medical records of all patients were examined to obtain clinical and histopathological data. None of the patients had undergone radiotherapy or chemotherapy before surgery. In all groups, the frequency of Y-chromosome loss was higher among patients than among normal reference subjects (P < 0.0001) and was not age-dependent. These data suggest that Y-chromosome loss is a tumor-specific alteration not associated with advanced age in head and neck carcinomas.

  8. Staining and embedding of human chromosomes for 3-d serial block-face scanning electron microscopy.

    Science.gov (United States)

    Yusuf, Mohammed; Chen, Bo; Hashimoto, Teruo; Estandarte, Ana Katrina; Thompson, George; Robinson, Ian

    2014-12-01

    The high-order structure of human chromosomes is an important biological question that is still under investigation. Studies have been done on imaging human mitotic chromosomes using mostly 2-D microscopy methods. To image micron-sized human chromosomes in 3-D, we developed a procedure for preparing samples for serial block-face scanning electron microscopy (SBFSEM). Polyamine chromosomes are first separated using a simple filtration method and then stained with heavy metal. We show that the DNA-specific platinum blue provides higher contrast than osmium tetroxide. A two-step procedure for embedding chromosomes in resin is then used to concentrate the chromosome samples. After stacking the SBFSEM images, a familiar X-shaped chromosome was observed in 3-D.

  9. Identification of Y chromosome genetic variations in Chinese indigenous horse breeds.

    Science.gov (United States)

    Ling, Yinghui; Ma, Yuehui; Guan, Weijun; Cheng, Yuejiao; Wang, Yanping; Han, Jianlin; Jin, Dapeng; Mang, Lai; Mahmut, Halik

    2010-01-01

    Y chromosome acts as a single nonrecombining unit that is male specific and in effect haploid, thus ensuring the preservation of mutational events as a single haplotype via male lines. In this study, 6 Y chromosome-specific microsatellites (SSR) were tested for the patrilineal genetic variations of 573 male samples from Chinese domestic horse (30 breeds), Przewalski's horse, and donkey. All the 6 loci appeared as a haplotype block in Przewalski's horse and the domestic donkey. There were notable differences, however, at Y chromosome markers between horse and donkey. There were 2 haplotypes of Eca.YA16 in the domestic horse breeds, Haplotype A (Allele A: 156 bp) and Haplotype B (Allele B: 152 bp). Allele A was the common allele among 30 horse breeds, and Allele B was found in 11 horse breeds. This is the first description of a Y chromosome variant for horses. The 2 haplotypes of Y chromosome discovered in the domestic horse breeds in China could be helpful in unveiling their intricate genetic genealogy.

  10. Clinical and cytogenomic studies in a case of infertility associated with a nonmosaic dicentric Y chromosome.

    Science.gov (United States)

    Cui, Y-X; Wang, W-P; Li, T-F; Li, W-W; Wu, Q-Y; Li, N; Zhang, C; Yao, Q; Hu, Y-A; Xia, X-Y

    2015-05-01

    In this study, a short stature male with infertility is reported. Semen analysis and serum concentrations of FSH, LH, T and PRL were estimated. Chromosome analysis was performed on lymphocytes obtained from both the male and his parents. Cytogenomic studies were performed by fluorescent in situ hybridisation and the CytoScan(™)  HD array analysis to detect Y chromosomal rearrangements and copy number mutations. Semen analysis showed severe oligozoospermia. Numerous spermatogenic cells were observed in the semen, and approximately 60% of the cells examined in semen were primary spermatocytes, showing spermatogenic arrest at the primary spermatocyte level. Cytogenomic studies of blood revealed his karyotype which was 46,X,i(Y) (p11.32) (Yqter→Yp11.32::Yp11.32→Yqter).ish (DYZ3++, SRY++, SHOX-). array (PLCXD1→SHOX) ×1,(SRY →GOLGA2P3Y)×2, (DHRSX→ ASMT, SPRY3 →IL9R)×3. The rearrangement Y chromosome is de novo. This is the first case reported with a nonmosaic 46,X, i (Y) (p11.32), which will be useful to estimate the infertility phenotype-molecular karyotype correlation. Haploinsufficiency of short stature homeobox-containing gene is primarily responsible for the short stature. Aberrations in pseudoautosomal region 1 on the rearranged Y chromosome may result in the deficiency of X-Y pairing or recombination, ultimately lead to the spermatogenic failure.

  11. Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16.

    Science.gov (United States)

    Goidts, Violaine; Szamalek, Justyna M; de Jong, Pieter J; Cooper, David N; Chuzhanova, Nadia; Hameister, Horst; Kehrer-Sawatzki, Hildegard

    2005-09-01

    Analyses of chromosomal rearrangements that have occurred during the evolution of the hominoids can reveal much about the mutational mechanisms underlying primate chromosome evolution. We characterized the breakpoints of the pericentric inversion of chimpanzee chromosome 18 (PTR XVI), which is homologous to human chromosome 16 (HSA 16). A conserved 23-kb inverted repeat composed of satellites, LINE and Alu elements was identified near the breakpoints and could have mediated the inversion by bringing the chromosomal arms into close proximity with each other, thereby facilitating intrachromosomal recombination. The exact positions of the breakpoints may then have been determined by local DNA sequence homologies between the inversion breakpoints, including a 22-base pair direct repeat. The similarly located pericentric inversion of gorilla (GGO) chromosome XVI, was studied by FISH and PCR analysis. The p- and q-arm breakpoints of the inversions in PTR XVI and GGO XVI were found to occur at slightly different locations, consistent with their independent origin. Further, FISH studies of the homologous chromosomal regions in macaque and orangutan revealed that the region represented by HSA BAC RP11-696P19, which spans the inversion breakpoint on HSA 16q11-12, was derived from the ancestral primate chromosome homologous to HSA 1. After the divergence of orangutan from the other great apes approximately 12 million years ago (Mya), a duplication of the corresponding region occurred followed by its interchromosomal transposition to the ancestral chromosome 16q. Thus, the most parsimonious interpretation is that the gorilla and chimpanzee homologs exhibit similar but nonidentical derived pericentric inversions, whereas HSA 16 represents the ancestral form among hominoids.

  12. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae.

    OpenAIRE

    Nikolai Windbichler; Philippos Aris Papathanos; Andrea Crisanti

    2008-01-01

    Author Summary A. gambiae mosquitoes are the main vectors of human malaria. The inadequacy of existing control measures for these mosquitoes has prompted research into methods for genetic control. We have genetically engineered A. gambiae mosquitoes to express, during spermatozoa development, an enzyme that selectively cuts a DNA sequence present only on a family of essential genes located on the X chromosome. We found that in heterozygous male mosquitoes, this genetic modification induced co...

  13. Assessment of aneuploidy in human oocytes and preimplantation embryos by chromosome painting

    Energy Technology Data Exchange (ETDEWEB)

    Rougier, N.; Viegas-Pequignot, E.; Plachot, M. [Hospital Necker, Paris (France)] [and others

    1994-09-01

    The poor quality of chromosome preparations often observed after fixation of oocytes and embryos did not usually allow accurate identification of chromosomes involved in non-disjunctions. We, therefore, used chromosome painting to determine the incidence of abnormalities for chromosomes 1 and 7. A total of 50 oocytes inseminated for IVF and showing no signs of fertilization as well as 37 diploid embryos donated for research were fixed according to the Dyban`s technique. Fluorescence in situ hybridization was carried out using whole chromosome painting DNA probes specific for human chromosome 1 and 7. The incidence of aneuploidy was 28%, 10% and 60% for metaphase II, polar body and sperm chromosomes, respectively. The high incidence of aneuploidy observed in sperm prematurely condensed sperm chromosomes is due to the fact that usually far less than 23 sperm chromatids are observed, maybe as a consequence of incomplete chromosome condensation. Thirty seven embryos were analyzed with the same probes. 48% of early embryos were either monosomic 1 or 7 or mosaics comprising blastomeres with 1, 2 or 3 signals. Thus, 8 among the 11 abnormal embryos had hypodiploid cells (25 to 37 chromosomes) indicating either an artefactual loss of chromosomes or a complex anomaly of nuclear division (maltinucleated blastomeres, abnormal migration of chromosomes at anaphase). We therefore calculated a {open_quotes}corrected{close_quotes} incidence of aneuploidy for chromosomes 1 or 7 in early embryos: 18%. 86% of the blastocysts showed mosaicism 2n/3 or 4n as a consequence of the formation of the syncitiotrophoblast. To conclude, chromosome painting is an efficient method to accurately identify chromosomes involved in aneuploidy. This technique should allow us to evaluate the incidence of non-disjunction for all chromosome pairs. Our results confirm the high incidence of chromosome abnormalities occurring as a consequence of meiotic or mitotic non-disjunctions in human oocytes and embryos.

  14. Mapping and ordered cloning of the human X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, C.T.; Nelson, D.L.

    1992-12-01

    Progress is reported on gathering X chromosome specific libraries and integrating those with the library produced in this project. Further studies on understanding Fragile X Syndrome and other hereditary diseases related to the X chromosome are described. (DT)

  15. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence.

    Science.gov (United States)

    D'Aiuto, L; Antonacci, R; Marzella, R; Archidiacono, N; Rocchi, M

    1993-11-01

    We have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed.

  16. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. (Universita di Bari (Italy)); Antonacci, R. (Instituto Anatomia Umana Normale, Modena (Italy))

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  17. Molecular genetic evidence of Y chromosome loss in male patients with hematological disorders

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-jun; SHIN Eun Sim; YU Zhong-xing; LI Shi-bo

    2007-01-01

    Background There has been continuous debate as to whether Y chromosome loss is an age related phenomenon or a cytogenetic marker indicating a malignant change. This study aimed to investigate the frequency of Y chromosome loss in the specific patients in order to determine whether it is an age related phenomena or a cytogenetic marker indicating a malignant change.Methods Five hundred and ninety-two male patients with a median age of 59 years old (22-95 years) were included in this study. These patients were divided into two groups: the study group, including 237 patients who had hematological disorders included myeloproliferative disorder (MPD), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML),chronic myeloid leukemia (CML), multiple myeloma (MM), and lymphoma and the control group including 355 patients with no evidence of hematological disease. Both conventional cytogenetics and fluorescence in situ hybridization using DNA probes specific for the centromere of chromosomes X or Y were performed according to our standard laboratory protocols.Results Twenty-four out of 237 patients with hematological disorders (10.1%) had Y chromosome loss. Of these 24patients, 2 patients had AML (5.0% of all AML patients), 2 patients had CML (5.7% of all CML patients), 2 patients had MPD (8.0% of all MPD patients), 3 patients had MM (10.0% of all MM patients), 5 patients had lymphoma (10.6% of all lymphoma patients) and 10 patients had MDS (16.7% of all MDS patients). Twenty-one out of these 24 patients had a loss of Y chromosome as the sole anomaly and the remaining three had a loss of Y chromosome accompanied with otherstructural changes detected by conventional cytogenetic analysis. Fluorescence in situ hybridization (FISH) analysis confirmed the routine cytogenetic results. All 24 patients had a loss of Y chromosome with a range of 17.5%-98.5% of cells. Two of the patients, one with AML and another with CML, had karyotype and FISH testing done both at the initial

  18. Selection at the Y chromosome of the African buffalo driven by rainfall.

    Directory of Open Access Journals (Sweden)

    Pim van Hooft

    Full Text Available Selection coefficients at the mammalian Y chromosome typically do not deviate strongly from neutrality. Here we show that strong balancing selection, maintaining intermediate frequencies of DNA sequence variants, acts on the Y chromosome in two populations of African buffalo (Syncerus caffer. Significant correlations exist between sequence variant frequencies and annual rainfall in the years before conception, with five- to eightfold frequency changes over short time periods. Annual rainfall variation drives the balancing of sequence variant frequencies, probably by affecting parental condition. We conclude that sequence variants confer improved male reproductive success after either dry or wet years, making the population composition and dynamics very sensitive to climate change. The mammalian Y chromosome, interacting with ecological processes, may affect male reproductive success much more strongly than previously thought.

  19. Pattern of X-Y chromosome pairing in the Taiwan vole, Microtus kikuchii.

    Science.gov (United States)

    Mekada, K; Harada, M; Lin, L K; Koyasu, K; Borodin, P M; Oda, S I

    2001-02-01

    Pairing of X and Y chromosomes at meiotic prophase and the G- and C-banding patterns and nucleolar organizer region (NOR) distribution were analyzed in Microtus kikuchii. M. kikuchii is closely related to M. oeconomus and M. montebelli, karyologically and systematically. The formation of a synaptonemal complex between the X and Y chromosomes at pachytene and end-to-end association at diakinesis--metaphase I are only observed in three species in the genus Microtus; M. kikuchii, M. oeconomus, and M. montebelli. All the other species that have been studied so far have had asynaptic X-Y chromosomes. These data confirm that M. kikuchii, M. oeconomus, and M. montebelli are very closely related, and support the separation of asynaptic and synaptic groups on the phylogenetic tree.

  20. Patterns of association in the human metaphase complement: ring analysis and estimation of associativity of specific chromosome regions.

    Science.gov (United States)

    Rodman, T C; Flehinger, B J; Squire, R D

    1978-02-23

    The pattern of metaphase chromosome association in the human complement was studied by two methods of statistical analysis of interchromosomal distances. Those methods included ring analysis in which a characteristic position of the centromere of each chromosome relative to the center of a two dimensional representation of a metaphase complement was defined, and estimation of the capacity for associativity of each of three regions of each chromosome: the centromere (c) and the ends of each arm (p, q). The following information was obtained: 1. In general, the distance from the center is directly related to chromosome size. 2. The most notable deviation from that size-related progression is displayed by the X chromosomes. The markedly peripheral position of the X is characteristic of both X's of the female and the single X of the male. 3. The relative associativity of each chromosome of the complement is, in general, inversely related to size with an additional preferential capacity of associativity displayed by the acrocentric chromosomes. Analyses of the different inter-regional classes established that the supplementary associativity factor of the acrocentric chromosomes was inherent in their pericentromeric and p-arm regions and excluded the ends of the q arms from participation in that factor. 4. Those analyses demonstrated that the specific morphology or 'geometry' of the acrocentric chromosomes contributes little to their high relative associativity. In addition to the tendency for the c/p regions of the acrocentric chromosomes to associate with each other, presumably because of their common function in nucleolar organization, those regions also displayed a propensity to associate with the distal regions of the arms of other chromosomes. A molecular basis for that propensity other than that of ribosomal DNA is postulated to be that of other fractions of highly reiterated DNA sequences. 5. Analysis of the relative associativities of each of the three regions

  1. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    Science.gov (United States)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  2. Y-Chromosome variation in hominids: intraspecific variation is limited to the polygamous chimpanzee.

    Directory of Open Access Journals (Sweden)

    Gabriele Greve

    Full Text Available BACKGROUND: We have previously demonstrated that the Y-specific ampliconic fertility genes DAZ (deleted in azoospermia and CDY (chromodomain protein Y varied with respect to copy number and position among chimpanzees (Pan troglodytes. In comparison, seven Y-chromosomal lineages of the bonobo (Pan paniscus, the chimpanzee's closest living relative, showed no variation. We extend our earlier comparative investigation to include an analysis of the intraspecific variation of these genes in gorillas (Gorilla gorilla and orangutans (Pongo pygmaeus, and examine the resulting patterns in the light of the species' markedly different social and mating behaviors. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescence in situ hybridization analysis (FISH of DAZ and CDY in 12 Y-chromosomal lineages of western lowland gorilla (G. gorilla gorilla and a single lineage of the eastern lowland gorilla (G. beringei graueri showed no variation among lineages. Similar findings were noted for the 10 Y-chromosomal lineages examined in the Bornean orangutan (Pongo pygmaeus, and 11 Y-chromosomal lineages of the Sumatran orangutan (P. abelii. We validated the contrasting DAZ and CDY patterns using quantitative real-time polymerase chain reaction (qPCR in chimpanzee and bonobo. CONCLUSION/SIGNIFICANCE: High intraspecific variation in copy number and position of the DAZ and CDY genes is seen only in the chimpanzee. We hypothesize that this is best explained by sperm competition that results in the variant DAZ and CDY haplotypes detected in this species. In contrast, bonobos, gorillas and orangutans-species that are not subject to sperm competition-showed no intraspecific variation in DAZ and CDY suggesting that monoandry in gorillas, and preferential female mate choice in bonobos and orangutans, probably permitted the fixation of a single Y variant in each taxon. These data support the notion that the evolutionary history of a primate Y chromosome is not simply encrypted in its DNA

  3. Y-Chromosome Variation in Hominids: Intraspecific Variation Is Limited to the Polygamous Chimpanzee

    Science.gov (United States)

    Greve, Gabriele; Alechine, Evguenia; Pasantes, Juan J.; Hodler, Christine; Rietschel, Wolfram; Robinson, Terence J.; Schempp, Werner

    2011-01-01

    Background We have previously demonstrated that the Y-specific ampliconic fertility genes DAZ (deleted in azoospermia) and CDY (chromodomain protein Y) varied with respect to copy number and position among chimpanzees (Pan troglodytes). In comparison, seven Y-chromosomal lineages of the bonobo (Pan paniscus), the chimpanzee's closest living relative, showed no variation. We extend our earlier comparative investigation to include an analysis of the intraspecific variation of these genes in gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus), and examine the resulting patterns in the light of the species' markedly different social and mating behaviors. Methodology/Principal Findings Fluorescence in situ hybridization analysis (FISH) of DAZ and CDY in 12 Y-chromosomal lineages of western lowland gorilla (G. gorilla gorilla) and a single lineage of the eastern lowland gorilla (G. beringei graueri) showed no variation among lineages. Similar findings were noted for the 10 Y-chromosomal lineages examined in the Bornean orangutan (Pongo pygmaeus), and 11 Y-chromosomal lineages of the Sumatran orangutan (P. abelii). We validated the contrasting DAZ and CDY patterns using quantitative real-time polymerase chain reaction (qPCR) in chimpanzee and bonobo. Conclusion/Significance High intraspecific variation in copy number and position of the DAZ and CDY genes is seen only in the chimpanzee. We hypothesize that this is best explained by sperm competition that results in the variant DAZ and CDY haplotypes detected in this species. In contrast, bonobos, gorillas and orangutans—species that are not subject to sperm competition—showed no intraspecific variation in DAZ and CDY suggesting that monoandry in gorillas, and preferential female mate choice in bonobos and orangutans, probably permitted the fixation of a single Y variant in each taxon. These data support the notion that the evolutionary history of a primate Y chromosome is not simply encrypted in its DNA

  4. Human nucleolus organizers on nonhomologous chromosomes can share the same ribosomal gene variants.

    OpenAIRE

    Krystal, M; D'Eustachio, P; Ruddle, F H; Arnheim, N

    1981-01-01

    The distributions of three human ribosomal gene polymorphisms among individual chromosomes containing nucleolus organizers were analyzed by using mouse--human hybrid cells. Different nucleolus organizers can contain the same variant, suggesting the occurrence of genetic exchanges among ribosomal gene clusters on nonhomologous chromosomes. Such exchanges appear to occur less frequently in mice. This difference is discussed in terms of the nucleolar organization and chromosomal location of ribo...

  5. A global analysis of Y-chromosomal haplotype diversity for 23 STR loci

    OpenAIRE

    Purps, J.; Siegert, S.; Willuweit, S.; Nagy, M.; C. Alves; Salazar, R.; Angustia, S.M.T.; Santos,L.H.; Anslinger, K.; Bayer, B.; Ayub, Q.; Wei, W; Xue, Y.; Tyler-Smith, C; Bafalluy, M.B.

    2014-01-01

    In a worldwide collaborative effort, 19,630 Y-chromosomes were sampled from 129 different\\ud populations in 51 countries. These chromosomes were typed for 23 short-tandem repeat (STR) loci\\ud (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439,\\ud DYS448, DYS456, DYS458, DYS635, GATAH4, DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643)\\ud and using the PowerPlex Y23 System (PPY23, Promega Corporation, Madison, WI). Locus-specific allelic\\ud spectra of...

  6. Chromosomal localization of the gonadotropin-releasing hormone receptor gene to human chromosome 4q13. 1-q21. 1 and mouse chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.B.; Dushkin, H.; Beier, D.R.; Chin, W.W. (Harvard Medical School, Boston, MA (United States)); Altherr, M.R. (Los Alamos National Lab., NM (United States))

    1994-04-01

    The gonadotropin-releasing hormone receptor (GRHR) is a G-protein-coupled receptor on the cell surface of pituitary gonadotropes, where it serves to transduce signals from the extracellular ligand, the hypothalamic factor gonadotropin-releasing hormone, and to modulate the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. The authors have localized the GRHR gene to the q13.1-q21.1 region of the human chromosome 4 using mapping panels of human/rodent somatic cell hybrids containing different human chromosomes or different regions of human chromosome 4. Furthermore, using linkage analysis of single-strand conformational polymorphisms, the murine GRHR gene was localized to mouse chromosome 5, linked to the endogenous retroviral marker Pmv-11. This is consistent with the evolutionary conservation of homology between these two regions, as has been previously suggested from comparative mapping of several other loci. The localization of the GRHR gene may be useful in the study of disorders of reproduction. 22 refs., 2 figs.

  7. Systems-level chromosomal parameters represent a suprachromosomal basis for the non-random chromosomal arrangement in human interphase nuclei

    Science.gov (United States)

    Fatakia, Sarosh N.; Mehta, Ishita S.; Rao, Basuthkar J.

    2016-01-01

    Forty-six chromosome territories (CTs) are positioned uniquely in human interphase nuclei, wherein each of their positions can range from the centre of the nucleus to its periphery. A non-empirical basis for their non-random arrangement remains unreported. Here, we derive a suprachromosomal basis of that overall arrangement (which we refer to as a CT constellation), and report a hierarchical nature of the same. Using matrix algebra, we unify intrinsic chromosomal parameters (e.g., chromosomal length, gene density, the number of genes per chromosome), to derive an extrinsic effective gene density matrix, the hierarchy of which is dominated largely by extrinsic mathematical coupling of HSA19, followed by HSA17 (human chromosome 19 and 17, both preferentially interior CTs) with all CTs. We corroborate predicted constellations and effective gene density hierarchy with published reports from fluorescent in situ hybridization based microscopy and Hi-C techniques, and delineate analogous hierarchy in disparate vertebrates. Our theory accurately predicts CTs localised to the nuclear interior, which interestingly share conserved synteny with HSA19 and/or HSA17. Finally, the effective gene density hierarchy dictates how permutations among CT position represents the plasticity within its constellations, based on which we suggest that a differential mix of coding with noncoding genome modulates the same. PMID:27845379

  8. Y Chromosome Microdeletion Study in Idiopathic Infertile Men in Hamadan Fatemieh Hospital with Multiplex PCR Method

    Directory of Open Access Journals (Sweden)

    K. Etemadi

    2013-01-01

    Full Text Available Introduction & Objective: Male factor is the major cause of infertility in 20% of cases (WHO. There are known etiologies for 70% of cases .However, 30% of infertility cases are of idio-pathic origin. The Y chromosome and micro deletion of the long arm of the Y chromosome (Yq in three regions (AZFa, AZFb ,AZFc are associated with spermatogenic failure and is a major etiology for oligo and azoospermia in infertile men. With the advent of assisted re-productive technology and intracytoplasmic sperm injection, knowledge about the various factors leading to spermatogenic impairment is one of the most important aspects of scien-tific research. Therefore, this study was designed to identify the frequency of microdeletions of Yq in azoospermia and oligozoospermia males refered to Hamadan Fatemieh hospital. Materials & Methods: 56 infertile males with non obstructive oligozoospermia and azoosper-mia and without any cytogenetic abnormality and 44 fertile men with normal cytogenetic were included in this case-control study. Semen analysis was done is each case to determine the spermatogenic statuse. Patients with normal karyotyping were analyzed for determination of microdeleton in Y chromosome in the AZFa, AZFb and AZFC regions with multiplex PCR method. The sequence tagged sites (STS primers sY84, sY86 (AZFa; sY127, sY134 (AZFb; sY254, sY255 (AZFc were used for each case. Results: In this study the rate of mutation were 1.87% in oligo and azoospermia infertile men, 4% in azoosperm and 0% in oligospermia patients. Of 56 cases, 1 case showed deletion in AZF region ,1 deletion was in AZFa(sY84, 2 deletions in AZFb (sY127, sY134, and 1 dele-tion in AZFc (sY254. That had 1 deletion in AZF a (sY84, 2 deletions in AZFb (sY134, sY127 , and 1 deletion in AZFc(sY254. No microdeletions were seen in the SRY gene and no microdeletions were found in men in the control group. Conclusion : Our results emphasize that Y chromosome microdeletion analysis should be car

  9. Construction of a consistent YAC contig for human chromosome region 3p14.1

    NARCIS (Netherlands)

    Bardenheuer, W; Michaelis, S; Lux, A; Vieten, L; Brocker, F; Julicher, K; Willers, C; Siebert, R; Smith, DI; vanderHout, AH; Buys, C; Schutte, J; Opalka, B

    1996-01-01

    Chromosomal deletions and translocations of human chromosome region 3p14 are observed in various human malignancies and suggest the existence of a tumor suppressor gene locus within this region. Tumors most frequently affected by these aberrations are small-cell lung cancer and renal-cell carcinoma.

  10. A role for Aurora C in the chromosomal passenger complex during human preimplantation embryo development

    NARCIS (Netherlands)

    Santos, Margarida Avo; van de Werken, Christine; de Vries, Marieke; Jahr, Holger; Vromans, Martijn J. M.; Laven, Joop S. E.; Fauser, Bart C.; Kops, Geert J.; Lens, Susanne M.; Baart, Esther B.

    2011-01-01

    BACKGROUND: Human embryos generated by IVF demonstrate a high incidence of chromosomal segregation errors during the cleavage divisions. To analyse underlying molecular mechanisms, we investigated the behaviour of the chromosomal passenger complex (CPC) in human oocytes and embryos. This important m

  11. Machine-learning approaches for classifying haplogroup from Y chromosome STR data.

    Directory of Open Access Journals (Sweden)

    Joseph Schlecht

    2008-06-01

    Full Text Available Genetic variation on the non-recombining portion of the Y chromosome contains information about the ancestry of male lineages. Because of their low rate of mutation, single nucleotide polymorphisms (SNPs are the markers of choice for unambiguously classifying Y chromosomes into related sets of lineages known as haplogroups, which tend to show geographic structure in many parts of the world. However, performing the large number of SNP genotyping tests needed to properly infer haplogroup status is expensive and time consuming. A novel alternative for assigning a sampled Y chromosome to a haplogroup is presented here. We show that by applying modern machine-learning algorithms we can infer with high accuracy the proper Y chromosome haplogroup of a sample by scoring a relatively small number of Y-linked short tandem repeats (STRs. Learning is based on a diverse ground-truth data set comprising pairs of SNP test results (haplogroup and corresponding STR scores. We apply several independent machine-learning methods in tandem to learn formal classification functions. The result is an integrated high-throughput analysis system that automatically classifies large numbers of samples into haplogroups in a cost-effective and accurate manner.

  12. Prevalence of Y-chromosome sequences and gonadoblastoma in Turner syndrome

    Directory of Open Access Journals (Sweden)

    Alessandra Bernadete Trovó de Marqui

    2016-03-01

    Full Text Available Abstract Objective: To assess the prevalence of Y-chromosome sequences and gonadoblastoma in patients with Turner syndrome (TS using molecular techniques. Data source: A literature search was performed in Pubmed, limiting the period of time to the years 2005–2014 and using the descriptors: TS and Y sequences (n=26, and TS and Y-chromosome material (n=27. The inclusion criteria were: articles directly related to the subject and published in English or Portuguese. Articles which did not meet these criteria and review articles were excluded. After applying these criteria, 14 papers were left. Data synthesis: The main results regarding the prevalence of Y-chromosome sequences in TS were: (1 about 60% of the studies were conducted by Brazilian researchers; (2 the prevalence varied from 4.6 to 60%; (3 the most frequently investigated genes were SRY, DYZ3 and TSPY; (4 seven studies used only polymerase chain reaction, while in the remaining seven it was associated with FISH. Nine of the 14 studies reported gonadectomy and gonadoblastoma. The highest prevalence of gonadoblastoma (33% was found in two studies. In five out of the nine papers evaluated the prevalence of gonadoblastoma was 10–25%; in two of them it was zero. Conclusions: According to these data, molecular analysis to detect Y-chromosome sequences in TS patients is indicated, regardless of their karyotype. In patients who test positive for these sequences, gonadoblastoma needs to be investigated.

  13. Prevalence of Y-chromosome sequences and gonadoblastoma in Turner syndrome

    Science.gov (United States)

    de Marqui, Alessandra Bernadete Trovó; da Silva-Grecco, Roseane Lopes; Balarin, Marly Aparecida Spadotto

    2016-01-01

    Abstract Objective: To assess the prevalence of Y-chromosome sequences and gonadoblastoma in patients with Turner syndrome (TS) using molecular techniques. Data source: A literature search was performed in Pubmed, limiting the period of time to the years 2005–2014 and using the descriptors: TS and Y sequences (n=26), and TS and Y-chromosome material (n=27). The inclusion criteria were: articles directly related to the subject and published in English or Portuguese. Articles which did not meet these criteria and review articles were excluded. After applying these criteria, 14 papers were left. Data synthesis: The main results regarding the prevalence of Y-chromosome sequences in TS were: (1) about 60% of the studies were conducted by Brazilian researchers; (2) the prevalence varied from 4.6 to 60%; (3) the most frequently investigated genes were SRY, DYZ3 and TSPY; (4) seven studies used only polymerase chain reaction, while in the remaining seven it was associated with FISH. Nine of the 14 studies reported gonadectomy and gonadoblastoma. The highest prevalence of gonadoblastoma (33%) was found in two studies. In five out of the nine papers evaluated the prevalence of gonadoblastoma was 10–25%; in two of them it was zero. Conclusions: According to these data, molecular analysis to detect Y-chromosome sequences in TS patients is indicated, regardless of their karyotype. In patients who test positive for these sequences, gonadoblastoma needs to be investigated. PMID:26525685

  14. Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats

    Science.gov (United States)

    Ballantyne, Kaye N; Ralf, Arwin; Aboukhalid, Rachid; Achakzai, Niaz M; Anjos, Maria J; Ayub, Qasim; Balažic, Jože; Ballantyne, Jack; Ballard, David J; Berger, Burkhard; Bobillo, Cecilia; Bouabdellah, Mehdi; Burri, Helen; Capal, Tomas; Caratti, Stefano; Cárdenas, Jorge; Cartault, François; Carvalho, Elizeu F; Carvalho, Monica; Cheng, Baowen; Coble, Michael D; Comas, David; Corach, Daniel; D'Amato, Maria E; Davison, Sean; de Knijff, Peter; De Ungria, Maria Corazon A; Decorte, Ronny; Dobosz, Tadeusz; Dupuy, Berit M; Elmrghni, Samir; Gliwiński, Mateusz; Gomes, Sara C; Grol, Laurens; Haas, Cordula; Hanson, Erin; Henke, Jürgen; Henke, Lotte; Herrera-Rodríguez, Fabiola; Hill, Carolyn R; Holmlund, Gunilla; Honda, Katsuya; Immel, Uta-Dorothee; Inokuchi, Shota; Jobling, Mark A; Kaddura, Mahmoud; Kim, Jong S; Kim, Soon H; Kim, Wook; King, Turi E; Klausriegler, Eva; Kling, Daniel; Kovačević, Lejla; Kovatsi, Leda; Krajewski, Paweł; Kravchenko, Sergey; Larmuseau, Maarten H D; Lee, Eun Young; Lessig, Ruediger; Livshits, Ludmila A; Marjanović, Damir; Minarik, Marek; Mizuno, Natsuko; Moreira, Helena; Morling, Niels; Mukherjee, Meeta; Munier, Patrick; Nagaraju, Javaregowda; Neuhuber, Franz; Nie, Shengjie; Nilasitsataporn, Premlaphat; Nishi, Takeki; Oh, Hye H; Olofsson, Jill; Onofri, Valerio; Palo, Jukka U; Pamjav, Horolma; Parson, Walther; Petlach, Michal; Phillips, Christopher; Ploski, Rafal; Prasad, Samayamantri P R; Primorac, Dragan; Purnomo, Gludhug A; Purps, Josephine; Rangel-Villalobos, Hector; Rębała, Krzysztof; Rerkamnuaychoke, Budsaba; Gonzalez, Danel Rey; Robino, Carlo; Roewer, Lutz; Rosa, Alexandra; Sajantila, Antti; Sala, Andrea; Salvador, Jazelyn M; Sanz, Paula; Schmitt, Cornelia; Sharma, Anil K; Silva, Dayse A; Shin, Kyoung-Jin; Sijen, Titia; Sirker, Miriam; Siváková, Daniela; Škaro, Vedrana; Solano-Matamoros, Carlos; Souto, Luis; Stenzl, Vlastimil; Sudoyo, Herawati; Syndercombe-Court, Denise; Tagliabracci, Adriano; Taylor, Duncan; Tillmar, Andreas; Tsybovsky, Iosif S; Tyler-Smith, Chris; van der Gaag, Kristiaan J; Vanek, Daniel; Völgyi, Antónia; Ward, Denise; Willemse, Patricia; Yap, Eric PH; Yong, Rita YY; Pajnič, Irena Zupanič; Kayser, Manfred

    2014-01-01

    Relevant for various areas of human genetics, Y-chromosomal short tandem repeats (Y-STRs) are commonly used for testing close paternal relationships among individuals and populations, and for male lineage identification. However, even the widely used 17-loci Yfiler set cannot resolve individuals and populations completely. Here, 52 centers generated quality-controlled data of 13 rapidly mutating (RM) Y-STRs in 14,644 related and unrelated males from 111 worldwide populations. Strikingly, >99% of the 12,272 unrelated males were completely individualized. Haplotype diversity was extremely high (global: 0.9999985, regional: 0.99836–0.9999988). Haplotype sharing between populations was almost absent except for six (0.05%) of the 12,156 haplotypes. Haplotype sharing within populations was generally rare (0.8% nonunique haplotypes), significantly lower in urban (0.9%) than rural (2.1%) and highest in endogamous groups (14.3%). Analysis of molecular variance revealed 99.98% of variation within populations, 0.018% among populations within groups, and 0.002% among groups. Of the 2,372 newly and 156 previously typed male relative pairs, 29% were differentiated including 27% of the 2,378 father–son pairs. Relative to Yfiler, haplotype diversity was increased in 86% of the populations tested and overall male relative differentiation was raised by 23.5%. Our study demonstrates the value of RM Y-STRs in identifying and separating unrelated and related males and provides a reference database. PMID:24917567

  15. CHARACTERIZATION AND CHROMOSOMAL ASSIGNMENT OF YEAST ARTIFICIAL CHROMOSOMES CONTAINING HUMAN 3P13-P21-SPECIFIC SEQUENCE-TAGGED SITES

    NARCIS (Netherlands)

    MICHAELIS, SC; BARDENHEUER, W; LUX, A; SCHRAMM, A; GOCKEL, A; SIEBERT, R; WILLERS, C; SCHMIDTKE, K; TODT, B; VANDERHOUT, AH; BUYS, CHCM; HEPPELLPARTON, AC; RABBITTS, PH; UNGAR, S; SMITH, D; LEPASLIER, D; COHEN, D; OPALKA, B; SCHUTTE, J

    1995-01-01

    Human chromosomal region 3p12-p23 is proposed to harbor at least three tumor suppressor genes involved in the development of lung cancer, renal cell carcinoma, and other neoplasias. In order to identify one of these genes we defined sequence tagged sites (STSs) specific for 3p13-p24.2 by analyzing a

  16. Construction of human artificial chromosome vectors by recombineering.

    Science.gov (United States)

    Kotzamanis, George; Cheung, Wing; Abdulrazzak, Hassan; Perez-Luz, Sara; Howe, Steven; Cooke, Howard; Huxley, Clare

    2005-05-23

    Human artificial chromosomes (HACs) can be formed de novo by transfection of large fragments of cloned alphoid DNA into human HT1080 cells in tissue culture. In order to generate HACs carrying a gene of interest, one can either co-transfect the alphoid DNA and the gene of interest, or one can clone both into a single vector prior to transfection. Here we describe linking approximately 70 kb of alphoid DNA onto a 156-kb BAC carrying the human HPRT gene using Red homologous recombination in the EL350 Escherichia coli host [Lee et al., Genomics 73 (2001) 56-65]. A selectable marker and EGFP marker were then added by loxP/Cre recombination using the arabinose inducible cre gene in the EL350 bacteria. The final construct generates minichromosomes in HT1080 cells and the HPRT gene is expressed. The retrofitting vector can be used to add the approximately 70 kb of alphoid DNA to any BAC carrying a gene of interest to generate a HAC vector. The method can also be used to link any unrelated BAC or PAC insert onto another BAC clone. The EL350 bacteria are an excellent host for building up complex vectors by a combination of homologous and loxP/Cre recombination.

  17. A specific insertion of a solo-LTR characterizes the Y-chromosome of Bryonia dioica (Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Renner Susanne S

    2010-06-01

    Full Text Available Abstract Background Relatively few species of flowering plants are dioecious and even fewer are known to have sex chromosomes. Current theory posits that homomorphic sex chromosomes, such as found in Bryonia dioica (Cucurbitaceae, offer insight into the early stages in the evolution of sex chromosomes from autosomes. Little is known about these early steps, but an accumulation of transposable element sequences has been observed on the Y-chromosomes of some species with heteromorphic sex chromosomes. Recombination, by which transposable elements are removed, is suppressed on at least part of the emerging Y-chromosome, and this may explain the correlation between the emergence of sex chromosomes and transposable element enrichment. Findings We sequenced 2321 bp of the Y-chromosome in Bryonia dioica that flank a male-linked marker, BdY1, reported previously. Within this region, which should be suppressed for recombination, we observed a solo-LTR nested in a Copia-like transposable element. We also found other, presumably paralogous, solo-LTRs in a consensus sequence of the underlying Copia-like transposable element. Conclusions Given that solo-LTRs arise via recombination events, it is noteworthy that we find one in a genomic region where recombination should be suppressed. Although the solo-LTR could have arisen before recombination was suppressed, creating the male-linked marker BdY1, our previous study on B. dioica suggested that BdY1 may not lie in the recombination-suppressed region of the Y-chromosome in all populations. Presence of a solo-LTR near BdY1 therefore fits with the observed correlation between retrotransposon accumulation and the suppression of recombination early in the evolution of sex chromosomes. These findings further suggest that the homomorphic sex chromosomes of B. dioica, the first organism for which genetic XY sex-determination was inferred, are evolutionarily young and offer reference information for comparative studies

  18. Integration sites of Epstein-Barr virus genome on chromosomes of human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Wuu, K.D.; Chen, Y.J.; Wang-Wuu, S. [Institute of Genetics, Taipei (Taiwan, Province of China)

    1994-09-01

    Epstein-Barr virus (EBV) is the pathogen of infectious mononucleosis. The viral genome is present in more than 95% of the African cases of Burkitt lymphoma and it is usually maintained in episomal form in the tumor cells. Viral integration has been described only for Nanalwa which is a Burkitt lymphoma cell line lacking episomes. In order to examine the role of EBV in the immortalization of human Blymphocytes, we investigated whether the EBV integration into the human genome is essential. If the integration does occur, we would like to know whether the integration is randomly distributed or whether the viral DNA integrates preferentially at certain sites. Fourteen in vitro immortalized human lymphoblastoid cell lines (LCLs) were examined by fluorescence in situ hybridization (FISH) with a biotinylated EBV BamHI w DNA fragment as probe. The episomal form of EBV DNA was found in all cells of these cell lines, while only about 65% of the cells have the integrated viral DNA. This might suggest that integration is not a pre-requisite for cell immortalization. Although all chromosomes, except Y, have been found with integrated viral genome, chromsomes 1 and 5 are the most frequent EBV DNA carrier (p<0.05). Nine chromosome bands, namely, 1p31, 1q31, 2q32, 3q13, 3q26, 5q14, 6q24, 7q31 and 12q21, are preferential targets for EBV integration (p<0.001). Eighty percent of the total 938 EBV hybridization signals were found to be at G-band-positive area. This suggests that the mechanism of EBV integration might be different from that of the retroviruses, which specifically integrate to G-band-negative areas. Thus, we conclude that the integration of EBV to host genome is non-random and it may have something to do with the structure of chromosome and DNA sequences.

  19. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Stimpson

    2010-08-01

    Full Text Available Genome rearrangement often produces chromosomes with two centromeres (dicentrics that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.

  20. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes.

    Science.gov (United States)

    Stimpson, Kaitlin M; Song, Ihn Young; Jauch, Anna; Holtgreve-Grez, Heidi; Hayden, Karen E; Bridger, Joanna M; Sullivan, Beth A

    2010-08-12

    Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.

  1. Human ring chromosomes and small supernumerary marker chromosomes-do they have telomeres?

    Science.gov (United States)

    Guilherme, Roberta Santos; Klein, Elisabeth; Venner, Claudia; Hamid, Ahmed B; Bhatt, Samarth; Melaragno, Maria Isabel; Volleth, Marianne; Polityko, Anna; Kulpanovich, Anna; Kosyakova, Nadezda; Liehr, Thomas

    2012-10-01

    Ring chromosomes and small supernumerary marker chromosomes (sSMC) are enigmatic types of derivative chromosomes, in which the telomeres are thought to play a crucial role in their formation and stabilization. Considering that there are only a few studies that evaluate the presence of telomeric sequences in ring chromosomes and on sSMC, here, we analyzed 14 ring chromosomes and 29 sSMC for the presence of telomeric sequences through fluorescence in situ hybridization (FISH). The results showed that ring chromosomes can actually fall into two groups: the ones with or without telomeres. Additionally, telomeric signals were detectable at both ends of centric and neocentric sSMC with inverted duplication shape, as well as in complex sSMC. Apart from that, generally both ring- and centric minute-shaped sSMC did not present telomeric sequences neither detectable by FISH nor by a second protein-directed immunohistochemical approach. However, the fact that telomeres are absent does not automatically mean that the sSMC has a ring shape, as often deduced in the previous literature. Overall, the results obtained by FISH studies directed against telomeres need to be checked carefully by other approaches.

  2. Chromosomal mapping of microsatellite repeats in the rock bream fish Oplegnathus fasciatus, with emphasis of their distribution in the neo-Y chromosome.

    Science.gov (United States)

    Xu, Dongdong; Lou, Bao; Bertollo, Luiz Antonio Carlos; Cioffi, Marcelo de Bello

    2013-03-19

    Despite the theoretical and experimental progress, our understanding on sex chromosome differentiation is still diagrammatic. The accumulation of repetitive DNA sequences is believed to occur in early stages of such differentiation. As fish species present a wide range of sex chromosome systems they are excellent models to examine the differentiation of these chromosomes. In the present study, the chromosomal distribution of 9 mono-, di- and tri-nucleotide microsatellites were analyzed using fluorescence in situ hybrization (FISH) in rock bream fish (Oplegnathus fasciatus), which is characterized by an X1X2Y sex chromosome system. Generally, the males and females exhibited the same autosomal pattern of distribution for a specific microsatellite probe. The male specific Y chromosome displays a specific amount of distinct microsatellites repeats along both arms. However, the accumulation of these repetitive sequences was not accompanied by a huge heterochromatinization process. The present data provide new insights into the chromosomal constitution of the multiple sex chromosomes and allow further investigations on the true role of the microsatellite repeats in the differentiation process of this sex system.

  3. Haplotype data for 23 Y-chromosome markers in four U.S. population groups.

    Science.gov (United States)

    Coble, Michael D; Hill, Carolyn R; Butler, John M

    2013-05-01

    The PowerPlex Y23 kit contains 23 Y-chromosomal loci including all 17 of the markers in the Yfiler Y-STR kit plus six additional markers: DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643. We have typed 1032 unrelated population samples from four self-declared US groups: African Americans, Asians, Hispanics, and Western European Caucasians. An analysis of the population genetic parameters and the improvement of adding additional Y-STR markers to the dataset are described.

  4. A 6. 5-Mb yeast artificial chromosome contig incorporating 33 DNA markers on the human X chromosome at Xq22

    Energy Technology Data Exchange (ETDEWEB)

    Vetrie, D.; Kendall, E.; Coffey, A.; Hassock, S.; Collins, J.; Todd, C.; Bobrow, M.; Bentley, D.R. (Paediatric Research Unit, London (United Kingdom)); Lehrach, H. (Imperial Cancer Research Fund, London (United Kingdom)); Harris, A. (John Radcliffe Hospital, Oxford (United Kingdom))

    1994-01-01

    The Xq22 region of the human X chromosome contains genes for a number of inherited disorders. Sixty-nine yeast artificial chromosome clones have been isolated and assembled into a 6.5-Mb contig that contains 33 DNA markers localized to this region. This contig extends distally from DXS366 to beyond DXS87 and includes the genes involved in X-linked agammaglobulinemia (btk), Fabry disease (GLA), and Pelizaeus-Merzbacher disease (PLP). The order of markers in this contig is consistent with the known genetic and physical mapping information of Xq22. This cloned material provides a source from which to isolate other genes located in this part of the X chromosome. 45 refs., 2 figs., 2 tabs.

  5. The origin of the extra Y chromosome in males with a 47,XYY karyotype.

    Science.gov (United States)

    Robinson, D O; Jacobs, P A

    1999-11-01

    The presence of an extra Y chromosome in males is a relatively common occurrence, the 47,XYY karyotype being found in approximately 1 in 1000 male births. The error of disjunction must occur either during paternal meiosis II or as a post-zygotic mitotic error, both of which are rare events for other chromosomes. It is therefore of interest to determine when errors of Y chromosome disjunction occur. It is possible to distinguish between the different mechanisms of non-disjunction by analysing DNA polymorphisms at the distal tip of the Xp/Yp pseudoautosomal region in 47,XYY males, their parents and in some cases paternal grandparents. A cohort of 28 non-mosaic 47,XYY males was analysed. The results show that there are at least two mechanisms causing non-disjunction of the Y chromosome. In 16 of the 19 cases from which parents were available, the extra Y was generated by non-disjunction at meiosis II after a normal chiasmate meiosis I. Three cases were due to either a post-zygotic mitotic error or non-disjunction at meiosis II after a nullichiasmate meiosis I. Of the nine cases with no parental DNA available, at least four were due to meiosis II non-disjunction following a normal chiasmate meiosis I.

  6. The relationship between surname frequency and Y chromosome variation in Spain

    Science.gov (United States)

    Martinez-Cadenas, Conrado; Blanco-Verea, Alejandro; Hernando, Barbara; Busby, George BJ; Brion, Maria; Carracedo, Angel; Salas, Antonio; Capelli, Cristian

    2016-01-01

    In most societies, surnames are passed down from fathers to sons, just like the Y chromosome. It follows that, theoretically, men sharing the same surnames would also be expected to share related Y chromosomes. Previous investigations have explored such relationships, but so far, the only detailed studies that have been conducted are on samples from the British Isles. In order to provide additional insights into the correlation between surnames and Y chromosomes, we focused on the Spanish population by analysing Y chromosomes from 2121 male volunteers representing 37 surnames. The results suggest that the degree of coancestry within Spanish surnames is highly dependent on surname frequency, in overall agreement with British but not Irish surname studies. Furthermore, a reanalysis of comparative data for all three populations showed that Irish surnames have much greater and older surname descent clusters than Spanish and British ones, suggesting that Irish surnames may have considerably earlier origins than Spanish or British ones. Overall, despite closer geographical ties between Ireland and Britain, our analysis points to substantial similarities in surname origin and development between Britain and Spain, while possibly hinting at unique demographic or social events shaping Irish surname foundation and development. PMID:25898922

  7. The scale and nature of Viking settlement in Ireland from Y-chromosome admixture analysis.

    Science.gov (United States)

    McEvoy, Brian; Brady, Claire; Moore, Laoise T; Bradley, Daniel G

    2006-12-01

    The Vikings (or Norse) played a prominent role in Irish history but, despite this, their genetic legacy in Ireland, which may provide insights into the nature and scale of their immigration, is largely unexplored. Irish surnames, some of which are thought to have Norse roots, are paternally inherited in a similar manner to Y-chromosomes. The correspondence of Scandinavian patrilineal ancestry in a cohort of Irish men bearing surnames of putative Norse origin was examined using both slow mutating unique event polymorphisms and relatively rapidly changing short tandem repeat Y-chromosome markers. Irish and Scandinavian admixture proportions were explored for both systems using six different admixture estimators, allowing a parallel investigation of the impact of method and marker type in Y-chromosome admixture analysis. Admixture proportion estimates in the putative Norse surname group were highly consistent and detected little trace of Scandinavian ancestry. In addition, there is scant evidence of Scandinavian Y-chromosome introgression in a general Irish population sample. Although conclusions are largely dependent on the accurate identification of Norse surnames, the findings are consistent with a relatively small number of Norse settlers (and descendents) migrating to Ireland during the Viking period (ca. AD 800-1200) suggesting that Norse colonial settlements might have been largely composed of indigenous Irish. This observation adds to previous genetic studies that point to a flexible Viking settlement approach across North Atlantic Europe.

  8. Transmission of the Y chromosome microdeletion to a baby boy conceived after intracytoplasmic sperm injection

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Subfertility can be caused by acquired or genetic factors. Y chromosome microdeletion is one of the genetic factors associating with male infertility.1 Azoospermia factors (AZFa, AZFb and AZFc) have been mapped to different subregions in Yq11.2 So far, two gene families, RNA-binding motif (RBM) and deleted in azoospermia (DAZ) from interval 6, were proposed as candidate spermatogenesis genes for AZF.3,4 Recent studies demonstrated that microdeletions were detected at a frequency of 5% to 18% in the AZF region of oligospermic and azoospermic men.5-7 With the development of assisted reproductive technologies, particularly intracytoplasmic sperm injection (ICSI), these men can now father a child and the genetic abnormalities in defective spermatozoa could be transmitted to future offspring. To examine the possible transmission of the Y-chromosome microdeletion to the offspring via ICSI treatment, we performed both cytogenetic and molecular analyses of the Y chromosome on both an infertile patient with Y chromosome microdeletion and his offspring.

  9. Topology, structures, and energy landscapes of human chromosomes.

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter G

    2015-05-12

    Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward "ideal" chromosome structures that represent hierarchical fibrils of fibrils.

  10. A simple filtration technique for obtaining purified human chromosomes in suspension.

    Science.gov (United States)

    Yusuf, Mohammed; Parmar, Neha; Bhella, Gurdeep K; Robinson, Ian K

    2014-05-01

    Here we present a simple method for cleaning polyamine human mitotic chromosomes in solution. This was achieved by filtering intact (unburst) nuclei along with both large and small cytoplasmic debris through a series of different pore sized filters. Pure human chromosomes were recovered using a simple reverse filtration step. Fluorescence microscopy was used to validate the chromosome suspension after each filtration step. This reverse filtration technique is an improvement in both procedure time and chromosome recovery compared to currently used post-purification methods. Chromosomes purified by our method could be used for many applications, such as structural studies using microfluidics and high resolution imaging or generation of chromosome paints and sequencing after flow cytometry.

  11. Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells.

    Directory of Open Access Journals (Sweden)

    Iris Müller

    Full Text Available Despite the distinctive structure of mitotic chromosomes, it has not been possible to visualise individual chromosomes in living interphase cells, where chromosomes spend over 90% of their time. Studies of interphase chromosome structure and dynamics use fluorescence in-situ hybridisation (FISH on fixed cells, which potentially damages structure and loses dynamic information. We have developed a new methodology, involving photoactivation of labelled histone H3 at mitosis, to visualise individual and specific human chromosomes in living interphase cells. Our data revealed bulk chromosome volume and morphology are established rapidly after mitosis, changing only incrementally after the first hour of G1. This contrasted with the behaviour of specific loci on labelled chromosomes, which showed more progressive reorganisation, and revealed that "looping out" of chromatin from chromosome territories is a dynamic state. We measured considerable heterogeneity in chromosome decondensation, even between sister chromatids, which may reflect local structural impediments to decondensation and could potentially amplify transcriptional noise. Chromosome structure showed tremendous resistance to inhibitors of transcription, histone deacetylation and chromatin remodelling. Together, these data indicate steric constraints determine structure, rather than innate chromosome architecture or function-driven anchoring, with interphase chromatin organisation governed primarily by opposition between needs for decondensation and the space available for this to happen.

  12. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Sato

    2017-01-01

    Full Text Available Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV. Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  13. A limited number of Y chromosome lineages is present in North American Holsteins.

    Science.gov (United States)

    Yue, Xiang-Peng; Dechow, Chad; Liu, Wan-Sheng

    2015-04-01

    Holsteins are the most numerous dairy cattle breed in North America and the breed has undergone intensive selection for improving milk production and conformation. Theoretically, this intensive selection could lead to a reduction of the effective population size and reduced genetic diversity. The objective of this study was to investigate the effective population size of the Holstein Y chromosome and the effects of limited Y chromosome lineages on male reproduction and the future of the breed. Paternal pedigree information of 62,897 Holstein bulls born between 1950 and 2013 in North America and 220,872 bulls evaluated by multiple-trait across-country genetic evaluations of Interbull (Uppsala, Sweden) were collected and analyzed. The results indicated that the number of Y chromosome lineages in Holsteins has undergone a dramatic decrease during the past 50 years because of artificial selection and the application of artificial insemination (AI) technology. All current Holstein AI bulls in North America are the descendants of only 2 ancestors (Hulleman and Neptune H) born in 1880. These 2 ancestral Y-lineages are continued through 3 dominant pedigrees from the 1960s; namely, Pawnee Farm Arlinda Chief, Round Oak Rag Apple Elevation, and Penstate Ivanhoe Star, with a contribution of 48.78, 51.06, and 0.16% to the Holstein bull population in the 2010s, respectively. The Y-lineage of Penstate Ivanhoe Star is almost eliminated from the breed. The genetic variations in the 2 ancestral Y-lineages were evaluated among 257 bulls by determining the copy number variations (CNV) of 3 Y-linked gene families: PRAMEY, HSFY, and ZNF280BY, which are spread along the majority (95%) of the bovine Y chromosome male-specific region (MSY). No significant difference was found between the 2 ancestral Y-lineages, although large CNV were observed within each lineage. This study suggests minimal genetic diversity on the Y chromosome in Holsteins and provides a starting point for investigating

  14. Phenotypic variation within European carriers of the Y-chromosomal gr/gr deletion is independent of Y-chromosomal background

    DEFF Research Database (Denmark)

    Krausz, C; Giachini, C; Xue, Y;

    2008-01-01

    BACKGROUND: Previous studies have compared sperm phenotypes between men with partial deletions within the AZFc region of the Y chromosome and non-carriers, with variable results. In this study, a separate question was investigated, the basis of the variation in sperm phenotype within gr/gr deletion...... carriers, which ranges from normozoospermia to azoospermia. Differences in the genes removed by independent gr/gr deletions, the occurrence of subsequent duplications or the presence of linked modifying variants elsewhere on the chromosome have been suggested as possible causal factors. This study set out...... to test these possibilities in a large sample of gr/gr deletion carriers with known phenotypes spanning the complete range. RESULTS: In total, 169 men diagnosed with gr/gr deletions from six centres in Europe and one in Australia were studied. The DAZ and CDY1 copies retained, the presence or absence...

  15. X chromosome inactivation is initiated in human preimplantation embryos

    NARCIS (Netherlands)

    van den Berg, Ilse M; Laven, Joop S E; Stevens, Mary; Jonkers, Iris; Galjaard, Robert-Jan; Gribnau, Joost; van Doorninck, J Hikke

    2009-01-01

    X chromosome inactivation (XCI) is the mammalian mechanism that compensates for the difference in gene dosage between XX females and XY males. Genetic and epigenetic regulatory mechanisms induce transcriptional silencing of one X chromosome in female cells. In mouse embryos, XCI is initiated at the

  16. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21

    DEFF Research Database (Denmark)

    McGinniss, M J; Kazazian, H H; Stetten, G;

    1992-01-01

    We studied the mechanism of ring chromosome 21 (r(21)) formation in 13 patients (11 unique r(21)s), consisting of 7 from five families with familial r(21) and 6 with de novo r(21). The copy number of chromosome 21 sequences in the rings of these patients was determined by quantitative dosage......), resulting in deletion of varying amounts of 21q22.1 to 21qter. The data from one individual who had a Down syndrome phenotype were consistent with asymmetric breakage and reunion of 21q sequences from an intermediate isochromosome or Robertsonian translocation chromosome as reported by Wong et al. Another...... patient, who also exhibited Down syndrome, showed evidence of a third mechanism of ring formation. The likely initial event was breakage and reunion of the short and long arms, resulting in a small r(21), followed by a sister-chromatid exchange resulting in a double-sized and symmetrically dicentric r(21...

  17. Deficit of mito-nuclear genes on the human X chromosome predates sex chromosome formation

    OpenAIRE

    Dean, R; Zimmer, F.; Mank, J E

    2015-01-01

    Two taxa studied to date, the therian mammals and Caenorhaditis elegans, display under-representations of mito-nuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions ov...

  18. Independent degeneration of W and Y sex chromosomes in frog Rana rugosa.

    Science.gov (United States)

    Miura, Ikuo; Ohtani, Hiromi; Ogata, Mitsuaki

    2012-01-01

    The frog Rana rugosa uniquely possesses two different sex-determining systems of XX/XY and ZZ/ZW, separately in the geographic populations. The sex chromosomes of both types share the same origin at chromosome 7, and the structural differences between X and Y or Z and W were evolved through two inversions. In order to ascertain the mechanisms of degeneration of W and Y chromosomes, we gynogenetically produced homozygous diploids WW and YY and examined their viability. Tadpoles from geographic group N (W(N)W(N)) containing three populations died of edema at an early developmental stage within 10 days after hatching, while tadpoles from the geographic group K (W(K)W(K)) that contained two populations died of underdeveloped growth at a much later stage, 40-50 days after fertilization. On the contrary, W(N)W(K) and W(K)W(N) hybrid embryos were viable, successfully passed the two lethal stages, and survived till the attainment of adulthood. The observed survival implies that the lethal genes of the W chromosomes are not shared by the two groups and thus demonstrates their independent degeneration histories between the local groups. In sharp contrast, a sex-linked gene of androgen receptor gene (AR) from the W chromosome was down-regulated in expression in both the groups, suggesting that inactivation of the W-AR allele preceded divergence of the two groups and appearance of the lethal genes. Besides, the YY embryos died of cardiac edema immediately after hatching. The symptom of lethality and the stage of developmental arrest differed from those for either of WW lethal embryos. We therefore conclude that the W and Y chromosomes involve no evolutionary common scenario for degeneration.

  19. A new region of conservation is defined between human and mouse X chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Dinulos, M.B.; Disteche, C.M. [Univ. of Washington, Seattle, WA (United States); Bassi, M.T. [Univ. of Siena (Italy)] [and others

    1996-07-01

    Comparative mapping of the X chromosome in eutherian mammals have revealed distinct regions of conservation as well as evolutionary rearrangements between human and mouse. Recently, we and others mapped the murine homologue of CLCN4 (Chloride channel 4) to band F4 of the X chromosome in Mus spretus but to chromosome 7 in laboratory strains. We now report the mapping of the murine homologues of APXL (Apical protein Xenopus laevis-like) and OA1 (Ocular albinism type I), two genes that are located on the human X chromosome at band p22.3 and in close proximity to CLCN4. Interestingly, Oa1 and Apxl map to bands F2-F3 in both M. spretus and the laboratory strain C57BL/6J, defining a new rearrangement between human and mouse X chromosomes. 17 refs., 2 figs., 1 tab.

  20. Genetic polymorphisms for 17 Y-chromosomal STR haplotypes in Jammu and Kashmir Saraswat Brahmin population.

    Science.gov (United States)

    Yadav, Bhuvnesh; Raina, Anupuma; Dogra, Tirath Das

    2010-09-01

    In this study 17 Y-chromosomal STRs (including DYS19, DYS389I, DS389II, DYS390, DYS391, DYS392, DYS393, DYS385a/b, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635 and Y GATA H4) were analysed using blood samples of 122 unrelated male individuals belonging to Saraswat Brahmin community from Jammu (ID YP000599) and Kashmir (ID YP000600) region of J&K state of India. The allelic frequency distribution and haplotype diversity of 17 Y-chromosomal STR for both the populations were calculated. In the Kashmiri Saraswat group, a total of 109 haplotypes were identified in 122 individuals, of these haplotypes, 101 were found only once. The gene diversity values of STR loci ranged from 0.4813 (DYS391) to 0.8645 (DYS385a/b) for Jammu & Kashmiri Saraswat Brahmins.

  1. Separation of Y-chromosomal haplotypes from male DNA mixtures via multiplex haplotype-specific extraction.

    Science.gov (United States)

    Rothe, Jessica; Nagy, Marion

    2015-11-01

    In forensic analysis, the interpretation of DNA mixtures is the subject of ongoing debate and requires expertise knowledge. Haplotype-specific extraction (HSE) is an alternative method that enables the separation of large chromosome fragments or haplotypes by using magnetic beads in conjunction with allele-specific probes. HSE thus allows physical separation of the components of a DNA mixture. Here, we present the first multiplex HSE separation of a Y-chromosomal haplotype consisting of six Yfiler short tandem repeat markers from a mixture of male DNA.

  2. European gene mapping project (EUROGEM) : Breakpoint panels for human chromosomes based on the CEPH reference families

    NARCIS (Netherlands)

    Attwood, J; Bryant, SP; Bains, R; Povey, R; Povey, S; Rebello, M; Kapsetaki, M; Moschonas, NK; Grzeschik, KH; Otto, M; Dixon, M; Sudworth, HE; Kooy, RF; Wright, A; Teague, P; Terrenato, L; Vergnaud, G; Monfouilloux, S; Weissenbach, J; Alibert, O; Dib, C; Faure, S; Bakker, E; Pearson, NM; Vossen, RHAM; Gal, A; MuellerMyhsok, B; Cann, HM; Spurr, NK

    1996-01-01

    Meiotic breakpoint panels for human chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17; 18, 20 and X were constructed from genotypes from the CEPH reference families. Each recombinant chromosome included has a breakpoint well-supported with reference to defined quantitative criteria. The panels

  3. Report of the Second International Workshop on Human Chromosome 5 Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.A.; Neuman, W.L. [Chicago Univ., IL (United States); McPherson, J.; Wasmuth, J. [California Univ., Irvine, CA (United States). Dept. of Biological Chemistry; Camper, S. [Michigan Univ., Ann Arbor, MI (United States). Medical School; Plaetke, R. [Eceles Inst. of Human Genetics, Salt Lake City, UT (United States). Dept. of Human Genetics; Williamson, R. [St. Mary`s Hospital Medical School, London (United Kingdom). Dept. of Biochemistry and Molecular Genetics

    1993-12-31

    This report describes the accomplishments of the Second International Workshop on Human Chromosome 5 as was held May 11--13,1992 at the University of Chicago. Included in the report are abstract of individual presentations and a consensus map of the chromosome.

  4. Replication Banding Patterns in Human Chromosomes Detected Using 5-ethynyl-2'-deoxyuridine Incorporation.

    Science.gov (United States)

    Hoshi, Osamu; Ushiki, Tatsuo

    2011-10-26

    A novel technique using the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into replicating DNA is described for the analysis of replicating banding patterns of human metaphase chromosomes. Human lymphocytes were synchronized with excess thymidine and treated with EdU during the late S phase of the cell cycle. The incorporated EdU was then detected in metaphase chromosomes using Alexa Fluor® 488 azides, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acetylene group of EdU. Chromosomes with incorporated EdU showed a banding pattern similar to G-banding of normal human chromosomes. Imaging by atomic force microscopy (AFM) in liquid conditions showed that the structure of the chromosomes was well preserved even after EdU treatment. Comparison between fluorescence microscopy and AFM images of the same chromosome 1 indicated the presence of ridges and grooves in the chromatid arm, features that have been previously reported in relation to G-banding. These results suggest an intimate relationship between EdU-induced replication bands and G- or R-bands in human chromosomes. This technique is thus useful for analyzing the structure of chromosomes in relation to their banding patterns following DNA replication in the S phase.

  5. A high-resolution interval map of the q21 region of the human X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, C.; Monaco, A.P. [ICRF Laboratories, Oxford (United Kingdom)] [and others; Arnould, C. [Laboratoire de Genetique Humaine, Vandoeuvre-les-Nancy (France)] [and others

    1995-06-10

    In a previous study, we have developed a panel of chromosomal rearrangements for the physical mapping of the q13-q21 region of the human X chromosome. Here, we report the physical localization of 36 additional polymorphic markers by polymerase chain reaction analysis. The high density of chromosomal breakpoints in Xq21 allows us to map 58 DNA loci in 22 intervals. As a result, this segment of the X chromosome is saturated with approximately three sequence tagged sites per megabase of DNA, which will facilitate the construction of a YAC contig of this region. 26 refs., 1 fig., 1 tab.

  6. Admixture estimates for Caracas, Venezuela, based on autosomal, Y-chromosome, and mtDNA markers.

    Science.gov (United States)

    Martínez, Helios; Rodríguez-Larralde, Alvaro; Izaguirre, Mary Helen; De Guerra, Dinorah Castro

    2007-04-01

    The present Venezuelan population is the product of admixture of Amerindians, Europeans, and Africans, a process that was not homogeneous throughout the country. Blood groups, short tandem repeats (STRs), mtDNA, and Y-chromosome markers have been used successfully in admixture studies, but few such studies have been conducted in Venezuela. In this study we aim to estimate the admixture components of samples from two different socioeconomic levels from Caracas, Venezuela's capital city, compare their differences, and infer sexual asymmetry in the European Amerindian union patterns. Gene frequencies for blood groups ABO and Rh (CDE) and for the STRs VWA, F13A01, and FES/FPS and mtDNA and Y-chromosome haplogroups were studied in a sample of 60 individuals living in Caracas, taken from a private clinic (high socioeconomic level), and 50 individuals, also living in Caracas, drawn from a public maternity clinic (low socioeconomic level). The admixture analysis for the five autosomal markers gives a high European component (0.78) and an almost negligible African sub-Saharan component (0.06) for the high socioeconomic level, whereas for the low socioeconomic level the sub-Saharan, European, and Amerindian components were 0.21, 0.42, and 0.36, respectively. Estimates of admixture based on mtDNA and Y-chromosome markers reveal that the Amerindian contribution to these Caracas samples is almost entirely through females, because the Y-chromosome Amerindian and African sub-Saharan chromosomes found in this study were scarce. Our study reveals that the identification of the grandparents' geographic origin is an important methodological aspect to take into account in genetic studies related to the reconstruction of historical events.

  7. Chromosome Structural Alteration an Unusual Abnormality Characterizing Human Neoplasia

    Directory of Open Access Journals (Sweden)

    Abolfazl Movafagh

    2016-04-01

    Full Text Available Background and Aim: Ring chromosomes are rare cytogenetic abnormalities that occur in less than 10% of hematopoietic malignancies. They are rare in blood disorder. The present review has focused on the ring chromosome associated with oncology malignancies. Materials and Methods: By reviewing the web-based search for all English scientific peer review articles published, was initiated using Medline/PubMed, Mitelman database (http://cgap.nci.nih.gov/Chromosomes/Mitelman, and other pertinent references on websites about ring chromosomes in Oncology. The software program as End Note was used to handle the proper references for instruction to author. Karyotype descriptions were cited according to ISCN.Conclusion: Ring chromosomes are rare chromosomal aberrations, almost many times are of de novo origin, presenting a different phenotype regarding the loss of genetic material. The karyotype represents the main analysis for detection of ring chromosomes, but other molecular technics are necessary for complete characterization. The information of this review article adds to the spectrum of both morphology and genetic rearrangements in the field of oncology malignancies.

  8. Transcriptional and post-transcriptional profile of human chromosome 21.

    Science.gov (United States)

    Nikolaev, Sergey I; Deutsch, Samuel; Genolet, Raphael; Borel, Christelle; Parand, Leila; Ucla, Catherine; Schütz, Frederic; Duriaux Sail, Genevieve; Dupré, Yann; Jaquier-Gubler, Pascale; Araud, Tanguy; Conne, Beatrice; Descombes, Patrick; Vassalli, Jean-Dominique; Curran, Joseph; Antonarakis, Stylianos E

    2009-08-01

    Recent studies have demonstrated extensive transcriptional activity across the human genome, a substantial fraction of which is not associated with any functional annotation. However, very little is known regarding the post-transcriptional processes that operate within the different classes of RNA molecules. To characterize the post-transcriptional properties of expressed sequences from human chromosome 21 (HSA21), we separated RNA molecules from three cell lines (GM06990, HeLa S3, and SK-N-AS) according to their ribosome content by sucrose gradient fractionation. Polyribosomal-associated RNA and total RNA were subsequently hybridized to genomic tiling arrays. We found that approximately 50% of the transcriptional signals were located outside of annotated exons and were considered as TARs (transcriptionally active regions). Although TARs were observed among polysome-associated RNAs, RT-PCR and RACE experiments revealed that approximately 40% were likely to represent nonspecific cross-hybridization artifacts. Bioinformatics discrimination of TARs according to conservation and sequence complexity allowed us to identify a set of high-confidence TARs. This set of TARs was significantly depleted in the polysomes, suggesting that it was not likely to be involved in translation. Analysis of polysome representation of RefSeq exons showed that at least 15% of RefSeq transcripts undergo significant post-transcriptional regulation in at least two of the three cell lines tested. Among the regulated transcripts, enrichment analysis revealed an over-representation of genes involved in Alzheimer's disease (AD), including APP and the BACE1 protease that cleaves APP to produce the pathogenic beta 42 peptide. We demonstrate that the combination of RNA fractionation and tiling arrays is a powerful method to assess the transcriptional and post-transcriptional properties of genomic regions.

  9. Karyotyping human and mouse cells using probes from single-sorted chromosomes and open source software.

    Science.gov (United States)

    Potapova, Tamara A; Unruh, Jay R; Box, Andrew C; Bradford, William D; Seidel, Christopher W; Slaughter, Brian D; Sivagnanam, Shamilene; Wu, Yuping; Li, Rong

    2015-12-01

    Multispectral karyotyping analyzes all chromosomes in a single cell by labeling them with chromosome-specific probes conjugated to unique combinations of fluorophores. Currently available multispectral karyotyping systems require the purchase of specialized equipment and reagents. However, conventional laser scanning confocal microscopes that are capable of separating multiple overlapping emission spectra through spectral imaging and linear unmixing can be utilized for classifying chromosomes painted with multicolor probes. Here, we generated multicolor chromosome paints from single-sorted human and mouse chromosomes and developed the Karyotype Identification via Spectral Separation (KISS) analysis package, a set of freely available open source ImageJ tools for spectral unmixing and karyotyping. Chromosome spreads painted with our multispectral probe sets can be imaged on widely available spectral laser scanning confocal microscopes and analyzed using our ImageJ tools. Together, our probes and software enable academic labs with access to a laser-scanning spectral microscope to perform multicolor karyotyping in a cost-effective manner.

  10. Techniques for imaging human metaphase chromosomes in liquid conditions by atomic force microscopy

    Science.gov (United States)

    Ushiki, Tatsuo; Shigeno, Masatsugu; Hoshi, Osamu

    2008-09-01

    The purpose of this study was to obtain three-dimensional images of wet chromosomes by atomic force microscopy (AFM) in liquid conditions. Human metaphase chromosomes—obtained either by chromosome spreads or by an isolation technique—were observed in a dynamic mode by AFM in a buffer solution. Under suitable operating conditions with a soft triangular cantilever (with the spring constant of 0.08-0.4 N m-1), clear images of fixed chromosomes in the chromosome spread were obtained by AFM. For imaging isolated chromosomes with the height of more than 400 nm, a cantilever with a high aspect ratio probing tip was required. The combination of a Q-control system and the sampling intelligent scan (SIS) system in dynamic force mode AFM was useful for obtaining high-quality images of the isolated chromosomes, in which globular or cord-like structures about 50 nm thick were clearly observed on the surface of each chromatid.

  11. The Relationship Between Spontaneous Telomere Loss and Chromosome Instability in a Human Tumor Cell Line

    Directory of Open Access Journals (Sweden)

    Bijan Fouladi

    2000-01-01

    Full Text Available Chromosome instability plays an important role in cancer by promoting the alterations in the genome required for tumor cell progression. The loss of telomeres that protect the ends of chromosomes and prevent chromosome fusion has been proposed as one mechanism for chromosome instability in cancer cells, however, there is little direct evidence to support this hypothesis. To investigate the relationship between spontaneous telomere loss and chromosome instability in human cancer cells, clones of the EJ-30 tumor cell line were isolated in which a herpes simplex virus thymidine kinase (HSV-tk gene was integrated immediately adjacent to a telomere. Selection for HSV-tkdeficient cells with ganciclovir demonstrated a high rate of loss of the end these "marked" chromosomes (10-4 events/cell per generation. DNA sequence and cytogenetic analysis suggests that the loss of function of the HSV-tk gene most often involves telomere loss, sister chromatid fusion, and prolonged periods of chromosome instability. In some HSV-tk-deficient cells, telomeric repeat sequences were added on to the end of the truncated HSV-tk gene at a new location, whereas in others, no telomere was detected on the end of the marked chromosome. These results suggest that spontaneous telomere loss is a mechanism for chromosome instability in human cancer cells.

  12. Afghanistan's ethnic groups share a Y-chromosomal heritage structured by historical events.

    Directory of Open Access Journals (Sweden)

    Marc Haber

    Full Text Available Afghanistan has held a strategic position throughout history. It has been inhabited since the Paleolithic and later became a crossroad for expanding civilizations and empires. Afghanistan's location, history, and diverse ethnic groups present a unique opportunity to explore how nations and ethnic groups emerged, and how major cultural evolutions and technological developments in human history have influenced modern population structures. In this study we have analyzed, for the first time, the four major ethnic groups in present-day Afghanistan: Hazara, Pashtun, Tajik, and Uzbek, using 52 binary markers and 19 short tandem repeats on the non-recombinant segment of the Y-chromosome. A total of 204 Afghan samples were investigated along with more than 8,500 samples from surrounding populations important to Afghanistan's history through migrations and conquests, including Iranians, Greeks, Indians, Middle Easterners, East Europeans, and East Asians. Our results suggest that all current Afghans largely share a heritage derived from a common unstructured ancestral population that could have emerged during the Neolithic revolution and the formation of the first farming communities. Our results also indicate that inter-Afghan differentiation started during the Bronze Age, probably driven by the formation of the first civilizations in the region. Later migrations and invasions into the region have been assimilated differentially among the ethnic groups, increasing inter-population genetic differences, and giving the Afghans a unique genetic diversity in Central Asia.

  13. A Newborn with Genital Ambiguity, 45,X/46,XY Mosaicism, a Jumping Chromosome Y, and Congenital Adrenal Hyperplasia.

    Science.gov (United States)

    Zhang, Lei; Cooley, Linda D; Chandratre, Sonal R; Ahmed, Atif; Jacobson, Jill D

    2013-01-01

    Disorders of sex development (DSD), formerly termed "intersex" conditions, arise from numerous causes. CAH secondary to 21-hydroxylase deficiency is the most common cause of DSD. Sex chromosome disorders, including sex chromosome mosaicism, are the second most common cause of DSD. We discuss a medically complex neonate with DSD presenting with ambiguous genitalia. Hormone levels suggested 21-hydroxylase deficiency. Molecular analysis revealed compound heterozygous mutations in the 21-hydroxylase gene (CYP21A2), confirming the diagnosis of CAH. Chromosome analysis revealed sex chromosome mosaicism with three cell lines: 45,X[8]/45,X,tas(Y;16)(p11.32;p13.3)[8]/45,X,t(Y;8)(p11.32;p23.3)[4] with the Y chromosome in telomere association with chromosomes 8p and 16p in different cell lines, a "jumping translocation." Histologically, the right gonad had irregular, distended seminiferous tubules with hyperplastic germ cells contiguous with ovarian stroma and primordial follicles. The left gonad had scant ovarian stroma and embryonic remnants. Chromosome analyses showed mosaicism in both gonads: 45,X[17]/45,X,tas(Y;8)(p11.32;p23.3)[3]. This is the first case of coexisting CAH and 45,X/46,XY mosaicism reported in the English literature and the third case of a constitutional chromosome Y "jumping translocation." Our report documents the medical and genetic complexity of children such as this one with ambiguous genitalia and discusses the need for a multidisciplinary team approach.

  14. PCR-based study of the presence of Y-chromosome sequences in patients with Ullrich-Turner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Coto, E.; Menendez, M.J.; Lopez-Larrea, C. [Universidad Complutense, Madrid (Spain)] [and others

    1995-07-03

    The presence of Y chromosome sequences in Ullrich-Turner syndrome (UTS) patients has been suggested in previous work. Karyotype analysis estimated at about 60% of patients with a 45, X constitution and molecular analysis (Southern blot analysis with several Y chromosome probes and PCR of specific sequences) identified the presence of Y chromosome material in about 40% of 45, X patients. We have developed a very sensitive, PCR-based method to detect Y specific sequences in DNA from UTS patients. This protocol permits the detection of a single cell carrying a Y sequence among 10{sup 5} Y-negative cells. We studied 18 UTS patients with 4 Y-specific sequences. In 11 patients we detected a positive amplification for at least one Y sequence. The existence of a simple and sensitive method for the detection of Y sequences has important implications for UTS patients, in view of the risk for some of the females carrying Y chromosome material of developing gonadoblastoma and virilization. Additionally, some of the UTS-associated phenotypes, such as renal anomalies, could be correlated with the presence of Y chromosome-specific sequences. 27 refs., 2 figs., 1 tab.

  15. Chemotherapy induces transient sex chromosomal and autosomal aneuploidy in human sperm.

    Science.gov (United States)

    Robbins, W A; Meistrich, M L; Moore, D; Hagemeister, F B; Weier, H U; Cassel, M J; Wilson, G; Eskenazi, B; Wyrobek, A J

    1997-05-01

    Each year more than 20,000 children and young persons of reproductive age are exposed to known mutagens in the form of chemo- and/or radiotherapy for cancer in the States. As more of these treatments are effective there is growing concern that genetic defects are introduced in the germ cells of these young patients. It is well documented for male rodents that treatment with chemo- and radio-therapeutic agents before mating can cause genetic damage in the germ line, and the magnitude of heritable effects depends on the spermatogenic cell stage treated. Similar germinal effects are suspected to occur in humans but remain unproven. Hodgkin's disease (HD) is an example of a malignancy which is typically diagnosed during a patient's reproductive years. In our study we observed eight male HD patients who were treated with NOVP (Novanthrone, Oncovin, Vinblastine, Prednisone) chemotherapy. We evaluated sperm aneuploidy using multi-colour fluorescence in situ hybridization (FISH), and found approximately 5-fold increases in sperm with disomies, diploidies and complex genotypes involving chromosome X, Y and 8. Increases in sex chromosome aneuploidies arose from segregation errors at meiosis I as well as meiosis II. The aneuploidy effects were transient, however, declining to pretreatment levels within approximately 100 days after the end of the therapy. When compared with normal men, some HD patients showed higher proportions of certain sperm aneuploidy types even before their first therapy.

  16. Dose-response calibration curves of {sup 137}Cs gamma rays for dicentric chromosome aberrations in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wol Soon; Oh, Su Jung; Jeong, Soo Kyun; Yang, Kwang Mo [Dept. of Research center, Dong Nam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Jeong, Min Ho [Dept. of Microbiology, Dong A University College of Medicine, Busan (Korea, Republic of)

    2012-11-15

    Recently, the increased threat of radiologically industrial accident such as radiation nondestructive inspection or destruction of nuclear accident by natural disaster such as Fukushima accident requires a greater capacity for cytogenetic biodosimetry, which is critical for clinical triage of potentially thousands of radiation-exposed individuals. Dicentric chromosome aberration analysis is the conventional means of assessing radiation exposure. Dose–response calibration curves for {sup 13}'7Cs gamma rays have been established for unstable chromosome aberrations in human peripheral blood lymphocytes in many laboratories of international biodosimetry network. In this study, therefore, we established dose– response calibration curves of our laboratory for {sup 137}Cs gamma raysaccording to the IAEA protocols for conducting the dicentric chromosome assay We established in vitro dose–response calibration curves for dicentric chromosome aberrations in human lymphocytes for{sup 13}'7Cs gamma rays in the 0 to 5 Gy range, using the maximum likelihood linear-quadratic model, Y = c+αD+βD2. The estimated coefficients of the fitted curves were within the 95% confidence intervals (CIs) and the curve fitting of dose–effect relationship data indicated a good fit to the linear-quadratic model. Hence, meaningful dose estimation from unknown sample can be determined accurately by using our laboratory’s calibration curve according to standard protocol.

  17. Y-chromosome phylogeny in the evolutionary net of chamois (genus Rupicapra

    Directory of Open Access Journals (Sweden)

    Domínguez Ana

    2011-09-01

    Full Text Available Abstract Background The chamois, distributed over most of the medium to high altitude mountain ranges of southern Eurasia, provides an excellent model for exploring the effects of historical and evolutionary events on diversification. Populations have been grouped into two species, Rupicapra pyrenaica from southwestern Europe and R. rupicapra from eastern Europe. The study of matrilineal mitochondrial DNA (mtDNA and biparentally inherited microsatellites showed that the two species are paraphyletic and indicated alternate events of population contraction and dispersal-hybridization in the diversification of chamois. Here we investigate the pattern of variation of the Y-chromosome to obtain information on the patrilineal phylogenetic position of the genus Rupicapra and on the male-specific dispersal of chamois across Europe. Results We analyzed the Y-chromosome of 87 males covering the distribution range of the Rupicapra genus. We sequenced a fragment of the SRY gene promoter and characterized the male specific microsatellites UMN2303 and SRYM18. The SRY promoter sequences of two samples of Barbary sheep (Ammotragus lervia were also determined and compared with the sequences of Bovidae available in the GenBank. Phylogenetic analysis of the alignment showed the clustering of Rupicapra with Capra and the Ammotragus sequence obtained in this study, different from the previously reported sequence of Ammotragus which groups with Ovis. Within Rupicapra, the combined data define 10 Y-chromosome haplotypes forming two haplogroups, which concur with taxonomic classification, instead of the three clades formed for mtDNA and nuclear microsatellites. The variation shows a west-to-east geographical cline of ancestral to derived alleles. Conclusions The phylogeny of the SRY-promoter shows an association between Rupicapra and Capra. The position of Ammotragus needs a reinvestigation. The study of ancestral and derived characters in the Y-chromosome suggests

  18. Scanning electron microscope studies of human metaphase chromosomes.

    Science.gov (United States)

    Shemilt, L A; Estandarte, A K C; Yusuf, M; Robinson, I K

    2014-03-06

    Scanning electron microscopy (SEM) is used to evaluate potential chromosome preparations and staining methods for application in high-resolution three-dimensional X-ray imaging. Our starting point is optical fluorescence microscopy, the standard method for chromosomes, which only gives structural detail at the 200 nm scale. In principle, with suitable sample preparation protocols, including contrast enhancing staining, the surface structure of the chromosomes can be viewed at the 1 nm level by SEM. Here, we evaluate a heavy metal nucleic-acid-specific stain, which gives strong contrast in the backscattered electron signal. This study uses SEM to examine chromosomes prepared in different ways to establish a sample preparation protocol for X-rays. Secondary electron and backscattered electron signals are compared to evaluate the effectiveness of platinum-based stains used to enhance the contrast.

  19. How-to-Do-It. Human Chromosome Preparation.

    Science.gov (United States)

    Lundberg, Doug

    1990-01-01

    Described is a laboratory activity in which high school students may perform a karyotype analysis of their own chromosomes. Materials and procedures are detailed. A source of materials for this exercise is provided. (CW)

  20. The effects of severe mixed environmental pollution on human chromosomes.

    OpenAIRE

    Katsantoni, A; Nakou, S; Antoniadou-Koumatou, I; Côté, G B

    1986-01-01

    Cytogenetic studies were conducted on healthy young mothers, shortly after child birth, in two residential areas each with an approximate population of 20,000, situated about 25 km from Athens, Greece. One of the areas, Elefsis, is subject to severe mixed industrial pollution, and the other, Koropi, is relatively free of pollution. Chromosomal aberrations were investigated in 16 women from each area in 72 hour lymphocyte cultures treated with gentian violet to enhance any chromosomal instabil...

  1. Shared Y chromosome repetitive DNA sequences in stallion and donkey as visualized using whole-genomic comparative hybridization

    Directory of Open Access Journals (Sweden)

    R. Mezzanotte

    2010-01-01

    Full Text Available The genome of stallion (Spanish breed and donkey (Spanish endemic Zamorano-Leonés were compared using whole comparative genomic in situ hybridization (W-CGH technique, with special reference to the variability observed in the Y chromosome. Results show that these diverging genomes still share some highly repetitive DNA families localized in pericentromeric regions and, in the particular case of the Y chromosome, a sub-family of highly repeated DNA sequences, greatly expanded in the donkey genome, accounts for a large part of the chromatin in the stallion Y chromosome.

  2. A distinct type of heterochromatin at the telomeric region of the Drosophila melanogaster Y chromosome.

    Directory of Open Access Journals (Sweden)

    Sidney H Wang

    Full Text Available Heterochromatin assembly and its associated phenotype, position effect variegation (PEV, provide an informative system to study chromatin structure and genome packaging. In the fruit fly Drosophila melanogaster, the Y chromosome is entirely heterochromatic in all cell types except the male germline; as such, Y chromosome dosage is a potent modifier of PEV. However, neither Y heterochromatin composition, nor its assembly, has been carefully studied. Here, we report the mapping and characterization of eight reporter lines that show male-specific PEV. In all eight cases, the reporter insertion sites lie in the telomeric transposon array (HeT-A and TART-B2 homologous repeats of the Y chromosome short arm (Ys. Investigations of the impact on the PEV phenotype of mutations in known heterochromatin proteins (i.e., modifiers of PEV show that this Ys telomeric region is a unique heterochromatin domain: it displays sensitivity to mutations in HP1a, EGG and SU(VAR3-9, but no sensitivity to Su(z2 mutations. It appears that the endo-siRNA pathway plays a major targeting role for this domain. Interestingly, an ectopic copy of 1360 is sufficient to induce a piRNA targeting mechanism to further enhance silencing of a reporter cytologically localized to the Ys telomere. These results demonstrate the diversity of heterochromatin domains, and the corresponding variation in potential targeting mechanisms.

  3. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y

    OpenAIRE

    Tomaszkiewicz, Marta; Rangavittal, Samarth; Cechova, Monika; Sanchez, Rebeca Campos; Fescemyer, Howard W.; Harris, Robert; Ye, Danling; O'Brien, Patricia C.M.; Chikhi, Rayan; Ryder, Oliver A; Malcolm A Ferguson-Smith; Medvedev, Paul; Makova, Kateryna D.

    2016-01-01

    The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analys...

  4. Y-chromosome and mtDNA genetics reveal significant contrasts in affinities of modern Middle Eastern populations with European and African populations.

    Directory of Open Access Journals (Sweden)

    Danielle A Badro

    Full Text Available The Middle East was a funnel of human expansion out of Africa, a staging area for the Neolithic Agricultural Revolution, and the home to some of the earliest world empires. Post LGM expansions into the region and subsequent population movements created a striking genetic mosaic with distinct sex-based genetic differentiation. While prior studies have examined the mtDNA and Y-chromosome contrast in focal populations in the Middle East, none have undertaken a broad-spectrum survey including North and sub-Saharan Africa, Europe, and Middle Eastern populations. In this study 5,174 mtDNA and 4,658 Y-chromosome samples were investigated using PCA, MDS, mean-linkage clustering, AMOVA, and Fisher exact tests of F(ST's, R(ST's, and haplogroup frequencies. Geographic differentiation in affinities of Middle Eastern populations with Africa and Europe showed distinct contrasts between mtDNA and Y-chromosome data. Specifically, Lebanon's mtDNA shows a very strong association to Europe, while Yemen shows very strong affinity with Egypt and North and East Africa. Previous Y-chromosome results showed a Levantine coastal-inland contrast marked by J1 and J2, and a very strong North African component was evident throughout the Middle East. Neither of these patterns were observed in the mtDNA. While J2 has penetrated into Europe, the pattern of Y-chromosome diversity in Lebanon does not show the widespread affinities with Europe indicated by the mtDNA data. Lastly, while each population shows evidence of connections with expansions that now define the Middle East, Africa, and Europe, many of the populations in the Middle East show distinctive mtDNA and Y-haplogroup characteristics that indicate long standing settlement with relatively little impact from and movement into other populations.

  5. A high-resolution comparative map between pig chromosome 17 and human chromosomes 4, 8, and 20: Identification of synteny breakpoints

    DEFF Research Database (Denmark)

    Lahbib-Mansais, Yvette; Karlskov-Mortensen, Peter; Mompart, Florence;

    2005-01-01

    We report on the construction of a high-resolution comparative map of porcine chromosome 17 (SSC17) focusing on evolutionary breakpoints with human chromosomes. The comparative map shows high homology with human chromosome 20 but suggests more limited homologies with other human chromosomes. SSC17...... is of particular interest in studies of chromosomal organization due to the presence of QTLs that affect meat quality and carcass composition. A total of 158 pig ESTs available in databases or developed by the Sino-Danish Pig Genome Sequencing Consortium were mapped using the INRA-University of Minnesota porcine...... radiation hydrid panel. The high-resolution map was further anchored by fluorescence in situ hybridization. This study confirmed the extensive conservation between SSC17 and HSA20 and enabled the gene order to be determined. The homology of the SSC17 pericentromeric region was extended to other human...

  6. Chromosomal localization of murine and human oligodendrocyte-specific protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Bronstein, J.M.; Wu, S.; Korenberg, J.R. [UCLA School of Medicine, Los Angeles, CA (United States)] [and others

    1996-06-01

    Oligodendrocyte-specific protein (OSP) is a recently described protein present only in myelin of the central nervous system. Several inherited disorders of myelin are caused by mutations in myelin genes but the etiology of many remain unknown. We mapped the location of the mouse OSP gene to the proximal region of chromosome 3 using two sets of multilocus crosses and to human chromosome 3 using somatic cell hybrids. Fine mapping with fluorescence in situ hybridization placed the OSP gene at human chromosome 3q26.2-q26.3. To date, there are no known inherited neurological disorders that localize to these regions. 24 refs., 2 figs.

  7. Clinical consequences of microdeletions of the Y chromosome: the extended Münster experience.

    Science.gov (United States)

    Simoni, Manuela; Tüttelmann, Frank; Gromoll, Jörg; Nieschlag, Eberhard

    2008-02-01

    A total of 3179 patients were screened for Y-chromosome microdeletions and 821 patients for partial AZFc deletions. Thirty-nine Y-chromosomal microdeletions were found (2.4% of men with infertile men matched by sperm concentration, no differences in hormonal and seminal parameters could be found in patients with AZFc or gr/gr deletions. It is concluded that: (i) frequency of AZF deletions in Germany is much lower than in other countries; (ii) AZFc deletions are associated with severe disturbances of spermatogenesis and TESE is not possible in half of these patients; (iii) AZFc and gr/ gr deletions are not associated with any clinical diagnostic parameter; (iv) and no trend is apparent over time.

  8. Y-chromosomal insights into the genetic impact of the caste system in India.

    Science.gov (United States)

    Zerjal, Tatiana; Pandya, Arpita; Thangaraj, Kumarasamy; Ling, Edmund Y S; Kearley, Jennifer; Bertoneri, Stefania; Paracchini, Silvia; Singh, Lalji; Tyler-Smith, Chris

    2007-03-01

    The caste system has persisted in Indian Hindu society for around 3,500 years. Like the Y chromosome, caste is defined at birth, and males cannot change their caste. In order to investigate the genetic consequences of this system, we have analysed male-lineage variation in a sample of 227 Indian men of known caste, 141 from the Jaunpur district of Uttar Pradesh and 86 from the rest of India. We typed 131 Y-chromosomal binary markers and 16 microsatellites. We find striking evidence for male substructure: in particular, Brahmins and Kshatriyas (but not other castes) from Jaunpur each show low diversity and the predominance of a single distinct cluster of haplotypes. These findings confirm the genetic isolation and drift within the Jaunpur upper castes, which are likely to result from founder effects and social factors. In the other castes, there may be either larger effective population sizes, or less strict isolation, or both.

  9. Y-chromosomal STR haplotypes in Inuit and Danish population samples

    DEFF Research Database (Denmark)

    Bosch, Elena; Rosser, Zoë H; Nørby, Søren;

    2003-01-01

    Nineteen Y-chromosomal short tandem repeats (STRs), DYS19, DYS389-I, DYS389-II, DYS390, DYS391, DYS392, DYS393, DYS385, DYS388, DYS434, DYS435, DYS436, DYS437, DYS438, DYS439, DYS460, DYS461 and DYS462 were typed in Inuit (n=70) and Danish (n=62) population samples.......Nineteen Y-chromosomal short tandem repeats (STRs), DYS19, DYS389-I, DYS389-II, DYS390, DYS391, DYS392, DYS393, DYS385, DYS388, DYS434, DYS435, DYS436, DYS437, DYS438, DYS439, DYS460, DYS461 and DYS462 were typed in Inuit (n=70) and Danish (n=62) population samples....

  10. Studies on the integration of hepatitis B virusDNA sequence in human sperm chromosomes

    Institute of Scientific and Technical Information of China (English)

    Jian-MinHUANG; Tian-HuaHUANG

    2002-01-01

    Aim:To study the integration of hepatitis Bvirus(HBV)DNAinto sperm chromosomes in hepatitsBpatients and the features of its integration.Methods:Sperm chromosomes of 14subjects(5healthy controls and9HBpatients,including1acute hepatitis B,2chronic active hepatitisB,4chronic persistent hepatitsB,2HBsAg chronic carriers with no clinical symptoms)were prepared using imterspecific in vitro fertilization between zona-free hamster oocytes and human spermatozoa.Fluosescence in situ hybridization(FISH)to sperm chromosome spreads was carried out with biotin-labeled full length HBVDNAprobe to detect the specificHBVDNA sequences in the sperm chromosomes.Results:Specific fluorescent signal spots for HBVDNAwere seen iv sperm chromosomes of one patient with chronic persistent hepatitisB.In9(9/42)sperm chromosome complements containing fluorescent signal spots,one presented5obvious FISHspots and the others2to4signals.The fluorescence intensity showed significant difference among the signal spots.The distribution of signal sites among chromosomes seems to be random.Con clusion:HBV could integrate into human sperm chromosomes.Results suggest that the possibility of vertical transmission of HBVvia the germ line tothe next generation is present.

  11. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies.

    Science.gov (United States)

    Dominguez, Antonia A; Chiang, H Rosaria; Sukhwani, Meena; Orwig, Kyle E; Reijo Pera, Renee A

    2014-09-22

    Turner syndrome is caused by complete or partial loss of the second sex chromosome and is characterized by spontaneous fetal loss in >90% of conceptions. Survivors possess an array of somatic and germline clinical characteristics. Induced pluripotent stem cells (iPSCs) offer an opportunity for insight into genetic requirements of the X chromosome linked to Turner syndrome. We derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We demonstrate that two X chromosomes are not necessary for reprogramming or maintenance of pluripotency and that there are minimal differences in gene expression, at the single cell level, linked to X chromosome aneuploidies. Formation of germ cells, as assessed in vivo through a murine xenotransplantation model, indicated that undifferentiated iPSCs, independent of X chromosome composition, are capable of forming germ-cell-like cells (GCLCs) in vivo. In combination with clinical data regarding infertility in women with X chromosome aneuploidies, results suggest that two intact X chromosomes are not required for human germ cell formation, qualitatively or quantitatively, but rather are likely to be required for maintenance of human germ cells to adulthood.

  12. Association of ATRX with pericentric heterochromatin and the Y chromosome of neonatal mouse spermatogonia

    Directory of Open Access Journals (Sweden)

    De La Fuente Rabindranath

    2008-03-01

    Full Text Available Abstract Background Establishment of chromosomal cytosine methylation and histone methylation patterns are critical epigenetic modifications required for heterochromatin formation in the mammalian genome. However, the nature of the primary signal(s targeting DNA methylation at specific genomic regions is not clear. Notably, whether histone methylation and/or chromatin remodeling proteins play a role in the establishment of DNA methylation during gametogenesis is not known. The chromosomes of mouse neonatal spermatogonia display a unique pattern of 5-methyl cytosine staining whereby centromeric heterochromatin is hypo-methylated whereas chromatids are strongly methylated. Thus, in order to gain some insight into the relationship between global DNA and histone methylation in the germ line we have used neonatal spermatogonia as a model to determine whether these unique chromosomal DNA methylation patterns are also reflected by concomitant changes in histone methylation. Results Our results demonstrate that histone H3 tri-methylated at lysine 9 (H3K9me3, a hallmark of constitutive heterochromatin, as well as the chromatin remodeling protein ATRX remained associated with pericentric heterochromatin regions in spite of their extensive hypo-methylation. This suggests that in neonatal spermatogonia, chromosomal 5-methyl cytosine patterns are regulated independently of changes in histone methylation, potentially reflecting a crucial mechanism to maintain pericentric heterochromatin silencing. Furthermore, chromatin immunoprecipitation and fluorescence in situ hybridization, revealed that ATRX as well as H3K9me3 associate with Y chromosome-specific DNA sequences and decorate both arms of the Y chromosome, suggesting a possible role in heterochromatinization and the predominant transcriptional quiescence of this chromosome during spermatogenesis. Conclusion These results are consistent with a role for histone modifications and chromatin remodeling proteins

  13. Analysis of Y chromosome microdeletions and CFTR gene mutations as genetic markers of infertility in Serbian men

    Directory of Open Access Journals (Sweden)

    Dinić Jelena

    2007-01-01

    Full Text Available Background/Aim. Impaired fertility of a male partner is the main cause of infertility in up to one half of all infertile couples. At the genetic level, male infertility can be caused by chromosome aberrations or gene mutations. The presence and types of Y chromosome microdeletions and cystic fybrosis transmembrane conductance regulator (CFTR gene mutations as genetic cause of male infertility was tested in Serbian men. The aim of this study was to analyze CFTR gene mutations and Y chromosome microdelations as potential causes of male infertility in Serbian patients, as well as to test the hypothesis that CFTR mutations in infertile men are predominantly located in the several last exons of the gene. Methods. This study has encompassed 33 men with oligo- or azoospermia. The screening for Y chromosome microdeletions in the azoospermia factor (AZF region was performed by multiplex PCR analysis. The screening of the CFTR gene was performed by denaturing gradient gel electrophoresis (DGGE method. Results. Deletions on Y chromosome were detected in four patients, predominantly in AZFc region (four of total six deletions. Mutations in the CFTR gene were detected on eight out of 66 analyzed chromosomes of infertile men. The most common mutation was F508del (six of total eight mutations. Conclusion. This study confirmed that both Y chromosome microdeletions and CFTR gene mutations played important role in etiology of male infertility in Serbian infertile men. Genetic testing for Y chromosome microdeletions and CFTR gene mutations has been introduced in routine diagnostics and offered to couples undergoing assisted reproduction techniques. Considering that both the type of Y chromosome microdeletion and the type of CFTR mutation have a prognostic value, it is recommended that AZF and CFTR genotyping should not only be performed in patients with reduced sperm quality before undergoing assisted reproduction, but also for the purpose of preimplantation and

  14. Mitochondrial DNA and Y-chromosome diversity in East Adriatic sheep.

    Science.gov (United States)

    Ferencakovic, M; Curik, I; Pérez-Pardal, L; Royo, L J; Cubric-Curik, V; Fernández, I; Alvarez, I; Kostelic, A; Sprem, N; Krapinec, K; Goyache, F

    2013-04-01

    Variation in mitochondrial DNA (mtDNA) and Y-chromosome haplotypes was analysed in nine domestic sheep breeds (159 rams) and 21 mouflon (Ovis musimon) sampled in the East Adriatic. Mitochondrial DNA analyses revealed a high frequency of type B haplotypes, predominantly in European breeds, and a very low frequency of type A haplotypes, which are more frequent in some Asian breeds. Mitochondrial haplotype Hmt-3 was the most frequent (26.4%), and 37.1%, 20.8% and 7.6% of rams had haplotypes one, two and three mutations remote from Hmt-3 respectively. In contrast, Y-chromosome analyses revealed extraordinary paternal allelic richness: HY-6, 89.3%; HY-8, 5.0%; HY-18, 3.1%; HY-7, 1.3%; and HY-5, 1.3%. In fact, the number of haplotypes observed is comparable to the number found in Turkish breeds and greater than the number found in European breeds so far. Haplotype HY-18 (A-oY1/135-SRYM18), identified here for the first time, provides a link between the haplotype HY-12 (A-oY1/139-SRYM18) found in a few rams in Turkey and haplotype HY-9 (A-oY1/131-SRYM18) found in one ram in Ethiopia. All mouflons had type B mtDNA haplotypes, including the private haplotype (Hmt-55), and all were paternally monomorphic for haplotype HY-6. Our data support a quite homogeneous maternal origin of East Adriatic sheep, which is a characteristic of European breeds. At the same time, the high number of haplotypes found was surprising and intriguing, and it begs for further analysis. Simultaneous analysis of mtDNA and Y-chromosome information allowed us to detect a large discrepancy between maternal and paternal lineages in some populations. This is most likely the result of breeder efforts to 'upgrade' local populations using rams with different paternal origins.

  15. A genetic landscape reshaped by recent events: Y-chromosomal insights into central Asia.

    Science.gov (United States)

    Zerjal, Tatiana; Wells, R Spencer; Yuldasheva, Nadira; Ruzibakiev, Ruslan; Tyler-Smith, Chris

    2002-09-01

    Sixteen Y-chromosomal microsatellites and 16 binary markers have been used to analyze DNA variation in 408 male subjects from 15 populations in Central Asia. Large genetic differences were found between populations, but these did not display an obvious geographical or linguistic pattern like that usually seen for Y-chromosomal variation. Nevertheless, an underlying east-west clinal pattern could be detected by the Autocorrelation Index for DNA Analysis and admixture analysis, and this pattern was interpreted as being derived from the ancient peopling of the area, reinforced by subsequent migrations. Two particularly striking features were seen: an extremely high level of Y-chromosomal differentiation between geographically close populations, accompanied by low diversity within some populations. These were due to the presence of high-frequency population-specific lineages and suggested the occurrence of several recent bottlenecks or founder events. Such events could account for the lack of a clear overall pattern and emphasize the importance of multiple recent events in reshaping this genetic landscape.

  16. Correlation of physical and genetic maps of human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.R.

    1990-01-01

    This project is now progressing strongly. Thirteen somatic cell hybrids containing rearranged {number sign}16 chromosomes have been constructed, bringing the total number of hybrids constructed by the group to 27 which divides chromosome 16 into 29 regions. 170 probes have been mapped into these regions. Although this is the second progress report for this contract it essentially contains all the work carried out since the first progress report covered a period of less than three months during which little had been done other than setting up. The project has been progressing very well and has led to numerous collaborations with other groups involved in mapping this chromosome or studying genes on it. 7 refs., 1 fig., 2 tabs.

  17. Chromosome Aberrations in Human Lymphocytes Irradiated with Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of the present experiment was to provide data on the dose-dependent production of chromosome aberrations such as dicentrics, centric rings, and excess acentrics. Radiation is one of the more dangerous clastogens in the environment. Ionizing radiation causes chromosome breakages and various cytogenetic aberrations in exposed cells. In an investigation into radiation emergencies, it is important to estimate the dose to exposed persons for several reasons. Physical dosimeters (e. g., film badges) may misrepresent the actual radiation dose and may not be available in a radiological accident or terrorism incident. Biological dosimetry is suitable for estimating the radiation dose during such accidents. The dicentric chromosome assay is very sensitive and a reliable bio-indicator in cases of accidental overexposure.

  18. Chromosomal imbalances in successive moments of human bladder urothelial carcinoma

    DEFF Research Database (Denmark)

    Nascimento e Pontes, Merielen Garcia; da Silveira, Sara Martorelli; Trindade Filho, José Carlos de Souza;

    2013-01-01

    in 16p12, in line with suggestions that these chromosome regions contain genes critical for urinary bladder carcinogenesis. Within a same patient, tumors and their respective recurrences showed common genomic losses and gains, which implies that the genomic profile acquired by primary tumors...... cells expressing the p53 protein, suggesting that the apparently normal urothelium was genomically unstable. No numerical alterations of the chromosomes 7, 17, and 9p21 region were found by FISH during the periods "free-of-neoplasia." Our data are informative for further studies to better understand...

  19. Deletion or underexpression of the Y-chromosome genes CDY2 and HSFY is associated with maturation arrest in American men with nonobstructive azoospermia

    Institute of Scientific and Technical Information of China (English)

    Peter J Stahl; Anna N Mielnik; Christopher E Barbieri; Peter N Schlegel; Darius A Paduch

    2012-01-01

    Maturation arrest (MA) refers to failure of germ cell development leading to clinical nonobstructive azoospermia.Although the azoospermic factor (AZF) region of the human Y chromosome is clearly implicated in some cases,thus far very little is known about which individual Y-chromosome genes are important for complete male germ cell development.We sought to identify single genes on the Y chromosome that may be implicated in the pathogenesis of nonobstructive azoospermia associated with MA in the American population.Genotype-phenotype analysis of 132 men with Y-chromosome microdeletions was performed.Protein-coding genes associated with MA were identified by visual analysis of a genotype-phenotype map.Genes associated with MA were selected as those genes within a segment of the Y chromosome that,when completely or partially deleted,were always associated with MA and absence of retrievable testicular sperm.Expression of each identified gene transcript was then measured with quantitative RT-PCR in testicular tissue from separate cohorts of patients with idiopathic MA and obstructive azoospermia.Ten candidate genes for association with MA were identified within an 8.4-Mb segment of the Y chromosome overlapping the AZFb region,CDY2 and HSFYwere the only identified genes for which differences in expression were observed between the MA and obstructive azoospermia cohorts.Men with obstructive azoospermia had 12-fold higher relative expression of CDY2 transcript (1.33±0.40 vs.0.11±0.04; P=0.0003) and 16-fold higher expression of HSFY transcript (0.78±0.32 vs.0.05±0.02; P=0.0005) compared to men with MA.CDY2 and HSFY were also underexpressed in patients with Sertoli cell only syndrome.These data indicate that CDY2 and HSFY are located within a segment of the Y chromosome that is important for sperm maturation,and am underexpressed in testicular tissue derived from men with MA.These observations suggest that impairments in CDY2 or HSFY expression could be implicated in the

  20. Visualization of Elasticity Distribution of Single Human Chromosomes by Scanning Probe Microscopy

    Science.gov (United States)

    Nomura, Keisuke; Hoshi, Osamu; Fukushi, Daisuke; Ushiki, Tatsuo; Haga, Hisashi; Kawabata, Kazushige

    2005-07-01

    We succeeded in visualizing the spatial distribution of the local elasticity of mitotic human chromosomes in a liquid environment using scanning probe microscopy (SPM). Force-versus-indentation curves (force curves) were collected over an entire single chromosome. To estimate the local elasticity of thin chromosomes from the force curves, we examined the validity of a previously proposed model that takes into account the effect of the finite thickness of samples on the estimation of the local elasticity. The force curves obtained are well represented by the model within a small indentation range. The elasticity obtained is independent of the indentation within an indentation range of 100 nm. Such fitting procedures for the force curves collected are carried out over the entire chromosome, and the elasticity distribution of a single chromosome is visualized.

  1. Genomic and expression analysis of multiple Sry loci from a single Rattus norvegicus Y chromosome

    Directory of Open Access Journals (Sweden)

    Farkas Joel

    2007-04-01

    Full Text Available Abstract Background Sry is a gene known to be essential for testis determination but is also transcribed in adult male tissues. The laboratory rat, Rattus norvegicus, has multiple Y chromosome copies of Sry while most mammals have only a single copy. DNA sequence comparisons with other rodents with multiple Sry copies are inconsistent in divergence patterns and functionality of the multiple copies. To address hypotheses of divergence, gene conversion and functional constraints, we sequenced Sry loci from a single R. norvegicus Y chromosome from the Spontaneously Hypertensive Rat strain (SHR and analyzed DNA sequences for homology among copies. Next, to determine whether all copies of Sry are expressed, we developed a modification of the fluorescent marked capillary electrophoresis method to generate three different sized amplification products to identify Sry copies. We applied this fragment analysis method to both genomic DNA and cDNA prepared from mRNA from testis and adrenal gland of adult male rats. Results Y chromosome fragments were amplified and sequenced using primers that included the entire Sry coding region and flanking sequences. The analysis of these sequences identified six Sry loci on the Y chromosome. These are paralogous copies consistent with a single phylogeny and the divergence between any two copies is less than 2%. All copies have a conserved reading frame and amino acid sequence consistent with function. Fragment analysis of genomic DNA showed close approximations of experimental with predicted values, validating the use of this method to identify proportions of each copy. Using the fragment analysis procedure with cDNA samples showed the Sry copies expressed were significantly different from the genomic distribution (testis p Sry transcript expression, analyzed by real-time PCR, showed significantly higher levels of Sry in testis than adrenal gland (p, 0.001. Conclusion The SHR Y chromosome contains at least 6 full length

  2. DNA Catenation Maintains Structure of Human Metaphase Chromosomes

    DEFF Research Database (Denmark)

    L. V. Bauer, David; Marie, Rodolphe; Rasmussen, Kristian Hagsted

    2012-01-01

    , and destroyed to complete sister chromatid disjunction. In addition to demonstrating the value of microfluidics as a tool for examining chromosome structure, these results lend support to certain models of DNA catenation organization and regulation: in particular, we conclude from our observation of centromere...

  3. Y-Chromosomal Diversity in Europe Is Clinal and Influenced Primarily by Geography, Rather than by Language

    Science.gov (United States)

    Rosser, Zoë H.; Zerjal, Tatiana; Hurles, Matthew E.; Adojaan, Maarja; Alavantic, Dragan; Amorim, António; Amos, William; Armenteros, Manuel; Arroyo, Eduardo; Barbujani, Guido; Beckman, Gunhild; Beckman, Lars; Bertranpetit, Jaume; Bosch, Elena; Bradley, Daniel G.; Brede, Gaute; Cooper, Gillian; Côrte-Real, Helena B. S. M.; de Knijff, Peter; Decorte, Ronny; Dubrova, Yuri E.; Evgrafov, Oleg; Gilissen, Anja; Glisic, Sanja; Gölge, Mukaddes; Hill, Emmeline W.; Jeziorowska, Anna; Kalaydjieva, Luba; Kayser, Manfred; Kivisild, Toomas; Kravchenko, Sergey A.; Krumina, Astrida; Kučinskas, Vaidutis; Lavinha, João; Livshits, Ludmila A.; Malaspina, Patrizia; Maria, Syrrou; McElreavey, Ken; Meitinger, Thomas A.; Mikelsaar, Aavo-Valdur; Mitchell, R. John; Nafa, Khedoudja; Nicholson, Jayne; Nørby, Søren; Pandya, Arpita; Parik, Jüri; Patsalis, Philippos C.; Pereira, Luísa; Peterlin, Borut; Pielberg, Gerli; Prata, Maria João; Previderé, Carlo; Roewer, Lutz; Rootsi, Siiri; Rubinsztein, D. C.; Saillard, Juliette; Santos, Fabrício R.; Stefanescu, Gheorghe; Sykes, Bryan C.; Tolun, Aslihan; Villems, Richard; Tyler-Smith, Chris; Jobling, Mark A.

    2000-01-01

    Clinal patterns of autosomal genetic diversity within Europe have been interpreted in previous studies in terms of a Neolithic demic diffusion model for the spread of agriculture; in contrast, studies using mtDNA have traced many founding lineages to the Paleolithic and have not shown strongly clinal variation. We have used 11 human Y-chromosomal biallelic polymorphisms, defining 10 haplogroups, to analyze a sample of 3,616 Y chromosomes belonging to 47 European and circum-European populations. Patterns of geographic differentiation are highly nonrandom, and, when they are assessed using spatial autocorrelation analysis, they show significant clines for five of six haplogroups analyzed. Clines for two haplogroups, representing 45% of the chromosomes, are continentwide and consistent with the demic diffusion hypothesis. Clines for three other haplogroups each have different foci and are more regionally restricted and are likely to reflect distinct population movements, including one from north of the Black Sea. Principal-components analysis suggests that populations are related primarily on the basis of geography, rather than on the basis of linguistic affinity. This is confirmed in Mantel tests, which show a strong and highly significant partial correlation between genetics and geography but a low, nonsignificant partial correlation between genetics and language. Genetic-barrier analysis also indicates the primacy of geography in the shaping of patterns of variation. These patterns retain a strong signal of expansion from the Near East but also suggest that the demographic history of Europe has been complex and influenced by other major population movements, as well as by linguistic and geographic heterogeneities and the effects of drift. PMID:11078479

  4. Detailed comparative map of human chromosome 19q and related regions of the mouse genome

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, L.; Shannon, M.E.; Kim, Joomyeong [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    One of the larger contiguous blocks of mouse-human genomic homology includes the proximal portion of mouse chromosome 7 and the long arm of human chromosome 19. Previous studies have demonstrated the close relationship between the two regions, but have also indicated significant rearrangements in the relative orders of homologous mouse and human genes. Here we present the genetic locations of the homologs of 42 human chromosome 19q markers in the mouse, with an emphasis on genes also included in the human chromosome 19 physical map. Our results demonstrate that despite an overall inversion of sequences relative to the centromere, apparent {open_quotes}transpositions{close_quotes} of three gene-rich segments, and a local inversion of markers mapping near the 19q telomere, gene content, order, and spacing are remarkably well conserved throughout the lengths of these related mouse and humans regions. Although most human 19q markers have remained genetically linked in mouse, one small human segment forms a separate region of homology between human chromosome 19q and mouse chromosome 17. Three of the four rearrangements of mouse versus human 19q sequences involve segments that are located directly adjacent to each other in 19q13.3-q13.4, suggesting either the coincident occurrence of these events or their common association with unstable DNA sequences. These data permit an unusually in-depth examination of this large region of mouse-human genomic homology and provide an important new tool to aid in the mapping of genes and associated phenotypes in both species. 66 refs., 3 figs., 1 tab.

  5. Thermolabile phenol sulfotransferase gene (STM): Localization to human chromosome 16p11.2

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, I.A.; Her, C.; Weinshilboum, M. [Mayo Medical School, Rochester, MN (United States)] [and others

    1994-09-01

    Thermolabile (TL) phenol sulfotransferase (PST) catalyzes the sulfate conjugation of phenolic monoamine neurotransmitters such as dopamine and serotonin. We recently cloned a cDNA for human liver TL PST and expressed it in COS-1 cells. We now report the chromosomal localization of the human TL PST gene (STM) as well as its partial sequence. DNA from NIGMS Human/Rodent Somatic Cell Hybrid Mapping Panels 1 and 2 was screened by use of the PCR, and the STM gene was mapped to chromosome 16. Regional localization to 16p11.2 was performed by PCR analysis of a high-resolution mouse/human somatic cell hybrid panel that contained defined portions of human chromosome 16. 15 refs., 2 figs.

  6. Chromosome distribution in human sperm – a 3D multicolor banding-study

    Directory of Open Access Journals (Sweden)

    Mrasek Kristin

    2008-11-01

    Full Text Available Abstract Background Nuclear architecture studies in human sperm are sparse. By now performed ones were practically all done on flattened nuclei. Thus, studies close at the in vivo state of sperm, i.e. on three-dimensionally conserved interphase cells, are lacking by now. Only the position of 14 chromosomes in human sperm was studied. Results Here for the first time a combination of multicolor banding (MCB and three-dimensional analysis of interphase cells was used to characterize the position and orientation of all human chromosomes in sperm cells of a healthy donor. The interphase nuclei of human sperm are organized in a non-random way, driven by the gene density and chromosome size. Conclusion Here we present the first comprehensive results on the nuclear architecture of normal human sperm. Future studies in this tissue type, e.g. also in male patients with unexplained fertility problems, may characterize yet unknown mechanisms of infertility.

  7. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Engreitz

    Full Text Available Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs, a process that requires spatial colocalization of chromosomal breakpoints. The "contact first" hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects.

  8. Hierarchical multifractal representation of symbolic sequences and application to human chromosomes

    Science.gov (United States)

    Provata, A.; Katsaloulis, P.

    2010-02-01

    The two-dimensional density correlation matrix is constructed for symbolic sequences using contiguous segments of arbitrary size. The multifractal spectrum obtained from this matrix motif is shown to characterize the correlations in the symbolic sequences. This method is applied to entire human chromosomes, shuffled human chromosomes, reconstructed human genomic sequences and to artificial random sequences. It is shown that all human chromosomes have common characteristics in their multifractal spectrum and deviate substantially from random and uncorrelated sequences of the same size. Small deviations are observed between the longer and the shorter chromosomes, especially for the higher (in absolute values) statistical moments. The correlations are crucial for the form of the multifractal spectrum; surrogate shuffled chromosomes present randomlike spectrum, distinctly different from the actual chromosomes. Analytical approaches based on hierarchical superposition of tensor products show that retaining pair correlations in the sequences leads to a closer representation of the genomic multifractal spectra, especially in the region of negative exponents, due to the underrepresentation of various functional units (such as the cytosine-guanine CG combination and its complementary GC complex). Retaining higher-order correlations in the construction of the tensor products is a way to approach closer the structure of the multifractal spectra of the actual genomic sequences. This hierarchical approach is generic and is applicable to other correlated symbolic sequences.

  9. Apoptosis preferentially eliminates irradiated g0 human lymphocytes bearing dicentric chromosomes.

    Science.gov (United States)

    Belloni, P; Meschini, R; Lewinska, D; Palitti, F

    2008-02-01

    G(0) human peripheral blood lymphocytes were X-irradiated to determine whether there is a direct relationship between radiation-induced dicentric chromosomes and the triggering of apoptosis. Immediately after X-ray exposure, control and irradiated lymphocytes were analyzed for viability, apoptosis and chromosome damage using the premature chromosome condensation technique. A batch of lymphocytes was kept in liquid holding for 48 h and then loaded on Ficoll-Paque medium to separate apoptotic (high-density) and normal (normal-density) cells. Then the same end points were analyzed in high-density and normal-density fractions of control and irradiated lymphocytes. After 48 h of liquid holding, the majority of apoptotic cells contained dicentric chromosomes. These results demonstrate that in human lymphocytes, the type of chromosome damage influences the induction of programmed cell death and provide direct evidence that cells bearing dicentrics are eliminated by apoptosis. G0 lymphocytes are the most common tissue used in biodosimetry studies, and the amount of chromosomal damage detected depends on the time between exposure and sampling. Since the radiation-induced apoptotic cells show the presence of dicentrics, radiation-induced damage can be underestimated. These results may have relevance in evaluations of the efficacy of radiotherapy based on the frequencies of chromosomal aberrations.

  10. Nanodissection of human chromosomes with near-infrared femtosecond laser pulses.

    Science.gov (United States)

    König, K; Riemann, I; Fritzsche, W

    2001-06-01

    Near-infrared laser pulses of a compact 80-MHz femtosecond laser source at 800 nm, a mean power of 15-100 mW, 170-fs pulse width, and millisecond beam dwell times at the target have been used for multiphoton-mediated nanoprocessing of human chromosomes. By focusing of the laser beam with high-numerical-aperture objectives of a scanning microscope to diffraction-limited spots and with light intensities of terawatts per cubic centimeter, precise submicrometer holes and cuts in human chromosomes have been processed by single-point exposure and line scans. A minimum FWHM cut size of ~100 nm during a partial dissection of chromosome 1, which is below the diffraction-limited spot size, and a minimum material removal of ~0.003mum (3) were determined by a scanning-force microscope. The plasma-induced ablated material corresponds to ~1/400 of the chromosome 1 volume and to ~65x10(3) base pairs of chromosomal DNA. A complete dissection could be performed with FWHM cut sizes below 200 nm. High-repetition-frequency femtosecond lasers at low mean power in combination with high-numerical-aperture focusing optics appear therefore as appropriate noncontact tools for nanoprocessing of bulk and (or) surfaces of transparent materials such as chromosomes. In particular, the noninvasive inactivation of certain genomic regions on single chromosomes within living cells becomes possible.

  11. Use of chromosome translocations for measuring prior environment exposures in humans

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, J. D.

    1997-05-01

    Recent advances in cytogenetic methodology are beginning to have a major impact upon our ability to provide assessments of environmental exposure in humans. The advent of fluorescent-based techniques for `painting` whole chromosomes has made the analysis of chromosome translocations rapid, specific, sensitive and routine. Chromosome painting has been used to address a wide variety of scientific questions, resulting in an increased understanding of the biological consequences of adverse environmental exposure. This paper describes the use of chromosome translocations as a biological marker of exposure and effect in humans. The relevance of translocations is discussed, as are the advantages and disadvantages of painting compared to classical cytogenetic methods for translocation evaluation. The factors to consider in the use of translocations as a retrospective indicator of exposure are then described. Several theoretical parameters that are important to the use of translocations are provided, and the paper concludes with a vision for the future of cytogenetic methodology.

  12. XYY syndrome and other Y chromosome polysomies. Mental status and psychosocial functioning.

    Science.gov (United States)

    Fryns, J P; Kleczkowska, A; Kubień, E; Van den Berghe, H

    1995-01-01

    In this report we review the data on 75 male patients with extra Y chromosome diagnosed in Leuven in the period 1968-1993 among 98,725 patients (males and females) referred for constitutional chromosomal analysis. Special attention was given to their mental performance and psychosocial functioning. 1. Fifty male with 47,XYY karyotype were diagnosed. This is very close to the incidence of XYY in newborn studies and indicates that the frequency of MR/MCA is not increased in XYY male in general. 2. In the 60 patients with "pure" Y chromosome polysomy, the most frequent indication for karyotyping was the presence of MR and/or characterological problems in the index patients. Mental retardation was mostly borderline to mild, and severe mental retardation was rare. Characterological problems, difficulties in psychosocial integration and psychiatric problems were found in 86% of the mentally retarded versus 24% of the mentally normal men. 3. The 48,XXYY syndrome is characterized by markedly frequent and severe behavioural and psychiatric problems.

  13. GENETIC POLYMORPHISM OF SIX Y CHROMOSOMAL STR IN CHINESE HUI ETHNIC GROUP

    Institute of Scientific and Technical Information of China (English)

    Zhu Bofeng; Lü Guiping; Yao Guifa; Zhu Jun; Dong Hongwang; Sun Qingdong; Huang Lei; Liu Yao

    2005-01-01

    Objective To study genetic polymorphism of 6 Y chromosomal STR in Hui ethnic group living in Ningxia Hui ethnic autonomous region, in order to evaluate their usefulness in forensic science and enrich the Chinese genetic information resources. Methods We investigated 101 unrelated, healthy, male individuals of Hui ethnic group and studied their allelic frequency distribution and haplotype diversity of 6 Y chromosomal STR. Primer for each loci was labeled with the fluorescent by FAM (blue) or TAMRA(yellow). The data of Hui ethnic group were generated co-amplification, GeneScan, genotype, and genetic distribution analysis. Results 31 alleles and 43 phenotype(DYS385) were detected, with the frequencies ranging from 0.0099-0.7129. Out of a total of 101 individuals, 96 showed different haplotypes; 91 were unique; 5 were found 2 times. The haplotype diversity for 6 Y-STR loci was 0.9990. Conclusion The date obtained can be valuable for individual identification, paternity testing in forensic fields and for population genetics because of 6 Y-STR loci high polymorphism.

  14. A global analysis of Y-chromosomal haplotype diversity for 23 STR loci

    Science.gov (United States)

    Purps, Josephine; Siegert, Sabine; Willuweit, Sascha; Nagy, Marion; Alves, Cíntia; Salazar, Renato; Angustia, Sheila M.T.; Santos, Lorna H.; Anslinger, Katja; Bayer, Birgit; Ayub, Qasim; Wei, Wei; Xue, Yali; Tyler-Smith, Chris; Bafalluy, Miriam Baeta; Martínez-Jarreta, Begoña; Egyed, Balazs; Balitzki, Beate; Tschumi, Sibylle; Ballard, David; Court, Denise Syndercombe; Barrantes, Xinia; Bäßler, Gerhard; Wiest, Tina; Berger, Burkhard; Niederstätter, Harald; Parson, Walther; Davis, Carey; Budowle, Bruce; Burri, Helen; Borer, Urs; Koller, Christoph; Carvalho, Elizeu F.; Domingues, Patricia M.; Chamoun, Wafaa Takash; Coble, Michael D.; Hill, Carolyn R.; Corach, Daniel; Caputo, Mariela; D’Amato, Maria E.; Davison, Sean; Decorte, Ronny; Larmuseau, Maarten H.D.; Ottoni, Claudio; Rickards, Olga; Lu, Di; Jiang, Chengtao; Dobosz, Tadeusz; Jonkisz, Anna; Frank, William E.; Furac, Ivana; Gehrig, Christian; Castella, Vincent; Grskovic, Branka; Haas, Cordula; Wobst, Jana; Hadzic, Gavrilo; Drobnic, Katja; Honda, Katsuya; Hou, Yiping; Zhou, Di; Li, Yan; Hu, Shengping; Chen, Shenglan; Immel, Uta-Dorothee; Lessig, Rüdiger; Jakovski, Zlatko; Ilievska, Tanja; Klann, Anja E.; García, Cristina Cano; de Knijff, Peter; Kraaijenbrink, Thirsa; Kondili, Aikaterini; Miniati, Penelope; Vouropoulou, Maria; Kovacevic, Lejla; Marjanovic, Damir; Lindner, Iris; Mansour, Issam; Al-Azem, Mouayyad; Andari, Ansar El; Marino, Miguel; Furfuro, Sandra; Locarno, Laura; Martín, Pablo; Luque, Gracia M.; Alonso, Antonio; Miranda, Luís Souto; Moreira, Helena; Mizuno, Natsuko; Iwashima, Yasuki; Neto, Rodrigo S. Moura; Nogueira, Tatiana L.S.; Silva, Rosane; Nastainczyk-Wulf, Marina; Edelmann, Jeanett; Kohl, Michael; Nie, Shengjie; Wang, Xianping; Cheng, Baowen; Núñez, Carolina; Pancorbo, Marian Martínez de; Olofsson, Jill K.; Morling, Niels; Onofri, Valerio; Tagliabracci, Adriano; Pamjav, Horolma; Volgyi, Antonia; Barany, Gusztav; Pawlowski, Ryszard; Maciejewska, Agnieszka; Pelotti, Susi; Pepinski, Witold; Abreu-Glowacka, Monica; Phillips, Christopher; Cárdenas, Jorge; Rey-Gonzalez, Danel; Salas, Antonio; Brisighelli, Francesca; Capelli, Cristian; Toscanini, Ulises; Piccinini, Andrea; Piglionica, Marilidia; Baldassarra, Stefania L.; Ploski, Rafal; Konarzewska, Magdalena; Jastrzebska, Emila; Robino, Carlo; Sajantila, Antti; Palo, Jukka U.; Guevara, Evelyn; Salvador, Jazelyn; Ungria, Maria Corazon De; Rodriguez, Jae Joseph Russell; Schmidt, Ulrike; Schlauderer, Nicola; Saukko, Pekka; Schneider, Peter M.; Sirker, Miriam; Shin, Kyoung-Jin; Oh, Yu Na; Skitsa, Iulia; Ampati, Alexandra; Smith, Tobi-Gail; Calvit, Lina Solis de; Stenzl, Vlastimil; Capal, Thomas; Tillmar, Andreas; Nilsson, Helena; Turrina, Stefania; De Leo, Domenico; Verzeletti, Andrea; Cortellini, Venusia; Wetton, Jon H.; Gwynne, Gareth M.; Jobling, Mark A.; Whittle, Martin R.; Sumita, Denilce R.; Wolańska-Nowak, Paulina; Yong, Rita Y.Y.; Krawczak, Michael; Nothnagel, Michael; Roewer, Lutz

    2014-01-01

    In a worldwide collaborative effort, 19,630 Y-chromosomes were sampled from 129 different populations in 51 countries. These chromosomes were typed for 23 short-tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, GATAH4, DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643) and using the PowerPlex Y23 System (PPY23, Promega Corporation, Madison, WI). Locus-specific allelic spectra of these markers were determined and a consistently high level of allelic diversity was observed. A considerable number of null, duplicate and off-ladder alleles were revealed. Standard single-locus and haplotype-based parameters were calculated and compared between subsets of Y-STR markers established for forensic casework. The PPY23 marker set provides substantially stronger discriminatory power than other available kits but at the same time reveals the same general patterns of population structure as other marker sets. A strong correlation was observed between the number of Y-STRs included in a marker set and some of the forensic parameters under study. Interestingly a weak but consistent trend toward smaller genetic distances resulting from larger numbers of markers became apparent. PMID:24854874

  15. Search for linkage to schizophrenia on the X and Y chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Devoto, M.; Ott, J. [Columbia Univ., New York, NY (United States); Vita, A. [Univ. of Milan (Italy)] [and others

    1994-06-15

    Markers for X chromosome loci were used in linkage studies of a large group of small families (n = 126) with at least two schizophrenic members in one sibship. Based on the hypothesis that a gene for schizophrenia could be X-Y linked, with homologous loci on both X and Y, our analyses included all families regardless of the pattern of familial inheritance. Lod scores were computed with both standard X-linked and a novel X-Y model, and sib-pair analyses were performed for all markers examining the sharing of maternal alleles. Small positive lod scores were obtained for loci pericentromeric, from Xp11.4 to Xq12. Lod scores were also computed separately in families selected for evidence of maternal inheritance and absence of male to male transmission of psychosis. The lod scores for linkage to the locus DXS7 reached a maximum of 1.83 at 0.08% recombination, assuming dominant inheritance on the X chromosome in these families (n = 34). Further investigation of the X-Y homologous gene hypothesis focussing on this region is warranted. 39 refs. 1 fig., 6 tabs.

  16. The gene for calcium-modulating cyclophilin ligand (CAMLG) is located on human Chromosome 5q23 and a syntenic region of mouse chromosome 13

    Energy Technology Data Exchange (ETDEWEB)

    Bram, R.J.; Valentine, V.; Shapiro, D.N. [St. Jude Children`s Research Hospital, Memphis, TN (United States)]|[Univ. of Tennessee, Memphis, TN (United States)] [and others

    1996-01-15

    The CAMLG gene encodes a novel cyclophilin B-binding protein called calcium-modulating cyclophilin ligand, which appears to be involved in the regulation of calcium signaling in T lymphocytes and other cells. The murine homolog, Caml, was localized by interspecific backcross analysis in the middle of chromosome 13. By fluorescence in situ hybridization, this gene was localized to human chromosome 5 in a region (q23) known to be syntenic to mouse chromosome 13. These results provide further evidence supporting the extensive homology between human chromosome 5q and mouse chromosome 13. In addition, the results will provide a basis for further evaluation of cytogenetic anomalies that may contribute to inherited defects in calcium signaling or immune system function. 15 refs., 2 figs.

  17. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Progress report, July 1992--August 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J.D.

    1993-09-01

    Progress in identification of chromosomal transformations associated with leukemogenesis is described. In particular progress in DNA cloning of chromosomal break points in human cancer patients is described.

  18. Comparative mapping of a gorilla-derived alpha satellite DNA clone on great ape and human chromosomes.

    Science.gov (United States)

    Baldini, A; Miller, D A; Shridhar, V; Rocchi, M; Miller, O J; Ward, D C

    1991-11-01

    We have isolated an alpha satellite DNA clone, pG3.9, from gorilla DNA. Fluorescence in situ hybridization on banded chromosomes under high stringency conditions revealed that pG3.9 identifies homologous sequences at the centromeric region of ten gorilla chromosomes, and, with few exceptions, also recognizes the homologous chromosomes in human. A pG3.9-like alphoid DNA is present on a larger number of orangutan chromosomes, but, in contrast, is present on only two chromosomes in the chimpanzee. These results show that the chromosomal subsets of related alpha satellite DNA sequences may undergo different patterns of evolution.

  19. DNA methylation signature in peripheral blood reveals distinct characteristics of human X chromosome numerical aberrations

    OpenAIRE

    2015-01-01

    Background Abnormal sex chromosome numbers in humans are observed in Turner (45,X) and Klinefelter (47,XXY) syndromes. Both syndromes are associated with several clinical phenotypes, whose molecular mechanisms are obscure, and show a range of inter-individual penetrance. In order to understand the effect of abnormal numbers of X chromosome on the methylome and its correlation to the variable clinical phenotype, we performed a genome-wide methylation analysis using MeDIP and Illumina’s Infiniu...

  20. Identification of genetic variation on the horse y chromosome and the tracing of male founder lineages in modern breeds.

    Directory of Open Access Journals (Sweden)

    Barbara Wallner

    Full Text Available The paternally inherited Y chromosome displays the population genetic history of males. While modern domestic horses (Equus caballus exhibit abundant diversity within maternally inherited mitochondrial DNA, no significant Y-chromosomal sequence diversity has been detected. We used high throughput sequencing technology to identify the first polymorphic Y-chromosomal markers useful for tracing paternal lines. The nucleotide variability of the modern horse Y chromosome is extremely low, resulting in six haplotypes (HT, all clearly distinct from the Przewalski horse (E. przewalskii. The most widespread HT1 is ancestral and the other five haplotypes apparently arose on the background of HT1 by mutation or gene conversion after domestication. Two haplotypes (HT2 and HT3 are widely distributed at high frequencies among modern European horse breeds. Using pedigree information, we trace the distribution of Y-haplotype diversity to particular founders. The mutation leading to HT3 occurred in the germline of the famous English Thoroughbred stallion "Eclipse" or his son or grandson and its prevalence demonstrates the influence of this popular paternal line on modern sport horse breeds. The pervasive introgression of Thoroughbred stallions during the last 200 years to refine autochthonous breeds has strongly affected the distribution of Y-chromosomal variation in modern horse breeds and has led to the replacement of autochthonous Y chromosomes. Only a few northern European breeds bear unique variants at high frequencies or fixed within but not shared among breeds. Our Y-chromosomal data complement the well established mtDNA lineages and document the male side of the genetic history of modern horse breeds and breeding practices.

  1. The CEPH consortium linkage map of human chromosome 13

    Energy Technology Data Exchange (ETDEWEB)

    Bowcock, A.M.; Barnes, R.I. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States); Gerken, S.C.; Leppert, M. [Univ. of Utah School of Medicine, Salt Lake City, UT (United States); Shiang, R. [Univ. of Iowa, Iowa City, IA (United States); Jabs, E.W.; Warren, A.C.; Antonarakis, S. [Johns Hopkins School of Medicine, Baltimore, MD (United States); Retief, A.E. [Univ. of Stellenbosch, Tygerberg (South Africa); Vergnaud, G. [Centre d`Etudes du Bouchet, Vert le Petit (France)] [and others

    1993-05-01

    The CEPH consortium map of chromosome 13 is presented. This map contains 59 loci defined by genotypes generated from CEPH family DNAs with 94 different probe and restriction enzyme combinations contributed by 9 laboratories. A total of 25 loci have been placed on the map with likelihood support of at least 1000:1. The map extends from loci in the centromeric region of chromosome 13 to the terminal band of the long arm. Multipoint linkage analyses provided estimates that the male, female, and sex-averaged maps extend for 158, 203, and 178cM respectively. The largest interval is 24 cM and is between D13Z1 (alphaRI) and ATP1AL1. The mean genetic distance between the 25 uniquely placed loci is 7 cM. 76 refs., 3 figs., 5 tabs.

  2. [239Pu and chromosomal aberrations in human peripheral blood lymphocytes].

    Science.gov (United States)

    Okladnikova, N D; Osovets, S V; Kudriavtseva, T I

    2009-01-01

    The genome status in somatic cells was assessed using the chromosomal aberration (CA) test in peripheral blood lymphocytes from 194 plutonium workers exposed to occupational radiation mainly from low-transportable compounds of airborne 230Pu. Pu body burden at the time of cytogenetic study varied from values close to the method sensitivity to values multiply exceeding the permissible level. Standard (routine) methods of peripheral blood lymphocytes cultivation were applied. Chromatid- and chromosomal-type structural changes were estimated. Aberrations were estimated per 100 examined metaphase cells. The quantitative relationship between the CA frequency and Pu body burden and the absorbed dose to the lung was found. Mathematical processing of results was carried out based on the phenomenological model. The results were shown as theoretical and experimental curves. The threshold of the CA yield was 0.43 +/- 0.03 kBq (Pu body burden) and 6.12 +/- 1.20 cGy (absorbed dose to the lung).

  3. Paternal uniparental isodisomy for human chromosome 20 and absence of external ears

    Energy Technology Data Exchange (ETDEWEB)

    Spinner, N.B.; Rand, E.; McDonald-McGinn, D.M. [Childrens Hospital of Philadelphia, PA (United States)] [and others

    1994-09-01

    Uniparental disomy can cause disease if the involved chromosomal region contains imprinted genes. Uniparental disomy for portions of human chromosomes 6, 7, 9, 11, 14 and 15 have been associated with abnormal phenotypes. We studied a patient with multiple abnormalities including an absent left ear with a small right ear remnant, microcephaly, congenital heart disease and Hirschprung`s disease. Cytogenetics revealed a 45,XY,-20,-20,+ter rea(20;20)(p13;p13) in 10/10 cells from bone marrow and 20/20 cells from peripheral blood. Analysis of a skin culture revealed a second cell line with trisomy 20 resulting from an apparently normal chromosome 20 in addition to the terminally rearranged chromosome, in 8/100 cells studied. The unusual phenotype of our patient was not consistent with previously reported cases of deletions of 20p or mosaic trisomy 20. We hypothesized that the patient`s phenotype could either result from deletion of both copies of a gene near the p arm terminus of chromosome 20 or from uniparental disomy of chromosome 20. There were no alterations or rearrangements of PTP-alpha (which maps to distal 20p) by Southern or Northern blot analysis. A chromosome 20 sub-telomeric probe was found to be present on the rearranged 20 by FISH suggesting that subtelomeric sequences have not been lost as a consequece of this rearrangement. To determine the parental origin of the 2 chromosome 20`s in the terminal rearrangement, we studied the genotypes of the proband and his parents in lymphoblastoid cell lines at 8 polymorphic loci. Genotypes at D20S115, D20S186, and D20S119 indicated that there was paternal isodisomy. Other loci were uninformative. This is the first example of uniparental disomy for chromosome 20. Further studies are warranted to correlate phenotype with uniparental inheritance of this chromosome.

  4. A Study for the Feature Selection to Identify GIEMSA-Stained Human Chromosomes Based on Artificial Neural Network

    Science.gov (United States)

    2007-11-02

    neural network (ANN) has been adopted for the human chromosome classification. It is important to select optimum features for training neural network...Many studies for computer-based chromosome analysis have shown that it is possible to classify chromosomes into 24 subgroups. In addition, artificial

  5. [The dependence of the level of chromosome aberrations in human lymphocytes on the duration of their cultivation under ultraviolet irradiation].

    Science.gov (United States)

    Rushkovskiĭ, S R; Bezrukov, V F; Bariliak, I R

    1998-01-01

    The effect of duration of cultivation of lymphocytes of human UV-irradiated peripheral blood on the chromosomal aberration rate was studied. Under prolonged cultivation the more irradiated blood samples revealed higher level of chromosomal aberrations. The existence of UV-induced delayed chromosomal instability is supposed that may be found under prolonged cultivation. The mechanisms of this phenomenon are discussed.

  6. The microcell mediated transfer of human chromosome 8 into highly metastatic rat liver cancer cell line C5F

    Institute of Scientific and Technical Information of China (English)

    Hu Liu; Sheng-Long Ye; Jiong Yang; Zhao-You Tang; Yin-Kun Liu; Lun-Xiu Qin; Shuang-Jian Qiu; Rui-Xia Sun

    2003-01-01

    AIM: Our previous research on the surgical samples of primary liver cancer with CGH showed that the loss of human chromosome 8p had correlation with the metastatic phenotype of liver cancer. In order to seek the functional evidence that there could be a metastatsis suppressor gene (s) for liver cancer on human chromosome 8, we tried to transfer normal human chromosome 8 into rat liver cancer cell line C5F, which had high metastatic potential to lung.METHODS: Human chromosome 8 randomly marked with neo gene was introduced into C5F cell line by MMCT and positive microcell hybrids were screened by double selections of G418 and HAT. Single cell isolation cloning was applied to clone microcell hybrids. Finally, STS-PCR and WCP-FISH were used to confirm the introduction.RESULTS: Microcell hybrids resistant to HAT and G418 were obtained and 15 clones were obtained by single-cell isolation cloning. STS-PCR and WCP-FISH proved that human chromosome 8 had been successfully introduced into rat liver cancer cell line C5F. STS-PCR detected a random loss in the chromosome introduced and WCP-FISH found a consistent recombination of the introduced human chromosome with the rat chromosome.CONCLUSION: The successful introduction of human chromosome 8 into highly metastatic rat liver cancer cell line builds the basis for seeking functional evidence of a metastasis suppressor gene for liver cancer harboring on human chromosome 8 and its subsequent cloning.

  7. Stable X Chromosome Reactivation in Female Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Tahsin Stefan Barakat

    2015-02-01

    Full Text Available In placental mammals, balanced expression of X-linked genes is accomplished by X chromosome inactivation (XCI in female cells. In humans, random XCI is initiated early during embryonic development. To investigate whether reprogramming of female human fibroblasts into induced pluripotent stem cells (iPSCs leads to reactivation of the inactive X chromosome (Xi, we have generated iPSC lines from fibroblasts heterozygous for large X-chromosomal deletions. These fibroblasts show completely skewed XCI of the mutated X chromosome, enabling monitoring of X chromosome reactivation (XCR and XCI using allele-specific single-cell expression analysis. This approach revealed that XCR is robust under standard culture conditions, but does not prevent reinitiation of XCI, resulting in a mixed population of cells with either two active X chromosomes (Xas or one Xa and one Xi. This mixed population of XaXa and XaXi cells is stabilized in naive human stem cell medium, allowing expansion of clones with two Xas.

  8. The sequence and analysis of duplication-rich human chromosome 16.

    Science.gov (United States)

    Martin, Joel; Han, Cliff; Gordon, Laurie A; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Chan, Yee Man; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C; Bruno, William J; Buckingham, Judith M; Callen, David F; Campbell, Connie S; Campbell, Mary L; Campbell, Evelyn W; Caoile, Chenier; Challacombe, Jean F; Chasteen, Leslie A; Chertkov, Olga; Chi, Han C; Christensen, Mari; Clark, Lynn M; Cohn, Judith D; Denys, Mirian; Detter, John C; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A; Grady, Deborah L; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip B; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Manohar, Chitra F; Mark, Graham A; McMurray, Kimberly L; Meincke, Linda J; Morgan, Jenna; Moyzis, Robert K; Mundt, Mark O; Munk, A Christine; Nandkeshwar, Richard D; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O; Robinson, Donna L; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H; Scott, Duncan; Shough, Timothy; Stallings, Raymond L; Stalvey, Malinda; Sutherland, Robert D; Tapia, Roxanne; Tesmer, Judith G; Thayer, Nina; Thompson, Linda S; Tice, Hope; Torney, David C; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E; Ustaszewska, Anna; Vo, Nu; White, P Scott; Williams, Albert L; Wills, Patricia L; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; Dejong, Pieter; Bruce, David; Doggett, Norman A; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; Rokhsar, Daniel S; Eichler, Evan E; Gilna, Paul; Lucas, Susan M; Myers, Richard M; Rubin, Edward M; Pennacchio, Len A

    2004-12-23

    Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,670 aligned transcripts, 19 transfer RNA genes, 341 pseudogenes and three RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukaemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. Whereas the segmental duplications of chromosome 16 are enriched in the relatively gene-poor pericentromere of the p arm, some are involved in recent gene duplication and conversion events that are likely to have had an impact on the evolution of primates and human disease susceptibility.

  9. MAOA and GYG2 are submitted to X chromosome inactivation in human fibroblasts.

    Science.gov (United States)

    Stabellini, Raquel; Vasques, Luciana R; de Mello, Joana Carvalho Moreira; Hernandes, Lys Molina; Pereira, Lygia V

    2009-08-16

    X chromosome inactivation (XCI) is a comprehensively studied phenomenon that helped to highlight the heritable nature of epigenetic modifications. Although it consists of the transcriptional inactivation of a whole X chromosome in females, some genes escape this process and present bi-allelic expression. Using human fibroblasts with skewed inactivation, we determined allele-specific expression of two X-linked genes previously described to escape XCI in rodent/human somatic cell hybrids, MAOA and GYG2, and the pattern of DNA methylation of their 5' end. Results from these complementary methodologies let us to conclude that both genes are subjected to X inactivation in normal human fibroblasts, indicating that hybrid cells are not an adequate system for studying epigenotypes. We emphasize the need of an analysis of XCI in normal human cell lines, helping us to determine more precisely which X-linked genes contribute to differences among genders and to the phenotypes associated with sex chromosomes aneuploidies.

  10. Forensic analysis of polymorphism and regional stratification of Y-chromosomal microsatellites in Belarus.

    Science.gov (United States)

    Rebała, Krzysztof; Tsybovsky, Iosif S; Bogacheva, Anna V; Kotova, Svetlana A; Mikulich, Alexei I; Szczerkowska, Zofia

    2011-01-01

    Nine loci defining minimal haplotypes and four other Y-chromosomal short tandem repeats (Y-STRs) DYS437, DYS438, DYS439 and GATA H4.1 were analysed in 414 unrelated males residing in four regions of Belarus. Haplotypes of 328 males were further extended by 7 additional Y-STRs: DYS388, DYS426, DYS448, DYS456, DYS458, DYS460 and DYS635. The 13-locus haplotype diversity was 0.9978 and discrimination capacity was 78.7%, indicating presence of identical haplotypes among unrelated males. Seven additional Y-STRs enabled almost complete discrimination of undifferentiated 13-locus haplotypes, increasing haplotype diversity to 0.9998 and discrimination capacity to 97.9%. Analysis of molecular variance of minimal haplotypes excluded the use of a Y-STR database for Belarusians residing in northeastern Poland as representative for the Belarusian population in forensic practice, and revealed regional stratification within the country. However, four additional markers (DYS437, DYS438, DYS439 and GATA H4.1) were shown to eliminate the observed geographical substructure among Belarusian males. The results imply that in case of minimal and PowerPlex Y haplotypes, a separate frequency database should be used for northern Belarus to estimate Y-STR profile frequencies in forensic casework. In case of Yfiler haplotypes, regional stratification within Belarus may be neglected.

  11. An improved method for producing radiation hybrids applied to human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, C.L.

    1992-01-01

    At the initiation of the grant we had just produced radiation hybrids from a monochromosomal microcell hybrid containing human chromosome 19 as its only human component. Radiation hybrids were produced using doses of radiation ranging from 1000--8000 rads. Lethally irradiated cells were then fused to hamster recipients (CHTG49) and selected for growth in histidinol. Approximately 240 clones were isolated and 75 clones were expanded for the isolation of DNA. This report describes in situ hybridization studies and the introduction of markers into human chromosome 19.

  12. The orphan nuclear receptor ROR{alpha} (RORA) maps to a conserved region of homology on human chromosome 15q21-q22 and mouse chromosome 9

    Energy Technology Data Exchange (ETDEWEB)

    Giguere, V. [McGill Univ., Montreal (Canada); Beatty, B.; Squire, J. [Hospital for Sick Children, Toronto (Canada)] [and others

    1995-08-10

    ROR{alpha} is a novel member of the steroid/thyroid/retinoid receptor superfamily with unique DNA-binding properties. We have mapped the RORA gene by fluorescence in situ hybridization to human chromosome 15q21-q22. To map the mouse Rora gene, a partial mouse cDNA clone was isolated from brain. Using interspecific backcross analysis, we have mapped the Rora gene to mouse chromosome 9. This places the human RORA gene in the proximity of the PML gene, which is involved in a reciprocal chromosomal translocation t(15:17) with the RARA gene in patients with acute promyelocytic leukemia. 13 refs., 2 figs.

  13. Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells

    Science.gov (United States)

    Mandegar, Mohammad A.; Moralli, Daniela; Khoja, Suhail; Cowley, Sally; Chan, David Y.L.; Yusuf, Mohammed; Mukherjee, Sayandip; Blundell, Michael P.; Volpi, Emanuela V.; Thrasher, Adrian J.; James, William; Monaco, Zoia L.

    2011-01-01

    We present a novel and efficient non-integrating gene expression system in human embryonic stem cells (hESc) utilizing human artificial chromosomes (HAC), which behave as autonomous endogenous host chromosomes and segregate correctly during cell division. HAC are important vectors for investigating the organization and structure of the kinetochore, and gene complementation. HAC have so far been obtained in immortalized or tumour-derived cell lines, but never in stem cells, thus limiting their potential therapeutic application. In this work, we modified the herpes simplex virus type 1 amplicon system for efficient transfer of HAC DNA into two hESc. The deriving stable clones generated green fluorescent protein gene-expressing HAC at high frequency, which were stably maintained without selection for 3 months. Importantly, no integration of the HAC DNA was observed in the hESc lines, compared with the fibrosarcoma-derived control cells, where the exogenous DNA frequently integrated in the host genome. The hESc retained pluripotency, differentiation and teratoma formation capabilities. This is the first report of successfully generating gene expressing de novo HAC in hESc, and is a significant step towards the genetic manipulation of stem cells and potential therapeutic applications. PMID:21593218

  14. Large-scale cloning of human chromosome 2-specific yeast artificial chromosomes (YACs) using an interspersed repetitive sequences (IRS)-PCR approach.

    Science.gov (United States)

    Liu, J; Stanton, V P; Fujiwara, T M; Wang, J X; Rezonzew, R; Crumley, M J; Morgan, K; Gros, P; Housman, D; Schurr, E

    1995-03-20

    We report here an efficient approach to the establishment of extended YAC contigs on human chromosome 2 by using an interspersed repetitive sequences (IRS)-PCR-based screening strategy for YAC DNA pools. Genomic DNA was extracted from 1152 YAC pools comprised of 55,296 YACs mostly derived from the CEPH Mark I library. Alu-element-mediated PCR was performed for each pool, and amplification products were spotted on hybridization membranes (IRS filters). IRS probes for the screening of the IRS filters were obtained by Alu-element-mediated PCR. Of 708 distinct probes obtained from chromosome 2-specific somatic cell hybrids, 85% were successfully used for library screening. Similarly, 80% of 80 YAC walking probes were successfully used for library screening. Each probe detected an average of 6.6 YACs, which is in good agreement with the 7- to 7.5-fold genome coverage provided by the library. In a preliminary analysis, we have identified 188 YAC groups that are the basis for building contigs for chromosome 2. The coverage of the telomeric half of chromosome 2q was considered to be good since 31 of 34 microsatellites and 22 of 23 expressed sequence tags that were chosen from chromosome region 2q13-q37 were contained in a chromosome 2 YAC sublibrary generated by our experiments. We have identified a minimum of 1610 distinct chromosome 2-specific YACs, which will be a valuable asset for the physical mapping of the second largest human chromosome.

  15. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes

    Science.gov (United States)

    Puterova, Janka; Razumova, Olga; Martinek, Tomas; Alexandrov, Oleg; Divashuk, Mikhail; Kubat, Zdenek; Hobza, Roman; Karlov, Gennady

    2017-01-01

    Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental industry as a source of oil, minerals and vitamins. In this study, we analyzed the transposable elements and satellites in its genome. We carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new bioinformatics approach for advanced satellite DNA analysis and showed that about 25% of the genome consists of satellite DNA and about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and 45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degeneration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes. PMID:28057732

  16. Ancestral Y-linked genes were maintained by translocation to the X and Y chromosomes fused to an autosomal pair in the Okinawa spiny rat Tokudaia muenninki.

    Science.gov (United States)

    Murata, Chie; Kuroki, Yoko; Imoto, Issei; Kuroiwa, Asato

    2016-09-01

    Two species of the genus Tokudaia lack the Y chromosome and SRY, but several Y-linked genes have been rescued by translocation or transposition to other chromosomes. Tokudaia muenninki is the only species in the genus that maintains the Y owing to sex chromosome-autosome fusions. According to previous studies, many SRY pseudocopies and other Y-linked genes have evolved by excess duplication in this species. Using RNA-seq and RT-PCR, we found that ZFY, EIF2S3Y, TSPY, UTY, DDX3Y, USP9Y, and RBMY, but not UBA1Y, had high deduced amino acid sequence similarity and similar expression patterns with other rodents, suggesting that these genes were functional. Based on FISH and quantitative real-time PCR, all of the genes except for UTY and DDX3Y were amplified on the X and Y chromosomes with approximately 10-66 copies in the male genome. In a comparative analysis of the 372.4-kb BAC sequence and Y-linked gene transcripts from T. muenninki with the mouse Y genomic sequence, we observed that multiple-copy genes in the ancestral Y genome were nonfunctional, indicating that the gene functions were assumed by amplified copies. We also found a LTR sequence at the distal end of a SRY duplication unit, suggesting that unequal sister chromatid exchange mediated by retrotransposable elements could have been involved in SRY amplification. Our results revealed that the Y-linked genes were rescued from degeneration via translocations to other sex chromosomal regions and amplification events in T. muenninki.

  17. Three-Dimensional Organization of Chromosome Territories and the Human Interphase Cell Nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); C. Münkel (Christian); J. Langowski (Jörg)

    1998-01-01

    textabstractTo study the three-dimensional organization of chromosome territories and the human interphase cell nucleus we developed models which could be compared to experiments. Despite the successful linear sequencing of the human genome its 3D-organization is widely unknown. Using Monte Carl

  18. Three-dimensional organization of chromosome territories in the human interphase cell nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); C. Münkel (Christian); J. Langowski (Jörg)

    1999-01-01

    markdownabstractTo study the three-dimensional organization of chromosome territories and the human interphase cell nucleus we developed models which could be compared to experiments. Despite the successful linear sequencing of the human genome its 3D-organization is widely unknown. Using Monte Carl

  19. Three-Dimensional Organization of Chromosome Territories and the Human Cell Nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias)

    1999-01-01

    textabstractTo study the three-dimensional organization of chromosome territories and the human interphase cell nucleus we developed models, which could be compared to experiments. Despite the successful linear sequencing of the human genome its 3D-organization is widely unknown. Using Monte Car

  20. Haploid allele mapping of Y-chromosome minisatellite, MSY1 (DYF155S1), to a Japanese population.

    Science.gov (United States)

    Jin, Zheng-Bin; Huang, Xiu-Lin; Nakajima, Yasuhiro; Yukawa, Nobuhiro; Osawa, Motoki; Takeichi, Sanae

    2003-06-01

    The present study analyses the human Y-chromosome minisatellite locus, MSY1 (DYF155S1), in 205 Japanese males of 191 pedigrees using the minisatellite variant repeat (MVR) mapping system. The internal haploid structures of the detected alleles considerably varied and consisted of three major repeat units: types 2, 3 and 4. A comparison of the haploid profiles of the MVR codes identified 185 distinct alleles, of which only five were shared. We did not detect a type 1 repeat unit, and variations were frequent at the 5' end of the minisatellite locus. Within an analysis of 24 paternally linked DNA samples donated by ten families, no mutational events were identified even over two generation gaps. Furthermore, we applied this mapping system to a paternity test in which the alleged father was missing.

  1. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    Science.gov (United States)

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  2. A small supernumerary marker chromosome present in a Turner syndrome patient not derived from X- or Y-chromosome: a case report

    Directory of Open Access Journals (Sweden)

    Vermeesch Joris

    2009-11-01

    Full Text Available Abstract Background Small supernumerary marker chromosomes (sSMC can be present in numerically abnormal karyotypes like in a 'Turner-syndrome karyotype' mos 45,X/46,X,+mar. Results Here we report the first case of an sSMC found in Turner syndrome karyotypes (sSMCT derived from chromosome 14 in a Turner syndrome patient. According to cytogenetic and molecular cytogenetic characterization the karyotype was 46,X,+del(14(q11.1. The present case is the third Turner syndrome case with an sSMCT not derived from the X- or the Y-chromosome. Conclusion More comprehensive characterization of such sSMCT might identify them to be more frequent than only ~0.6% in Turner syndrome cases according to available data.

  3. [Molecular cytogenetic methods for studying interphase chromosomes in human brain cells].

    Science.gov (United States)

    Iurov, I Iu; Vorsanova, S G; Solov'ev, I V; Iurov, Iu B

    2010-09-01

    One of the main genetic factors determining the functional activity of the genome in somatic cells, including brain nerve cells, is the spatial organization of chromosomes in the interphase nucleus. For a long time, no studies of human brain cells were carried out until high-resolution methods of molecular cytogenetics were developed to analyze interphase chromosomes in nondividing somatic cells. The purpose of the present work was to assess the potential of high-resolution methods of interphase molecular cytogenetics for studying chromosomes and the nuclear organization in postmitotic brain cells. A high efficiency was shown by such methods as multiprobe and quantitative fluorescence in situ hybridization (Multiprobe FISH and QFISH), ImmunoMFISH (analysis of the chromosome organization in different types of brain cells), and interphase chromosome-specific multicolor banding (ICS-MCB). These approaches allowed studying the nuclear organization depending on the gene composition and types of repetitive DNA of specific chromosome regions in certain types of brain cells (in neurons and glial cells, in particular). The present work demonstrates a high potential of interphase molecular cytogenetics for studying the structural and functional organizations of the cell nucleus in highly differentiated nerve cells. Analysis of interphase chromosomes of brain cells in the normal and pathological states can be considered as a promising line of research in modern molecular cytogenetics and cell neurobiology, i. e., molecular neurocytogenetics.

  4. The TP53 dependence of radiation-induced chromosome instability in human lymphoblastoid cells

    Science.gov (United States)

    Schwartz, Jeffrey L.; Jordan, Robert; Evans, Helen H.; Lenarczyk, Marek; Liber, Howard

    2003-01-01

    The dose and TP53 dependence for the induction of chromosome instability were examined in cells of three human lymphoblastoid cell lines derived from WIL2 cells: TK6, a TP53-normal cell line, NH32, a TP53-knockout created from TK6, and WTK1, a WIL2-derived cell line that spontaneously developed a TP53 mutation. Cells of each cell line were exposed to (137)Cs gamma rays, and then surviving clones were isolated and expanded in culture for approximately 35 generations before the frequency and characteristics of the instability were analyzed. The presence of dicentric chromosomes, formed by end-to-end fusions, served as a marker of chromosomal instability. Unexposed TK6 cells had low levels of chromosomal instability (0.002 +/- 0.001 dicentrics/cell). Exposure of TK6 cells to doses as low as 5 cGy gamma rays increased chromosome instability levels nearly 10-fold to 0.019 +/- 0.008 dicentrics/cell. There was no further increase in instability levels beyond 5 cGy. In contrast to TK6 cells, unexposed cultures of WTK1 and NH32 cells had much higher levels of chromosome instability of 0.034 +/- 0.007 and 0.041 +/- 0.009, respectively, but showed little if any effect of radiation on levels of chromosome instability. The results suggest that radiation exposure alters the normal TP53-dependent cell cycle checkpoint controls that recognize alterations in telomere structure and activate apoptosis.

  5. Function of the sex chromosomes in mammalian fertility.

    Science.gov (United States)

    Heard, Edith; Turner, James

    2011-10-01

    The sex chromosomes play a highly specialized role in germ cell development in mammals, being enriched in genes expressed in the testis and ovary. Sex chromosome abnormalities (e.g., Klinefelter [XXY] and Turner [XO] syndrome) constitute the largest class of chromosome abnormalities and the commonest genetic cause of infertility in humans. Understanding how sex-gene expression is regulated is therefore critical to our understanding of human reproduction. Here, we describe how the expression of sex-linked genes varies during germ cell development; in females, the inactive X chromosome is reactivated before meiosis, whereas in males the X and Y chromosomes are inactivated at this stage. We discuss the epigenetics of sex chromosome inactivation and how this process has influenced the gene content of the mammalian X and Y chromosomes. We also present working models for how perturbations in sex chromosome inactivation or reactivation result in subfertility in the major classes of sex chromosome abnormalities.

  6. The human and mouse receptors of hyaluronan-mediated motility, RHAMM, genes (HMMR) map to human chromosome 5q33.2-qter and mouse chromosome 11

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Roller, M.L.; Camper, S.A. [Univ. of Michigan Medical School, Ann Arbor, MI (United States)] [and others

    1995-11-01

    The gene for the receptor for hyaluronan-mediated motility, RHAAM (designated hyaluronan-mediated motility receptor, HMMR (human) and Hmmr (mouse), for mapping purposes), was localized to human chromosome 5q33.2-qter by somatic cell and radiation hybrid analyses. Investigation of two interspecific back-crosses localized the mouse RHAMM (Hmmr) locus 18 cM from the centromere of mouse chromosome 11 within a region of synteny homology with human chromosome 5q23-q35 genes. The map position of the human RHAMM gene places it in a region comparatively rich in disease-associated genes, including those for low-frequency hearing loss, dominant limb-girdle muscular dystrophy, diastrophic dysplasia, Treacher Collins syndrome, and myeloid disorders associated with the 5q-syndrome. The RHAMM gene location and its ability to transform cells when overexpressed implicate RHAMM as a possible candidate gene in the pathogenesis of the recently described t(5;14)(q33-q34;q11) acute lymphoblastic leukemias. 18 refs., 1 fig.

  7. A Newborn with Genital Ambiguity, 45,X/46,XY Mosaicism, a Jumping Chromosome Y, and Congenital Adrenal Hyperplasia

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2013-01-01

    Full Text Available Disorders of sex development (DSD, formerly termed “intersex” conditions, arise from numerous causes. CAH secondary to 21-hydroxylase deficiency is the most common cause of DSD. Sex chromosome disorders, including sex chromosome mosaicism, are the second most common cause of DSD. We discuss a medically complex neonate with DSD presenting with ambiguous genitalia. Hormone levels suggested 21-hydroxylase deficiency. Molecular analysis revealed compound heterozygous mutations in the 21-hydroxylase gene (CYP21A2, confirming the diagnosis of CAH. Chromosome analysis revealed sex chromosome mosaicism with three cell lines: 45,X[8]/45,X,tas(Y;16(p11.32;p13.3[8]/45,X,t(Y;8(p11.32;p23.3[4] with the Y chromosome in telomere association with chromosomes 8p and 16p in different cell lines, a “jumping translocation.” Histologically, the right gonad had irregular, distended seminiferous tubules with hyperplastic germ cells contiguous with ovarian stroma and primordial follicles. The left gonad had scant ovarian stroma and embryonic remnants. Chromosome analyses showed mosaicism in both gonads: 45,X[17]/45,X,tas(Y;8(p11.32;p23.3[3]. This is the first case of coexisting CAH and 45,X/46,XY mosaicism reported in the English literature and the third case of a constitutional chromosome Y “jumping translocation.” Our report documents the medical and genetic complexity of children such as this one with ambiguous genitalia and discusses the need for a multidisciplinary team approach.

  8. [The human genome--chromosome 10 and the collagen genes].

    Science.gov (United States)

    Brdicka, R

    1995-05-17

    In relation to locuses of the 10th chromosome at present the following are in the focus of interest: tumours of endocrine glands, medullary carcinoma of the thyroid gland (MTC) and multiple endocrine neoplasias (MEN). It seems that the unifying basis is the oncogene RET, responsible for the development of Hirschsprung's disease HSCR. The authors mentions also metabolically important locuses for choline acetyltransferase (CHAT), uriporphyrinogen synthase (UROS) and methyl guanine methyltransferase (MGMT). A special paragraph is devoted to a list of collagenous genes COL1-COL18 and diseases associated with them.

  9. Structure and chromosomal localization of the human thrombospondin gene.

    Science.gov (United States)

    Wolf, F W; Eddy, R L; Shows, T B; Dixit, V M

    1990-04-01

    Thrombospondin (THBS1) is a large modular glycoprotein component of the extracellular matrix and contains a variety of distinct domains, including three repeating subunits (types I, II, and III) that share homology to an assortment of other proteins. Determination of THBS1 gene structure has revealed that the type I repeat modules are encoded by symmetrical exons and that the heparin-binding domain is encoded by a single exon. To further elucidate the higher level organization of THBS1, the gene was localized to the q11-qter region of chromosome 15.

  10. Molecular genetic approach to human meningioma: loss of genes on chromosome 22

    Energy Technology Data Exchange (ETDEWEB)

    Seizinger, B.R.; De La Monte, S.; Atkins, L.; Gusella, J.F.; Martuza, R.L.

    1987-08-01

    A molecular genetic approach employing polymorphic DNA markers has been used to investigate the role of chromosomal aberrations in meningioma, one of the most common tumors of the human nervous system. Comparison of the alleles detected by DNA markers in tumor DNA versus DNA from normal tissue revealed chromosomal alterations present in primary surgical specimens. In agreement with cytogenetic studies of cultured meningiomas, the most frequent alteration detected was loss of heterozygosity on chromosome 22. Forty of 51 patients were constitutionally heterozygous for at least one chromosome 22 DNA marker. Seventeen of the 40 constitutionally heterozygotic patients (43%) displayed hemizygosity for the corresponding marker in their meningioma tumor tissues. Loss of heterozygosity was also detected at a significantly lower frequency for markers on several other autosomes. In view of the striking association between acoustic neuroma and meningioma in bilateral acoustic neurofibromatosis and the discovery that acoustic neuromas display specific loss of genes on chromosome 22, the authors propose that a common mechanism involving chromosome 22 is operative in the development of both tumor types. Fine-structure mapping to reveal partial deletions in meningiomas may provide the means to clone and characterize a gene (or genes) of importance for tumorigenesis in this and possibly other clinically associated tumors of the human nervous system.

  11. Early and Late Damages in Chromosome 3 of Human Lymphocytes After Radiation Exposure

    Science.gov (United States)

    Sunagawa, Mayumi; Mangala, Lingegowda; Zhang, Ye; Kahdim, Munira; Wilson, Bobby; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    Tumor formation in humans or animals is a multi-step process. An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. GI is defined as elevated or persistent genetic damages occurring many generations after the cells are exposed. While early studies have demonstrated radiation-induced GI in several cell types as detected in endpoints such as mutation, apoptosis and damages in chromosomes, the dependence of GI on the quality of radiation remains uncertain. To investigate GI in human lymphocytes induced by both low- and high-LET radiation, we initially exposed white blood cells collected from healthy subjects to gamma rays in vitro, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis post irradiation and at several intervals during the culture period. Among a number of biological endpoints planned for the project, the multi-color banding fluorescent in situ hybridization (mBAND) allows identification of inversions that were expected to be stable. We present here early and late chromosome aberrations detected with mBAND in chromosome 3 after gamma exposure. Comparison of chromosome damages in between human lymphocytes and human epithelial cells is also discussed

  12. Chromosomal and Genetic Analysis of a Human Lung Adenocarcinoma Cell Line OM

    Institute of Scientific and Technical Information of China (English)

    Yong-Wu Li; Lin Bai; Lyu-Xia Dai; Xu He; Xian-Ping Zhou

    2016-01-01

    Background: Lung cancer has become the leading cause of death in many regions.Carcinogenesis is caused by the stepwise accumulation of genetic and chromosomal changes.The aim of this study was to investigate the chromosome and gene alterations in the human lung adenocarcinoma cell line OM.Methods: We used Giemsa banding and multiplex fluorescence in situ hybridization focusing on the human lung adenocarcinoma cell line OM to analyze its chromosome alterations.In addition, the gains and losses in the specific chromosome regions were identified by comparative genomic hybridization (CGH) and the amplifications of cancer-related genes were also detected by polymerase chain reaction (PCR).Results: We identified a large number of chromosomal numerical alterations on all chromosomes except chromosome X and 19.Chromosome 10 is the most frequently involved in translocations with six different interchromosomal translocations.CGH revealed the gains on chromosome regions of 3q25.3-28, 5p13, 12q22-23.24, and the losses on 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p 13.31-13.33 and 17p 13.1-13.3.And PCR showed the amplification of genes: Membrane metalloendopeptidase (MME), sucrase-isomaltase (SI), butyrylcholinesterase (BCHE), and kininogen (KNG).Conclusions: The lung adenocarcinoma cell line OM exhibited multiple complex karyotypes, and chromosome 10 was frequently involved in chromosomal translocation, which may play key roles in tumorigenesis.We speculated that the oncogenes may be located at 3q25.3-28, 5p13, 12q22-23.24, while tumor suppressor genes may exist in 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p 13.31-13.33, and 17p 13.1-13.3.Moreover, at least four genes (MME, SI, BCHE, and KNG) may be involved in the human lung adenocarcinoma cell line OM.

  13. Recent Male-Mediated Gene Flow over a Linguistic Barrier in Iberia, Suggested by Analysis of a Y-Chromosomal DNA Polymorphism

    Science.gov (United States)

    Hurles, Matthew E.; Veitia, Reiner; Arroyo, Eduardo; Armenteros, Manuel; Bertranpetit, Jaume; Pérez-Lezaun, Anna; Bosch, Elena; Shlumukova, Maria; Cambon-Thomsen, Anne; McElreavey, Ken; López de Munain, Adolfo; Röhl, Arne; Wilson, Ian J.; Singh, Lalji; Pandya, Arpita; Santos, Fabrício R.; Tyler-Smith, Chris; Jobling, Mark A.

    1999-01-01

    Summary We have examined the worldwide distribution of a Y-chromosomal base-substitution polymorphism, the T/C transition at SRY-2627, where the T allele defines haplogroup 22; sequencing of primate homologues shows that the ancestral state cannot be determined unambiguously but is probably the C allele. Of 1,191 human Y chromosomes analyzed, 33 belong to haplogroup 22. Twenty-nine come from Iberia, and the highest frequencies are in Basques (11%; n=117) and Catalans (22%; n=32). Microsatellite and minisatellite (MSY1) diversity analysis shows that non-Iberian haplogroup-22 chromosomes are not significantly different from Iberian ones. The simplest interpretation of these data is that haplogroup 22 arose in Iberia and that non-Iberian cases reflect Iberian emigrants. Several different methods were used to date the origin of the polymorphism: microsatellite data gave ages of 1,650, 2,700, 3,100, or 3,450 years, and MSY1 gave ages of 1,000, 2,300, or 2,650 years, although 95% confidence intervals on all of these figures are wide. The age of the split between Basque and Catalan haplogroup-22 chromosomes was calculated as only 20% of the age of the lineage as a whole. This study thus provides evidence for direct or indirect gene flow over the substantial linguistic barrier between the Indo-European and non–Indo-European–speaking populations of the Catalans and the Basques, during the past few thousand years. PMID:10521311

  14. Phylogeographic Analysis of Haplogroup E3b (E-M215) Y Chromosomes Reveals Multiple Migratory Events Within and Out Of Africa

    Science.gov (United States)

    Cruciani, Fulvio; La Fratta, Roberta; Santolamazza, Piero; Sellitto, Daniele; Pascone, Roberto; Moral, Pedro; Watson, Elizabeth; Guida, Valentina; Colomb, Eliane Beraud; Zaharova, Boriana; Lavinha, João; Vona, Giuseppe; Aman, Rashid; Calì, Francesco; Akar, Nejat; Richards, Martin; Torroni, Antonio; Novelletto, Andrea; Scozzari, Rosaria

    2004-01-01

    We explored the phylogeography of human Y-chromosomal haplogroup E3b by analyzing 3,401 individuals from five continents. Our data refine the phylogeny of the entire haplogroup, which appears as a collection of lineages with very different evolutionary histories, and reveal signatures of several distinct processes of migrations and/or recurrent gene flow that occurred in Africa and western Eurasia over the past 25,000 years. In Europe, the overall frequency pattern of haplogroup E-M78 does not support the hypothesis of a uniform spread of people from a single parental Near Eastern population. The distribution of E-M81 chromosomes in Africa closely matches the present area of distribution of Berber-speaking populations on the continent, suggesting a close haplogroup–ethnic group parallelism. E-M34 chromosomes were more likely introduced in Ethiopia from the Near East. In conclusion, the present study shows that earlier work based on fewer Y-chromosome markers led to rather simple historical interpretations and highlights the fact that many population-genetic analyses are not robust to a poorly resolved phylogeny. PMID:15042509

  15. Structure and chromosomal localization of the gene encoding the human myelin protein zero (MPZ)

    Energy Technology Data Exchange (ETDEWEB)

    Hayasaka, Kiyoshi; Himoro, Masato; Takada, Goro (Akita Univ. School of Medicine, Akita (Japan)); Wang, Yimin; Takata, Mizuho; Minoshima, Shinsei; Shimizu, Nobuyoshi; Miura, Masayuki; Uyemura, Keiichi (Keio Univ. School of Medicine, Tokyo (Japan))

    1993-09-01

    The authors describe the cloning, characterization, and chromosomal mapping of the human myelin protein zero (MPZ) gene (a structural protein of myelin and an adhesive glycoprotein of the immunoglobulin superfamily). The gene is about 7 kb long and consists of six exons corresponding of the functional domains. All exon-intron junction sequences conform to the GT/AG rule. The 5[prime]-flanking region of the gene has a TA-rich element (TATA-like box), two CAAT boxes, and a single defined transcription initiation site detected by the primer extension method. The gene for human MPZ was assigned to chromosome 1q22-q23 by spot blot hybridization of flow-sorted human chromosomes and fluorescence in situ hybridization. The localization of the MPZ gene coincides with the locus for Charcot-Marie-Tooth disease type 1B, determined by linkage analysis. 20 refs., 3 figs., 1 tab.

  16. Large-scale oscillation of structure-related DNA sequence features in human chromosome 21

    Science.gov (United States)

    Li, Wentian; Miramontes, Pedro

    2006-08-01

    Human chromosome 21 is the only chromosome in the human genome that exhibits oscillation of the (G+C) content of a cycle length of hundreds kilobases (kb) ( 500kb near the right telomere). We aim at establishing the existence of a similar periodicity in structure-related sequence features in order to relate this (G+C)% oscillation to other biological phenomena. The following quantities are shown to oscillate with the same 500kb periodicity in human chromosome 21: binding energy calculated by two sets of dinucleotide-based thermodynamic parameters, AA/TT and AAA/TTT bi- and tri-nucleotide density, 5'-TA-3' dinucleotide density, and signal for 10- or 11-base periodicity of AA/TT or AAA/TTT. These intrinsic quantities are related to structural features of the double helix of DNA molecules, such as base-pair binding, untwisting or unwinding, stiffness, and a putative tendency for nucleosome formation.

  17. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology.

    Science.gov (United States)

    Moralli, Daniela; Monaco, Zoia L

    2015-02-01

    De novo artificial chromosomes expressing genes have been generated in human embryonic stem cells (hESc) and are maintained following differentiation into other cell types. Human artificial chromosomes (HAC) are small, functional, extrachromosomal elements, which behave as normal chromosomes in human cells. De novo HAC are generated following delivery of alpha satellite DNA into target cells. HAC are characterized by high levels of mitotic stability and are used as models to study centromere formation and chromosome organisation. They are successful and effective as gene expression vectors since they remain autonomous and can accommodate larger genes and regulatory regions for long-term expression studies in cells unlike other viral gene delivery vectors currently used. Transferring the essential DNA sequences for HAC formation intact across the cell membrane has been challenging for a number of years. A highly efficient delivery system based on HSV-1 amplicons has been used to target DNA directly to the ES cell nucleus and HAC stably generated in human embryonic stem cells (hESc) at high frequency. HAC were detected using an improved protocol for hESc chromosome harvesting, which consistently produced high-quality metaphase spreads that could routinely detect HAC in hESc. In tumour cells, the input DNA often integrated in the host chromosomes, but in the host ES genome, it remained intact. The hESc containing the HAC formed embryoid bodies, generated teratoma in mice, and differentiated into neuronal cells where the HAC were maintained. The HAC structure and chromatin composition was similar to the endogenous hESc chromosomes. This review will discuss the technological advances in HAC vector delivery using HSV-1 amplicons and the improvements in the identification of de novo HAC in hESc.

  18. Location of the handedness gene on the X and Y chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Corballis, M.C.; Lee, K. [Univ. of Auckland (New Zealand); McManus, I.C. [Univ. College London (United Kingdom); Crow, T.J. [Warneford Hospital, Oxford (United Kingdom)

    1996-02-16

    Accumulated data from five handedness surveys show that concordance for sex is slightly but reliably higher among siblings of the same handedness than among those of opposite handedness. This is consistent with Crow`s theory that the genetic locus for handedness is in an X-Y homologous region of the sex chromosomes. The small size of the effect is predicted from genetic models in which there is a substantial random component underlying phenotypic left handedness. The findings are relevant to the putative role of cerebral asymmetry in the aetiology of psychosis. 15 refs., 3 tabs.

  19. Distribution of Chromosome Breakpoints in Human Epithelial Cells Exposed to Low- and High-LET Radiations

    Science.gov (United States)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is not only its ability to identify simultaneously both inter- and intrachromosome exchanges, but also the ability to measure the breakpoint location along the length of the chromosome in a precision that is unmatched with other traditional banding techniques. Breakpoints on specific regions of a chromosome have been known to associate with specific cancers. The breakpoint distribution in cells after low- and high-LET radiation exposures will also provide the data for biophysical modeling of the chromatin structure, as well as the data for the modeling the formation of radiation-induced chromosome aberrations. In a series of experiments, we studied low- and high-LET radiation-induced chromosome aberrations using the mBAND technique with chromosome 3 painted in 23 different colored bands. Human epithelial cells (CH1 84B5F5/M10) were exposed in vitro to Cs- 137 rays at both low and high dose rates, secondary neutrons with a broad energy spectrum at a low dose rate and 600 MeV/u Fe ions at a high dose rate. The data of both inter- and intrachromosome aberrations involving the painted chromosome have been reported previously. Here we present data of the location of the chromosome breaks along the length of chromosome 3 in the cells after exposures to each of the four radiation scenarios. In comparison to the expected breakpoint distribution based on the length of the bands, the observed distribution appeared to be non-random for both the low- and high-LET radiations. In particular, hot spots towards both ends of the chromosome were found after low-LET irradiations of either low or high dose rates. For both high-LET radiation types (Fe ions and neutrons), the breakpoint distributions were similar, and were much smoother than that for low-LET radiation. The dependence of the breakpoint distribution on the radiation quality requires further investigations.

  20. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse.

    Directory of Open Access Journals (Sweden)

    Julie Cocquet

    2012-09-01

    Full Text Available Intragenomic conflicts arise when a genetic element favours its own transmission to the detriment of others. Conflicts over sex chromosome transmission are expected to have influenced genome structure, gene regulation, and speciation. In the mouse, the existence of an intragenomic conflict between X- and Y-linked multicopy genes has long been suggested but never demonstrated. The Y-encoded multicopy gene Sly has been shown to have a predominant role in the epigenetic repression of post meiotic sex chromatin (PMSC and, as such, represses X and Y genes, among which are its X-linked homologs Slx and Slxl1. Here, we produced mice that are deficient for both Sly and Slx/Slxl1 and observed that Slx/Slxl1 has an opposite role to that of Sly, in that it stimulates XY gene expression in spermatids. Slx/Slxl1 deficiency rescues the sperm differentiation defects and near sterility caused by Sly deficiency and vice versa. Slx/Slxl1 deficiency also causes a sex ratio distortion towards the production of male offspring that is corrected by Sly deficiency. All in all, our data show that Slx/Slxl1 and Sly have antagonistic effects during sperm differentiation and are involved in a postmeiotic intragenomic conflict that causes segregation distortion and male sterility. This is undoubtedly what drove the massive gene amplification on the mouse X and Y chromosomes. It may also be at the basis of cases of F1 male hybrid sterility where the balance between Slx/Slxl1 and Sly copy number, and therefore expression, is disrupted. To the best of our knowledge, our work is the first demonstration of a competition occurring between X and Y related genes in mammals. It also provides a biological basis for the concept that intragenomic conflict is an important evolutionary force which impacts on gene expression, genome structure, and speciation.

  1. Origins and genetic diversity of New World Creole cattle: inferences from mitochondrial and Y chromosome polymorphisms.

    Science.gov (United States)

    Ginja, C; Penedo, M C T; Melucci, L; Quiroz, J; Martínez López, O R; Revidatti, M A; Martínez-Martínez, A; Delgado, J V; Gama, L T

    2010-04-01

    The ancestry of New World cattle was investigated through the analysis of mitochondrial and Y chromosome variation in Creoles from Argentina, Brazil, Mexico, Paraguay and the United States of America. Breeds that influenced the Creoles, such as Iberian native, British and Zebu, were also studied. Creoles showed high mtDNA diversity (H = 0.984 +/- 0.003) with a total of 78 haplotypes, and the European T3 matriline was the most common (72.1%). The African T1a haplogroup was detected (14.6%), as well as the ancestral African-derived AA matriline (11.9%), which was absent in the Iberian breeds. Genetic proximity among Creoles, Iberian and Atlantic Islands breeds was inferred through their sharing of mtDNA haplotypes. Y-haplotype diversity in Creoles was high (H = 0.779 +/- 0.019), with several Y1, Y2 and Y3 haplotypes represented. Iberian patrilines in Creoles were more difficult to infer and were reflected by the presence of H3Y1 and H6Y2. Y-haplotypes confirmed crossbreeding with British cattle, mainly of Hereford with Pampa Chaqueño and Texas Longhorn. Male-mediated Bos indicus introgression into Creoles was found in all populations, except Argentino1 (herd book registered) and Pampa Chaqueño. The detection of the distinct H22Y3 patriline with the INRA189-90 allele in Caracú suggests introduction of bulls directly from West Africa. Further studies of Spanish and African breeds are necessary to elucidate the origins of Creole cattle, and determine the exact source of their African lineages.

  2. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    Science.gov (United States)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  3. Genetic and epigenetic changes of genes on chromosome 3 in human urogenital tumors

    Directory of Open Access Journals (Sweden)

    Gordiyuk V. V.

    2011-02-01

    Full Text Available Numerous disorders of genes and alterations of their expression are observed on a short arm of human chromosome 3, particularly in 3p14, 3p21, 3p24 compact regions in epithelial tumors. These aberrations affect the key biological processes specific for cancerogenesis. Such genes or their products could be used for diagnostics and prognosis of cancer. Genetical and epigenetical changes of a number of genes on chromosome 3 in human urogenital cancer, their role in cellular processes and signal pathways and perspectives as molecular markers of cancer diseases are analyzed in the review

  4. Replication Banding Patterns in Human Chromosomes Detected Using 5-ethynyl-2'-deoxyuridine Incorporation

    OpenAIRE

    Hoshi, Osamu; Ushiki, Tatsuo

    2011-01-01

    A novel technique using the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into replicating DNA is described for the analysis of replicating banding patterns of human metaphase chromosomes. Human lymphocytes were synchronized with excess thymidine and treated with EdU during the late S phase of the cell cycle. The incorporated EdU was then detected in metaphase chromosomes using Alexa Fluor® 488 azides, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acety...

  5. A pathway from chromosome transfer to engineering resulting in human and mouse artificial chromosomes for a variety of applications to bio-medical challenges.

    Science.gov (United States)

    Oshimura, Mitsuo; Uno, Narumi; Kazuki, Yasuhiro; Katoh, Motonobu; Inoue, Toshiaki

    2015-02-01

    Microcell-mediated chromosome transfer (MMCT) is a technique to transfer a chromosome from defined donor cells into recipient cells and to manipulate chromosomes as gene delivery vectors and open a new avenue in somatic cell genetics. However, it is difficult to uncover the function of a single specific gene via the transfer of an entire chromosome or fragment, because each chromosome or fragment contains a set of numerous genes. Thus, alternative tools are human artificial chromosome (HAC) and mouse artificial chromosome (MAC) vectors, which can carry a gene or genes of interest. HACs/MACs have been generated mainly by either a "top-down approach" (engineered creation) or a "bottom-up approach" (de novo creation). HACs/MACs with one or more acceptor sites exhibit several characteristics required by an ideal gene delivery vector, including stable episomal maintenance and the capacity to carry large genomic loci plus their regulatory elements, thus allowing the physiological regulation of the introduced gene in a manner similar to that of native chromosomes. The MMCT technique is also applied for manipulating HACs and MACs in donor cells and delivering them to recipient cells. This review describes the lessons learned and prospects identified from studies on the construction of HACs and MACs, and their ability to drive exogenous gene expression in cultured cells and transgenic animals via MMCT. New avenues for a variety of applications to bio-medical challenges are also proposed.

  6. Final report. Human artificial episomal chromosome (HAEC) for building large genomic libraries

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Michael H. Vos

    1999-12-09

    Collections of human DNA fragments are maintained for research purposes as clones in bacterial host cells. However for unknown reasons, some regions of the human genome appear to be unclonable or unstable in bacteria. Their team has developed a system using episomes (extrachromosomal, autonomously replication DNA) that maintains large DNA fragments in human cells. This human artificial episomal chromosomal (HAEC) system may prove useful for coverage of these especially difficult regions. In the broader biomedical community, the HAEC system also shows promise for use in functional genomics and gene therapy. Recent improvements to the HAEC system and its application to mapping, sequencing, and functionally studying human and mouse DNA are summarized. Mapping and sequencing the human genome and model organisms are only the first steps in determining the function of various genetic units critical for gene regulation, DNA replication, chromatin packaging, chromosomal stability, and chromatid segregation. Such studies will require the ability to transfer and manipulate entire functional units into mammalian cells.

  7. Modified C-band technique for the analysis of chromosome abnormalities in irradiated human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Akifumi; Akiyama, Miho; Yamada, Yuji [Biodosimetry Section, Department of Radiation Dosimetry, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yoshida, Mitsuaki A., E-mail: myoshida@cc.hirosaki-u.ac.jp [Biodosimetry Section, Department of Radiation Dosimetry, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2011-10-15

    A modified C-band technique was developed in order to analyze more accurately dicentric, tricentric, and ring chromosomes in irradiated human peripheral lymphocytes. Instead of the original method relying on treatment with barium hydroxide Ba(OH){sub 2}, C-bands were obtained using a modified form of heat treatment in formamide followed with DAPI staining. This method was tentatively applied to the analysis of dicentric chromosomes in irradiated human lymphocytes to examine its availability. The frequency of dicentric chromosome was almost the same with conventional Giemsa staining and the modified C-band technique. In the analysis using Giemsa staining, it is relatively difficult to identify the centromere on the elongated chromosomes, over-condensed chromosomes, fragment, and acentric ring. However, the modified C-band method used in this study makes it easier to identify the centromere on such chromosomes than with the use of Giemsa staining alone. Thus, the modified C-band method may give more information about the location of the centromere. Therefore, this method may be available and more useful for biological dose estimation due to the analysis of the dicentric chromosome in human lymphocytes exposed to the radiation. Furthermore, this method is simpler and faster than the original C-band protocol and fluorescence in situ hybridization (FISH) method with the centromeric DNA probe. - Highlights: > The dicentric (dic) assay is the most effective for the radiation biodosimetry. > It is important to recognize the centromere of the dic. > We improved a C-band technique based on heat denaturation. > This technique enables the accurate detection of a centromere. > This method may be available and more useful for biological dose estimation.

  8. A novel tandem repeat sequence located on human chromosome 4p: isolation and characterization.

    Science.gov (United States)

    Kogi, M; Fukushige, S; Lefevre, C; Hadano, S; Ikeda, J E

    1997-06-01

    In an effort to analyze the genomic region of the distal half of human chromosome 4p, to where Huntington disease and other diseases have been mapped, we have isolated the cosmid clone (CRS447) that was likely to contain a region with specific repeat sequences. Clone CRS447 was subjected to detailed analysis, including chromosome mapping, restriction mapping, and DNA sequencing. Chromosome mapping by both a human-CHO hybrid cell panel and FISH revealed that CRS447 was predominantly located in the 4p15.1-15.3 region. CRS447 was shown to consist of tandem repeats of 4.7-kb units present on chromosome 4p. A single EcoRI unit was subcloned (pRS447), and the complete sequence was determined as 4752 nucleotides. When pRS447 was used as a probe, the number of copies of this repeat per haploid genome was estimated to be 50-70. Sequence analysis revealed that it contained two internal CA repeats and one putative ORF. Database search established that this sequence was unreported. However, two homologous STS markers were found in the database. We concluded that CRS447/pRS447 is a novel tandem repeat sequence that is mainly specific to human chromosome 4p.

  9. The Role of the Y-Chromosome in the Establishment of Murine Hybrid Dysgenesis and in the Analysis of the Nucleotide Sequence Organization, Genetic Transmission and Evolution of Repeated Sequences.

    Science.gov (United States)

    Nallaseth, Ferez Soli

    The Y-chromosome presents a unique cytogenetic framework for the evolution of nucleotide sequences. Alignment of nine Y-chromosomal fragments in their increasing Y-specific/non Y-specific (male/female) sequence divergence ratios was directly and inversely related to their interspersion on these two respective genomic fractions. Sequence analysis confirmed a direct relationship between divergence ratios and the Alu, LINE-1, Satellite and their derivative oligonucleotide contents. Thus their relocation on the Y-chromosome is followed by sequence divergence rather than the well documented concerted evolution of these non-coding progenitor repeated sequences. Five of the nine Y-chromosomal fragments are non-pseudoautosomal and transcribed into heterogeneous PolyA^+ RNA and thus can be retrotransposed. Evolutionary and computer analysis identified homologous oligonucleotide tracts in several human loci suggesting common and random mechanistic origins. Dysgenic genomes represent the accelerated evolution driving sequence divergence (McClintock, 1984). Sex reversal and sterility characterizing dysgenesis occurs in C57BL/6JY ^{rm Pos} but not in 129/SvY^{rm Pos} derivative strains. High frequency, random, multi-locus deletion products of the feral Y^{ rm Pos}-chromosome are generated in the germlines of F1(C57BL/6J X 129/SvY^{ rm Pos})(male) and C57BL/6JY ^{rm Pos}(male) but not in 129/SvY^{rm Pos}(male). Equal, 10^{-1}, 10^ {-2}, and 0 copies (relative to males) of Y^{rm Pos}-specific deletion products respectively characterize C57BL/6JY ^{rm Pos} (HC), (LC), (T) and (F) females. The testes determining loci of inactive Y^{rm Pos}-chromosomes in C57BL/6JY^{rm Pos} HC females are the preferentially deleted/rearranged Y ^{rm Pos}-sequences. Disruption of regulation of plasma testosterone and hepatic MUP-A mRNA levels, TRD of a 4.7 Kbp EcoR1 fragment suggest disruption of autosomal/X-chromosomal sequences. These data and the highly repeated progenitor (Alu, GATA, LINE-1

  10. Design and validation of a highly discriminatory 10-locus Y-chromosome STR multiplex system

    KAUST Repository

    D'Amato, María Eugenia

    2011-03-01

    The Y-chromosome STRs (short tandem repeat) markers are routinely utilized in the resolution of forensic casework related to sexual assault. For this, the forensic community has adopted a set of eleven (core) Y-STR that is incorporated in all commercial diagnostic systems. Our previous studies of Y-STR polymorphisms in the South African population identified low levels of diversity and discrimination capacity for many commercial marker sets, determining a limited applicability of these systems to the local population groups. To overcome this shortcoming, we designed a Y-STR 10-plex system that shows higher discriminatory capacity (DC) than available commercial systems. The markers were selected from a population group of 283 individuals with African, European and Asian ancestry genotyped at 45 Y-STRs, applying an optimization based selection procedure to achieve the highest possible DC with the minimal number of markers. The 10-plex was satisfactorily subjected to developmental validation tests following the SWGDAM guidelines and shows potential for its application to genealogical and evolutionary studies. © 2010 Elsevier Ireland Ltd.

  11. Comparison of clonogenic assay with premature chromosome condensation assay in prediction of human cell radiosensitivity

    Institute of Scientific and Technical Information of China (English)

    Zhuan-Zi Wang; Wen-Jian Li; Hong Zhang; Jian-She Yang; Rong Qiu; Xiao Wang

    2006-01-01

    AIM: To determine whether the number of non-rejoining G2-chromatid breaks can predict the radiosensitivity of human cell lines.METHODS: Cell lines of human ovary carcinoma cells (HO8910), human hepatoma cells (HepG2) and liver cells (L02) were irradiated with a range of doses and assessed both of cell survival and non-rejoining G2-chromatid breaks at 24 h after irradiation. Cell survival was documented by a colony assay. Non-rejoining G2-chromatid breaks were measured by counting the number of non-rejoining G2 chromatid breaks at 24 h after irradiation, detected by the prematurely chromosome condensed (PCC) technique.RESULTS: A linear-quadratic survival curve was observed in three cell lines, and HepG2 was the most sensitive to y-radiation. A dose-dependent linear increase was observed in radiation-induced non-rejoining G2-PCC breaks measured at 24 h after irradiation in all cell lines, and HepG2 was the most susceptible to induction of non-rejoining G2-PCC breaks. A close correlation was found between the clonogenic radiosensitivity and the radiation-induced non-rejoining G2-PCC breaks (r= 0.923). Furthermore, survival-aberration correlations for two or more than two doses lever were also significant.CONCLUSION: The number of non-rejoining G2 PCC breaks holds considerable promise for predicting the radiosensitivity of normal and tumor cells when two or more than two doses lever is tested.

  12. Evidence that sex chromosome asynapsis, rather than excess Y gene dosage, is responsible for the meiotic impairment of XYY mice.

    Science.gov (United States)

    Rodriguez, T A; Burgoyne, P S

    2000-01-01

    There is extensive evidence for the existence of a meiotic checkpoint that acts to eliminate spermatocytes that fail to achieve full sex chromosome synapsis at the pachytene stage of the first meiotic prophase. XYY mice are nearly always sterile, with clear signs of meiotic impairment, and sex chromosome asynapsis has been proposed to underlie this impairment. However, a study of XYY*(X) mice (mice having three sex chromosomes but only a single dose of Y genes) revealed that these mice are fertile, and thus implicated Y gene dosage as a major factor in the sterility of XYY mice. To address this question further, sex chromosome synapsis and spermatogenic proficiency were compared between XYY*(X) and XYY mice generated in the same litters. This established that differences in spermatogenic proficiency within and between the two genotypes correlated with the frequency of radial trivalent formation (full sex chromosome synapsis); XYY*(X) males, as a group, had double the radial trivalent frequency of XYY males. This observation provides strong support for the view that sex chromosome asynapsis (or some consequence thereof), rather than Y gene dosage, is the major factor leading to the meiotic impairment of XYY mice.

  13. Origin and spread of the SRY gene on the X and Y chromosomes of the rodent Microtus cabrerae: role of L1 elements.

    Science.gov (United States)

    Marchal, Juan A; Acosta, Manuel J; Bullejos, Mónica; Díaz de la Guardia, Rafael; Sánchez, Antonio

    2008-02-01

    In the rodent species Microtus cabrerae, males as well as females present several copies of the SRY gene, a single-copy gene located on the Y chromosome in most mammals. Using different PCR approaches, we have characterized the sequence, structure, and organization of the SRY copies and their flanking regions distributed on the X and Y chromosomes of this species. All copies of SRY analyzed, including those from the Y chromosome, proved to be nonfunctional pseudogenes, as they have internal stop codons. In addition, we demonstrated the association of SRY pseudogenes with different fragments of L1 and LTR retroelements in both sex chromosomes of M. cabrerae. Examining the possible origin of SRY pseudogene and retroposons association, we propose that retroposons could have been involved in the mechanism of SRY gene amplification on the Y chromosome and in the transference of the Y-linked SRY copies to the X-chromosome heterochromatin.

  14. Effects of age on segregation of the X and Y chromosomes in cultured lymphocytes from Chinese men.

    Science.gov (United States)

    Song, Yaxian; Chen, Qian; Zhang, Zhen; Hou, Heli; Zhang, Ding; Shi, Qinghua

    2009-08-01

    Chromosome malsegregation in binucleated lymphocytes is a useful endpoint to evaluate age effect on genetic stability. However, the investigations on chromosome malsegregation in binucleated lymphocytes from Chinese are scarce. In this study, peripheral blood lymphocytes were collected from 14 old (60-70 years) and 10 young (22-26 years) healthy Chinese men. To detect malsegregation of the sex chromosomes, multi-color fluorescence in situ hybridization (FISH) was performed on binucleated lymphocytes, cytokinesis-blocked by cytochalasin B at the first mitosis after phytohaemagglutinin stimulation. Compared with that in young men, a significant increase in frequencies of loss of chromosome X (9.2 +/- 3.2 per thousand vs. 1.1 +/- 0.9 per thousand, P men. Similarly, nondisjunction of chromosome X (16.5 +/- 3.4 per thousand vs. 3.5 +/- 1.1 per thousand, P men than in young men. Regardless of donor's age, nondisjunction is more prevalent than loss for both chromosome X and Y. The frequencies of observed simultaneous malsegregation were relatively higher than the expected, suggesting an association between malsegregation. These results indicated that in Chinese men, malsegregation of the sex chromosomes increases with age in an associated fashion, and nondisjunction accounts for the majority of spontaneous chromosome malsegregation.

  15. [The distribution of Y-chromosome haplotypes of Shui ethnic in Sandu,Guizhou].

    Science.gov (United States)

    He, Yan; Wen, Bo; Shan, Ke-Ren; Huang, Wei; Xie, Yuan; Wu, Chang-Xue; Xiong, Xiao-Yan; Xiu, Jin; Zhang, Jing; Zhang, Xiao-Lei; Ren, Xi-Lin; Jin, Li

    2003-05-01

    Non-recombination region of Y-chromosome is a useful marker in tracing evolutionary history of paternal lineage. In the present study, total 92 individuals from Shui ethnic group in Sandu Shui Ethnic Group Autonomous County of Guizhou Province were inspected with 11 SNP sites including M7, M9, M15, M45, M89, M95, M119,M122, M130, M134 and YAP on Y-chromosome.All the subjects were required to be unrelated and without intermarriage with other ethnic groups within three generations. The haplotypes were analyzed by PCR-RFLP method. Four haplotypes H5,H8,H9 and H11 were detected with frequencies of 0.054, 0.044, 0.315 and 0.587, respectively.Principle component indicated that the paternal lineage of Shui ethnic group is much closer to Li ethnic group of Hainan Province and Bouyei ethnic group of Guizhou Province,which belong to the group of Zhuang-Dong branch of Sino-Tibetan language family. In addition genetic study of Shui coincides with its linguistic distribution.

  16. Genetic portrait of Tamil non-tribal and Irula tribal population using Y chromosome STR markers.

    Science.gov (United States)

    Raghunath, Rajshree; Krishnamoorthy, Kamalakshi; Balasubramanian, Lakshmi; Kunka Mohanram, Ramkumar

    2016-03-01

    The 17 Y chromosomal short tandem repeat loci included in the AmpFlSTR® Yfiler™ PCR Amplification Kit were used to analyse the genetic diversity of 517 unrelated males representing the non-tribal and Irula tribal population of Tamil Nadu. A total of 392 unique haplotypes were identified among the 400 non-tribal samples whereas 111 were observed among the 117 Irula tribal samples. Rare alleles for the loci DYS458, DYS635 and YGATAH4.1 were also observed in both population. The haplotype diversity for the non-tribal and Irula tribal population were found to be 0.9999, and the gene diversity ranged from 0.2041 (DYS391) to 0.9612 (DYS385). Comparison of the test population with 26 national and global population using principal coordinate analysis (PCoA) and determination of the genetic distance matrix using phylogenetic molecular analysis indicate a clustering of the Tamil Nadu non-tribal and Irula tribal population away from other unrelated population and proximity towards some Indo-European (IE) and Asian population. Data are available in the Y chromosome haplotype reference database (YHRD) under accession number YA004055 for Tamil non-tribal and YA004056 for the Irula tribal group.

  17. Analysis of the Trojan Y-Chromosome eradication strategy for an invasive species.

    Science.gov (United States)

    Wang, Xueying; Walton, Jay R; Parshad, Rana D; Storey, Katie; Boggess, May

    2014-06-01

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we analyze the dynamical system model of the TYC strategy, with the aim of studying the viability of the TYC eradication and control strategy of an invasive species. In particular, because the constant introduction of sex-reversed trojan females for all time is not possible in practice, there arises the question: What happens if this injection is stopped after some time? Can the invasive species recover? To answer that question, we perform a rigorous bifurcation analysis and study the basin of attraction of the recovery state and the extinction state in both the full model and a certain reduced model. In particular, we find a theoretical condition for the eradication strategy to work. Additionally, the consideration of an Allee effect and the possibility of a Turing instability are also studied in this work. Our results show that: (1) with the inclusion of an Allee effect, the number of the invasive females is not required to be very low when the introduction of the sex-reversed trojan females is stopped, and the remaining Trojan Y-Chromosome population is sufficient to induce extinction of the invasive females; (2) incorporating diffusive spatial spread does not produce a Turing instability, which would have suggested that the TYC eradication strategy might be only partially effective, leaving a patchy distribution of the invasive species.

  18. Analysis of the Trojan Y-Chromosome eradication strategy for an invasive species

    KAUST Repository

    Wang, Xueying

    2013-05-24

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we analyze the dynamical system model of the TYC strategy, with the aim of studying the viability of the TYC eradication and control strategy of an invasive species. In particular, because the constant introduction of sex-reversed trojan females for all time is not possible in practice, there arises the question: What happens if this injection is stopped after some time? Can the invasive species recover? To answer that question, we perform a rigorous bifurcation analysis and study the basin of attraction of the recovery state and the extinction state in both the full model and a certain reduced model. In particular, we find a theoretical condition for the eradication strategy to work. Additionally, the consideration of an Allee effect and the possibility of a Turing instability are also studied in this work. Our results show that: (1) with the inclusion of an Allee effect, the number of the invasive females is not required to be very low when the introduction of the sex-reversed trojan females is stopped, and the remaining Trojan Y-Chromosome population is sufficient to induce extinction of the invasive females; (2) incorporating diffusive spatial spread does not produce a Turing instability, which would have suggested that the TYC eradication strategy might be only partially effective, leaving a patchy distribution of the invasive species. © 2013 Springer-Verlag Berlin Heidelberg.

  19. Colocalization of coregulated genes: a steered molecular dynamics study of human chromosome 19.

    Directory of Open Access Journals (Sweden)

    Marco Di Stefano

    Full Text Available The connection between chromatin nuclear organization and gene activity is vividly illustrated by the observation that transcriptional coregulation of certain genes appears to be directly influenced by their spatial proximity. This fact poses the more general question of whether it is at all feasible that the numerous genes that are coregulated on a given chromosome, especially those at large genomic distances, might become proximate inside the nucleus. This problem is studied here using steered molecular dynamics simulations in order to enforce the colocalization of thousands of knowledge-based gene sequences on a model for the gene-rich human chromosome 19. Remarkably, it is found that most (≈ 88% gene pairs can be brought simultaneously into contact. This is made possible by the low degree of intra-chromosome entanglement and the large number of cliques in the gene coregulatory network. A clique is a set of genes coregulated all together as a group. The constrained conformations for the model chromosome 19 are further shown to be organized in spatial macrodomains that are similar to those inferred from recent HiC measurements. The findings indicate that gene coregulation and colocalization are largely compatible and that this relationship can be exploited to draft the overall spatial organization of the chromosome in vivo. The more general validity and implications of these findings could be investigated by applying to other eukaryotic chromosomes the general and transferable computational strategy introduced here.

  20. Continent-wide decoupling of Y-chromosomal genetic variation from language and geography in native South Americans.

    Science.gov (United States)

    Roewer, Lutz; Nothnagel, Michael; Gusmão, Leonor; Gomes, Veronica; González, Miguel; Corach, Daniel; Sala, Andrea; Alechine, Evguenia; Palha, Teresinha; Santos, Ney; Ribeiro-Dos-Santos, Andrea; Geppert, Maria; Willuweit, Sascha; Nagy, Marion; Zweynert, Sarah; Baeta, Miriam; Núñez, Carolina; Martínez-Jarreta, Begoña; González-Andrade, Fabricio; Fagundes de Carvalho, Elizeu; da Silva, Dayse Aparecida; Builes, Juan José; Turbón, Daniel; Lopez Parra, Ana Maria; Arroyo-Pardo, Eduardo; Toscanini, Ulises; Borjas, Lisbeth; Barletta, Claudia; Ewart, Elizabeth; Santos, Sidney; Krawczak, Michael

    2013-04-01

    Numerous studies of human populations in Europe and Asia have revealed a concordance between their extant genetic structure and the prevailing regional pattern of geography and language. For native South Americans, however, such evidence has been lacking so far. Therefore, we examined the relationship between Y-chromosomal genotype on the one hand, and male geographic origin and linguistic affiliation on the other, in the largest study of South American natives to date in terms of sampled individuals and populations. A total of 1,011 individuals, representing 50 tribal populations from 81 settlements, were genotyped for up to 17 short tandem repeat (STR) markers and 16 single nucleotide polymorphisms (Y-SNPs), the latter resolving phylogenetic lineages Q and C. Virtually no structure became apparent for the extant Y-chromosomal genetic variation of South American males that could sensibly be related to their inter-tribal geographic and linguistic relationships. This continent-wide decoupling is consistent with a rapid peopling of the continent followed by long periods of isolation in small groups. Furthermore, for the first time, we identified a distinct geographical cluster of Y-SNP lineages C-M217 (C3*) in South America. Such haplotypes are virtually absent from North and Central America, but occur at high frequency in Asia. Together with the locally confined Y-STR autocorrelation observed in our study as a whole, the available data therefore suggest a late introduction of C3* into South America no more than 6,000 years ago, perhaps via coastal or trans-Pacific routes. Extensive simulations revealed that the observed lack of haplogroup C3* among extant North and Central American natives is only compatible with low levels of migration between the ancestor populations of C3* carriers and non-carriers. In summary, our data highlight the fact that a pronounced correlation between genetic and geographic/cultural structure can only be expected under very specific

  1. Continent-Wide Decoupling of Y-Chromosomal Genetic Variation from Language and Geography in Native South Americans

    Science.gov (United States)

    Gusmão, Leonor; Gomes, Veronica; González, Miguel; Corach, Daniel; Sala, Andrea; Alechine, Evguenia; Palha, Teresinha; Santos, Ney; Ribeiro-dos-Santos, Andrea; Geppert, Maria; Willuweit, Sascha; Nagy, Marion; Zweynert, Sarah; Baeta, Miriam; Núñez, Carolina; Martínez-Jarreta, Begoña; González-Andrade, Fabricio; Fagundes de Carvalho, Elizeu; da Silva, Dayse Aparecida; Builes, Juan José; Turbón, Daniel; Lopez Parra, Ana Maria; Arroyo-Pardo, Eduardo; Toscanini, Ulises; Borjas, Lisbeth; Barletta, Claudia; Ewart, Elizabeth; Santos, Sidney; Krawczak, Michael

    2013-01-01

    Numerous studies of human populations in Europe and Asia have revealed a concordance between their extant genetic structure and the prevailing regional pattern of geography and language. For native South Americans, however, such evidence has been lacking so far. Therefore, we examined the relationship between Y-chromosomal genotype on the one hand, and male geographic origin and linguistic affiliation on the other, in the largest study of South American natives to date in terms of sampled individuals and populations. A total of 1,011 individuals, representing 50 tribal populations from 81 settlements, were genotyped for up to 17 short tandem repeat (STR) markers and 16 single nucleotide polymorphisms (Y-SNPs), the latter resolving phylogenetic lineages Q and C. Virtually no structure became apparent for the extant Y-chromosomal genetic variation of South American males that could sensibly be related to their inter-tribal geographic and linguistic relationships. This continent-wide decoupling is consistent with a rapid peopling of the continent followed by long periods of isolation in small groups. Furthermore, for the first time, we identified a distinct geographical cluster of Y-SNP lineages C-M217 (C3*) in South America. Such haplotypes are virtually absent from North and Central America, but occur at high frequency in Asia. Together with the locally confined Y-STR autocorrelation observed in our study as a whole, the available data therefore suggest a late introduction of C3* into South America no more than 6,000 years ago, perhaps via coastal or trans-Pacific routes. Extensive simulations revealed that the observed lack of haplogroup C3* among extant North and Central American natives is only compatible with low levels of migration between the ancestor populations of C3* carriers and non-carriers. In summary, our data highlight the fact that a pronounced correlation between genetic and geographic/cultural structure can only be expected under very specific

  2. Continent-wide decoupling of Y-chromosomal genetic variation from language and geography in native South Americans.

    Directory of Open Access Journals (Sweden)

    Lutz Roewer

    2013-04-01

    Full Text Available Numerous studies of human populations in Europe and Asia have revealed a concordance between their extant genetic structure and the prevailing regional pattern of geography and language. For native South Americans, however, such evidence has been lacking so far. Therefore, we examined the relationship between Y-chromosomal genotype on the one hand, and male geographic origin and linguistic affiliation on the other, in the largest study of South American natives to date in terms of sampled individuals and populations. A total of 1,011 individuals, representing 50 tribal populations from 81 settlements, were genotyped for up to 17 short tandem repeat (STR markers and 16 single nucleotide polymorphisms (Y-SNPs, the latter resolving phylogenetic lineages Q and C. Virtually no structure became apparent for the extant Y-chromosomal genetic variation of South American males that could sensibly be related to their inter-tribal geographic and linguistic relationships. This continent-wide decoupling is consistent with a rapid peopling of the continent followed by long periods of isolation in small groups. Furthermore, for the first time, we identified a distinct geographical cluster of Y-SNP lineages C-M217 (C3* in South America. Such haplotypes are virtually absent from North and Central America, but occur at high frequency in Asia. Together with the locally confined Y-STR autocorrelation observed in our study as a whole, the available data therefore suggest a late introduction of C3* into South America no more than 6,000 years ago, perhaps via coastal or trans-Pacific routes. Extensive simulations revealed that the observed lack of haplogroup C3* among extant North and Central American natives is only compatible with low levels of migration between the ancestor populations of C3* carriers and non-carriers. In summary, our data highlight the fact that a pronounced correlation between genetic and geographic/cultural structure can only be expected under

  3. Maternal uniparental disomy for human chromosome 14, due to loss of a chromosome 14 from somatic cells with t(13;14) trisomy 14.

    OpenAIRE

    Antonarakis, S E; Blouin, J L; Maher, J; Avramopoulos, D; Thomas, G.; Talbot, C C

    1993-01-01

    Uniparental disomy (UPD) for particular chromosomes is increasingly recognized as a cause of abnormal phenotypes in humans. We recently studied a 9-year-old female with a de novo Robertsonian translocation t(13;14), short stature, mild developmental delay, scoliosis, hyperextensible joints, hydrocephalus that resolved spontaneously during the first year of life, and hypercholesterolemia. To determine the parental origin of chromosomes 13 and 14 in the proband, we have studied the genotypes of...

  4. Early and Late Chromosome Damages in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    Science.gov (United States)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  5. Evidence from Y-chromosome analysis for a late exclusively eastern expansion of the Bantu-speaking people.

    Science.gov (United States)

    Ansari Pour, Naser; Plaster, Christopher A; Bradman, Neil

    2013-04-01

    The expansion of the Bantu-speaking people (EBSP) during the past 3000-5000 years is an event of great importance in the history of humanity. Anthropology, archaeology, linguistics and, in recent decades, genetics have been used to elucidate some of the events and processes involved. Although it is generally accepted that the EBSP has its origin in the so-called Bantu Homeland situated in the area of the border between Nigeria and the Grassfields of Cameroon, and that it followed both western and eastern routes, much less is known about the number and dates of those expansions, if more than one. Mitochondrial, Y-chromosome and autosomal DNA analyses have been carried out in attempts to understand the demographic events that have taken place. There is an increasing evidence that the expansion was a more complex process than originally thought and that neither a single demographic event nor an early split between western and eastern groups occurred. In this study, we analysed unique event polymorphism and short tandem repeat variation in non-recombining Y-chromosome haplogroups contained within the E1b1a haplogroup, which is exclusive to individuals of recent African ancestry, in a large, geographically widely distributed, set of sub-Saharan Africans (groups=43, n=2757), all of whom, except one Nilo-Saharan-speaking group, spoke a Niger-Congo language and most a Bantu tongue. Analysis of diversity and rough estimates of times to the most recent common ancestors of haplogroups provide evidence of multiple expansions along eastern and western routes and a late, exclusively eastern route, expansion.

  6. A novel partial deletion of the Y chromosome azoospermia factor c region is caused by non-homologous recombination between palindromes and may be associated with increased sperm counts

    NARCIS (Netherlands)

    M.J. Noordam; S.K.M. van Daalen; S.E. Hovingh; C.M. Korver; F. van der Veen; S. Repping

    2011-01-01

    BACKGROUND: The male-specific region of the human Y chromosome (MSY) contains multiple testis-specific genes. Most deletions in the MSY lead to inadequate or absent sperm production. Nearly all deletions occur via homologous recombination between amplicons. Previously, we identified two P5/distal-P1

  7. Relationship between microdeletion on Y chromosome and patients with idiopathic azoospermia and severe oligozoospermia in the Chinese

    Institute of Scientific and Technical Information of China (English)

    傅俊江; 李麓芸; 卢光琇

    2002-01-01

    Objectives To evaluate the relationship between microdeletion or mutation on the Y chromosome and Chinese patients with idiopathic azoospermia and severe oligozoospermia and to establish a molecular detection method. Methods Microdeletion or mutation detection at the AZFa (sY84 and USP9Y), AZFb, AZFc/DAZ and SRY regions of the Y chromosome. Seventy-three azoospermia and 28 severe oligozoospermia patients were evaluated using PCR and PCR-SSCP techniques. Results Twelve of 101 patients (12%) with the AZFc/DAZ microdeletion were found, including 8 with azoospermia (11%) and 4 with severe oligozoospermia (14.3%), and 1 patient had a AZFb and AZFc/DAZ double deletion. No deletions in the AZFa or SRY regions were found. No deletions in AZFa, AZFb, AZFc/DAZ or SRY regions were found in 60 normal men who had produced one or more children. Conclusions Microdeletion on the Y chromosome, especially at its AZFc/DAZ regions, may be a major cause of azoospermia and severe oligozoospermia leading to male infertility in China. It is recommended that patients have genetic counseling and microdeletion detection on the Y chromosome before intracytoplasmic sperm injection.

  8. Analysis of Y-chromosome STRs in Chile confirms an extensive introgression of European male lineages in urban populations.

    Science.gov (United States)

    Toscanini, Ulises; Brisighelli, Francesca; Moreno, Fabián; Pantoja-Astudillo, Jaime A; Morales, Eugenia Aguirre; Bustos, Patricio; Pardo-Seco, Jacobo; Salas, Antonio

    2016-03-01

    We analyzed the Y chromosome haplotypes (Yfiler) of 978 non-related Chilean males grouped in five sampling regions (Iquique, Santiago de Chile, Concepción, Temuco and Punta Arenas) covering main geo-political regions. Overall, 803 different haplotypes and 688 singletons were observed. Molecular diversity was moderately lower than in other neighboring countries (e.g. Argentina); and AMOVA analysis on Y-STR haplotypes showed that among variation within Chile accounted for only 0.25% of the total variation. Punta Arenas, in the southern cone, showed the lowest haplotype diversity, and discrimination capacity, and also the highest matching probability of the five Chilean samples, probably reflecting its more marked geographic isolation compared to the other regions. Multidimensional scaling (MDS) analysis based on RST genetic distances suggested a close proximity of Chilean Y-chromosome profiles to European ones. Consistently, haplogroups inferred from Y-STR profiles revealed that the Native American component constituted only 8% of all the haplotypes, and this component ranged from 5% in the Centre of the country to 9-10% in the South and 13% in the North, which is in good agreement with the distribution of Native American communities in these regions. AMOVA computed on inferred haplogroups confirmed the very low among variation observed in Chilean populations. The present project provides the first Chilean dataset to the international Y-chromosome STR Haplotype Reference Database (YHRD) and it is also the first reference database for Y-chromosome forensic casework of the country.

  9. Idiopathic cases of male infertility from a region in India show low incidence of Y-chromosome microdeletion

    Indian Academy of Sciences (India)

    R Ambasudhan; K Singh; J K Agarwal; S K Singh; A Khanna; R K Sah; I Singh; R Raman

    2003-09-01

    Chromosomal and Y-chromosomal microdeletion analysis has been done in cases of idiopathic infertility with the objective of evaluating the frequency of chromosomal and molecular anomaly as the causal factor of infertility. Barring a few cases of Klinefelter syndrome (XXY or XY/XXY mosaics), no chromosomal anomaly was encountered. Y-microdeletion was analysed by PCR-screening of STSs from different regions of the AZF (AZFa, AZFb, AZFc) on the long arm of the Y, as well as by using DNA probes of the genes RBM, DAZ (Yq), DAZLA (an autosomal homologue of DAZ) and SRY (Yp; sex determining gene). Out of 177 cases examined, 9 (azoospermia – 8 and oligoasthenospermia – 1) showed partial deletion of AZF. The size of deletion varied among patients but AZFc was either totally or partially removed in all of them. In contrast, no deletion was detected in AZFa. Testis biopsy done on a limited number of cases (50) showed diverse stages of spermatogenic arrest with no specific correlation with the genotype. The frequency of Y-chromosome microdeletion in our samples (∼ 5%) is much lower than the frequency (∼ 10%) reported globally and the two previous reports from India. We contend that the frequency may be affected by population structures in different geographical regions.

  10. Crossing-over between Y chromosomes: another possible source of phenotypic variability in the guppy, Poecilia reticulata Peters

    Directory of Open Access Journals (Sweden)

    I. Valentin Petrescu-Mag

    2008-09-01

    Full Text Available Genetic linkage acting through crossing-over between X and X chromosomes, X and Y chromosomes, and autosomal gene recombination are the most important sources of color pattern polymorphisms in animals. Variability in male color patterns and fin morphologies in the guppy, Poecilia reticulata, a livebearing fish is an example of extreme pattern polymorphism. We explored the possibility that crossing-over between Y chromosomes can also contribute to the high degree of pattern polymorphism in guppies because YY individuals are easily induced in the boratory. However, note that YY individuals are also produced in natural populations. Our results indicated that YY crossing-over was another important source of phenotypic variability - probably because recombination may be possible ver the entire length of Y chromosomes, and at very high frequencies due to high degrees of homology. Thus, crossing-over between Y chromosomes is yet another mechanism that can contribute to extreme pattern polymorphism in the guppy, a popular aquarium and important research model species.

  11. Clinical and pathological correlation of the microdeletion of Y chromosome for the 30 patients with azoospermia and severe oligoasthenospermia

    Institute of Scientific and Technical Information of China (English)

    Han-SunChiang; Shauh-Deryeh; Chien-ChihWU; Boo-ChungHuang; Hui-JuTsai; Chia-LangFang

    2004-01-01

    Aim: To review the accumulated 30 patients with different area of Y chromosome microdeletions, focus-ing on their correlation with the clinical and pathological findings. Methods: A total of 334 consecutive infertile men with azoospermia (218 patients) and severe oligoasthenospermia (116 patients) were screened. Complete physical and endocrinological examinations, general chromosome study and multiplex polymerase chain reaction assay to evaluate the Y chromosome microdeletion were performed. Ten patients received testicular biopsy. Then the clinical and pathological findings were analyzed with reference to the areas of Y chromosome microdeletion. Results: There is a decline of the percentage of sperm appearing in semen in the group that the gene deletion region from AZFc to AZFb. The clinical evidence of the impairment (decreased testicular size and elevated serum FSH) is also relevantly aggravated in this group. However, the pathology of testicular biopsy specimen was poorly correlated with the different deletion areas of the Y chromosome, which may be due to the limited number of specimens. Conclusion:The clinical correlation of spermatogenic impairment to the different AZF deletion regions may provide the information for the infertile couples in pre-treatment counseling. (Asian JAndrol 2004 Dec; 6:369-375)

  12. Maternal uniparental disomy for human chromosome 14, due to loss of a chromosome 14 from somatic cells with t(13;14) trisomy 14.

    Science.gov (United States)

    Antonarakis, S E; Blouin, J L; Maher, J; Avramopoulos, D; Thomas, G; Talbot, C C

    1993-06-01

    Uniparental disomy (UPD) for particular chromosomes is increasingly recognized as a cause of abnormal phenotypes in humans. We recently studied a 9-year-old female with a de novo Robertsonian translocation t(13;14), short stature, mild developmental delay, scoliosis, hyperextensible joints, hydrocephalus that resolved spontaneously during the first year of life, and hypercholesterolemia. To determine the parental origin of chromosomes 13 and 14 in the proband, we have studied the genotypes of DNA polymorphic markers due to (GT)n repeats in the patient and her parents' blood DNA. The genotypes of markers D14S43, D14S45, D14S49, and D14S54 indicated maternal UPD for chromosome 14. There was isodisomy for proximal markers and heterodisomy for distal markers, suggesting a recombination event on maternal chromosomes 14. In addition, DNA analysis first revealed--and subsequent cytogenetic analysis confirmed--that there was mosaic trisomy 14 in 5% of blood lymphocytes. There was normal (biparental) inheritance for chromosome 13, and there was no evidence of false paternity in genotypes of 11 highly polymorphic markers on human chromosome 21. Two cases of maternal UPD for chromosome 14 have previously been reported, one with a familial rob t(13;14) and the other with a t(14;14). There are several similarities among these patients, and a "maternal UPD chromosome 14 syndrome" is emerging; however, the contribution of the mosaic trisomy 14 to the phenotype cannot be evaluated. The study of de novo Robertsonian translocations of the type reported here should reveal both the extent of UPD in these events and the contribution of particular chromosomes involved in certain phenotypes.

  13. Maternal uniparental disomy for human chromosome 14, due to loss of a chromosome 14 from somatic cells with t(13; 14) trisomy 14

    Energy Technology Data Exchange (ETDEWEB)

    Antonarakis, S.E.; Blouin, J.L.; Maher, J.; Avramopoulos, D.; Thomas, G.; Talbot, C.C. Jr. (Johns Hopkins Univ., Baltimore (United States))

    1993-06-01

    Uniparental disomy (UPD) for particular chromosomes is increasingly recognized as a cause of abnormal phenotypes in humans. The authors recently studied a 9-year-old female with a de novo Robertsonian translocation t(13;14), short stature, mild developmental delay, scoliosis, hyperextensible joints, hydrocephalus that resolved spontaneously during the first year of life, and hyperchloesterolemia. To determine the parental origin of chromosomes 13 and 14 in the proband, they have studied the genotypes of DNA polymorphic markers due to (GT)n repeats in the patient and her parents' blood DNA. The genotypes of markers D14S43, D14S45, D14S49, and D14S54 indicated maternal UPD for chromosome 14. There was isodisomy for proximal markers and heterodisomy for distal markers, suggesting a recombination event on maternal chromosomes 14. In addition, DNA analysis first revealed -- and subsequent cytogenetic analysis confirmed -- that there was mosaic trisomy 14 in 5% of blood lymphocytes. There was normal (biparental) inheritance for chromosome 13, and there was no evidence of false paternity in genotypes of 11 highly polymorphic markers on human chromosome 21. Two cases of maternal UPD for chromosome 14 have previously been reported, one with a familial rob t(13;14) and the other with a t(14;14). There are several similarities among these patients, and a [open quotes]maternal UPD chromosome 14 syndrome[close quotes] is emerging; however, the contribution of the mosaic trisomy 14 to the phenotype cannot be evaluated. The study of de novo Robertsonian translocations of the type reported here should reveal both the extent of UPD in these events and the contribution of particular chromosomes involved in certain phenotypes. 33 refs., 3 figs., 1 tab.

  14. Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation.

    Science.gov (United States)

    Sahakyan, Anna; Kim, Rachel; Chronis, Constantinos; Sabri, Shan; Bonora, Giancarlo; Theunissen, Thorold W; Kuoy, Edward; Langerman, Justin; Clark, Amander T; Jaenisch, Rudolf; Plath, Kathrin

    2017-01-05

    Naive human embryonic stem cells (hESCs) can be derived from primed hESCs or directly from blastocysts, but their X chromosome state has remained unresolved. Here, we show that the inactive X chromosome (Xi) of primed hESCs was reactivated in naive culture conditions. Like cells of the blastocyst, the resulting naive cells contained two active X chromosomes with XIST expression and chromosome-wide transcriptional dampening and initiated XIST-mediated X inactivation upon differentiation. Both establishment of and exit from the naive state (differentiation) happened via an XIST-negative XaXa intermediate. Together, these findings identify a cell culture system for functionally exploring the two X chromosome dosage compensation processes in early human development: X dampening and X inactivation. However, remaining differences between naive hESCs and embryonic cells related to mono-allelic XIST expression and non-random X inactivation highlight the need for further culture improvement. As the naive state resets Xi abnormalities seen in primed hESCs, it may provide cells better suited for downstream applications.

  15. Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Bortoluzzi Stefania

    2004-06-01

    Full Text Available Abstract Background Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy. Results A Perl-code web client was developed to automatically obtain genome map positions of large sets of genes. The software, based on automatic search on Human Genome Browser by sequence alignment, only requires availability of a single transcribed sequence for each gene. In this way, we obtained tissue-specific chromosomal maps of genes expressed in rhabdomyosarcoma or skeletal muscle. Subsequently, Perl software was developed to calculate gene density along chromosomes, by using a sliding window. Thirty-three chromosomal regions harbouring genes mostly expressed in rhabdomyosarcoma were identified. Similarly, 48 chromosomal regions were detected including genes possibly related to function of differentiated skeletal muscle, but silenced in rhabdomyosarcoma. Conclusion In this study we developed a method and the associated software for the comparative analysis of genomic expression in tissues and we identified chromosomal segments showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma, appearing as candidate regions for harbouring genes involved in origin of alveolar rhabdomyosarcoma representing possible targets for drug treatment and/or development of tumor markers.

  16. Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease.

    Science.gov (United States)

    De La Fuente, Rabindranath; Baumann, Claudia; Viveiros, Maria M

    2011-08-01

    Functional differentiation of chromatin structure is essential for the control of gene expression, nuclear architecture, and chromosome stability. Compelling evidence indicates that alterations in chromatin remodeling proteins play an important role in the pathogenesis of human disease. Among these, α-thalassemia mental retardation X-linked protein (ATRX) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres and telomeres as well as facultative heterochromatin on the murine inactive X chromosome. Mutations in human ATRX result in an X-linked neurodevelopmental condition with various degrees of gonadal dysgenesis (ATRX syndrome). Patients with ATRX syndrome may exhibit skewed X chromosome inactivation (XCI) patterns, and ATRX-deficient mice exhibit abnormal imprinted XCI in the trophoblast cell line. Non-random or skewed XCI can potentially affect both the onset and severity of X-linked disease. Notably, failure to establish epigenetic modifications associated with the inactive X chromosome (Xi) results in several conditions that exhibit genomic and chromosome instability such as fragile X syndrome as well as cancer development. Insight into the molecular mechanisms of ATRX function and its interacting partners in different tissues will no doubt contribute to our understanding of the pathogenesis of ATRX syndrome as well as the epigenetic origins of aneuploidy. In turn, this knowledge will be essential for the identification of novel drug targets and diagnostic tools for cancer progression as well as the therapeutic management of global epigenetic changes commonly associated with malignant neoplastic transformation.

  17. Global distribution of Y-chromosome haplogroup C reveals the prehistoric migration routes of African exodus and early settlement in East Asia.

    Science.gov (United States)

    Zhong, Hua; Shi, Hong; Qi, Xue-Bin; Xiao, Chun-Jie; Jin, Li; Ma, Runlin Z; Su, Bing

    2010-07-01

    The regional distribution of an ancient Y-chromosome haplogroup C-M130 (Hg C) in Asia provides an ideal tool of dissecting prehistoric migration events. We identified 465 Hg C individuals out of 4284 males from 140 East and Southeast Asian populations. We genotyped these Hg C individuals using 12 Y-chromosome biallelic markers and 8 commonly used Y-short tandem repeats (Y-STRs), and performed phylogeographic analysis in combination with the published data. The results show that most of the Hg C subhaplogroups have distinct geographical distribution and have undergone long-time isolation, although Hg C individuals are distributed widely across Eurasia. Furthermore, a general south-to-north and east-to-west cline of Y-STR diversity is observed with the highest diversity in Southeast Asia. The phylogeographic distribution pattern of Hg C supports a single coastal 'Out-of-Africa' route by way of the Indian subcontinent, which eventually led to the early settlement of modern humans in mainland Southeast Asia. The northward expansion of Hg C in East Asia started approximately 40 thousand of years ago (KYA) along the coastline of mainland China and reached Siberia approximately 15 KYA and finally made its way to the Americas.

  18. An integrated physical map covering 25 cM of human chromosome 8

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.; Hou, J.; Wagner, M.J.; Wells, D.E. [Univ. of Houston, TX (United States)

    1996-02-15

    This article reports on an integrated physical map of human chromosome 8 using STS content analysis of somatic cell hybrids and YAC contigs. Such mapping efforts will help to localize genes linked to hereditary diseases. 17 refs., 1 fig., 1 tab.

  19. Complete Genome Sequence of a Human Cytomegalovirus Strain AD169 Bacterial Artificial Chromosome Clone

    Science.gov (United States)

    Ostermann, Eleonore; Spohn, Michael; Indenbirken, Daniela

    2016-01-01

    The complete sequence of the human cytomegalovirus strain AD169 (variant ATCC) cloned as a bacterial artificial chromosome (AD169-BAC, also known as HB15 or pHB15) was determined. The viral genome has a length of 230,290 bp and shows 52 nucleotide differences compared to a previously sequenced AD169varATCC clone. PMID:27034483

  20. MOLECULAR CHARACTERIZATION OF A RECURRING COMPLEX CHROMOSOMAL TRANSLOCATION IN 2 HUMAN EXTRAGONADAL GERM-CELL TUMORS

    NARCIS (Netherlands)

    SINKE, RJ; WEGHUIS, DO; SUIJKERBUIJK, RF; TANIGAMI, A; NAKAMURA, Y; LARSSON, C; WEBER, G; DEJONG, B; OOSTERHUIS, JW; MOLENAAR, WM; VANKESSEL, AG

    1994-01-01

    The molecular characterization of a recurring complex chromosomal translocation involving 6p21, 6p22, 6p23, and 11q13 in two independent bur similar extragonadal human germ cell rumors was initiated using fluorescence in situ hybridization (FISH) and pulse field gel electrophoresis (PFGE) techniques

  1. Molecular characterization of a recurring complex chromosomal translocation in two human extragonadal germ cell tumors.

    NARCIS (Netherlands)

    Sinke, R J; Weghuis, D O; Suijkerbuijk, R F; Tanigami, A; Nakamura, Y; Larsson, C; Weber, G; Jong, B de; Oosterhuis, J W; Molenaar, W M

    1994-01-01

    The molecular characterization of a recurring complex chromosomal translocation involving 6p21, 6p22, 6q23, and 11q13 in two independent but similar extragonadal human germ cell tumors was initiated using fluorescence in situ hybridization (FISH) and pulse field gel electrophoresis (PFGE) techniques

  2. The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2.

    Science.gov (United States)

    Ventura, Mario; Catacchio, Claudia R; Sajjadian, Saba; Vives, Laura; Sudmant, Peter H; Marques-Bonet, Tomas; Graves, Tina A; Wilson, Richard K; Eichler, Evan E

    2012-06-01

    Chimpanzee and gorilla chromosomes differ from human chromosomes by the presence of large blocks of subterminal heterochromatin thought to be composed primarily of arrays of tandem satellite sequence. We explore their sequence composition and organization and show a complex organization composed of specific sets of segmental duplications that have hyperexpanded in concert with the formation of subterminal satellites. These regions are highly copy number polymorphic between and within species, and copy number differences involving hundreds of copies can be accurately estimated by assaying read-depth of next-generation sequencing data sets. Phylogenetic and comparative genomic analyses suggest that the structures have arisen largely independently in the two lineages with the exception of a few seed sequences present in the common ancestor of humans and African apes. We propose a model where an ancestral human-chimpanzee pericentric inversion and the ancestral chromosome 2 fusion both predisposed and protected the chimpanzee and human genomes, respectively, to the formation of subtelomeric heterochromatin. Our findings highlight the complex interplay between duplicated sequences and chromosomal rearrangements that rapidly alter the cytogenetic landscape in a short period of evolutionary time.

  3. Chromosomal mosaicism : underlying mechanisms and consequences for early human embryo development

    NARCIS (Netherlands)

    da Avó Ribeiro dos Santos, M.

    2013-01-01

    In humans, reproduction is considered a relatively inefficient process, when compared with other mammalian species and the chance of achieving a spontaneous pregnancy after timed intercourse is at the most 20-30%. Chromosome segregation errors are a well-known inherent feature of cell division in hu

  4. Localization of the kappa opioid receptor gene to human chromosome band 8q11. 2

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kazuki; Takeda, Jun; Bell, G.I.; Espinosa, R.; Le Beau, M.M. (Univ. of Chicago, IL (United States))

    1994-02-01

    Using the cloned mouse kappa opioid receptor cDNA clone as a probe, screened a human g