WorldWideScience

Sample records for chromosomes human x

  1. Sex chromosome evolution: platypus gene mapping suggests that part of the human X chromosome was originally autosomal.

    OpenAIRE

    Watson, J M; Spencer, J. A.; Riggs, A D; Graves, J.A.

    1991-01-01

    To investigate the evolution of the mammalian sex chromosomes, we have compared the gene content of the X chromosomes in the mammalian groups most distantly related to man (marsupials and monotremes). Previous work established that genes on the long arm of the human X chromosome are conserved on the X chromosomes in all mammals, revealing that this region was part of an ancient mammalian X chromosome. However, we now report that several genes located on the short arm of the human X chromosome...

  2. Deficit of mitonuclear genes on the human X chromosome predates sex chromosome formation.

    Science.gov (United States)

    Dean, Rebecca; Zimmer, Fabian; Mank, Judith E

    2015-02-01

    Two taxa studied to date, the therian mammals and Caenorhabditis elegans, display underrepresentations of mitonuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions over the generality of the role of sexual conflict in shaping the distribution of mt-N genes. Here we tested whether mt-N genes moved off of the therian X chromosome following sex chromosome formation, consistent with the role of sexual conflict, or whether the paucity of mt-N genes on the therian X is a chance result of an underrepresentation on the ancestral regions that formed the X chromosome. We used a synteny-based approach to identify the ancestral regions in the platypus and chicken genomes that later formed the therian X chromosome. We then quantified the movement of mt-N genes on and off of the X chromosome and the distribution of mt-N genes on the human X and ancestral X regions. We failed to find an excess of mt-N gene movement off of the X. The bias of mt-N genes on ancestral therian X chromosomes was also not significantly different from the biases on the human X. Together our results suggest that, rather than conflict driving mt-N genes off of the mammalian X, random biases on chromosomes that formed the X chromosome could explain the paucity of mt-N genes in the therian lineage. PMID:25637223

  3. Mapping and ordered cloning of the human X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, C.T.; Nelson, D.L.

    1992-12-01

    Progress is reported on gathering X chromosome specific libraries and integrating those with the library produced in this project. Further studies on understanding Fragile X Syndrome and other hereditary diseases related to the X chromosome are described. (DT)

  4. Number and size of human X chromosome fragments transferred to mouse cells by chromosome-mediated gene transfer.

    OpenAIRE

    Olsen, A S; McBride, O W; Moore, D. E.

    1981-01-01

    Labeled probes of unique-sequence human X chromosomal deoxyribonucleic acid, prepared by two different procedures, were used to measure the amount of human X chromosomal deoxyribonucleic acid in 12 mouse cell lines expressing human hypoxanthine phosphoribosyltransferase after chromosome-mediated gene transfer. The amount of X chromosomal deoxyribonucleic acid detected by this procedure ranged from undetectable levels in the three stable transformants and some unstable transformants examined t...

  5. Cytogenetic and molecular studies on a recombinant human X chromosome: implications for the spreading of X chromosome inactivation

    International Nuclear Information System (INIS)

    A pericentric inversion of human X chromosome and a recombinant X chromosome [rec(X)] derived from crossing-over within the inversion was identified in a family. The rec(X) had a duplication of the segment Xq26.3 → Xqter and a deletion of Xp22.3 → Xpter and was interpreted to be Xqter → Xq26.3::Xp22.3 → Xqter. To characterize the rec(X) chromosome, dosage blots were done on genomic DNA from carriers of this rearranged X chromosome using a number of X chromosome probes. Results showed that anonymous sequences from the distal end of the long arm to which probes 4D8, Hx120A, DX13, and St14 bind as well as the locus for glucose-6-phosphate dehydrogenase (G6PD) wee duplicated on the rec(X). Mouse-human cell hybrids were constructed that retained the rec(X) in the active or inactive state. Analyses of these hybrid clones for markers from the distal short arm of the X chromosome showed that the rec(X) retained the loci for steroid sulfatase (STS) and the cell surface antigen 12E7 (MIC2); but not the pseudoautosomal sequence 113D. These molecular studies confirm that the rec(X) is a duplication-deficiency chromosome as expected. In the inactive state in cell hybrids, STS and MIC2 (which usually escape X chromosome inactivation) were expressed from the rec(X), whereas G6PD was not. Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3 → qter region of the human X chromosome. The mechanism of spreading of inactivation appears to operate in a sequence-specific fashion. Alternatively, STS and MIC2 may have undergone inactivation initially but could not be maintained in an inactive state

  6. Cytogenetic and molecular studies on a recombinant human X chromosome: implications for the spreading of X chromosome inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Mohandas, T.; Geller, R.L.; Yen, P.H.; Rosendorff, J.; Bernstein, R.; Yoshida, A.; Shapiro, L.J.

    1987-07-01

    A pericentric inversion of human X chromosome and a recombinant X chromosome (rec(X)) derived from crossing-over within the inversion was identified in a family. The rec(X) had a duplication of the segment Xq26.3 ..-->.. Xqter and a deletion of Xp22.3 ..-->.. Xpter and was interpreted to be Xqter ..-->.. Xq26.3::Xp22.3 ..-->.. Xqter. To characterize the rec(X) chromosome, dosage blots were done on genomic DNA from carriers of this rearranged X chromosome using a number of X chromosome probes. Results showed that anonymous sequences from the distal end of the long arm to which probes 4D8, Hx120A, DX13, and St14 bind as well as the locus for glucose-6-phosphate dehydrogenase (G6PD) wee duplicated on the rec(X). Mouse-human cell hybrids were constructed that retained the rec(X) in the active or inactive state. Analyses of these hybrid clones for markers from the distal short arm of the X chromosome showed that the rec(X) retained the loci for steroid sulfatase (STS) and the cell surface antigen 12E7 (MIC2); but not the pseudoautosomal sequence 113D. These molecular studies confirm that the rec(X) is a duplication-deficiency chromosome as expected. In the inactive state in cell hybrids, STS and MIC2 (which usually escape X chromosome inactivation) were expressed from the rec(X), whereas G6PD was not. Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3 ..-->.. qter region of the human X chromosome. The mechanism of spreading of inactivation appears to operate in a sequence-specific fashion. Alternatively, STS and MIC2 may have undergone inactivation initially but could not be maintained in an inactive state.

  7. Evaluating the Relationship between Spermatogenic Silencing of the X Chromosome and Evolution of the Y Chromosome in Chimpanzee and Human

    Science.gov (United States)

    Mulugeta Achame, Eskeatnaf; Baarends, Willy M.; Gribnau, Joost; Grootegoed, J. Anton

    2010-01-01

    Chimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural selection acting on the MSY as a unit. Positive selection might involve the performance of the MSY in spermatogenesis. Chimpanzees have a highly polygamous mating behavior, so that sperm competition is thought to provide a strong selective force acting on the Y chromosome in the chimpanzee lineage. In consequence of evolution of the heterologous sex chromosomes in mammals, meiotic sex chromosome inactivation (MSCI) results in a transcriptionally silenced XY body in male meiotic prophase, and subsequently also in postmeiotic repression of the sex chromosomes in haploid spermatids. This has evolved to a situation where MSCI has become a prerequisite for spermatogenesis. Here, by analysis of microarray testicular expression data representing a small number of male chimpanzees and men, we obtained information indicating that meiotic and postmeiotic X chromosome silencing might be more effective in chimpanzee than in human spermatogenesis. From this, we suggest that the remarkable reorganization of the chimpanzee Y chromosome, compared to the human Y chromosome, might have an impact on its meiotic interactions with the X chromosome and thereby on X chromosome silencing in spermatogenesis. Further studies will be required to address comparative functional aspects of MSCI in chimpanzee, human, and other placental mammals. PMID:21179482

  8. A new region of conservation is defined between human and mouse X chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Dinulos, M.B.; Disteche, C.M. [Univ. of Washington, Seattle, WA (United States); Bassi, M.T. [Univ. of Siena (Italy)] [and others

    1996-07-01

    Comparative mapping of the X chromosome in eutherian mammals have revealed distinct regions of conservation as well as evolutionary rearrangements between human and mouse. Recently, we and others mapped the murine homologue of CLCN4 (Chloride channel 4) to band F4 of the X chromosome in Mus spretus but to chromosome 7 in laboratory strains. We now report the mapping of the murine homologues of APXL (Apical protein Xenopus laevis-like) and OA1 (Ocular albinism type I), two genes that are located on the human X chromosome at band p22.3 and in close proximity to CLCN4. Interestingly, Oa1 and Apxl map to bands F2-F3 in both M. spretus and the laboratory strain C57BL/6J, defining a new rearrangement between human and mouse X chromosomes. 17 refs., 2 figs., 1 tab.

  9. Abnormal X : autosome ratio, but normal X chromosome inactivation in human triploid cultures

    Directory of Open Access Journals (Sweden)

    Norwood Thomas H

    2006-07-01

    Full Text Available Abstract Background X chromosome inactivation (XCI is that aspect of mammalian dosage compensation that brings about equivalence of X-linked gene expression between females and males by inactivating one of the two X chromosomes (Xi in normal female cells, leaving them with a single active X (Xa as in male cells. In cells with more than two X's, but a diploid autosomal complement, all X's but one, Xa, are inactivated. This phenomenon is commonly thought to suggest 1 that normal development requires a ratio of one Xa per diploid autosomal set, and 2 that an early event in XCI is the marking of one X to be active, with remaining X's becoming inactivated by default. Results Triploids provide a test of these ideas because the ratio of one Xa per diploid autosomal set cannot be achieved, yet this abnormal ratio should not necessarily affect the one-Xa choice mechanism for XCI. Previous studies of XCI patterns in murine triploids support the single-Xa model, but human triploids mostly have two-Xa cells, whether they are XXX or XXY. The XCI patterns we observe in fibroblast cultures from different XXX human triploids suggest that the two-Xa pattern of XCI is selected for, and may have resulted from rare segregation errors or Xi reactivation. Conclusion The initial X inactivation pattern in human triploids, therefore, is likely to resemble the pattern that predominates in murine triploids, i.e., a single Xa, with the remaining X's inactive. Furthermore, our studies of XIST RNA accumulation and promoter methylation suggest that the basic features of XCI are normal in triploids despite the abnormal X:autosome ratio.

  10. Involvement of chromosome X in primary cytogenetic change in human neoplasia: nonrandom translocation in synovial sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Turc-Carel, C.; Cin, P.D.; Limon, J.; Rao, U.; Li, F.P.; Corson, J.M.; Zimmerman, R.; Parry, D.M.; Cowan, J.M.; Sandberg, A.A.

    1987-04-01

    A translocation that involves chromosome X (band p11.2) and chromosome 18 (band q11.2) was observed in short-term in vitro cultures of cells from five synovial sarcomas and one malignant fibrous histiocytoma. In four of these tumors, the translocation t(X;18)(p11.2;q11.2) was reciprocal. The two other tumors had complex translocations: t(X;18;21)(p11.2;q11.2;p13) and t(X;15;18)(p11.2;q23;q11.2). A translocation between chromosomes X and 18 was not detected in other histological types of soft tissue sarcoma. The X;18 rearrangement appears to characterize the synovial sarcoma and is the first description of a primary, nonrandom change in the sex chromosome of a human solid tumor.

  11. A 6. 5-Mb yeast artificial chromosome contig incorporating 33 DNA markers on the human X chromosome at Xq22

    Energy Technology Data Exchange (ETDEWEB)

    Vetrie, D.; Kendall, E.; Coffey, A.; Hassock, S.; Collins, J.; Todd, C.; Bobrow, M.; Bentley, D.R. (Paediatric Research Unit, London (United Kingdom)); Lehrach, H. (Imperial Cancer Research Fund, London (United Kingdom)); Harris, A. (John Radcliffe Hospital, Oxford (United Kingdom))

    1994-01-01

    The Xq22 region of the human X chromosome contains genes for a number of inherited disorders. Sixty-nine yeast artificial chromosome clones have been isolated and assembled into a 6.5-Mb contig that contains 33 DNA markers localized to this region. This contig extends distally from DXS366 to beyond DXS87 and includes the genes involved in X-linked agammaglobulinemia (btk), Fabry disease (GLA), and Pelizaeus-Merzbacher disease (PLP). The order of markers in this contig is consistent with the known genetic and physical mapping information of Xq22. This cloned material provides a source from which to isolate other genes located in this part of the X chromosome. 45 refs., 2 figs., 2 tabs.

  12. Origin and evolution of candidate mental retardation genes on the human X chromosome (MRX

    Directory of Open Access Journals (Sweden)

    Deakin Janine E

    2008-02-01

    Full Text Available Abstract Background The human X chromosome has a biased gene content. One group of genes that is over-represented on the human X are those expressed in the brain, explaining the large number of sex-linked mental retardation (MRX syndromes. Results To determine if MRX genes were recruited to the X, or whether their brain-specific functions were acquired after relocation to the mammalian X chromosome, we examined the location and expression of their orthologues in marsupials, which diverged from human approximately 180 million years ago. We isolated and mapped nine tammar wallaby MRX homologues, finding that six were located on the tammar wallaby X (which represents the ancient conserved mammal X and three on chromosome 5, representing the recently added region of the human X chromosome. The location of MRX genes within the same synteny groups in human and wallaby does not support the hypothesis that genes with an important function in the brain were recruited in multiple independent events from autosomes to the mammalian X chromosome. Most of the tammar wallaby MRX homologues were more widely expressed in tammar wallaby than in human. Only one, the tammar wallaby ARX homologue (located on tammar chromosome 5p, has a restricted expression pattern comparable to its pattern in human. The retention of the brain-specific expression of ARX over 180 million years suggests that this gene plays a fundamental role in mammalian brain development and function. Conclusion Our results suggest all the genes in this study may have originally had more general functions that became more specialised and important in brain function during evolution of humans and other placental mammals.

  13. Evolution of homologous sequences on the human X and Y chromosomes, outside of the meiotic pairing segment.

    OpenAIRE

    Bickmore, W A; Cooke, H. J.

    1987-01-01

    A sequence isolated from the long arm of the human Y chromosome detects a highly homologous locus on the X. This homology extends over at least 50 kb of DNA and is postulated to be the result of a transposition event between the X and Y chromosomes during recent human evolution, since homologous sequences are shown to be present on the X chromosome alone in the chimpanzee and gorilla.

  14. Mapping and ordered cloning of the human X chromosome. Progress report, September 1991--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, C.T.; Nelson, D.L.

    1992-12-01

    Progress is reported on gathering X chromosome specific libraries and integrating those with the library produced in this project. Further studies on understanding Fragile X Syndrome and other hereditary diseases related to the X chromosome are described. (DT)

  15. Chromosomes and irradiation: in vitro study of the action of X-rays on human lymphocytes

    International Nuclear Information System (INIS)

    Radioinduced chromosomal aberrations were studied in vitro on leukocytes of human peripheral blood after x irradiation at 25, 50, 100, 200, and 300 R. The numeric and structural anomalies were examined on 600 karyotypes. The relationship between these disorders and the dose delivered to the blood are discussed. An explanation on their mechanism of formation is tentatively given. (authors)

  16. Antipain-mediated suppression of X-ray-induced chromosomal aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    The protease inhibitor antipain is known to modulate the number of chromosomal aberrations induced by the S-phase-dependent alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Experiments have now been carried out to see if antipain might also affect the yield of aberrations induced by X-rays, which are S-independent and thus produce chromosomal aberrations by a different mechanism. The results show that human lymphocytes exposed to 0.4 or 1.5 Gy of X-rays at 48 h of culture and fixed at 3, 6, 8, 10 or 12 h thereafter contain 27-52% fewer chromatid breaks if the cells are also treated with antipain before irradiation. Because previous studies postulated that antipain could affect the induction of of chromosomal aberrations by suppressing free radical reactions within cells, we also tested whether antipain affects X-ray-induced aberrations when present only during the time of irradiation, as is the case for free radical scavengers, such as L-cysteine. The results indicate that, in contrast to L-cysteine, antipain can suppress the induction of X-ray-induced aberrations even when administered as late as 2 h after irradiation, suggesting that the effects of antipain on aberrations are not attributable to its interference with short-lived radicals within the cells. These data indicate that the formation of chromosome aberrations by S-independent agents can involve an antipain-sensitive process. (author)

  17. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture.

    Science.gov (United States)

    Darrow, Emily M; Huntley, Miriam H; Dudchenko, Olga; Stamenova, Elena K; Durand, Neva C; Sun, Zhuo; Huang, Su-Chen; Sanborn, Adrian L; Machol, Ido; Shamim, Muhammad; Seberg, Andrew P; Lander, Eric S; Chadwick, Brian P; Aiden, Erez Lieberman

    2016-08-01

    During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the "Barr body." Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called "superdomains," such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called "superloops." DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging. PMID:27432957

  18. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture

    Science.gov (United States)

    Darrow, Emily M.; Huntley, Miriam H.; Dudchenko, Olga; Stamenova, Elena K.; Durand, Neva C.; Sun, Zhuo; Huang, Su-Chen; Sanborn, Adrian L.; Machol, Ido; Shamim, Muhammad; Seberg, Andrew P.; Lander, Eric S.; Chadwick, Brian P.; Aiden, Erez Lieberman

    2016-01-01

    During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the “Barr body.” Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called “superdomains,” such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called “superloops.” DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4. We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging. PMID:27432957

  19. Types of structural chromosome aberrations and their incidences in human spermatozoa X-irradiated in vitro

    International Nuclear Information System (INIS)

    The authors studied the effects of in vitro X-irradiation on human sperm chromosomes, using our interspecific in vitro fertilization system between human spermatozoa and zona-free hamster oocytes. 28 semen samples from 5 healthy men were exposed to 0.23, 0.45, 0.91 and 1.82 Gy of X-rays. Totals of 2098 and 2862 spermatozoa were karyotyped in the control and the irradiated groups, respectively. The indicence of spermatozoa with X-ray-induced structural chromosome aberrations (Y) increased linearly with increasing dosage (D), being best expressed by the equation, Y = 0.08 + 34.52 D. The incidence of breakage-type aberrations was moe than 9 times higher than that of exchange-type aberrations. Both of them showed linear dose-dependent increases, which were expressed by the regression lines, Y = -0.014 + 0.478 D and Y -0.010 + 0.057 D, respectively. The incidence of chromosome-ltype aberrations was about 6 times higher than that of chromatid-type aberrations. Their dose-dependent increases were expressed by the regression lines, Y = -0.015 + 0.462 D and Y = -0.006 + 0.079 D, respectively. These results are discussed in relation to the previous data obtained with γ-rays. The repair mechanism of X-ray-induced sperm DNA lesions is also discussed. (author). 21 refs.; 4 figs.; 4 tabs

  20. Dosage regulation of the active X chromosome in human triploid cells.

    Directory of Open Access Journals (Sweden)

    Xinxian Deng

    2009-12-01

    Full Text Available In mammals, dosage compensation is achieved by doubling expression of X-linked genes in both sexes, together with X inactivation in females. Up-regulation of the active X chromosome may be controlled by DNA sequence-based and/or epigenetic mechanisms that double the X output potentially in response to autosomal factor(s. To determine whether X expression is adjusted depending on ploidy, we used expression arrays to compare X-linked and autosomal gene expression in human triploid cells. While the average X:autosome expression ratio was about 1 in normal diploid cells, this ratio was lower (0.81-0.84 in triploid cells with one active X and higher (1.32-1.4 in triploid cells with two active X's. Thus, overall X-linked gene expression in triploid cells does not strictly respond to an autosomal factor, nor is it adjusted to achieve a perfect balance. The unbalanced X:autosome expression ratios that we observed could contribute to the abnormal phenotypes associated with triploidy. Absolute autosomal expression levels per gene copy were similar in triploid versus diploid cells, indicating no apparent global effect on autosomal expression. In triploid cells with two active X's our data support a basic doubling of X-linked gene expression. However, in triploid cells with a single active X, X-linked gene expression is adjusted upward presumably by an epigenetic mechanism that senses the ratio between the number of active X chromosomes and autosomal sets. Such a mechanism may act on a subset of genes whose expression dosage in relation to autosomal expression may be critical. Indeed, we found that there was a range of individual X-linked gene expression in relation to ploidy and that a small subset ( approximately 7% of genes had expression levels apparently proportional to the number of autosomal sets.

  1. Enhancement of chromosomal damage in human lymphocytes irradiated with X rays in the presence of iodine

    International Nuclear Information System (INIS)

    The production of chromosomal aberrations resulting from X irradiation of peripheral human blood lymphocytes in the presence or absence of Angioconray-80%, an iodised contrast medium, was investigated. This experiment confirmed an enhanced radiation effect, which is essentially explained by the increase of absorbed dose due to the high photoelectric cross section of iodine for X rays. Nevertheless the cytotoxicity of contrast medium alone cannot be neglected, and at a 0.1 M concentration in unirradiated blood it produced chromosome damage equivalent to 0.5 Gy. The distributions of aberrations among the cells, with and without contrast medium, were analysed using two statistical tests of goodness-of-fit for the Poissonian distribution. The results are discussed mostly in terms of dose enhancement factors. (author)

  2. X chromosome abnormalities and cognitive development: implications for understanding normal human development.

    Science.gov (United States)

    Walzer, S

    1985-03-01

    Recent advances in the biological sciences have offered new opportunities to identify biological contributions as they interact with social experience to help determine psychological development. The role of biological factors is more easily demonstrated in subhuman species in which extensive experimental manipulations of variables are possible. One strategy for the study of human behaviour genetics has been the systematic analysis of behaviour in individuals with naturally occurring X chromosome variations. The aim has been to demonstrate whether or not the range of expected variability in particular areas of behavioural development was narrowed by the specific genotypic abnormality. The knowledge obtained from these studies can be applied meaningfully to enhance our understanding about human behavioural development in chromosomally unaffected individuals. PMID:3884639

  3. Affected Kindred Analysis of Human X Chromosome Exomes to Identify Novel X-Linked Intellectual Disability Genes

    OpenAIRE

    Niranjan, Tejasvi S.; Skinner, Cindy; May, Melanie; Turner, Tychele; Rose, Rebecca; Stevenson, Roger; Schwartz, Charles E.; Wang, Tao

    2015-01-01

    X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families ...

  4. Escape Artists of the X Chromosome.

    Science.gov (United States)

    Balaton, Bradley P; Brown, Carolyn J

    2016-06-01

    Inactivation of one X chromosome in mammalian females achieves dosage compensation between XX females and XY males; however, over 15% of human X-linked genes continue to be expressed from the inactive X chromosome. New genomic methodologies have improved our identification and characterization of these escape genes, revealing the importance of DNA sequence, chromatin structure, and chromosome ultrastructure in regulating expression from an otherwise inactive chromosome. Study of these exceptions to the rule of silencing highlights the interconnectedness of chromatin and chromosome structure in X-chromosome inactivation (XCI). Recent advances also demonstrate the importance of these genes in sexually dimorphic disease risk, particularly cancer. PMID:27103486

  5. X-chromosome inactivation in Rett Syndrome human induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Aaron YL Cheung

    2012-03-01

    Full Text Available Rett Syndrome (RTT is a neurodevelopmental disorder that affects girls due primarily to heterozygous mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MECP2. Random X-chromosome inactivation (XCI results in cellular mosaicism in which some cells express wild-type MECP2 while other cells express mutant MECP2. The generation of patient-specific human induced Pluripotent Stem cells (hiPSCs facilitates the production of RTT-hiPSC-derived neurons in vitro to investigate disease mechanisms and identify novel drug treatments. The generation of RTT-hiPSCs has been reported by many laboratories, however, the XCI status of RTT-hiPSCs has been inconsistent. Some report RTT-hiPSCs retain the inactive X-chromosome (post-XCI of the founder somatic cell allowing isogenic RTT-hiPSCs that express only the wild-type or mutant MECP2 allele to be isolated from the same patient. Post-XCI RTT-hiPSCs-derived neurons retain this allele-specific expression pattern of wild-type or mutant MECP2. Conversely, others report RTT-hiPSCs in which the inactive X-chromosome of the founder somatic cell reactivates (pre-XCI upon reprogramming into RTT-hiPSCs. Pre-XCI RTT-hiPSC-derived neurons exhibit random XCI resulting in cellular mosaicism with respect to wild-type and mutant MECP2 expression. Here we review and attempt to interpret the inconsistencies in XCI status of RTT-hiPSCs generated to date by comparison to other pluripotent systems in vitro and in vivo and the methods used to analyze XCI. Finally, we discuss the relative strengths and weaknesses of post- and pre-XCI hiPSCs in the context of RTT, and other X-linked and autosomal disorders for translational medicine.

  6. Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming

    Science.gov (United States)

    Cantone, Irene; Bagci, Hakan; Dormann, Dirk; Dharmalingam, Gopuraja; Nesterova, Tatyana; Brockdorff, Neil; Rougeulle, Claire; Vallot, Celine; Heard, Edith; Chaligne, Ronan; Merkenschlager, Matthias; Fisher, Amanda G.

    2016-01-01

    Erasure of epigenetic memory is required to convert somatic cells towards pluripotency. Reactivation of the inactive X chromosome (Xi) has been used to model epigenetic reprogramming in mouse, but human studies are hampered by Xi epigenetic instability and difficulties in tracking partially reprogrammed iPSCs. Here we use cell fusion to examine the earliest events in the reprogramming-induced Xi reactivation of human female fibroblasts. We show that a rapid and widespread loss of Xi-associated H3K27me3 and XIST occurs in fused cells and precedes the bi-allelic expression of selected Xi-genes by many heterokaryons (30–50%). After cell division, RNA-FISH and RNA-seq analyses confirm that Xi reactivation remains partial and that induction of human pluripotency-specific XACT transcripts is rare (1%). These data effectively separate pre- and post-mitotic events in reprogramming-induced Xi reactivation and reveal a complex hierarchy of epigenetic changes that are required to reactivate the genes on the human Xi chromosome. PMID:27507283

  7. Mapping and ordered cloning of the human X chromosome. Final progress report, March 1991--February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, C.T.

    1995-09-01

    A reciprocal probing method is described which uses pooled cDNA probes to order chromosome specific libraries in order to identify cosmids containing sequences capable to hybridizing to the pool. In this pilot study, placental DNA clones were used to identify cosmids from both chromosomes X and 17. Sixty unique cDNA`s were identified of which 22 were novel.

  8. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.M.; Spencer, J.A.; Graves, J.A.M. (La Trobe Univ., Bundoora, Victoria (Australia)); Riggs, A.D. (Beckman Inst., Duarte, CA (USA))

    1990-09-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. The authors conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these genes are located on the long arm of the platypus X chromosome, which is G-band homologous to the Y chromosome and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on isolation by X-Y chromosome differentiation and X chromosome inactivation.

  9. Report of the Fourth International Workshop on human X chromosome mapping 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schlessinger, D.; Mandel, J.L.; Monaco, A.P.; Nelson, D.L.; Willard, H.F. [eds.

    1993-12-31

    Vigorous interactive efforts by the X chromosome community have led to accelerated mapping in the last six months. Seventy-five participants from 12 countries around the globe contributed progress reports to the Fourth International X Chromosome Workshop, at St. Louis, MO, May 9-12, 1993. It became clear that well over half the chromosome is now covered by YAC contigs that are being extended, verified, and aligned by their content of STSs and other markers placed by cytogenetic or linkage mapping techniques. The major aim of the workshop was to assemble the consensus map that appears in this report, summarizing both consensus order and YAC contig information.

  10. The effect of caffeine posttreatment on X-ray-induced chromosomal aberrations in human blood lymphocytes in vitro

    International Nuclear Information System (INIS)

    The potentiating effect of caffeine on X-ray-induced chromosomal aberrations in human blood lymphocytes has been investigated, with special reference to cell cycle stages (G0 and G2). Both quantitative and qualitative differences in the yield of chromosomal aberrations were detected in caffeine-posttreated cells, depending on the cell stage irradiated. The studies on caffeine potentiating effects on X-irradiated G0 lymphocytes from normal adults, newborns, Down syndrome patients, and an ataxia telangiectasia patient pointed to interindividual variations in the response to caffeine potentiation among normal probands and a very profound effect in ataxia cells. (orig.)

  11. Frequency and distribution analysis of chromosomal translocations induced by x-ray in human lymphocytes

    International Nuclear Information System (INIS)

    The characteristic of ionizing radiation suggests that induced chromosomal damage in the form of translocations would appear to be randomly distributed. However, the outcome of tests performed in vitro and in vivo (irradiated individuals) are contradictories. The most translocation-related chromosomes, as far as some studies reveal on one hand, appear to be less involved in accordance with others. These data, together with those related to molecular mechanisms involved in translocations production suggest that in G0 -irradiated cells, the frequency and distribution of this kind of chromosomal rearrangement, does not take place at random. They seem to be affected by in-nucleus chromosome distribution, by each chromosome's DNA length and functional features, by the efficiency of DNA repair mechanisms, and by inter individual differences. The objective of this study was to establish the frequency pattern of each human chromosome involved in radio-induced translocations, as well as to analyze the importance the chromosome length, the activity of DNA polymerase- dependant repair mechanisms, and inter individual differences within the scope of such distribution. To achieve the goals, peripheral blood lymphocytes from healthy donors were irradiated in presence and absence of 2'-3' dideoxithimidine (ddThd), a Β - DNA polymerase inhibitor, which takes part in the base repair mechanism (B E R). The results showed that: The presence of ddThd during the irradiation increase the basal frequency of radioinduced translocations in 60 %. This result suggests that ddThd repair synthesis inhibition can be in itself a valid methodology for radiation-induced bases damage assessment, damage which if not BER-repaired may result in translocation-leading double strand breaks. A statistically significant correlation between translocation frequency and chromosome length, in terms of percentage of genome, has been noticed both in (basal) irradiation and in irradiation with ddThd inhibitor

  12. Report of the fifth international workshop on human X chromosome mapping

    Energy Technology Data Exchange (ETDEWEB)

    Willard, H.F.; Cremers, F.; Mandel, J.L.; Monaco, A.P.; Nelson, D.L.; Schlessinger, D.

    1994-12-31

    A high-quality integrated genetic and physical map of the X chromosome from telomere to telomere, based primarily on YACs formatted with probes and STSs, is increasingly close to reality. At the Fifth International X Chromosome Workshop, organized by A.M. Poustka and D. Schlessinger in Heidelberg, Germany, April 24--27, 1994, substantial progress was recorded on extension and refinement of the physical map, on the integration of genetic and cytogenetic data, on attempts to use the map to direct gene searches, and on nascent large-scale sequencing efforts. This report summarizes physical and genetic mapping information presented at the workshop and/or published since the reports of the fourth International X Chromosome Workshop. The principle aim of the workshop was to derive a consensus map of the chromosome, in terms of physical contigs emphasizing the location of genes and microsatellite markers. The resulting map is presented and updates previous versions. This report also updates the list of highly informative microsatellites. The text highlights the working state of the map, the genes known to reside on the X, and the progress toward integration of various types of data.

  13. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation.

    OpenAIRE

    Watson, J M; Spencer, J. A.; Riggs, A D; Graves, J.A.

    1990-01-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. We conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these g...

  14. X-chromosome workshop.

    Science.gov (United States)

    Paterson, A D

    1998-01-01

    Researchers presented results of ongoing research to the X-chromosome workshop of the Fifth World Congress on Psychiatric Genetics, covering a wide range of disorders: X-linked infantile spasms; a complex phenotype associated with deletions of Xp11; male homosexuality; degree of handedness; bipolar affective disorder; schizophrenia; childhood onset psychosis; and autism. This report summarizes the presentations, as well as reviewing previous studies. The focus of this report is on linkage findings for schizophrenia and bipolar disorder from a number of groups. For schizophrenia, low positive lod scores were obtained for markers DXS991 and DXS993 from two studies, although the sharing of alleles was greatest from brother-brother pairs in one study, and sister-sister in the other. Data from the Irish schizophrenia study was also submitted, with no strong evidence for linkage on the X chromosome. For bipolar disease, following the report of a Finnish family linked to Xq24-q27, the Columbia group reported some positive results for this region from 57 families, however, another group found no evidence for linkage to this region. Of interest, is the clustering of low positive linkage results that point to regions for possible further study. PMID:9686435

  15. The rejoining of x-ray-induced breaks in human interphase chromosomes from normal and ataxia cells

    International Nuclear Information System (INIS)

    Patients with the genetically inherited recessive disease ataxia telangiectasia (AT), in addition to various clinical disorders including cancer proneness, are extremely sensitive to the lethal effects of ionizing radiations. Following irradiation, cells cultured from such individuals show greatly enhanced cell killing, and marked increase in the production of chromosomal aberrations. Consequently, it has been proposed that AT cells are deficient in the repair of radiation-induced damage to DNA, yet it has not been possible to demonstrate the nature of this deficiency at the molecular level. The authors have measured the rejoining rates of x-ray-induced breakage in the interphase chromosomes of normal human, and AT fibroblasts by means of premature chromosome condensation (PCC). Results show that neither the level of initially sustained x-ray damage, nor the rate at which PCC fragments rejoin, are significantly different between the two cell types. However, an appreciably larger fraction of breaks failed to rejoin in ataxia cells

  16. Cell death, chromosome damage and mitotic delay in normal human, ataxia telangiectasia and retinoblastoma fibroblasts after X-irradiation

    International Nuclear Information System (INIS)

    We recently showed (Scott and Zampetti-Bosseler 1980) that X-ray sensitive mouse lymphoma cells sustain more chromosome damage, mitotic delay and spindle defects than X-ray resistant cells. We proposed that (a) chromosome aberrations contribute much more to lethality than spindle defects, and (b) that DNA lesions are less effectively repaired in the sensitive cells and give rise to more G2 mitotic delay and chromosome aberrations. Our present results on human fibroblasts with reported differential sensitivity to ionizing radiation (i.e. normal donors and patients with ataxia telangiectasia and retinoblastoma) support the first hypothesis since we observed a positive correlation between chromosome aberration frequencies and cell killing and no induced spindle defects. Our second hypothesis is however not substantiated since X-ray sensitive fibroblasts from the ataxia patient suffered less mitotic delay than cells from normal donors. A common lesion for mitotic delay and chromosome aberrations can still be assumed by adopting the hypothesis of Painter and Young (1981) that the defect in ataxia cells is not in repair but in a failure of DNA damage to initiate mitotic delay. In contrast to other reports, we found the retinoblastoma cells to be of normal radiation sensitivity (cell killing and aberrations). (author)

  17. The effect of x-ray induced mitotic delay on chromosome aberration yields in human lymphocytes

    International Nuclear Information System (INIS)

    The extent to which X-ray induced mitotic delay at 150 and 400 rad influences chromosome aberration yields was examined in human peripheral blood lymphocytes. The dicentric was used as a marker and aberration yields were obtained for mixed cultures prepared from equal numbers of normal and irradiated cells. The cultures were terminated following incubation times of 36-120 h. Greater mitotic delay of the order of a few hours was observed at the higher dose. However most reduction in the numbers of lymphocytes arriving at metaphase by 48 h may be ascribed to interphase death of failure to transform. Analysis of the dicentric distributions which were expected to follow Poisson statistics indicated that cells containing dicentrics were delayed relative to irradiated but aberration-free cells. Cells with one dicentric moved more easily through the first cell cycle than cells containing two dicentrics. Following accidental partial body irradiation, selection in culture favouring the unirradiated lymphocytes does not distort the aberration yield sufficiently to warrant incubation times in excess of the standard 48-52 h

  18. Variations of X chromosome inactivation occur in early passages of female human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Tamar Dvash

    Full Text Available X chromosome inactivation (XCI is a dosage compensation mechanism essential for embryonic development and cell physiology. Human embryonic stem cells (hESCs derived from inner cell mass (ICM of blastocyst stage embryos have been used as a model system to understand XCI initiation and maintenance. Previous studies of undifferentiated female hESCs at intermediate passages have shown three possible states of XCI; 1 cells in a pre-XCI state, 2 cells that already exhibit XCI, or 3 cells that never undergo XCI even upon differentiation. In this study, XCI status was assayed in ten female hESC lines between passage 5 and 15 to determine whether XCI variations occur in early passages of hESCs. Our results show that three different states of XCI already exist in the early passages of hESC. In addition, we observe one cell line with skewed XCI and preferential expression of X-linked genes from the paternal allele, while another cell line exhibits random XCI. Skewed XCI in undifferentiated hESCs may be due to clonal selection in culture instead of non-random XCI in ICM cells. We also found that XIST promoter methylation is correlated with silencing of XIST transcripts in early passages of hESCs, even in the pre-XCI state. In conclusion, XCI variations already take place in early passages of hESCs, which may be a consequence of in vitro culture selection during the derivation process. Nevertheless, we cannot rule out the possibility that XCI variations in hESCs may reflect heterogeneous XCI states in ICM cells that stochastically give rise to hESCs.

  19. Higher rate of evolution of X chromosome alpha-repeat DNA in human than in the great apes.

    OpenAIRE

    Laursen, H B; Jørgensen, A L; Jones, C; Bak, A L

    1992-01-01

    The rate of introduction of neutral mutations is lower in man than in other primates, including the chimpanzee. This species is generally regarded as our closest relative among the great apes. We present here an analysis of sequences of X chromosomal alphoid repetitive DNA from man and the great apes, which supports the closer relationship between man and chimpanzee and indicates a considerably increased rate of recombination in the human repeat DNA. These results indicate that the 'molecular...

  20. Topography of genetic elements of X-chromosome relative to the cell nucleus and to the chromosome X territory determined for human lymphocytes

    Czech Academy of Sciences Publication Activity Database

    Falk, Martin; Lukášová, Emilie; Kozubek, Stanislav; Kozubek, Michal

    2002-01-01

    Roč. 292, 1-2 (2002), s. 13-24. ISSN 0378-1119 R&D Projects: GA AV ČR IBS5004010; GA MZd NC5955; GA ČR GA202/01/0197; GA ČR GA301/01/0186 Institutional research plan: CEZ:AV0Z5004920 Keywords : structure of chromosome X territories * chromatin condensation * nuclear topology Subject RIV: BO - Biophysics Impact factor: 2.778, year: 2002

  1. X-Chromosome dosage compensation.

    Science.gov (United States)

    Meyer, Barbara J

    2005-01-01

    In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation are diverse, but in all cases, specialized complexes are targeted specifically to the X chromosome(s) of only one sex to regulate transcript levels. In C. elegans, this sex-specific targeting of the dosage compensation complex (DCC) is controlled by the same developmental signal that establishes sex, the ratio of X chromosomes to sets of autosomes (X:A signal). Molecular components of this chromosome counting process have been defined. Following a common step of regulation, sex determination and dosage compensation are controlled by distinct genetic pathways. C. elegans dosage compensation is implemented by a protein complex that binds both X chromosomes of hermaphrodites to reduce transcript levels by one-half. The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression. Within each C. elegans somatic cell, one of the DCC components also participates in the separate mitotic/meiotic condensin complex. Other DCC components play pivotal roles in regulating the number and distribution of crossovers during meiosis. The strategy by which C. elegans X chromosomes attract the condensin-like DCC is known. Small, well-dispersed X-recognition elements act as entry sites to recruit the dosage compensation complex and to nucleate spreading of the complex to X regions that lack recruitment sites. In this manner, a repressed chromatin state is spread in cis over short or long distances, thus establishing the

  2. Affected kindred analysis of human X chromosome exomes to identify novel X-linked intellectual disability genes.

    Directory of Open Access Journals (Sweden)

    Tejasvi S Niranjan

    Full Text Available X-linked Intellectual Disability (XLID is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders.

  3. Genome sequence comparative analysis of long arm and short arm of human X chromosome.

    Science.gov (United States)

    Li, Zhan-Jun; Song, Shu-Xia; Zhai, Yu; Hou, Jie; Han, Li-Zhi; Wang, Xiu-Fang

    2005-01-01

    30% of the genes tested on Xp escaped inactivation, whereas less than 3% of the genes on Xq escaped inactivation. To investigate the molecular mechanism involved in the propagation and maintenance of X chromosome inactivation and escape, the long arm and short arm of the X chromosome were compared for RNA binding density. Nucleotide sequences on the X chromosome were divided into 50 kb per segment that was recorded as a set of frequency values of 7-nucleotide (7 nt) strings using all possible 7 nt strings (4(7) = 16 384). 120 genes highly expressed in the tonsil germinal center B cells were selected for calculating the 7 nt string frequency values of all introns (intron 7nt). Intron 7nt was considered RNAs (RNA population) that simulated the total of small RNA fragments in cells. Knowing the 7 nt frequency values of DNA segments and the intron 7nt, we can calculate the binding density of DNA segments to the intron 7nt that was termed as RNA binding density. The RNA binding density was determined by the amount of complement sequences. The more amount of complement sequences, the more density of RNA binding. The RNA binding density simulated the total of small RNA fragments bound to the DNA segment. Several principal characteristics were observed for the first time: (1) The mean value of RNA binding density of DNA segments on Xp was significantly higher than that on Xq ( P < 0.001); (2) The numbers of DNA segments highly binding RNAs were more on Xp than on Xq (P < 0.001); (3) The clusters of RNA highly binding DNA segments were associated with regions in which genes escape inactivation. It has been suggested that RNAs activate genes and the interaction of RNA-DNA in cells are extensive, for example, RNAs increase DNase I sensitivity of DNA, there is plenty of nonprotein-coding RNAs in cells, the binding specificity of DNA-RNA is far higher than that of DNA-protein and the affinity of DNA with RNA is increased, as compared with DNA. The nonrandom properties of

  4. Isoform-Level Gene Expression Profiles of Human Y Chromosome Azoospermia Factor Genes and Their X Chromosome Paralogs in the Testicular Tissue of Non-Obstructive Azoospermia Patients.

    Science.gov (United States)

    Ahmadi Rastegar, Diba; Sharifi Tabar, Mehdi; Alikhani, Mehdi; Parsamatin, Pouria; Sahraneshin Samani, Fazel; Sabbaghian, Marjan; Sadighi Gilani, Mohammad Ali; Mohammad Ahadi, Ali; Mohseni Meybodi, Anahita; Piryaei, Abbas; Ansari-Pour, Naser; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-09-01

    The human Y chromosome has an inevitable role in male fertility because it contains many genes critical for spermatogenesis and the development of the male gonads. Any genetic variation or epigenetic modification affecting the expression pattern of Y chromosome genes may thus lead to male infertility. In this study, we performed isoform-level gene expression profiling of Y chromosome genes within the azoospermia factor (AZF) regions, their X chromosome counterparts, and few autosomal paralogues in testicular biopsies of 12 men with preserved spermatogenesis and 68 men with nonobstructive azoospermia (NOA) (40 Sertoli-cell-only syndrome (SCOS) and 28 premiotic maturation arrest (MA)). This was undertaken using quantitative real-time PCR (qPCR) at the transcript level and Western blotting (WB) and immunohistochemistry (IHC) at the protein level. We profiled the expression of 41 alternative transcripts encoded by 14 AZFa, AZFb, and AZFc region genes (USP9Y, DDX3Y, XKRY, HSFY1, CYORF15A, CYORF15B, KDM5D, EIF1AY, RPS4Y2, RBMY1A1, PRY, BPY2, DAZ1, and CDY1) as well as their X chromosome homologue transcripts and a few autosomal homologues. Of the 41 transcripts, 18 were significantly down-regulated in men with NOA when compared with those of men with complete spermatogenesis. In contrast, the expression of five transcripts increased significantly in NOA patients. Furthermore, to confirm the qPCR results at the protein level, we performed immunoblotting and IHC experiments (based on 24 commercial and homemade antibodies) that detected 10 AZF-encoded proteins. In addition, their localization in testis cell types and organelles was determined. Interestingly, the two missing proteins, XKRY and CYORF15A, were detected for the first time. Finally, we focused on the expression patterns of the significantly altered genes in 12 MA patients with successful sperm retrieval compared to those of 12 MA patients with failed sperm retrieval to predict the success of sperm retrieval in

  5. Study of chromosome aberration repair after acute or fractionated X-irradiation in human peripheral lymphocytes

    International Nuclear Information System (INIS)

    Pure human peripheral blood has been subjected to a single irradiation with the dose of 125 and 250R and by fractions with the doses of 125+125 R in the following periods of the cell cycle: 0, 2, 4, 6, 8, 12, 16, 24, 30, 40 and 45 hrs. The following types of structural chromosome aberrations are counted on metaphase plates with a good chromosome scattering: dicentrics, rings, interstitial deletions, symmetric translocations, chromatide and chromosome fragments. The data on polycentrics and rings prove to be most characteristic: the frequency of these aberrations in the case of single irradiation for all periods of the ''presynthetic'' Gsub(I) period is stable varying in the range of 17-20% in the case of a 125 R dose and 66-73% in the case of a 250 R dose. Their frequency decreased for both doses of irradiation in later periods and reached 1% by the end of the synthetic period. The fractionated effect of two doses 125 R each gives the following values of polycentric and ring formation: second hour - 44,15%, fourth - 50,82%, sixth - 55,15% eighth -58,32% (maximum), twelfth - 55,48%. The descending tendency is preserved till the end of the presynthetic period and in the synthetic period. The statistic processing of results shows statistically authentic differences between fractionated and single irradiation in the output of polycentrics and rings, as well as other types of aberrations and breaks per cell. The data obtained permit to conclude that repair processes are undulatory and are characterized by maximum intensity in the first hours of presynthetic period which weakens to the 8th hour and then strengthens again almost to the end of the synthetic period

  6. Evolution of X-degenerate Y chromosome genes in greater apes: conservation of gene content in human and gorilla, but not chimpanzee.

    Science.gov (United States)

    Goto, Hiroki; Peng, Lei; Makova, Kateryna D

    2009-02-01

    Compared with the X chromosome, the mammalian Y chromosome is considerably diminished in size and has lost most of its ancestral genes during evolution. Interestingly, for the X-degenerate region on the Y chromosome, human has retained all 16 genes, while chimpanzee has lost 4 of the 16 genes since the divergence of the two species. To uncover the evolutionary forces governing ape Y chromosome degeneration, we determined the complete sequences of the coding exons and splice sites for 16 gorilla Y chromosome genes of the X-degenerate region. We discovered that all studied reading frames and splice sites were intact, and thus, this genomic region experienced no gene loss in the gorilla lineage. Higher nucleotide divergence was observed in the chimpanzee than the human lineage, particularly for genes with disruptive mutations, suggesting a lack of functional constraints for these genes in chimpanzee. Surprisingly, our results indicate that the human and gorilla orthologues of the genes disrupted in chimpanzee evolve under relaxed functional constraints and might not be essential. Taking mating patterns and effective population sizes of ape species into account, we conclude that genetic hitchhiking associated with positive selection due to sperm competition might explain the rapid decline in the Y chromosome gene number in chimpanzee. As we found no evidence of positive selection acting on the X-degenerate genes, such selection likely targets other genes on the chimpanzee Y chromosome. PMID:19142680

  7. Inter- and intraspecies phylogenetic analyses reveal extensive X-Y gene conversion in the evolution of gametologous sequences of human sex chromosomes.

    Science.gov (United States)

    Trombetta, Beniamino; Sellitto, Daniele; Scozzari, Rosaria; Cruciani, Fulvio

    2014-08-01

    It has long been believed that the male-specific region of the human Y chromosome (MSY) is genetically independent from the X chromosome. This idea has been recently dismissed due to the discovery that X-Y gametologous gene conversion may occur. However, the pervasiveness of this molecular process in the evolution of sex chromosomes has yet to be exhaustively analyzed. In this study, we explored how pervasive X-Y gene conversion has been during the evolution of the youngest stratum of the human sex chromosomes. By comparing about 0.5 Mb of human-chimpanzee gametologous sequences, we identified 19 regions in which extensive gene conversion has occurred. From our analysis, two major features of these emerged: 1) Several of them are evolutionarily conserved between the two species and 2) almost all of the 19 hotspots overlap with regions where X-Y crossing-over has been previously reported to be involved in sex reversal. Furthermore, in order to explore the dynamics of X-Y gametologous conversion in recent human evolution, we resequenced these 19 hotspots in 68 widely divergent Y haplogroups and used publicly available single nucleotide polymorphism data for the X chromosome. We found that at least ten hotspots are still active in humans. Hence, the results of the interspecific analysis are consistent with the hypothesis of widespread reticulate evolution within gametologous sequences in the differentiation of hominini sex chromosomes. In turn, intraspecific analysis demonstrates that X-Y gene conversion may modulate human sex-chromosome-sequence evolution to a greater extent than previously thought. PMID:24817545

  8. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  9. Chimpanzee chromosome 12 is homologous to human chromosome 2q

    Energy Technology Data Exchange (ETDEWEB)

    Sun, N. C.; Sun, C. R.Y.; Ho, T.

    1977-01-01

    Most of the 46 human chromosomes find their counterparts in the 48 chimpanzee chromosomes except for chromosome 2 which has been hypothesized to have been derived from a centric fusion of two chimpanzee acrocentric chromosomes. These two chromosomes correspond to the human chromosomes 2p and 2g. This conclusion is based primarily on chromosome banding techniques, and the somatic cell hybridization technique has also been used. (HLW)

  10. Induction of chromosome aberration in human lymphocytes and its dependence on X ray energy

    International Nuclear Information System (INIS)

    The variations of dose response with X ray energy observed with the human lymphocyte dicentric assay is examined. In order to determine reliably the initial slopes (RBEm) many cells need to be analysed at low doses. Insufficient analysis may explain some reported interlaboratory differences in fitted dose-response coefficients. One such discrepancy at 150 kVp, E(mean) = 70 keV is examined. Data are also presented for an X ray spectrum of 80 kVp, E(mean) = 58 keV. Over the photon energy range 20 keV X rays to 1.25 MeV gamma rays RBEm varies by about a factor of 5, with the lower energies being more effective. This is consistent with microdosimetric theory. By contrast, in radiological protection a radiation weighting factor of 1.0 is assumed for all photons when assessing the risk of inducing cancer at low doses. The measured variations of biological effect with photon energy have led to suggestions that the lower energies, as used for some diagnostic radiology, carry a greater risk per unit dose than is normally assumed by those involved in radiological protection. Interpretation of the data reported in this paper does not support this view. (author)

  11. Chromosome aberration yields in human lymphocytes induced by fractionated doses of x-radiation

    International Nuclear Information System (INIS)

    Unstimulated (G0) human peripheral blood lymphocytes were exposed at 37degC to doses of 200 or 500 rad of X-rays delivered in two equal fractions. The dose fractions were separated by intervals of up to 7 h in the 200 rad study and up to 48 h for 500 rad. In both studies the mean levels of dicentrics and total unstable aberrations began to decline when fractions were delivered with intervals of greater than 2 h. With 200 rad the yield had decreased to an additive baseline (i.e. equal to only twice the yield of a single 100-rad fraction) by an interval of 4 h. Following 500 rad the yield declined until 8 h and then remained 20% above the expected additive baseline even when 48 h separated the fractions. Possible explanations for this discrepancy are discussed. In a second experiment PHA stimulated lymphocyte cultures were exposed to 2 doses of 125 rad of X-rays up to 7 h apart in an attempt to demonstrate the late peak in aberration yield originally reported by Lane. Control cultures received unsplit doses of 250 rad at the time of the corresponding second 125-rad fraction. No evidence of a late peak in dicentric yield was observed. The yield remained approximately the same irrespective of the time interval between fractions but these split dose yields were significantly different from the accompanying unsplit controls

  12. Comparative mapping on the mouse and human X chromosomes of a human cDNA clone encoding the vasopressin renal-type receptor (AVP2R)

    Energy Technology Data Exchange (ETDEWEB)

    Faust, C.J.; Gonzales, J.C.; Seibold, A.; Birnbaumer, M.; Herman, G.E. (Baylor College of Medicine, Houston, TX (United States))

    1993-02-01

    Mutation in the gene for the human renal-type vasopressin receptor (V2R) have recently been identified in patients with nephrogenic diabetes insipidus (NDI). Both V2R and NDI have been independently mapped to Xq28. Using a combination of genetic and physical mapping, we have localized the murine V2r locus to within 100 kb of L1Cam on the mouse X chromosome in a region syntenic with human Xq28. Based on conserved gene order of mouse and human loci in this region, physical mapping using DNA derived form human lymphoblasts has established that the corresponding human loci V2R and L1CAM are linked within 210 kb. The efficiency and precision of genetic mapping of V2r and other loci in the mouse suggest that it might be easier to map additional human genes in the mouse first and infer the corresponding human location. More precise physical mapping in man could then be performed using pulsed-field gel electrophoresis and/or yeast artificial chromosomes. 16 refs., 1 fig. 1 tab.

  13. Chimpanzee chromosome 13 is homologous to human chromosome 2p

    Energy Technology Data Exchange (ETDEWEB)

    Sun, N. C.; Sun, C. R.Y.; Ho, T.

    1977-01-01

    Similarities between human and chimpanzee chromosomes are shown by chromosome banding techniques and somatic cell hybridization techniques. Cell hybrids were obtained from the chimpanzee lymphocyte LE-7, and the Chinese hamster mutant cell, Gal-2. Experiments showed that the ACPL, MDHs, and Gal-Act genes could be assigned to chimpanzee chromosome 13, and since these genes have been assigned to human chromosme 2p, it is suggested that chimpanzee chromosome 13 is homologous to human chromosome 2p. (HLW)

  14. High-resolution methylation analysis of the human hypoxanthine phosphoribosyltransferase gene 5{prime} region on the active and inactive X chromosomes: Correlation with binding sites for transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Hornstra, I.K.; Yang, T.P. [Univ. of Florida College of Medicine, Gainesville, FL (United States)

    1994-02-01

    DNA methylation within GC-rich promoters of constitutively expressed X-linked genes is correlated with transcriptional silencing on the inactive X chromosome in female mammals. For most X-linked genes, X chromosome inactivation results in transcriptionally active and inactive alleles occupying each female nucleus. To examine mechanisms responsible for maintaining this unique system of differential gene expression, we have analyzed the methylation of individual cytosine residues in the 5{prime} CpG island of the human hypoxanthine phosphoribosyltransferase (HPRT) gene on the active and inactive X chromosomes. These studies demonstrate the 5{prime} CpG islands of active and 5-azacytidine-reactivated alleles are essentially unmethylated while the inactive allele is hypermethylated. The inactive allele is completely methylated at nearly all CpG dinucleotides except in a 68-bp region containing four adjacent GC boxes where most CpG dinucleotides are either unmethylated or partially methylated. Curiously, these GC boxes exhibit in vivo footprints only on the active X chromosome, not on the inactive X. The methylation pattern of the inactive HPRT gene is strikingly different from that reported for the inactive X-linked human phosphoglycerate kinase gene which exhibits methylation at all CpG sites in the 5{prime} CpG island. These results suggest that the position of methylated CpG dinucleotides, the density of methylated CpGs, the length of methylated regions, and/or chromatin structure associated with methylated DNA may have a role in repressing the activity of housekeeping promoters on the inactive X chromosome. The pattern of DNA methylation on the inactive human HPRT gene may also provide insight into the process of inactivating the gene early in female embryogenesis. 55 refs., 7 figs.

  15. Clonality - X Chromosome Inactivation Assay

    OpenAIRE

    sprotocols

    2014-01-01

    Author: Molecular Profiling Initiative, NCI This method was successful in our lab using prostate tissue and for our specific objectives. Investigators must be aware that they will need to tailor the following protocol for their own research objectives and tissue under study. Investigators can utilize X chromosome inactivation (methylation) to determine the clonality status of a tumor or premalignant lesion in females. The technique is based on a methylation-sensitive restriction enzym...

  16. Isolation of cDNAs from the human X chromosome and derivation of related STSs. Final progress report, April 1992--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D.L.

    1995-09-01

    Over the course of this funding period, the number of genes assigned to the human X chromosome has approximately tripled from less than one hundred to nearly three hundred characterized, cloned genes assigned to it. The aims of this project were to develop methods for gene identification and to identify and characterize expressed sequences from the X chromosome. The rapidly changing environment of the human genome project provided abundant resources for gene characterization, and since methods for gene identification became rather robust over this period, these aims were de-emphasized during the project. Among the methods developed was a local one (reciprocal probing) that was developed by Drs. Cheng Chi Lee and C. Thomas Caskey, with emphasis on the human X chromosome. The development of this method offered significant expressed sequence resources for this project, particularly when coupled with the efforts to identify cosmid clones from specific X chromosome locations, as the reciprocal probing process results in paired genomic (cosmid) and cDNA materials. Attention, then has been paid to characterization of genes rather than to their identification.

  17. Kinetics of the formation of chromosome aberrations in x-irradiated human lymphocytes: Analysis by premature chromosome condensation with delayed fusion

    International Nuclear Information System (INIS)

    Human lymphocytes irradiated with graded doses of up to 5 Gy of 150 kV X rays were fused with mitotic CHO cells after delay times ranging from 0 to 14 h after irradiation. The yields of dicentrics seen under PCC conditions, using C-banding for centromere detection, and of excess acentric fragments observed in the PCC experiment were determined by image analysis. At 4 Gy the time course of the yield of dicentrics shows an early plateau for delay times up to 2 h, then an S-shaped rise and a final plateau which is reached after a delay time of about 8 to 10 h. Whereas the dose-yield curve measured at zero delay time is strictly linear, the shape of the curve obtained for 8 h delay time is linear-quadratic. The linear yield component, αD is formed entirely in the fast process manifested in the early plateau, while component βD2 is developed slowly in the subsequent hours. Analysis of the kinetics of the rise of the S-shaped curve for yield as a function of time leads to the postulate of an open-quotes intermediate productclose quotes of pairwise DNA lesion interaction, still fragile when subjected to the stress of PCC, but gradually processed into a stable dicentric chromosome. It is concluded that the observed difference in the kinetics of the α and β components explains a number of earlier results, especially the disappearance of the β component at high LET, and opens possibilities for chemical and physical modification of the β component during the extended formation process after irradiation observed here. 22 refs., 4 figs

  18. Molecular mapping of chromosomes 17 and X

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1989-01-01

    The basic aims of this project are the construction of high density genetic maps of chromosomes 17 and X and the utilization of these maps for the subsequent isolation of a set of physically overlapping DNA segment clones. The strategy depends on the utilization of chromosome specific libraries of small (1--15 kb) segments from each of the two chromosomes. Since the time of submission of our previous progress report, we have refined the genetic map of markers which we had previously isolated for chromosome 17. We have completed our genetic mapping in CEPH reference and NF1 families of 15 markers in the pericentric region of chromosome 17. Physical mapping results with three probes, were shown be in very close genetic proximity to the NF1 gene, with respect to two translocation breakpoints which disrupt the activity of the gene. All three of the probes were found to lie between the centromere and the most proximal translocation breakpoint, providing important genetic markers proximal to the NF1 gene. Our primary focus has shifted to the X chromosome. We have isolated an additional 30 polymorphic markers, bringing the total number we have isolated to over 80. We have invested substantial effort in characterizing the polymorphisms at each of these loci and constructed plasmid subclones which reveal the polymorphisms for nearly all of the loci. These subclones are of practical value in that they produce simpler and stronger patterns on human genomic Southern blots, thus improving the efficiency of the genetic mapping experiments. These subclones may also be of value for deriving DNA sequence information at each locus, necessary for establishing polymerase chain reaction primers specific for each locus. Such information would allow the use of each locus as a sequence tagged site.

  19. Chromosomes and irradiation: in vitro study of the action of X-rays on human lymphocytes; Chromosomes et radiations: etude in vitro de l'action des rayons X sur les lymphocytes humains

    Energy Technology Data Exchange (ETDEWEB)

    Mouriquand, C.; Patet, J.; Gilly, C.; Wolff, C

    1966-07-01

    Radioinduced chromosomal aberrations were studied in vitro on leukocytes of human peripheral blood after x irradiation at 25, 50, 100, 200, and 300 R. The numeric and structural anomalies were examined on 600 karyotypes. The relationship between these disorders and the dose delivered to the blood are discussed. An explanation on their mechanism of formation is tentatively given. (authors) [French] L'etude in vitro des anomalies chromosomiques radioinduites a ete pratiquee sur des leucocytes de sang peripherique preleve chez 4 sujets et irradie aux doses de 25, 50, 100, 200, 300 R. Les aberrations numeriques et structurales ont ete examinees sur 600 caryotypes. Les rapports entre ces anomalies et les doses appliquees sont etudies. Une hypothese sur leur mecanisme de formation est avancee. (auteurs)

  20. Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox.

    OpenAIRE

    Zhen, L.; KING, A.A.; Xiao, Y.; Chanock, S. J.; Orkin, S H; Dinauer, M.C.

    1993-01-01

    The X chromosome-linked chronic granulomatous disease (X-CGD) locus, which encodes the gp91phox subunit of the phagocyte respiratory-burst oxidase cytochrome b, was disrupted by homologous recombination in the PLB-985 human myeloid cell line to develop an in vitro model of X-CGD. Superoxide formation was absent in targeted cells after differentiation to granulocytes but was rescued by stable transfection and expression of wild-type gp91phox cDNA. The targeted cell line should be useful in exp...

  1. Detailed ordering of markers localizing to the Xq26-Xqter region of the human X chromosome by the use of an interspecific Mus spretus mouse cross

    International Nuclear Information System (INIS)

    Five probes localizing to the Xq26-Xqter region of the human X chromosome have been genetically mapped on the mouse X chromosome using an interspecific cross involving Mus spretus to a contiguous region lying proximally to the Tabby (Ta) locus. Pedigree and recombinational analysis establish the marker order as being Hprt-FIX-c11-G6PD-St14-1. The size of this contiguous region is such that the X-linked muscular dystrophy (mdx) mouse mutation probably maps within this segment. This in turn suggests that it is highly improbable that the mouse mdx locus represents a model for Duchenne muscular dystrophy (DMD). It is, however, compatible with the idea that this mutation may correspond in man to Emery Dreifuss muscular dystrophy. The high frequency of restriction fragment length polymorphisms found in this interspecific system for all the human cross-reacting probes examined up until now, using only a limited number of restriction enzymes, suggests that the Mus spretus mapping system may be of great potential value for establishing the linkage relationships existing in man when conserved chromosomal regions are concerned and human/mouse cross-reacting probes are available or can be obtained

  2. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  3. Dynamic Bcl-xL (S49) and (S62) Phosphorylation/Dephosphorylation during Mitosis Prevents Chromosome Instability and Aneuploidy in Normal Human Diploid Fibroblasts

    Science.gov (United States)

    Baruah, Prasamit Saurav; Beauchemin, Myriam; Hébert, Josée; Bertrand, Richard

    2016-01-01

    Bcl-xL proteins undergo dynamic phosphorylation/dephosphorylation on Ser49 and Ser62 residues during mitosis. The expression of Bcl-xL(S49A), (S62A) and dual (S49/62A) phosphorylation mutants in tumor cells lead to severe mitotic defects associated with multipolar spindle, chromosome lagging and bridging, and micro-, bi- and multi-nucleated cells. Because the above observations were made in tumor cells which already display genomic instability, we now address the question: will similar effects occur in normal human diploid cells? We studied normal human diploid BJ foreskin fibroblast cells expressing Bcl-xL (wild type), (S49A), (S49D), (S62A), (S62D) and the dual-site (S49/62A) and (S49/62D) mutants. Cells expressing S49 and/or S62 phosphorylation mutants showed reduced kinetics of cell population doubling. These effects on cell population doubling kinetics correlated with early outbreak of senescence with no impact on the cell death rate. Senescent cells displayed typical senescence-associated phenotypes including high-level of senescence-associated β-galactosidase activity, interleukin-6 (IL-6) secretion, tumor suppressor p53 and cyclin-dependent kinase inhibitor p21Waf1/Cip1 activation as well as γH2A.X-associated nuclear chromatin foci. Fluorescence in situ hybridization analysis and Giemsa-banded karyotypes revealed that the expression of Bcl-xL phosphorylation mutants in normal diploid BJ cells provoked chromosome instability and aneuploidy. These findings suggest that dynamic Bcl-xL(S49) and (S62) phosphorylation/dephosphorylation cycles are important in the maintenance of chromosome integrity during mitosis in normal cells. They could impact future strategies aiming to develop and identify compounds that could target not only the anti-apoptotic domain of Bcl-xL protein, but also its mitotic domain for cancer therapy. PMID:27398719

  4. Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice

    OpenAIRE

    Patrat, Catherine; Okamoto, Ikuhiro; Diabangouaya, Patricia; Vialon, Vivian; Le Baccon, Patricia; Chow, Jennifer; Heard, Edith

    2009-01-01

    In mammals, X-chromosome dosage compensation is achieved by inactivating one of the two X chromosomes in females. In mice, X inactivation is initially imprinted, with inactivation of the paternal X (Xp) chromosome occurring during preimplantation development. One theory is that the Xp is preinactivated in female embryos, because of its previous silence during meiosis in the male germ line. The extent to which the Xp is active after fertilization and the exact time of onset of X-linked gene si...

  5. Origin and evolution of X chromosome inactivation.

    Science.gov (United States)

    Gribnau, Joost; Grootegoed, J Anton

    2012-06-01

    Evolution of the mammalian sex chromosomes heavily impacts on the expression of X-encoded genes, both in marsupials and placental mammals. The loss of genes from the Y chromosome forced a two-fold upregulation of dose sensitive X-linked homologues. As a corollary, female cells would experience a lethal dose of X-linked genes, if this upregulation was not counteracted by evolution of X chromosome inactivation (XCI) that allows for only one active X chromosome per diploid genome. Marsupials rely on imprinted XCI, which inactivates always the paternally inherited X chromosome. In placental mammals, random XCI (rXCI) is the predominant form, inactivating either the maternal or paternal X. In this review, we discuss recent new insights in the regulation of XCI. Based on these findings, we propose an X inactivation center (Xic), composed of a cis-Xic and trans-Xic that encompass all elements and factors acting to control rXCI either in cis or in trans. We also highlight that XCI may have evolved from a very small nucleation site on the X chromosome in the vicinity of the Sox3 gene. Finally, we discuss the possible evolutionary road maps that resulted in imprinted XCI and rXCI as observed in present day mammals. PMID:22425180

  6. Multicolor spectral karyotyping of human chromosomes.

    Science.gov (United States)

    Schröck, E; du Manoir, S; Veldman, T; Schoell, B; Wienberg, J; Ferguson-Smith, M A; Ning, Y; Ledbetter, D H; Bar-Am, I; Soenksen, D; Garini, Y; Ried, T

    1996-07-26

    The simultaneous and unequivocal discernment of all human chromosomes in different colors would be of significant clinical and biologic importance. Whole-genome scanning by spectral karyotyping allowed instantaneous visualization of defined emission spectra for each human chromosome after fluorescence in situ hybridization. By means of computer separation (classification) of spectra, spectrally overlapping chromosome-specific DNA probes could be resolved, and all human chromosomes were simultaneously identified. PMID:8662537

  7. Localization of the human thyroxine-binding globulin gene to the long arm of the X chromosome (Xq21-22).

    OpenAIRE

    Trent, J M; Flink, I L; Morkin, E; van Tuinen, P; Ledbetter, D H

    1987-01-01

    Thyroxine-binding globulin (TBG) is the major thyroid-hormone transport protein in the plasma of most vertebrate species. A recombinant phage (lambda cTBG8) containing a cDNA insert of human TBG recently has been described. With the cDNA insert from lambda cTBG8 used as a radiolabeled probe, DNA from a series of somatic-cell hybrids containing deletions of the X chromosome was analyzed by means of blot hybridization. The results indicated that the TBG gene is located in the midportion of the ...

  8. Chromosomal rearrangement interferes with meiotic X chromosome inactivation

    Czech Academy of Sciences Publication Activity Database

    Homolka, David; Ivánek, Robert; Čapková, Jana; Jansa, Petr; Forejt, Jiří

    2007-01-01

    Roč. 17, č. 10 (2007), s. 1431-1437. ISSN 1088-9051 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR GA301/06/1334; GA ČR GA301/07/1383 Grant ostatní: Howard Hughes Medical Institute(US) HHMI 55000306 Institutional research plan: CEZ:AV0Z50520514 Keywords : chromosomal translocations * meiotic X chromosome inactivation * spermatogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.224, year: 2007

  9. Demasculinization of the Anopheles gambiae X chromosome

    Directory of Open Access Journals (Sweden)

    Magnusson Kalle

    2012-05-01

    Full Text Available Abstract Background In a number of organisms sex-biased genes are non-randomly distributed between autosomes and the shared sex chromosome X (or Z. Studies on Anopheles gambiae have produced conflicting results regarding the underrepresentation of male-biased genes on the X chromosome and it is unclear to what extent sexual antagonism, dosage compensation or X-inactivation in the male germline, the evolutionary forces that have been suggested to affect the chromosomal distribution of sex-biased genes, are operational in Anopheles. Results We performed a meta-analysis of sex-biased gene expression in Anopheles gambiae which provides evidence for a general underrepresentation of male-biased genes on the X-chromosome that increased in significance with the observed degree of sex-bias. A phylogenomic comparison between Drosophila melanogaster, Aedes aegypti and Culex quinquefasciatus also indicates that the Anopheles X chromosome strongly disfavours the evolutionary conservation of male-biased expression and that novel male-biased genes are more likely to arise on autosomes. Finally, we demonstrate experimentally that transgenes situated on the Anopheles gambiae X chromosome are transcriptionally silenced in the male germline. Conclusion The data presented here support the hypothesis that the observed demasculinization of the Anopheles X chromosome is driven by X-chromosome inactivation in the male germline and by sexual antagonism. The demasculinization appears to be the consequence of a loss of male-biased expression, rather than a failure in the establishment or the extinction of male-biased genes.

  10. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.C.; Zoghbi, H.Y.; Moseley, A.B.; Rosenblatt, H.M.; Belmont, J.W. (Baylor College of Medicine, Houston (United States))

    1992-12-01

    The human androgen-receptor gene (HUMARA; GenBank) contains a highly polymorphic trinucleotide repeat in the first exon. The authors have found that the methylation of HpaII and HhaI sites less than 100 pb away from this polymorphic short tandem repeat (STR) correlates with X inactivation. The close proximity of the restriction-enzyme sites to the STR allows the development of a PCR assay that distinguishes between the maternal and paternal alleles and identifies their methylation status. The accuracy of this assay was tested on (a) DNA from hamster/human hybrid cell lines containing either an active or inactive human X chromosome; (b) DNA from normal males and females; and (c) DNA from females showing nonrandom patterns of X inactivation. Data obtained using this assay correlated substantially with those obtained using the PGK, HPRT, and M27[beta] probes, which detect X inactivation patterns by Southern blot analysis. In order to demonstrate one application of this assay, the authors examined X inactivation patterns in the B lymphocytes of potential and obligate carriers of X-linked agammaglobulinemia. 42 refs., 5 figs., 1 tab.

  11. X-radiation-induced chromosome breakage in retinoblastoma lymphocytes

    International Nuclear Information System (INIS)

    The authors have examined the spontaneous and X-radiation-induced chromosomal damage in normal humans and in patients with retinoblastoma using the BudR-Giemsa technique in lymphocytes cultured for 48 h. 9 sporadic unilateral non-hereditary cases, 11 hereditary cases and 20 healthy individuals were studied simultaneously. No difference in the spontaneous frequency of chromatid and chromosome aberrations was observed between patients and controls. The results suggest that: (a) There is no relationship between spontaneous chromosome fragility and retinoblastoma. (b) Sporadic unilateral non-hereditary retinoblastoma has normal chromosome sensitivity to X-irradiation. (c) Some hereditary cases of retinoblastoma are sensitive to X-rays while others behave like normals. A mutation or a submicroscopic deletion at a DNA repair locus which is independent of the retinoblastoma gene may cause this radiosensitivity. (Auth.)

  12. Fluorescent in-situ hybridization of cattle and sheep chromosomes with cloned human fragile-X DNA

    DEFF Research Database (Denmark)

    Ali, Ahmd; Thomsen, Preben Dybdahl; Babar, M.E.

    2009-01-01

    An extensive study on spontaneous and 5-Fluorodeoxyuridine induced fragile sites identified Xq31 in cattle (Bos taurus) and (Xq24, Xq26) in sheep (Ovis aries) in addition to several autosomal fragile sites (under publication). A ZOO-FISH study using three cloned human fragile-X probes with CCG...

  13. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    OpenAIRE

    Machiela, Mitchell J.; Zhou, Weiyin; Karlins, Eric; Sampson, Joshua N.; Neal D Freedman; Yang, Qi; Hicks, Belynda; Dagnall, Casey; Hautman, Christopher; Jacobs, Kevin B.; Abnet, Christian C.; Aldrich, Melinda C; Amos, Christopher; Amundadottir, Laufey T.; Arslan, Alan A.

    2016-01-01

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X ...

  14. Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome.

    Directory of Open Access Journals (Sweden)

    Yong E Zhang

    Full Text Available Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI. These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution.

  15. Chromosomal Redistribution of Male-Biased Genes in Mammalian Evolution with Two Bursts of Gene Gain on the X Chromosome

    Science.gov (United States)

    Zhang, Yong E.; Vibranovski, Maria D.; Landback, Patrick; Marais, Gabriel A. B.; Long, Manyuan

    2010-01-01

    Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution. PMID:20957185

  16. lncRHOXF1, a Long Noncoding RNA from the X Chromosome That Suppresses Viral Response Genes during Development of the Early Human Placenta.

    Science.gov (United States)

    Penkala, Ian; Wang, Jianle; Syrett, Camille M; Goetzl, Laura; López, Carolina B; Anguera, Montserrat C

    2016-06-15

    Long noncoding RNAs (lncRNAs) can regulate gene expression in a cell-specific fashion during development. Here, we identify a novel lncRNA from the X chromosome that we named lncRHOXF1 and which is abundantly expressed in trophectoderm and primitive endoderm cells of human blastocyst-stage embryos. lncRHOXF1 is a spliced and polyadenylated lncRNA about 1 kb in length that is found in both the nuclear and cytoplasmic compartments of in vitro differentiated human trophectoderm progenitor cells. Gain-of-function experiments in human embryonic stem cells, which normally lack lncRHOXF1 RNA, revealed that lncRHOXF1 reduced proliferation and favored cellular differentiation. lncRHOXF1 knockdown using small interfering RNAs (siRNAs) in human trophectoderm progenitors increased expression of viral response genes, including type I interferon. Sendai virus infection of human trophectoderm progenitor cells increased lncRHOXF1 RNA levels, and siRNA-mediated disruption of lncRHOXF1 during infection reduced the expression of viral response genes leading to higher virus replication. Thus, lncRHOXF1 RNA is the first example of a lncRNA that regulates the host response to viral infections in human placental progenitor cells, and we propose that it functions as a repressor of the viral response during early human development. PMID:27066803

  17. Molecular mapping of chromosomes 17 and X

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition of new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping clones from a larger genome.

  18. Progressive proximal expansion of the primate X chromosome centromere

    OpenAIRE

    Schueler, Mary G; Dunn, John M.; Bird, Christine P; Ross, Mark T.; Viggiano, Luigi; Rocchi, Mariano; Willard, Huntington F.; Green, Eric D

    2005-01-01

    Previous studies of the pericentromeric region of the human X chromosome short arm (Xp) revealed an age gradient from ancient DNA that contains expressed genes to recent human-specific DNA at the functional centromere. We analyzed the finished sequence of this human genomic region to investigate its evolutionary history. Phylogenetic analysis of >1,500 alpha-satellite monomers from the region revealed the presence of five physical domains, each containing monomers from a distinct phylogenetic...

  19. Molecular nature of X-ray-induced mutations compared with that of spontaneous ones in human c-hprt gene integrated into mammalian chromosomal DNA

    International Nuclear Information System (INIS)

    X-ray-induced mutations were analysed at molecular levels in comparison with spontaneous mutations. Altered sequences were determined tentatively of 30 independent X-ray-induced mutations in a cDNA of the human hprt gene which was integrated into mammalian chromosome as a part of a shuttle vector. Mutations consisted of base substitutions (37 %), frameshifts (27 %), deletions (27 %) and others (10 %). All these mutational events were distributed randomly over the gene without there being hot spots. The spectrum and distribution of X-ray-induced mutations resembled those of spontaneous mutations. Among base substitutions, transversions were predominant and base substitution mutations occurred more at A:T sites than at G:C sites, which is also the case in spontaneous mutations. Most of the frameshift and deletion mutations induced by X-rays, as well as those spontaneously arising, were characterized by the existence of short direct repeats of several identical bases in a row at the sites of the mutations. A slippage misalignment mechanism in replication well accounts for the generation of these classes of mutations. Judging from the data accumulated so far, it can be concluded that X-ray-induced mutations at molecular levels are similar to those spontaneously occurring. (author)

  20. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  1. Chromosomal aberrations detected by chromosome painting in lymphocytes from cancer patients given high doses of therapeutic X-rays

    International Nuclear Information System (INIS)

    Chromosome painting by fluorescence in situ hybridization (FISH) with a whole chromosome-specific DNA probe was used to detect chromosomal aberrations in lymphocytes from cancer patients given partial-body fractionated X-ray therapy. Six male patients with cancer of the stomach, prostate, lung, or hepatocellular carcinoma, received X-rays in total doses of 40.5 to 70.08 Gy. Lymphocytes were cultured for 50 h with phytohemagglutinin. The mean frequency of aberrant cells detected by chromosome 4 painting varied from 1.57% to 14.34% in the patients and was markedly higher than in healthy controls (mean=0.12%). Chromosome painting effectively detected chromosomal aberrations in lymphocytes from cancer patients. Equivalent biological doses extrapolated from a dose-response curve obtained in an in vitro human lymphocyte X-ray irradiation study are discussed as an indicator of the cytogenetic damage inducible by radiotherapy in cancer patients. (author)

  2. Detailed analysis of X chromosome inactivation in a 49,XXXXX pentasomy

    Science.gov (United States)

    Moraes, Lucia M; Cardoso, Leila CA; Moura, Vera LS; Moreira, Miguel AM; Menezes, Albert N; Llerena, Juan C; Seuánez, Héctor N

    2009-01-01

    Background Pentasomy X (49,XXXXX) has been associated with a severe clinical condition, presumably resulting from failure or disruption of X chromosome inactivation. Here we report that some human X chromosomes from a patient with 49,XXXXX pentasomy were functionally active following isolation in inter-specific (human-rodent) cell hybrids. A comparison with cytogenetic and molecular findings provided evidence that more than one active X chromosome was likely to be present in the cells of this patient, accounting for her abnormal phenotype. Results 5-bromodeoxyuridine (BrdU)-pulsed cultures showed different patterns among late replicating X chromosomes suggesting that their replication was asynchronic and likely to result in irregular inactivation. Genotyping of the proband and her mother identified four maternal and one paternal X chromosomes in the proband. It also identified the paternal X chromosome haplotype (P), indicating that origin of this X pentasomy resulted from two maternal, meiotic non-disjunctions. Analysis of the HUMANDREC region of the androgen receptor (AR) gene in the patient's mother showed a skewed inactivation pattern, while a similar analysis in the proband showed an active paternal X chromosome and preferentially inactivated X chromosomes carrying the 173 AR allele. Analyses of 33 cell hybrid cell lines selected in medium containing hypoxanthine, aminopterin and thymidine (HAT) allowed for the identification of three maternal X haplotypes (M1, M2 and MR) and showed that X chromosomes with the M1, M2 and P haplotypes were functionally active. In 27 cell hybrids in which more than one X haplotype were detected, analysis of X inactivation patterns provided evidence of preferential inactivation. Conclusion Our findings indicated that 12% of X chromosomes with the M1 haplotype, 43.5% of X chromosomes with the M2 haplotype, and 100% of the paternal X chromosome (with the P haplotype) were likely to be functionally active in the proband's cells, a

  3. Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice.

    Science.gov (United States)

    Patrat, Catherine; Okamoto, Ikuhiro; Diabangouaya, Patricia; Vialon, Vivian; Le Baccon, Patricia; Chow, Jennifer; Heard, Edith

    2009-03-31

    In mammals, X-chromosome dosage compensation is achieved by inactivating one of the two X chromosomes in females. In mice, X inactivation is initially imprinted, with inactivation of the paternal X (Xp) chromosome occurring during preimplantation development. One theory is that the Xp is preinactivated in female embryos, because of its previous silence during meiosis in the male germ line. The extent to which the Xp is active after fertilization and the exact time of onset of X-linked gene silencing have been the subject of debate. We performed a systematic, single-cell transcriptional analysis to examine the activity of the Xp chromosome for a panel of X-linked genes throughout early preimplantation development in the mouse. Rather than being preinactivated, we found the Xp to be fully active at the time of zygotic gene activation, with silencing beginning from the 4-cell stage onward. X-inactivation patterns were, however, surprisingly diverse between genes. Some loci showed early onset (4-8-cell stage) of X inactivation, and some showed extremely late onset (postblastocyst stage), whereas others were never fully inactivated. Thus, we show that silencing of some X-chromosomal regions occurs outside of the usual time window and that escape from X inactivation can be highly lineage specific. These results reveal that imprinted X inactivation in mice is far less concerted than previously thought and highlight the epigenetic diversity underlying the dosage compensation process during early mammalian development. PMID:19273861

  4. [The evolution of human Y chromosome].

    Science.gov (United States)

    Yang, Xianrong; Wang, Meiqin; Li, Shaohua

    2014-09-01

    The human Y chromosome is always intriguing for researchers, because of its role in gender determination and its unusual evolutionary history. The Y chromosome evolves from an autosome, and its evolution has been characterized by massive gene decay. The lack of recombination and protein-coding genes and high content of repetitive sequences have hindered the progress in our understanding of the Y chromosome biology. Recently, with the advances in comparative genomics and sequencing technology, the research on Y chromosome has become a hotspot, with an intensified debate about Y-chromosome final destination resulting from degeneration. This review focuses on the structure, inheritance characteristics, gene content, and the origin and evolution of Y chromosome. We also discuss the long-term destiny of Y chromosome. PMID:25252301

  5. Quantification of the DNA content of structurally abnormal X chromosomes and X chromosome aneuploidy using high resolution bivariate flow karyotyping.

    Science.gov (United States)

    Trask, B; van den Engh, G; Nussbaum, R; Schwartz, C; Gray, J

    1990-01-01

    Quantification of the Hoechst and chromomycin A3 fluorescence intensities of mitotic human chromosomes isolated from karyotypically normal and abnormal cells was performed with a dual beam flow cytometer. The resultant flow karyotypes contain information about the relative DNA content and base composition of chromosomes and their relative frequencies in the mitotic cell sample. The relative copy number of X and Y chromosomes was determined for 38 normal males and females and 6 cell lines with X or Y chromosome aneuploidy. Flow karyotype diagnoses corresponded with conventional cytogenetic results in all cases. We show that chromosome DNA content can be derived from peak position in Hoechst vs. chromomycin flow karyotypes. These values are linearly related to propidium iodide staining intensity as measured with flow cytometry and to the binding of gallocyanin chrome alum to phosphate groups as measured with slide-based scanning photometry. Cell lines with deleted or dicentric X chromosomes ranging in length from 0.53 to 1.95 times normal were analyzed by using flow cytometry. The measured difference in DNA content between a normal X and each of the structurally abnormal chromosomes was linearly correlated to the difference predicted from cytogenetics and/or probe analyses. Deletions of 3-5 Mb, which were at and below the detection limits of conventional cytogenetics, could be quantified by flow karyotyping in individuals with X-linked diseases such as Duchenne muscular dystrophy, choroideremia, and ocular albinism/ichthyosis. The results show that the use of flow karyotyping to quantify the size of restricted regions of the genome can complement conventional cytogenetics and other physical mapping techniques in the study of genetic disorders. PMID:2106419

  6. Haploinsufficiency and the sex chromosomes from yeasts to humans

    Directory of Open Access Journals (Sweden)

    Oliver Stephen G

    2011-02-01

    Full Text Available Abstract Background Haploinsufficient (HI genes are those for which a reduction in copy number in a diploid from two to one results in significantly reduced fitness. Haploinsufficiency is increasingly implicated in human disease, and so predicting this phenotype could provide insights into the genetic mechanisms behind many human diseases, including some cancers. Results In the present work we show that orthologues of Saccharomyces cerevisiae HI genes are preferentially retained across the kingdom Fungi, and that the HI genes of S. cerevisiae can be used to predict haploinsufficiency in humans. Our HI gene predictions confirm known associations between haploinsufficiency and genetic disease, and predict several further disorders in which the phenotype may be relevant. Haploinsufficiency is also clearly relevant to the gene-dosage imbalances inherent in eukaryotic sex-determination systems. In S. cerevisiae, HI genes are over-represented on chromosome III, the chromosome that determines yeast's mating type. This may be a device to select against the loss of one copy of chromosome III from a diploid. We found that orthologues of S. cerevisiae HI genes are also over-represented on the mating-type chromosomes of other yeasts and filamentous fungi. In animals with heterogametic sex determination, accumulation of HI genes on the sex chromosomes would compromise fitness in both sexes, given X chromosome inactivation in females. We found that orthologues of S. cerevisiae HI genes are significantly under-represented on the X chromosomes of mammals and of Caenorhabditis elegans. There is no X inactivation in Drosophila melanogaster (increased expression of X in the male is used instead and, in this species, we found no depletion of orthologues to yeast HI genes on the sex chromosomes. Conclusion A special relationship between HI genes and the sex/mating-type chromosome extends from S. cerevisiae to Homo sapiens, with the microbe being a useful model for

  7. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Science.gov (United States)

    Machiela, Mitchell J.; Zhou, Weiyin; Karlins, Eric; Sampson, Joshua N.; Freedman, Neal D.; Yang, Qi; Hicks, Belynda; Dagnall, Casey; Hautman, Christopher; Jacobs, Kevin B.; Abnet, Christian C.; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Arslan, Alan A.; Beane-Freeman, Laura E.; Berndt, Sonja I.; Black, Amanda; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Brinton, Louise A.; Bueno-de-Mesquita, H Bas; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Canzian, Federico; Carreón, Tania; Chaffee, Kari G.; Chang, I-Shou; Chatterjee, Nilanjan; Chen, Chu; Chen, Constance; Chen, Kexin; Chung, Charles C.; Cook, Linda S.; Crous Bou, Marta; Cullen, Michael; Davis, Faith G.; De Vivo, Immaculata; Ding, Ti; Doherty, Jennifer; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Friedenreich, Christine M.; Fuchs, Charles S.; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M.; Garcia-Closas, Montserrat; Gaudet, Mia M.; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Haiman, Christopher A.; Hallmans, Goran; Hankinson, Susan E.; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hong, Yun-Chul; Hoover, Robert N.; Hsiung, Chao A.; Hu, Nan; Hu, Wei; Hunter, David J.; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Alison P.; Klein, Robert; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Lan, Qing; Landi, Maria Teresa; Marchand, Loic Le; Li, Donghui; Liang, Xiaolin; Liao, Linda M.; Lin, Dongxin; Liu, Jianjun; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Malats, Nuria; Matsuo, Keitaro; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Moore, Lee; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Patiño-Garcia, Ana; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Pooler, Loreall; Prescott, Jennifer; Prokunina-Olsson, Ludmila; Purdue, Mark P.; Qiao, You-Lin; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Risch, Harvey A.; Rodriguez-Santiago, Benjamin; Ruder, Avima M.; Savage, Sharon A.; Schumacher, Fredrick; Schwartz, Ann G.; Schwartz, Kendra L.; Seow, Adeline; Wendy Setiawan, Veronica; Severi, Gianluca; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Van Den Berg, David; Visvanathan, Kala; Wacholder, Sholom; Wang, Jiu-Cun; Wang, Zhaoming; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S.; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Ziegler, Regina G.; Perez-Jurado, Luis A.; Caporaso, Neil E.; Rothman, Nathaniel; Tucker, Margaret; Dean, Michael C.; Yeager, Meredith; Chanock, Stephen J.

    2016-01-01

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases. PMID:27291797

  8. The Evolutionary Pathway of X Chromosome Inactivation in Mammals

    OpenAIRE

    Shevchenko, A.; Zakharova, I.; Zakian, S.

    2013-01-01

    X chromosome inactivation is a complex process that occurs in marsupial and eutherian mammals. The process is thought to have arisen during the differentiation of mammalian sex chromosomes to achieve an equal dosage of X chromosome genes in males and females. The differences in the X chromosome inactivation processes in marsupial and eutherian mammals are considered, and the hypotheses on its origin and evolution are discussed in this review.

  9. The X and Y chromosome in meiosis: how and why they keep silent

    Institute of Scientific and Technical Information of China (English)

    Godfried W van der Heijden; Maureen Eijpe; Willy M Baarends

    2011-01-01

    The XX/XY sex chromosomal system of mammals,including human,challenges the chromosome pairing mechanism during male meiosis.Pairing and subsequent separation of homologous chromosomes generates haploid cells from diploid cells during the meiotic divisions.One of the basic requirements for recognition between homologous chromosomes is DNA sequence identity.Since the X and Y chromosome share little homology,their quest for each other is difficult,and has special characteristics.During the lengthy meiotic prophase,all autosomal chromosomes synapse,by forming a special protein structure called the synaptonemal complex,which connects the chromosomal axes.In contrast,the X and Y chromosome synapse only in the short homologous pseudoautosomal regions,and form the so-called XY body.

  10. Influence of the X-Chromosome on Neuroanatomy: Evidence from Turner and Klinefelter Syndromes

    OpenAIRE

    Hong, David S.; Hoeft, Fumiko; Marzelli, Matthew J.; Lepage, Jean-Francois; Roeltgen, David; Ross, Judith; Reiss, Allan L.

    2014-01-01

    Studies of sex effects on neurodevelopment have traditionally focused on animal models investigating hormonal influences on brain anatomy. However, more recent evidence suggests that sex chromosomes may also have direct upstream effects that act independently of hormones. Sex chromosome aneuploidies provide ideal models to examine this framework in humans, including Turner syndrome (TS), where females are missing one X-chromosome (45X), and Klinefelter syndrome (KS), where males have an addit...

  11. X-Chromosome Inactivation Counting and Choice: Change or Design

    NARCIS (Netherlands)

    K. Monkhorst (Kim)

    2008-01-01

    textabstractPlacental mammalian female cells have two X chromosomes. One of these chromosomes is randomly inactivated in each nucleus so that females are functionally mosaic for genes expressed from their X chromosomes. The evolutionary basis for this phenomenon is based on the fact that females wou

  12. The inactive X chromosome in the human female is enriched in 5-methylcytosine to an unusual degree and appears to contain more of this modified nucleotide than the remainder of the genome

    Indian Academy of Sciences (India)

    Deepti D. Deobagkar; H. Sharat Chandra

    2003-04-01

    By employing a procedure that combines ELISA and photoacoustic spectroscopy, we have examined the content of 5-methylcytosine (m5C) in DNA of individuals who differed from one another in the number of X chromosomes in their genomes. The results show that the human inactive X chromosome (Xi) contains very high amounts of this modified nucleotide. We estimate that in the 46,XX female there is more m5C in Xi (∼3.6 × 107) than in all the remaining chromosomes put together (∼2.1 × 107). Our results also suggest that nearly one-fifth of all cytosines in Xi are methylated and that, in addition to CpG methylation, there is extensive non-CpG methylation as well.

  13. Transformation with DNA from 5-azacytidine-reactivated X chromosomes.

    OpenAIRE

    Venolia, L; Gartler, S M; Wassman, E R; Yen, P.; Mohandas, T; Shapiro, L J

    1982-01-01

    It has been shown that 5-azacytidine (5-Aza-Cyd) can reactivate genes on the inactive human X chromosome. It is assumed that the 5-Aza-Cyd acts by causing demethylation of the DNA at specific sites, but this cannot be demonstrated directly without a cloned probe. Instead, we have utilized the technique of DNA-mediated transformation to show that the 5-Aza-Cyd-induced reactivation occurs at the DNA level. DNAs from various mouse-human or hamster-human hybrid cell lines, deficient for mouse or ...

  14. X Chromosome and Autosome Dosage Responses in Drosophila melanogaster Heads.

    Science.gov (United States)

    Chen, Zhen-Xia; Oliver, Brian

    2015-06-01

    X chromosome dosage compensation is required for male viability in Drosophila. Dosage compensation relative to autosomes is two-fold, but this is likely to be due to a combination of homeostatic gene-by-gene regulation and chromosome-wide regulation. We have baseline values for gene-by-gene dosage compensation on autosomes, but not for the X chromosome. Given the evolutionary history of sex chromosomes, these baseline values could differ. We used a series of deficiencies on the X and autosomes, along with mutations in the sex-determination gene transformer-2, to carefully measure the sex-independent X-chromosome response to gene dosage in adult heads by RNA sequencing. We observed modest and indistinguishable dosage compensation for both X chromosome and autosome genes, suggesting that the X chromosome is neither inherently more robust nor sensitive to dosage change. PMID:25850426

  15. Human embryonic stem cells as models for aneuploid chromosomal syndromes.

    Science.gov (United States)

    Biancotti, Juan-Carlos; Narwani, Kavita; Buehler, Nicole; Mandefro, Berhan; Golan-Lev, Tamar; Yanuka, Ofra; Clark, Amander; Hill, David; Benvenisty, Nissim; Lavon, Neta

    2010-09-01

    Syndromes caused by chromosomal aneuploidies are widely recognized genetic disorders in humans and often lead to spontaneous miscarriage. Preimplantation genetic screening is used to detect chromosomal aneuploidies in early embryos. Our aim was to derive aneuploid human embryonic stem cell (hESC) lines that may serve as models for human syndromes caused by aneuploidies. We have established 25 hESC lines from blastocysts diagnosed as aneuploid on day 3 of their in vitro development. The hESC lines exhibited morphology and expressed markers typical of hESCs. They demonstrated long-term proliferation capacity and pluripotent differentiation. Karyotype analysis revealed that two-third of the cell lines carry a normal euploid karyotype, while one-third remained aneuploid throughout the derivation, resulting in eight hESC lines carrying either trisomy 13 (Patau syndrome), 16, 17, 21 (Down syndrome), X (Triple X syndrome), or monosomy X (Turner syndrome). On the basis of the level of single nucleotide polymorphism heterozygosity in the aneuploid chromosomes, we determined whether the aneuploidy originated from meiotic or mitotic chromosomal nondisjunction. Gene expression profiles of the trisomic cell lines suggested that all three chromosomes are actively transcribed. Our analysis allowed us to determine which tissues are most affected by the presence of a third copy of either chromosome 13, 16, 17 or 21 and highlighted the effects of trisomies on embryonic development. The results presented here suggest that aneuploid embryos can serve as an alternative source for either normal euploid or aneuploid hESC lines, which represent an invaluable tool to study developmental aspects of chromosomal abnormalities in humans. PMID:20641042

  16. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content

    NARCIS (Netherlands)

    J.F. Hughes; H. Skaletsky; T. Pyntikova; T.A. Graves; S.K.M. van Daalen; P.J. Minx; R.S. Fulton; S.D. McGrath; D.P. Locke; C. Friedman; B.J. Trask; E.R. Mardis; W.C. Warren; S. Repping; S. Rozen; R.K. Wilson; D.C. Page

    2010-01-01

    The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome(1,2). Little is known about the recent evolution of the Y chromosome because only

  17. Evolutionarily conserved sequences on human chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Kelly A.; Sheehan, John B.; Stokowski, Renee P.; Chen, Xiyin; Hosseini, Roya; Cheng, Jan-Fang; Fodor, Stephen P.A.; Cox, David R.; Patil, Nila

    2001-09-01

    Comparison of human sequences with the DNA of other mammals is an excellent means of identifying functional elements in the human genome. Here we describe the utility of high-density oligonucleotide arrays as a rapid approach for comparing human sequences with the DNA of multiple species whose sequences are not presently available. High-density arrays representing approximately 22.5 Mb of nonrepetitive human chromosome 21 sequence were synthesized and then hybridized with mouse and dog DNA to identify sequences conserved between humans and mice (human-mouse elements) and between humans and dogs (human-dog elements). Our data show that sequence comparison of multiple species provides a powerful empiric method for identifying actively conserved elements in the human genome. A large fraction of these evolutionarily conserved elements are present in regions on chromosome 21 that do not encode known genes.

  18. Molecular mapping of chromosomes 17 and X. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1989-12-31

    The basic aims of this project are the construction of high density genetic maps of chromosomes 17 and X and the utilization of these maps for the subsequent isolation of a set of physically overlapping DNA segment clones. The strategy depends on the utilization of chromosome specific libraries of small (1--15 kb) segments from each of the two chromosomes. Since the time of submission of our previous progress report, we have refined the genetic map of markers which we had previously isolated for chromosome 17. We have completed our genetic mapping in CEPH reference and NF1 families of 15 markers in the pericentric region of chromosome 17. Physical mapping results with three probes, were shown be in very close genetic proximity to the NF1 gene, with respect to two translocation breakpoints which disrupt the activity of the gene. All three of the probes were found to lie between the centromere and the most proximal translocation breakpoint, providing important genetic markers proximal to the NF1 gene. Our primary focus has shifted to the X chromosome. We have isolated an additional 30 polymorphic markers, bringing the total number we have isolated to over 80. We have invested substantial effort in characterizing the polymorphisms at each of these loci and constructed plasmid subclones which reveal the polymorphisms for nearly all of the loci. These subclones are of practical value in that they produce simpler and stronger patterns on human genomic Southern blots, thus improving the efficiency of the genetic mapping experiments. These subclones may also be of value for deriving DNA sequence information at each locus, necessary for establishing polymerase chain reaction primers specific for each locus. Such information would allow the use of each locus as a sequence tagged site.

  19. Utility of X-chromosome SNPs in relationship testing

    DEFF Research Database (Denmark)

    Tomas, Carmen; Sanchez, Juan Jose; Castro, J.A.;

    2008-01-01

    (SNPs) in relationship testing have been published. We selected 25 highly polymorphic biallelic SNPs distributed through the human X-chromosome. One 25-plex PCR reaction and one 25-plex single base extension (SNaPshot) reaction were developed. The maximum size of the PCR products was 120ábp and the size...... of the SBE primers varied between 18 and 85 nucleotides. We analyzed the allele and haplotype frequencies in 1078 unrelated males. All the SNPs were polymorphic and the lowest minor allele frequency was 0.103. All the haplotypes were unique. The forensic parameters were calculated in the Danish and...... 25 X-chromosome SNP-multiplex may help to solve a complex immigration case...

  20. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.

    Science.gov (United States)

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F Alex; Lemke, Cornelia; Tong, Eric J; Chen, Cuixia; Wai, Ching Man; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-08-21

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y(h)). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y(h) chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution. PMID:22869747

  1. Nonrandom chromosomal changes in human malignant cells

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J D

    1977-01-01

    The role of chromosomal changes in human malignant cells has been the subject of much debate. The observation of nonrandom chromosomal changes has become well recognized in chronic myelogenous leukemia, and more recently in acute myelogenous leukemia. In the present report, data are presented on the sites of duplication of chromosome No. 1 in hematologic disorders. Trisomy for region lq25 to lq32 was observed in every one of 34 patients whose cells showed duplication of some part of chromosome No. 1. Adjacent regions lq21 to lq25, and lq32 to lqter, also were trisomic in the majority of patients. Two patients had deletions, one of lq32 to qter, and the other, of lp32 to pter. The sites of chromosomal breaks leading to trisomy differ from those involved in balanced reciprocal translocations. Some of these sites are sometimes, but not always, vulnerable in constitutional chromosomal abnormalities. The nature of the proliferative advantage conferred on myeloid cells by these chromosomal changes is unknown.

  2. Effect of post-treatments with caffeine during G2 on the frequencies of chromosome-type aberrations produced by X-rays in human lymphocytes during G0 and G1

    International Nuclear Information System (INIS)

    Human lymphocytes were irradiated with X-rays in G0 and G1, grown in the presence of 5-bromodeoxyuridine, and harvested at different times from 48 to 80 h after stimulation. Some cultures were exposed to 2.5-5 mM caffeine during the last 3 h before harvesting. The frequencies of chromosome-type aberrations were scored in first division (M1) metaphases. The post-treatment with caffeine increased the frequencies of mitoses and chromosome-type aberrations in irradiated cultures. The results suggest that cells carrying chromosome-type aberrations are delayed in G2 and that caffeine increases the frequencies of aberrations in dividing cells by removing this G2-block. (author)

  3. Chromosomal aberrations in children exposed to diagnostic x-rays

    International Nuclear Information System (INIS)

    Among children who have received high x-ray doses congenital dislocation of the hip joint is the predominating diagnosis. In a series of 9 children who had received high x-ray doses (8 with luxation of the hip joint and one with achondroplasia) a significant increase of chromosomal aberrations was found. The increase concerned mainly chromosome type aberrations. The shorter the time since the last x-ray investigation the higher was the frequency of chromosome type aberrations. (author)

  4. X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus

    Directory of Open Access Journals (Sweden)

    Adauto Lima Cardoso

    2015-06-01

    Full Text Available Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes.

  5. Radiation-induced chromosomal instability in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  6. The DNA sequence of human chromosome 7.

    Science.gov (United States)

    Hillier, Ladeana W; Fulton, Robert S; Fulton, Lucinda A; Graves, Tina A; Pepin, Kymberlie H; Wagner-McPherson, Caryn; Layman, Dan; Maas, Jason; Jaeger, Sara; Walker, Rebecca; Wylie, Kristine; Sekhon, Mandeep; Becker, Michael C; O'Laughlin, Michelle D; Schaller, Mark E; Fewell, Ginger A; Delehaunty, Kimberly D; Miner, Tracie L; Nash, William E; Cordes, Matt; Du, Hui; Sun, Hui; Edwards, Jennifer; Bradshaw-Cordum, Holland; Ali, Johar; Andrews, Stephanie; Isak, Amber; Vanbrunt, Andrew; Nguyen, Christine; Du, Feiyu; Lamar, Betty; Courtney, Laura; Kalicki, Joelle; Ozersky, Philip; Bielicki, Lauren; Scott, Kelsi; Holmes, Andrea; Harkins, Richard; Harris, Anthony; Strong, Cynthia Madsen; Hou, Shunfang; Tomlinson, Chad; Dauphin-Kohlberg, Sara; Kozlowicz-Reilly, Amy; Leonard, Shawn; Rohlfing, Theresa; Rock, Susan M; Tin-Wollam, Aye-Mon; Abbott, Amanda; Minx, Patrick; Maupin, Rachel; Strowmatt, Catrina; Latreille, Phil; Miller, Nancy; Johnson, Doug; Murray, Jennifer; Woessner, Jeffrey P; Wendl, Michael C; Yang, Shiaw-Pyng; Schultz, Brian R; Wallis, John W; Spieth, John; Bieri, Tamberlyn A; Nelson, Joanne O; Berkowicz, Nicolas; Wohldmann, Patricia E; Cook, Lisa L; Hickenbotham, Matthew T; Eldred, James; Williams, Donald; Bedell, Joseph A; Mardis, Elaine R; Clifton, Sandra W; Chissoe, Stephanie L; Marra, Marco A; Raymond, Christopher; Haugen, Eric; Gillett, Will; Zhou, Yang; James, Rose; Phelps, Karen; Iadanoto, Shawn; Bubb, Kerry; Simms, Elizabeth; Levy, Ruth; Clendenning, James; Kaul, Rajinder; Kent, W James; Furey, Terrence S; Baertsch, Robert A; Brent, Michael R; Keibler, Evan; Flicek, Paul; Bork, Peer; Suyama, Mikita; Bailey, Jeffrey A; Portnoy, Matthew E; Torrents, David; Chinwalla, Asif T; Gish, Warren R; Eddy, Sean R; McPherson, John D; Olson, Maynard V; Eichler, Evan E; Green, Eric D; Waterston, Robert H; Wilson, Richard K

    2003-07-10

    Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame. PMID:12853948

  7. The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary

    OpenAIRE

    Wienberg, Johannes; Jauch, Anna; Lüdecke, H J; Senger, G; Horsthemke, B; Claussen, U; Cremer, Thomas; Arnold, N.; Lengauer, Christoph

    1994-01-01

    Fluorescencein situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescencein situ hybridization and comparative mapping of the chromosomes of ...

  8. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  9. Chromosome Aberrations Induced in Human Peripheral Blood by 2-MeV X-Irradiation to the Whole Body and In Vitro

    International Nuclear Information System (INIS)

    In recent years it has proved possible to correlate the incidence of ring and dicentric chromosomes in cultured human peripheral blood lymphocytes with given radiation doses both in vitro and following partial or whole body irradiation exposure in vivo In the present study a comparison is made between the yield of aberrations in six men with advanced cancer who received whole body irradiation in doses varying between 36 and 50 rads and the yield of aberrations in samples of their blood drawn before exposure and irradiated in vitro simultaneously to the same dose A comparison is also made between the yield of aberrations following in vitro irradiation to much higher doses of blood derived from these same cancer patients and blood from non cancer controls The significance of these findings is discussed with reference to biological dosimetry using chromosome aberrations as the parameter for both external and internal irradiation Apart from such a practical application it also appears possible to develop this technique to study the sensitivity of cells to chromosome breakage by radiation in selected populations such as mongols or persons with Fancom s anaemia where there is a higher than normal incidence of malignant disease. (author)

  10. Balancing up and downregulation of the C. elegans X chromosomes

    OpenAIRE

    Lau, Alyssa C; Csankovszki, Györgyi

    2015-01-01

    In Caenorhabditis elegans, males have one X chromosome and hermaphrodites have two. Emerging evidence indicates that the male X is transcriptionally more active than autosomes to balance the single X to two sets of autosomes. Because upregulation is not limited to males, hermaphrodites need to strike back and downregulate expression from the two X chromosomes to balance gene expression in their genome. Hermaphrodite-specific downregulation involves binding of the dosage compensation complex t...

  11. Globally Divergent but Locally Convergent X- and Y-Chromosome Influences on Cortical Development.

    Science.gov (United States)

    Raznahan, Armin; Lee, Nancy Raitano; Greenstein, Deanna; Wallace, Gregory L; Blumenthal, Jonathan D; Clasen, Liv S; Giedd, Jay N

    2016-01-01

    Owing to their unique evolutionary history, modern mammalian X- and Y-chromosomes have highly divergent gene contents counterbalanced by regulatory features, which preferentially restrict expression of X- and Y-specific genes. These 2 characteristics make opposing predictions regarding the expected dissimilarity of X- vs. Y-chromosome influences on biological structure and function. Here, we quantify this dissimilarity using in vivo neuroimaging within a rare cohort of humans with diverse sex chromosome aneuploidies (SCAs). We show that X- and Y-chromosomes have opposing effects on overall brain size but exert highly convergent influences on local brain anatomy, which manifest across biologically distinct dimensions of the cerebral cortex. Large-scale online meta-analysis of functional neuroimaging data indicates that convergent sex chromosome dosage effects preferentially impact centers for social perception, communication, and decision-making. Thus, despite an almost complete lack of sequence homology, and opposing effects on overall brain size, X- and Y-chromosomes exert congruent effects on the proportional size of cortical systems involved in adaptive social functioning. These convergent X-Y effects (i) track the dosage of those few genes that are still shared by X- and Y-chromosomes, and (ii) may provide a biological substrate for the link between SCA and increased rates of psychopathology. PMID:25146371

  12. Frequent gene conversion events between the X and Y homologous chromosomal regions in primates

    Directory of Open Access Journals (Sweden)

    Hirai Hirohisa

    2010-07-01

    Full Text Available Abstract Background Mammalian sex-chromosomes originated from a pair of autosomes. A step-wise cessation of recombination is necessary for the proper maintenance of sex-determination and, consequently, generates a four strata structure on the X chromosome. Each stratum shows a specific per-site nucleotide sequence difference (p-distance between the X and Y chromosomes, depending on the time of recombination arrest. Stratum 4 covers the distal half of the human X chromosome short arm and the p-distance of the stratum is ~10%, on average. However, a 100-kb region, which includes KALX and VCX, in the middle of stratum 4 shows a significantly lower p-distance (1-5%, suggesting frequent sequence exchanges or gene conversions between the X and Y chromosomes in humans. To examine the evolutionary mechanism for this low p-distance region, sequences of a corresponding region including KALX/Y from seven species of non-human primates were analyzed. Results Phylogenetic analysis of this low p-distance region in humans and non-human primate species revealed that gene conversion like events have taken place at least ten times after the divergence of New World monkeys and Catarrhini (i.e., Old World monkeys and hominoids. A KALY-converted KALX allele in white-handed gibbons also suggests a possible recent gene conversion between the X and Y chromosomes. In these primate sequences, the proximal boundary of this low p-distance region is located in a LINE element shared between the X and Y chromosomes, suggesting the involvement of this element in frequent gene conversions. Together with a palindrome on the Y chromosome, a segmental palindrome structure on the X chromosome at the distal boundary near VCX, in humans and chimpanzees, may mediate frequent sequence exchanges between X and Y chromosomes. Conclusion Gene conversion events between the X and Y homologous regions have been suggested, mainly in humans. Here, we found frequent gene conversions in the

  13. A Syntenic Region Conserved from Fish to Mammalian X Chromosome

    OpenAIRE

    Guijun Guan; Meisheng Yi; Tohru Kobayashi; Yunhan Hong; Yoshitaka Nagahama

    2014-01-01

    Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system), the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its ...

  14. Frequency of Cancer Genes on the Chicken Z Chromosome and Its Human Homologues: Implications for Sex Chromosome Evolution

    Directory of Open Access Journals (Sweden)

    Rami Stiglec

    2007-01-01

    Full Text Available It has been suggested that there are special evolutionary forces that act on sex chromosomes. Hemizygosity of the X chromosome in male mammals has led to selection for male-advantage genes, and against genes posing extreme risks of tumor development. A similar bias against cancer genes should also apply to the Z chromosome that is present as a single copy in female birds. Using comparative database analysis, we found that there was no significant underrepresentation of cancer genes on the chicken Z, nor on the Z-orthologous regions of human chromosomes 5 and 9. This result does not support the hypothesis that genes involved in cancer are selected against on the sex chromosomes.

  15. Effect of low-dose acute X-irradiation on the frequencies of chromosomal aberrations in human peripheral lymphocytes in vitro

    International Nuclear Information System (INIS)

    In a coordinated research programme sponsored by the International Atomic Energy Agency, the frequencies of chromosomal aberrations induced in peripheral blood lymphocytes (in vitro) by 250 kV X-rays at low doses (0.4, 1, 2, 3, 5, 10 and 30 rad) were determined. Blood from 2 donors was used to conduct one master experiment at these dose levels. The culture time used was 48 h and all samples including the controls were processed according to a standard protocol. The coded slides were scored by investigators from 10 participating laboratories. The main results are the following: the frequencies of all types of chromosome aberrations at 0.4 rad are significantly lower than the control values; there is no increase in the frequencies of dicentrics up to 2 rad and in those of terminal deletions up to 5 rad; the mean frequencies of all aberrations considered together are not significantly different from one another at 1, 2 and 3 rad (P=0.05); and (4) over the entire dose range the dose-effect relationship is clearly non-linear. (orig./AJ)

  16. BRCA1-mediated repression of select X chromosome genes

    Directory of Open Access Journals (Sweden)

    Ropers H Hilger

    2004-09-01

    Full Text Available Abstract Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling. Significance was determined using parametric statistics with P

  17. Human chromosome 'painting' probes used to measure chromosome translocations in non-human primates: extrapolations from monkey to man

    International Nuclear Information System (INIS)

    Chromosome painting with a probe specific for human chromosome 4 was used to 'paint' monkey chromosomes to measure the persistence of translocations in peripheral blood lymphocytes of a rhesus monkey exposed to ionising radiation more than 25 years ago. The human probe painted the entire length of two large rhesus and cynomolgus monkey chromosomes with no cross hybridisation to other chromosomes, facilitating rapid detection of chromosome translocations. Translocation frequency measured in one monkey was significantly higher than that for unirradiated animals. The use of human probes to obtain cytogenetic data from Macaca species irradiated years previously or exposed to chemical clastogens makes this genus an excellent model for studying genetic damage. (author)

  18. Genetic and physical mapping of the bovine X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Chen Chen; Taylor, J.F.; Sanders, J. O. [Texas A& M Univ., College Station, TX (United States)] [and others

    1996-03-01

    Three hundred eighty reciprocal backcross and F{sub 2} full sib progeny from 33 families produced by embryo transfer from 77 Angus (Bos taurus), Brahman (Bos indicus), and F{sub 1} parents and grandparents were used to construct genetic maps of the bovine X and Y chromosomes. All individuals were scored for 15 microsatellite loci, with an average of 608 informative meioses per locus. The length of the bovine X chromosome genetic map was 118.7 cM (female only) and of the pseudoautosomal region was 13.0 cM (male only). The 15-marker framework map in Kosambi centimorgans is (BM6017-6.1-TGLA89-35.8-TEXAN13-3.4-TGLA128-1.3-BM2713-21.1-BM4604-2.4-BR215-12.9-TGLA68-10.0-BM4321-1.0-HEL14-4.9-TGLA15-2.3-INRA120-12.5-TGLA325-1.6-MAF45-3.2-INRA30), with an average interval of 7.91 cM. Clones containing pseudoautosomal or sex-linked microsatellites were isolated from a bovine bacterial artificial chromosome library and were physically mapped to bovine metaphase chromosomes by fluorescence in situ hybridization to orient the X and Y chromosome maps. BAC57, containing the pseudoautosomal microsatellite INRA30, mapped to the distal end of the long arm of the X chromosome at q42-ter and to the short arm of the Y chromosome at p13-ter. This confirms the published assignment of this region to Yp12-ter, but challenges the published assignment of Xp14-ter and thus reorients the X chromosome physical map. BAC204, containing the X-linked microsatellite BM4604, mapped to the middle of the long arm of the X chromosome at q26-q31. The position of the physically mapped to the middle of the long arm of the X chromosome at q26-q31. The position of the physically mapped markers indicates either a lack of microsatellite markers for a large (30 to 50 cM) region of the short arm of the X chromosome or heterogeneity of recombination along the X chromosome. 46 refs., 2 figs., 3 tabs.

  19. Different Probe Combinations for Assessment of Postzygotic Chromosomal Imbalances in Human Embryos

    OpenAIRE

    Bielanska, Magdalena; Tan, Seang Lin; Ao, Asangla

    2002-01-01

    Purpose: We compared three different probe combinations for detection of postzygotic mosaic imbalances in human preimplantation embryos. Methods: Two hundred and two spare cleavage stage embryos were hybridized with fluorescently labelled DNA probe mixtures specific to chromosomes X, Y, 18 (N = 67), chromosomes 2, 7, 18 (N = 71), or chromosomes 13, 16, 18, 21, 22 (N = 64). Results: An overall higher incidence of abnormalities was detected using probe mixture for five (69%) or three (72%) auto...

  20. European gene mapping project (EUROGEM) : Breakpoint panels for human chromosomes based on the CEPH reference families

    NARCIS (Netherlands)

    Attwood, J; Bryant, SP; Bains, R; Povey, R; Povey, S; Rebello, M; Kapsetaki, M; Moschonas, NK; Grzeschik, KH; Otto, M; Dixon, M; Sudworth, HE; Kooy, RF; Wright, A; Teague, P; Terrenato, L; Vergnaud, G; Monfouilloux, S; Weissenbach, J; Alibert, O; Dib, C; Faure, S; Bakker, E; Pearson, NM; Vossen, RHAM; Gal, A; MuellerMyhsok, B; Cann, HM; Spurr, NK

    1996-01-01

    Meiotic breakpoint panels for human chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17; 18, 20 and X were constructed from genotypes from the CEPH reference families. Each recombinant chromosome included has a breakpoint well-supported with reference to defined quantitative criteria. The panels

  1. 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5 prime CpG island

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R.S.; Gartler, S.M. (Univ. of Washington, Seattle (USA))

    1990-06-01

    Hamster-human cell hybrids containing an inactive human X chromosome were treated with 5-azacytidine and derived clones were examined for phosphoglycerate kinase activity and cytosine methylation in the human PGK1 (X chromosome-linked phosphoglycerate kinase) gene. Comparisons between expressing and nonexpressing clones indicated that demethylation of several methylation-sensitive restriction sites outside of the 5{prime} CpG island were unnecessary for expression. High-resolution polyacrylamide gel analysis of 25 Hpa II, Hha I, and Tha I sites revealed that all clones expressing PGK1 were unmethylated in a large region of the CpG island that includes the transcription start site and 400 base pairs upstream. Many nonexpressing clones had discontinuous patterns of demethylation. Remethylation was often observed in subclones of nonexpressing hybrids. These data suggest that a specific zone of methylation-free DNA within the PGK1 promoter is required for transcription. In addition, the presence of neighboring methylcytosines appears to decrease the heritable stability of unmethylated CpGs in this region.

  2. 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5' CpG island.

    Science.gov (United States)

    Hansen, R S; Gartler, S M

    1990-01-01

    Hamster-human cell hybrids containing an inactive human X chromosome were treated with 5-azacytidine and derived clones were examined for phosphoglycerate kinase activity and cytosine methylation in the human PGK1 (X chromosome-linked phosphoglycerate kinase) gene. Comparisons between expressing and nonexpressing clones indicated that demethylation of several methylation-sensitive restriction sites outside of the 5' CpG island were unnecessary for expression. High-resolution polyacrylamide gel analysis of 25 Hpa II, Hha I, and Tha I sites revealed that all clones expressing PGK1 were unmethylated in a large region of the CpG island that includes the transcription start site and 400 base pairs upstream. Many nonexpressing clones had discontinuous patterns of demethylation. Remethylation was often observed in subclones of nonexpressing hybrids. These data suggest that a specific zone of methylation-free DNA within the PGK1 promoter is required for transcription. In addition, the presence of neighboring methylcytosines appears to decrease the heritable stability of unmethylated CpGs in this region. Images PMID:1693431

  3. Study of 25 X-chromosome SNPs in the Portuguese

    DEFF Research Database (Denmark)

    Pereira, Vania; Tomas Mas, Carmen; Amorim, António;

    2011-01-01

    The importance of X-chromosome markers in individual identifications, population genetics, forensics and kinship testing is getting wide recognition. In this work, we studied the distributions of 25 X-chromosome single nucleotide polymorphisms (X-SNPs) in population samples from Northern, Central...... and Southern Portugal (n=305). The data were also compared with previous data from the Mediterranean area confirming a general genetic homogeneity among populations in the region. The X-SNP distribution in the three Portuguese regional samples did not show any significant substructure and the X-SNP...

  4. Genetic and physical mapping of the bovine X chromosome.

    Science.gov (United States)

    Yeh, C C; Taylor, J F; Gallagher, D S; Sanders, J O; Turner, J W; Davis, S K

    1996-03-01

    Three hundred eighty reciprocal backcross and F(2) full sib progeny from 33 families produced by embryo transfer from 77 Angus (Bos taurus), Brahman (Bos indicus), and F1 parents and grandparents were used to construct genetic maps of the bovine X and Y chromosomes. Ml individuals were scored for 15 microsatellite loci, with an average of 608 informative meioses per locus. The length of the bovine X chromosome genetic map was 118.7 cM (female only) and of the pseudoautosomal region was 13.0 cM (male only). The 15-marker framework map in Kosambi centimorgans is [BM6017-6.1 -TGLA89-35.8-TEXAN13-3.4-TGLA128-1.3 -BM2713 -21.1 -BM4604-2.4-BR215 - 12.9-TGLA68-10.0-BM4321 - 1.0-HEL14-4.9-TGLA15-2.3-INRA12O- 12.5-TGLA325- 1.6-MAF45-3.2-INRA3O], with an average interval of 7.91 cM. Clones containing pseudoautosomal or sex-linked microsatellites were isolated from a bovine bacterial artificial chromosome library and were physically mapped to bovine metaphase chromosomes by fluorescence in situ hybridization to orient the X and Y chromosome maps. BAC57, containing the pseudoautosomal microsatellite INRA3O, mapped to the distal end of the long arm of the X chromosome at q42-ter and to the short arm of the Y chromosome at p13-ter. This confirms the published assignment of this region to Ypl2-ter, but challenges the published assignment of Xpl4-ter and thus reorients the X chromosome physical map. BAC2O4, containing the X-linked microsatellite BM4604, mapped to the middle of the long arm of the X chromosome at q26-q31. The position of the physically mapped markers indicates either a lack of microsatellite markers for a large (30 to 50 cM) region of the short arm of the X chromosome or heterogeneity of recombination along the X chromosome. PMID:8833151

  5. Structural organization of the inactive X chromosome in the mouse.

    Science.gov (United States)

    Giorgetti, Luca; Lajoie, Bryan R; Carter, Ava C; Attia, Mikael; Zhan, Ye; Xu, Jin; Chen, Chong Jian; Kaplan, Noam; Chang, Howard Y; Heard, Edith; Dekker, Job

    2016-07-28

    X-chromosome inactivation (XCI) involves major reorganization of the X chromosome as it becomes silent and heterochromatic. During female mammalian development, XCI is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Xist coats the chromosome in cis and induces silencing of almost all genes via its A-repeat region, although some genes (constitutive escapees) avoid silencing in most cell types, and others (facultative escapees) escape XCI only in specific contexts. A role for Xist in organizing the inactive X (Xi) chromosome has been proposed. Recent chromosome conformation capture approaches have revealed global loss of local structure on the Xi chromosome and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite. However, the molecular architecture of the Xi chromosome, in both the silent and expressed regions,remains unclear. Here we investigate the structure, chromatin accessibility and expression status of the mouse Xi chromosome in highly polymorphic clonal neural progenitors (NPCs) and embryonic stem cells. We demonstrate a crucial role for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) and RNA sequencing. Deletion of the boundary disrupts mega-domain formation, and induction of Xist RNA initiates formation of the boundary and the loss of DNA accessibility. We also show that in NPCs, the Xi chromosome lacks active/inactive compartments and topologically associating domains (TADs), except around genes that escape XCI. Escapee gene clusters display TAD-like structures and retain DNA accessibility at promoter-proximal and CTCF-binding sites. Furthermore, altered patterns of facultative escape genes indifferent neural progenitor clones are associated with the presence of different TAD

  6. Biotinylated Y chromosome specific probe for human sexing

    International Nuclear Information System (INIS)

    Human chromosome DNA from WBC or fetus chorion samples were digested with Hae III and hybridized with biotinylated Y chromosome specific probe by Southern blotting, and hybridization signals were developed by the ABC (Avidin-biotin-alkaline phosphatase complex) system. The hybridization signal for 0.1 μg of male DNA could be detected clearly, while the signal for even 5 μg of female DNA could not. Parallel tests showed that the sexing results using 32P-labeled and biotinylated Y probe were identical. This suggests that the biotinylated Y probe can be applied to the determination of X-linked genetic diseases and sex abnormality, forensic analysis, sex determination of sportsmen and women, heterosexual transplanation of bone marrow, etc. It could become a convenient means for genetic diagnosis

  7. DNA sequence and analysis of human chromosome 18.

    Science.gov (United States)

    Nusbaum, Chad; Zody, Michael C; Borowsky, Mark L; Kamal, Michael; Kodira, Chinnappa D; Taylor, Todd D; Whittaker, Charles A; Chang, Jean L; Cuomo, Christina A; Dewar, Ken; FitzGerald, Michael G; Yang, Xiaoping; Abouelleil, Amr; Allen, Nicole R; Anderson, Scott; Bloom, Toby; Bugalter, Boris; Butler, Jonathan; Cook, April; DeCaprio, David; Engels, Reinhard; Garber, Manuel; Gnirke, Andreas; Hafez, Nabil; Hall, Jennifer L; Norman, Catherine Hosage; Itoh, Takehiko; Jaffe, David B; Kuroki, Yoko; Lehoczky, Jessica; Lui, Annie; Macdonald, Pendexter; Mauceli, Evan; Mikkelsen, Tarjei S; Naylor, Jerome W; Nicol, Robert; Nguyen, Cindy; Noguchi, Hideki; O'Leary, Sinéad B; O'Neill, Keith; Piqani, Bruno; Smith, Cherylyn L; Talamas, Jessica A; Topham, Kerri; Totoki, Yasushi; Toyoda, Atsushi; Wain, Hester M; Young, Sarah K; Zeng, Qiandong; Zimmer, Andrew R; Fujiyama, Asao; Hattori, Masahira; Birren, Bruce W; Sakaki, Yoshiyuki; Lander, Eric S

    2005-09-22

    Chromosome 18 appears to have the lowest gene density of any human chromosome and is one of only three chromosomes for which trisomic individuals survive to term. There are also a number of genetic disorders stemming from chromosome 18 trisomy and aneuploidy. Here we report the finished sequence and gene annotation of human chromosome 18, which will allow a better understanding of the normal and disease biology of this chromosome. Despite the low density of protein-coding genes on chromosome 18, we find that the proportion of non-protein-coding sequences evolutionarily conserved among mammals is close to the genome-wide average. Extending this analysis to the entire human genome, we find that the density of conserved non-protein-coding sequences is largely uncorrelated with gene density. This has important implications for the nature and roles of non-protein-coding sequence elements. PMID:16177791

  8. The status of dosage compensation in the multiple X chromosomes of the platypus.

    Directory of Open Access Journals (Sweden)

    Janine E Deakin

    Full Text Available Dosage compensation has been thought to be a ubiquitous property of sex chromosomes that are represented differently in males and females. The expression of most X-borne genes is equalized between XX females and XY males in therian mammals (marsupials and "placentals" by inactivating one X chromosome in female somatic cells. However, compensation seems not to be strictly required to equalize the expression of most Z-borne genes between ZZ male and ZW female birds. Whether dosage compensation operates in the third mammal lineage, the egg-laying monotremes, is of considerable interest, since the platypus has a complex sex chromosome system in which five X and five Y chromosomes share considerable genetic homology with the chicken ZW sex chromosome pair, but not with therian XY chromosomes. The assignment of genes to four platypus X chromosomes allowed us to examine X dosage compensation in this unique species. Quantitative PCR showed a range of compensation, but SNP analysis of several X-borne genes showed that both alleles are transcribed in a heterozygous female. Transcription of 14 BACs representing 19 X-borne genes was examined by RNA-FISH in female and male fibroblasts. An autosomal control gene was expressed from both alleles in nearly all nuclei, and four pseudoautosomal BACs were usually expressed from both alleles in male as well as female nuclei, showing that their Y loci are active. However, nine X-specific BACs were usually transcribed from only one allele. This suggests that while some genes on the platypus X are not dosage compensated, other genes do show some form of compensation via stochastic transcriptional inhibition, perhaps representing an ancestral system that evolved to be more tightly controlled in placental mammals such as human and mouse.

  9. A syntenic region conserved from fish to Mammalian x chromosome.

    Science.gov (United States)

    Guan, Guijun; Yi, Meisheng; Kobayashi, Tohru; Hong, Yunhan; Nagahama, Yoshitaka

    2014-01-01

    Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system), the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus), is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH) and the random amplified polymorphic DNA (RAPD) approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes. PMID:25506037

  10. A Syntenic Region Conserved from Fish to Mammalian X Chromosome

    Directory of Open Access Journals (Sweden)

    Guijun Guan

    2014-01-01

    Full Text Available Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system, the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus, is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH and the random amplified polymorphic DNA (RAPD approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes.

  11. The hierarchically organized splitting of chromosomal bands for all human chromosomes

    Directory of Open Access Journals (Sweden)

    Liehr Thomas

    2009-01-01

    Full Text Available Abstract Background Chromosome banding is widely used in cytogenetics. However, the biological nature of hierarchically organized splitting of chromosomal bands of human chromosomes is an enigma and has not been, as yet, studied. Results Here we present for the first time the hierarchically organized splitting of chromosomal bands in their sub-bands for all human chromosomes. To do this, array-proved multicolor banding (aMCB probe-sets for all human chromosomes were applied to normal metaphase spreads of three different G-band levels. We confirmed for all chromosomes to be a general principle that only Giemsa-dark bands split into dark and light sub-bands, as we demonstrated previously by chromosome stretching. Thus, the biological band splitting is in > 50% of the sub-bands different than implemented by the ISCN nomenclature suggesting also a splitting of G-light bands. Locus-specific probes exemplary confirmed the results of MCB. Conclusion Overall, the present study enables a better understanding of chromosome architecture. The observed difference of biological and ISCN band-splitting may be an explanation why mapping data from human genome project do not always fit the cytogenetic mapping.

  12. Fragile site X chromosomes in mentally retarded boys.

    OpenAIRE

    Moon, H. R.; Moon, S. Y.

    1993-01-01

    The fragile X syndrome is a common X-linked mental retardation and autism, affecting females as well as males. The fragile site X chromosomes were studied in a series of 153 mentally retarded boys of unknown etiology to determine the frequency of fragile X syndrome, and to assess the feasibility of making a clinical diagnosis of the fragile X syndrome in young boys before cytogenetic results were known. The 10 boys (6.4%) were positive for fra (X) (q27). The phenotype of fra (X) (q27) positiv...

  13. Mapping of human chromosomal regions related to neoplasia: evidence from chromosomes 1 and 17

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J.D.

    1977-12-01

    In clonal aberrations leading to an excess or partial excess of chromosome I, trisomy for bands 1q25-1q32 was noted in the myeloid cells from all of 34 patients who had various disorders such as acute leukemia, polycythemia vera, and myelofibrosis. This was not the result of a particularly fragile site in that region of the chromosome because the break points in reciprocal translocations that involve it occurred almost exclusively in the short arm. Two consistent rearrangements that have been observed in chromosome 17 produced either duplication of the entire long arm or a translocation of the distal portion of the long arm to chromosome 15. The nonrandom chromosomal changes found in hematologic disorders can now be correlated with the gene loci on these chromosomes or chromosomal segments. Seventy-five genes related to various metabolic enzymes have been mapped; it may be significant that chromosomes carrying gene loci related to nucleic acid metabolism are more frequently involved in hematologic disorders (and other malignancies as well) than are gene loci related to intermediary or carbohydrate metabolism. Furthermore, the known virus-human chromosome associations are closely correlated with the chromosomes affected in hematologic disorders. If one of the effects of carcinogens (including viruses) is to activate genes that regulate host cell DNA synthesis, and if translocations or duplications of specific chromosomal segments produce the same effect, then either of these mechanisms might provide the affected cell with a proliferative advantage.

  14. Extreme skewing of X chromosome inactivation in mothers of homosexual men.

    Science.gov (United States)

    Bocklandt, Sven; Horvath, Steve; Vilain, Eric; Hamer, Dean H

    2006-02-01

    Human sexual preference is a sexually dimorphic trait with a substantial genetic component. Linkage of male sexual orientation to markers on the X chromosome has been reported in some families. Here, we measured X chromosome inactivation ratios in 97 mothers of homosexual men and 103 age-matched control women without gay sons. The number of women with extreme skewing of X-inactivation was significantly higher in mothers of gay men (13/97=13%) compared to controls (4/103=4%) and increased in mothers with two or more gay sons (10/44=23%). Our findings support a role for the X chromosome in regulating sexual orientation in a subgroup of gay men. PMID:16369763

  15. X-ray induction of mitotic and meiotic chromosome aberrations

    International Nuclear Information System (INIS)

    In 1964 six pairs of rat kangaroo (Potorous tridactylis) were obtained from Australia. The tissues of these animals were used to initiate cell lines. Since this species has a low chromosome number of six pairs, each pair with its own distinctive morphology, it is particularly favorable for cytogenetic research. In cell cultures derived from the corneal endothelial tissues of one animal there emerged a number of haploid cells. The number of haploid cells in the cultures reached as high as 20% of the total mitotic configurations. The in vitro diploid and haploid mixture cell cultures could be a resemblance or a coincidence to the mixture existence of the diploid primary spermatocytes and the haploid secondary spermatocytes (gametes) in the in vivo testicular tissues of the male animals. It would be interesting to compare reactions of the haploid and diploid cell mixture, either in the cultures or in the testes, to x-ray exposure. Two other studies involving x-ray effects on Chinese hamster oocyte maturation and meiotic chromosomes and the x-ray induction of Chinese hamster spermatocyte meiotic chromosome aberrations have been done in this laboratory. A review of these three studies involving diploid and haploid chromosomes may lead to further research in the x-ray induction of chromosome aberrations

  16. X染色体的DNA序列结构不同于6、7、8、10、11、12号染色体%DNA Sequence Composition on Human X Chromosome Differing from that on Chromosomes 6,7,8,10,11 and 12

    Institute of Scientific and Technical Information of China (English)

    吕占军; 翟羽; 王秀芳; 宋淑霞

    2003-01-01

    7-nucleotide strings using all possible 7-nucleotide strings (47=16384).70 genes highly expressed in tonsil germinal center B cells were selected for calculating 7 nt frequency values of all introns (intron 7 nt).The binding density of DNA segment and intron 7 nt simulates the sum of binding density of the DNA segment to RNA fragments.It is found that chromosomes X,6 and 8 are more uniform in terms of different 0.5 Mb segments.The simulative binding density to RNAs is significantly lower on X chromosome than on chromosomes 6,7,8 and 12 (P<0.001).The segments that can highly bind RNAs are less on X than those on others,although no significant difference was found in comparison with chromosomes 6 and 11 when 0.5 Mb DNA was considered as a segment.But when 50 kb DNA was considered as a segment,the DNA segments highly binding RNAs on X chromosome were significantly less than those on chromosomes 6 and 11 (P<0.001).The data presented in this paper indicate that the DNA sequence composition of the human X chromosome is fundamentally distinct from that of human autosomes analyzed.This nonrandom property of distribution of RNA highly binding segments between the X chromosome and autosomes provides strong evidence that RNA highly binding segments may serve as DNA signals to propagate activation along a chromosome.It has been proved that RNAs alter chromatin structure and increase its sensitivity to DNaseⅠ.There is plenty of nonprotein-coding RNA in cells,the binding specificity of DNA-RNA is far higher than that of DNA-protein,and the affinity of DNA with RNA is higher as compared with DNA.These facts indicate that the interaction of RNA-DNA in cells may be extensive.The important finding in this study is that the binding ability to RNAs,especially the number of DNA segments highly binding RNAs is significantly lower on X chromosome than on other chromosomes.These facts suggest that if binding of DNA segment to RNAs opens the chromatin,it is easier for DNA segments on

  17. Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus anatinus): implications for mammalian sex chromosome evolution.

    Science.gov (United States)

    Waters, Paul D; Delbridge, Margaret L; Deakin, Janine E; El-Mogharbel, Nisrine; Kirby, Patrick J; Carvalho-Silva, Denise R; Graves, Jennifer A Marshall

    2005-01-01

    Mammalian sex chromosomes evolved from an ancient autosomal pair. Mapping of human X- and Y-borne genes in distantly related mammals and non-mammalian vertebrates has proved valuable to help deduce the evolution of this unique part of the genome. The platypus, a monotreme mammal distantly related to eutherians and marsupials, has an extraordinary sex chromosome system comprising five X and five Y chromosomes that form a translocation chain at male meiosis. The largest X chromosome (X1), which lies at one end of the chain, has considerable homology to the human X. Using comparative mapping and the emerging chicken database, we demonstrate that part of the therian X chromosome, previously thought to be conserved across all mammals, was lost from the platypus X1 to an autosome. This region included genes flanking the XIST locus, and also genes with Y-linked homologues that are important to male reproduction in therians. Since these genes lie on the X in marsupials and eutherians, and also on the homologous region of chicken chromosome 4, this represents a loss from the monotreme X rather than an additional evolutionary stratum of the human X. PMID:15973504

  18. Molecular mapping of chromosomes 17 and X. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition of new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping@ clones from a larger genome.

  19. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    Science.gov (United States)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-02-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it.

  20. Dielectrophoretic manipulation of human chromosomes in microfluidic channels: extracting chromosome dielectric properties

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Buckley, Sonia; Svendsen, Winnie Edith

    2011-01-01

    An investigation of the dielectric properties of polyamine buffer prepared human chromosomes is presented in this paper. Chromosomes prepared in this buffer are only a few micrometers in size and shaped roughly like spherical discs. Dielectrophoresis was therefore chosen as the method of manipula......An investigation of the dielectric properties of polyamine buffer prepared human chromosomes is presented in this paper. Chromosomes prepared in this buffer are only a few micrometers in size and shaped roughly like spherical discs. Dielectrophoresis was therefore chosen as the method of...... manipulation combined with a custom designed microfluidic system containing the required electrodes for dielectrophoresis experiments. Our results show that although this system is presently not able to distinguish between the different chromosomes, it can provide average data for the dielectric properties of...

  1. Radiation induced chromosome instability in human fibroblasts

    International Nuclear Information System (INIS)

    Evidence has been arising that some biological effects can manifest many cell divisions after irradiation. We have demonstrated that de novo chromosome instability can be detected 10- 15 mean population doubling after heavy ion irradiations. This chromosome instability is characterized by end to end fusions between specific chromosomes. The specificity of the instability may differ from one donor to another but for the same donor, the same instability should be observed after irradiation, during the senescence process and after SV40 transfection (before crisis). In irradiated primary culture fibroblasts, the expression of the delayed chromosomal instability lasts for several cell divisions without inducing cell death. Several rounds of fusions- breakage-fusions can be performed and unbalanced clones emerge (gain or loss of chromosomes with the shorter telomeres would become unstable first.. The difference in the chromosomal instability among donors could be due to a polymorphism in telomere lengths. This could induce large variation in long term response to irradiation among individuals. (author)

  2. Radiation-induced chromosome aberrations occurring during the first and second mitotic divisions of human lymphocytes after exposure to X-rays

    International Nuclear Information System (INIS)

    The study described elucidates the relationship between the number of chromosome aberrations/cell and the length of the individual culture periods. The BrdUrd staining technique used here permitted separate analyses of the aberration frequencies during the first and second mitotic divisions of lymphocyte chromosomes cultivated for different periods of time. The results thus obtained were subjected to further analysis to quantify errors attributable to non-separate observations of such mitotic processes and to determine the number of surviving cells observed to have dicentric chromosomes during the first mitotic division. An analysis of the results obtained for the first mitotic division alone failed to reveal any connection between the number of chromosome aberrations and the culture periods. The aberration rates established for the second mitotic division were clearly related to the culture periods. A steady state was reached after approx. 54 h, but the values determined here were much lower than those calculated for the first mitotic division. (orig./MG)

  3. Chromosomal assignment of the genes for proprotein convertases PC4, PC5, and PACE 4 in mouse and human

    Energy Technology Data Exchange (ETDEWEB)

    Mbikay, M.; Seidah, N.G.; Chretien, M. [Univ. of Montreal, Quebec (Canada)] [and others

    1995-03-01

    The genes for three subtilisin/kexin-like proprotein convertases, PC4, PC5, and PACE4, were mapped in the mouse by RFLP analysis of a DNA panel from a (C57BL/6JEi x SPRET/Ei) F{sub 1} x SPRET/Ei backcross. The chromosomal locations of the human homologs were determined by Southern blot analysis of a DNA panel from human-rodent somatic cell hybrids, most of which contained a single human chromosome each. The gene for PC4 (Pcsk4 locus) mapped to mouse chromosome 10, close to the Adn (adipsin, a serine protease) locus and near the Amh (anti-Mullerian hormone) locus; in a human, the gene was localized to chromosome 19. The gene for PC5 (Pcsk5 locus) mapped to mouse chromosome 19 close to the Lpc1 (lipoacortin-1) locus and, in human, was localized to chromosome 9. The gene for PACE4 (Pcsk6 locus) mapped to mouse chromosome 7, at a distance of 13 cM from the Pcsk3 locus, which specifies furin, another member of this family of enzymes previoulsy mapped to this chromosome. This is in concordance with the known close proximity of these two loci in the homologous region on human chromosome 15q25-qter. Pcsk3 and Pcsk6 mapped to a region of mouse chromosome 7 that has been associated cytogenetically with postnatal lethality in maternal disomy, suggesting that these genes might be candidates for imprinting. 43 refs., 3 figs., 2 tabs.

  4. Mammalian X homolog acts as sex chromosome in lacertid lizards.

    Science.gov (United States)

    Rovatsos, M; Vukić, J; Kratochvíl, L

    2016-07-01

    Among amniotes, squamate reptiles are especially variable in their mechanisms of sex determination; however, based largely on cytogenetic data, some lineages possess highly evolutionary stable sex chromosomes. The still very limited knowledge of the genetic content of squamate sex chromosomes precludes a reliable reconstruction of the evolutionary history of sex determination in this group and consequently in all amniotes. Female heterogamety with a degenerated W chromosome typifies the lizards of the family Lacertidae, the widely distributed Old World clade including several hundreds of species. From the liver transcriptome of the lacertid Takydromus sexlineatus female, we selected candidates for Z-specific genes as the loci lacking single-nucleotide polymorphisms. We validated the candidate genes through the comparison of the copy numbers in the female and male genomes of T. sexlineatus and another lacertid species, Lacerta agilis, by quantitative PCR that also proved to be a reliable technique for the molecular sexing of the studied species. We suggest that this novel approach is effective for the detection of Z-specific and X-specific genes in lineages with degenerated W, respectively Y chromosomes. The analyzed gene content of the Z chromosome revealed that lacertid sex chromosomes are not homologous with those of other reptiles including birds, but instead the genes have orthologs in the X-conserved region shared by viviparous mammals. It is possible that this part of the vertebrate genome was independently co-opted for the function of sex chromosomes in viviparous mammals and lacertids because of its content of genes involved in gonad differentiation. PMID:26980341

  5. Study of ionizing radiation effect on human spermatozoa chromosomes

    International Nuclear Information System (INIS)

    The purpose of this thesis is to study the radio-induced chromosomal aberrations in spermatozoa. After a brief recall on ionizing radiations, the author reviews the radio-induced chromosomal anomalies on somatic cells and on germinal line cells and spermatozoa. The author presents the technical aspects of human spermatozoa karyotype and finally studies the radio induced chromosomal anomalies of sperm to patients undergoing a radiotherapy. 13 tabs., 28 figs., 28 photos

  6. Nonrandom involvement of chromosomal segments in human hematologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J. D.

    1977-01-01

    The consistent occurrence of nonrandom chromosome changes in human malignancies suggests that they are not trivial epiphenomena. Whereas we do not understand their significance at present, one possible role which they may fulfill is to provide the chromosomally aberrant cells with a proliferative advantage as the result of alteration of the number and/or location of genes related to nucleic acid biosynthesis. It would be expected that the proliferative advantage provided by various chromosome aberrations differs in patients with different genetic constitutions.

  7. Induction of chromosomal aberrations in human lymphocytes by fission neutrons

    International Nuclear Information System (INIS)

    Chromosome aberrations induced by sparsely ionizing radiation (low-LET) are well known and cytogenetic analyses of irradiated human lymphocytes have been widely applied to biological dosimetry. However, much less is known about chromosome aberrations induced by densely ionizing radiation (high LET), such as that of alpha particles or neutrons. Such particles induce DNA strand breaks, as well as chromosome breakage and rearrangements of high complexity. This damage is more localized and less efficiently repaired than after X- or γ-ray irradiation. This preferential production of complex aberrations by densely ionizing radiation is related to the unique energy deposition patterns, which produces highly localized multiple DNA damage at the chromosomal level. A better knowledge of the interactions between different types of radiation and cellular DNA is of importance, not only from the radiobiological viewpoint but also for dosimetric and therapeutic purposes. The objective of the present study was to analyse the cytogenetic effects of fission neutrons on peripheral blood lymphocytes in order to evaluate structural and numerical aberrations and number of cells in the different mitotic cycles. So, blood samples from five healthy donors, 22-25 years old, of both sexes, were irradiated in the Research Reactor IEA-R1 of our Institute (IPEN/CNEN-SP) with thermal and fast neutrons at doses of 0.2; 0.3; 0.5 and 1.0 Gy. The γ contribution to the total absorbed dose was about 30%. These doses were monitored by thermoluminescent dosemeters: LiF-600 (for neutrons) and LiF-700 (for γ-rays). The data concerning structural aberrations were evaluated with regard to three parameters: percentage of cells with aberrations, number of aberrations/cell and number of dicentric/cell. The cytogenetic results showed an increase in the three parameters after irradiation with neutrons, as a function of radiation dose. Apparently, there was no influence of neutrons on the kinetics of cellular

  8. Confirmation of the synteny between human chromosome 22 and mouse chromosome 11

    Energy Technology Data Exchange (ETDEWEB)

    Claudio, J.O.; Rouleau, G.A.; Malo, D. [McGill Univ., Quebec (Canada)

    1994-09-01

    Comparative mapping based on the existence of conserved synteny between human and mouse chromosomes is a useful strategy in determining the chromosomal location of a gene. Using recombinant inbred (RI) strains of mice derived from AKR/J and DBA/2J cross (AKXD), we confirmed the existence of a small area of synteny between the chromosome 22 segment carrying the gene for neurofibromatosis type 2 (NF2) and the most proximal region of mouse chromosome 11 containing its homologue (Nf2). By analyzing the allele distribution pattern of 24 AKXD RI mice using a novel polymorphic dinucleotide (CT){sub n} repeat (D11Mcg1) in the 3{prime} untranslated region of the mouse Nf2 gene and PCR-based simple sequence repeat markers (Research Genetics), we established the chromosomal position of Nf23 on mouse chromosome 11. Minimizing the number of double recombinants in the RI strains analyzed suggests tight linkage of Nf2 to D11Mit1 and D11Mit72 which map to a region containing the genes for leukemia inhibitory factor (Lif) and neurofilament heavy chain polypeptide (Nfh). This region is syntenic to the segment carrying the genes LIF, NF2 and NEFH on human chromosome 22q. We show that D11Mcg1 will be useful for mapping of genes and closely linked loci on the proximal region of mouse chromosome 11. Our data demonstrate the predictive value of comparative mapping and confirm that human chromosome 22q12 is syntenic to the most proximal region of mouse chromosome 11.

  9. A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation

    OpenAIRE

    Tarpey, Patrick S.; Smith, Raffaella; Pleasance, Erin; Whibley, Annabel; Edkins, Sarah; Hardy, Claire; O'Meara, Sarah; Latimer, Calli; Dicks, Ed; Menzies, Andrew; Stephens, Phil; Blow, Matt; Greenman, Chris; Xue, Yali; Tyler-Smith, Chris

    2009-01-01

    Large-scale systematic resequencing has been proposed as the key future strategy for the discovery of rare, disease-causing sequence variants across the spectrum of human complex disease. We have sequenced the coding exons of the X chromosome in 208 families with X-linked mental retardation (XLMR), the largest direct screen for constitutional disease-causing mutations thus far reported. The screen has discovered nine genes implicated in XLMR, including SYP, ZNF711 and CASK reported here, conf...

  10. Segregation of an X ring chromosome in two generations.

    OpenAIRE

    Dallapiccola, B; Bruni, L.; Boscherini, B; Pasquino, A M; Chessa, L.; Vignetti, P

    1980-01-01

    A 45,X/46,X,r(X) mosaicism was found in a mother and daughter. Characterisation of the ring by banding studies showed that breakpoints had occurred at bands Xp13 and Xq27. It is confirmed that women heterozygotes for partial deficiencies of the short arm of an X chromosome are fertile. Although the mother developed secondary amenorrhoea at the age of 29, it is suggested that fertility per se may not be affected by deficiencies of the distal part of Xq.

  11. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Science.gov (United States)

    Hurst, Laurence D; Ghanbarian, Avazeh T; Forrest, Alistair R R; Huminiecki, Lukasz

    2015-12-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  12. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Directory of Open Access Journals (Sweden)

    Laurence D Hurst

    2015-12-01

    Full Text Available X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE and data from the Functional Annotation of the Mammalian Genome (FANTOM5 project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds, as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased

  13. Chromosomal mosaicism in human preimplantation embryos : a systematic review

    NARCIS (Netherlands)

    van Echten-Arends, Jannie; Mastenbroek, Sebastiaan; Sikkema-Raddatz, Birgit; Korevaar, Johanna C.; Heineman, Maas Jan; van der Veen, Fulco; Repping, Sjoerd

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is d

  14. DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage

    OpenAIRE

    Zody, Michael C; Garber, Manuel; Adams, David J.; Sharpe, Ted; Harrow, Jennifer; James R. Lupski; Nicholson, Christine; Searle, Steven M.; Wilming, Laurens; Young, Sarah K.; Abouelleil, Amr; Van Allen, Nicole R; Bi, Weimin; Bloom, Toby; Borowsky, Mark L

    2006-01-01

    Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome1, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome2,3. It is also enriched in segmental duplications, ranking third in density among the autosomes4. Here we report a finished sequence for human chromosome 17, as well as a structural ...

  15. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome

    KAUST Repository

    Hurst, Laurence D.

    2015-12-18

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  16. Measuring chromosomal ends of X-irradiated embryos

    International Nuclear Information System (INIS)

    In human reproduction, the first two weeks of pregnancy cannot be detected by existing hormonal tests. Therefore, irradiation for medical purposes during this period poses a risk of damaging DNA within the cells of the newly formed embryo and could lead to malformations. p53 is a protein playing a pivotal role in DNA repair, aging and apoptosis (or programmed cell death). In our laboratory, we have previously shown the importance of this protein for normal embryonic development. Indeed, mouse foetuses deficient for the p53 protein were more prompted at developing malformations (exencephaly, gastroschisis, polydactyly, cleft palate) if they were irradiated at day 8 post conception. The chromosome ends (also called telomeres) are known to be causal determinants for biological aging but are also involved in embryonic development. Since only little information is available on telomere biology early in development, we are interested in studying the telomere biology in normal and abnormal mouse foetuses within each p53 genotype (+/+, +/- and -/-). Our ultimate goal is to find some reliable biological markers (telomeres, proteins, gene modulation, ...) that could help in understanding the molecular pathways underlying radiation-induced malformations. In this perspective, we first addressed the question of telomere length changes in the normal versus abnormal X-irradiated foetuses. Principal results are presented

  17. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.

    Directory of Open Access Journals (Sweden)

    Tanmoy Bhattacharyya

    2014-02-01

    Full Text Available Hybrid sterility (HS belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.

  18. The probability to initiate X chromosome inactivation is determined by the X to autosomal ratio and X chromosome specific allelic properties.

    Directory of Open Access Journals (Sweden)

    Kim Monkhorst

    Full Text Available In female mammalian cells, random X chromosome inactivation (XCI equalizes the dosage of X-encoded gene products to that in male cells. XCI is a stochastic process, in which each X chromosome has a probability to be inactivated. To obtain more insight in the factors setting up this probability, we studied the role of the X to autosome (X ratio A ratio in initiation of XCI, and have used the experimental data in a computer simulation model to study the cellular population dynamics of XCI.To obtain more insight in the role of the XratioA ratio in initiation of XCI, we generated triploid mouse ES cells by fusion of haploid round spermatids with diploid female and male ES cells. These fusion experiments resulted in only XXY triploid ES cells. XYY and XXX ES lines were absent, suggesting cell death related either to insufficient X-chromosomal gene dosage (XYY or to inheritance of an epigenetically modified X chromosome (XXX. Analysis of active (Xa and inactive (Xi X chromosomes in the obtained triploid XXY lines indicated that the initiation frequency of XCI is low, resulting in a mixed population of XaXiY and XaXaY cells, in which the XaXiY cells have a small proliferative advantage. This result, and findings on XCI in diploid and tetraploid ES cell lines with different X ratio A ratios, provides evidence that the X ratio A ratio determines the probability for a given X chromosome to be inactivated. Furthermore, we found that the kinetics of the XCI process can be simulated using a probability for an X chromosome to be inactivated that is proportional to the X ratio A ratio. These simulation studies re-emphasize our hypothesis that the probability is a function of the concentration of an X-encoded activator of XCI, and of X chromosome specific allelic properties determining the threshold for this activator.The present findings reveal that the probability for an X chromosome to be inactivated is proportional to the X ratio A ratio. This finding

  19. Epigenetic Pattern on the Human Y Chromosome Is Evolutionarily Conserved.

    Science.gov (United States)

    Zhang, Minjie; Wang, Chuan-Chao; Yang, Caiyun; Meng, Hao; Agbagwa, Ikechukwu O; Wang, Ling-Xiang; Wang, Yingzhi; Yan, Shi; Ren, Shancheng; Sun, Yinghao; Pei, Gang; Liu, Xin; Liu, Jiang; Jin, Li; Li, Hui; Sun, Yingli

    2016-01-01

    DNA methylation plays an important role for mammalian development. However, it is unclear whether the DNA methylation pattern is evolutionarily conserved. The Y chromosome serves as a powerful tool for the study of human evolution because it is transferred between males. In this study, based on deep-rooted pedigrees and the latest Y chromosome phylogenetic tree, we performed epigenetic pattern analysis of the Y chromosome from 72 donors. By comparing their respective DNA methylation level, we found that the DNA methylation pattern on the Y chromosome was stable among family members and haplogroups. Interestingly, two haplogroup-specific methylation sites were found, which were both genotype-dependent. Moreover, the African and Asian samples also had similar DNA methylation pattern with a remote divergence time. Our findings indicated that the DNA methylation pattern on the Y chromosome was conservative during human male history. PMID:26760298

  20. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  1. Genotype/phenotype correlation in women with nonmosaic X chromosome deletions and Turner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Zinn, A.R. [Univ. of Texas Southwestern Medical School, Dallas, TX (United States)

    1994-09-01

    Turner syndrome is a complex human developmental disorder associated with the absence of the second sex chromosome (monosomy X). Cardinal features of the Turner phenotype include high intrauterine lethality, growth retardation, gonadal failure, and the variable presence of specific somatic abnormalities such as webbed neck, lymphedema, and skeletal abnormalities. Recent observations support the hypothesis that the phenotype associated with monosomy X results from haploid dosage of genes common the X and Y chromosomes that escape X-inactivation ({open_quotes}Turner genes{close_quotes}). Apart from a locus causing short stature that maps to the pseudoautosomal region on the distal short arm, the location of X-linked Turner genes is not known. Karyotype/phenotype correlations in women with partial X deletions have been inconsistent. However, previous studies have focused on sporadic sex chromosome aberrations and may have been confounded by occult mosaicism. In addition, mapping of deletions was limited by the resolution of cytogenetic techniques. I am reexamining genotype/phenotype correlations in partial X monosomy, focusing on a subset of cases in which mosaicism is highly unlikely (e.g., unbalanced X-autosome translocations, familial X deletions), and using molecular techniques to map deletions. I have collected eight cases of nonmosaic X deletions in women with varied manifestations of Turner syndrome. Cytogenetic data suggests that genes responsible for Turner anatomic abnormalities may lie within a critical region of the very proximal portion of the short arm (Xp11). Molecular characterization of the deletions is in progress. Methods include (1) fluorescence in situ hybridization of metaphase spreads from patient-derived cell lines, using cosmid probes that map to known locations on Xp, and (2) sequence tagged site (STS) content mapping of somatic cell hybrids retaining the deleted X chromosomes derived from these cell lines.

  2. Allele-specific distribution of RNA polymerase II on female X chromosomes.

    Science.gov (United States)

    Kucera, Katerina S; Reddy, Timothy E; Pauli, Florencia; Gertz, Jason; Logan, Jenae E; Myers, Richard M; Willard, Huntington F

    2011-10-15

    While the distribution of RNA polymerase II (PolII) in a variety of complex genomes is correlated with gene expression, the presence of PolII at a gene does not necessarily indicate active expression. Various patterns of PolII binding have been described genome wide; however, whether or not PolII binds at transcriptionally inactive sites remains uncertain. The two X chromosomes in female cells in mammals present an opportunity to examine each of the two alleles of a given locus in both active and inactive states, depending on which X chromosome is silenced by X chromosome inactivation. Here, we investigated PolII occupancy and expression of the associated genes across the active (Xa) and inactive (Xi) X chromosomes in human female cells to elucidate the relationship of gene expression and PolII binding. We find that, while PolII in the pseudoautosomal region occupies both chromosomes at similar levels, it is significantly biased toward the Xa throughout the rest of the chromosome. The general paucity of PolII on the Xi notwithstanding, detectable (albeit significantly reduced) binding can be observed, especially on the evolutionarily younger short arm of the X. PolII levels at genes that escape inactivation correlate with the levels of their expression; however, additional PolII sites can be found at apparently silenced regions, suggesting the possibility of a subset of genes on the Xi that are poised for expression. Consistent with this hypothesis, we show that a high proportion of genes associated with PolII-accessible sites, while silenced in GM12878, are expressed in other female cell lines. PMID:21791549

  3. The third international workshop of human chromosome 5. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Third International Workshop on Human Chromosome 5 was held in Laguna Beach, California, March 5-8, 1994. The pace at which new mapping information has been published in the last year make almost any report outdated before publication. Much of the information in this report and the most recent data from the Human chromosome 5 Genome Center at U.C. Irvine on the physical map of chromosome 5 are accessible via a WWW server. For most loci referred to in this report that can be detected by Polymerase Chain Reaction, the sequences of the oligonucleotide primers are available and some primer sequences are provided in this report.

  4. Chromosomal translocation t(X;18) in human synovial sarcomas analyzed by fluorescence in situ hybridization using paraffin-embedded tissue.

    OpenAIRE

    Nagao, K; Ito, H.; Yoshida, H.

    1996-01-01

    Synovial sarcoma is characterized cytogenetically by translocation t(X;18)(p11.2;q11.2). In this study, 28 cases that had been diagnosed initially as synovial sarcoma, including 2 fibrosarcomas, and 1 leiomyosarcoma were collected and examined for translocation t(X;18) on paraffin-embedded tissues by fluorescence in situ hybridization (FISH). Of the synovial sarcomas, 25 showed findings consistent with translocation t(X;18) with an additional copy signal for the total probe of X and 18 chromo...

  5. In situ hybridization to cytogenetic bands of yeast artificial chromosomes covering 50% of human Xq24-Xq28 DNA

    OpenAIRE

    Montanaro, Vittorio; Casamassimi, Amelia; D'Urso, Michele; Yoon, Jae-Young; Freije, Wadiha; Schlessinger, David; Muenke, Maximilian; Nussbaum, Robert L.; Saccone, Salvatore; Maugeri, Silvana; Santoro, Anna Maria; Motta, Salvatore; Della Valle, Giuliano

    1991-01-01

    From the collection described by Abidi et al., 102 yeast artificial chromosomes (YACs) with human DNA inserts more than 300 kb in length were assigned to chromosomal band positions on early metaphase chromosomes by in situ hybridization using the biotin-avidin method. All the YACs hybridized within the Xq24-Xqter region, supporting the origin of the vast majority of the YACs from single human X-chromosomal sites. With assignments precise to ±0.5 bands, YACs were distributed among cytogenetic ...

  6. The DNA sequence and comparative analysis of human chromosome 10.

    Science.gov (United States)

    Deloukas, P; Earthrowl, M E; Grafham, D V; Rubenfield, M; French, L; Steward, C A; Sims, S K; Jones, M C; Searle, S; Scott, C; Howe, K; Hunt, S E; Andrews, T D; Gilbert, J G R; Swarbreck, D; Ashurst, J L; Taylor, A; Battles, J; Bird, C P; Ainscough, R; Almeida, J P; Ashwell, R I S; Ambrose, K D; Babbage, A K; Bagguley, C L; Bailey, J; Banerjee, R; Bates, K; Beasley, H; Bray-Allen, S; Brown, A J; Brown, J Y; Burford, D C; Burrill, W; Burton, J; Cahill, P; Camire, D; Carter, N P; Chapman, J C; Clark, S Y; Clarke, G; Clee, C M; Clegg, S; Corby, N; Coulson, A; Dhami, P; Dutta, I; Dunn, M; Faulkner, L; Frankish, A; Frankland, J A; Garner, P; Garnett, J; Gribble, S; Griffiths, C; Grocock, R; Gustafson, E; Hammond, S; Harley, J L; Hart, E; Heath, P D; Ho, T P; Hopkins, B; Horne, J; Howden, P J; Huckle, E; Hynds, C; Johnson, C; Johnson, D; Kana, A; Kay, M; Kimberley, A M; Kershaw, J K; Kokkinaki, M; Laird, G K; Lawlor, S; Lee, H M; Leongamornlert, D A; Laird, G; Lloyd, C; Lloyd, D M; Loveland, J; Lovell, J; McLaren, S; McLay, K E; McMurray, A; Mashreghi-Mohammadi, M; Matthews, L; Milne, S; Nickerson, T; Nguyen, M; Overton-Larty, E; Palmer, S A; Pearce, A V; Peck, A I; Pelan, S; Phillimore, B; Porter, K; Rice, C M; Rogosin, A; Ross, M T; Sarafidou, T; Sehra, H K; Shownkeen, R; Skuce, C D; Smith, M; Standring, L; Sycamore, N; Tester, J; Thorpe, A; Torcasso, W; Tracey, A; Tromans, A; Tsolas, J; Wall, M; Walsh, J; Wang, H; Weinstock, K; West, A P; Willey, D L; Whitehead, S L; Wilming, L; Wray, P W; Young, L; Chen, Y; Lovering, R C; Moschonas, N K; Siebert, R; Fechtel, K; Bentley, D; Durbin, R; Hubbard, T; Doucette-Stamm, L; Beck, S; Smith, D R; Rogers, J

    2004-05-27

    The finished sequence of human chromosome 10 comprises a total of 131,666,441 base pairs. It represents 99.4% of the euchromatic DNA and includes one megabase of heterochromatic sequence within the pericentromeric region of the short and long arm of the chromosome. Sequence annotation revealed 1,357 genes, of which 816 are protein coding, and 430 are pseudogenes. We observed widespread occurrence of overlapping coding genes (either strand) and identified 67 antisense transcripts. Our analysis suggests that both inter- and intrachromosomal segmental duplications have impacted on the gene count on chromosome 10. Multispecies comparative analysis indicated that we can readily annotate the protein-coding genes with current resources. We estimate that over 95% of all coding exons were identified in this study. Assessment of single base changes between the human chromosome 10 and chimpanzee sequence revealed nonsense mutations in only 21 coding genes with respect to the human sequence. PMID:15164054

  7. Human oocyte chromosome analysis: complicated cases and major pitfalls

    Indian Academy of Sciences (India)

    Bernd Rosenbusch; Michael Schneider; Hans Wilhelm Michelmann

    2008-08-01

    Human oocytes that remained unfertilized in programmes of assisted reproduction have been analysed cytogenetically for more than 20 years to assess the incidence of aneuploidy in female gametes. However, the results obtained so far are not indisputable as a consequence of difficulties in evaluating oocyte chromosome preparations. Because of the lack of guidelines, we decided to summarize for the first time, the possible pitfalls in human oocyte chromosome analysis. Therefore, we screened the material from our previous studies and compiled representative, complicated cases with recommendations for their cytogenetic classification. We point out that maturity and size of the oocyte are important parameters and that fixation artefacts, as well as the particular structure of oocyte chromosomes, may predispose one to misinterpretations. Moreover, phenomena related to oocyte activation and fertilization are illustrated and explained. This compilation may help to avoid major problems in future studies and contribute to a more precise, and uniform assessment of human oocyte chromosomes.

  8. The chromosome damage induced by x-ray radiation doses. Comparison between dicentric chromosomes, micronuclei and Sister Chromatid Exchanges analyses

    International Nuclear Information System (INIS)

    Exposure to ionizing radiations is a well-known source of chromosome damage. Here we present a comparison among three different methodologies employed to recognize cytogenetic damage, after an acute exposure of human lymphocytes to 3 Gy of X-rays (100kVp). Scoring of dicentric chromosomes, present in first mitosis ''in vitro'', was the method of preference as dicentrics increased 937.5 times with respect to background. Micronucleus scoring in binucleated-cytokinesis blocked cells showed an increase of 32.5 times, while it was only of 1.46 times when Sister Chromatid Exchanges (SCEs) were analyzed. The estimated probability of an acentric fragment becoming a micronucleus was around 0.25. Intercellular distribution of dicentrics agree with Poisson, while micronucleus were overdispersed. When analyzed at second cycle after damage induction, the dicentrics yield as well as the level of cells with unstable cromosome aberrations, decreased around a half. Finally, SCEs level was similar in cells with or without unstable structural chromosome aberrations. (Author)

  9. Radiation-induced chromosome aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    Dose-response relationships for unstable chromosome exchange aberrations were obtained after irradiation with 200 kV X-rays and 60Co gamma rays, the doses ranging within 0.05-3.0 Gy. The data points were fitted to the linear quadratic model Y = C + αD + βD2, and after the chromosome hits leading to two-break unstable aberrations were estimated, to the model average x = C +kD. The results fitted the latter model particularly well, the index of determination being 0.988 for gamma rays and 0.997 for X-rays. The RBE of 200 kV X-rays as compared with 60Co gamma radiation was 1.6, when primary chromosome breaks leading to dicentric and centric ring aberrations were used as the biological endpoint. (author)

  10. Rapid evolution of cancer/testis genes on the X chromosome

    Directory of Open Access Journals (Sweden)

    Simpson Andrew J

    2007-05-01

    Full Text Available Abstract Background Cancer/testis (CT genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole. Results To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes. Conclusion Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.

  11. The Divergence of Neandertal and Modern Human Y Chromosomes.

    Science.gov (United States)

    Mendez, Fernando L; Poznik, G David; Castellano, Sergi; Bustamante, Carlos D

    2016-04-01

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes-including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447-806 kya). This is ∼2.1 (95% CI: 1.7-2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. PMID:27058445

  12. A Tth111I RFLP in intron 1 of the mouse Pgk-1 gene allows tracing of X chromosome inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugan, V.; Saha, B.K. [Emory Univ. School of Medicine, Atlanta, GA (United States)

    1994-09-01

    The X-linked immunodeficiency (xid) in CBA/N mice serves as a model for the X-linked agammaglobulinemia (XLA) syndrome in humans. Like the XLA carriers, the female mice heterozygous for xid (X{sup xid}/X{sup W}) are asymptomatic. The pattern of X chromosome inactivation in the F1 heterozygotes [CBA/N (X{sup xid}/X{sup xid}) X CAST/Ei (X{sup W}/Y)] was investigated by monitoring the methylation status of the two Pgk-1 alleles. Methylation of a CpG dinucleotide in the 5{prime} region of the Pgk-1 gene was previously shown to absolutely correlate with the inactivation of the corresponding X chromosome. In order to distinguish the two alleles, the proximal end of intron 1 of the Pgk-1 gene from CBA/N and CAST/Ei was sequenced. Several nucleotide polymorphisms, including a Tth111I RFLP, were detected in close proximity of the critical CpG dinucleotide. This allowed us to devise an assay based on PCR-amplification of a target DNA encompassing the CpG site as well as the Tth111I site. Results indicate that in circulating B lymphocytes of the female heterozygote only the X-chromosome carrying the normal allele is active (non-random inactivation of the X chromosome) whereas in non-B cells both the X chromosomes are active (random inactivation of the X chromosome). These results were further confirmed by direct measurement of transcription of the two alleles (X{sup xid} and X{sup W}).

  13. Evolutionarily different alphoid repeat DNA on homologous chromosomes in human and chimpanzee.

    OpenAIRE

    Jørgensen, A L; Laursen, H B; Jones, C; Bak, A L

    1992-01-01

    Centromeric alphoid DNA in primates represents a class of evolving repeat DNA. In humans, chromosomes 13 and 21 share one subfamily of alphoid DNA while chromosomes 14 and 22 share another subfamily. We show that similar pairwise homogenizations occur in the chimpanzee (Pan troglodytes), where chromosomes 14 and 22, homologous to human chromosomes 13 and 21, share one partially homogenized alphoid DNA subfamily and chromosomes 15 and 23, homologous to human chromosomes 14 and 22, share anothe...

  14. The DNA sequence, annotation and analysis of human chromosome 3

    DEFF Research Database (Denmark)

    Muzny, Donna M; Scherer, Steven E; Kaul, Rajinder;

    2006-01-01

    chromosomes. Chromosome 3 comprises just four contigs, one of which currently represents the longest unbroken stretch of finished DNA sequence known so far. The chromosome is remarkable in having the lowest rate of segmental duplication in the genome. It also includes a chemokine receptor gene cluster as well...... as numerous loci involved in multiple human cancers such as the gene encoding FHIT, which contains the most common constitutive fragile site in the genome, FRA3B. Using genomic sequence from chimpanzee and rhesus macaque, we were able to characterize the breakpoints defining a large pericentric...

  15. XWAS: A Software Toolset for Genetic Data Analysis and Association Studies of the X Chromosome.

    Science.gov (United States)

    Gao, Feng; Chang, Diana; Biddanda, Arjun; Ma, Li; Guo, Yingjie; Zhou, Zilu; Keinan, Alon

    2015-01-01

    XWAS is a new software suite for the analysis of the X chromosome in association studies and similar genetic studies. The X chromosome plays an important role in human disease and traits of many species, especially those with sexually dimorphic characteristics. Special attention needs to be given to its analysis due to the unique inheritance pattern, which leads to analytical complications that have resulted in the majority of genome-wide association studies (GWAS) either not considering X or mishandling it with toolsets that had been designed for non-sex chromosomes. We hence developed XWAS to fill the need for tools that are specially designed for analysis of X. Following extensive, stringent, and X-specific quality control, XWAS offers an array of statistical tests of association, including: 1) the standard test between a SNP (single nucleotide polymorphism) and disease risk, including after first stratifying individuals by sex, 2) a test for a differential effect of a SNP on disease between males and females, 3) motivated by X-inactivation, a test for higher variance of a trait in heterozygous females as compared with homozygous females, and 4) for all tests, a version that allows for combining evidence from all SNPs across a gene. We applied the toolset analysis pipeline to 16 GWAS datasets of immune-related disorders and 7 risk factors of coronary artery disease, and discovered several new X-linked genetic associations. XWAS will provide the tools and incentive for others to incorporate the X chromosome into GWAS and similar studies in any species with an XX/XY system, hence enabling discoveries of novel loci implicated in many diseases and in their sexual dimorphism. PMID:26268243

  16. Parental origin of the X chromosome in a patient with a Robertsonian translocation and Turner's syndrome.

    OpenAIRE

    Krajinovic, M; Ivanovic, K; Mestroni, L; Diklic, V; Nikolis, J

    1994-01-01

    We report on a proband with both a Robertsonian translocation and Turner's syndrome. Study of the parental origin of the X chromosome performed by microsatellite analysis indicates paternal origin of the X chromosome (Xpat). The occurrence of chromosome aberrations as a consequence of interchromosomal interactions is discussed.

  17. Strong selective sweeps associated with ampliconic regions in great ape X chromosomes

    DEFF Research Database (Denmark)

    Nam, Kiwoong; Munch, Kasper; Hobolth, Asger;

    2014-01-01

    The unique inheritance pattern of X chromosomes makes them preferential targets of adaptive evolution. We here investigate natural selection on the X chromosome in all species of great apes. We find that diversity is more strongly reduced around genes on the X compared with autosomes, and that a ...... ampliconic sequences we propose that intra-genomic conflict between the X and the Y chromosomes is a major driver of X chromosome evolution.......The unique inheritance pattern of X chromosomes makes them preferential targets of adaptive evolution. We here investigate natural selection on the X chromosome in all species of great apes. We find that diversity is more strongly reduced around genes on the X compared with autosomes, and that a...... higher proportion of substitutions results from positive selection. Strikingly, the X exhibits several megabase long regions where diversity is reduced more than five fold. These regions overlap significantly among species, and have a higher singleton proportion, population differentiation, and...

  18. Nature of telomere dimers and chromosome looping in human spermatozoa

    OpenAIRE

    Solov'eva, Lyudmila; Svetlova, Maria; Bodinski, Dawn; Zalensky, Andrei O.

    2004-01-01

    Specific and well-organized chromosome architecture in human sperm cells is supported by the prominent interactions between centromeres and between telomeres. The telomere-telomere interactions result in telomere dimers that are positioned at the nuclear periphery. It is unknown whether composition of sperm telomere dimers is random or specific. We now report that telomere dimers result from specific interactions between the two ends of each chromosome. FISH using pairs of subtelomeric DNA pr...

  19. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    Directory of Open Access Journals (Sweden)

    Teruko Taketo

    2015-06-01

    Full Text Available The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.

  20. Survey of human chromosomal abnormalities in Iceland

    Energy Technology Data Exchange (ETDEWEB)

    Jensson, O.; Hauksdottir, H.; Bjarnason, O.; Tulinius, H.

    1976-06-01

    The work of the Chromosome Laboratory of the Genetical Committee of the University of Iceland is reviewed. Initially, the main aim was to carry out cytogenetic typing of all individuals in Iceland with Down's syndrome available for study in institutions and homes, including individuals born in maternity clinics and homes during the eight years of investigation. The results of the chromosome investigation are summarized in Table 1. Lymphocyte cultures were made from a total of 932 individuals from September 1967 to 1975 and 152 individuals with Down's syndrome were cytogenetically typed. Unusual karyotype leading to Down's syndrome was found in 10 cases. Of these six were found to be mosaic, two had D/G and two G/G translocation. By cytogenetic family survey 13 D/G translocation carriers were detected in the family. A separate paper on the cytogenetic survey of Down's syndrome in Iceland is under way.

  1. DNA sequence and analysis of human chromosome 8.

    Science.gov (United States)

    Nusbaum, Chad; Mikkelsen, Tarjei S; Zody, Michael C; Asakawa, Shuichi; Taudien, Stefan; Garber, Manuel; Kodira, Chinnappa D; Schueler, Mary G; Shimizu, Atsushi; Whittaker, Charles A; Chang, Jean L; Cuomo, Christina A; Dewar, Ken; FitzGerald, Michael G; Yang, Xiaoping; Allen, Nicole R; Anderson, Scott; Asakawa, Teruyo; Blechschmidt, Karin; Bloom, Toby; Borowsky, Mark L; Butler, Jonathan; Cook, April; Corum, Benjamin; DeArellano, Kurt; DeCaprio, David; Dooley, Kathleen T; Dorris, Lester; Engels, Reinhard; Glöckner, Gernot; Hafez, Nabil; Hagopian, Daniel S; Hall, Jennifer L; Ishikawa, Sabine K; Jaffe, David B; Kamat, Asha; Kudoh, Jun; Lehmann, Rüdiger; Lokitsang, Tashi; Macdonald, Pendexter; Major, John E; Matthews, Charles D; Mauceli, Evan; Menzel, Uwe; Mihalev, Atanas H; Minoshima, Shinsei; Murayama, Yuji; Naylor, Jerome W; Nicol, Robert; Nguyen, Cindy; O'Leary, Sinéad B; O'Neill, Keith; Parker, Stephen C J; Polley, Andreas; Raymond, Christina K; Reichwald, Kathrin; Rodriguez, Joseph; Sasaki, Takashi; Schilhabel, Markus; Siddiqui, Roman; Smith, Cherylyn L; Sneddon, Tam P; Talamas, Jessica A; Tenzin, Pema; Topham, Kerri; Venkataraman, Vijay; Wen, Gaiping; Yamazaki, Satoru; Young, Sarah K; Zeng, Qiandong; Zimmer, Andrew R; Rosenthal, Andre; Birren, Bruce W; Platzer, Matthias; Shimizu, Nobuyoshi; Lander, Eric S

    2006-01-19

    The International Human Genome Sequencing Consortium (IHGSC) recently completed a sequence of the human genome. As part of this project, we have focused on chromosome 8. Although some chromosomes exhibit extreme characteristics in terms of length, gene content, repeat content and fraction segmentally duplicated, chromosome 8 is distinctly typical in character, being very close to the genome median in each of these aspects. This work describes a finished sequence and gene catalogue for the chromosome, which represents just over 5% of the euchromatic human genome. A unique feature of the chromosome is a vast region of approximately 15 megabases on distal 8p that appears to have a strikingly high mutation rate, which has accelerated in the hominids relative to other sequenced mammals. This fast-evolving region contains a number of genes related to innate immunity and the nervous system, including loci that appear to be under positive selection--these include the major defensin (DEF) gene cluster and MCPH1, a gene that may have contributed to the evolution of expanded brain size in the great apes. The data from chromosome 8 should allow a better understanding of both normal and disease biology and genome evolution. PMID:16421571

  2. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J; Han, C; Gordon, L A; Terry, A; Prabhakar, S; She, X; Xie, G; Hellsten, U; Chan, Y M; Altherr, M; Couronne, O; Aerts, A; Bajorek, E; Black, S; Blumer, H; Branscomb, E; Brown, N; Bruno, W J; Buckingham, J; Callen, D F; Campbell, C S; Campbell, M L; Campbell, E W; Caoile, C; Challacombe, J F; Chasteen, L A; Chertkov, O; Chi, H C; Christensen, M; Clark, L M; Cohn, J D; Denys, M; Detter, J C; Dickson, M; Dimitrijevic-Bussod, M; Escobar, J; Fawcett, J J; Flowers, D; Fotopulos, D; Glavina, T; Gomez, M; Gonzales, E; Goodstein, D; Goodwin, L A; Grady, D L; Grigoriev, I; Groza, M; Hammon, N; Hawkins, T; Haydu, L; Hildebrand, C E; Huang, W; Israni, S; Jett, J; Jewett, P B; Kadner, K; Kimball, H; Kobayashi, A; Krawczyk, M; Leyba, T; Longmire, J L; Lopez, F; Lou, Y; Lowry, S; Ludeman, T; Manohar, C F; Mark, G A; McMurray, K L; Meincke, L J; Morgan, J; Moyzis, R K; Mundt, M O; Munk, A C; Nandkeshwar, R D; Pitluck, S; Pollard, M; Predki, P; Parson-Quintana, B; Ramirez, L; Rash, S; Retterer, J; Ricke, D O; Robinson, D; Rodriguez, A; Salamov, A; Saunders, E H; Scott, D; Shough, T; Stallings, R L; Stalvey, M; Sutherland, R D; Tapia, R; Tesmer, J G; Thayer, N; Thompson, L S; Tice, H; Torney, D C; Tran-Gyamfi, M; Tsai, M; Ulanovsky, L E; Ustaszewska, A; Vo, N; White, P S; Williams, A L; Wills, P L; Wu, J; Wu, K; Yang, J; DeJong, P; Bruce, D; Doggett, N A; Deaven, L; Schmutz, J; Grimwood, J; Richardson, P; Rokhsar, D S; Eichler, E E; Gilna, P; Lucas, S M; Myers, R M; Rubin, E M; Pennacchio, L A

    2005-04-06

    Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes, and 3 RNA pseudogenes. These genes include metallothionein, cadherin, and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. While the segmental duplications of chromosome 16 are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events likely to have had an impact on the evolution of primates and human disease susceptibility.

  3. Human-Specific Duplication and Mosaic Transcripts: The Recent Paralogous Structure of Chromosome 22

    OpenAIRE

    Bailey, Jeffrey A. ; Yavor, Amy M. ; Viggiano, Luigi ; Misceo, Doriana ; Horvath, Juliann E. ; Archidiacono, Nicoletta ; Schwartz, Stuart ; Rocchi, Mariano ; Eichler, Evan E. 

    2001-01-01

    In recent decades, comparative chromosomal banding, chromosome painting, and gene-order studies have shown strong conservation of gross chromosome structure and gene order in mammals. However, findings from the human genome sequence suggest an unprecedented degree of recent (

  4. Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16

    OpenAIRE

    Goidts, Violaine; Szamalek, Justyna M.; de Jong, Pieter J; Cooper, David N.; Chuzhanova, Nadia; Hameister, Horst; Kehrer-Sawatzki, Hildegard

    2005-01-01

    Analyses of chromosomal rearrangements that have occurred during the evolution of the hominoids can reveal much about the mutational mechanisms underlying primate chromosome evolution. We characterized the breakpoints of the pericentric inversion of chimpanzee chromosome 18 (PTR XVI), which is homologous to human chromosome 16 (HSA 16). A conserved 23-kb inverted repeat composed of satellites, LINE and Alu elements was identified near the breakpoints and could have mediated the inversion by b...

  5. Sequence and expression analysis of gaps in human chromosome 20

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Seemann, Stefan; Mang, Yuan;

    2012-01-01

    The finished human genome-assemblies comprise several hundred un-sequenced euchromatic gaps, which may be rich in long polypurine/polypyrimidine stretches. Human chromosome 20 (chr 20) currently has three unfinished gaps remaining on its q-arm. All three gaps are within gene-dense regions and/or ...

  6. Use of the frequencies of micronuclei as quantitative indicators of X-ray-induced chromosomal aberrations in human peripheral blood lymphocytes: comparison of two methods

    International Nuclear Information System (INIS)

    The yield of radiation-induced micronuclei in human lymphocytes was assessed by two methods, i.e., by incorporating bromodeoxyuridine or by inhibiting cytokinesis by cytochalasin for identification of cells which have undergone one cell division. The cytochalasin block method was found to be more efficient with a capacity to detect between 60 and 90% of the induced fragments. Dose-response characteristics and the results of fractionation experiments indicate that the yield of micronuclei reflects both classes of acentric fragments, i.e., those associated and independent of exchange type of aberrations. 8 refs.; 2 figs.; 5 tabs

  7. Selection of X chromosome of buffaloes sperm with Percoll gradients

    OpenAIRE

    Stella, E.; G.H.M. Araujo; A.A. Ramos; Castro, A.; E. Oba; A.V. Mota

    2010-01-01

    The aim of the present study was to evaluate the selection of X chromosome of buffaloes sperm with Percoll gradients. The stock solution of Percoll was prepared in the proportion of 1:11 (1 part of Percoll:11 parts of a solution containing KCl 1M, NaH2PO4 0.1M, NaCl 1.5M and sodium HEPES 23.8 g/ml). In order to prepare 9 different gradients were added to the stocked Percoll the A solution (glicine-yolk extender) in the following proportions: 90, 80, 72, 65, 57, 49, 34 and 25%. A sample of 0.7...

  8. CAPER: a chromosome-assembled human proteome browsER.

    Science.gov (United States)

    Guo, Feifei; Wang, Dan; Liu, Zhongyang; Lu, Liang; Zhang, Wei; Sun, Haiyan; Zhang, Hongxing; Ma, Jie; Wu, Songfeng; Li, Ning; Jiang, Ying; Zhu, Weimin; Qin, Jun; Xu, Ping; Li, Dong; He, Fuchu

    2013-01-01

    High-throughput mass spectrometry and antibody-based experiments have begun to produce a large amount of proteomic data sets. Chromosome-based visualization of these data sets and their annotations can help effectively integrate, organize, and analyze them. Therefore, we developed a web-based, user-friendly Chromosome-Assembled human Proteome browsER (CAPER). To display proteomic data sets and related annotations comprehensively, CAPER employs two distinct visualization strategies: track-view for the sequence/site information and the correspondence between proteome, transcriptome, genome, and chromosome and heatmap-view for the qualitative and quantitative functional annotations. CAPER supports data browsing at multiple scales through Google Map-like smooth navigation, zooming, and positioning with chromosomes as the reference coordinate. Both track-view and heatmap-view can mutually switch, providing a high-quality user interface. Taken together, CAPER will greatly facilitate the complete annotation and functional interpretation of the human genome by proteomic approaches, thereby making a significant contribution to the Chromosome-Centric Human Proteome Project and even the human physiology/pathology research. CAPER can be accessed at http://www.bprc.ac.cn/CAPE . PMID:23256906

  9. X-marks the spot: X-chromosome identification during dosage compensation☆

    Science.gov (United States)

    Chery, Jessica; Larschan, Erica

    2016-01-01

    Dosage compensation is the essential process that equalizes the dosage of X-linked genes between the sexes in heterogametic species. Because all of the genes along the length of a single chromosome are co-regulated, dosage compensation serves as a model system for understanding how domains of coordinate gene regulation are established. Dosage compensation has been best studied in mammals, flies and worms. Although dosage compensation systems are seemingly diverse across species, there are key shared principles of nucleation and spreading that are critical for accurate targeting of the dosage compensation complex to the X-chromosome(s). We will highlight the mechanisms by which long non-coding RNAs function together with DNA sequence elements to tether dosage compensation complexes to the X-chromosome. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development. PMID:24406325

  10. Experimental observation of G banding verifying X-ray workers' chromosome translocation detected by FISH

    International Nuclear Information System (INIS)

    Objective: FISH is the most effective way of detecting chromosome aberration and many factors affect its accuracy. G-banding is used to verify the results of early X-ray workers' chromosome translocation examined by FISH. Methods: The chromosome translocations of early X-ray workers have been analysed by FISH (fluorescence in situ hybridization) and G-banding, yields of translocation treated with statistics. Results: The chromosome aberrations frequencies by tow methods are closely related. Conclusion: FISH is a feasible way to analyse chromosome aberrations of X-ray workers and reconstruct dose

  11. Chromosome-centric Human Proteome Project (C-HPP): Chromosome 12.

    Science.gov (United States)

    Chaiyarit, Sakdithep; Singhto, Nilubon; Chen, Yi-Ju; Cheng, Chia-Ying; Chiangjong, Wararat; Kanlaya, Rattiyaporn; Lam, Henry H N; Peerapen, Paleerath; Sung, Ting-Yi; Tipthara, Phornpimon; Pandey, Akhilesh; Poon, Terence C W; Chen, Yu-Ju; Sirdeshmukh, Ravi; Chung, Maxey C M; Thongboonkerd, Visith

    2014-07-01

    Following an official announcement of the Chromosome-centric Human Proteome Project (C-HPP), the Chromosome 12 (Ch12) Consortium has been established by five representative teams from five Asian countries including Thailand (Siriraj Hospital, Mahidol University), Singapore (National University of Singapore), Taiwan (Academia Sinica), Hong Kong (The Chinese University of Hong Kong), and India (Institute of Bioinformatics). We have worked closely together to extensively and systematically analyze all missing and known proteins encoded by Ch12 for their tissue/cellular/subcellular localizations. The target organs/tissues/cells include kidney, brain, gastrointestinal tissues, blood/immune cells, and stem cells. In the later phase, post-translational modifications and functional significance of Ch12-encoded proteins as well as their associations with human diseases (i.e., immune diseases, metabolic disorders, and cancers) will be defined. We have collaborated with other chromosome teams, Human Kidney and Urine Proteome Project (HKUPP), AOHUPO Membrane Proteomics Initiative, and other existing HUPO initiatives in the Biology/Disease-Based Human Proteome Project (B/D-HPP) to delineate functional roles and medical implications of Ch12-encoded proteins. The data set to be obtained from this multicountry consortium will be an important piece of the jigsaw puzzle to fulfill the missions and goals of the C-HPP and the global Human Proteome Project (HPP). PMID:24831074

  12. The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes

    International Nuclear Information System (INIS)

    The characteristics of an assay for chromosomal damage - micronuclei produced in cultured human lymphocytes - are given together with the evidence that the assay accurately measures X-ray-induced chromosomal damage. In the experiments the response of lymphocytes from different donors was very uniform: (1) the increase in micronucleus frequency begins at the time of the first mitoses, 48 hours after the cultures are started, (2) the exponent of the dose response equation (y = kDsup(n)) was 1.2 for micronulei, (3) the frequency of micronuclei was decreased by a factor of about two when the dose was fractionated. The rejoining time for four of five donors was between 30 and 60 minutes, (4) the X-ray-induced micronucleus frequency in cells from people with Down's syndrome (trisomy-21) was twice that of control donors. Since the micronucleus assay reflects the aberration so well and is so fast, it is suitable for a rapid assessment of chromosomal damage

  13. Transcriptional changes in response to X chromosome dosage in the mouse: implications for X inactivation and the molecular basis of Turner Syndrome

    Directory of Open Access Journals (Sweden)

    Sargent Carole A

    2010-02-01

    Full Text Available Abstract Background X monosomic mice (39,XO have a remarkably mild phenotype when compared to women with Turner syndrome (45,XO. The generally accepted hypothesis to explain this discrepancy is that the number of genes on the mouse X chromosome which escape X inactivation, and thus are expressed at higher levels in females, is very small. However this hypothesis has never been tested and only a small number of genes have been assayed for their X-inactivation status in the mouse. We performed a global expression analysis in four somatic tissues (brain, liver, kidney and muscle of adult 40,XX and 39,XO mice using the Illumina Mouse WG-6 v1_1 Expression BeadChip and an extensive validation by quantitative real time PCR, in order to identify which genes are expressed from both X chromosomes. Results We identified several genes on the X chromosome which are overexpressed in XX females, including those previously reported as escaping X inactivation, as well as new candidates. However, the results obtained by microarray and qPCR were not fully concordant, illustrating the difficulty in ascertaining modest fold changes, such as those expected for genes escaping X inactivation. Remarkably, considerable variation was observed between tissues, suggesting that inactivation patterns may be tissue-dependent. Our analysis also exposed several autosomal genes involved in mitochondrial metabolism and in protein translation which are differentially expressed between XX and XO mice, revealing secondary transcriptional changes to the alteration in X chromosome dosage. Conclusions Our results support the prediction that the mouse inactive X chromosome is largely silent, while providing a list of the genes potentially escaping X inactivation in rodents. Although the lower expression of X-linked genes in XO mice may not be relevant in the particular tissues/systems which are affected in human X chromosome monosomy, genes deregulated in XO mice are good candidates for

  14. Construction of a chromosome specific library of human MARs and mapping of matrix attachment regions on human chromosome 19.

    Science.gov (United States)

    Nikolaev, L G; Tsevegiyn, T; Akopov, S B; Ashworth, L K; Sverdlov, E D

    1996-01-01

    Using a novel procedure a representative human chromosome 19-specific library was constructed of short sequences, which bind preferentially to the nuclear matrix (matrix attachment regions, or MARs). Judging by 20 clones sequenced so far, the library contains > 50% of human inserts, about 90% of which are matrix-binding by the in vitro test. Computer analysis of sequences of eight human MARs did not reveal any significant homologies with the EMBL Nucleotide Data Base entries as well as between MARs themselves. Eight MARs were assigned to individual positions on the chromosome 19 physical map. The library constructed can serve as a good source of MAR sequences for comparative analysis and classification and for further chromosome mapping of MARs as well. PMID:8614638

  15. DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage.

    Science.gov (United States)

    Zody, Michael C; Garber, Manuel; Adams, David J; Sharpe, Ted; Harrow, Jennifer; Lupski, James R; Nicholson, Christine; Searle, Steven M; Wilming, Laurens; Young, Sarah K; Abouelleil, Amr; Allen, Nicole R; Bi, Weimin; Bloom, Toby; Borowsky, Mark L; Bugalter, Boris E; Butler, Jonathan; Chang, Jean L; Chen, Chao-Kung; Cook, April; Corum, Benjamin; Cuomo, Christina A; de Jong, Pieter J; DeCaprio, David; Dewar, Ken; FitzGerald, Michael; Gilbert, James; Gibson, Richard; Gnerre, Sante; Goldstein, Steven; Grafham, Darren V; Grocock, Russell; Hafez, Nabil; Hagopian, Daniel S; Hart, Elizabeth; Norman, Catherine Hosage; Humphray, Sean; Jaffe, David B; Jones, Matt; Kamal, Michael; Khodiyar, Varsha K; LaButti, Kurt; Laird, Gavin; Lehoczky, Jessica; Liu, Xiaohong; Lokyitsang, Tashi; Loveland, Jane; Lui, Annie; Macdonald, Pendexter; Major, John E; Matthews, Lucy; Mauceli, Evan; McCarroll, Steven A; Mihalev, Atanas H; Mudge, Jonathan; Nguyen, Cindy; Nicol, Robert; O'Leary, Sinéad B; Osoegawa, Kazutoyo; Schwartz, David C; Shaw-Smith, Charles; Stankiewicz, Pawel; Steward, Charles; Swarbreck, David; Venkataraman, Vijay; Whittaker, Charles A; Yang, Xiaoping; Zimmer, Andrew R; Bradley, Allan; Hubbard, Tim; Birren, Bruce W; Rogers, Jane; Lander, Eric S; Nusbaum, Chad

    2006-04-20

    Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome. PMID:16625196

  16. Cryptic mosaicism involving a second chromosome X in patients with Turner syndrome

    Directory of Open Access Journals (Sweden)

    A. Araújo

    2008-05-01

    Full Text Available The high abortion rate of 45,X embryos indicates that patients with Turner syndrome and 45,X karyotype could be mosaics, in at least one phase of embryo development or cellular lineage, due to the need for the other sex chromosome presence for conceptus to be compatible with life. In cases of structural chromosomal aberrations or hidden mosaicism, conventional cytogenetic techniques can be ineffective and molecular investigation is indicated. Two hundred and fifty patients with Turner syndrome stigmata were studied and 36 who had female genitalia and had been cytogenetically diagnosed as having "pure" 45,X karyotype were selected after 100 metaphases were analyzed in order to exclude mosaicism and the presence of genomic Y-specific sequences (SRY, TSPY, and DAZ was excluded by PCR. Genomic DNA was extracted from peripheral blood and screened by the human androgen receptor (HUMARA assay. The HUMARA gene has a polymorphic CAG repeat and, in the presence of a second chromosome with a different HUMARA allele, a second band will be amplified by PCR. Additionally, the CAG repeats contain two methylation-sensitive HpaII enzyme restriction sites, which can be used to verify skewed inactivation. Twenty-five percent (9/36 of the cases showed a cryptic mosaicism involving a second X and approximately 14% (5/36, or 55% (5/9 of the patients with cryptic mosaicism, also presented skewed inactivation. The laboratory identification of the second X chromosome and its inactivation pattern are important for the clinical management (hormone replacement therapy, and inclusion in an oocyte donation program and prognostic counseling of patients with Turner syndrome.

  17. Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome

    Directory of Open Access Journals (Sweden)

    Nurminsky Dmitry I

    2011-05-01

    Full Text Available Abstract Background Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven. Results Microarray-based study and qRT-PCR analyses show that the dynamics of gene expression during testis development are very similar between X-linked and autosomal genes, with both showing transcriptional activation concomitant with meiosis. However, the genes showing at least ten-fold expression bias toward testis are significantly underrepresented on the X chromosome. Intriguingly, the genes with similar expression bias toward tissues other than testis, even those not apparently associated with reproduction, are also strongly underrepresented on the X. Bioinformatics analysis shows that while tissue-specific genes often bind silencing-associated factors in embryonic and cultured cells, this trend is less prominent for the X-linked genes. Conclusions Our data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila. Paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue-biased genes on this chromosome. Our analyses suggest that the activation/repression switch mechanisms that probably orchestrate the highly-biased expression of tissue-specific genes are generally not efficient on the X chromosome. This effect, probably caused by dosage compensation counteracting repression of the X-linked genes, may be the cause of the exodus of highly tissue-biased genes to the autosomes.

  18. Lack of X inactivation associated with maternal X isodisomy: Evidence for a counting mechanism prior to X inactivation during human embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Migeon, B.R.; Torchia, B.S.; Fu, S. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)] [and others

    1996-01-01

    We have previously reported functional disomy for X-linked genes in females with tiny ring X chromosomes and a phenotype significantly more abnormal than Turner syndrome. In such cases the disomy results from failure of these X chromosomes to inactivate because they lack DNA sequences essential for cis X inactivation. Here we describe a novel molecular mechanism for functional X disomy that is associated with maternal isodisomy. In this case, the severe mental retardation and multiple congenital abnormalities in a female with a mosaic 45,X/46,X,del(X) (q21.3-qter)/46X,r(X) karyotype are associated with overexpression of the genes within Xpter to Xq21.31 in many of her cells. Her normal X, ring X, and deleted linear X chromosomes originate from the same maternal X chromosome, and all are transcriptionally active. None expresses X inactive specific transcript (XIST), although the locus and region of the putative X inactivation center (XIC) are present on both normal and linear deleted X chromosomes. To our knowledge, this is the first report of a functional maternal X isodisomy, and the largest X chromosome to escape inactivation. In addition, these results (1) show that cis inactivation does not invariably occur in human females with two X chromosomes, even when the XIC region is present on both of them; (2) provide evidence for a critical time prior to the visible onset of X inactivation in the embryo when decisions about X inactivation are made; and (3) support the hypothesis that the X chromosome counting mechanism involves chromosomal imprinting, occurs prior to the onset of random inactivation, and is required for subsequent inactivation of the chromosome. 41 refs., 4 figs., 2 tabs.

  19. A high-resolution comparative map between pig chromosome 17 and human chromosomes 4, 8, and 20: Identification of synteny breakpoints

    DEFF Research Database (Denmark)

    Lahbib-Mansais, Yvette; Karlskov-Mortensen, Peter; Mompart, Florence;

    2005-01-01

    We report on the construction of a high-resolution comparative map of porcine chromosome 17 (SSC17) focusing on evolutionary breakpoints with human chromosomes. The comparative map shows high homology with human chromosome 20 but suggests more limited homologies with other human chromosomes. SSC1...

  20. Repeat Sequences and Base Correlations in Human Y Chromosome Palindromes

    Institute of Scientific and Technical Information of China (English)

    Neng-zhi Jin; Zi-xian Liu; Yan-jiao Qi; Wen-yuan Qiu

    2009-01-01

    On the basis of information theory and statistical methods, we use mutual information, n-tuple entropy and conditional entropy, combined with biological characteristics, to analyze the long range correlation and short range correlation in human Y chromosome palindromes. The magnitude distribution of the long range correlation which can be reflected by the mutual information is P5>P5a>P5b (P5a and P5b are the sequences that replace solely Alu repeats and all interspersed repeats with random uncorrelated sequences in human Y chromosome palindrome 5, respectively); and the magnitude distribution of the short range correlation which can be reflected by the n-tuple entropy and the conditional entropy is P5>P5a>P5b>random uncorrelated sequence. In other words, when the Alu repeats and all interspersed repeats replace with random uncorrelated sequence, the long range and short range correlation decrease gradually. However, the random uncorrelated sequence has no correlation. This research indicates that more repeat sequences result in stronger correlation between bases in human Y chromosome. The analyses may be helpful to understand the special structures of human Y chromosome palindromes profoundly.

  1. Chromosomal and Genetic Analysis of a Human Lung Adenocarcinoma Cell Line OM

    Institute of Scientific and Technical Information of China (English)

    Yong-Wu Li; Lin Bai; Lyu-Xia Dai; Xu He; Xian-Ping Zhou

    2016-01-01

    Background: Lung cancer has become the leading cause of death in many regions.Carcinogenesis is caused by the stepwise accumulation of genetic and chromosomal changes.The aim of this study was to investigate the chromosome and gene alterations in the human lung adenocarcinoma cell line OM.Methods: We used Giemsa banding and multiplex fluorescence in situ hybridization focusing on the human lung adenocarcinoma cell line OM to analyze its chromosome alterations.In addition, the gains and losses in the specific chromosome regions were identified by comparative genomic hybridization (CGH) and the amplifications of cancer-related genes were also detected by polymerase chain reaction (PCR).Results: We identified a large number of chromosomal numerical alterations on all chromosomes except chromosome X and 19.Chromosome 10 is the most frequently involved in translocations with six different interchromosomal translocations.CGH revealed the gains on chromosome regions of 3q25.3-28, 5p13, 12q22-23.24, and the losses on 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p 13.31-13.33 and 17p 13.1-13.3.And PCR showed the amplification of genes: Membrane metalloendopeptidase (MME), sucrase-isomaltase (SI), butyrylcholinesterase (BCHE), and kininogen (KNG).Conclusions: The lung adenocarcinoma cell line OM exhibited multiple complex karyotypes, and chromosome 10 was frequently involved in chromosomal translocation, which may play key roles in tumorigenesis.We speculated that the oncogenes may be located at 3q25.3-28, 5p13, 12q22-23.24, while tumor suppressor genes may exist in 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p 13.31-13.33, and 17p 13.1-13.3.Moreover, at least four genes (MME, SI, BCHE, and KNG) may be involved in the human lung adenocarcinoma cell line OM.

  2. Rapid De Novo Evolution of X Chromosome Dosage Compensation in Silene latifolia, a Plant with Young Sex Chromosomes

    Science.gov (United States)

    Deschamps, Clothilde; Mousset, Sylvain; Widmer, Alex; Marais, Gabriel A. B.

    2012-01-01

    Silene latifolia is a dioecious plant with heteromorphic sex chromosomes that have originated only ∼10 million years ago and is a promising model organism to study sex chromosome evolution in plants. Previous work suggests that S. latifolia XY chromosomes have gradually stopped recombining and the Y chromosome is undergoing degeneration as in animal sex chromosomes. However, this work has been limited by the paucity of sex-linked genes available. Here, we used 35 Gb of RNA-seq data from multiple males (XY) and females (XX) of an S. latifolia inbred line to detect sex-linked SNPs and identified more than 1,700 sex-linked contigs (with X-linked and Y-linked alleles). Analyses using known sex-linked and autosomal genes, together with simulations indicate that these newly identified sex-linked contigs are reliable. Using read numbers, we then estimated expression levels of X-linked and Y-linked alleles in males and found an overall trend of reduced expression of Y-linked alleles, consistent with a widespread ongoing degeneration of the S. latifolia Y chromosome. By comparing expression intensities of X-linked alleles in males and females, we found that X-linked allele expression increases as Y-linked allele expression decreases in males, which makes expression of sex-linked contigs similar in both sexes. This phenomenon is known as dosage compensation and has so far only been observed in evolutionary old animal sex chromosome systems. Our results suggest that dosage compensation has evolved in plants and that it can quickly evolve de novo after the origin of sex chromosomes. PMID:22529744

  3. Replication asynchrony and differential condensation of X chromosomes in female platypus (Ornithorhynchus anatinus).

    Science.gov (United States)

    Ho, Kristen K K; Deakin, Janine E; Wright, Megan L; Graves, Jennifer A Marshall; Grützner, Frank

    2009-01-01

    A common theme in the evolution of sex chromosomes is the massive loss of genes on the sex-specific chromosome (Y or W), leading to a gene imbalance between males (XY) and females (XX) in a male heterogametic species, or between ZZ and ZW in a female heterogametic species. Different mechanisms have evolved to compensate for this difference in dosage of X-borne genes between sexes. In therian mammals, one of the X chromosomes is inactivated, whereas bird dosage compensation is partial and gene-specific. In therian mammals, hallmarks of the inactive X are monoallelic gene expression, late DNA replication and chromatin condensation. Platypuses have five pairs of X chromosomes in females and five X and five Y chromosomes in males. Gene expression analysis suggests a more bird-like partial and gene-specific dosage compensation mechanism. We investigated replication timing and chromosome condensation of three of the five X chromosomes in female platypus. Our data suggest asynchronous replication of X-specific regions on X(1), X(3) and X(5) but show significantly different condensation between homologues for X(3) only, and not for X(1) or X(5). We discuss these results in relation to recent gene expression analysis of X-linked genes, which together give us insights into possible mechanisms of dosage compensation in platypus. PMID:19874719

  4. The WSTF-ISWI chromatin remodeling complex transiently associates with the human inactive X chromosome during late S-phase prior to BRCA1 and γ-H2AX.

    Directory of Open Access Journals (Sweden)

    Ashley E Culver-Cochran

    Full Text Available Replicating the genome prior to each somatic cell division not only requires precise duplication of the genetic information, but also accurately reestablishing the epigenetic signatures that instruct how the genetic material is to be interpreted in the daughter cells. The mammalian inactive X chromosome (Xi, which is faithfully inherited in a silent state in each daughter cell, provides an excellent model of epigenetic regulation. While much is known about the early stages of X chromosome inactivation, much less is understood with regards to retaining the Xi chromatin through somatic cell division. Here we report that the WSTF-ISWI chromatin remodeling complex (WICH associates with the Xi during late S-phase as the Xi DNA is replicated. Elevated levels of WICH at the Xi is restricted to late S-phase and appears before BRCA1 and γ-H2A.X. The sequential appearance of WICH and BRCA1/γ-H2A.X implicate each as performing important but distinct roles in the maturation and maintenance of heterochromatin at the Xi.

  5. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    Science.gov (United States)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  6. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-08-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  7. Report on the Second International Workshop on Human Chromosome 9

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowski, D.J. [Brigham and Women`s Hospital, Boston, MA (United States); Armour, J. [Univ. of Leicester (England). Dept. of Genetics; Bale, A.E. [Yale Univ., New Haven, CT (United States). Dept. of Genetics] [and others

    1993-12-31

    The Second International Workshop on Human Chromosome 9 was held in Chatham, Massachusetts on April 18--20, 1993. Fifty-three abstracts were received and the data presented on posters. The purpose of the meeting was to bring together all interested investigators working on the map of chromosome 9, many of whom had disease-specific interests. After a brief presentation of interests and highlighted results, the meeting broke up into the following subgroups for production of consensus maps: 9p; 9cen-q32; 9q32 ter. A global mapping group also met. Reports of each of these working groups is presented in the summary.

  8. Aberration distribution and chromosomally marked clones in x-irradiated skin

    International Nuclear Information System (INIS)

    Samples of clinically normal human skin were removed from therapeutically X-irradiated areas at intervals of time ranging from one hour to 60 years after completion of radiation treatment. Primary cultures of untransformed fibroblasts from these samples were analysed for surviving chromosomal structural changes using ASG banding techniques. Aberrations of four basic types, reciprocal translocations, terminal deletions, pericentric inversions and paracentric inversions (the last very rare) were found in all samples. Evidence indicates that many of these are secondary aberrations derived from primary chromatid types. Presumptive break points for all aberrations were mapped, and various tests applied to investigate their within-chromosome distributions (the data are unsuitable for valid between-chromosome analysis). For translocations, the within-arm distributions are non-random, principally as the result of a very significant deficiency of break points in terminal segments. Tests for the intrachromosomal changes (pericentric inversions and deletions) are simpler, and in neither case were there significant departure from randomness Two lines of evidence are present in the data for division and migration of chromosomally abnormal cells in vivo: (a) the presence of identical aberrations in cells from different parts of the biopsy; (b) the presence of cells with sequential changes, indicating cell division between the dose fractions of the therapeutic regime. (author)

  9. X microchromosome with additional chromosome anomalies found in Ullrich-Turner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Wydner, K.L.; Sciorra, L.J. [Univ. of Medicine and Dentistry, New Brunswick, NJ (United States); Singer-Granick, C. [Hahnemann Univ., Philadelphia, PA (United States)] [and others

    1995-03-27

    Using standard cytogenetic methods coupled with molecular techniques, the following karyotype mos 45,X/46,XXq+/46,X-mar(X)/47,XXq+, +mar(X), was identified in a patient with Ullrich-Turner syndrome (UTS). High-resolution banding (n = 650) of the metaphase chromosomes yielded a breakpoint at q28 on the Xq+ rearranged chromosome. FISH was used to determine the presence of Y-containing DNA in the Xq+ and the mar(X) chromosomes. The following molecular probes were used: DYZ1, DYZ3, and spectrum orange WCP Y. The lack of specific hybridization of these probes was interpreted as a low risk of gonadoblastoma in this patient. Using X-chromosome- and centromere-specific probes, FISH demonstrated the presence of hybridizing material on both rearranged chromosomes, the Xq+ and mar(X). Finally, we determined that the mar(X) and Xq+ chromosomes contained telomeres in the absence of any interstitial telomeric hybridizing material. A micro-X chromosome is present in this UTS patient. Delineation of events leading toward the mechanisms responsible for the multiple DNA rearrangements required to generate the micro-X and Xq+ chromosomes awaits future studies. 25 refs., 6 figs., 1 tab.

  10. Hexavalent chromium induces chromosome instability in human urothelial cells.

    Science.gov (United States)

    Wise, Sandra S; Holmes, Amie L; Liou, Louis; Adam, Rosalyn M; Wise, John Pierce

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. PMID:26908176

  11. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  12. The mapping of novel genes to human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Buenaventura, J.M. [Sarah Lawrence College, Bronxville, NY (United States)

    1994-12-01

    The principle goal of our laboratory is the discovery of new genes on human chromosome 19. One of the strategies to achieve this goal is through the use of cDNA clones known as {open_quotes}expressed sequence tags{close_quotes} (ESTs). ESTs, short segments of sequence from a cDNA clone that correspond to the mRNA, occur as unique regions in the genome and, therefore, can be used as markers for specific positions. In collaboration with researchers from Genethon in France, fifteen cDNA clones from a normalized human infant brain cDNA library were tested and determined to map to chromosome 19. A verification procedure is then followed to confirm assignment to chromosome 19. First, primers for each cDNA clone are developed and then amplified by polymerase chain reaction from genomic DNA. Next, a {sup 32}P-radiolabeled probe is made by polymerase chain reaction for each clone and then hybridized against filters containing an LLNL chromosome 19-specific cosmid library to find putative locations on the chromosome. The location is then verified by running a polymerase chain reactions from the positive cosmids. With the Browser database at LLNL, additional information about the positive cosmids can be found. Through use of the BLAST database at the National Library of Medicine, homologous sequences to the clones can be found. Among the fifteen cDNA clones received from Genethon, all have been amplified by polymerase chain reaction. Three have turned out as repetitive elements in the genome. Ten have been mapped to specific locations on chromosome 19. Putative locations have been found for the remaining two clones and thus verification testing will proceed.

  13. The effect of 3-aminobenzamide on X-ray induction of chromosome aberrations in Down syndrome lymphocytes

    International Nuclear Information System (INIS)

    Human lymphocytes from normal and Down syndrome (DS) subjects were examined to determine the effect of 3-aminobenzamide (3AB) on X-ray-induced chromosome aberrations. Lymphocytes were treated with 150 or 300 rad of X-rays in the presence of 3 mM 3AB for various times after irradiation, and then the cells were analyzed for the presence of chromosome aberrations in mitotic cells. 3-Aminobenzamide had no effect on the frequency of chromosome aberrations as a result of treatment with X-rays in the presence of 3AB. These observations indicate that DS lymphocytes are more sensitive to the inhibition of poly(ADP)ribose synthetase than normal lymphocytes. (author). 44 refs.; 3 tabs

  14. Highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes

    International Nuclear Information System (INIS)

    A highly conserved repetitive DNA sequence, (TTAGGG)n, has been isolated from a human recombinant repetitive DNA library. Quantitative hybridization to chromosomes sorted by flow cytometry indicates that comparable amounts of this sequence are present on each human chromosome. Both fluorescent in situ hybridization and BAL-31 nuclease digestion experiments reveal major clusters of this sequence at the telomeres of all human chromosomes. The evolutionary conservation of this DNA sequence, its terminal chromosomal location in a variety of higher eukaryotes (regardless of chromosome number or chromosome length), and its similarity to functional telomeres isolated from lower eukaryotes suggest that this sequence is a functional human telomere

  15. DNA methylation stabilizes X chromosome inactivation in eutherians but not in marsupials: evidence for multistep maintenance of mammalian X dosage compensation.

    OpenAIRE

    Kaslow, D.C.; Migeon, B R

    1987-01-01

    In marsupials and eutherian mammals, X chromosome dosage compensation is achieved by inactivating one X chromosome in female cells; however, in marsupials, the inactive X chromosomes is always paternal, and some genes on the chromosome are partially expressed. To define the role of DNA methylation in maintenance of X chromosome inactivity, we examined loci for glucose-6-phosphate dehydrogenase and hypoxanthine phosphoribosyltransferase in a North American marsupial, the opossum Didelphis virg...

  16. Standard guidelines for the chromosome-centric human proteome project.

    Science.gov (United States)

    Paik, Young-Ki; Omenn, Gilbert S; Uhlen, Mathias; Hanash, Samir; Marko-Varga, György; Aebersold, Ruedi; Bairoch, Amos; Yamamoto, Tadashi; Legrain, Pierre; Lee, Hyoung-Joo; Na, Keun; Jeong, Seul-Ki; He, Fuchu; Binz, Pierre-Alain; Nishimura, Toshihide; Keown, Paul; Baker, Mark S; Yoo, Jong Shin; Garin, Jerome; Archakov, Alexander; Bergeron, John; Salekdeh, Ghasem Hosseini; Hancock, William S

    2012-04-01

    The objective of the international Chromosome-Centric Human Proteome Project (C-HPP) is to map and annotate all proteins encoded by the genes on each human chromosome. The C-HPP consortium was established to organize a collaborative network among the research teams responsible for protein mapping of individual chromosomes and to identify compelling biological and genetic mechanisms influencing colocated genes and their protein products. The C-HPP aims to foster the development of proteome analysis and integration of the findings from related molecular -omics technology platforms through collaborations among universities, industries, and private research groups. The C-HPP consortium leadership has elicited broad input for standard guidelines to manage these international efforts more efficiently by mobilizing existing resources and collaborative networks. The C-HPP guidelines set out the collaborative consensus of the C-HPP teams, introduce topics associated with experimental approaches, data production, quality control, treatment, and transparency of data, governance of the consortium, and collaborative benefits. A companion approach for the Biology and Disease-Driven HPP (B/D-HPP) component of the Human Proteome Project is currently being organized, building upon the Human Proteome Organization's organ-based and biofluid-based initiatives (www.hupo.org/research). The common application of these guidelines in the participating laboratories is expected to facilitate the goal of a comprehensive analysis of the human proteome. PMID:22443261

  17. Primary vitreoretinal dysplasia resembling Norrie's disease in a female: association with X autosome chromosomal translocation.

    OpenAIRE

    OHBA, N.; Yamashita, T.

    1986-01-01

    A female infant with the typical clinical and histopathological features of vitreoretinal dysplasia is described. She had an apparently balanced reciprocal chromosomal translocation 46XX,t(X;10) with the X chromosome breakpoint being on the short arm. Since the parents' karyotypes were normal, it is most plausible that a de novo chromosomal translocation disrupted the vitreoretinal dysplasia gene itself. The severe clinical symptoms of this heterozygous female patient were explained by non-ra...

  18. Cloning and characterization of a dispersed, multicopy, X chromosome sequence in Drosophila melanogaster.

    OpenAIRE

    Waring, G L; Pollack, J C

    1987-01-01

    We have isolated and characterized a dispersed middle repetitive DNA sequence from Drosophila melanogaster that is concentrated on the euchromatic portion of the X chromosome. In situ hybridization of the repeat unit to salivary gland chromosomes shows the sequence is distributed among approximately 10 major and 20 minor X chromosomal sites. Based on DNA sequence analysis of homologous sequences from three different cytogenetic regions, the 372-base-pair repeat unit appears to be (A + T)-rich...

  19. Clinical and laboratory features of human herpesvirus 6 chromosomal integration.

    Science.gov (United States)

    Clark, D A

    2016-04-01

    Human herpesvirus 6 (HHV-6) comprises two separate viruses, HHV-6A and HHV-6B, although this distinction is not commonly made. HHV-6B is ubiquitous in the population with primary infection usually occurring in early childhood, and often resulting in febrile illness. HHV-6B is also recognized as a pathogen in the immunocompromised host, particularly in transplant recipients. HHV-6A is less well characterized and may have a more restricted prevalence. Both viruses are unique among the human herpesviruses in that the entire viral genome can be found integrated into the telomeric regions of host cell chromosomes. Approximately 1% of persons have inherited integrated viral sequences through the germline, and these individuals characteristically have very high viral loads in blood and other sample types. Emerging evidence suggests that HHV-6A and HHV-6B chromosomal integration may not just be an uncommon biological observation, but more likely a characteristic of the replication properties of these viruses. The integrated viral genome appears capable of excision from the chromosomal site and potentially allows viral replication. The clinical consequences of inherited chromosomally integrated HHV-6 have yet to be fully appreciated. PMID:26802216

  20. Assignment of the structural gene for the third component of human complement to chromosome 19.

    OpenAIRE

    Whitehead, A. S.; Solomon, E; Chambers, S.; Bodmer, W F; Povey, S; Fey, G

    1982-01-01

    The third component of complement (C3) is synthesized and secreted by cultured human primary fibroblasts. A monoclonal antibody having specificity for an antigenic determinant carried by human but not mouse C3 was used to study the continued expression of human C3 in three panels of independently derived human-mouse somatic cell hybrids. Expression of the human product was shown to segregate with human chromosome 19 and with no other chromosome or group of chromosomes. A unique-sequence human...

  1. Different radiosensitization effects of the halogenated compounds on the human chromosome in vitro

    International Nuclear Information System (INIS)

    Unscheduled DNA synthesis and chromosome aberrations were compared following X- or UV-irradiation or methyl methanesulfonate treatment in cultures of HeLa S3 or KB cells or human and rabbit lymphocytes. The sensitization by incorporation of the halouridines BUdR and IUdR was also investigated. Unscheduled DNA synthesis occurred in two established cell lines after irradiation with 0 to 10 kR of X-rays. The rate of unscheduled synthesis was dose dependent and differed for the two cell lines. The unscheduled synthesis was not correlated with the modal chromosome number nor with the number of aberrations produced. UV-irradiated rabbit lymphocytes exhibited unscheduled DNA synthesis which saturated after a dose of 250 ergs/mm2. In contrast the incorporation of BUdR or IUdR eliminated this saturation and caused an increasing effect with increasing dose up to 1000 ergs/mm2. The degree of sensitization varied between the two halo-uridines, BUdR being more effective at high doses while IUdR was a more potent sensitizer at low doses. Chromosome aberrations were not directly related to unscheduled DNA synthesis but were sensitized by halo-uridine incorporation. In this case IUdR was more potent than BUdR at all doses studied. Methyl methanesulfonate was an effective producer of chromosome aberration in human lymphocytes of both the chromosome and chromatid type. Prior incorporation of BUdR or IUdR did not increase the total aberration produced but did increase the number of chromosome type aberration at the expense of the chromatid type

  2. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans.

    Science.gov (United States)

    Reardon, Paul Kirkpatrick; Clasen, Liv; Giedd, Jay N; Blumenthal, Jonathan; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin

    2016-02-24

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. PMID:26911691

  3. Adaptive Evolution of Genes Duplicated from the Drosophila pseudoobscura neo-X Chromosome

    Science.gov (United States)

    Meisel, Richard P.; Hilldorfer, Benedict B.; Koch, Jessica L.; Lockton, Steven; Schaeffer, Stephen W.

    2010-01-01

    Drosophila X chromosomes are disproportionate sources of duplicated genes, and these duplications are usually the result of retrotransposition of X-linked genes to the autosomes. The excess duplication is thought to be driven by natural selection for two reasons: X chromosomes are inactivated during spermatogenesis, and the derived copies of retroposed duplications tend to be testis expressed. Therefore, autosomal derived copies of retroposed genes provide a mechanism for their X-linked paralogs to “escape” X inactivation. Once these duplications have fixed, they may then be selected for male-specific functions. Throughout the evolution of the Drosophila genus, autosomes have fused with X chromosomes along multiple lineages giving rise to neo-X chromosomes. There has also been excess duplication from the two independent neo-X chromosomes that have been examined—one that occurred prior to the common ancestor of the willistoni species group and another that occurred along the lineage leading to Drosophila pseudoobscura. To determine what role natural selection plays in the evolution of genes duplicated from the D. pseudoobscura neo-X chromosome, we analyzed DNA sequence divergence between paralogs, polymorphism within each copy, and the expression profiles of these duplicated genes. We found that the derived copies of all duplicated genes have elevated nonsynonymous polymorphism, suggesting that they are under relaxed selective constraints. The derived copies also tend to have testis- or male-biased expression profiles regardless of their chromosome of origin. Genes duplicated from the neo-X chromosome appear to be under less constraints than those duplicated from other chromosome arms. We also find more evidence for historical adaptive evolution in genes duplicated from the neo-X chromosome, suggesting that they are under a unique selection regime in which elevated nonsynonymous polymorphism provides a large reservoir of functional variants, some of which are

  4. Y chromosome diversity, human expansion, drift, and cultural evolution

    Science.gov (United States)

    Chiaroni, Jacques; Underhill, Peter A.; Cavalli-Sforza, Luca L.

    2009-01-01

    The relative importance of the roles of adaptation and chance in determining genetic diversity and evolution has received attention in the last 50 years, but our understanding is still incomplete. All statements about the relative effects of evolutionary factors, especially drift, need confirmation by strong demographic observations, some of which are easier to obtain in a species like ours. Earlier quantitative studies on a variety of data have shown that the amount of genetic differentiation in living human populations indicates that the role of positive (or directional) selection is modest. We observe geographic peculiarities with some Y chromosome mutants, most probably due to a drift-related phenomenon called the surfing effect. We also compare the overall genetic diversity in Y chromosome DNA data with that of other chromosomes and their expectations under drift and natural selection, as well as the rate of fall of diversity within populations known as the serial founder effect during the recent “Out of Africa” expansion of modern humans to the whole world. All these observations are difficult to explain without accepting a major relative role for drift in the course of human expansions. The increasing role of human creativity and the fast diffusion of inventions seem to have favored cultural solutions for many of the problems encountered in the expansion. We suggest that cultural evolution has been subrogating biologic evolution in providing natural selection advantages and reducing our dependence on genetic mutations, especially in the last phase of transition from food collection to food production. PMID:19920170

  5. Selection of X chromosome of buffaloes sperm with Percoll gradients

    Directory of Open Access Journals (Sweden)

    E. Stella

    2010-02-01

    Full Text Available The aim of the present study was to evaluate the selection of X chromosome of buffaloes sperm with Percoll gradients. The stock solution of Percoll was prepared in the proportion of 1:11 (1 part of Percoll:11 parts of a solution containing KCl 1M, NaH2PO4 0.1M, NaCl 1.5M and sodium HEPES 23.8 g/ml. In order to prepare 9 different gradients were added to the stocked Percoll the A solution (glicine-yolk extender in the following proportions: 90, 80, 72, 65, 57, 49, 34 and 25%. A sample of 0.7 ml of the fresh semen was deposited at 2 ml of Percoll 80% for the sperm wash. The precipitate was put in tube with 0.7 ml of each gradient. Then, the precipitated was washed in TES solution by centrifugation (500xg for 10 minutes, and collected again and diluted in TES solution to be freeze. The presence of the F body in the spermatozoa was observed in 58.7 ± 5.4% of the control group and in 41.2 ± 5.4% of the treated group (p<0.01. This result showed an increment of 17.55 of male sperm in the Percoll’s group. The reduction of the centrifugation force did not improve the percentage of X sperm.

  6. X-chromosome inactivation in female patients with Fabry disease.

    Science.gov (United States)

    Echevarria, L; Benistan, K; Toussaint, A; Dubourg, O; Hagege, A A; Eladari, D; Jabbour, F; Beldjord, C; De Mazancourt, P; Germain, D P

    2016-01-01

    Fabry disease (FD) is an X-linked genetic disorder caused by the deficient activity of lysosomal α-galactosidase (α-Gal). While males are usually severely affected, clinical presentation in female patients may be more variable ranging from asymptomatic to, occasionally, as severely affected as male patients. The aim of this study was to evaluate the existence of skewed X-chromosome inactivation (XCI) in females with FD, its concordance between tissues, and its contribution to the phenotype. Fifty-six females with FD were enrolled. Clinical and biological work-up included two global scores [Mainz Severity Score Index (MSSI) and DS3], cardiac magnetic resonance imaging, measured glomerular filtration rate, and measurement of α-Gal activity. XCI was analyzed in four tissues using DNA methylation studies. Skewed XCI was found in 29% of the study population. A correlation was found in XCI patterns between blood and the other analyzed tissues although some punctual variability was detected. Significant differences in residual α-Gal levels, severity scores, progression of cardiomyopathy and deterioration of kidney function, depending on the direction and degree of skewing of XCI were evidenced. XCI significantly impacts the phenotype and natural history of FD in females. PMID:25974833

  7. Chromosome Painting Reveals Asynaptic Full Alignment of Homologs and HIM-8–Dependent Remodeling of X Chromosome Territories during Caenorhabditis elegans Meiosis

    Science.gov (United States)

    Nabeshima, Kentaro; Mlynarczyk-Evans, Susanna; Villeneuve, Anne M.

    2011-01-01

    During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)–spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners. PMID:21876678

  8. An investigation of ring and dicentric chromosomes found in three Turner's syndrome patients using DNA analysis and in situ hybridisation with X and Y chromosome specific probes.

    OpenAIRE

    Cooper, C; Crolla, J. A.; Laister, C; Johnston, D I; Cooke, P.

    1991-01-01

    We have studied three patients with features of Turner's syndrome, two with a 45,X/46,X,r(?) and the third with a 45,X/46,X,dic?(Y) karyotype. Because Turner's syndrome patients with a mosaic karyotype containing a Y chromosome are known to have a high risk of developing gonadal tumours, we used DNA analysis and in situ hybridisation with X and Y specific probes to identify the chromosomal origin of the rings and dicentric chromosomes in the three index patients. Both ring chromosomes were sh...

  9. Refined human artificial chromosome vectors for gene therapy and animal transgenesis

    OpenAIRE

    Kazuki, Y; Hoshiya, H.; Takiguchi, M.; S. Abe; Iida, Y; Osaki, M.; Katoh, M; Hiratsuka, M; Shirayoshi, Y; Hiramatsu, K; Ueno, E; N. Kajitani; Yoshino, T.; Kazuki, K; Ishihara, C.

    2010-01-01

    Human artificial chromosomes (HACs) have several advantages as gene therapy vectors, including stable episomal maintenance, and the ability to carry large gene inserts. We previously developed HAC vectors from the normal human chromosomes using a chromosome engineering technique. However, endogenous genes were remained in these HACs, limiting their therapeutic applications. In this study, we refined a HAC vector without endogenous genes from human chromosome 21 in homologous recombination-pro...

  10. Mechanisms of chromosomal rearrangement in the human genome

    OpenAIRE

    Lieber Michael R; Tsai Albert G

    2010-01-01

    Abstract Many human cancers are associated with characteristic chromosomal rearrangements, especially hematopoietic cancers such as leukemias and lymphomas. The first and most critical step in the rearrangement process is the induction of two DNA double-strand breaks (DSB). In all cases, at least one of the two DSBs is generated by a pathologic process, such as (1) randomly-positioned breaks due to ionizing radiation, free radical oxidative damage, or spontaneous hydrolysis; (2) breaks associ...

  11. Enlightening the contribution of the dark matter to the X chromosome inactivation process in mammals.

    Science.gov (United States)

    Casanova, Miguel; Liyakat Ali, Tharvesh Moideen; Rougeulle, Claire

    2016-08-01

    X-chromosome inactivation (XCI) in mammals represents an exceptional example of transcriptional co-regulation occurring at the level of an entire chromosome. XCI is considered as a means to compensate for gene dosage imbalance between sexes, yet the largest part of the chromosome is composed of repeated elements of different nature and origins. Here we consider XCI from a repeat point of view, interrogating the mechanisms for inactivating X chromosome-derived repeated sequences and discussing the contribution of repetitive elements to the silencing process itself and to its evolution. PMID:27174438

  12. Androgenetic development of X- and Y-chromosome bearing haploid rainbow trout embryos.

    Science.gov (United States)

    Michalik, Oliwia; Kowalski, Radosław K; Judycka, Sylwia; Rożyński, Rafał; Dobosz, Stefan; Ocalewicz, Konrad

    2016-09-01

    Haploid fish embryos are important in studies regarding role of the recessive traits during early ontogeny. In fish species with the male heterogamety, androgenetic haploid embryos might be also useful tool in studies concerning role of the sex chromosomes during an embryonic development. Morphologically differentiated X and Y chromosomes have been found in a limited number of fish species including rainbow trout (Oncorhynchus mykiss Walbaum 1792). To evaluate role of the sex chromosomes during rainbow trout embryonic development, survival of the androgenetic haploids in the presence of X or Y sex chromosomes has been examined. Androgenetic haploid rainbow trout were produced by fertilization of X-irradiated eggs with spermatozoa derived from the normal males (XY) and neomales, that is, sex-reversed females (XX) to produce X- and Y-bearing haploids, and all X-bearing haploids, respectively. Survival rates of the androgenetic progenies of normal males and neomales examined during embryogenesis and at hatching did not differ significantly. However, all haploids died within next few days after hatching. Cytogenetic analysis of the androgenetic embryos confirmed their haploid status. Moreover, apart from the intact paternal chromosomes, residues of the irradiated maternal chromosomes observed as chromosome fragments were identified in some of the haploids. Provided results suggested that rainbow trout X and Y chromosomes despite morphological and genetic differences are at the early stage of differentiation and still share genetic information responsible for the proper embryonic development. PMID:27125692

  13. The Effects of X Chromosome Loss on Neuroanatomical and Cognitive Phenotypes During Adolescence: a Multi-modal Structural MRI and Diffusion Tensor Imaging Study.

    Science.gov (United States)

    Xie, Sheng; Zhang, Zhixin; Zhao, Qiuling; Zhang, Jiaying; Zhong, Suyu; Bi, Yanchao; He, Yong; Pan, Hui; Gong, Gaolang

    2015-09-01

    The absence of all or part of one X chromosome in female humans causes Turner's syndrome (TS), providing a unique "knockout model" to investigate the role of the X chromosome in neuroanatomy and cognition. Previous studies have demonstrated TS-associated brain differences; however, it remains largely unknown 1) how the brain structures are affected by the type of X chromosome loss and 2) how X chromosome loss influences the brain-cognition relationship. Here, we addressed these by investigating gray matter morphology and white matter connectivity using a multimodal MRI dataset from 34 adolescent TS patients (13 mosaic and 21 nonmosaic) and 21 controls. Intriguingly, the 2 TS groups exhibited significant differences in surface area in the right angular gyrus and in white matter integrity of the left tapetum of corpus callosum; these data support a link between these brain phenotypes and the type of X chromosome loss in TS. We further showed that the X chromosome modulates specific brain-cognition relationships: thickness and surface area in multiple cortical regions are positively correlated with working-memory performance in controls but negatively in TS. These findings provide novel insights into the X chromosome effect on neuroanatomical and cognitive phenotypes and highlight the role of genetic factors in brain-cognition relationships. PMID:24770708

  14. Condensin-driven remodelling of X chromosome topology during dosage compensation

    Science.gov (United States)

    Crane, Emily; Bian, Qian; McCord, Rachel Patton; Lajoie, Bryan R.; Wheeler, Bayly S.; Ralston, Edward J.; Uzawa, Satoru; Dekker, Job; Meyer, Barbara J.

    2015-07-01

    The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (~1 Mb) resembling mammalian topologically associating domains (TADs). TADs on X chromosomes have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X chromosomes coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X chromosomes by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using

  15. Cloned fragment of human alphoid DNA: molecular marker of pericentromeric region of 18th chromosome

    International Nuclear Information System (INIS)

    Two recombinant plasmids were isolated from the collection of cloned human DNA fragments which contain sequences of alphoid DNA. It was shown using in situ hybridization on metaphase chromosomes that both cloned sequences hybridize preferentially with the region of pericentromeric heterochromatin of chromosome 18, less intensively with pericentric regions of chromosomes 2, 9, and 20, and are characterized by polymorphism according to number of copies in homologous chromosomes. These sequences may prove useful for cytogenetic analysis of chromosome reorganizations and study of polymorphism of regions of pericentromeric heterochromatin in human chromosomes

  16. Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, P.E.; Gosden, J.; Lawson, D. [Western General Hospital, Edinburgh (United Kingdom)] [and others

    1996-04-15

    Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize and spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.

  17. The human neurofilament gene (NEFL) is located on the short arm of chromosome 8.

    NARCIS (Netherlands)

    J. Hurst; D. Flavell (David); J-P. Julien (Jean-Pierre); D.N. Meijer (Dies); W. Mushynski (Walter); F.G. Grosveld (Frank)

    1987-01-01

    textabstractWe have localized the gene coding for the human neurofilament light chain (NEFL) to chromosome band 8p2.1 by Southern blotting of DNA from hybrid cell panels and in situ hybridization to metaphase chromosomes.

  18. Localization of monoamine oxidase A and B genes on the mouse X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Derry, J.M.J.; Barnard, E.A.; Barnard, P.J. (Medical Research Council Centre, Cambridge (England)); Lan, N.C.; Shih, J.C. (Univ. of Southern California School of Pharmacy, Los Angeles (USA))

    1989-10-25

    A 700bp Sacl fragment of the 2.1 kb human monoamine oxidase A(MAOA) cDNA were cloned in the EcoR1 site of pUC19, and a 2.5 kb cDNA of the human monoamine oxidase B gene(MAOB) was cloned in the EcoR1 site of pSP6T719. The MAOA probe recognizes a 14 kb S allele and two M alleles at 6.6 and 4.4 kb in Taq digests. The MAOB cDNA recognizes two S alleles at 6.6 and 4.8 kb and two M alleles at 9.0 and 5.1 kb in Taq digests. The M alleles are detected in the inbred Mus musculus (C57BL/10) strain, and the S alleles in the Mus spretus mouse. The mouse genes homologous for MAOA and MAOB have been mapped to the Cybb - Timp interval of the proximal mouse X chromosome by genetic breakpoint analysis. This predicts a human localization of Xp21.1-p11.21 for both genes, and is in agreement with published human mapping data showing conservation of gene order. Segregation of the restriction fragments was followed in 60 recombinant backcross progeny, resulting from an interspecific backcross between Mus musculus x Mus spretus mice. 6 animals in this pedigree recombine in the Cybb - Timp interval and both Maoa and Maob co-segregate with Timp in 5 of 6 recombinant animals. This suggests Maoa and Maob lie close together on the mouse X-chromosome and centromeric to Timp.

  19. The X Chromosome of Hemipteran Insects: Conservation, Dosage Compensation and Sex-Biased Expression.

    Science.gov (United States)

    Pal, Arka; Vicoso, Beatriz

    2015-12-01

    Insects of the order Hemiptera (true bugs) use a wide range of mechanisms of sex determination, including genetic sex determination, paternal genome elimination, and haplodiploidy. Genetic sex determination, the prevalent mode, is generally controlled by a pair of XY sex chromosomes or by an XX/X0 system, but different configurations that include additional sex chromosomes are also present. Although this diversity of sex determining systems has been extensively studied at the cytogenetic level, only the X chromosome of the model pea aphid Acyrthosiphon pisum has been analyzed at the genomic level, and little is known about X chromosome biology in the rest of the order.In this study, we take advantage of published DNA- and RNA-seq data from three additional Hemiptera species to perform a comparative analysis of the gene content and expression of the X chromosome throughout this clade. We find that, despite showing evidence of dosage compensation, the X chromosomes of these species show female-biased expression, and a deficit of male-biased genes, in direct contrast to the pea aphid X. We further detect an excess of shared gene content between these very distant species, suggesting that despite the diversity of sex determining systems, the same chromosomal element is used as the X throughout a large portion of the order. PMID:26556591

  20. Distribution of X-ray-induced chromosome breakpoints in Down syndrome lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Shafik, H.M.; Au, W.W.; Whorton, E.B. Jr.; Legator, M.S. (Univ. of Texas Medical Branch, Galveston (USA))

    1990-01-01

    Down syndrome (DS) individuals are known to be predisposed to develop leukemia and their lymphocytes are highly sensitive to the induction of chromosome aberrations by X-rays. A study was conducted to identify the chromosome breakpoints and to evaluate whether site specificity for chromosome breakage and rearrangement may exist which may explain the predisposition phenomenon. DS lymphocytes at the G1 phase of the cell cycle were irradiated with 300, 450, and 600 rad of X-rays. Cells were harvested after 3 days in culture and 193 G-banded karyotypes were analyzed to identify the induced chromosome abnormalities. Out of 273 breakpoints identified, 122 were involved in the formation of stable chromosome rearrangements and 151 in the formation of unstable abnormalities. The Poisson analysis of these breakpoints demonstrated that 16 chromosome bands located in chromosomes 1, 3, 7, 12, 17, 19 and X were preferentially involved in breakage and rearrangement (P less than 0.05). These 16 bands are also found to be locations of cancer breakpoints, oncogenes, or fragile sites. Many abnormal cells were observed to carry stable chromosome rearrangements only. Therefore, these cells are presumed to be compatible with survival and to be initiated in the transformation process. We propose that similar stable and site-specific chromosome rearrangements may exist in proliferating cells in DS individuals after exposure to clastogens and that this abnormality predisposes them to develop leukemia.

  1. Distribution of X-ray-induced chromosome breakpoints in Down syndrome lymphocytes

    International Nuclear Information System (INIS)

    Down syndrome (DS) individuals are known to be predisposed to develop leukemia and their lymphocytes are highly sensitive to the induction of chromosome aberrations by X-rays. A study was conducted to identify the chromosome breakpoints and to evaluate whether site specificity for chromosome breakage and rearrangement may exist which may explain the predisposition phenomenon. DS lymphocytes at the G1 phase of the cell cycle were irradiated with 300, 450, and 600 rad of X-rays. Cells were harvested after 3 days in culture and 193 G-banded karyotypes were analyzed to identify the induced chromosome abnormalities. Out of 273 breakpoints identified, 122 were involved in the formation of stable chromosome rearrangements and 151 in the formation of unstable abnormalities. The Poisson analysis of these breakpoints demonstrated that 16 chromosome bands located in chromosomes 1, 3, 7, 12, 17, 19 and X were preferentially involved in breakage and rearrangement (P less than 0.05). These 16 bands are also found to be locations of cancer breakpoints, oncogenes, or fragile sites. Many abnormal cells were observed to carry stable chromosome rearrangements only. Therefore, these cells are presumed to be compatible with survival and to be initiated in the transformation process. We propose that similar stable and site-specific chromosome rearrangements may exist in proliferating cells in DS individuals after exposure to clastogens and that this abnormality predisposes them to develop leukemia

  2. Should the markers on X chromosome be used for genomic prediction?

    DEFF Research Database (Denmark)

    Su, Guosheng; Guldbrandtsen, Bernt; Aamand, Gert Pedersen;

    2013-01-01

    traits based on 54K markerdata, imputed 54K for test animals, and imputed 54K for half of referenceanimals. GBLUP models with or without residual polygenic effect were used forgenomic prediction. For all three data sets, genomic prediction using allmarkers gave slightly higher reliability than prediction...... excluding the X chromosome.Averaged over 15 traits, the gains in reliability from the X chromosome rangedfrom 0.3% to 0.5% points among the three data sets and models. Using a model with a G-matrix accounting for sex-linkedrelationship appropriately or a model which divided genomic breeding value intoan...... autosomal component and an X chromosomal component did not led to betterprediction based on the present data where all animals were bulls. A modelincluding polygenic effect did not recover the loss of prediction accuracy dueto exclusion of the X chromosome. It is recommended using markers on the X...

  3. Chromosome territories, X;Y translocation and Premature Ovarian Failure: is there a relationship?

    Directory of Open Access Journals (Sweden)

    Betri Enrico

    2009-09-01

    Full Text Available Abstract Background Premature ovarian failure (POF is a secondary hypergonadotrophic amenorrhea occurring before the age of 40 and affecting 1-3% of females. Chromosome anomalies account for 6-8% of POF cases, but only few cases are associated with translocations involving X and Y chromosomes. This study shows the cytogenetic and molecular analysis of a POF patient came to our attention as she developed a left ovary choriocarcinoma at the age of 10 and at 14 years of age she presented secondary amenorrhea with elevated levels of gonadotropins. Results Breakpoint position on X and Y chromosomes was investigated using Fluorescent In Situ Hybridisation (FISH with a panel of specific BAC probes, microsatellite analysis and evaluation of copy number changes and loss of heterozigosity by Affymetrix® GeneChip platform (Santa Clara, CA, USA. Patient's karyotype resulted 46, X, der(Yt(X;Y(q13.1;q11.223. X inactivation study was assessed by RBA banding and showed preferential inactivation of derivative chromosome. The reciprocal spatial disposition of sexual chromosome territories was investigated using whole chromosome painting and centromeres probes: patient's results didn't show a significant difference in comparison to normal controls. Conclusion The peculiar clinical case come to our attention highlighted the complexity of POF aetiology and of the translocation event, even if our results seem to exclude any effect on nuclear organisation. POF phenotype could be partially explained by skewed X chromosome inactivation that influences gene expression.

  4. X-chromosomal inactivation directly influences the phenotypic manifestation of X-linked protoporphyria.

    Science.gov (United States)

    Brancaleoni, V; Balwani, M; Granata, F; Graziadei, G; Missineo, P; Fiorentino, V; Fustinoni, S; Cappellini, M D; Naik, H; Desnick, R J; Di Pierro, E

    2016-01-01

    X-linked protoporphyria (XLP), a rare erythropoietic porphyria, results from terminal exon gain-of-function mutations in the ALAS2 gene causing increased ALAS2 activity and markedly increased erythrocyte protoporphyrin levels. Patients present with severe cutaneous photosensitivity and may develop liver dysfunction. XLP was originally reported as X-linked dominant with 100% penetrance in males and females. We characterized 11 heterozygous females from six unrelated XLP families and show markedly varying phenotypic and biochemical heterogeneity, reflecting the degree of X-chromosomal inactivation of the mutant gene. ALAS2 sequencing identified the specific mutation and confirmed heterozygosity among the females. Clinical history, plasma and erythrocyte protoporphyrin levels were determined. Methylation assays of the androgen receptor and zinc-finger MYM type 3 short tandem repeat polymorphisms estimated each heterozygotes X-chromosomal inactivation pattern. Heterozygotes with equal or increased skewing, favoring expression of the wild-type allele had no clinical symptoms and only slightly increased erythrocyte protoporphyrin concentrations and/or frequency of protoporphyrin-containing peripheral blood fluorocytes. When the wild-type allele was preferentially inactivated, heterozygous females manifested the disease phenotype and had both higher erythrocyte protoporphyrin levels and circulating fluorocytes. These findings confirm that the previous dominant classification of XLP is inappropriate and genetically misleading, as the disorder is more appropriately designated XLP. PMID:25615817

  5. Chromosome mapping of the GD3 synthase gene (SIAT8) in human and mouse

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yoichi; Saito, Toshiyuki [National Inst. of Radiological Sciences, Chiba (Japan); Nara, Kiyomitsu [Tokyo Metropolitan Inst. of Medical Science (Japan)] [and others

    1996-02-15

    This article reports on the genetic mapping of the human and mouse GD3 synthase gene (SIAT8) using fluorescence in situ hybridization and interspecific backcross analysis. The human gene was localized to human chromosome 12p12.1-p11.2; the mouse homologue was localized to mouse chromosome 6, which has been shown to be syntenic with the short arm of human chromosome 12, suggesting a common evolution. 16 refs., 1 fig.

  6. Chromosome region-specific libraries for human genome analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Fa-Ten.

    1992-08-01

    During the grant period progress has been made in the successful demonstration of regional mapping of microclones derived from microdissection libraries; successful demonstration of the feasibility of converting microclones with short inserts into yeast artificial chromosome clones with very large inserts for high resolution physical mapping of the dissected region; Successful demonstration of the usefulness of region-specific microclones to isolate region-specific cDNA clones as candidate genes to facilitate search for the crucial genes underlying genetic diseases assigned to the dissected region; and the successful construction of four region-specific microdissection libraries for human chromosome 2, including 2q35-q37, 2q33-q35, 2p23-p25 and 2p2l-p23. The 2q35-q37 library has been characterized in detail. The characterization of the other three libraries is in progress. These region-specific microdissection libraries and the unique sequence microclones derived from the libraries will be valuable resources for investigators engaged in high resolution physical mapping and isolation of disease-related genes residing in these chromosomal regions.

  7. Radiation-induced chromosome damage in human lymphocytes

    International Nuclear Information System (INIS)

    Analysis for chromosome aberrations in human peripheral blood lymphocytes has been developed as an indicator of dose from ionising radiation. An outline is given of the mechanism of production of aberrations, the technique for their analysis and the dose-effect relationships for various types of radiation. During the past ten years the National Radiological Protection Board has developed a service for the UK in which estimates of dose from chromosomes aberration analysis are made on people known or suspected of being accidentally over-exposed. This service can provide estimates where no physical dosemeter was worn and is frequently able to resolve anomalous or disputed data from routine film badges. Several problems in the interpretation of chromosome aberration yields are reviewed. These include the effects of partial body irradiation and the response to variations in dose rate and the intermittent nature of some exposures. The dosimetry service is supported by a research programme which includes surveys of groups of patients irradiated for medical purposes. Two surveys are described. In the first, lymphocyte aberrations were examined in rheumatoid arthritis patients receiving intra-articular injections of colloidal radiogold or radioyttrium. A proportion of the nuclide leaked from the joint into the regional lymphatic system. In the second survey a comparison was made between the cytogenetic and physical estimates of whole body dose in patients receiving iodine 131 for thyroid carcinoma. (author)

  8. Human Chromosome 21: Mapping of the chromosomes and cloning of cDNAs

    Energy Technology Data Exchange (ETDEWEB)

    Antonarakis, S.E.

    1991-09-01

    The objective of the research funded by DOE grant DE-FG02-89ER60857 from 6/15/89 to 8/31/91 was to contribute to the physical mapping of human chromosome 21 (HC21) by cloning large fragments of DNA into Yeast Artificial Chromosomes (YACs) and identify YACs that map on HC21. A total of 54 sequence tagged sites (STS) have been developed and mapped in our laboratory to HC21 and can be used as initial reference points for YAC identification and construction of overlapping clones. A small YAC library was constructed which is HC21 specific. DNA from somatic cell hybrid WAV17 or from flow-sorted HC21 was partially digested with EcoRI, ligated into vectors PJS97, PJS98, and YACs have been obtained with average size insert of more than 300 kb. This library has been deposited in D. Patterson's lab for the Joint YAC screening effort. Additional YAC libraries from ICI Pharmaceuticals or from Los Alamos National Laboratories have been screened with several STS and positive YACs have been identified. Work in progress includes screening of YAC libraries in order to construct overlapping clones, characterization of the cloning ends of YACs, characterization of additional STS and cloning of HC21 specific cDNAs. 15 refs., 2 figs., 5 tabs.

  9. Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure

    International Nuclear Information System (INIS)

    Highlights: • Radiation induced formation and transmission of chromosomal aberrations were assessed. • Cytogenetic analysis was performed in human CD34+ HSPC by mFISH. • We report transmission of stable aberrations in irradiated, clonally expanded HSPC. • Unstable aberrations in clonally expanded HSPC occur independently of irradiation. • Carbon ions and X-rays bear a similar risk for propagation of cytogenetic changes. - Abstract: In radiation-induced acute myeloid leukemia (rAML), clonal chromosomal abnormalities are often observed in bone marrow cells of patients, suggesting that their formation is crucial in the development of the disease. Since rAML is considered to originate from hematopoietic stem and progenitor cells (HSPC), we investigated the frequency and spectrum of radiation-induced chromosomal abnormalities in human CD34+ cells. We then measured stable chromosomal abnormalities, a possible biomarker of leukemia risk, in clonally expanded cell populations which were grown for 14 days in a 3D-matrix (CFU-assay). We compared two radiation qualities used in radiotherapy, sparsely ionizing X-rays and densely ionizing carbon ions (29 and 60–85 keV/μm, doses between 0.5 and 4 Gy). Only a negligible number of de novo arising, unstable aberrations (≤0.05 aberrations/cell, 97% breaks) were measured in the descendants of irradiated HSPC. However, stable aberrations were detected in colonies formed by irradiated HSPC. All cells of the affected colonies exhibited one or more identical aberrations, indicating their clonal origin. The majority of the clonal rearrangements (92%) were simple exchanges such as translocations (77%) and pericentric inversions (15%), which are known to contribute to the development of rAML. Carbon ions were more efficient in inducing cell killing (maximum of ∼30–35% apoptotic cells for 2 Gy carbon ions compared to ∼25% for X-rays) and chromosomal aberrations in the first cell-cycle after exposure (∼70% and ∼40

  10. Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Daniela, E-mail: d.kraft@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Ritter, Sylvia, E-mail: s.ritter@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Durante, Marco, E-mail: m.durante@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Institute for Condensed Matter Physics, Physics Department, Technical University Darmstadt, Hochschulstraße 6-8, 64289 Darmstadt (Germany); Seifried, Erhard, E-mail: e.seifried@blutspende.de [Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Fournier, Claudia, E-mail: c.fournier@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Tonn, Torsten, E-mail: t.tonn@blutspende.de [Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Technische Universität Dresden, Med. Fakultät Carl Gustav Carus, Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Blasewitzer Straße 68/70, 01307 Dresden (Germany)

    2015-07-15

    Highlights: • Radiation induced formation and transmission of chromosomal aberrations were assessed. • Cytogenetic analysis was performed in human CD34+ HSPC by mFISH. • We report transmission of stable aberrations in irradiated, clonally expanded HSPC. • Unstable aberrations in clonally expanded HSPC occur independently of irradiation. • Carbon ions and X-rays bear a similar risk for propagation of cytogenetic changes. - Abstract: In radiation-induced acute myeloid leukemia (rAML), clonal chromosomal abnormalities are often observed in bone marrow cells of patients, suggesting that their formation is crucial in the development of the disease. Since rAML is considered to originate from hematopoietic stem and progenitor cells (HSPC), we investigated the frequency and spectrum of radiation-induced chromosomal abnormalities in human CD34{sup +} cells. We then measured stable chromosomal abnormalities, a possible biomarker of leukemia risk, in clonally expanded cell populations which were grown for 14 days in a 3D-matrix (CFU-assay). We compared two radiation qualities used in radiotherapy, sparsely ionizing X-rays and densely ionizing carbon ions (29 and 60–85 keV/μm, doses between 0.5 and 4 Gy). Only a negligible number of de novo arising, unstable aberrations (≤0.05 aberrations/cell, 97% breaks) were measured in the descendants of irradiated HSPC. However, stable aberrations were detected in colonies formed by irradiated HSPC. All cells of the affected colonies exhibited one or more identical aberrations, indicating their clonal origin. The majority of the clonal rearrangements (92%) were simple exchanges such as translocations (77%) and pericentric inversions (15%), which are known to contribute to the development of rAML. Carbon ions were more efficient in inducing cell killing (maximum of ∼30–35% apoptotic cells for 2 Gy carbon ions compared to ∼25% for X-rays) and chromosomal aberrations in the first cell-cycle after exposure (∼70% and

  11. X-Ray Crystal Structure of Bone Marrow Kinase in the X Chromosome: A Tec Family Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Muckelbauer, Jodi; Sack, John S.; Ahmed, Nazia; Burke, James; Chang, ChiehYing Y.; Gao, Mian; Tino, Joseph; Xie, Dianlin; Tebben, Andrew J. (BMS)

    2012-06-27

    Bone marrow kinase in the X chromosome, a member of the Tec family of tyrosine kinases, plays a role in both monocyte/macrophage trafficking as well as cytokine secretion. Although the structures of Tec family kinases Bruton's tyrosine kinase and IL-2-inducible T-cell kinase are known, the crystal structures of other Tec family kinases have remained elusive. We report the X-ray crystal structures of bone marrow kinase in the X chromosome in complex with dasatinib at 2.4 {angstrom} resolution and PP2 at 1.9 {angstrom} resolution. The bone marrow kinase in the X chromosome structures reveal a typical kinase protein fold; with well-ordered protein conformation that includes an open/extended activation loop and a stabilized DFG-motif rendering the kinase in an inactive conformation. Dasatinib and PP2 bind to bone marrow kinase in the X chromosome in the ATP binding pocket and display similar binding modes to that observed in other Tec and Src protein kinases. The bone marrow kinase in the X chromosome structures identify conformational elements of the DFG-motif that could potentially be utilized to design potent and/or selective bone marrow kinase in the X chromosome inhibitors.

  12. Transillumination spatially modulated illumination microscopy for human chromosome imaging

    Science.gov (United States)

    Pitris, Costas; Heracleous, Peter; Patsalis, Philippos

    2005-03-01

    Human chromosome analysis is an essential task in cytogenetics, especially in prenatal screening, genetic syndrome diagnosis, cancer pathology research and mutagen dosimetry. Chromosomal analysis begins with the creation of a karyotype, which is a layout of chromosome images organized by decreasing size in pairs. Both manual and automatic classification of chromosomes are limited by the resolution of the microscope and imaging system used. One way to improve the results of classification and even detect subtleties now remaining undetected, is to enhance the resolution of the images. It is possible to achieve lateral resolution beyond the classical limit, by using spatially modulated illumination (SMI) in a wide-field, non-confocal microscope. In this case, the sample is illuminated with spatially modulated light, which makes normally inaccessible high-resolution information visible in the observed image by shifting higher frequencies within the OTF limits of the microscope. Although, SMI microscopes have been reported in the past, this manuscript reports the development of a transillumination microscope for opaque, non-fluorescent samples. The illumination path consisted of a light source illuminating a ruled grating which was subsequently imaged on the sample. The grating was mounted on a rotating and translating stage so that the magnification and rotation of the pattern could be adjusted. The imaging lens was a 1.25 NA oil immersion objective. Test samples showed resolution improvement, as judged from a comparison of the experimentally obtained FWHM. Further studies using smaller fringe distance or laser interference pattern illumination will be evaluated to further optimize the SMI results.

  13. Chromosomally integrated human herpesvirus 6: questions and answers

    OpenAIRE

    Pellett, Philip E.; Ablashi, Dharam V.; Ambros, Peter F.; Agut, Henri; Caserta, Mary T.; Descamps, Vincent; Flamand, Louis; Gautheret-Dejean, Agnès; Hall, Caroline B.; Kamble, Rammurti T.; Kuehl, Uwe; Lassner, Dirk; Lautenschlager, Irmeli; Loomis, Kristin S.; Luppi, Mario

    2011-01-01

    SUMMARY Chromosomally integrated human herpesvirus 6 (ciHHV-6) is a condition in which the complete HHV-6 genome is integrated into the host germ line genome and is vertically transmitted in a Mendelian manner. The condition is found in less than 1% of controls in the USA and UK, but has been found at a somewhat higher prevalence in transplant recipients and other patient populations in several small studies. HHV-6 levels in whole blood that exceed 5.5 log10 copies/ml are strongly suggestive ...

  14. Widespread over-expression of the X chromosome in sterile F₁hybrid mice.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Good

    2010-09-01

    Full Text Available The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F₁ males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F₁ hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility.

  15. Function and evolution of the long noncoding RNA circuitry orchestrating X-chromosome inactivation in mammals.

    Science.gov (United States)

    Furlan, Giulia; Rougeulle, Claire

    2016-09-01

    X-chromosome inactivation (XCI) is a chromosome-wide regulatory process that ensures dosage compensation for X-linked genes in Theria. XCI is established during early embryogenesis and is developmentally regulated. Different XCI strategies exist in mammalian infraclasses and the regulation of this process varies also among closely related species. In Eutheria, initiation of XCI is orchestrated by a cis-acting locus, the X-inactivation center (Xic), which is particularly enriched in genes producing long noncoding RNAs (lncRNAs). Among these, Xist generates a master transcript that coats and propagates along the future inactive X-chromosome in cis, establishing X-chromosome wide transcriptional repression through interaction with several protein partners. Other lncRNAs also participate to the regulation of X-inactivation but the extent to which their function has been maintained in evolution is still poorly understood. In Metatheria, Xist is not conserved, but another, evolutionary independent lncRNA with similar properties, Rsx, has been identified, suggesting that lncRNA-mediated XCI represents an evolutionary advantage. Here, we review current knowledge on the interplay of X chromosome-encoded lncRNAs in ensuring proper establishment and maintenance of chromosome-wide silencing, and discuss the evolutionary implications of the emergence of species-specific lncRNAs in the control of XCI within Theria. WIREs RNA 2016, 7:702-722. doi: 10.1002/wrna.1359 For further resources related to this article, please visit the WIREs website. PMID:27173581

  16. DNMT3L is a regulator of X chromosome compaction and post-meiotic gene transcription.

    Directory of Open Access Journals (Sweden)

    Natasha M Zamudio

    Full Text Available Previous studies on the epigenetic regulator DNA methyltransferase 3-Like (DNMT3L, have demonstrated it is an essential regulator of paternal imprinting and early male meiosis. Dnmt3L is also a paternal effect gene, i.e., wild type offspring of heterozygous mutant sires display abnormal phenotypes suggesting the inheritance of aberrant epigenetic marks on the paternal chromosomes. In order to reveal the mechanisms underlying these paternal effects, we have assessed X chromosome meiotic compaction, XY chromosome aneuploidy rates and global transcription in meiotic and haploid germ cells from male mice heterozygous for Dnmt3L. XY bodies from Dnmt3L heterozygous males were significantly longer than those from wild types, and were associated with a three-fold increase in XY bearing sperm. Loss of a Dnmt3L allele resulted in deregulated expression of a large number of both X-linked and autosomal genes within meiotic cells, but more prominently in haploid germ cells. Data demonstrate that similar to embryonic stem cells, DNMT3L is involved in an auto-regulatory loop in germ cells wherein the loss of a Dnmt3L allele resulted in increased transcription from the remaining wild type allele. In contrast, however, within round spermatids, this auto-regulatory loop incorporated the alternative non-coding alternative transcripts. Consistent with the mRNA data, we have localized DNMT3L within spermatids and sperm and shown that the loss of a Dnmt3L allele results in a decreased DNMT3L content within sperm. These data demonstrate previously unrecognised roles for DNMT3L in late meiosis and in the transcriptional regulation of meiotic and post-meiotic germ cells. These data provide a potential mechanism for some cases of human Klinefelter's and Turner's syndromes.

  17. Sex-biased gene expression and evolution of the x chromosome in nematodes.

    Science.gov (United States)

    Albritton, Sarah Elizabeth; Kranz, Anna-Lena; Rao, Prashant; Kramer, Maxwell; Dieterich, Christoph; Ercan, Sevinç

    2014-07-01

    Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno's hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive. PMID:24793291

  18. The Status of Dosage Compensation in the Multiple X Chromosomes of the Platypus

    OpenAIRE

    Deakin, Janine E; Hore, Timothy A; Koina, Edda; Marshall Graves, Jennifer A.

    2008-01-01

    Dosage compensation has been thought to be a ubiquitous property of sex chromosomes that are represented differently in males and females. The expression of most X-borne genes is equalized between XX females and XY males in therian mammals (marsupials and “placentals”) by inactivating one X chromosome in female somatic cells. However, compensation seems not to be strictly required to equalize the expression of most Z-borne genes between ZZ male and ZW female birds. Whether dosage compensation...

  19. The large-X effect in plants: increased species divergence and reduced gene flow on the Silene X-chromosome.

    Science.gov (United States)

    Hu, Xin-Sheng; Filatov, Dmitry A

    2016-06-01

    The disproportionately large involvement of the X-chromosome in the isolation of closely related species (the large-X effect) has been reported for many animals, where X-linked genes are mostly hemizygous in the heterogametic sex. The expression of deleterious recessive mutations is thought to drive the frequent involvement of the X-chromosome in hybrid sterility, as well as to reduce interspecific gene flow for X-linked genes. Here, we evaluate the role of the X-chromosome in the speciation of two closely related plant species - the white and red campions (Silene latifolia and S. dioica) - that hybridize widely across Europe. The two species evolved separate sexes and sex chromosomes relatively recently (~10(7)  years), and unlike most animal species, most X-linked genes have intact Y-linked homologs. We demonstrate that the X-linked genes show a very small and insignificant amount of interspecific gene flow, while gene flow involving autosomal loci is significant and sufficient to homogenize the gene pools of the two species. These findings are consistent with the hypothesis of the large-X effect in Silene and comprise the first report of this effect in plants. Nonhemizygosity of many X-linked genes in Silene males indicates that exposure of recessive mutations to selection may not be essential for the occurrence of the large-X effect. Several possible causes of the large-X effect in Silene are discussed. PMID:26479725

  20. Inter- and Intraspecies Phylogenetic Analyses Reveal Extensive X–Y Gene Conversion in the Evolution of Gametologous Sequences of Human Sex Chromosomes

    OpenAIRE

    Trombetta, Beniamino; Sellitto, Daniele; Scozzari, Rosaria; Cruciani, Fulvio

    2014-01-01

    It has long been believed that the male-specific region of the human Y chromosome (MSY) is genetically independent from the X chromosome. This idea has been recently dismissed due to the discovery that X-Y gametologous gene conversion may occur. However, the pervasiveness of this molecular process in the evolution of sex chromosomes has yet to be exhaustively analyzed. In this study, we explored how pervasive X-Y gene conversion has been during the evolution of the youngest stratum of the hum...

  1. Refining the genetic portrait of Portuguese Roma through X-chromosomal markers

    DEFF Research Database (Denmark)

    Pereira, Vania; Gusmão, Leonor; Valente, Cristina;

    2012-01-01

    non-Gypsies. When the pattern of differentiation on the X chromosome was compared with that of autosomes, there was evidence for asymmetries in female and male effective population sizes during the admixture between Roma and non-Roma. This result supplements previous data provided by mtDNA and the Y...... chromosome, underlining the importance of using combined information from the X chromosome and autosomes to dissect patterns of genetic diversity. Following the out-of-India dispersion, the Roma acquired a complex genetic pattern that was influenced by drift and introgression with surrounding populations...

  2. Chromosomal location of the human gene for DNA polymerase β

    International Nuclear Information System (INIS)

    Inhibition studies indicate that DNA polymerase β has a synthetic role in DNA repair after exposure of mammalian cells to some types of DNA-damaging agents. The primary structure of the enzyme is highly conserved in vertebrates, and nearly full-length cDNAs for the enzyme were recently cloned from mammalian cDNA libraries. Southern blot analysis of DNA from a panel of human-rodent somatic cell hybrids, using portions of the cDNA as probe, indicates that the gene for human DNA polymerase β is single copy and located on the short arm or proximal long arm of chromosome 8 (8pter-8q22). A restriction fragment length polymorphism (RFLP) was detected in normal individuals by using a probe from the 5' end of the cDNA, and this RFLP probably is due to an insertion or duplication of DNA in 20-25% of the population. This restriction site can be used as one marker for chromosome 8 genetic linkage studies and for family studies of traits potentially involving this DNA repair gene

  3. Mean expression of the X chromosome is associated with neuronal density

    Directory of Open Access Journals (Sweden)

    James Thomas Swingland

    2012-11-01

    Full Text Available Neurodegenerative diseases are characterised by neuronal loss. Neuronal loss causes a varying density of neurons across samples which confounds results from gene expression studies. Chromosome X is known to be specifically important in brain. We hypothesised the existence of a chromosomal signature of gene expression associated with the X-chromosome for neurological conditions not normally associated with that chromosome. The hypothesis was investigated using microarray datasets from studies on Parkinson's disease, Alzheimer's disease and Huntington's disease. Data were analysed using Chromowave, an analytical tool for detecting spatially extended expression changes across chromosomes. To examine associations with neuronal density, expressions from a set of neuron specific genes were extracted. The association between these genes and the expression patterns extracted by Chromowave was then analyzed. We observed an extended pattern of low expression of ChrX consistent in all the neurodegenerative disease brain datasets. There was a strong correlation between mean ChrX expression and the pattern extracted from the autosomal neuronal specific genes, but no correlation with mean autosomal expression. No chromosomal patterns associated with the neuron specific genes were found on other chromosomes. The chromosomal expression pattern was not present in datasets from blood cells. The ChrX:Autosome expression ratio was also higher in neuronal cells than in tissues with a mix of cell types.The results suggest that a loss of neurons manifests in gene expression experiments primarily as a reduction in mean expression of genes along ChrX. The most likely explanation for this finding relates to the documented general up-regulation of ChrX in brain tissue which, this work suggests, occurs primarily in neurons. The purpose and mechanisms behind this cell specific higher expression warrant further research, which may also help elucidate connectio

  4. The mouse and human excitatory amino acid transporter gene (EAAT1) maps to mouse chromosome 15 and a region of syntenic homology on human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, M.A.; Arriza, J.L.; Amara, S.G. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1994-08-01

    The gene for human excitatory amino acid transporter (EAAT1) was localized to the distal region of human chromosome 5p13 by in situ hybridization of metaphase chromosome spreads. Interspecific backcross analysis identified the mouse Eaat1 locus in a region of 5p13 homology on mouse chromosome 15. Markers that are linked with EAAT1 on both human and mouse chromosomes include the receptors for leukemia inhibitory factor, interleukin-7, and prolactin. The Eaat1 locus appears not be linked to the epilepsy mutant stg locus, which is also on chromosome 15. The EAAT1 locus is located in a region of 5p deletions that have been associated with mental retardation and microcephaly. 22 refs., 2 figs.

  5. Structure and chromosomal localization of the human renal kallikrein gene

    International Nuclear Information System (INIS)

    Glandular kallikreins are a family of proteases encoded by a variable number of genes in different mammalian species. In all species examined, however, one particular kallikrein is functionally conserved in its capacity to release the vasoactive peptide, Lys-bradykinin, from low molecular weight kininogen. This kallikrein is found in the kidney, pancreas, and salivary gland, showing a unique pattern of tissue-specific expression relative to other members of the family. The authors have isolated a genomic clone carrying the human renal kallikrein gene and compared the nucleotide sequence of its promoter region with those of the mouse renal kallikrein gene and another mouse kallikrein gene expressed in a distinct cell type. They find four sequence elements conserved between renal kallikrein genes from the two species. They have also shown that the human gene is localized to 19q13, a position analogous to that of the kallikrein gene family on mouse chromosome 7

  6. The evolution of X chromosome inactivation in mammals: the demise of Ohno's hypothesis?

    Science.gov (United States)

    Pessia, Eugénie; Engelstädter, Jan; Marais, Gabriel A B

    2014-04-01

    Ohno's hypothesis states that dosage compensation in mammals evolved in two steps: a twofold hyperactivation of the X chromosome in both sexes to compensate for gene losses on the Y chromosome, and silencing of one X (X-chromosome inactivation, XCI) in females to restore optimal dosage. Recent tests of this hypothesis have returned contradictory results. In this review, we explain this ongoing controversy and argue that a novel view on dosage compensation evolution in mammals is starting to emerge. Ohno's hypothesis may be true for a few, dosage-sensitive genes only. If so few genes are compensated, then why has XCI evolved as a chromosome-wide mechanism? This and several other questions raised by the new data in mammals are discussed, and future research directions are proposed. PMID:24173285

  7. Unique Case Reports Associated with Ovarian Failure: Necessity of Two Intact X Chromosomes

    Directory of Open Access Journals (Sweden)

    Lakshmi Rao Kandukuri

    2012-01-01

    Full Text Available Premature ovarian failure is defined as the loss of functional follicles below the age of 40 years and the incidence of this abnormality is 0.1% among the 30–40 years age group. Unexplained POF is clinically recognized as amenorrhoea (>6 months with low level of oestrogen and raised level of Luteinizing Hormone (LH and Follicle Stimulating Hormone (FSH > 20 IU/l occurring before the age of 40. It has been studied earlier that chromosomal defects can impair ovarian development and its function. Since there is paucity of data on chromosomal defects in Indian women, an attempt is made to carry out cytogenetic evaluation in patients with ovarian failure. Cytogenetic analysis of women with ovarian defects revealed the chromosome abnormalities to be associated with 14% of the cases analyzed. Interestingly, majority of the abnormalities involved the X-chromosome and we report two unique abnormalities, (46,XXdel(Xq21-22 and q28 and (mos,45XO/46,X+ringX involving X chromosome in association with ovarian failure. This study revealed novel X chromosome abnormalities associated with ovarian defects and these observations would be helpful in genetic counseling and apart from, infertility clinics using the information to decide suitable strategies to help such patients.

  8. "Mitochondrial Eve", "Y Chromosome Adam", testosterone, and human evolution.

    Science.gov (United States)

    Howard, James Michael

    2002-01-01

    I suggest primate evolution began as a consequence of increased testosterone in males which increased aggression and sexuality, therefore, reproduction and success. With time, negative effects of excessive testosterone reduced spermatogenesis and started a decline of the group. Approximately 30-40 million years ago, the gene DAZ (Deleted in AZoospermia) appeared on the Y chromosome, increased spermatogenesis, and rescued the early primates from extinction. (Note: DAZ is considered by some to specifically, positively affect spermatogenesis; others suggest it has no effect on spermatogenesis.) Hominid evolution continued with increasing testosterone. The advent of increased testosterone in females of Homo erectus (or Homo ergaster) increased the female-to-male body size ratio, and eventually produced another era of excessive testosterone. Excessive testosterone caused a reduction in population size (bottleneck) that produced the "Mitochondrial Eve" (ME) mechanism. (Only certain females continued during the bottleneck to transmit their mitochondrial DNA.) That is, the ME mechanism culminated, again, in excessive testosterone and reduced spermatogenesis in the hominid line. Approximately 50,000 to 200,000 years ago, a "doubling" of the DAZ gene occurred on the Y chromosome in hominid males which rescued the hominid line with increased spermatogenesis in certain males. This produced the "Y Chromosome Adam" event. The doubling of DAZ allowed further increases in testosterone in hominids that resulted in the increased size and development of the brain. Modern humans periodically fluctuate between the positive and negative consequences of increased levels of testosterone, currently identifiable as the secular trend, increased infections, and reduced spermatogenesis. PMID:12449688

  9. Amenorréia e anormalidades do cromossomo X Amenorrhea and X chromosome abnormalities

    Directory of Open Access Journals (Sweden)

    Rafael Fabiano Machado Rosa

    2008-10-01

    Full Text Available OBJETIVO: correlacionar as manifestações clínicas de pacientes com amenorréia e anormalidades do cromossomo X. MÉTODOS: realizou-se uma análise retrospectiva dos achados clínicos e laboratoriais das pacientes com amenorréia e anormalidades do cromossomo X, atendidas entre janeiro de 1975 e novembro de 2007. Suas medidas antropométricas foram avaliadas através de tabelas de crescimento padrão, sendo que, quando presentes, dismorfias menores e maiores foram anotadas. O estudo dos cromossomos foi realizado através do cariótipo com bandamento GTG. RESULTADOS: do total de 141 pacientes com amenorréia, 16% apresentavam anormalidades numéricas e 13% estruturais do cromossomo X. Destas pacientes com anormalidade do X (n=41, 35 possuíam descrição clínica completa. Todas elas apresentavam hipogonadismo hipergonadotrófico. Amenorréia primária foi observada em 24 pacientes, das quais 91,7% com fenótipo de síndrome de Turner. Com exceção de um caso com deleção Xq22-q28, todas as demais pacientes com este fenótipo apresentavam alterações envolvendo Xp (uma com uma linhagem 46,XY associada. Os dois casos restantes com apenas amenorréia primária possuíam deleções proximais de Xq. Entre as 11 pacientes com amenorréia secundária, 54,5% apresentavam fenótipo de Turner (todas com monossomia do X isolada ou em mosaico. Entre aquelas com fenótipo de falência ovariana isolada observaram-se somente deleções Xq e trissomia do X. CONCLUSÕES: a análise cromossômica deve sempre ser realizada em mulheres com falência ovariana de causa não conhecida, mesmo na ausência de achados dismórficos. Esta também é de extrema importância em pacientes sindrômicas, pois, além de confirmar o diagnóstico, é capaz de identificar pacientes em risco, como nos casos com uma linhagem 46,XY.PURPOSE: to correlate the clinical manifestations of patients with amenorrhea and X chromosome abnormalities. METHODS: a retrospective analysis of the

  10. Tissue-specific differences in the spatial interposition of X-chromosome and 3R chromosome regions in the malaria mosquito Anopheles messeae Fall.

    Directory of Open Access Journals (Sweden)

    Gleb Artemov

    Full Text Available Spatial organization of a chromosome in a nucleus is very important in biology but many aspects of it are still generally unresolved. We focused on tissue-specific features of chromosome architecture in closely related malaria mosquitoes, which have essential inter-specific differences in polytene chromosome attachments in nurse cells. We showed that the region responsible for X-chromosome attachment interacts with nuclear lamina stronger in nurse cells, then in salivary glands cells in Anopheles messeae Fall. The inter-tissue differences were demonstrated more convincingly in an experiment of two distinct chromosomes interposition in the nucleus space of cells from four tissues. Microdissected DNA-probes from nurse cells X-chromosome (2BC and 3R chromosomes (32D attachment regions were hybridized with intact nuclei of nurse cells, salivary gland cells, follicle epithelium cells and imaginal disсs cells in 3D-FISH experiments. We showed that only salivary gland cells and follicle epithelium cells have no statistical differences in the interposition of 2BC and 32D. Generally, the X-chromosome and 3R chromosome are located closer to each other in cells of the somatic system in comparison with nurse cells on average. The imaginal disсs cell nuclei have an intermediate arrangement of chromosome interposition, similar to other somatic cells and nurse cells. In spite of species-specific chromosome attachments there are no differences in interposition of nurse cells chromosomes in An. messeae and An. atroparvus Thiel. Nurse cells have an unusual chromosome arrangement without a chromocenter, which could be due to the special mission of generative system cells in ontogenesis and evolution.

  11. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. (Universita di Bari (Italy)); Antonacci, R. (Instituto Anatomia Umana Normale, Modena (Italy))

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  12. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    Science.gov (United States)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  13. No severe and global X chromosome inactivation in meiotic male germline of Drosophila

    Directory of Open Access Journals (Sweden)

    Mikhaylova Lyudmila M

    2012-06-01

    Full Text Available Abstract This article is a response to Vibranovski et al. See correspondence article http://www.biomedcentral.com/1741-7007/10/49 and the original research article http://www.biomedcentral.com/1741-7007/9/29 We have previously reported a high propensity of testis-expressed X-linked genes to activation in meiotic cells, a similarity in global gene expression between the X chromosome and autosomes in meiotic germline, and under-representation of various types of tissue-specific genes on the X chromosome. Based on our findings and a critical review of the current literature, we believe that there is no global and severe silencing of the X chromosome in the meiotic male germline of Drosophila. The term 'meiotic sex chromosome inactivation' (MSCI therefore seems misleading when used to describe the minor underexpression of the X chromosome in the testis of Drosophila, because this term erroneously implies a profound and widespread silencing of the X-linked genes, by analogy to the well-studied MSCI system in mammals, and therefore distracts from identification and analysis of the real mechanisms that orchestrate gene expression and evolution in this species.

  14. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids

    Czech Academy of Sciences Publication Activity Database

    Bhattacharyya, Tanmoy; Reifová, R.; Gregorová, Soňa; Šimeček, Petr; Gergelits, Václav; Mistrik, M.; Martincová, Iva; Piálek, Jaroslav; Forejt, Jiří

    2014-01-01

    Roč. 10, č. 2 (2014), e1004088. ISSN 1553-7404 R&D Projects: GA AV ČR Premium Academiae of the Academy of Sciences of the Czech Republic; GA MŠk(CZ) LD11079; GA ČR GA206/08/0640; GA MŠk ED1.1.00/02.0109 Institutional support: RVO:68081766 ; RVO:68378050 Keywords : hybrid sterility * meiotic asynapsis * chromosome substitution strains Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.167, year: 2013

  15. Four distinct alpha satellite subfamilies shared by human chromosomes 13, 14 and 21.

    OpenAIRE

    Vissel, B; Choo, K H

    1991-01-01

    We describe the characterisation of four alpha satellite sequences which are found on a subset of the human acrocentric chromosomes. Direct sequence study, and analysis of somatic cell hybrids carrying specific human chromosomes indicate a unique 'higher-order structure' for each of the four sequences, suggesting that they belong to different subfamilies of alpha DNA. Under very high stringency of Southern hybridisation conditions, all four subfamilies were detected on chromosomes 13, 14 and ...

  16. Human artificial chromosomes for Duchenne muscular dystrophy and beyond: challenges and hopes.

    OpenAIRE

    Tedesco, F. S.

    2015-01-01

    Safe and efficacious vectors able to carry large or several transgenes are of key importance for gene therapy. Human artificial chromosomes can fulfil this essential requirement; moreover, they do not integrate into the host genome. However, drawbacks such as the low efficiency of chromosome transfer and their relatively complex engineering still limit their widespread use. In this article, I summarise the key steps that brought human artificial chromosomes into preclinical research for Duche...

  17. Evaluating the Y chromosomal timescale in human demographic and lineage dating

    OpenAIRE

    Wang, Chuan-Chao; Gilbert, M. Thomas P.; Jin, Li; Li, Hui

    2014-01-01

    Y chromosome is a superb tool for inferring human evolution and recent demographic history from a paternal perspective. However, Y chromosomal substitution rates obtained using different modes of calibration vary considerably, and have produced disparate reconstructions of human history. Here, we discuss how substitution rate and date estimates are affected by the choice of different calibration points. We argue that most Y chromosomal substitution rates calculated to date have shortcomings, ...

  18. Accounting for eXentricities: Analysis of the X Chromosome in GWAS Reveals X-Linked Genes Implicated in Autoimmune Diseases

    Science.gov (United States)

    Chang, Diana; Gao, Feng; Slavney, Andrea; Ma, Li; Waldman, Yedael Y.; Sams, Aaron J.; Billing-Ross, Paul; Madar, Aviv; Spritz, Richard; Keinan, Alon

    2014-01-01

    Many complex human diseases are highly sexually dimorphic, suggesting a potential contribution of the X chromosome to disease risk. However, the X chromosome has been neglected or incorrectly analyzed in most genome-wide association studies (GWAS). We present tailored analytical methods and software that facilitate X-wide association studies (XWAS), which we further applied to reanalyze data from 16 GWAS of different autoimmune and related diseases (AID). We associated several X-linked genes with disease risk, among which (1) ARHGEF6 is associated with Crohn's disease and replicated in a study of ulcerative colitis, another inflammatory bowel disease (IBD). Indeed, ARHGEF6 interacts with a gastric bacterium that has been implicated in IBD. (2) CENPI is associated with three different AID, which is compelling in light of known associations with AID of autosomal genes encoding centromere proteins, as well as established autosomal evidence of pleiotropy between autoimmune diseases. (3) We replicated a previous association of FOXP3, a transcription factor that regulates T-cell development and function, with vitiligo; and (4) we discovered that C1GALT1C1 exhibits sex-specific effect on disease risk in both IBDs. These and other X-linked genes that we associated with AID tend to be highly expressed in tissues related to immune response, participate in major immune pathways, and display differential gene expression between males and females. Combined, the results demonstrate the importance of the X chromosome in autoimmunity, reveal the potential of extensive XWAS, even based on existing data, and provide the tools and incentive to properly include the X chromosome in future studies. PMID:25479423

  19. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21

    DEFF Research Database (Denmark)

    McGinniss, M J; Kazazian, H H; Stetten, G;

    1992-01-01

    ), resulting in deletion of varying amounts of 21q22.1 to 21qter. The data from one individual who had a Down syndrome phenotype were consistent with asymmetric breakage and reunion of 21q sequences from an intermediate isochromosome or Robertsonian translocation chromosome as reported by Wong et al. Another......We studied the mechanism of ring chromosome 21 (r(21)) formation in 13 patients (11 unique r(21)s), consisting of 7 from five families with familial r(21) and 6 with de novo r(21). The copy number of chromosome 21 sequences in the rings of these patients was determined by quantitative dosage......). The phenotype of patients correlated well with the extent of deletion or duplication of chromosome 21 sequences. These data demonstrate three mechanisms of r(21) formation and show that the phenotype of r(21) patients varies with the extent of chromosome 21 monosomy or trisomy....

  20. Complementation of a DNA repair defect in xeroderma pigmentosum cells by transfer of human chromosome 9

    International Nuclear Information System (INIS)

    Complementation of the repair defect in xeroderma pigmentosum cells of complementation group A was achieved by the transfer of human chromosome 9. A set of mouse-human hybrid cell lines, each containing a single Ecogpt-marked human chromosome, was used as a source of donor chromosomes. Chromosome transfer to XPTG-1 cells, a hypoxanthine/guanine phosphoribosyltransferase-deficient mutant of simian virus 40-transformed complementation group A cells, was achieved by microcell fusion and selection for Ecogpt. Chromosome-transfer clones of XPTG-1 cells, each containing a different human donor chromosome, were analyzed for complementation of sensitivity to UV irradiation. Among all the clones, increased levels of resistance to UV was observed only in clones containing chromosome 9. Since our recipient cell line XPTG-1 is hypoxanthine/guanine phosphoribosyltransferase deficient, cultivation of Ecogpt+ clones in medium containing 6-thioguanine permits selection of cells for loss of the marker and, by inference, transferred chromosome 9. Clones isolated for growth in 6-thioguanine, which have lost the Ecogpt-marked chromosome, exhibited a UV-sensitive phenotype, confirming the presence of the repair gene(s) for complementation group A on chromosome 9

  1. Reduced risk of synovial sarcoma in females: X-chromosome inactivation?

    OpenAIRE

    Bu, X; Bernstein, L; Brynes, R. K.

    2002-01-01

    Synovial sarcoma shows a characteristic t(X;18) translocation but not the expected female predominance in incidence. We speculate that, among females, one X-chromosome is inactivated and that only the translocation to an active X-chromosome leads to development of synovial sarcoma. Population-based cancer registry data from the SEER program support this hypothesis. British Journal of Cancer (2002) 87, 28–30. doi:10.1038/sj.bjc.6600362 www.bjcancer.com © 2002 Cancer Research UK

  2. Diversity of sex chromosome abnormalities in a cohort of 95 Indonesian patients with monosomy X

    Directory of Open Access Journals (Sweden)

    Kartapradja Hannie

    2011-10-01

    Full Text Available Abstract Background Monosomy × or 45,X is a cytogenetic characteristic for Turner syndrome. This chromosome anomaly is encountered in around 50% of cases, but wide variations of other anomalies have been found. This report is to describe the cytogenetic characteristics of 45,X individuals. To the best of our knowledge, there were no large series of 45,X cases has been reported from Indonesia. Results Ninety five cases with 45,X cell line found, of which 60 were detected by karyotyping, 4 by FISH for sex chromosomes, and 31 by both karyotyping and FISH. Using karyotyping 37 out of 91 cases(40.6% were identified as 45,X individuals, while cases who underwent FISH only 4 out of 35 cases (11.4% showed 45,X result, resulting in total of 39 45,X cases (41.1%, and the rest 56 (58.9% cases are mosaic. Among these cases, 21 out of 95 (22.1% have Y or part of Y as the second or third sex chromosome in their additional cell lines. Result discrepancies revealed in 22 out of 31 cases who underwent both FISH and karyotyping, of which 7 showed normal 46,XX or 46,XY karyotypes, but by FISH, additional monosomy × cell line was found. Most of the cases were referred at the age of puberty (8-13 years old or after that (14-18 years old, 31 and 21 cases respectively, and there were 14 cases were sent in adulthood. Conclusion Wide variations of sex chromosome aberrations have been detected using the combination of conventional cytogenetic and FISH, including detection of low level of mosaicism and Y-chromosome fragments. Result discrepancies using both techniques were found in 22/31 cases, and in order to obtain a more details of sex chromosome constitution of individuals with 45,X cell line both FISH and karyotyping should be carried out simultaneously.

  3. A role for Aurora C in the chromosomal passenger complex during human preimplantation embryo development

    NARCIS (Netherlands)

    Santos, Margarida Avo; van de Werken, Christine; de Vries, Marieke; Jahr, Holger; Vromans, Martijn J. M.; Laven, Joop S. E.; Fauser, Bart C.; Kops, Geert J.; Lens, Susanne M.; Baart, Esther B.

    2011-01-01

    BACKGROUND: Human embryos generated by IVF demonstrate a high incidence of chromosomal segregation errors during the cleavage divisions. To analyse underlying molecular mechanisms, we investigated the behaviour of the chromosomal passenger complex (CPC) in human oocytes and embryos. This important m

  4. A molecularly defined duplication set for the X chromosome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Venken, Koen J. T.; Popodi, Ellen; Holtzman, Stacy L.; Schulze, Karen L.; Park, Soo; Carlson, Joseph W.; Hoskins, Roger A.; Bellen, Hugo J.; Kaufman, Thomas C.

    2010-07-22

    We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using C31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

  5. Chromosomal clustering of a human transcriptome reveals regulatory background

    Directory of Open Access Journals (Sweden)

    Purmann Antje

    2005-09-01

    Full Text Available Abstract Background There has been much evidence recently for a link between transcriptional regulation and chromosomal gene order, but the relationship between genomic organization, regulation and gene function in higher eukaryotes remains to be precisely defined. Results Here, we present evidence for organization of a large proportion of a human transcriptome into gene clusters throughout the genome, which are partly regulated by the same transcription factors, share biological functions and are characterized by non-housekeeping genes. This analysis was based on the cardiac transcriptome identified by our genome-wide array analysis of 55 human heart samples. We found 37% of these genes to be arranged mainly in adjacent pairs or triplets. A significant number of pairs of adjacent genes are putatively regulated by common transcription factors (p = 0.02. Furthermore, these gene pairs share a significant number of GO functional classification terms. We show that the human cardiac transcriptome is organized into many small clusters across the whole genome, rather than being concentrated in a few larger clusters. Conclusion Our findings suggest that genes expressed in concert are organized in a linear arrangement for coordinated regulation. Determining the relationship between gene arrangement, regulation and nuclear organization as well as gene function will have broad biological implications.

  6. CHARACTERIZATION AND CHROMOSOMAL ASSIGNMENT OF YEAST ARTIFICIAL CHROMOSOMES CONTAINING HUMAN 3P13-P21-SPECIFIC SEQUENCE-TAGGED SITES

    NARCIS (Netherlands)

    MICHAELIS, SC; BARDENHEUER, W; LUX, A; SCHRAMM, A; GOCKEL, A; SIEBERT, R; WILLERS, C; SCHMIDTKE, K; TODT, B; VANDERHOUT, AH; BUYS, CHCM; HEPPELLPARTON, AC; RABBITTS, PH; UNGAR, S; SMITH, D; LEPASLIER, D; COHEN, D; OPALKA, B; SCHUTTE, J

    1995-01-01

    Human chromosomal region 3p12-p23 is proposed to harbor at least three tumor suppressor genes involved in the development of lung cancer, renal cell carcinoma, and other neoplasias. In order to identify one of these genes we defined sequence tagged sites (STSs) specific for 3p13-p24.2 by analyzing a

  7. Human postmeiotic sex chromatin and its impact on sex chromosome evolution.

    Science.gov (United States)

    Sin, Ho-Su; Ichijima, Yosuke; Koh, Eitetsu; Namiki, Mikio; Namekawa, Satoshi H

    2012-05-01

    Sex chromosome inactivation is essential epigenetic programming in male germ cells. However, it remains largely unclear how epigenetic silencing of sex chromosomes impacts the evolution of the mammalian genome. Here we demonstrate that male sex chromosome inactivation is highly conserved between humans and mice and has an impact on the genetic evolution of human sex chromosomes. We show that, in humans, sex chromosome inactivation established during meiosis is maintained into spermatids with the silent compartment postmeiotic sex chromatin (PMSC). Human PMSC is illuminated with epigenetic modifications such as trimethylated lysine 9 of histone H3 and heterochromatin proteins CBX1 and CBX3, which implicate a conserved mechanism underlying the maintenance of sex chromosome inactivation in mammals. Furthermore, our analyses suggest that male sex chromosome inactivation has impacted multiple aspects of the evolutionary history of mammalian sex chromosomes: amplification of copy number, retrotranspositions, acquisition of de novo genes, and acquisition of different expression profiles. Most strikingly, profiles of escape genes from postmeiotic silencing diverge significantly between humans and mice. Escape genes exhibit higher rates of amino acid changes compared with non-escape genes, suggesting that they are beneficial for reproductive fitness and may allow mammals to cope with conserved postmeiotic silencing during the evolutionary past. Taken together, we propose that the epigenetic silencing mechanism impacts the genetic evolution of sex chromosomes and contributed to speciation and reproductive diversity in mammals. PMID:22375025

  8. Tissue- and stage-dependent dosage compensation on the Neo-X chromosome in drosophila pseudoobscura

    KAUST Repository

    Nozawa, Masafumi

    2013-12-03

    Sex chromosome dosage compensation (DC) is widely accepted in various organisms. This concept is mostly supported by comparisons of gene expression between chromosomes and between sexes. However, genes on the X chromosome and autosomes are mostly not homologous, and the average gene expression level on these chromosomes may not be the same even under DC, which complicates comparisons between chromosomes. Many genes with sex-biased expression also make comparisons between sexes difficult. To overcome these issues, we investigated DC by comparing the expression of neo-X-linked genes in Drosophila pseudoobscura with those of their autosomal orthologs in other Drosophila species. The ratio of the former to the latter in males would be 1 under DC, whereas it becomes 0.5 without DC. We found that the ratio was ∼0.85 for adult whole bodies, indicating that the DC is incomplete on the neo-X chromosome in adults as a whole. The ratio (∼0.90) was also significantly less than 1 for adult bodies without gonads, whereas it was ∼1.0 for adult heads. These results indicate that DC varies among tissues. Our sliding-window analysis of the ratio also revealed that the upregulation of neo-X-linked genes in males occurred chromosome wide in all tissues analyzed, indicating global upregulation mechanisms. However, we found that gene functions also affected the levels of DC. Furthermore, most of the genes recently moved to the X were already under DC at the larval stage but not at the adult stage. These results suggest that DC in Drosophila species operates in a tissue/stage-dependent manner. © 2013 The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.

  9. Epigenetic modifications on X chromosomes in marsupial and monotreme mammals and implications for evolution of dosage compensation

    OpenAIRE

    Rens, Willem; Wallduck, Margaret S.; Lovell, Frances L.; Ferguson-Smith, Malcolm A; Ferguson-Smith, Anne C.

    2010-01-01

    X chromosome dosage compensation in female eutherian mammals is regulated by the noncoding Xist RNA and is associated with the differential acquisition of active and repressive histone modifications, resulting in repression of most genes on one of the two X chromosome homologs. Marsupial mammals exhibit dosage compensation; however, they lack Xist, and the mechanisms conferring epigenetic control of X chromosome dosage compensation remain elusive. Oviparous mammals, the monotremes, have multi...

  10. Y-chromosome haplotype distribution in Han Chinese populations and modern human origin in East Asians

    Institute of Scientific and Technical Information of China (English)

    KE; Yuehai

    2001-01-01

    [1]Cann, R. L., Stoneking, M., Wilson, A. C., Mitochondria DNA and human evolution, Nature, 1987, 325: 31-36.[2]Vigilant, L., Stoneking, M., Harpending, H. et al., African populations and the evolution of human mitochondrial DNA, Science, 1997, 253: 1503-1507.[3]Cavalli-Sforza, L. L., Piazza, M. P., The History and Geography of Human Genes, Princeton: Princeton University Press, 1994.[4]Brooks, A. S., Wood, B., Paleoanthropology, The Chinese side of the story, Nature, 1990, 344: 288-289.[5]Li, T., Etler, D. A., New middle Pleistocene hominid crania from Yunxian in China, Nature, 1992, 357: 404-407.[6]Wu, X. Z., Poirier, F. E., Human Evolution in China, Oxford: Oxford University Press, 1995.[7]Etler, D. A., The fossil evidence for human evolution in Asia, Annu. Rev. Anthropol., 1996, 25: 275-301.[8]Wolpoff, M. H., Interpretations of multiregional evolution, Science, 1996, 274: 704-707.[9]Stringer, C. B., Andrew, P., Genetic and fossil evidence for the origin of modern humans, Science ,1988, 239: 1263-1268.[10]Wilson, A. C.,Cann, R. L., The recent African genesis of humans, Scientific American, 1992, (4): 68-75.[11]Weng, Z., Yuan, Y., Du, R., Analysis of the genetic structure of human populations in China, Acta Anthropol. Sin. (in Chi-nese)1989, 8: 261-268.[12]Zhao, T., Zhang, G., Zhu, Y. et al., The distribution of immunoglobulin Gm allotypes in forty Chinese populations, Acta Anthropol. Sin. (in Chinese), 1986, 6: 1-8.[13]Chu, J. Y., Huang, W., Kuang, S. Q. et al., Genetic relationship of populations in China, Proc. Natl. Acad. Sci., 1998, 95: 11763-11768.[14]Jobling, M. A., Tyler-Smith, C., Fathers and sons: the Y chromosome and human evolution, Trends in Genetics,1995, 11: 449-455.[15]Oefner, P. J., Underhill, P. A., Comparative DNA sequencing by denaturing high-performance liquid chromatography (DHPLC), Am. J. Hum. Genet., 1995, 57: A266.[16]Oefner, P. J., Underhill, P. A., DNA mutation detection

  11. Conserved chromosomal positions of dual domains of the ets protooncogene in cats, mice, and humans

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D.K.; McWilliams-Smith, M.J.; Kozak, C.; Reeves, R.; Gearhart, J.; Nunn, M.F.; Nash, W.; Fowle, J.R. III; Duesberg, P.; Papas, T.S.; O' Brien, S.J.

    1986-03-01

    The mammalian protooncogene homologue of the avian v-ets sequence from the E26 retrovirus consists of two sequentially distinct domains located on different chromosomes. Using somatic cell hybrid panels, the authors have mapped the mammalian homologue of the 5' v-ets-domain to chromosome 11 (ETS1) in man, to chromosome 9 (ets-1) in mouse, and to chromosome D1 (ETS1) in the domestic cat. The mammalian homologue of the 3' v-ets domain was similarly mapped to human chromosome 21 (ETS2), to mouse chromosome 16 (Ets-2), and to feline chromosome C2 (ETS2). Both protooncogenes fell in syntenic groups of homologous linked loci that were conserved among the three species. The occurrence of two distinct functional protooncogenes and their conservation of linkage positions in the three mammalian orders indicate that these two genes have been separate since before the evolutionary divergence of mammals.

  12. Conserved chromosomal positions of dual domains of the ets protooncogene in cats, mice, and humans

    International Nuclear Information System (INIS)

    The mammalian protooncogene homologue of the avian v-ets sequence from the E26 retrovirus consists of two sequentially distinct domains located on different chromosomes. Using somatic cell hybrid panels, the authors have mapped the mammalian homologue of the 5' v-ets-domain to chromosome 11 (ETS1) in man, to chromosome 9 (ets-1) in mouse, and to chromosome D1 (ETS1) in the domestic cat. The mammalian homologue of the 3' v-ets domain was similarly mapped to human chromosome 21 (ETS2), to mouse chromosome 16 (Ets-2), and to feline chromosome C2 (ETS2). Both protooncogenes fell in syntenic groups of homologous linked loci that were conserved among the three species. The occurrence of two distinct functional protooncogenes and their conservation of linkage positions in the three mammalian orders indicate that these two genes have been separate since before the evolutionary divergence of mammals

  13. High resistance of fibroblasts from Mongolian gerbil embryos to cell killing and chromosome aberrations by X-irradiation

    International Nuclear Information System (INIS)

    Mongolian gerbil (Meriones unguiculatus) is known to be one of the most radioresistant animal species. In order to determine whether there is any correlation between mortality of mammals exposed to γ- or X-rays and radiation sensitivity of culture cells derived from different mammalian species, we have examined the X-ray survival curves of normal diploid fibroblasts from Mongolian gerbil embryos and compared with those of other cultured embryo cells from various laboratory animals and normal human. There was a big difference in cell survival to X-rays among different mammalian species. The D0 values of Mongolian gerbil cells ranged from 2.3 to 2.6 Gy which are twice as high as those of human cells. The mean D0 value of human cells was 1.1 Gy. Mouse, rat, Chinese hamster and Syrian/golden hamster cells showed similar D0 values ranging from 1.7 to 2.0 Gy. When cells were irradiated with 2 Gy of X-rays, three times longer mitotic delay was observed in human cells than in Mongolian gerbil cells. At this X-ray dose, furthermore, ten times more chromosome aberrations were detected in human cells than in Mongolian gerbil cells, and the frequencies of other rodent cells lay between the values for the two cell strains. These data indicate that the Mongolian gerbil cells are resistant to X-ray-induced cell killing and chromosome aberrations, and that radiation sensitivity of primarily cultured mammalian cells may be reflected by their radioresistance in vivo. (author)

  14. Genetic polymorphism of human Y chromosome and risk factors for cardiovascular diseases: a study in WOBASZ cohort.

    Directory of Open Access Journals (Sweden)

    Grażyna Kostrzewa

    Full Text Available Genetic variants of Y chromosome predispose to hypertension in rodents, whereas in humans the evidence is conflicting. Our purpose was to study the distribution of a panel of Y chromosome markers in a cohort from a cross-sectional population-based study on the prevalence of cardiovascular risk factors in Poland (WOBASZ study. The HindIII, YAP Y chromosome variants, previously shown to influence blood pressure, lipid traits or height, as well as SNPs defining main Y chromosome haplogroups, were typed in 3026, 2783 and 2652 samples, respectively. In addition, 4 subgroups (N~100 each representing extremes of LDL concentration or blood pressure (BP were typed for a panel of 17 STRs. The HindIII and YAP polymorphism were not associated with any of the studied traits. Analysis of the haplogroup distribution showed an association between higher HDL level and hg I-M170 (P = 0.02, higher LDL level and hg F*(xI-M170, J2-M172, K-M9 (P = 0.03 and lower BMI and hg N3-Tat (P = 0.04. Analysis of STRs did not show statistically significant differences. Since all these associations lost statistical significance after Bonferroni correction, we conclude that a major role of Y chromosome genetic variation (defined by HindIII, YAP or main Y chromosome haplogroups in determining cardiovascular risk in Poles is unlikely.

  15. Housekeeping gene on the X chromosome encodes a protein similar to ubiquitin

    International Nuclear Information System (INIS)

    An X chromosome gene located 40 kilobases downstream from the G6PD gene, at Xq28, was isolated and sequenced. This gene, which the authors named GdX, spans about 3.5 kilobases of genomic DNA. GdX is a single-copy gene, is conserved in evolution, and has the features of a housekeeping gene. At its 5' end, a cluster of CpG dinucleotides is methylated on the inactive X chromosome and unmethylated on the active X chromosome. The GdX gene can code for a 157 amino acid protein, GdX. Residues 1-74 of GdX show 43% identity to ubiquitin, a highly conserved 76 amino acid protein. The COOH-terminal moiety of GdX is characterized in its central part (residues 110-128) by a sequence homologous to the COOH-terminal hormonogenic site of thyroglobulin. The structural organization of the GdX protein suggests the existence of a family of genes, in addition to the ubiquitin gene, that could play specific roles in key cellular processes, possible through protein-protein recognition

  16. Micronuclei versus Chromosomal Aberrations Induced by X-Ray in Radiosensitive Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Cristina Plamadeala

    2015-03-01

    Full Text Available An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages.In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening.The first parameter consisting in micronuclei relative frequency has led to higher linear correlation coefficient than the second one consistent with chromosomal aberrations relative frequency. However, the latter parameter estimated as the sum of all chromosomal aberrations appeared to be more sensitive to radiation dose increasing in the studied dose range, from 0 to 3 Gy. The number of micronuclei occurring simultaneously in a single cell was not higher than 3, while the number of chromosomal aberrations observed in the same cell reached the value of 5 for doses over 1 Gy.Polynomial dose-response curves were evidenced for cells with Ni micronuclei (i=1,3 while non-monotonic curves were evidenced through detailed analysis of aberrant cells with Ni chromosomal changes [Formula: see text] - in concordance with in vitro studies from literature. The investigation could be important for public health issues where micronucleus screening is routinely applied but also for research purposes where various chromosomal aberrations could be of particular interest.

  17. Two progenitor cells for human oogonia inferred from pedigree data and the X-inactivation imprinting model of the fragile-X syndrome.

    OpenAIRE

    Laird, C D; Lamb, M M; Thorne, J L

    1990-01-01

    Laird has proposed that the human fragile-X syndrome is caused by abnormal chromosome imprinting. The analysis presented here supports and extends this proposal. Using published pedigrees that include DNA polymorphism (RFLP) data, we establish that the states of the fragile-X mutation termed "imprinted" and "nonimprinted" usually can be distinguished by the level of cytogenetic expression of the fragile-X chromosome. This information is then used to assess the state of the fragile-X allele in...

  18. Different subfamilies of alphoid repetitive DNA are present on the human and chimpanzee homologous chromosomes 21 and 22.

    OpenAIRE

    Jørgensen, A L; Jones, C; Bostock, C J; Bak, A L

    1987-01-01

    The alphoid repeat DNA on chimpanzee chromosome 22 was compared with alphoid repeat DNA on its human homologue, chromosome 21. Hybridization of different alphoid probes under various conditions of stringency show that the alphoid repeats of chimpanzee chromosome 22 are not closely related to those of human chromosome 21. Sequence analysis of cloned dimer and tetramer EcoRI fragments from chimpanzee chromosome 22 confirm the low overall level of homology, but reveal the presence of several nuc...

  19. Imprinted X chromosome inactivation: evolution of mechanisms in distantly related mammals

    OpenAIRE

    Waters, Shafagh A.; Waters, Paul D.

    2015-01-01

    In females, X chromosome inactivation (XCI) ensures transcriptional silencing of one of the two Xs (either in a random or imprinted fashion) in somatic cells. Comparing this silencing between species has offered insight into different mechanisms of X inactivation, providing clues into the evolution of this epigenetic process in mammals. Long-noncoding RNAs have emerged as a common theme in XCI of therian mammals (eutherian and marsupial). Eutherian X inactivation is regulated by the noncoding...

  20. In situ hybridization analysis of isodicentric X-chromosomes with short arm fusion

    DEFF Research Database (Denmark)

    Koch, J E; Kølvraa, S; Hertz, Jens Michael; Rasmussen, K; Gregersen, N; Fly, G F; Bolund, L A

    1990-01-01

    the C-band analysis, while at the same time to some extent replacing the Q-band analysis as well. The advantage of using in situ hybridization is mainly that it allows the very fast screening of a large number of metaphases. We illustrate this new application of the technique by using it for the......We present here an alternative approach to the study of mosaic cell lines containing dicentric chromosomes. The approach is based on chromosome-specific non-radioactive in situ hybridization with centromere (alpha satellite DNA) probes. The hybridization analysis may be used as an alternative to...... analysis of two cases of isodicentric X-chromosomes. The approach is expected to be generally applicable, so that it may be applied to the scoring of other types of chromosomal mosaicism as well....

  1. Geographic structure in Gran Chaco Amerindians based on five X-chromosome STRs.

    Science.gov (United States)

    Catanesi, Cecilia I; Martina, Pablo F; Giovambattista, Guillermo; Zukas, Pedro; Vidal-Rioja, Lidia

    2007-08-01

    We investigated the genetic differentiation of five X-chromosome STR markers among five native South American Amerindian populations inhabiting three different areas of the Gran Chaco: Mocoví, Chorote, Wichí, Lengua, and Ayoreo. The observed genetic structure showed correspondence with geographic distribution more clearly than previous information obtained from autosomal STRs for the same samples. On the other hand, X-chromosome STR data did not agree with linguistic affinities. These markers proved to be informative for the study of the native populations of the Gran Chaco region. PMID:18075009

  2. X-ray-induced chromosome aberrations in Down lymphocytes: an explanation of their increased sensitivity

    International Nuclear Information System (INIS)

    Unstimulated lymphocytes from individuals with Down Syndrome (trisomy 21) are more sensitive to the induction of dicentric and ring aberrations by X rays than normal lymphocytes. Several explanations involving the more rapid rejoining of X-ray-induced lesions in Down cells have been offered. It is shown here that the repair of the DNA damage converted into chromosome aberrations is more rapid in Down cells than normal cells. This more rapid repair results in a higher probability of producing chromosome aberrations, and hence higher aberration frequencies in Down than normal cells

  3. X-ray-induced chromosome aberrations in Down lymphocytes: an explanation of their increased sensitivity

    International Nuclear Information System (INIS)

    Unstimulated lymphocytes from individuals with Down Syndrome (trisomy 21) are more sensitive to the induction of dicentric and ring aberrations by X rays than normal lymphocytes. Several explanations involving the more rapid rejoining of X-ray--induced lesions in Down cells have been offered. It is shown here that the repair of the DNA damage converted into chromosome aberrations is more rapid in Down cells than normal cells. This more rapid repair results in a higher probability of producing chromosomes aberrations, and hence higher aberration frequencies in Down than normal cells

  4. Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes

    International Nuclear Information System (INIS)

    The organization of alphoid repeated sequences on human nucleolus-organizing (NOR) chromosomes 13, 21, and 22 has been investigated. Analysis of hybridization of alphoid DNA probes to Southern transfers of restriction enzyme-digested DNA fragments from hybrid cells containing single human chromosomes shows that chromosomes 13 and 21 share one subfamily of alphoid repeats, whereas a different subfamily may be held in common by chromosomes 13 and 22. The sequences of cloned 680-base-pair EcoRI fragments of the alphoid DNA from chromosomes 13 and 21 show that the basic unit of this subfamily is indistinguishable on each chromosome. The sequence of cloned 1020-base-pair Xba I fragments from chromosome 22 is related to, but distinguishable from, that of the 680-base-pair EcoRI alphoid subfamily of chromosomes 13 and 21. These results suggest that, at some point after they originated and were homogenized, different subfamilies of alphoid sequences must have exchanged between chromosomes 13 and 21 and separately between chromosomes 13 and 22

  5. Y chromosome specific probes identify breakpoint in a 45,X/46,X,del(Y)(pter----q11.1:) karyotype of an infertile male.

    OpenAIRE

    Beverstock, G C; Macfarlane, J D; Veenema, H; Hoekman, H; Goodfellow, P J

    1989-01-01

    An infertile male patient with a 45,X peripheral blood karyotype and a 45,X/46,X,del(Y)(pter----q11.1:) mosaic skin fibroblast karyotype is described. Steroid sulphatase (STS) activity was normal. Recombinant DNA studies using Y chromosome specific probes suggest that almost the entire long arm of the Y chromosome is deleted.

  6. Expression reduction in mammalian X chromosome evolution refutes Ohno’s hypothesis of dosage compensation

    Science.gov (United States)

    Lin, Fangqin; Xing, Ke; Zhang, Jianzhi; He, Xionglei

    2012-01-01

    Susumu Ohno proposed in 1967 that, during the origin of mammalian sex chromosomes from a pair of autosomes, per-allele expression levels of X-linked genes were doubled to compensate for the degeneration of their Y homologs. This conjecture forms the foundation of the current evolutionary model of sex chromosome dosage compensation, but has been tested in mammals only indirectly via a comparison of expression levels between X-linked and autosomal genes in the same genome. The test results have been controversial, because examinations of different gene sets led to different conclusions that either support or refute Ohno’s hypothesis. Here we resolve this uncertainty by directly comparing mammalian X-linked genes with their one-to-one orthologs in species that diverged before the origin of the mammalian sex chromosomes. Analyses of RNA sequencing data and proteomic data provide unambiguous evidence for expression halving (i.e., no change in per-allele expression level) of X-linked genes during evolution, with the exception of only ∼5% of genes that encode members of large protein complexes. We conclude that Ohno’s hypothesis is rejected for the vast majority of genes, reopening the search for the evolutionary force driving the origin of chromosome-wide X inactivation in female mammals. PMID:22753487

  7. Expression reduction in mammalian X chromosome evolution refutes Ohno's hypothesis of dosage compensation.

    Science.gov (United States)

    Lin, Fangqin; Xing, Ke; Zhang, Jianzhi; He, Xionglei

    2012-07-17

    Susumu Ohno proposed in 1967 that, during the origin of mammalian sex chromosomes from a pair of autosomes, per-allele expression levels of X-linked genes were doubled to compensate for the degeneration of their Y homologs. This conjecture forms the foundation of the current evolutionary model of sex chromosome dosage compensation, but has been tested in mammals only indirectly via a comparison of expression levels between X-linked and autosomal genes in the same genome. The test results have been controversial, because examinations of different gene sets led to different conclusions that either support or refute Ohno's hypothesis. Here we resolve this uncertainty by directly comparing mammalian X-linked genes with their one-to-one orthologs in species that diverged before the origin of the mammalian sex chromosomes. Analyses of RNA sequencing data and proteomic data provide unambiguous evidence for expression halving (i.e., no change in per-allele expression level) of X-linked genes during evolution, with the exception of only ∼5% of genes that encode members of large protein complexes. We conclude that Ohno's hypothesis is rejected for the vast majority of genes, reopening the search for the evolutionary force driving the origin of chromosome-wide X inactivation in female mammals. PMID:22753487

  8. Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization.

    Science.gov (United States)

    Tan, Kun; An, Lei; Miao, Kai; Ren, Likun; Hou, Zhuocheng; Tao, Li; Zhang, Zhenni; Wang, Xiaodong; Xia, Wei; Liu, Jinghao; Wang, Zhuqing; Xi, Guangyin; Gao, Shuai; Sui, Linlin; Zhu, De-Sheng; Wang, Shumin; Wu, Zhonghong; Bach, Ingolf; Chen, Dong-Bao; Tian, Jianhui

    2016-03-22

    Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression ofRnf12to up-regulateXistsignificantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulatedRnf12/Xistexpression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications. PMID:26951653

  9. Chromosome aberrations induced in human lymphocytes by neutron irradiation

    International Nuclear Information System (INIS)

    In vitro dose-response curves of unstable chromosome aberrations in human lymphocytes have been obtained for neutron spectra of mean energies 0.7, 0.9, 7.6 and 14.7 MeV. The aberration yields have been fitted to the quadratic function Y = αD + βD2, which is consistent with the single-track and two-track model of aberration formation. However with high-LET radiation, the linear component of yield, corresponding to damage caused by single tracks, predominates, and this term becomes more dominant with increasing LET, so that for fission spectrum neutrons the relationship is linear, Y = αD. At low doses, such as those received by radiation workers, limiting r.b.e. values between 13 and 47 were obtained relative to 60Co γ-radiation. At higher doses, as used in radiotherapy, the values were much lower; ranging from 2.7 to 8 at 200 rad of equivalent γ-radiation. Both sets of r.b.e. values correlated well with track-averaged LET but not with dose-averaged LET. When the numbers of cells without aberrations were plotted against radiation dose, curves were obtained which are similar in shape to those for conventional cell-survival experiments with comparable neutron spectra. The D0 values obtained in the present study are close to those from other cell systems. (author)

  10. Identification of human chromosome 9 specific genes using exon amplification.

    Science.gov (United States)

    Church, D M; Banks, L T; Rogers, A C; Graw, S L; Housman, D E; Gusella, J F; Buckler, A J

    1993-11-01

    We have recently developed a method, exon amplification, that is designed for isolation of exon sequences from genomic DNA. To assess the efficacy of this method we have analyzed cosmid genomic clones derived from human chromosome 9, and have cloned several products from this analysis. Approximately 63% of cosmids produced at least one product derived from functioning splice sites within the target genomic fragment, and in many cases multiple products were isolated. In addition, an easily identifiable class of false positives was produced from 56% of cosmids analyzed; these are readily eliminated from subsequent study. Sequence analysis and database searches revealed that the majority (87%) of the putative exon clones were unique, the remainder being derived from repetitive sequences. Analysis of sequence conservation by Southern blotting in addition to cDNA screening experiments suggested that most, if not all, of these unique sequences represent true exons. The results of these studies indicate that exon amplification is a rapid and reliable approach for isolation of exon sequences from mammalian genomic DNA. PMID:7506603

  11. Drinking beer reduces radiation-induced chromosome aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    We here investigated and reported the effects of beer drinking on radiation-induced chromosome aberrations in blood lymphocytes. Human blood that was collected either before or after drinking a 700 ml beer was in vitro irradiated with 200 kVp X rays or 50 keV/μm carbon ions. The relation between the radiation dose and the aberration frequencies (fragments and dicentrics) was significantly (P<0.05) lower for lymphocytes collected 3 h after beer drinking than those before drinking. Fitting the dose response to a linear quadratic model showed that the alpha term of carbon ions was significantly (P<0.05) decreased by beer drinking. A decrease of dicentric formation was detected as early as 0.5 h after beer drinking, and lasted not shorter than 4.5 h. The mitotic index of lymphocytes was higher after beer drinking than before, indicating that a division delay would not be responsible for the low aberrations induced by beer drinking. An in vitro treatment of normal lymphocytes with 0.1 M ethanol, which corresponded to a concentration of 6-times higher than the maximum ethanol concentration in the blood after beer drinking, reduced the dicentric formation caused by X-ray irradiation, but not by carbon-ion irradiation. The beer-induced reduction of dicentric formation was not affected by serum. It is concluded that beer could contain non-ethanol elements that reduce the chromosome damage of lymphocytes induced by high-LET radiation. (author)

  12. Flavin-dependent thymidylate synthase X limits chromosomal DNA replication

    OpenAIRE

    Escartin, Frédéric; Skouloubris, Stéphane; Liebl, Ursula; Myllykallio, Hannu

    2008-01-01

    We have investigated the hitherto unexplored possibility that differences in the catalytic efficiencies of thymidylate synthases ThyX and ThyA, enzymes that produce the essential DNA precursor dTMP, have influenced prokaryotic genome evolution. We demonstrate that DNA replication speed in bacteria and archaea that contain the low-activity ThyX enzyme is up to 10-fold decreased compared with species that contain the catalytically more efficient ThyA. Our statistical studies of >400 genomes ind...

  13. Report of the Second International Workshop on Human Chromosome 5 Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.A.; Neuman, W.L. [Chicago Univ., IL (United States); McPherson, J.; Wasmuth, J. [California Univ., Irvine, CA (United States). Dept. of Biological Chemistry; Camper, S. [Michigan Univ., Ann Arbor, MI (United States). Medical School; Plaetke, R. [Eceles Inst. of Human Genetics, Salt Lake City, UT (United States). Dept. of Human Genetics; Williamson, R. [St. Mary`s Hospital Medical School, London (United Kingdom). Dept. of Biochemistry and Molecular Genetics

    1993-12-31

    This report describes the accomplishments of the Second International Workshop on Human Chromosome 5 as was held May 11--13,1992 at the University of Chicago. Included in the report are abstract of individual presentations and a consensus map of the chromosome.

  14. Response of human lymphocyte chromosomes to fractionated neutron irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sevan' kaev, A.V.; Nasonova, V.A.; Golovinova, G.I. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    A comparative study was made of the yield of chromosome aberrations in a human lymphocyte culture after a single and fractionated exposure to neutron radiation at the beginning of the G/sub 1/ phase and during the S phase of the mitotic cycle. It was shown that the degree of the chromosome affection in both phases does not depend upon the irradiation schedules.

  15. Reactivation of Chromosomally Integrated Human Herpesvirus-6 by Telomeric Circle Formation

    OpenAIRE

    Prusty, Bhupesh K.; George Krohne; Thomas Rudel

    2015-01-01

    More than 95% of the human population is infected with human herpesvirus-6 (HHV-6) during early childhood and maintains latent HHV-6 genomes either in an extra-chromosomal form or as a chromosomally integrated HHV-6 (ciHHV-6). In addition, approximately 1% of humans are born with an inheritable form of ciHHV-6 integrated into the telomeres of chromosomes. Immunosuppression and stress conditions can reactivate latent HHV-6 replication, which is associated with clinical complications and even d...

  16. Mechanisms of chromosomal rearrangement in the human genome

    Directory of Open Access Journals (Sweden)

    Lieber Michael R

    2010-02-01

    Full Text Available Abstract Many human cancers are associated with characteristic chromosomal rearrangements, especially hematopoietic cancers such as leukemias and lymphomas. The first and most critical step in the rearrangement process is the induction of two DNA double-strand breaks (DSB. In all cases, at least one of the two DSBs is generated by a pathologic process, such as (1 randomly-positioned breaks due to ionizing radiation, free radical oxidative damage, or spontaneous hydrolysis; (2 breaks associated with topoisomerase inhibitor treatment; or (3 breaks at direct or inverted repeat sequences, mediated by unidentified strand breakage mechanisms. In lymphoid cells, one of the two requisite DSBs is often physiologic, the result of V(DJ recombination or class switch recombination (CSR at the lymphoid antigen receptor loci. The RAG complex, which causes the DSBs in V(DJ recombination, can cause (4 sequence-specific, pathologic DSBs at sites that fit the consensus of their normal V(DJ recombination signal targets; or (5 structure-specific, pathologic DSBs at regions of single- to double-strand transition. CSR occurs specifically in the B-cell lineage, and requires (6 activation-induced cytidine deaminase (AID action at sites of single-stranded DNA, which may occur pathologically outside of the normal target loci of class switch recombination regions and somatic hypermutation (SHM zones. Recent work proposes a seventh mechanism: the sequential action of AID and the RAG complex at CpG sites provides a coherent model for the pathologic DSBs at some of the most common sites of translocation in human lymphoma – the bcl-2 gene in follicular lymphoma and diffuse large B-cell lymphoma, and the bcl-1 gene in mantle cell lymphoma.

  17. Chromosome Structural Alteration an Unusual Abnormality Characterizing Human Neoplasia

    Directory of Open Access Journals (Sweden)

    Abolfazl Movafagh

    2016-04-01

    Full Text Available Background and Aim: Ring chromosomes are rare cytogenetic abnormalities that occur in less than 10% of hematopoietic malignancies. They are rare in blood disorder. The present review has focused on the ring chromosome associated with oncology malignancies. Materials and Methods: By reviewing the web-based search for all English scientific peer review articles published, was initiated using Medline/PubMed, Mitelman database (http://cgap.nci.nih.gov/Chromosomes/Mitelman, and other pertinent references on websites about ring chromosomes in Oncology. The software program as End Note was used to handle the proper references for instruction to author. Karyotype descriptions were cited according to ISCN.Conclusion: Ring chromosomes are rare chromosomal aberrations, almost many times are of de novo origin, presenting a different phenotype regarding the loss of genetic material. The karyotype represents the main analysis for detection of ring chromosomes, but other molecular technics are necessary for complete characterization. The information of this review article adds to the spectrum of both morphology and genetic rearrangements in the field of oncology malignancies.

  18. Chromosomal mapping of the human M6 genes

    Energy Technology Data Exchange (ETDEWEB)

    Olinsky, S.; Loop, B.T.; DeKosky, A. [Univ. of Pittsburgh, PA (United States)] [and others

    1996-05-01

    M6 is a neuronal membrane glycoprotein that may have an important role in neural development. This molecule was initially defined by a monoclonal antibody that affected the survival of cultured cerebellar neurons and the outgrowth of neurites. The nature of the antigen was discovered by expression cDNA cloning using this monoclonal antibody. Two distinct murine M6 cDNAs (designated M6a and M6b) whose deduced amino acid sequences were remarkably similar to that of the myelin proteolipid protein human cDNA and genomic clones encoding M6a and M6b and have characterized them by restriction mapping, Southern hybridization with cDNA probes, and sequence analysis. We have localized these genes within the human genome by FISH (fluorescence in situ hybridization). The human M6a gene is located at 4q34, and the M6b gene is located at Xp22.2 A number of human neurological disorders have been mapped to the Xp22 region, including Aicardi syndrome (MIM 304050), Rett syndrome (MIM 312750), X-linked Charcot-Marie-Tooth neuropathy (MIM 302801), and X-linked mental retardation syndromes (MRX1, MIM 309530). This raises the possibility that a defect in the M6b gene is responsible for one of these neurological disorders. 8 refs., 3 figs.

  19. The Relationship Between Spontaneous Telomere Loss and Chromosome Instability in a Human Tumor Cell Line

    Directory of Open Access Journals (Sweden)

    Bijan Fouladi

    2000-01-01

    Full Text Available Chromosome instability plays an important role in cancer by promoting the alterations in the genome required for tumor cell progression. The loss of telomeres that protect the ends of chromosomes and prevent chromosome fusion has been proposed as one mechanism for chromosome instability in cancer cells, however, there is little direct evidence to support this hypothesis. To investigate the relationship between spontaneous telomere loss and chromosome instability in human cancer cells, clones of the EJ-30 tumor cell line were isolated in which a herpes simplex virus thymidine kinase (HSV-tk gene was integrated immediately adjacent to a telomere. Selection for HSV-tkdeficient cells with ganciclovir demonstrated a high rate of loss of the end these "marked" chromosomes (10-4 events/cell per generation. DNA sequence and cytogenetic analysis suggests that the loss of function of the HSV-tk gene most often involves telomere loss, sister chromatid fusion, and prolonged periods of chromosome instability. In some HSV-tk-deficient cells, telomeric repeat sequences were added on to the end of the truncated HSV-tk gene at a new location, whereas in others, no telomere was detected on the end of the marked chromosome. These results suggest that spontaneous telomere loss is a mechanism for chromosome instability in human cancer cells.

  20. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human

    Energy Technology Data Exchange (ETDEWEB)

    Blatt, C.; Eversole-Cire, P.; Cohn, V.H.; Zollman, S.; Fournier, R.E.K.; Mohandas, L.T.; Nesbitt, M.; Lugo, T.; Jones, D.T.; Reed, R.R.; Weiner, L.P.; Sparkes, R.S.; Simon, M.I. (Weizmann Institute, Rehovoth (Israel))

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding {alpha}-subunit proteins, two different {beta} subunits, and one {gamma} subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The {beta} subunits were also assigned-GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extend of the G{alpha} gene family and may help in attempts to correlate specific genetic diseases and with genes corresponding to G proteins.

  1. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human.

    Science.gov (United States)

    Blatt, C; Eversole-Cire, P; Cohn, V H; Zollman, S; Fournier, R E; Mohandas, L T; Nesbitt, M; Lugo, T; Jones, D T; Reed, R R

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding alpha-subunit proteins, two different beta subunits, and one gamma subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The beta subunits were also assigned--GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extent of the G alpha gene family and may help in attempts to correlate specific genetic diseases with genes corresponding to G proteins. PMID:2902634

  2. Flow analysis of human chromosome sets by means of mixing-stirring device

    Science.gov (United States)

    Zenin, Valeri V.; Aksenov, Nicolay D.; Shatrova, Alla N.; Klopov, Nicolay V.; Cram, L. Scott; Poletaev, Andrey I.

    1997-05-01

    A new mixing and stirring device (MSD) was used to perform flow karyotype analysis of single human mitotic chromosomes analyzed so as to maintain the identity of chromosomes derived from the same cell. An improved method for cell preparation and intracellular staining of chromosomes was developed. The method includes enzyme treatment, incubation with saponin and separation of prestained cells from debris on a sucrose gradient. Mitotic cells are injected one by one in the MSD which is located inside the flow chamber where cells are ruptured, thereby releasing chromosomes. The set of chromosomes proceeds to flow in single file fashion to the point of analysis. The device works in a stepwise manner. The concentration of cells in the sample must be kept low to ensure that only one cell at a time enters the breaking chamber. Time-gated accumulation of data in listmode files makes it possible to separate chromosome sets comprising of single cells. The software that was developed classifies chromosome sets according to different criteria: total number of chromosomes, overall DNA content in the set, and the number of chromosomes of certain types. This approach combines the high performance of flow cytometry with the advantages of image analysis. Examples obtained with different human cell lines are presented.

  3. The constrained maximal expression level owing to haploidy shapes gene content on the mammalian X chromosome

    DEFF Research Database (Denmark)

    Hurst, Laurence D.; Ghanbarian, Avazeh T.; Forrest, Alistair R R;

    2015-01-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functional...

  4. GENE LINKAGE MAPPING OF THE PORCINE CHROMOSOME X REGION HARBOURING QTL FOR FAT DEPOSITION

    Science.gov (United States)

    The QTL for backfat thickness and intramuscular fat content on SSCX is well documented in Meishan x Western breed pedigrees. The QTL has been mapped to the chromosome region between microsatellites SW2456 and SW1943. In the French pedigree with more than 1,100 F2 animals the QTL mapped at position 7...

  5. A Chromosomal Memory Triggered by Xist Regulates Histone Methylation in X Inactivation

    Directory of Open Access Journals (Sweden)

    Kohlmaier Alexander

    2004-01-01

    Full Text Available We have elucidated the kinetics of histone methylation during X inactivation using an inducible Xist expression system in mouse embryonic stem (ES cells. Previous reports showed that the ability of Xist to trigger silencing is restricted to an early window in ES cell differentiation. Here we show that this window is also important for establishing methylation patterns on the potential inactive X chromosome. By immunofluorescence and chromatin immunoprecipitation experiments we show that histone H3 lysine 27 trimethylation (H3K27m3 and H4 lysine 20 monomethylation (H4K20m1 are associated with Xist expression in undifferentiated ES cells and mark the initiation of X inactivation. Both marks depend on Xist RNA localisation but are independent of silencing. Induction of Xist expression after the initiation window leads to a markedly reduced ability to induce H3K27m3, whereas expression before the restrictive time point allows efficient H3K27m3 establishment. Our data show that Xist expression early in ES cell differentiation establishes a chromosomal memory, which is maintained in the absence of silencing. One consequence of this memory is the ability to introduce H3K27m3 efficiently after the restrictive time point on the chromosome that has expressed Xist early. Our results suggest that this silencing-independent chromosomal memory has important implications for the maintenance of X inactivation, where previously self-perpetuating heterochromatin structures were viewed as the principal form of memory.

  6. Cytogenetic studies on meiotic chromosome behaviors in sterile Oriental x Trumpet lily

    NARCIS (Netherlands)

    Luo, J.R.; Tuyl, van J.M.; Arens, P.; Niu, L.X.

    2013-01-01

    In order to determine the reasons for pollen sterility in lily hybrids, four diploid sterile Oriental x Trumpet (OT) lily cultivars ('Nymph', 'Gluhwein', 'Yelloween', and 'Shocking') were used to investigate the meiotic chromosome behaviors in pollen mother cells (PMCs), using genomic in situ hybrid

  7. Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome

    DEFF Research Database (Denmark)

    da Rocha, Simão Teixeira; Boeva, Valentina; Escamilla-Del-Arenal, Martin;

    2014-01-01

    During X chromosome inactivation (XCI), the Polycomb Repressive Complex 2 (PRC2) is thought to participate in the early maintenance of the inactive state. Although Xist RNA is essential for the recruitment of PRC2 to the X chromosome, the precise mechanism remains unclear. Here, we demonstrate th...

  8. Chromosomal aberrations induced by the restriction endonucleases Alu I and Bam HI: comparison with X-rays

    International Nuclear Information System (INIS)

    Dose-effect relationships for the frequencies of polycentric chromosomes induced by the restriction endonucleases Alu I and Bam HI and by X-rays in Chinese hamster ovary (CHO) cells were analyzed and compared. 1 Gy of X-rays produce the same frequency of polycentric chromosomes as 2 units Alu I and 7.9 units Bam HI. (author)

  9. Molecular analysis of the distribution of chromosomal breakpoints: characterization of a 'hot' region for breaks in human chromosome 11

    International Nuclear Information System (INIS)

    Full text: Ionizing radiation randomly damages DNA and chromosomes whereas subsequent chromosome breaks are non-random. Assuming, as an ideal and naive but useful proposition, that breaks are equally likely anywhere in the chromosome and that a deletion always occurs between two breaks, the frequency of fragments would decrease linearly with increasing fragment size. This simple distribution is not, however, observed. To shed light on the 'real' situation of break formation we mapped breakpoints in the human chromosome no. 11 of 353 independent CD59- mutants isolated from human/hamster hybrid AL cells exposed to radiations (high and low dose-rate gamma rays, high LET carbon or nitrogen ions, protons) or chemicals (arsenic or irradiated, mutagenic histidine) or unexposed. The number of breaks per unit length of DNA differed significantly in different regions of chromosome 11.The highest level of breaks (140/mbp) were in the 0.8 mbp segment between CD59 and Catalase (CAT). Finer mapping of break points was carried out using 26 PCR primer pairs spread across this interval in 15 independent mutants. In two mutants, the break point was in a 107 bp fragment; in the other 13 the breaks were in a single 35 mbp fragment, but not all were at exactly the same site; 4 of 13 occurred in 3 different 3 mbp sub-segments. We are sequencing these fragments to look for such features as repeats: 'colder' regions like that between CD59 and WT will also be analyzed. But, since at least some breaks occurred at different sites and the frequency and distribution of breaks was about the same for all treatments, our we postulate that hot (and cold spots) may be due more to structural features or specific repair than to sequence or type of damage

  10. Nucleotide sequence heterogeneity of alpha satellite repetitive DNA: a survey of alphoid sequences from different human chromosomes.

    OpenAIRE

    Waye, J S; Willard, H F

    1987-01-01

    The human alpha satellite DNA family is composed of diverse, tandemly reiterated monomer units of approximately 171 basepairs localized to the centromeric region of each chromosome. These sequences are organized in a highly chromosome-specific manner with many, if not all human chromosomes being characterized by individually distinct alphoid subsets. Here, we compare the nucleotide sequences of 153 monomer units, representing alphoid components of at least 12 different human chromosomes. Base...

  11. Assignment of the human pancreatic regenerating (REG) gene to chromosome 2p12

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, R.; Egan, J.M.; Zenilman, M.E.; Shuldiner, A.R.; Hawkins, A.L.; Griffin, C.A. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1994-03-15

    A cDNA termed reg (for regenerating gene) has been isolated and characterized from a rat pancreatic library. Expression of reg is markedly increased in regenerating islets and decreased when insulin gene expression is inhibited. These findings have led to the hypothesis that reg may be involved in the expansion [beta]-cell function. The human reg gene has a high degree of similarity to the rat reg gene. To determine the chromosomal location of the human reg gene, the authors analyzed two panels of mouse- or hamster-human hybrid cell lines containing a single human chromosome or several different human chromosomes. DNA extracts from these cell lines were analyzed for the presence of the human reg gene by polymerase chain reaction. In addition, human metaphase chromosomes were used for fluorescence in situ hybridization to further confirm the chromosomal assignment and to determine the subchromosomal localization. With these approaches, they show that the human reg gene is located on the short arm of chromosome 2 near the centromere at band 2p12. 17 refs., 2 figs.

  12. Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes

    OpenAIRE

    Kouprina, N.; Ebersole, T.; Koriabine, M.; Pak, E; Rogozin, I. B.; Katoh, M; Oshimura, M; Ogi, K; Peredelchuk, M.; Solomon, G; Brown, W.; Barrett, J. C.; Larionov, V

    2003-01-01

    Human centromeres remain poorly characterized regions of the human genome despite their importance for the maintenance of chromosomes. In part this is due to the difficulty of cloning of highly repetitive DNA fragments and distinguishing chromosome-specific clones in a genomic library. In this work we report the highly selective isolation of human centromeric DNA using transformation-associated recombination (TAR) cloning. A TAR vector with alphoid DNA monomers as targeting sequences was used...

  13. Influence of DMSO on Carbon K ultrasoft X-rays induced chromosome aberrations in V79 Chinese hamster cells

    International Nuclear Information System (INIS)

    Ultrasoft X-rays have been shown to be very efficient in inducing chromosomal aberrations in mammalian cells. The present study was aimed to evaluate the modifying effects of DMSO (a potent scavenger of free radicals) on the frequencies of chromosome aberrations induced by soft X-rays. Confluent held G1 Chinese hamster cells (V79) were irradiated with Carbon K ultrasoft X-rays in the presence and absence of 1 M DMSO and frequencies of chromosome aberrations in the first division cells were determined. DMSO reduced the frequencies of exchange types of aberrations (dicentrics and centric rings) by a factor of 2.1-3.5. The results indicate that free radicals induced by ultrasoft X-rays contribute to a great extent to the induction of chromosome aberrations. The possible implications of these results in interpreting the mechanisms involved in the high efficiency of ultrasoft X-rays in the induction of chromosome aberrations are discussed.

  14. Influence of DMSO on Carbon K ultrasoft X-rays induced chromosome aberrations in V79 Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Adayapalam T., E-mail: natarajan@live.nl [University of Tuscia, Viterbo (Italy); Palitti, Fabrizio [University of Tuscia, Viterbo (Italy); Hill, Mark A. [CRUK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom); MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD (United Kingdom); Stevens, David L. [MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD (United Kingdom); Ahnstroem, Gunnar [Department of Microbiology and Genetic Toxicology, Stockholm University, Stockholm (Sweden)

    2010-09-10

    Ultrasoft X-rays have been shown to be very efficient in inducing chromosomal aberrations in mammalian cells. The present study was aimed to evaluate the modifying effects of DMSO (a potent scavenger of free radicals) on the frequencies of chromosome aberrations induced by soft X-rays. Confluent held G1 Chinese hamster cells (V79) were irradiated with Carbon K ultrasoft X-rays in the presence and absence of 1 M DMSO and frequencies of chromosome aberrations in the first division cells were determined. DMSO reduced the frequencies of exchange types of aberrations (dicentrics and centric rings) by a factor of 2.1-3.5. The results indicate that free radicals induced by ultrasoft X-rays contribute to a great extent to the induction of chromosome aberrations. The possible implications of these results in interpreting the mechanisms involved in the high efficiency of ultrasoft X-rays in the induction of chromosome aberrations are discussed.

  15. Effect of x-rays on chromosome 21 nondisjunction

    International Nuclear Information System (INIS)

    In a series of 156 females and 149 males with a Down syndrome (DS) child, a case-control study was performed to evaluate the effect of abdominal-pelvic exposure to diagnostic x-rays prior to conception on nondisjunction (ND). Cytogenetic analysis using QFQ banding allowed unequivocal identification of ND parents as cases. Partners of ND parents were treated as control group. Odds ratio for the association of x-rays exposure and ND occurrence (stratified for sex and age) was 1.85 (borderline to significance: with a 95% confidence interval 1-3.44). Such an association appeared highly significant in older fathers and borderline to significant in younger mothers, when age groups were analyzed separately. By comparing mean parental ages at birth of the propositus, the prevalence of exposure to x-rays appeared moderately associated with aging in control parents of both sexes. Furthermore, the mean age of unexposed ND parents of paternally derived SD cases was the same as the referent population's, suggesting that age is not a risk factor for ND in the male, except for being associated with increasing exposure risk. Conversely, risk attributable to x-rays exposure in the female appears to be progressively diluted with increasing age, by strongly age-dependent high risk, presumably due to biologic factors that are not affected by environmental exposure

  16. HUWE1 mutations in Juberg-Marsidi and Brooks syndromes: the results of an X-chromosome exome sequencing study

    Science.gov (United States)

    Friez, Michael J; Brooks, Susan Sklower; Stevenson, Roger E; Field, Michael; Basehore, Monica J; Adès, Lesley C; Sebold, Courtney; McGee, Stephen; Saxon, Samantha; Skinner, Cindy; Craig, Maria E; Murray, Lucy; Simensen, Richard J; Yap, Ying Yzu; Shaw, Marie A; Gardner, Alison; Corbett, Mark; Kumar, Raman; Bosshard, Matthias; van Loon, Barbara; Tarpey, Patrick S; Abidi, Fatima; Gecz, Jozef; Schwartz, Charles E

    2016-01-01

    Background X linked intellectual disability (XLID) syndromes account for a substantial number of males with ID. Much progress has been made in identifying the genetic cause in many of the syndromes described 20–40 years ago. Next generation sequencing (NGS) has contributed to the rapid discovery of XLID genes and identifying novel mutations in known XLID genes for many of these syndromes. Methods 2 NGS approaches were employed to identify mutations in X linked genes in families with XLID disorders. 1 involved exome sequencing of genes on the X chromosome using the Agilent SureSelect Human X Chromosome Kit. The second approach was to conduct targeted NGS sequencing of 90 known XLID genes. Results We identified the same mutation, a c.12928 G>C transversion in the HUWE1 gene, which gives rise to a p.G4310R missense mutation in 2 XLID disorders: Juberg-Marsidi syndrome (JMS) and Brooks syndrome. Although the original families with these disorders were considered separate entities, they indeed overlap clinically. A third family was also found to have a novel HUWE1 mutation. Conclusions As we identified a HUWE1 mutation in an affected male from the original family reported by Juberg and Marsidi, it is evident the syndrome does not result from a mutation in ATRX as reported in the literature. Additionally, our data indicate that JMS and Brooks syndromes are allelic having the same HUWE1 mutation. PMID:27130160

  17. Microcell-mediated transfer of a single human chromosome complements xeroderma pigmentosum group A fibroblasts

    International Nuclear Information System (INIS)

    Chromosomes from an immortalized aneuploid human fibroblast cell line were randomly tagged with the selectable marker neo by transfection with the plasmid pSV2neo. Somatic cell fusions between transfected human cells and mouse A9 cells generated pools of G418-resistant human-mouse hybrid clones containing various numbers of human chromosomes. Microcell-mediated chromosome transfer from the hybrid pools to xeroderma pigmentosum complementation group A (XP-A) cells in culture and selection for G418-resistant colonies resulted in the identification of XP cells with enhanced resistance to ultraviolet radiation. Screening of subclones from selected pools of human-mouse hybrids facilitated the identification of hybrids containing a single neo-tagged human chromosome. Transfer of this chromosome to XP-A cells (but not to XP-F or XP-C cells) results in enhanced resistance to ultraviolet light and enhanced excision repair capacity. The identification of a single human chromosome that complements the phenotype of XP-A cells in culture provides the potential for genetic mapping of the complementing gene and for its isolation by molecular cloning

  18. A small supernumerary marker chromosome present in a Turner syndrome patient not derived from X- or Y-chromosome: a case report

    Directory of Open Access Journals (Sweden)

    Vermeesch Joris

    2009-11-01

    Full Text Available Abstract Background Small supernumerary marker chromosomes (sSMC can be present in numerically abnormal karyotypes like in a 'Turner-syndrome karyotype' mos 45,X/46,X,+mar. Results Here we report the first case of an sSMC found in Turner syndrome karyotypes (sSMCT derived from chromosome 14 in a Turner syndrome patient. According to cytogenetic and molecular cytogenetic characterization the karyotype was 46,X,+del(14(q11.1. The present case is the third Turner syndrome case with an sSMCT not derived from the X- or the Y-chromosome. Conclusion More comprehensive characterization of such sSMCT might identify them to be more frequent than only ~0.6% in Turner syndrome cases according to available data.

  19. Cosmic radiation induced chromosomal aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    Since decades, elevated frequencies of dicentric chromosomes (DIC) in human lymphocytes have successfully been used as a biological dosimeter in cases of acute, often accidental exposures to ionizing radiation. As long as duration and time lags after exposure are small compared to the lifetime of DIC, their frequencies can also be used to assess doses from protracted, chronic irradiation. E.g., within the substantial range of uncertainties, the frequencies of DIC observed in cosmonauts are compatible with the frequencies expected from doses of low and high LET radiation to which they were exposed in low earth orbit (LEO). On the other hand, frequencies of DIC detected in lymphocytes of civilian aviation crewmembers rarely correlate with the doses accumulated all along their professional career. For such long duration exposures with relatively low induction rates, the concomitant decay of DIC frequencies due to the removal during exposure of lymphocytes carrying DIC has to be taken into account. We present temporal profiles of frequencies of DIC during the exposure calculated with a model of exponential decay of DIC for some scenarios of chronic exposure to cosmic radiation. E.g., even after a 'heavily' shielded Mars mission, the expected frequencies of DIC in lymphocytes of astronauts will be 10 to 40 times higher than the terrestrial control levels. For air flight personnel we calculated the time profiles of frequencies of DIC in lymphocytes of a 'typical' pilot, a male cabin attendant and a female cabin attendant whose professional radiation exposures were recalculated for the actual flight routes flown during their entire flight career as recorded in detailed duty logs. These results demonstrate that experimental (epidemiological) studies concerning DIC in air or space flight personnel must explicitly take into consideration the temporal exposure profiles in the prospective study population and that the point in time at which blood samples are to be drawn must

  20. cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human osteopontin (OPN)

    DEFF Research Database (Denmark)

    Young, M F; Kerr, J M; Termine, J D; Wewer, U M; Wang, M G; McBride, O W; Fisher, L W

    1990-01-01

    Arg-Gly-Asp (RGD) cell attachment site. Chromosomal mapping of the osteopontin gene (OPN) using human-rodent cell hybrids demonstrated a location on chromosome 4 in the human genome. In situ hybridization of metaphase chromosomes using radiolabeled OP1a as a probe indicated that the gene is located on...

  1. Chromosome studies in the red howler monkey, Alouatta seniculus stramineus (Platyrrhini, Primates): description of an X1X2Y1Y2/X1X1X2X2 sex-chromosome system and karyological comparisons with other subspecies.

    Science.gov (United States)

    Lima, M M; Seuánez, H N

    1991-01-01

    In the red howler monkey, Alouatta seniculus stramineus (2n = 47, 48, or 49), variations in diploid chromosome number are due to different numbers of microchromosomes. Males exhibit a Y;autosome translocation involving the short arm of an individual biarmed autosome. Consequently, the sex-chromosome constitution in the male is X1X2Y1Y2, with X1 representing the original X chromosome, X2 the biarmed autosome (No. 7), Y1 the Y;7p translocation product, and Y2 the acrocentric homolog of 7q. In the first meiotic division, a quadrivalent with a chain configuration can be observed in spermatocytes. Females have an X1X1X2X2 sex-chromosome constitution. Chromosome heteromorphisms were observed in pair 13, due to a pericentric inversion, and pair 19, due to the presence of constitutive heterochromatin. Microchromosomes, which varied in number between individuals, were also heterochromatic. NOR-staining was observed at two separate sites on a single chromosome pair (No. 10). A comparison of A.s. stramineus with A.s. macconnelli shows that these two subspecies have identical diploid chromosome numbers (47, 48, or 49), again due to a varying number of microchromosomes, and that they share a similar sex-chromosome constitution. Their karyotypes, however, are not identical, but can be derived from each other by a reciprocal translocation. Further comparisons with other A. seniculus subspecies reported in the literature indicate that this taxon is not karyologically uniform and that substantial chromosome shuffling has occurred between populations that have been considered to be subspecies by taxonomic criteria based on their morphometric attributes. PMID:1914523

  2. The Social Behavioral Phenotype in Boys and Girls with an Extra X Chromosome (Klinefelter Syndrome and Trisomy X) : A Comparison with Autism Spectrum Disorder

    NARCIS (Netherlands)

    van Rijn, Sophie; Stockmann, Lex; Borghgraef, Martine; Bruining, Hilgo; van Ravenswaaij-Arts, Conny; Govaerts, Lutgarde; Hansson, Kerstin; Swaab, Hanna

    2014-01-01

    The present study aimed to gain more insight in the social behavioral phenotype, and related autistic symptomatology, of children with an extra X chromosome in comparison to children with ASD. Participants included 60 children with an extra X chromosome (34 boys with Klinefelter syndrome and 26 girl

  3. Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene

    International Nuclear Information System (INIS)

    A human umbilical vein endothelial cell cDNA library in λgt11 was screened for expression of thrombomodulin antigens with affinity-purified rabbit polyclonal anti-thrombomodulin immunoglobulin G (IgG) and mouse monoclonal anti-human thrombomodulin IgG. Among 7 million recombinant clones screened, 12 were recognized by both antibodies. Two of these, λHTm10 and λHTm12, were shown to encode thrombomodulin by comparison of the amino acid sequence deduced from the nucleotide sequence to the amino acid sequence determined directly from tryptic peptides of thrombomodulin. Thrombomodulin mRNA was estimated to be 3.7 kilobases in length by Northern blot analysis of endothelial cell and placental poly(A) + RNA. Thrombomodulin mRNA was not detected in human brain, HepG2 hepatoma cells, or the monocytic U937 cell line. Additional cDNA clones were selected by hybridization with the 1.2-kilobase insert of λHTm10. One isolate, λHTm15, contained a 3693 base pair cDNA insert with an apparent 5'-noncoding region of 146 base pairs, an open reading frame of 1725 base pairs, a stop codon, a 3'-noncoding region of 1779 base pairs, and a poly(A) tail of 40 base pairs. The cDNA sequence encodes a 60.3-kDa protein of 575 amino acids. The organization of thrombomodulin is similar to that of the low-density lipoprotein receptor, and the protein is homologous to a large number of other proteins that also contain EGF-like domains, including factor VII, factor IX, factor X, factor XII, protein C, tissue plasminogen activator, and urokinase. The gene for thrombomodulin has been localized to chromosome 20 by hybridization of cDNA probes to purified human chromosomes

  4. Estimation of X ray overexposure in a childhood leukaemia cluster by means of chromosome aberration analysis

    International Nuclear Information System (INIS)

    Only multiple X ray diagnostics could be identified as a common risk factor in a leukaemia cluster that appeared between 1985-1989 in the municipality of Sittensen in northern Germany. In order to judge if the effect could be explained by irradiation dose, estimates were done in two of the leukaemia cases and seven former patients of a practice where some of the leukaemia cases had been treated for orthopaedic reasons. The methods used for the reconstruction of doses were physical simulation and biological dosimetry by dicentric chromosomes in peripheral lymphocytes. Compared to the Bremen laboratory control the mean frequency of dicentric chromosomes in the lymphocytes of the seven volunteers was significantly elevated. An overexposure of about 12-fold could be derived compared to state of the art X raying. At least two cases of the leukaemia cluster in Sittensen can therefore be correlated to an overexposure by diagnostic X rays. (author)

  5. Telomere shortening correlates with increasing aneuploidy of chromosome 8 in human hepatocellular carcinoma.

    Science.gov (United States)

    Plentz, Ruben R; Schlegelberger, Brigitte; Flemming, Peer; Gebel, Michael; Kreipe, Hans; Manns, Michael P; Rudolph, K Lenhard; Wilkens, Ludwig

    2005-09-01

    Chromosomal instability (CIN) leads to an increase in aneuploidy and chromosomal aberrations in human hepatocellular carcinoma (HCC). Telomere shortening appears as one mechanism fostering the development of CIN. Whether telomere shortening correlates to specific genetic changes that characterize a certain type of cancer has yet to be established. In our recent study, we combined on a cellular level the analysis of hepatocellular telomere fluorescent intensity (TFI) and copy number of chromosome 8-one of the hallmark chromosomal alterations in hepatocellular carcinoma (HCC). We investigated 15 cytological fine-needle biopsies of aneuploid HCC and 5 touch prints of cadaver livers without cancer. Hepatocyte-specific TFI and the measurement of centromere-specific probe for chromosome 8 were both performed by quantitative fluorescence in situ hybridization (qFISH) or FISH. Combined analysis of both methods (coFISH) allowed measurement of telomere length and chromosome 8 copy number on a single cell level. We observed that telomere shortening correlates significantly with increasing copy number of chromosome 8 in HCC on the cellular level. Above the level of 5 copies of chromosome 8 per nucleus, no further shortening of telomeres was found, indicating that telomeres had reached a critically short length at this stage of aneuploidy. In conclusion, our study gives direct evidence that telomere shortening is linked to a specific genetic alteration characteristic for human HCC. PMID:16116624

  6. Repair of x-ray induced chromosomal damage in trisomy 2- and normal diploid lymphocytes

    International Nuclear Information System (INIS)

    The frequency of chromosomal aberrations produced by x-rays is greater in lymphocytes cultured from trisomy 21 patients (Down's syndrome) than from normal diploid donors. This increase, which can be detected by a micronucleus assay for chromosomal damage, was postulated by us to result from a defect in the rejoining system which repairs chromosomal breaks. The postulated defect would result in a longer rejoining time, therapy permitting more movement of broken ends and thus enhancing the frequency of exchanges. To test this possibility, the time required for the rejoining (repair) of chromosome breaks was measured in lymphocytes from five Down's syndrome (four trisomy 21 and one D/G translocation partial trisomy 21) donors, from a monosomy 21 donor, and from five diploid donors. The rejoining time was reduced in the Down's syndrome lymphocytes in comparison to the normal diploid and monosomy 21 lymphocytes. Thus the repair of chromosome breaks, far from being defective as evidenced by a longer rejoining time in Down's syndrome cells, occurred more rapidly than in normal cells

  7. Integration of 28 STSs into the physical map of human chromosome 18

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, S.; White, R.; Bradley, P. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

    1994-12-01

    Genes on human chromosome 18 are associated with familial glucocorticoid deficiency (MC2R), pemphigus vulgaris (DSG3) and foliaceus (DSG1), familial amyloidosis (TTR), colorectal carcinoma (DCC), erythropoietic protoporphyria (FECH), follicular lymphoma (BCL2, FVT1), and congenital methemoglobinemia (CYB5). As the resolution of human genetic maps improves, linkage between other diseases and specific regions of chromosome 18 will occur. A physical map of human chromosome 18 will prove useful in identifying candidate genes that are associated with these disorders. Using various physical and genetic mapping techniques, over 35 genes and 19 expressed sequence tags (ESTs) are assigned to human chromosome 18. Most of these genes and several of the ESTs were sublocalized using a well-defined panel of somatic cell hybrids that contain different segments of human chromosome 18. Despite recent efforts, progress in mapping human chromosome 18 has lagged behind that achieved for other chromosomes. Thus, the purpose of this study was to integrate 9 new transcriptional tags [8 brain ESTs (8) and the melanocortin 4 receptor (MC4R) (3)] and 19 simple sequence repeats (SSRs) into the physical map of human chromosome 18. The SSRs were isolated by screening genomic DNA libraries constructed in M13mp18 vectors with oligonucleotide probes that detected dinucleotide d(CA)- and tetranucleotide-repeat motifs. DNA sequences of clones that contained microsatellite repeats were obtained by thermal-cycle sequencing, and STSs were developed from clones that contained numerous repeats. STSs that identified highly polymorphic loci in eight unrelated CEPH parents were used for genotyping. Results of linkage analyses and estimates of heterozygosity for these markers will be reported. 9 refs., 1 fig., 1 tab.

  8. Tandem Stem Loops in roX RNAs Act Together to Mediate X Chromosome Dosage Compensation in Drosophila

    OpenAIRE

    Ilik, Ibrahim Avsar; Quinn, Jeffrey J.; Georgiev, Plamen; Tavares-Cadete, Filipe; Maticzka, Daniel; Toscano, Sarah; Wan, Yue; Spitale, Robert C.; Luscombe, Nicholas; Backofen, Rolf; Chang, Howard Y; Akhtar, Asifa

    2013-01-01

    Dosage compensation in Drosophila is an epigenetic phenomenon utilizing proteins and long noncoding RNAs (lncRNAs) for transcriptional upregulation of the male X chromosome. Here, by using UV crosslinking followed by deep sequencing, we show that two enzymes in the Male-Specific Lethal complex, MLE RNA helicase and MSL2 ubiquitin ligase, bind evolutionarily conserved domains containing tandem stem loops in roX1 and roX2 RNAs in vivo. These domains constitute the minimal RNA unit present in mu...

  9. Chromosomal localization of the human gene encoding c-myc promoter-binding protein (MPB1) to chromosome 1p35-pter

    Energy Technology Data Exchange (ETDEWEB)

    White, R.A.; Dowler, L.L. [Univ. of Missouri, Kansas City, MO (United States); Adkison, L.R. [Mercer Univ. School of Medicine, Macon, GA (United States); Ray, R.B. [St. Louis Univ. Health Sciences Center, St. Louis, MO (United States)

    1997-02-01

    We report the mapping of the human gene MPB1 (c-myc promoter binding protein), a recently identified gene regulatory protein. MPB1 binds to the c-myc P2 promoter and exerts a negative regulatory role on c-myc transcription. Since exogenous expression from transfection of the MPB1 gene suppresses the tumorigenic property of breast cancer cells, there was interest in determining the chromosomal location of this gene. The human MPB1 gene was assigned to human chromosome 1p35-pter using Southern blot analyses of genomic DNAs from rodent-human somatic hybrid cell lines. A specific human genomic fragment was observed only in the somatic cell lines containing human chromosome 1 or the p35-pter region of the chromosome. 10 refs., 2 figs.

  10. Chromosome Aberrations in Human Lymphocytes Irradiated with Ionizing Radiation

    International Nuclear Information System (INIS)

    The purpose of the present experiment was to provide data on the dose-dependent production of chromosome aberrations such as dicentrics, centric rings, and excess acentrics. Radiation is one of the more dangerous clastogens in the environment. Ionizing radiation causes chromosome breakages and various cytogenetic aberrations in exposed cells. In an investigation into radiation emergencies, it is important to estimate the dose to exposed persons for several reasons. Physical dosimeters (e. g., film badges) may misrepresent the actual radiation dose and may not be available in a radiological accident or terrorism incident. Biological dosimetry is suitable for estimating the radiation dose during such accidents. The dicentric chromosome assay is very sensitive and a reliable bio-indicator in cases of accidental overexposure

  11. Karyotype description and evidence of multiple sex chromosome system X1X1X2X2/X1X2Y in Potamotrygon aff. motoro and P. falkneri (Chondrichthyes: Potamotrygonidae in the upper Paraná River basin, Brazil

    Directory of Open Access Journals (Sweden)

    Vanessa Paes da Cruz

    2011-03-01

    Full Text Available Cytogenetic analysis of Potamotrygon aff. motoro and P. falkneri indicated the occurrence of an X1X1X2X2/X1X2 Y multiple sex chromosome system in both species, with 2n = 66 chromosomes for females and 2n = 65 chromosomes for males. The nucleolus organizer regions (NORs identified using Ag-NOR technique showed that both species have multiple Ag-NORs (5 to 7 chromosomes stained. C-banding technique indicated the presence of heterochromatic blocks in the centromeric regions of almost all chromosomes in both species. Through this study there was evidence of heterogeneity in the karyotypes, which suggests that chromosomal rearrangements such as inversions and/or translocations occurred during the chromosomal evolution in two species of this genus.Análises citogenéticas de Potamotrygon aff. motoro e P. falkneri identificaram a ocorrência de um sistema múltiplo de cromossomos sexuais do tipo X1X1X2X2/X1X2Y, em ambas as espécies, com 2n = 66 cromossomos em fêmeas e 2n = 65 cromossomos nos machos. As regiões organizadoras de nucléolos (RONs identificadas pela reação Ag-RON, evidenciaram marcações múltiplas em ambas as espécies (com variações de 5 a 7 RONs. A técnica de bandamento C, revelou a presença de blocos heterocromáticos localizados nas regiões centromérica em quase todos os cromossomos nas duas espécies em estudo. Através do presente estudo foi evidenciada uma heterogeneidade nos cariótipos, permitindo sugerir que rearranjos cromossômicos, como inversões e/ou translocações, ocorreram durante a evolução cromossômica nas duas espécies desse gênero.

  12. A new species of Endecous Saussure, 1878 (Orthoptera, Gryllidae) from northeast Brazil with the first X1X20 chromosomal sex system in Gryllidae.

    Science.gov (United States)

    Zefa, Edison; Redü, Darlan Rutz; Da Costa, Maria Kátia Matiotti; Fontanetti, Carmem S; Gottschalk, Marco Silva; Padilha, Giovanna Boff; Fernandes e Silva, Anelise; Martins, Luciano De P

    2014-01-01

    In this paper we describe a new species of Luzarinae cricket collected from the cave "Gruta de Ubajara, municipality of Ubajara, State of Ceará, Brazil, highlighting phallic sclerites morphology and chromosome complement as diagnostic characters. We presented meiotic and mitotic characterization in order to define the karyotype with 2n = 12 + X1X2♂/12 + X1X1X2X2♀. This represents the first record of X1X20 chromosomal sex system in Gryllidae. PMID:25112329

  13. Human sperm chromosomes. Long-term effect of cancer treatment

    International Nuclear Information System (INIS)

    The long-term cytogenetic effect of radio- or chemotherapy or both on male germ cells was evaluated by study of the chromosomal abnormalities in spermatozoa of four men treated for cancer 5-18 years earlier. The cytogenetic analysis of 422 sperm metaphases showed no differences in the aneuploidy rate. The incidence of structural chromosome aberrations was 14.0%, however, which is much higher than in controls. Thus, the high incidence of structurally aberrant spermatozoa observed in our long-term study indicates that antitumoral treatments affect stem-cell spermatogonia and that aberrant cells can survive germinal selection and produce abnormal spermatozoa

  14. Molecular analysis of recombination in a family with Duchenne muscular dystrophy and a large pericentric X chromosome inversion

    Energy Technology Data Exchange (ETDEWEB)

    Shashi, V.; Golden, W.L.; Allinson, P.S. [Univ. of Virginia Health Sciences Center, Charlottesville, VA (United States)] [and others

    1996-06-01

    It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion. 50 refs., 7 figs., 1 tab.

  15. Testing for Hardy-Weinberg equilibrium at biallelic genetic markers on the X chromosome.

    Science.gov (United States)

    Graffelman, J; Weir, B S

    2016-06-01

    Testing genetic markers for Hardy-Weinberg equilibrium (HWE) is an important tool for detecting genotyping errors in large-scale genotyping studies. For markers at the X chromosome, typically the χ(2) or exact test is applied to the females only, and the hemizygous males are considered to be uninformative. In this paper we show that the males are relevant, because a difference in allele frequency between males and females may indicate HWE not to hold. The testing of markers on the X chromosome has received little attention, and in this paper we lay down the foundation for testing biallelic X-chromosomal markers for HWE. We develop four frequentist statistical test procedures for X-linked markers that take both males and females into account: the χ(2) test, likelihood ratio test, exact test and permutation test. Exact tests that include males are shown to have a better Type I error rate. Empirical data from the GENEVA project on venous thromboembolism is used to illustrate the proposed tests. Results obtained with the new tests differ substantially from tests that are based on female genotype counts only. The new tests detect differences in allele frequencies and seem able to uncover additional genotyping error that would have gone unnoticed in HWE tests based on females only. PMID:27071844

  16. X Chromosome Inactivation and Xist Evolution in a Rodent Lacking LINE-1 Activity

    Science.gov (United States)

    Cantrell, Michael A.; Carstens, Bryan C.; Wichman, Holly A.

    2009-01-01

    Dosage compensation in eutherian mammals occurs by inactivation of one X chromosome in females. Silencing of that X chromosome is initiated by Xist, a large non-coding RNA, whose coating of the chromosome extends in cis from the X inactivation center. LINE-1 (L1) retrotransposons have been implicated as possible players for propagation of the Xist signal, but it has remained unclear whether they are essential components. We previously identified a group of South American rodents in which L1 retrotransposition ceased over 8 million years ago and have now determined that at least one species of these rodents, Oryzomys palustris, still retains X inactivation. We have also isolated and analyzed the majority of the Xist RNA from O. palustris and a sister species retaining L1 activity, Sigmodon hispidus, to determine if evolution in these sequences has left signatures that might suggest a critical role for L1 elements in Xist function. Comparison of rates of Xist evolution in the two species fails to support L1 involvement, although other explanations are possible. Similarly, comparison of known repeats and potential RNA secondary structures reveals no major differences with the exception of a new repeat in O. palustris that has potential to form new secondary structures. PMID:19603076

  17. Divergence of the genes on human chromosome 21 between human and other hominoids and variation of substitution rates among transcription units

    OpenAIRE

    Shi, Jinxiu; Xi, Huifeng; Zhang, Chenghui; Jiang, Zhengwen; Zhang, Kuixing; Shen, Yayun; Jin, Lin; Zhang, Kaiyue; Yuan, Wentao; Ying WANG; Lin, Jie; Hua, Qi; Wang, Fengqing; Xu, Shuhua; Ren, Suangxi

    2003-01-01

    The study of genomic divergence between humans and primates may provide insight into the origins of human beings and the genetic basis of unique human traits and diseases. Chromosome 21 is the smallest chromosome in the human genome, and some of its regions have been implicated in mental retardation and other diseases. In this study, we sequenced the coding and regulatory regions of 127 known genes on human chromosome 21 in DNA samples from human and chimpanzees and a ...

  18. Acquired cystic disease-associated renal cell carcinoma with gain of chromosomes 3, 7, and 16, gain of chromosome X, and loss of chromosome Y.

    Science.gov (United States)

    Kuroda, Naoto; Shiotsu, Tomoyuki; Hes, Ondrej; Michal, Michal; Shuin, Taro; Lee, Gang-Hong

    2010-12-01

    Acquired cystic disease (ACD)-associated renal cell carcinoma (RCC) has been recently described. To date, there are no reports on genetic findings of G-band karyotype of ACD-associated RCC. In this article, we report the first report of G-band karyotype of ACD-associated RCC. A 66-year-old Japanese man was found to have a left renal tumor during the follow-up of hemodialysis consequent to chronic renal failure. Left nephrectomy was performed. Histological examination of three tumors in the left kidney showed the cribriform or microcystic growth pattern of neoplastic cells with eosinophilic cytoplasm, and many oxalate crystals were observed. The G-band karyotype of ACD-associated RCC showed 49, X, +X, -Y, +3, +7, +16. These chromosomal abnormalities resemble those of sporadic papillary RCC that has been previously reported. Finally, we suggest that this tumor may show a close relationship between ACD-associated RCC and papillary RCC, but a large-scale study will be needed to clarify the relationship between ACD-associated RCC and papillary RCC. PMID:21267700

  19. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F. (Harvard Medical School, Boston, MA (USA))

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid {beta} precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.

  20. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    International Nuclear Information System (INIS)

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid β precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS

  1. Prediction of human cell radiosensitivity: Comparison of clonogenic assay with chromosome aberrations scored using premature chromosome condensation with fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    The purpose of the present investigation was to determine whether chromosome aberrations scored by premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH) can predict the radiosensitivity of human cell lines, thereby providing a possible means of assessing the in situ radiosensitivity of normal tissues and the radiocurability of individual human cancers. We used four cells lines of different radiosensitivity: normal human fibroblasts (AG1522), ataxia-telangiectasia fibroblasts (AT2052), a human fibrosarcoma cell line (HT1080), and a human melanoma cell line (melanoma 903). These were irradiated in plateau phase with a range of doses and assessed both for clonogenic cell survival and for aberrations in a single chromosome (number 4) immediately after, and 24 h after irradiation. The initial number of breaks in chromosome 4 was proportional to irradiation dose and was identical for all the different human cell lines, irrespective of radiosensitivity. On the other hand, the number of chromosome 4 breaks remaining 24 h after irradiation reflected the radiosensitivity of the cells such that the relationship between residual chromosome aberrations and cell survival was the same for the different cell lines. These results suggest that the scoring of chromosome aberrations in interphase using FISH with PCC holds considerable promise for predicting the radiosensitivity of normal and tumor tissues in situ. 28 refs., 4 figs

  2. Characterization and evolution of a single-copy sequence from the human Y chromosome.

    OpenAIRE

    Burk, R D; Ma, P.; Smith, K D

    1985-01-01

    To study the evolution and organization of DNA from the human Y chromosome, we constructed a recombinant library of human Y DNA by using a somatic cell hybrid in which the only cytologically detectable human chromosome is the Y. One recombinant (4B2) contained a 3.3-kilobase EcoRI single-copy fragment which was localized to the proximal portion of the Y long arm. Sequences homologous to this human DNA are present in male gorilla, chimpanzee, and orangutan DNAs but not in female ape DNAs. Unde...

  3. Imprinted X chromosome inactivation: evolution of mechanisms in distantly related mammals

    Directory of Open Access Journals (Sweden)

    Shafagh A. Waters

    2015-03-01

    Full Text Available In females, X chromosome inactivation (XCI ensures transcriptional silencing of one of the two Xs (either in a random or imprinted fashion in somatic cells. Comparing this silencing between species has offered insight into different mechanisms of X inactivation, providing clues into the evolution of this epigenetic process in mammals. Long-noncoding RNAs have emerged as a common theme in XCI of therian mammals (eutherian and marsupial. Eutherian X inactivation is regulated by the noncoding RNA product of XIST, within a cis-acting master control region called the X inactivation center (XIC. Marsupials XCI is XIST independent. Instead, XCI is controlled by the long-noncoding RNA Rsx, which appears to be a functional analog of the eutherian XIST gene, insofar that its transcript coats the inactive X and represses activity of genes in cis. In this review we discuss XCI in eutherians, and contrast imprinted X inactivation in mouse and marsupials. We provide particular focus on the evolution of genomic elements that confer the unique epigenetic features that characterize the inactive X chromosome.

  4. Effect of aspirin on chromosome aberration and DNA damage induced by X-rays in mice

    Science.gov (United States)

    Niikawa, M.; Chuuriki, K.; Shibuya, K.; Seo, M.; Nagase, H.

    In order to reveal the anticlastogenic potency of aspirin, we evaluated the suppressive ability of aspirin on chromosome aberrations induced by X-ray. Aspirin at doses of 0.5, 5 and 50 mg/kg was administrated intraperitoneally or orally at 0.5 h after or before the X-ray irradiation. The anticlastogenic activity of aspirin on chromosome aberrations induced by X-ray was determined in the mouse micronucleus test and alkaline single cell gel electrophoresis (SCG) assay in vivo. The frequency by polychromatic erythrocytes with micronuclei (MNPCEs) was decreased by about 19-61% at 0.5 h after and about 23-62% at 0.5 h before the X-ray irradiation. DNA damage by X-ray was significantly decreased by oral administration of aspirin at 0.5 h after or before the X-ray irradiation for the SCG assay. We consider aspirin can be used as preventive agents against exposure of X-ray.

  5. The Role of X-Chromosome Inactivation in Retinal Development and Disease

    Science.gov (United States)

    Fahim, Abigail T.; Daiger, Stephen P.

    2016-01-01

    The expression of X-linked genes is equalized between males and females in mammalian species through X-Chromosome inactivation (XCI). Every cell in a female mammalian embryo randomly chooses one X Chromosome for epigenetic silencing at the 8–16 cell stage, resulting in a Gaussian distribution of XCI ratios with a peak at 50:50. At the tail extremes of this distribution, X-linked recessive mutations can manifest in disease in female carriers if the mutant allele is disproportionately active. The role of XCI skewing, if any, in X-linked retinal disease is still unknown, although many have speculated that such skewing accounts for phenotypic variation in female carriers of X-linked retinitis pigmentosa (XlRP). Some investigators have used clinical findings such as tapetal-like reflex, pigmentary changes, and multifocal ERG parameters to approximate XCI patches in the retina. These studies are limited by small cohorts and the relative inaccessibility of retinal tissue for genetic and epigenetic analysis. Although blood has been used as a proxy for other tissues in determining XCI ratios, blood XCI skews with age out of proportion to other tissues and may not accurately reflect retinal XCI ratios. Future investigations in determining retinal XCI ratios and the contribution of XCI to phenotype could potentially impact prognosis for female carriers of X-linked retinal disease. PMID:26427428

  6. No interaction between X-ray induced lesions in maternal and paternal chromosomes in inseminated eggs of Drosophila melanogaster

    International Nuclear Information System (INIS)

    X-ray induced premutational lesions persist in mature gametes of drosophila until fertilization. Repairable lesions in sperm and oocyte chromosomes are repaired exclusively by maternal repair systems in the inseminated egg. Interactions between irradiated genomes in inseminated eggs might result in additional lethality if breaks induced in separate nuclei, which would normally be repaired, could interact to form dicentric chromosomes. Adult drosophila flies were X-irradiated (up to 5 kR), individual females crossed to three or four males, and the dose-response curves for dominant lethals (embryonic lethality) compared. The results indicate thet the potentially lethal damage present in irradiated sperm chromosomes was expressed independently of whether or not the oocyte was also irradiated. There were no (or only very few) interactions between maternal and paternal chromosome complements, and the maternal repair systems acting on radiation-induced chromosome breaks in sperm were resistant to X-rays. (U.K.)

  7. Evaluation of X-Inactivation Status and Cytogenetic Stability of Human Dermal Fibroblasts after Long-Term Culture

    OpenAIRE

    Zhi-Gang Xue; Zhan-Ping Shi; Juan Dong; Ting-Ting Liao; Yan-Peng Wang; Xue-Ping Sun; Zheng-Jie Yan; Xiao-Qiao Qian; Yu-Gui Cui; Juan Chen; Jia-Yin Liu; Guoping Fan

    2010-01-01

    Human primary fibroblasts are a popular type of somatic cells for the production of induced pluripotent stem (iPS) cells. Here we characterized biological properties of primary fibroblasts in terms of cell-growth rate, cytogenetic stability, and the number of inactive X chromosomes during long-term passaging. We produced eight lines of female human dermal fibroblasts (HDFs) and found normal karyotype and expected pattern of X chromosome inactivation (XCI) at low passages (Passage P1-5). Howev...

  8. Chromosome damage in G0 X-irradiated lymphocytes from patients with hereditary retinoblastoma

    International Nuclear Information System (INIS)

    The amount of chromosome damage in peripheral blood lymphocytes following 400 rads G0 X-irradiation in 10 of 11 hereditary retinoblastoma patients was shown to be intermediate between that in normals and damage in trisomy 21 patients. The difference between normals and hereditary retinoblastoma patients was small, it varied between hereditary retinoblastoma patients, and no difference was detected following 200 rads G0 X-irradiation. No difference was found in levels of spontaneous chromosome damage in hereditary retinoblastoma patients, trisomy 21 patients, and normals. These results suggest that, although sensitivity to ionizing radiation may be associated with hereditary retinoblastoma, the observed difference is so small that it is probably not the major effect of the gene predisposing to retinoblastoma

  9. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Engreitz

    Full Text Available Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs, a process that requires spatial colocalization of chromosomal breakpoints. The "contact first" hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects.

  10. Hierarchical multifractal representation of symbolic sequences and application to human chromosomes

    Science.gov (United States)

    Provata, A.; Katsaloulis, P.

    2010-02-01

    The two-dimensional density correlation matrix is constructed for symbolic sequences using contiguous segments of arbitrary size. The multifractal spectrum obtained from this matrix motif is shown to characterize the correlations in the symbolic sequences. This method is applied to entire human chromosomes, shuffled human chromosomes, reconstructed human genomic sequences and to artificial random sequences. It is shown that all human chromosomes have common characteristics in their multifractal spectrum and deviate substantially from random and uncorrelated sequences of the same size. Small deviations are observed between the longer and the shorter chromosomes, especially for the higher (in absolute values) statistical moments. The correlations are crucial for the form of the multifractal spectrum; surrogate shuffled chromosomes present randomlike spectrum, distinctly different from the actual chromosomes. Analytical approaches based on hierarchical superposition of tensor products show that retaining pair correlations in the sequences leads to a closer representation of the genomic multifractal spectra, especially in the region of negative exponents, due to the underrepresentation of various functional units (such as the cytosine-guanine CG combination and its complementary GC complex). Retaining higher-order correlations in the construction of the tensor products is a way to approach closer the structure of the multifractal spectra of the actual genomic sequences. This hierarchical approach is generic and is applicable to other correlated symbolic sequences.

  11. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis.

    Science.gov (United States)

    Wandke, Cornelia; Barisic, Marin; Sigl, Reinhard; Rauch, Veronika; Wolf, Frank; Amaro, Ana C; Tan, Chia H; Pereira, Antonio J; Kutay, Ulrike; Maiato, Helder; Meraldi, Patrick; Geley, Stephan

    2012-09-01

    Chromokinesins are microtubule plus end-directed motor proteins that bind to chromosome arms. In Xenopus egg cell-free extracts, Xkid and Xklp1 are essential for bipolar spindle formation but the functions of the human homologues, hKID (KIF22) and KIF4A, are poorly understood. By using RNAi-mediated protein knockdown in human cells, we find that only co-depletion delayed progression through mitosis in a Mad2-dependent manner. Depletion of hKID caused abnormal chromosome arm orientation, delayed chromosome congression, and sensitized cells to nocodazole. Knockdown of KIF4A increased the number and length of microtubules, altered kinetochore oscillations, and decreased kinetochore microtubule flux. These changes were associated with failures in establishing a tight metaphase plate and an increase in anaphase lagging chromosomes. Co-depletion of both chromokinesins aggravated chromosome attachment failures, which led to mitotic arrest. Thus, hKID and KIF4A contribute independently to the rapid and correct attachment of chromosomes by controlling the positioning of chromosome arms and the dynamics of microtubules, respectively. PMID:22945934

  12. Developmental potential of clinically discarded human embryos and associated chromosomal analysis.

    Science.gov (United States)

    Yao, Guidong; Xu, Jiawei; Xin, Zhimin; Niu, Wenbin; Shi, Senlin; Jin, Haixia; Song, Wenyan; Wang, Enyin; Yang, Qingling; Chen, Lei; Sun, Yingpu

    2016-01-01

    Clinically discarded human embryos, which are generated from both normal and abnormal fertilizations, have the potential of developing into blastocysts. A total of 1,649 discarded human embryos, including zygotes containing normal (2PN) and abnormal (0PN, 1PN, 3PN and ≥4PN) pronuclei and prematurely cleaved embryos (2Cell), were collected for in vitro culture to investigate their developmental potential and chromosomal constitution using an SNP array-based chromosomal analysis. We found that blastocyst formation rates were 63.8% (for 2Cell embryos), 22.6% (2PN), 16.7% (0PN), 11.2% (3PN) and 3.6% (1PN). SNP array-based chromosomal analysis of the resultant blastocysts revealed that the percentages of normal chromosomes were 55.2% (2Cell), 60.7% (2PN), 44.4% (0PN) and 47.4% (0PN). Compared with clinical preimplantation genetic diagnosis (PGD) data generated with clinically acceptable embryos, results of the SNP array-based chromosome analysis on blastocysts from clinically discarded embryos showed similar values for the frequency of abnormal chromosome occurrence, aberrant signal classification and chromosomal distribution. The present study is perhaps the first systematic analysis of the developmental potential of clinically discarded embryos and provides a basis for future studies. PMID:27045374

  13. Non-invasive prenatal aneuploidy testing at chromosomes 13, 18, 21, X, and Y, using targeted sequencing of polymorphic loci

    Science.gov (United States)

    Zimmermann, Bernhard; Hill, Matthew; Gemelos, George; Demko, Zachary; Banjevic, Milena; Baner, Johan; Ryan, Allison; Sigurjonsson, Styrmir; Chopra, Nikhil; Dodd, Michael; Levy, Brynn; Rabinowitz, Matthew

    2012-01-01

    Objective Develop a non-invasive prenatal test based on analysis of cell-free DNA in maternal blood to detect fetal aneuploidy at chromosomes 13, 18, 21, X, and Y. Methods 166 samples from pregnant women, including eleven trisomy 21, three trisomy 18, two trisomy 13, two 45,X, and two 47,XXY samples were analyzed using an informatics-based method. Cell-free DNA from maternal blood was isolated and amplified using a multiplex PCR assay targeting 11,000 SNPs on chromosomes 13, 18, 21, X, and Y in a single reaction, then sequenced. A Bayesian-based Maximum Likelihood statistical method was applied to determine the chromosomal count of the five chromosomes interrogated in each sample, along with a sample-specific calculated accuracy for each test result. Results The algorithm correctly reported the chromosome copy number at all five chromosomes in 145 samples that passed a DNA quality test, for a total of 725/725 correct calls. The average calculated accuracy for these samples was 99.92%. Twenty-one samples did not pass the DNA quality test. Conclusions This informatics-based method non-invasively detected fetuses with trisomy 13, 18, and 21, 45,X, and 47,XXY with high sample-specific calculated accuracies for each individual chromosome and across all five chromosomes. PMID:23108718

  14. Extensive fragmentation of the X chromosome in the bed bug Cimex lectularius Linnaeus, 1758 (Heteroptera, Cimicidae): a survey across Europe

    Czech Academy of Sciences Publication Activity Database

    Sadílek, D.; Šťáhlavský, F.; Vilímová, J.; Zima, Jan

    2013-01-01

    Roč. 7, č. 4 (2013), s. 253-269. ISSN 1993-0771 Institutional support: RVO:68081766 Keywords : Cimex lectularius * Cimex pipistrelli * cytogenetics * chromosome number variation * X chromosome Subject RIV: EG - Zoology Impact factor: 1.211, year: 2013

  15. DNA linkage analysis of X chromosome-linked chronic granulomatous disease.

    OpenAIRE

    Baehner, R. L.; Kunkel, L M; Monaco, A P; Haines, J. L.; Conneally, P M; Palmer, C.; Heerema, N; Orkin, S H

    1986-01-01

    Chronic granulomatous disease (CGD) is a disorder of phagocytes that is usually inherited as an X chromosome-linked trait. Previous family studies suggested that the CGD locus resides on the distal short arm (Xp22-Xpter). Using cloned, polymorphic DNA probes we have performed a linkage analysis within CGD families that suggests a more proximal location (Xp21). In addition, the CGD locus is proximal to the Duchenne muscular dystrophy locus and lies within a broad region of Xp in which recombin...

  16. Developmental Genetics of the 2c-D Region of the Drosophila X Chromosome

    OpenAIRE

    Perrimon, Norbert; Engstrom, Lee; Mahowald, Anthony P.

    1985-01-01

    We have conducted a genetic and developmental analysis of genes within the 2C-D area of the X chromosome. Phenotypes of 33 mutations representing nine adjacent complementation groups including eight recessive lethals and one visible homeotic mutation (polyhomeotic) are described. Germline clonal analysis of the eight zygotic lethals has revealed three types of gene requirements: (1) normal activity at two pupal lethal loci (corkscrew and C204) and one larval lethal locus (ultraspiracle) is r...

  17. Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice.

    OpenAIRE

    Chapman, V M; Miller, D R; Armstrong, D; Caskey, C. T.

    1989-01-01

    We have used elevated levels of plasma creatine phosphokinase activity to identify muscular dystrophy phenotypes in mice and to screen the progeny of chemical mutagen-treated male mice for X chromosome-linked muscular dystrophy mutations. We were not successful in identifying heterozygous carriers of these induced muscular dystrophy mutations in greater than 8000 progeny. However, we were highly successful in identifying three additional alleles of the characterized mdx locus. These alleles o...

  18. CGG repeats associated with fragile X chromosome form left-handed Z-DNA structure

    Czech Academy of Sciences Publication Activity Database

    Renčiuk, Daniel; Kypr, Jaroslav; Vorlíčková, Michaela

    2011-01-01

    Roč. 95, č. 3 (2011), s. 174-181. ISSN 0006-3525 R&D Projects: GA ČR(CZ) GA202/07/0094; GA AV ČR(CZ) IAA100040701 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : fragile X chromosome syndrome * Z-DNA * trinucleotide repeats Subject RIV: BO - Biophysics Impact factor: 2.870, year: 2011

  19. Assessing multilocus introgression patterns: a case study on the mouse X chromosome in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Macholán, Miloš; Baird, S. J. E.; Dufková, Petra; Munclinger, P.; Vošlajerová Bímová, Barbora; Piálek, Jaroslav

    2011-01-01

    Roč. 65, č. 5 (2011), s. 1428-1446. ISSN 0014-3820 R&D Projects: GA ČR GA206/08/0640 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z60930519 Keywords : genetic conflict * hybrid zone movement * sex biased introgression * mice * X chromosome Subject RIV: EG - Zoology Impact factor: 5.146, year: 2011

  20. The X chromosome in the house mouse hybrid zone - the comparison of two geographically separated transects

    Czech Academy of Sciences Publication Activity Database

    Dufková, P.; Macholán, Miloš; Piálek, Jaroslav

    Myshkin : A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, 2008. s. 69. [Rodens et spatium /11./. 24.07.2008-28.08.2008, Myshkin] Institutional research plan: CEZ:AV0Z60930519; CEZ:AV0Z50450515 Keywords : X chromosome * house mouse hybrid zone Subject RIV: EB - Genetics ; Molecular Biology http://www.sevin.ru/rodensetspatium/conference.html

  1. Fine mapping of fatness QTL on porcine chromosome X and analyses of three positional candidate genes

    OpenAIRE

    Ma, Junwu; Gilbert, Hélène; Iannuccelli, Nathalie; Duan, Yanyu; Guo, Beili; Huang, Weibing; Ma, Huanban; Riquet, Juliette; Bidanel, Jean Pierre

    2013-01-01

    Background: Porcine chromosome X harbors four QTL strongly affecting backfat thickness (BFT), ham weight (HW), intramuscular fat content (IMF) and loin eye area (LEA). The confidence intervals (CI) of these QTL overlap and span more than 30 cM, or approximately 80 Mb. This study therefore attempts to fine map these QTL by joint analysis of two large-scale F2 populations (Large White × Meishan and White Duroc × Erhualian constructed by INRA and JXAU respectively) and furthermore, to determine ...

  2. Human tissue factor: cDNA sequence and chromosome localization of the gene

    International Nuclear Information System (INIS)

    A human placenta cDNA library in λgt11 was screened for the expression of tissue factor antigens with rabbit polyclonal anti-human tissue factor immunoglobulin G. Among 4 million recombinant clones screened, one positive, λHTF8, expressed a protein that shared epitopes with authentic human brain tissue factor. The 1.1-kilobase cDNA insert of λHTF8 encoded a peptide that contained the amino-terminal protein sequence of human brain tissue factor. Northern blotting identified a major mRNA species of 2.2 kilobases and a minor species of ∼ 3.2 kilobases in poly(A) + RNA of placenta. Only 2.2-kilobase mRNA was detected in human brain and in the human monocytic U937 cell line. In U937 cells, the quantity of tissue factor mRNA was increased several fold by exposure of the cells to phorbol 12-myristate 13-acetate. Additional cDNA clones were selected by hybridization with the cDNA insert of λHTF8. These overlapping isolates span 2177 base pairs of the tissue factor cDNA sequence that includes a 5'-noncoding region of 75 base pairs, an open reading frame of 885 base pairs, a stop codon, a 3'-noncoding region of 1141 base pairs, and a poly(a) tail. The open reading frame encodes a 33-kilodalton protein of 295 amino acids. The predicted sequence includes a signal peptide of 32 or 34 amino acids, a probable extracellular factor VII binding domain of 217 or 219 amino acids, a transmembrane segment of 23 acids, and a cytoplasmic tail of 21 amino acids. There are three potential glycosylation sites with the sequence Asn-X-Thr/Ser. The 3'-noncoding region contains an inverted Alu family repetitive sequence. The tissue factor gene was localized to chromosome 1 by hybridization of the cDNA insert of λHTF8 to flow-sorted human chromosomes

  3. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J.D.

    1992-06-01

    This project seeks to defining the chromosome segments associated with radiation induced leukemogenesis (treatment-related acute myeloid leukemia, or t-AML). Towards these goals genetic analysis of human chromosomes 5 and 7 continues to investigate correlation of treatment with balanced and unbalanced chromosomal translocations. Progress is being made in cloning the breakpoints in balanced translocations in t-AML, that is to clone the t(9;11) and t(11;19) breakpoints, to clone the t(3;21)(q26;q22) breakpoints and to determine the relationship of these translocations to prior exposure to topoisomerase II inhibitors. 11 figs. 3 figs.

  4. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation

    International Nuclear Information System (INIS)

    This project seeks to defining the chromosome segments associated with radiation induced leukemogenesis (treatment-related acute myeloid leukemia, or t-AML). Towards these goals genetic analysis of human chromosomes 5 and 7 continues to investigate correlation of treatment with balanced and unbalanced chromosomal translocations. Progress is being made in cloning the breakpoints in balanced translocations in t-AML, that is to clone the t(9;11) and t(11;19) breakpoints, to clone the t(3;21)(q26;q22) breakpoints and to determine the relationship of these translocations to prior exposure to topoisomerase II inhibitors. 11 figs. 3 figs

  5. Use of chromosome translocations for measuring prior environment exposures in humans

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, J. D.

    1997-05-01

    Recent advances in cytogenetic methodology are beginning to have a major impact upon our ability to provide assessments of environmental exposure in humans. The advent of fluorescent-based techniques for `painting` whole chromosomes has made the analysis of chromosome translocations rapid, specific, sensitive and routine. Chromosome painting has been used to address a wide variety of scientific questions, resulting in an increased understanding of the biological consequences of adverse environmental exposure. This paper describes the use of chromosome translocations as a biological marker of exposure and effect in humans. The relevance of translocations is discussed, as are the advantages and disadvantages of painting compared to classical cytogenetic methods for translocation evaluation. The factors to consider in the use of translocations as a retrospective indicator of exposure are then described. Several theoretical parameters that are important to the use of translocations are provided, and the paper concludes with a vision for the future of cytogenetic methodology.

  6. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Progress report, July 1992--August 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J.D.

    1993-09-01

    Progress in identification of chromosomal transformations associated with leukemogenesis is described. In particular progress in DNA cloning of chromosomal break points in human cancer patients is described.

  7. Normal newborn with prenatal suspicion of X chromosome monosomy due to confined placental mosaicism.

    Science.gov (United States)

    Serapinas, Danielius; Bartkeviciene, Daiva; Valantinaviciene, Emilija; Machtejeviene, Egle

    2016-10-01

    The recent introduction of cell-free DNA (cfDNA)-based noninvasive prenatal testing (NIPT) offers pregnant women a more accurate method than traditional serum screening methods for detecting fetal aneuploidies. Clinical trials have demonstrated the efficacy of NIPT for Down, Edwards and Patau syndromes. However NIPT approaches that take advantage of single-nucelotide polymorphism (SNP) information potentially allow the identification of triploidy, chromosomal microdeletion syndromes and other unusual genetic variants. To highlight this approach of NIPT we present a rare case of confined placental X chromosome monosomy mosaicism that was prenatally suspected with a single-nucleotide polymorphism-based noninvasive prenatal test. The results of invasive tests (amniocentesis) showed small proportion of X chromosome mosaicism (45, X[5]/46, XX[95]). After birth karyotype of the girl revealed no abnormalities (46 XX), confirming that mosaicism was limited to the placenta. These results highlight the need of patient's informed consent and thorough pretest and postest counseling to ensure that they understand the limitations and advantages of the tests and the implications of the resultss. PMID:27606664

  8. A Role for the X Chromosome in Sex Differences in Variability in General Intelligence?

    Science.gov (United States)

    Johnson, Wendy; Carothers, Andrew; Deary, Ian J

    2009-11-01

    There is substantial evidence that males are more variable than females in general intelligence. In recent years, researchers have presented this as a reason that, although there is little, if any, mean sex difference in general intelligence, males tend to be overrepresented at both ends of its overall distribution. Part of the explanation could be the presence of genes on the X chromosome related both to syndromal disorders involving mental retardation and to population variation in general intelligence occurring normally. Genes on the X chromosome appear overrepresented among genes with known involvement in mental retardation, which is consistent with a model we developed of the population distribution of general intelligence as a mixture of two normal distributions. Using this model, we explored the expected ratios of males to females at various points in the distribution and estimated the proportion of variance in general intelligence potentially due to genes on the X chromosome. These estimates provide clues to the extent to which biologically based sex differences could be manifested in the environment as sex differences in displayed intellectual abilities. We discuss these observations in the context of sex differences in specific cognitive abilities and evolutionary theories of sexual selection. PMID:26161735

  9. Acceleration of X-chromosome gene order evolution in the cattle lineage.

    Science.gov (United States)

    Park, Woncheoul; Oh, Hee-Seok; Kim, Heebal

    2013-06-01

    The gene order on the X chromosome of eutherians is generally highly conserved, although an increase in the rate of rearrangement has been reported in the rodent lineage. Conservation of the X chromosome is thought to be caused by selection related to maintenance of dosage compensation. However, we herein reveal that the cattle (Btau4.0) lineage has experienced a strong increase in the rate of X-chromosome rearrangement, much stronger than that previously reported for rodents. We also show that this increase is not matched by a similar increase on the autosomes and cannot be explained by assembly errors. Furthermore, we compared the difference in two cattle genome assemblies: Btau4.0 and Btau6.0 (Bos taurus UMD3.1). The results showed a discrepancy between Btau4.0 and Btau6.0 cattle assembly version data, and we believe that Btau6.0 cattle assembly version data are not more reliable than Btau4.0. PMID:23790974

  10. An X chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males

    OpenAIRE

    Chung Ren-Hua; Ma Deqiong; Wang Kai; Hedges Dale J; Jaworski James M; Gilbert John R; Cuccaro Michael L; Wright Harry H; Abramson Ruth K; Konidari Ioanna; Whitehead Patrice L; Schellenberg Gerard D; Hakonarson Hakon; Haines Jonathan L; Pericak-Vance Margaret A

    2011-01-01

    Abstract Background Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic component. The skewed prevalence toward males and evidence suggestive of linkage to the X chromosome in some studies suggest the presence of X-linked susceptibility genes in people with ASD. Methods We analyzed genome-wide association study (GWAS) data on the X chromosome in three independent autism GWAS data sets: two family data sets and one case-control data set. We performed m...

  11. Painting Analysis of Chromosome Aberrations Induced by Energetic Heavy Ions in Human Cells

    Science.gov (United States)

    Wu, Honglu; Hada, Megumi; Cucinotta, Francis

    2007-01-01

    This viewgraph presentation reviews some of the techniques used to analyze the damage done to chromosome from ion radiation. Fluorescence in situ hybridization (FISH), mFISH, mBAND, telomere and centromereprobes have been used to study chromosome aberrations induced in human cells exposed to low-and high-LET radiation in vitro. There is some comparison of the different results from the various techniques. The results of the study are summarized.

  12. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons: I. Irradiation of human blood samples in the "dry cell" of the TRIGA Mark II nuclear reactor.

    Science.gov (United States)

    Fajgelj, A; Lakoski, A; Horvat, D; Remec, I; Skrk, J; Stegnar, P

    1991-11-01

    A set-up for irradiation of biological samples in the TRIGA Mark II research reactor in Ljubljana is described. Threshold activation detectors were used for characterisation of the neutron flux, and the accompanying gamma dose was measured by TLDs. Human peripheral blood samples were irradiated "in vitro" and biological effects evaluated according to the unstable chromosomal aberrations induced. Biological effects of two types of cultivation of irradiated blood samples, the first immediately after irradiation and the second after 96 h storage, were studied. A significant difference in the incidence of chromosomal aberrations between these two types of samples was obtained, while our dose-response curve fitting coefficients alpha 1 = (7.71 +/- 0.09) x 10(-2) Gy-1 (immediate cultivation) and alpha 2 = (11.03 +/- 0.08) x 10(-2) Gy-1 (96 h delayed cultivation) are in both cases lower than could be found in the literature. PMID:1962281

  13. The microcell mediated transfer of human chromosome 8 into highly metastatic rat liver cancer cell line C5F

    Institute of Scientific and Technical Information of China (English)

    Hu Liu; Sheng-Long Ye; Jiong Yang; Zhao-You Tang; Yin-Kun Liu; Lun-Xiu Qin; Shuang-Jian Qiu; Rui-Xia Sun

    2003-01-01

    AIM: Our previous research on the surgical samples of primary liver cancer with CGH showed that the loss of human chromosome 8p had correlation with the metastatic phenotype of liver cancer. In order to seek the functional evidence that there could be a metastatsis suppressor gene (s) for liver cancer on human chromosome 8, we tried to transfer normal human chromosome 8 into rat liver cancer cell line C5F, which had high metastatic potential to lung.METHODS: Human chromosome 8 randomly marked with neo gene was introduced into C5F cell line by MMCT and positive microcell hybrids were screened by double selections of G418 and HAT. Single cell isolation cloning was applied to clone microcell hybrids. Finally, STS-PCR and WCP-FISH were used to confirm the introduction.RESULTS: Microcell hybrids resistant to HAT and G418 were obtained and 15 clones were obtained by single-cell isolation cloning. STS-PCR and WCP-FISH proved that human chromosome 8 had been successfully introduced into rat liver cancer cell line C5F. STS-PCR detected a random loss in the chromosome introduced and WCP-FISH found a consistent recombination of the introduced human chromosome with the rat chromosome.CONCLUSION: The successful introduction of human chromosome 8 into highly metastatic rat liver cancer cell line builds the basis for seeking functional evidence of a metastasis suppressor gene for liver cancer harboring on human chromosome 8 and its subsequent cloning.

  14. Paternal uniparental isodisomy for human chromosome 20 and absence of external ears

    Energy Technology Data Exchange (ETDEWEB)

    Spinner, N.B.; Rand, E.; McDonald-McGinn, D.M. [Childrens Hospital of Philadelphia, PA (United States)] [and others

    1994-09-01

    Uniparental disomy can cause disease if the involved chromosomal region contains imprinted genes. Uniparental disomy for portions of human chromosomes 6, 7, 9, 11, 14 and 15 have been associated with abnormal phenotypes. We studied a patient with multiple abnormalities including an absent left ear with a small right ear remnant, microcephaly, congenital heart disease and Hirschprung`s disease. Cytogenetics revealed a 45,XY,-20,-20,+ter rea(20;20)(p13;p13) in 10/10 cells from bone marrow and 20/20 cells from peripheral blood. Analysis of a skin culture revealed a second cell line with trisomy 20 resulting from an apparently normal chromosome 20 in addition to the terminally rearranged chromosome, in 8/100 cells studied. The unusual phenotype of our patient was not consistent with previously reported cases of deletions of 20p or mosaic trisomy 20. We hypothesized that the patient`s phenotype could either result from deletion of both copies of a gene near the p arm terminus of chromosome 20 or from uniparental disomy of chromosome 20. There were no alterations or rearrangements of PTP-alpha (which maps to distal 20p) by Southern or Northern blot analysis. A chromosome 20 sub-telomeric probe was found to be present on the rearranged 20 by FISH suggesting that subtelomeric sequences have not been lost as a consequece of this rearrangement. To determine the parental origin of the 2 chromosome 20`s in the terminal rearrangement, we studied the genotypes of the proband and his parents in lymphoblastoid cell lines at 8 polymorphic loci. Genotypes at D20S115, D20S186, and D20S119 indicated that there was paternal isodisomy. Other loci were uninformative. This is the first example of uniparental disomy for chromosome 20. Further studies are warranted to correlate phenotype with uniparental inheritance of this chromosome.

  15. Human Chromosome Y and Haplogroups; introducing YDHS Database

    OpenAIRE

    Tiirikka, Timo; Moilanen, Jukka S

    2015-01-01

    Background As the high throughput sequencing efforts generate more biological information, scientists from different disciplines are interpreting the polymorphisms that make us unique. In addition, there is an increasing trend in general public to research their own genealogy, find distant relatives and to know more about their biological background. Commercial vendors are providing analyses of mitochondrial and Y-chromosomal markers for such purposes. Clearly, an easy-to-use free interface t...

  16. International study of factors affecting human chromosome translocations

    Czech Academy of Sciences Publication Activity Database

    Sigurdson, A.J.; Ha, M.; Hauptmann, M.; Bhatti, P.; Šrám, Radim; Beskid, Olena; Tawn, E.J.; Whitehouse, C.A.; Lindholm, C.; Nakano, M.; Kodama, Y.; Nakamura, N.; Vorobtsova, I.; Oestreicher, U.; Stephan, G.; Yong, L.C.; Bauchinger, M.; Schmid, E.; Chung, H.W.; Darroudi, F.; Roy, L.; Voisin, P.; Barquinero, J.F.; Livingston, G.; Blakey, D.; Hayata, I.; Zhang, W.; Wang, Ch.; Benett, L.M.; Littlefield, L.G.; Edwards, A.A.; Kleinerman, R.A.; Tucker, J.D.

    2008-01-01

    Roč. 652, č. 2 (2008), s. 112-121. ISSN 1383-5718 R&D Projects: GA MŽP SL/5/160/05; GA MŽP SI/340/2/00; GA MŽP SL/740/5/03 Institutional research plan: CEZ:AV0Z50390512 Keywords : Chromosome translocations * FISH * Background frequency Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.363, year: 2008

  17. The 3D structure of human chromosomes in cell nuclei

    Czech Academy of Sciences Publication Activity Database

    Lukášová, Emilie; Kozubek, Stanislav; Kozubek, Michal; Falk, Martin; Amrichová, J.

    2002-01-01

    Roč. 10, č. 7 (2002), s. 535-548. ISSN 0967-3849 R&D Projects: GA AV ČR IBS5004010; GA AV ČR IAA1065203; GA MZd NC5955; GA ČR GA202/01/0197; GA ČR GA301/01/0186 Institutional research plan: CEZ:AV0Z5004920 Keywords : confocal microscopy * mathematical models * chromosome structure Subject RIV: BO - Biophysics Impact factor: 1.828, year: 2002

  18. Culture of human oocytes with granulocyte-macrophage colony-stimulating factor has no effect on embryonic chromosomal constitution

    DEFF Research Database (Denmark)

    Agerholm, Inge; Loft, Anne; Hald, Finn;

    2010-01-01

    number of normally developed embryos evaluated morphologically on day 3. The cytogenetic analyses demonstrated non-inferiority and therefore the chromosomal constitution of human embryos cultured in vitro in the presence of 2 ng/ml GM-CSF was no worse than the control group cultured without GM-CSF. In...... women donating 86 oocytes. The primary endpoint was to investigate the chromosomal constitution of human embryos (fluorescence in-situ hybridization analysis for chromosomes 13, 16, 18, 21, 22, X and Y) cultured with or without GM-CSF. The secondary endpoints were number of top-quality embryos (TQE) and......-vitro culture of human embryos in the presence of 2 ng/ml GM-CSF resulted in 34.8% (8/23) uniformly normal embryos. Culture without 2 ng/ml GM-CSF resulted in 33.3% (9/27) uniformly normal embryos. A trend towards a higher number of TQE in the test group was observed; however, due to lack of TQE in the control...

  19. Fine Mapping of the Body Fat QTL on Human Chromosome 1q43

    Science.gov (United States)

    Aissani, Brahim; Wiener, Howard W.; Zhang, Kui

    2016-01-01

    Introduction Evidence for linkage and association of obesity-related quantitative traits to chromosome 1q43 has been reported in the Quebec Family Study (QFS) and in populations of Caribbean Hispanic ancestries yet no specific candidate locus has been replicated to date. Methods Using a set of 1,902 single nucleotide polymorphisms (SNPs) genotyped in 525 African American (AA) and 391 European American (EA) women enrolled in the NIEHS uterine fibroid study (NIEHS-UFS), we generated a fine association map for the body mass index (BMI) across a 2.3 megabase-long interval delimited by RGS7 (regulator of G-protein signaling 7) and PLD5 (Phospholipase D, member 5). Multivariable-adjusted linear regression models were fitted to the data to evaluate the association in race-stratified analyses and meta-analysis. Results The strongest associations were observed in a recessive genetic model and peaked in the 3’ end of RGS7 at intronic rs261802 variant in the AA group (p = 1.0 x 10−4) and in meta-analysis of AA and EA samples (p = 9.0 x 10−5). In the EA group, moderate associations peaked at rs6429264 (p = 2.0 x 10−3) in the 2 Kb upstream sequence of RGS7. In the reference populations for the European ancestry in the 1,000 genomes project, rs6429264 occurs in strong linkage disequilibrium (D’ = 0.94) with rs1341467, the strongest candidate SNP for total body fat in QFS that failed genotyping in the present study. Additionally we report moderate associations at the 3’ end of PLD5 in meta-analysis (3.2 x 10−4 ≤ p ≤ 5.8 x 10−4). Conclusion We report replication data suggesting that RGS7, a gene abundantly expressed in the brain, might be a putative body fat QTL on human chromosome 1q43. Future genetic and functional studies are required to substantiate our observations and to potentially link them to the neurobehavioral phenotypes associated with the RGS7 region. PMID:27111224

  20. An improved method for producing radiation hybrids applied to human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, C.L.

    1992-01-01

    At the initiation of the grant we had just produced radiation hybrids from a monochromosomal microcell hybrid containing human chromosome 19 as its only human component. Radiation hybrids were produced using doses of radiation ranging from 1000--8000 rads. Lethally irradiated cells were then fused to hamster recipients (CHTG49) and selected for growth in histidinol. Approximately 240 clones were isolated and 75 clones were expanded for the isolation of DNA. This report describes in situ hybridization studies and the introduction of markers into human chromosome 19.

  1. Prognostic value of X-chromosome inactivation in symptomatic female carriers of dystrophinopathy

    Directory of Open Access Journals (Sweden)

    Juan-Mateu Jonàs

    2012-10-01

    Full Text Available Abstract Background Between 8% and 22% of female carriers of DMD mutations exhibit clinical symptoms of variable severity. Development of symptoms in DMD mutation carriers without chromosomal rearrangements has been attributed to skewed X-chromosome inactivation (XCI favouring predominant expression of the DMD mutant allele. However the prognostic use of XCI analysis is controversial. We aimed to evaluate the correlation between X-chromosome inactivation and development of clinical symptoms in a series of symptomatic female carriers of dystrophinopathy. Methods We reviewed the clinical, pathological and genetic features of twenty-four symptomatic carriers covering a wide spectrum of clinical phenotypes. DMD gene analysis was performed using MLPA and whole gene sequencing in blood DNA and muscle cDNA. Blood and muscle DNA was used for X-chromosome inactivation (XCI analysis thought the AR methylation assay in symptomatic carriers and their female relatives, asymptomatic carriers as well as non-carrier females. Results Symptomatic carriers exhibited 49.2% more skewed XCI profiles than asymptomatic carriers. The extent of XCI skewing in blood tended to increase in line with the severity of muscle symptoms. Skewed XCI patterns were found in at least one first-degree female relative in 78.6% of symptomatic carrier families. No mutations altering XCI in the XIST gene promoter were found. Conclusions Skewed XCI is in many cases familial inherited. The extent of XCI skewing is related to phenotype severity. However, the assessment of XCI by means of the AR methylation assay has a poor prognostic value, probably because the methylation status of the AR gene in muscle may not reflect in all cases the methylation status of the DMD gene.

  2. A chromosome-centric human proteome project (C-HPP) to characterize the sets of proteins encoded in chromosome 17.

    Science.gov (United States)

    Liu, Suli; Im, Hogune; Bairoch, Amos; Cristofanilli, Massimo; Chen, Rui; Deutsch, Eric W; Dalton, Stephen; Fenyo, David; Fanayan, Susan; Gates, Chris; Gaudet, Pascale; Hincapie, Marina; Hanash, Samir; Kim, Hoguen; Jeong, Seul-Ki; Lundberg, Emma; Mias, George; Menon, Rajasree; Mu, Zhaomei; Nice, Edouard; Paik, Young-Ki; Uhlen, Mathias; Wells, Lance; Wu, Shiaw-Lin; Yan, Fangfei; Zhang, Fan; Zhang, Yue; Snyder, Michael; Omenn, Gilbert S; Beavis, Ronald C; Hancock, William S

    2013-01-01

    We report progress assembling the parts list for chromosome 17 and illustrate the various processes that we have developed to integrate available data from diverse genomic and proteomic knowledge bases. As primary resources, we have used GPMDB, neXtProt, PeptideAtlas, Human Protein Atlas (HPA), and GeneCards. All sites share the common resource of Ensembl for the genome modeling information. We have defined the chromosome 17 parts list with the following information: 1169 protein-coding genes, the numbers of proteins confidently identified by various experimental approaches as documented in GPMDB, neXtProt, PeptideAtlas, and HPA, examples of typical data sets obtained by RNASeq and proteomic studies of epithelial derived tumor cell lines (disease proteome) and a normal proteome (peripheral mononuclear cells), reported evidence of post-translational modifications, and examples of alternative splice variants (ASVs). We have constructed a list of the 59 "missing" proteins as well as 201 proteins that have inconclusive mass spectrometric (MS) identifications. In this report we have defined a process to establish a baseline for the incorporation of new evidence on protein identification and characterization as well as related information from transcriptome analyses. This initial list of "missing" proteins that will guide the selection of appropriate samples for discovery studies as well as antibody reagents. Also we have illustrated the significant diversity of protein variants (including post-translational modifications, PTMs) using regions on chromosome 17 that contain important oncogenes. We emphasize the need for mandated deposition of proteomics data in public databases, the further development of improved PTM, ASV, and single nucleotide variant (SNV) databases, and the construction of Web sites that can integrate and regularly update such information. In addition, we describe the distribution of both clustered and scattered sets of protein families on the

  3. ALLELE DISTRIBUTION OF FIVE X-CHROMOSOME SHORT TANDEM REPEAT LOCI IN EWENKE POPULATION OF NORTH CHINA

    Institute of Scientific and Technical Information of China (English)

    Shan-zhi Gu; Teng Chen; Qing-bo Liu; Bing Yu; Sheng-bin Li

    2005-01-01

    Objective To study the allele genetic polymorphism of five short tandem repeat (STR) loci on X-chromosome in Ewenke population of north China and to provide basic data for forensic identification.Methods Genomic DNA was extracted from EDTA-whole blood of Ewenke population by Chelex-100. The DNA samples were amplified by PCR and were analyzed by polyacrylamide gel electrophoresis and silver staining. The sequence length variations of DXS6799, DXS8378, DXS101, HPRTB, and DXS6789 loci on X-chromosome in 98unrelated Ewenke individuals were investigated.Results All five loci analyzed showed high polymorphism and genetic stability. The data of the five X-chromosome STR loci in Ewenke ethnic group of China was in accordance with Hardy-Weinberg equilibrium by Chi-square test.Conclusion Allele polymorphism of five X-chromosome STR loci can be used as a genetic marker for forensic identification and population genetic research.

  4. X Chromosomal effects on social cognitive processing and emotion regulation : A study with Klinefelter men (47,XXY)

    NARCIS (Netherlands)

    van Rijn, S; Swaab, H; Aleman, A; Kahn, RS

    2006-01-01

    Studying Klinefelter syndrome (47,XXY), a genetically defined disorder characterized by the presence of an additional X chromosome, can reveal insights into genotype-phenotype associations. Increased vulnerability to psychiatric disorders characterized by difficulties in social interactions, such as

  5. The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus

    OpenAIRE

    Shao, Renfu; Kirkness, Ewen F.; Barker, Stephen C.

    2009-01-01

    The mitochondrial (mt) genomes of animals typically consist of a single circular chromosome that is ∼16-kb long and has 37 genes. Our analyses of the sequence reads from the Human Body Louse Genome Project and the patterns of gel electrophoresis and Southern hybridization revealed a novel type of mt genome in the sucking louse, Pediculus humanus. Instead of having all mt genes on a single chromosome, the 37 mt genes of this louse are on 18 minicircular chromosomes. Each minicircular chromosom...

  6. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    DEFF Research Database (Denmark)

    de Souza, S J; Camargo, A A; Briones, M R;

    2000-01-01

    by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48...

  7. Abundance of female-biased and paucity of male-biased somatically expressed genes on the mouse X-chromosome

    Directory of Open Access Journals (Sweden)

    Reinius Björn

    2012-11-01

    Full Text Available Abstract Background Empirical evaluations of sexually dimorphic expression of genes on the mammalian X-chromosome are needed to understand the evolutionary forces and the gene-regulatory mechanisms controlling this chromosome. We performed a large-scale sex-bias expression analysis of genes on the X-chromosome in six different somatic tissues from mouse. Results Our results show that the mouse X-chromosome is enriched with female-biased genes and depleted of male-biased genes. This suggests that feminisation as well as de-masculinisation of the X-chromosome has occurred in terms of gene expression in non-reproductive tissues. Several mechanisms may be responsible for the control of female-biased expression on chromosome X, and escape from X-inactivation is a main candidate. We confirmed escape in case of Tmem29 using RNA-FISH analysis. In addition, we identified novel female-biased non-coding transcripts located in the same female-biased cluster as the well-known coding X-inactivation escapee Kdm5c, likely transcribed from the transition-region between active and silenced domains. We also found that previously known escapees only partially explained the overrepresentation of female-biased X-genes, particularly for tissue-specific female-biased genes. Therefore, the gene set we have identified contains tissue-specific escapees and/or genes controlled by other sexually skewed regulatory mechanisms. Analysis of gene age showed that evolutionarily old X-genes (>100 myr, preceding the radiation of placental mammals are more frequently female-biased than younger genes. Conclusion Altogether, our results have implications for understanding both gene regulation and gene evolution of mammalian X-chromosomes, and suggest that the final result in terms of the X-gene composition (masculinisation versus feminisation is a compromise between different evolutionary forces acting on reproductive and somatic tissues.

  8. An isodicentric X chromosome with gonadal dysgenesis in a lady without prominent somatic features of Turner's syndrome. A case report.

    Science.gov (United States)

    Yu, Tse-Ya; Lin, Huan-Sheng; Chen, Pei-Lung; Huang, Tien-Shang

    2015-01-01

    Isodicentric X chromosomes in general have phenotypes characteristic of the resultant X deletions. Gonadotropin levels in Turner's syndrome (TS) girls are high, but have a normal biphasic pattern. Here, we report a 21-year-old lady with primary amenorrhea. Clinical examination revealed a short neck but no other typical stigmata of Turner's syndrome. The levels of gonadotropin were not raised to post-menopausal levels. A chromosome study showed a 45,X/46,X,idic(X)(q22) karyotype. She was diagnosed as having Turner's syndrome. PMID:25618587

  9. Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests

    International Nuclear Information System (INIS)

    Studies on exposed individuals, and on cultured cells, have shown that the human peripheral blood lymphocyte is an extremely sensitive indicator of both in vivo and in vitro induced chromosome structural change. These changes in chromosome structure offer readily scored morphological evidence of damage to the genetic material. Although problems exist in the extrapolation from in vitro results to the in vivo situation, the lymphocyte offers several advantages as a test system. The types of chromosome damage which can be cytologically distinguished at metaphase can be divided into two main groups: chromosome type and chromatid type. The circulating lymphocyte is in the G/sub 0/ or G/sub 1/ phase of mitosis and exposure to ionising radiations and certain other mutagenic agents during this stage produces chromosome-type damage where the unit of breakage and reunion is the whole chromosome (i.e. both chromatids at the same locus). However, cells exposed to these agents while in the S or G/sub 2/ stages of the cell cycle, after the chromosome has divided into two sister chromatids, yield chromatid-type aberrations and only the single chromatid is involved in breakage or exchange. Other agents (e.g. some of the alkylating agents) will usually produce only chromatid-type aberrations in cells in cycle although the cells are exposed to the mutagen whilst in G/sub 1/

  10. The TP53 dependence of radiation-induced chromosome instability in human lymphoblastoid cells

    Science.gov (United States)

    Schwartz, Jeffrey L.; Jordan, Robert; Evans, Helen H.; Lenarczyk, Marek; Liber, Howard

    2003-01-01

    The dose and TP53 dependence for the induction of chromosome instability were examined in cells of three human lymphoblastoid cell lines derived from WIL2 cells: TK6, a TP53-normal cell line, NH32, a TP53-knockout created from TK6, and WTK1, a WIL2-derived cell line that spontaneously developed a TP53 mutation. Cells of each cell line were exposed to (137)Cs gamma rays, and then surviving clones were isolated and expanded in culture for approximately 35 generations before the frequency and characteristics of the instability were analyzed. The presence of dicentric chromosomes, formed by end-to-end fusions, served as a marker of chromosomal instability. Unexposed TK6 cells had low levels of chromosomal instability (0.002 +/- 0.001 dicentrics/cell). Exposure of TK6 cells to doses as low as 5 cGy gamma rays increased chromosome instability levels nearly 10-fold to 0.019 +/- 0.008 dicentrics/cell. There was no further increase in instability levels beyond 5 cGy. In contrast to TK6 cells, unexposed cultures of WTK1 and NH32 cells had much higher levels of chromosome instability of 0.034 +/- 0.007 and 0.041 +/- 0.009, respectively, but showed little if any effect of radiation on levels of chromosome instability. The results suggest that radiation exposure alters the normal TP53-dependent cell cycle checkpoint controls that recognize alterations in telomere structure and activate apoptosis.

  11. A Turner Syndrome Patient Carrying a Mosaic Distal X Chromosome Marker

    Science.gov (United States)

    Mazzaschi, Roberto L. P.; Taylor, Juliet; Robertson, Stephen P.; Love, Donald R.; George, Alice M.

    2014-01-01

    A skin sample from a 17-year-old female was received for routine karyotyping with a set of clinical features including clonic seizures, cardiomyopathy, hepatic adenomas, and skeletal dysplasia. Conventional karyotyping revealed a mosaic Turner syndrome karyotype with a cell line containing a small marker of X chromosome origin. This was later confirmed on peripheral blood cultures by conventional G-banding, fluorescence in situ hybridisation and microarray analysis. Similar Turner mosaic marker chromosome cases have been previously reported in the literature, with a variable phenotype ranging from the mild “classic” Turner syndrome to anencephaly, agenesis of the corpus callosum, complex heart malformation, and syndactyly of the fingers and toes. This case report has a phenotype that is largely discordant with previously published cases as it lies at the severe end of the Turner variant phenotype scale. The observed cytogenetic abnormalities in this study may represent a coincidental finding, but we cannot exclude the possibility that the marker has a nonfunctioning X chromosome inactivation locus, leading to functional disomy of those genes carried by the marker. PMID:24778889

  12. A Turner Syndrome Patient Carrying a Mosaic Distal X Chromosome Marker

    Directory of Open Access Journals (Sweden)

    Roberto L. P. Mazzaschi

    2014-01-01

    Full Text Available A skin sample from a 17-year-old female was received for routine karyotyping with a set of clinical features including clonic seizures, cardiomyopathy, hepatic adenomas, and skeletal dysplasia. Conventional karyotyping revealed a mosaic Turner syndrome karyotype with a cell line containing a small marker of X chromosome origin. This was later confirmed on peripheral blood cultures by conventional G-banding, fluorescence in situ hybridisation and microarray analysis. Similar Turner mosaic marker chromosome cases have been previously reported in the literature, with a variable phenotype ranging from the mild “classic” Turner syndrome to anencephaly, agenesis of the corpus callosum, complex heart malformation, and syndactyly of the fingers and toes. This case report has a phenotype that is largely discordant with previously published cases as it lies at the severe end of the Turner variant phenotype scale. The observed cytogenetic abnormalities in this study may represent a coincidental finding, but we cannot exclude the possibility that the marker has a nonfunctioning X chromosome inactivation locus, leading to functional disomy of those genes carried by the marker.

  13. The human and mouse receptors of hyaluronan-mediated motility, RHAMM, genes (HMMR) map to human chromosome 5q33.2-qter and mouse chromosome 11

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Roller, M.L.; Camper, S.A. [Univ. of Michigan Medical School, Ann Arbor, MI (United States)] [and others

    1995-11-01

    The gene for the receptor for hyaluronan-mediated motility, RHAAM (designated hyaluronan-mediated motility receptor, HMMR (human) and Hmmr (mouse), for mapping purposes), was localized to human chromosome 5q33.2-qter by somatic cell and radiation hybrid analyses. Investigation of two interspecific back-crosses localized the mouse RHAMM (Hmmr) locus 18 cM from the centromere of mouse chromosome 11 within a region of synteny homology with human chromosome 5q23-q35 genes. The map position of the human RHAMM gene places it in a region comparatively rich in disease-associated genes, including those for low-frequency hearing loss, dominant limb-girdle muscular dystrophy, diastrophic dysplasia, Treacher Collins syndrome, and myeloid disorders associated with the 5q-syndrome. The RHAMM gene location and its ability to transform cells when overexpressed implicate RHAMM as a possible candidate gene in the pathogenesis of the recently described t(5;14)(q33-q34;q11) acute lymphoblastic leukemias. 18 refs., 1 fig.

  14. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

    OpenAIRE

    Smeets, Daniel; Markaki, Yolanda; Schmid, Volker J.; Kraus, Felix; Tattermusch, Anna; Cerase, Andrea; Sterr, Michael; Fiedler, Susanne; Demmerle, Justin; Popken, Jens; Leonhardt, Heinrich; Brockdorff, Neil; Cremer, Thomas; Schermelleh, Lothar; Cremer, Marion

    2014-01-01

    Background A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs)...

  15. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

    OpenAIRE

    Smeets, Daniel; Markaki, Yolanda; Schmid, Volker J.; Kraus, Felix; Tattermusch, Anna; Cerase, Andrea; Sterr, Michael; Fiedler, Susanne; Demmerle, Justin; Popken, Jens; Leonhardt, Heinrich; Brockdorff, Neil; Cremer, Thomas; Schermelleh, Lothar; Cremer, Marion

    2014-01-01

    Background: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs...

  16. Molecular genetic approach to human meningioma: loss of genes on chromosome 22

    Energy Technology Data Exchange (ETDEWEB)

    Seizinger, B.R.; De La Monte, S.; Atkins, L.; Gusella, J.F.; Martuza, R.L.

    1987-08-01

    A molecular genetic approach employing polymorphic DNA markers has been used to investigate the role of chromosomal aberrations in meningioma, one of the most common tumors of the human nervous system. Comparison of the alleles detected by DNA markers in tumor DNA versus DNA from normal tissue revealed chromosomal alterations present in primary surgical specimens. In agreement with cytogenetic studies of cultured meningiomas, the most frequent alteration detected was loss of heterozygosity on chromosome 22. Forty of 51 patients were constitutionally heterozygous for at least one chromosome 22 DNA marker. Seventeen of the 40 constitutionally heterozygotic patients (43%) displayed hemizygosity for the corresponding marker in their meningioma tumor tissues. Loss of heterozygosity was also detected at a significantly lower frequency for markers on several other autosomes. In view of the striking association between acoustic neuroma and meningioma in bilateral acoustic neurofibromatosis and the discovery that acoustic neuromas display specific loss of genes on chromosome 22, the authors propose that a common mechanism involving chromosome 22 is operative in the development of both tumor types. Fine-structure mapping to reveal partial deletions in meningiomas may provide the means to clone and characterize a gene (or genes) of importance for tumorigenesis in this and possibly other clinically associated tumors of the human nervous system.

  17. A comparison of chromosomal aberrations induced by in vivo radiotherapy in human sperm and lymphocytes

    International Nuclear Information System (INIS)

    Chromosomal aberrations in human sperm and lymphocytes were compared before and after in vivo radiation treatment of 13 cancer patients. The times of analyses after radiotherapy (RT) were 1, 3, 12, 24, 36, 48 and 60 months. The median total radiation dose was 30 Gy and the testicular dose varied from 0.4 to 5.0 Gy. Human sperm chromosome complements were analysed after fusion with golden hamster eggs. There were no abnormalities in sperm or lymphocytes before RT. Following RT there was an increase in the frequency of numerical and structural chromosomal abnormalities in both lymphocytes and sperm. For structural abnormalities there were more rejoined lesions (dicentrics, rings) in lymphocytes and more unrejoined lesions (chromosome breaks, fragments) in sperm. It appears that the frequency of lymphocyte chromosomal abnormalities had an initial marked increase after RT followed by a gradual decrease with time whereas the frequency of sperm chromosomal abnormalities was elevated when sperm production recovered and remained elevated from 24 to 60 mo. post-RT. This difference in the effect of time makes it very difficult to compare abnormality rates in lymphocytes and sperm and to use analysis of induced damage in somatic cells as surrogates for germ cells since the ratio between sperm and lymphocytes varied from 1:1 (at 24 mo. post-RT) to 5:1 (at 60 mo. post-RT). (author). 14 refs.; 2 figs.; 5 tabs

  18. Early and Late Damages in Chromosome 3 of Human Lymphocytes After Radiation Exposure

    Science.gov (United States)

    Sunagawa, Mayumi; Mangala, Lingegowda; Zhang, Ye; Kahdim, Munira; Wilson, Bobby; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    Tumor formation in humans or animals is a multi-step process. An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. GI is defined as elevated or persistent genetic damages occurring many generations after the cells are exposed. While early studies have demonstrated radiation-induced GI in several cell types as detected in endpoints such as mutation, apoptosis and damages in chromosomes, the dependence of GI on the quality of radiation remains uncertain. To investigate GI in human lymphocytes induced by both low- and high-LET radiation, we initially exposed white blood cells collected from healthy subjects to gamma rays in vitro, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis post irradiation and at several intervals during the culture period. Among a number of biological endpoints planned for the project, the multi-color banding fluorescent in situ hybridization (mBAND) allows identification of inversions that were expected to be stable. We present here early and late chromosome aberrations detected with mBAND in chromosome 3 after gamma exposure. Comparison of chromosome damages in between human lymphocytes and human epithelial cells is also discussed

  19. Protective Effect of Curcumin on γ - radiation Induced Chromosome Aberrations in Human Blood Lymphocytes

    International Nuclear Information System (INIS)

    The present work is aimed at evaluating the radioprotective effect of curcumin on γ radiation induced genetic toxicity. The DNA damage was analyzed by the frequencies of chromosome aberrations assay. Human lymphocytes were treated in vitro with 5.0 γg/ml of curcumin for 30 min at 37 degree C then exposed to 1, 2 and 4 Gy gamma-radiation. The lymphocytes which were pre-treated with curcumin exhibited a significant decrease in the frequency of chromosome aberration at 1 and 2 Gy radiation-induced chromosome damage as compared with the irradiated cells which did not receive the curcumin pretreatment. Thus, pretreatment with curcumin gives protection to lymphocytes against γ-radiation induced chromosome aberration at certain doses. (author)

  20. Evaluating the Y chromosomal timescale in human demographic and lineage dating.

    Science.gov (United States)

    Wang, Chuan-Chao; Gilbert, M Thomas P; Jin, Li; Li, Hui

    2014-01-01

    Y chromosome is a superb tool for inferring human evolution and recent demographic history from a paternal perspective. However, Y chromosomal substitution rates obtained using different modes of calibration vary considerably, and have produced disparate reconstructions of human history. Here, we discuss how substitution rate and date estimates are affected by the choice of different calibration points. We argue that most Y chromosomal substitution rates calculated to date have shortcomings, including a reliance on the ambiguous human-chimpanzee divergence time, insufficient sampling of deep-rooting pedigrees, and using inappropriate founding migrations, although the rates obtained from a single pedigree or calibrated with the peopling of the Americas seem plausible. We highlight the need for using more deep-rooting pedigrees and ancient genomes with reliable dates to improve the rate estimation. PMID:25215184

  1. Population genetic study of 34 X-Chromosome markers in 5 main ethnic groups of China

    Science.gov (United States)

    Zhang, Suhua; Bian, Yingnan; Li, Li; Sun, Kuan; wang, Zheng; Zhao, Qi; Zha, Lagabaiyila; Cai, Jifeng; Gao, Yuzhen; Ji, Chaoneng; Li, Chengtao

    2015-01-01

    As a multi-ethnic country, China has some indigenous population groups which vary in culture and social customs, perhaps as a result of geographic isolation and different traditions. However, upon close interactions and intermarriage, admixture of different gene pools among these ethnic groups may occur. In order to gain more insight on the genetic background of X-Chromosome from these ethnic groups, a set of X-markers (18 X-STRs and 16 X-Indels) was genotyped in 5 main ethnic groups of China (HAN, HUI, Uygur, Mongolian, Tibetan). Twenty-three private alleles were detected in HAN, Uygur, Tibetan and Mongolian. Significant differences (p < 0.0001) were all observed for the 3 parameters of heterozygosity (Ho, He and UHe) among the 5 ethnic groups. Highest values of Nei genetic distance were always observed at HUI-Uygur pairwise when analyzed with X-STRs or X-Indels separately and combined. Phylogenetic tree and PCA analyses revealed a clear pattern of population differentiation of HUI and Uygur. However, the HAN, Tibetan and Mongolian ethnic groups were closely clustered. Eighteen X-Indels exhibited in general congruent phylogenetic signal and similar cluster among the 5 ethnic groups compared with 16 X-STRs. Aforementioned results proved the genetic polymorphism and potential of the 34 X-markers in the 5 ethnic groups. PMID:26634331

  2. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. (Baylor College of Medicine, Houston, TX (United States))

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  3. Sequences homologous to the human x- and y-borne zinc finger protein genes (ZFX/Y) are autosomal in monotreme mannals

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.M.; Frost, C.; Graves, M.J.A. (Latrobe Univ., Bundoora (Australia)); Spencer, J.A. (Beckman Inst. of the City of Hope, Duarte, CA (United States))

    1993-02-01

    The human zinc finger protein genes (ZFX/Y) were identified as a result of a systematic search for the testis-determining factor gene on the human Y chromosome. Although they play no direct role in sex determination, they are of particular interest because they are highly conserved among mammals, birds, and amphibians and because, in eutherian mammals at least, they have active alleles on both the X and the Y chromosomes outside the pseudoautosomal region. We used in situ hybridization to localize the homologues of the zinc finger protein gene to chromosome 1 of the Australian echidna and to an equivalent position on chromosomes 1 and 2 of the playtpus. The localization to platypus chromosome 1 was confirmed by Southern analysis of a Chinese hamster [times] platypus cell hybrid retaining most of platypus chromosome 1. This localization is consistent with the cytological homology of chromosome 1 between the two species. The zinc finger protein gene homologues were localized to regions of platypus chromosomes 1 and 2 that included a number of other genes situated near ZFX on the short arm of the human X chromosome. These results support the hypothesis that many of the genes located on the short arm of the human X were originally autosomal and have been translocated to the X chromosome since the eutherian-metatherian divergence. 34 refs., 3 figs., 2 tabs.

  4. Cloning of a human galactokinase gene (GK2) on chromosome 15 by complementation in yeast.

    OpenAIRE

    Lee, R T; Peterson, C L; Calman, A F; Herskowitz, I.; O'Donnell, J J

    1992-01-01

    A human cDNA encoding a galactokinase (EC 2.7.1.6) was isolated by complementation of a galactokinase-deficient (gal1-) strain of Saccharomyces cerevisiae. This cDNA encodes a predicted protein of 458 amino acids with 29% identity to galactokinase of Saccharomyces carlsbergensis. Previous studies have mapped a human galactokinase gene (GK1) to chromosome 17q23-25, closely linked to thymidine kinase. The galactokinase gene that we have isolated (GK2) is located on chromosome 15. The relationsh...

  5. Frequency of Chromosomally-Integrated Human Herpesvirus 6 in Children with Acute Lymphoblastic Leukemia

    OpenAIRE

    Annie Gravel; Daniel Sinnett; Louis Flamand

    2013-01-01

    Introduction Human herpesvirus 6 (HHV-6) is a ubiquitous pathogen infecting nearly 100% of the human population. Of these individuals, between 0.2% and 1% of them carry chromosomally-integrated HHV-6 (ciHHV-6). The biological consequences of chromosomal integration by HHV-6 remain unknown. Objective To determine and compare the frequency of ciHHV-6 in children with acute lymphoblastic leukemia to healthy blood donors. Methodology A total of 293 DNA samples from children with pre-B (n = 255), ...

  6. Final report. Human artificial episomal chromosome (HAEC) for building large genomic libraries

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Michael H. Vos

    1999-12-09

    Collections of human DNA fragments are maintained for research purposes as clones in bacterial host cells. However for unknown reasons, some regions of the human genome appear to be unclonable or unstable in bacteria. Their team has developed a system using episomes (extrachromosomal, autonomously replication DNA) that maintains large DNA fragments in human cells. This human artificial episomal chromosomal (HAEC) system may prove useful for coverage of these especially difficult regions. In the broader biomedical community, the HAEC system also shows promise for use in functional genomics and gene therapy. Recent improvements to the HAEC system and its application to mapping, sequencing, and functionally studying human and mouse DNA are summarized. Mapping and sequencing the human genome and model organisms are only the first steps in determining the function of various genetic units critical for gene regulation, DNA replication, chromatin packaging, chromosomal stability, and chromatid segregation. Such studies will require the ability to transfer and manipulate entire functional units into mammalian cells.

  7. Modified C-band technique for the analysis of chromosome abnormalities in irradiated human lymphocytes

    International Nuclear Information System (INIS)

    A modified C-band technique was developed in order to analyze more accurately dicentric, tricentric, and ring chromosomes in irradiated human peripheral lymphocytes. Instead of the original method relying on treatment with barium hydroxide Ba(OH)2, C-bands were obtained using a modified form of heat treatment in formamide followed with DAPI staining. This method was tentatively applied to the analysis of dicentric chromosomes in irradiated human lymphocytes to examine its availability. The frequency of dicentric chromosome was almost the same with conventional Giemsa staining and the modified C-band technique. In the analysis using Giemsa staining, it is relatively difficult to identify the centromere on the elongated chromosomes, over-condensed chromosomes, fragment, and acentric ring. However, the modified C-band method used in this study makes it easier to identify the centromere on such chromosomes than with the use of Giemsa staining alone. Thus, the modified C-band method may give more information about the location of the centromere. Therefore, this method may be available and more useful for biological dose estimation due to the analysis of the dicentric chromosome in human lymphocytes exposed to the radiation. Furthermore, this method is simpler and faster than the original C-band protocol and fluorescence in situ hybridization (FISH) method with the centromeric DNA probe. - Highlights: → The dicentric (dic) assay is the most effective for the radiation biodosimetry. → It is important to recognize the centromere of the dic. → We improved a C-band technique based on heat denaturation. → This technique enables the accurate detection of a centromere. → This method may be available and more useful for biological dose estimation.

  8. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    Science.gov (United States)

    de Souza, Sandro J.; Camargo, Anamaria A.; Briones, Marcelo R. S.; Costa, Fernando F.; Nagai, Maria Aparecida; Verjovski-Almeida, Sergio; Zago, Marco A.; Andrade, Luis Eduardo C.; Carrer, Helaine; El-Dorry, Hamza F. A.; Espreafico, Enilza M.; Habr-Gama, Angelita; Giannella-Neto, Daniel; Goldman, Gustavo H.; Gruber, Arthur; Hackel, Christine; Kimura, Edna T.; Maciel, Rui M. B.; Marie, Suely K. N.; Martins, Elizabeth A. L.; Nóbrega, Marina P.; Paçó-Larson, Maria Luisa; Pardini, Maria Inês M. C.; Pereira, Gonçalo G.; Pesquero, João Bosco; Rodrigues, Vanderlei; Rogatto, Silvia R.; da Silva, Ismael D. C. G.; Sogayar, Mari C.; de Fátima Sonati, Maria; Tajara, Eloiza H.; Valentini, Sandro R.; Acencio, Marcio; Alberto, Fernando L.; Amaral, Maria Elisabete J.; Aneas, Ivy; Bengtson, Mário Henrique; Carraro, Dirce M.; Carvalho, Alex F.; Carvalho, Lúcia Helena; Cerutti, Janete M.; Corrêa, Maria Lucia C.; Costa, Maria Cristina R.; Curcio, Cyntia; Gushiken, Tsieko; Ho, Paulo L.; Kimura, Elza; Leite, Luciana C. C.; Maia, Gustavo; Majumder, Paromita; Marins, Mozart; Matsukuma, Adriana; Melo, Analy S. A.; Mestriner, Carlos Alberto; Miracca, Elisabete C.; Miranda, Daniela C.; Nascimento, Ana Lucia T. O.; Nóbrega, Francisco G.; Ojopi, Élida P. B.; Pandolfi, José Rodrigo C.; Pessoa, Luciana Gilbert; Rahal, Paula; Rainho, Claudia A.; da Ro's, Nancy; de Sá, Renata G.; Sales, Magaly M.; da Silva, Neusa P.; Silva, Tereza C.; da Silva, Wilson; Simão, Daniel F.; Sousa, Josane F.; Stecconi, Daniella; Tsukumo, Fernando; Valente, Valéria; Zalcberg, Heloisa; Brentani, Ricardo R.; Reis, Luis F. L.; Dias-Neto, Emmanuel; Simpson, Andrew J. G.

    2000-01-01

    Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1,181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes, for 67 (44.6%) of the 150 related genes, and for 45 of the 148 (30.4%) EST-predicted genes on this chromosome. Using a set of stringent criteria to validate our sequences, we identified a further 219 previously unannotated transcribed sequences on chromosome 22. Of these, 171 were in fact also defined by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48 transcribed sequences on chromosome 22 not defined by other sequences. All of the transcribed sequences defined by ORESTES coincided with DNA regions predicted as encoding exons by genscan. (http://genes.mit.edu/GENSCAN.html). PMID:11070084

  9. Analysis of the DNA sequence and duplication history of human chromosome 15.

    Science.gov (United States)

    Zody, Michael C; Garber, Manuel; Sharpe, Ted; Young, Sarah K; Rowen, Lee; O'Neill, Keith; Whittaker, Charles A; Kamal, Michael; Chang, Jean L; Cuomo, Christina A; Dewar, Ken; FitzGerald, Michael G; Kodira, Chinnappa D; Madan, Anup; Qin, Shizhen; Yang, Xiaoping; Abbasi, Nissa; Abouelleil, Amr; Arachchi, Harindra M; Baradarani, Lida; Birditt, Brian; Bloom, Scott; Bloom, Toby; Borowsky, Mark L; Burke, Jeremy; Butler, Jonathan; Cook, April; DeArellano, Kurt; DeCaprio, David; Dorris, Lester; Dors, Monica; Eichler, Evan E; Engels, Reinhard; Fahey, Jessica; Fleetwood, Peter; Friedman, Cynthia; Gearin, Gary; Hall, Jennifer L; Hensley, Grace; Johnson, Ericka; Jones, Charlien; Kamat, Asha; Kaur, Amardeep; Locke, Devin P; Madan, Anuradha; Munson, Glen; Jaffe, David B; Lui, Annie; Macdonald, Pendexter; Mauceli, Evan; Naylor, Jerome W; Nesbitt, Ryan; Nicol, Robert; O'Leary, Sinéad B; Ratcliffe, Amber; Rounsley, Steven; She, Xinwei; Sneddon, Katherine M B; Stewart, Sandra; Sougnez, Carrie; Stone, Sabrina M; Topham, Kerri; Vincent, Dascena; Wang, Shunguang; Zimmer, Andrew R; Birren, Bruce W; Hood, Leroy; Lander, Eric S; Nusbaum, Chad

    2006-03-30

    Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplications in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome. PMID:16572171

  10. Unique genomic sequences in human chromosome 16p are conserved in the great apes.

    Science.gov (United States)

    Tarzami, S T; Kringstein, A M; Conte, R A; Verma, R S

    1997-01-27

    In humans, acute myelomonocytic leukemia (AMML) with abnormal bone marrow eosinophilia is diagnosed by the presence of a pericentric inversion in chromosome 16, involving breakpoints p13;q23 [i.e., inv(16)(p13;q23)]. A pericentric inversion involves breaks that have occurred on the p and q arms and the segment in between is rotated 180 degrees and reattaches. The recent development of a "human micro-coatasome" painting probe for 16p contains unique DNA sequences that fluorescently label only the short arm of chromosome 16, which facilitates the identification of such inversions and represents an ideal tool for analyzing the "divergence/convergence" of the equivalent human chromosome 16 (PTR 18, GGO 17 and PPY 19) in the great apes, chimpanzee, gorilla and orangutan. When the probe is used on the type of pericentric inversion characteristic of AMML, signals are observed on the proximal portions (the regions closest to the centromere) of the long and short arms of chromosome 16. The probe hybridized to only the short arm of all three ape chromosomes and signals were not observed on the long arms, suggesting that a pericentric inversion similar to that seen in AMML has not occurred in any of these great apes. PMID:9037113

  11. Spermatogenesis Drives Rapid Gene Creation and Masculinization of the X Chromosome in Stalk-Eyed Flies (Diopsidae)

    Science.gov (United States)

    Baker, Richard H.; Narechania, Apurva; DeSalle, Rob; Johns, Philip M.; Reinhardt, Josephine A.; Wilkinson, Gerald S.

    2016-01-01

    Throughout their evolutionary history, genomes acquire new genetic material that facilitates phenotypic innovation and diversification. Developmental processes associated with reproduction are particularly likely to involve novel genes. Abundant gene creation impacts the evolution of chromosomal gene content and general regulatory mechanisms such as dosage compensation. Numerous studies in model organisms have found complex and, at times contradictory, relationships among these genomic attributes highlighting the need to examine these patterns in other systems characterized by abundant sexual selection. Therefore, we examined the association among novel gene creation, tissue-specific gene expression, and chromosomal gene content within stalk-eyed flies. Flies in this family are characterized by strong sexual selection and the presence of a newly evolved X chromosome. We generated RNA-seq transcriptome data from the testes for three species within the family and from seven additional tissues in the highly dimorphic species, Teleopsis dalmanni. Analysis of dipteran gene orthology reveals dramatic testes-specific gene creation in stalk-eyed flies, involving numerous gene families that are highly conserved in other insect groups. Identification of X-linked genes for the three species indicates that the X chromosome arose prior to the diversification of the family. The most striking feature of this X chromosome is that it is highly masculinized, containing nearly twice as many testes-specific genes as expected based on its size. All the major processes that may drive differential sex chromosome gene content—creation of genes with male-specific expression, development of male-specific expression from pre-existing genes, and movement of genes with male-specific expression—are elevated on the X chromosome of T. dalmanni. This masculinization occurs despite evidence that testes expressed genes do not achieve the same levels of gene expression on the X chromosome as they

  12. Spermatogenesis Drives Rapid Gene Creation and Masculinization of the X Chromosome in Stalk-Eyed Flies (Diopsidae).

    Science.gov (United States)

    Baker, Richard H; Narechania, Apurva; DeSalle, Rob; Johns, Philip M; Reinhardt, Josephine A; Wilkinson, Gerald S

    2016-01-01

    Throughout their evolutionary history, genomes acquire new genetic material that facilitates phenotypic innovation and diversification. Developmental processes associated with reproduction are particularly likely to involve novel genes. Abundant gene creation impacts the evolution of chromosomal gene content and general regulatory mechanisms such as dosage compensation. Numerous studies in model organisms have found complex and, at times contradictory, relationships among these genomic attributes highlighting the need to examine these patterns in other systems characterized by abundant sexual selection. Therefore, we examined the association among novel gene creation, tissue-specific gene expression, and chromosomal gene content within stalk-eyed flies. Flies in this family are characterized by strong sexual selection and the presence of a newly evolved X chromosome. We generated RNA-seq transcriptome data from the testes for three species within the family and from seven additional tissues in the highly dimorphic species,Teleopsis dalmanni Analysis of dipteran gene orthology reveals dramatic testes-specific gene creation in stalk-eyed flies, involving numerous gene families that are highly conserved in other insect groups. Identification of X-linked genes for the three species indicates that the X chromosome arose prior to the diversification of the family. The most striking feature of this X chromosome is that it is highly masculinized, containing nearly twice as many testes-specific genes as expected based on its size. All the major processes that may drive differential sex chromosome gene content-creation of genes with male-specific expression, development of male-specific expression from pre-existing genes, and movement of genes with male-specific expression-are elevated on the X chromosome ofT. dalmanni This masculinization occurs despite evidence that testes expressed genes do not achieve the same levels of gene expression on the X chromosome as they do on

  13. Mouse Elk oncogene maps to chromosome X and a novel Elk oncogene (Elk3) maps to chromosome 10

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, Yoshitaka; Taketo, Makoto [Banyu Tsukuba Research Institute, Tsukuba (Japan); Nozaki, Masami [Osaka Univ. (Japan)] [and others

    1995-03-20

    The Elk protein is a member of the Ets family found in both vertebrates and invertebrates. Human ELK1 encoded by ELK1 binds alone or together with serum response factor to DNA and regulates gene expression in a variety of biological processes. Using a panel of interspecific backcross mice, we have mapped the Elk oncogene (Elk) and a novel type Elk oncogene (Elk3), closely related to ELK1. Elk maps to Chr X, and Elk3 maps to the proximal region of Chr 10. 18 refs., 1 fig., 1 tab.

  14. Mouse Elk oncogene maps to chromosome X and a novel Elk oncogene (Elk3) maps to chromosome 10.

    Science.gov (United States)

    Tamai, Y; Taketo, M; Nozaki, M; Seldin, M F

    1995-03-20

    The Elk protein is a member of the Ets family found in both vertebrates and invertebrates. Human ELK1 encoded by ELK1 binds alone or together with serum response factor to DNA and regulates gene expression in a variety of biological processes. Using a panel of interspecific backcross mice, we have mapped the Elk oncogene (Elk) and a novel type Elk oncogene (Elk3), closely related to ELK1. Elk maps to Chr X, and Elk3 maps to the proximal region of Chr 10. PMID:7601474

  15. Large-scale polymorphism near the ends of several human chromosomes analyzed by using fluorescence in situ hybridization (FISH)

    Energy Technology Data Exchange (ETDEWEB)

    Trask, B.J.; Friedman, C. [Univ. of Washington, Seattle, WA (United States); Giorgi, D. [CNRS, Montpelier (France)] [and others

    1994-09-01

    We have discovered a large DNA segment that is polymorphically present at the ends of several human chromosomes. The segment, f7501, was originally derived form a human chromosome 19-specific cosmid library. FISH was used to determine the cosmid`s chromosomal distribution on 44 unrelated humans and several closely related primates. The human subjects represent a diversity of reproductively isolated ethnic populations. FISH analysis revealed that sequences highly homologous to the cosmid`s insert are present on both homologs at 3q, 15q,. and 19p in almost all individuals (88, 85, and 87 of 88 homologs, respectively). Other chromosomes sites were labeled much more rarely in the sampled individuals. For example, 56 of the 88 analyzed chromosomes 11 were labeled (18+/+, 6-/-, and 20+/- individuals). In contrast, 2q was labeled on only 1/88 sampled chromosomes. The termini of 2q, 5q, 6p, 6q, 7p, 8p, 9p, 9q, 11p, 12q, 16p, 19q, and 20q and an interstitial site at 2q13-14 were labeled in at least one individual of the set. EcoR1-fragments derived from the cosmid showed the same hybridization pattern as the entire cosmid, indicating that at least 40 kbp is shared by these chromosome ends. Ethnic differences in the allele frequency of these polymorphic variants was observed. For example, signals were observed on 8/10 and 7/10 of the chromosomes 7p and 16q, respectively, derived form Biakan Pygmies, but these sites were infrequently labeled in non-Pygmy human populations (2/68, respectively). This region has undergone significant changes in chromosome location during human evolution. Strong signal was seen on chimpanzee and gorilla chromosome 3, which is homologous to human chromosome 4, a chromosome unlabeled in any of the humans we have analyzed.

  16. X-chromosome-linked inheritance of the variant thyroxine-binding globulin in Australian aborigines.

    Science.gov (United States)

    Refetoff, S; Murata, Y

    1985-02-01

    The inheritance of quantitative changes in serum T4-binding globulin (TBG; reduced or elevated serum levels) and electrophoretic variants of TBG have been shown to be X-chromosome linked. However, it recently was suggested that another TBG variant, widely distributed in the Australian Aborigine population, may be inherited as an autosomal dominant trait. This communication deals with studies directed to the elucidation of the mode of inheritance of the Aboriginal variant TBG. By measuring the rate of denaturation of TBG at 56 C, we identified three distinct types of TBG in Australian Aborigines. One was a relatively heat-stable TBG (mean t1/2, 58.0 min; range, 68-53 min; group A), indistinguishable from TBG in caucasians (mean t1/2, 55.1; range, 67-43); another was a heat-labile TBG (mean t1/2, 20.8 min; range, 23.7-18.4 min; group C); and a third had intermediate values (mean t1/2, 35.7 min; range, 39.5-30.6 min; group B). Serum samples from the latter group belonged exclusively to women. Assuming that individuals from group A were homozygous for the caucasian type TBG (TBGCC), those from group C were homozygous for the Aboriginal variant of TBG (TBGAA), and individuals from group B were heterozygous (TBGCA), gene frequencies were calculated for the product of TBGC and TBGA, and the incidence of expected genotypes was compared to that observed. The results are compatible with X-chromosome, but not autosomal, inheritance, with a gene frequency of TBGC of 0.4118 and of TBGA of 0.5882. The ability to identify individuals who are heterozygous for the Aboriginal variant TBG confirmed that the structural gene of TBG in man is located on the X-chromosome. PMID:3917459

  17. X-ray-related potentially lethal damage expressed by chromosome condensation and the influence of caffeine

    International Nuclear Information System (INIS)

    Caffeine has been reported to induce premature chromosome condensation (PCC) in S-phase cells in the presence of an inhibitor of DNA synthesis. We found that when S-phase cells are treated with caffeine and hydroxyurea after X irradiation, substantially more potentially lethal damage (PLD) is expressed, but the addition of cycloheximide, which inhibits PCC induction in S-phase cells, in the presence of caffeine and hydroxyurea reduces the expression of PLD to the same level as seen with caffeine alone. This can be interpreted to mean that the expression of PLD seen with caffeine in the absence of an inhibitor of DNA synthesis is not associated with chromosome condensation. Evidence that PCC induction in S-phase cells and the influence of caffeine on PLD expression were suppressed by incubation at 40 degrees C of tsBN75 cells with a ts defect in ubiquitin-activating enzyme indicates the involvement of ubiquitin in these two processes. These observations as well as previous findings on ubiquitin suggest to us that caffeine induces changes in DNA-chromatin conformation, which are caused by induction of PCC or ubiquitination of chromosomal protein. Such changes occurring postirradiation would favor expression of PLD

  18. Inherited Tandem Duplication of the X Chromosome: Dup(X(q13.2-q21.2 in a Family.

    Directory of Open Access Journals (Sweden)

    Jia-Woei Hou

    2004-09-01

    Full Text Available A 2-year-old boy who was failing to thrive and who had multiple anomalies was found tohave a maternally derived tandem duplication of the long arm of the X chromosome:dup(X(q13.2-q21.2. The karyotyping interpretation was further confirmed by fluorescencein situ hybridization studies in which a double gene dosage of the X-inactivation-specifictranscript (gene locus on Xq13.2 and a whole chromosome X painting on the abnormal Xwere noted. He suffered from hypotonia, gastroesophageal reflux, laryngomalacia, recurrentinfections, immunodeficiency (IgG4 deficiency, dysgenesis of the corpus callosum, proximalrenal tubular acidosis, and nephrolithiasis. His mother and elder sister also had the samerearrangement, the dup(X, on one of their X chromosomes. However, the mother was ingood health, but the sister suffered from nephrolithiasis. The clinical variability in this familywith the Xq duplication is reported and discussed.

  19. Acceleration of X-chromosome gene order evolution in the cattle lineage

    Directory of Open Access Journals (Sweden)

    Woncheoul Park

    2013-06-01

    Full Text Available The gene order on the X chromosome of eutherians isgenerally highly conserved, although an increase in the rate ofrearrangement has been reported in the rodent lineage.Conservation of the X chromosome is thought to be caused byselection related to maintenance of dosage compensation.However, we herein reveal that the cattle (Btau4.0 lineage hasexperienced a strong increase in the rate of X-chromosomerearrangement, much stronger than that previously reported forrodents. We also show that this increase is not matched by asimilar increase on the autosomes and cannot be explained byassembly errors. Furthermore, we compared the difference intwo cattle genome assemblies: Btau4.0 and Btau6.0 (Bostaurus UMD3.1. The results showed a discrepancy betweenBtau4.0 and Btau6.0 cattle assembly version data, and webelieve that Btau6.0 cattle assembly version data are not morereliable than Btau4.0. [BMB Reports 2013; 46(6: 310-315

  20. Rearrangement of a common cellular DNA domain on chromosome 4 in human primary liver tumors

    International Nuclear Information System (INIS)

    Hepatitis B virus (HBV) DNA integration has been shown to occur frequently in human hepatocellular carcinomas. The authors have investigated whether common cellular DNA domains might be rearranged, possibly by HBV integration, in human primary liver tumors. Unique cellular DNA sequences adjacent to an HBV integration site were isolated from a patient with hepatitis B surface antigen-positive hepatocellular carcinoma. These probes detected rearrangement of this cellular region of chromosomal DNA in 3 of 50 additional primary liver tumors studied. Of these three tumor samples, two contained HBV DNA, without an apparent link between the viral DNA and the rearranged allele; HBV DNA sequences were not detected in the third tumor sample. By use of a panel of somatic cell hybrids, these unique cellular DNA sequences were shown to be located on chromosome 4. Therefore, this region of chromosomal DNA might be implicated in the formation of different tumors at one step of liver cell transformation, possible related to HBV integration

  1. Interspecific comparisons of the sensitivity to chromosome aberration production by x rays

    International Nuclear Information System (INIS)

    It is concluded that arm number probably plays a minor role, if any, in the relative radiosensitivity of a species. Instead the reported differences are probably a reflection of inherent basic biological mechanisms of repair that vary from one order of mammals to the next. It should be added, however, that the ultimate goal of all of these studies is to make a reasonable risk estimate for man. In that context the best approach is that of conservatism and the current data on mouse and man suggest that man has 1.5 to 2.0 times the risk of mice for chromosome rearrangement induction by x rays

  2. Early and Late Chromosome Damages in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    Science.gov (United States)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  3. Structure and chromosomal localization of the human PD-1 gene (PDCD1)

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, T.; Ishida, Y.; Kawaichi, M. [Kyoto Prefectural Medical School, Sakyo-ku (Japan)] [and others

    1994-10-01

    A cDNA encoding mouse PD-1, a member of the immunoglobulin superfamily, was previously isolated from apoptosis-induced cells by subtractive hybridization. To determine the structure and chromosomal location of the human PD-1 gene, we screened a human T cell cDNA library by mouse PD-1 probe and isolated a cDNA coding for the human PD-1 protein. The deduced amino acid sequence of human PD-1 was 60% identical to the mouse counterpart, and a putative tyrosine kinase-association motif was well conserved. The human PD-1 gene was mapped to 2q37.3 by chromosomal in situ hybridization. 7 refs., 3 figs.

  4. Human enteric defensin genes: Chromosomal map position and a model for possible evolutionary relationships

    Energy Technology Data Exchange (ETDEWEB)

    Bevins, C.L.; Jones, D.E.; Dutra, A.; Schaffzin, J.; Muenke, M. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    1996-01-01

    Defensins, a family of antimicrobial peptides isolated from several mammalian species, have a proposed functional role in innate host defense. In humans, certain defensin genes are expressed in phagocytic cells of hematopoietic origin, while others are expressed in Paneth cells, epithelial cells of the small intestine. In this study, we determined the chromosomal localization of the human defensin (HD) genes expressed in Paneth cells, HD-5 and HD-6. Analysis of a panel of human/hamster hybrids localized both HD-5 and HD-6 to chromosome 8. Southern blot analysis of DNA from cell lines that contain either chromosome 8 deletions or duplications further localized these two genes to 8p21-pter. Fluorescence in situ hybridization analysis of metaphase chromosomes using an HD-5 probe further supported the regional map assignment. Previous studies had localized the hematopoietic genes to chromosome 8p23, and the current work is consistent with both the enteric and the myeloid defensin genes being located at the same cytogenetic region of chromosome 8. In addition, the evolutionary relationships of this gene family were addressed using dot matrix sequence analysis. From this analysis, a model for the possible evolutionary history of the human defensin genes is proposed. According to this model, an early duplication of a primordial defensin gene yielded the ancestral genes of present day HD-5 and HD-6. The model further suggests that a subsequent unequal meiotic crossover event had generated an additional gene, comprised of a hybrid of sequences from the two parental genes, and that this hybrid gene then served as the ancestor to present day hematopoietic defensin genes. 39 refs., 5 figs., 1 tab.

  5. Unique signatures of natural background radiation on human Y chromosomes from Kerala, India.

    Directory of Open Access Journals (Sweden)

    Sanjay Premi

    Full Text Available BACKGROUND: The most frequently observed major consequences of ionizing radiation are chromosomal lesions and cancers, although the entire genome may be affected. Owing to its haploid status and absence of recombination, the human Y chromosome is an ideal candidate to be assessed for possible genetic alterations induced by ionizing radiation. We studied the human Y chromosome in 390 males from the South Indian state of Kerala, where the level of natural background radiation (NBR is ten-fold higher than the worldwide average, and that from 790 unexposed males as control. RESULTS: We observed random microdeletions in the Azoospermia factor (AZF a, b and c regions in >90%, and tandem duplication and copy number polymorphism (CNP of 11 different Y-linked genes in about 80% of males exposed to NBR. The autosomal homologues of Y-linked CDY genes largely remained unaffected. Multiple polymorphic copies of the Y-linked genes showing single Y-specific signals suggested their tandem duplication. Some exposed males showed unilocus duplication of DAZ genes resulting in six copies. Notably, in the AZFa region, approximately 25% of exposed males showed deletion of the DBY gene, whereas flanking genes USP9Y and UTY remained unaffected. All these alterations were detected in blood samples but not in the germline (sperm samples. CONCLUSIONS: Exposure to high levels of NBR correlated with several interstitial polymorphisms of the human Y chromosome. CNPs and enhanced transcription of the SRY gene after duplication are envisaged to compensate for the loss of Y chromosome in some cells. The aforesaid changes, confined to peripheral blood lymphocytes, suggest a possible innate mechanism protecting the germline DNA from the NBR. Genome analysis of a larger population focusing on greater numbers of genes may provide new insights into the mechanisms and risks of the resultant genetic damages. The present work demonstrates unique signatures of NBR on human Y chromosomes

  6. Sequence signatures involved in targeting the male-specific lethal complex to X-chromosomal genes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Philip Philge

    2012-03-01

    Full Text Available Abstract Background In Drosophila melanogaster, the dosage-compensation system that equalizes X-linked gene expression between males and females, thereby assuring that an appropriate balance is maintained between the expression of genes on the X chromosome(s and the autosomes, is at least partially mediated by the Male-Specific Lethal (MSL complex. This complex binds to genes with a preference for exons on the male X chromosome with a 3' bias, and it targets most expressed genes on the X chromosome. However, a number of genes are expressed but not targeted by the complex. High affinity sites seem to be responsible for initial recruitment of the complex to the X chromosome, but the targeting to and within individual genes is poorly understood. Results We have extensively examined X chromosome sequence variation within five types of gene features (promoters, 5' UTRs, coding sequences, introns, 3' UTRs and intergenic sequences, and assessed its potential involvement in dosage compensation. Presented results show that: the X chromosome has a distinct sequence composition within its gene features; some of the detected variation correlates with genes targeted by the MSL-complex; the insulator protein BEAF-32 preferentially binds upstream of MSL-bound genes; BEAF-32 and MOF co-localizes in promoters; and that bound genes have a distinct sequence composition that shows a 3' bias within coding sequence. Conclusions Although, many strongly bound genes are close to a high affinity site neither our promoter motif nor our coding sequence signatures show any correlation to HAS. Based on the results presented here, we believe that there are sequences in the promoters and coding sequences of targeted genes that have the potential to direct the secondary spreading of the MSL-complex to nearby genes.

  7. Maternal uniparental disomy for human chromosome 14, due to loss of a chromosome 14 from somatic cells with t(13; 14) trisomy 14

    Energy Technology Data Exchange (ETDEWEB)

    Antonarakis, S.E.; Blouin, J.L.; Maher, J.; Avramopoulos, D.; Thomas, G.; Talbot, C.C. Jr. (Johns Hopkins Univ., Baltimore (United States))

    1993-06-01

    Uniparental disomy (UPD) for particular chromosomes is increasingly recognized as a cause of abnormal phenotypes in humans. The authors recently studied a 9-year-old female with a de novo Robertsonian translocation t(13;14), short stature, mild developmental delay, scoliosis, hyperextensible joints, hydrocephalus that resolved spontaneously during the first year of life, and hyperchloesterolemia. To determine the parental origin of chromosomes 13 and 14 in the proband, they have studied the genotypes of DNA polymorphic markers due to (GT)n repeats in the patient and her parents' blood DNA. The genotypes of markers D14S43, D14S45, D14S49, and D14S54 indicated maternal UPD for chromosome 14. There was isodisomy for proximal markers and heterodisomy for distal markers, suggesting a recombination event on maternal chromosomes 14. In addition, DNA analysis first revealed -- and subsequent cytogenetic analysis confirmed -- that there was mosaic trisomy 14 in 5% of blood lymphocytes. There was normal (biparental) inheritance for chromosome 13, and there was no evidence of false paternity in genotypes of 11 highly polymorphic markers on human chromosome 21. Two cases of maternal UPD for chromosome 14 have previously been reported, one with a familial rob t(13;14) and the other with a t(14;14). There are several similarities among these patients, and a [open quotes]maternal UPD chromosome 14 syndrome[close quotes] is emerging; however, the contribution of the mosaic trisomy 14 to the phenotype cannot be evaluated. The study of de novo Robertsonian translocations of the type reported here should reveal both the extent of UPD in these events and the contribution of particular chromosomes involved in certain phenotypes. 33 refs., 3 figs., 1 tab.

  8. Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Bortoluzzi Stefania

    2004-06-01

    Full Text Available Abstract Background Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy. Results A Perl-code web client was developed to automatically obtain genome map positions of large sets of genes. The software, based on automatic search on Human Genome Browser by sequence alignment, only requires availability of a single transcribed sequence for each gene. In this way, we obtained tissue-specific chromosomal maps of genes expressed in rhabdomyosarcoma or skeletal muscle. Subsequently, Perl software was developed to calculate gene density along chromosomes, by using a sliding window. Thirty-three chromosomal regions harbouring genes mostly expressed in rhabdomyosarcoma were identified. Similarly, 48 chromosomal regions were detected including genes possibly related to function of differentiated skeletal muscle, but silenced in rhabdomyosarcoma. Conclusion In this study we developed a method and the associated software for the comparative analysis of genomic expression in tissues and we identified chromosomal segments showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma, appearing as candidate regions for harbouring genes involved in origin of alveolar rhabdomyosarcoma representing possible targets for drug treatment and/or development of tumor markers.

  9. Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma

    Science.gov (United States)

    Bisognin, Andrea; Bortoluzzi, Stefania; Danieli, Gian Antonio

    2004-01-01

    Background Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy. Results A Perl-code web client was developed to automatically obtain genome map positions of large sets of genes. The software, based on automatic search on Human Genome Browser by sequence alignment, only requires availability of a single transcribed sequence for each gene. In this way, we obtained tissue-specific chromosomal maps of genes expressed in rhabdomyosarcoma or skeletal muscle. Subsequently, Perl software was developed to calculate gene density along chromosomes, by using a sliding window. Thirty-three chromosomal regions harbouring genes mostly expressed in rhabdomyosarcoma were identified. Similarly, 48 chromosomal regions were detected including genes possibly related to function of differentiated skeletal muscle, but silenced in rhabdomyosarcoma. Conclusion In this study we developed a method and the associated software for the comparative analysis of genomic expression in tissues and we identified chromosomal segments showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma, appearing as candidate regions for harbouring genes involved in origin of alveolar rhabdomyosarcoma representing possible targets for drug treatment and/or development of tumor markers. PMID:15176974

  10. Multicolor detection of every chromosome as a means of detecting mosaicism and nuclear organization in human embryonic nuclei.

    Science.gov (United States)

    Turner, Kara; Fowler, Katie; Fonseka, Gothami; Griffin, Darren; Ioannou, Dimitrios

    2016-06-01

    Fluorescence in-situ hybridization (FISH) revolutionized cytogenetics using fluorescently labelled probes with high affinity with target (nuclear) DNA. By the early 1990s FISH was adopted as a means of preimplantation genetic diagnosis (PGD) sexing for couples at risk of transmitting X-linked disorders and later for detection of unbalanced translocations. Following a rise in popularity of PGD by FISH for sexing and the availability of multicolor probes (5-8 colors), the use of FISH was expanded to the detection of aneuploidy and selective implantation of embryos more likely to be euploid, the rationale being to increase pregnancy rates (referral categories were typically advanced maternal age, repeated IVF failure, repeated miscarriage or severe male factor infertility). Despite initial reports of an increase in implantation rates, reduction in trisomic offspring and spontaneous abortions criticism centered around experimental design (including lack of randomization), inadequate control groups and lack of report on live births. Eleven randomized control trials (RCTs) (2004-2010) showed that preimplantation genetic screening (PGS) with FISH did not increase delivery rates with some demonstrating adverse outcomes. These RCTs, parallel improvements in culturing and cryopreservation and a shift to blastocyst biopsy essentially outdated FISH as a tool for PGS and it has now been replaced by newer technologies (array CGH, SNP arrays, qRT-PCR and NGS). Cell-by-cell follow up analysis of individual blastomeres in non-transferred embryos is however usually prohibitively expensive by these new approaches and thus FISH remains an invaluable resource for the study of mosaicism and nuclear organization. We thus developed the approach described herein for the FISH detection of chromosome copy number of all 24 human chromosomes. This approach involves 4 sequential layers of hybridization, each with 6 spectrally distinct fluorochromes and a bespoke capturing system. Here we report

  11. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse.

    Directory of Open Access Journals (Sweden)

    Julie Cocquet

    2012-09-01

    Full Text Available Intragenomic conflicts arise when a genetic element favours its own transmission to the detriment of others. Conflicts over sex chromosome transmission are expected to have influenced genome structure, gene regulation, and speciation. In the mouse, the existence of an intragenomic conflict between X- and Y-linked multicopy genes has long been suggested but never demonstrated. The Y-encoded multicopy gene Sly has been shown to have a predominant role in the epigenetic repression of post meiotic sex chromatin (PMSC and, as such, represses X and Y genes, among which are its X-linked homologs Slx and Slxl1. Here, we produced mice that are deficient for both Sly and Slx/Slxl1 and observed that Slx/Slxl1 has an opposite role to that of Sly, in that it stimulates XY gene expression in spermatids. Slx/Slxl1 deficiency rescues the sperm differentiation defects and near sterility caused by Sly deficiency and vice versa. Slx/Slxl1 deficiency also causes a sex ratio distortion towards the production of male offspring that is corrected by Sly deficiency. All in all, our data show that Slx/Slxl1 and Sly have antagonistic effects during sperm differentiation and are involved in a postmeiotic intragenomic conflict that causes segregation distortion and male sterility. This is undoubtedly what drove the massive gene amplification on the mouse X and Y chromosomes. It may also be at the basis of cases of F1 male hybrid sterility where the balance between Slx/Slxl1 and Sly copy number, and therefore expression, is disrupted. To the best of our knowledge, our work is the first demonstration of a competition occurring between X and Y related genes in mammals. It also provides a biological basis for the concept that intragenomic conflict is an important evolutionary force which impacts on gene expression, genome structure, and speciation.

  12. Molecular characterization of a recurring complex chromosomal translocation in two human extragonadal germ cell tumors.

    NARCIS (Netherlands)

    Sinke, R J; Weghuis, D O; Suijkerbuijk, R F; Tanigami, A; Nakamura, Y; Larsson, C; Weber, G; Jong, B de; Oosterhuis, J W; Molenaar, W M

    1994-01-01

    The molecular characterization of a recurring complex chromosomal translocation involving 6p21, 6p22, 6q23, and 11q13 in two independent but similar extragonadal human germ cell tumors was initiated using fluorescence in situ hybridization (FISH) and pulse field gel electrophoresis (PFGE) techniques

  13. MOLECULAR CHARACTERIZATION OF A RECURRING COMPLEX CHROMOSOMAL TRANSLOCATION IN 2 HUMAN EXTRAGONADAL GERM-CELL TUMORS

    NARCIS (Netherlands)

    SINKE, RJ; WEGHUIS, DO; SUIJKERBUIJK, RF; TANIGAMI, A; NAKAMURA, Y; LARSSON, C; WEBER, G; DEJONG, B; OOSTERHUIS, JW; MOLENAAR, WM; VANKESSEL, AG

    1994-01-01

    The molecular characterization of a recurring complex chromosomal translocation involving 6p21, 6p22, 6p23, and 11q13 in two independent bur similar extragonadal human germ cell rumors was initiated using fluorescence in situ hybridization (FISH) and pulse field gel electrophoresis (PFGE) techniques

  14. Students as "Humans Chromosomes" in Role-Playing Mitosis and Meiosis

    Science.gov (United States)

    Chinnici, Joseph P.; Yue, Joyce W.; Torres, Kieron M.

    2004-01-01

    Students often find it challenging to understand mitosis and meiosis and determine their processes. To develop an easier way to understand these terms, students are asked to role-play mitosis and meiosis and students themselves act as human chromosomes, which help students to learn differences between mitosis and meiosis.

  15. Gold nanoparticle-assisted primer walking for closing the human chromosomal gap

    DEFF Research Database (Denmark)

    Li, H; Shi, B; Li, X;

    2013-01-01

    NPs) to improve the efficiency in primer walking amplification. We used this strategy to close a gap in human chromosome 5 containing a DNA stretch composed of the 12SAT repeat. The obtained gap sequence is highly conserved among several mammalian genomes. The demonstrated AuNP-assisted primer walking strategy...

  16. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions.

    Science.gov (United States)

    Guelen, Lars; Pagie, Ludo; Brasset, Emilie; Meuleman, Wouter; Faza, Marius B; Talhout, Wendy; Eussen, Bert H; de Klein, Annelies; Wessels, Lodewyk; de Laat, Wouter; van Steensel, Bas

    2008-06-12

    The architecture of human chromosomes in interphase nuclei is still largely unknown. Microscopy studies have indicated that specific regions of chromosomes are located in close proximity to the nuclear lamina (NL). This has led to the idea that certain genomic elements may be attached to the NL, which may contribute to the spatial organization of chromosomes inside the nucleus. However, sequences in the human genome that interact with the NL in vivo have not been identified. Here we construct a high-resolution map of the interaction sites of the entire genome with NL components in human fibroblasts. This map shows that genome-lamina interactions occur through more than 1,300 sharply defined large domains 0.1-10 megabases in size. These lamina-associated domains (LADs) are typified by low gene-expression levels, indicating that LADs represent a repressive chromatin environment. The borders of LADs are demarcated by the insulator protein CTCF, by promoters that are oriented away from LADs, or by CpG islands, suggesting possible mechanisms of LAD confinement. Taken together, these results demonstrate that the human genome is divided into large, discrete domains that are units of chromosome organization within the nucleus. PMID:18463634

  17. Chromosomal mosaicism : underlying mechanisms and consequences for early human embryo development

    NARCIS (Netherlands)

    da Avó Ribeiro dos Santos, M.

    2013-01-01

    In humans, reproduction is considered a relatively inefficient process, when compared with other mammalian species and the chance of achieving a spontaneous pregnancy after timed intercourse is at the most 20-30%. Chromosome segregation errors are a well-known inherent feature of cell division in hu

  18. A biophysical model applied to survival of tumor cells and chromosomal aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    Investigations on survival of tumor cells E.M.T.6 and chromosomal aberrations in human lymphocytes irradiated in vitro and microdosimetric studies were made using a helion beam. The results obtained were compared in order to see if the Dual Radiation Action Theory of ROSSI and KELLERER can explain these radiobiological phenomena

  19. The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2.

    Science.gov (United States)

    Ventura, Mario; Catacchio, Claudia R; Sajjadian, Saba; Vives, Laura; Sudmant, Peter H; Marques-Bonet, Tomas; Graves, Tina A; Wilson, Richard K; Eichler, Evan E

    2012-06-01

    Chimpanzee and gorilla chromosomes differ from human chromosomes by the presence of large blocks of subterminal heterochromatin thought to be composed primarily of arrays of tandem satellite sequence. We explore their sequence composition and organization and show a complex organization composed of specific sets of segmental duplications that have hyperexpanded in concert with the formation of subterminal satellites. These regions are highly copy number polymorphic between and within species, and copy number differences involving hundreds of copies can be accurately estimated by assaying read-depth of next-generation sequencing data sets. Phylogenetic and comparative genomic analyses suggest that the structures have arisen largely independently in the two lineages with the exception of a few seed sequences present in the common ancestor of humans and African apes. We propose a model where an ancestral human-chimpanzee pericentric inversion and the ancestral chromosome 2 fusion both predisposed and protected the chimpanzee and human genomes, respectively, to the formation of subtelomeric heterochromatin. Our findings highlight the complex interplay between duplicated sequences and chromosomal rearrangements that rapidly alter the cytogenetic landscape in a short period of evolutionary time. PMID:22419167

  20. Fluorescence in situ hybridization on human metaphase chromosomes detected by near-field scanning optical microscopy

    NARCIS (Netherlands)

    Moers, M.H.P.; Kalle, W.H.J.; Ruiter, A.G.T.; Wiegant, J.C.A.G.; Raap, A.K.; Greve, J.; Grooth, de B.G.; Hulst, van N.F.

    1996-01-01

    Fluorescence in situ hybridization o­n human metaphase chromosomes is detected by near-field scanning optical microscopy. This combination of cytochemical and scanning probe techniques enables the localization and identification of several fluorescently labelled genomic DNA fragments o­n a single ch

  1. Evolution from XIST-Independent to XIST-Controlled X-Chromosome Inactivation: Epigenetic Modifications in Distantly Related Mammals

    Science.gov (United States)

    Koina, Edda; Gilbert, Clément; Robinson, Terence J.; Marshall Graves, Jennifer A.

    2011-01-01

    X chromosome inactivation (XCI) is the transcriptional silencing of one X in female mammals, balancing expression of X genes between females (XX) and males (XY). In placental mammals non-coding XIST RNA triggers silencing of one X (Xi) and recruits a characteristic suite of epigenetic modifications, including the histone mark H3K27me3. In marsupials, where XIST is missing, H3K27me3 association seems to have different degrees of stability, depending on cell-types and species. However, the complete suite of histone marks associated with the Xi and their stability throughout cell cycle remain a mystery, as does the evolution of an ancient mammal XCI system. Our extensive immunofluorescence analysis (using antibodies against specific histone modifications) in nuclei of mammals distantly related to human and mouse, revealed a general absence from the mammalian Xi territory of transcription machinery and histone modifications associated with active chromatin. Specific repressive modifications associated with XCI in human and mouse were also observed in elephant (a distantly related placental mammal), as was accumulation of XIST RNA. However, in two marsupial species the Xi either lacked these modifications (H4K20me1), or they were restricted to specific windows of the cell cycle (H3K27me3, H3K9me2). Surprisingly, the marsupial Xi was stably enriched for modifications associated with constitutive heterochromatin in all eukaryotes (H4K20me3, H3K9me3). We propose that marsupial XCI is comparable to a system that evolved in the common therian (marsupial and placental) ancestor. Silent chromatin of the early inactive X was exapted from neighbouring constitutive heterochromatin and, in early placental evolution, was augmented by the rise of XIST and the stable recruitment of specific histone modifications now classically associated with XCI. PMID:21541345

  2. Independent clonal origin of multiple uterine leiomyomas that was determined by X chromosome inactivation and microsatellite analysis

    DEFF Research Database (Denmark)

    Canevari, Renata A; Pontes, Anaglória; Rosa, Fabíola E;

    2005-01-01

    OBJECTIVE: In an attempt to clarify the clonality and genetic relationships that are involved in the tumorigenesis of uterine leiomyomas, we used a total of 43 multiple leiomyomas from 14 patients and analyzed the allelic status with 15 microsatellite markers and X chromosome inactivation analysis....... STUDY DESIGN: We have used a set of 15 microsatellite polymorphism markers mapped on 3q, 7p, 11, and 15q by automated analysis. The X chromosome inactivation was evaluated by the methylation status of the X-linked androgen receptor gene. RESULTS: Loss of heterozygosity analysis showed a different...... pattern in 7 of the 8 cases with allelic loss for at least 1 of 15 microsatellite markers that were analyzed. A similar loss of heterozygosity findings at 7p22-15 was detected in 3 samples from the same patient. X chromosome inactivation analysis demonstrated the same inactivated allele in all tumors...

  3. A First Generation Comparative Chromosome Map between Guinea Pig (Cavia porcellus) and Humans.

    Science.gov (United States)

    Romanenko, Svetlana A; Perelman, Polina L; Trifonov, Vladimir A; Serdyukova, Natalia A; Li, Tangliang; Fu, Beiyuan; O'Brien, Patricia C M; Ng, Bee L; Nie, Wenhui; Liehr, Thomas; Stanyon, Roscoe; Graphodatsky, Alexander S; Yang, Fengtang

    2015-01-01

    The domesticated guinea pig, Cavia porcellus (Hystricomorpha, Rodentia), is an important laboratory species and a model for a number of human diseases. Nevertheless, genomic tools for this species are lacking; even its karyotype is poorly characterized. The guinea pig belongs to Hystricomorpha, a widespread and important group of rodents; so far the chromosomes of guinea pigs have not been compared with that of other hystricomorph species or with any other mammals. We generated full sets of chromosome-specific painting probes for the guinea pig by flow sorting and microdissection, and for the first time, mapped the chromosomal homologies between guinea pig and human by reciprocal chromosome painting. Our data demonstrate that the guinea pig karyotype has undergone extensive rearrangements: 78 synteny-conserved human autosomal segments were delimited in the guinea pig genome. The high rate of genome evolution in the guinea pig may explain why the HSA7/16 and HSA16/19 associations presumed ancestral for eutherians and the three syntenic associations (HSA1/10, 3/19, and 9/11) considered ancestral for rodents were not found in C. porcellus. The comparative chromosome map presented here is a starting point for further development of physical and genetic maps of the guinea pig as well as an aid for genome assembly assignment to specific chromosomes. Furthermore, the comparative mapping will allow a transfer of gene map data from other species. The probes developed here provide a genomic toolkit, which will make the guinea pig a key species to unravel the evolutionary biology of the Hystricomorph rodents. PMID:26010445

  4. Misregulation of Scm3p/HJURP causes chromosome instability in Saccharomyces cerevisiae and human cells.

    Directory of Open Access Journals (Sweden)

    Prashant K Mishra

    2011-09-01

    Full Text Available The kinetochore (centromeric DNA and associated proteins is a key determinant for high fidelity chromosome transmission. Evolutionarily conserved Scm3p is an essential component of centromeric chromatin and is required for assembly and function of kinetochores in humans, fission yeast, and budding yeast. Overexpression of HJURP, the mammalian homolog of budding yeast Scm3p, has been observed in lung and breast cancers and is associated with poor prognosis; however, the physiological relevance of these observations is not well understood. We overexpressed SCM3 and HJURP in Saccharomyces cerevisiae and HJURP in human cells and defined domains within Scm3p that mediate its chromosome loss phenotype. Our results showed that the overexpression of SCM3 (GALSCM3 or HJURP (GALHJURP caused chromosome loss in a wild-type yeast strain, and overexpression of HJURP led to mitotic defects in human cells. GALSCM3 resulted in reduced viability in kinetochore mutants, premature separation of sister chromatids, and reduction in Cse4p and histone H4 at centromeres. Overexpression of CSE4 or histone H4 suppressed chromosome loss and restored levels of Cse4p at centromeres in GALSCM3 strains. Using mutant alleles of scm3, we identified a domain in the N-terminus of Scm3p that mediates its interaction with CEN DNA and determined that the chromosome loss phenotype of GALSCM3 is due to centromeric association of Scm3p devoid of Cse4p/H4. Furthermore, we determined that similar to other systems the centromeric association of Scm3p is cell cycle regulated. Our results show that altered stoichiometry of Scm3p/HJURP, Cse4p, and histone H4 lead to defects in chromosome segregation. We conclude that stringent regulation of HJURP and SCM3 expression are critical for genome stability.

  5. No influence of parental origin of intact X chromosome and/or Y chromosome sequences on three-year height response to growth hormone therapy in Turner syndrome

    Science.gov (United States)

    Lee, Hye Jin; Jung, Hae Woon; Lee, Gyung Min; Kim, Hwa Young; Kim, Jae Hyun; Lee, Sun Hee; Kim, Ji Hyun; Shin, Choong Ho; Yang, Sei Won

    2014-01-01

    Purpose Whether parental origin of the intact X chromosome and/or the presence of Y chromosome sequences (Yseq) play a role in three-year height response to growth hormone (GH) were investigated. Methods Paternal (Xp) or maternal (Xm) origin of X chromosome was assessed by microsatellite marker analysis and the presence of hidden Yseq was analyzed. The first-, second-, and third-year GH response was measured as a change in height z-score (Z_Ht) in Turner syndrome (TS) patients with 45,Xp (n=10), 45,Xm (n=15), and 45,X/46,X,+mar(Y) (Xm_Yseq) (n=8). Results The mean baseline Z_Ht did not differ according to Xp or Xm origin, however the mean baseline Z_Ht was higher in the Xm_Yseq group than in Xm group, after adjusting for bone age delay and midparental Z_Ht (P=0.04). There was no difference in the height response to GH between the 3 groups. The height response to GH decreased progressively each year (P<0.001), such that the third-year increase in Z_Ht was not significant. This third-year decrease in treatment response was unaffected by Xp, Xm, and Xm_Yseq groups. Increasing GH dosage from the second to third-year of treatment positively correlated with the increase in Z_Ht (P=0.017). Conclusion There was no evidence of X-linked imprinted genes and/or Yseq affecting height response to 3 years of GH therapy. Increasing GH dosages may help attenuate the decrease in third-year GH response in TS patients with 45,X and/or 46,X/+mar(Y). PMID:25346916

  6. The Parent-of-Origin of the Extra X Chromosome May Differentially Affect Psychopathology in Klinefelter Syndrome

    NARCIS (Netherlands)

    Bruining, Hilgo; van Rijn, Sophie; Swaab, Hanna; Giltay, Jacques; Kates, Wendy; Kas, Martien J. H.; van Engeland, Herman; de Sonneville, Leo

    2010-01-01

    Background: Several genetic mechanisms have been proposed for the variability of the Klinefelter syndrome (KS) phenotype such as the parent-of-origin of the extra X chromosome. Parent-of-origin effects on behavior in KS can possibly provide insights into X-linked imprinting effects on psychopatholog

  7. The parent-of-origin of the extra X chromosome may differentially affect psychopathology in Klinefelter syndrome

    NARCIS (Netherlands)

    Bruining, Hilgo; van Rijn, Sophie; Swaab, Hanna; Giltay, Jacques; Kates, Wendy; Kas, Martien J H; van Engeland, Herman; de Sonneville, Leo

    2010-01-01

    BACKGROUND: Several genetic mechanisms have been proposed for the variability of the Klinefelter syndrome (KS) phenotype such as the parent-of-origin of the extra X chromosome. Parent-of-origin effects on behavior in KS can possibly provide insights into X-linked imprinting effects on psychopatholog

  8. Family-Based Multi-SNP X Chromosome Analysis Using Parent Information.

    Science.gov (United States)

    Wise, Alison S; Shi, Min; Weinberg, Clarice R

    2016-01-01

    We propose a method for association analysis of haplotypes on the X chromosome that offers both improved power and robustness to population stratification in studies of affected offspring and their parents if all three have been genotyped. The method makes use of assumed parental haplotype exchangeability (PHE), a weaker assumption than Hardy-Weinberg equilibrium (HWE). PHE requires that in the source population, of the three X chromosome haplotypes carried by the two parents, each is equally likely to be carried by the father. We propose a pseudo-sibling approach that exploits that exchangeability assumption. Our method extends the single-SNP PIX-LRT method to multiple SNPs in a high linkage block. We describe methods for testing the PHE assumption and also for determining how apparent violations can be distinguished from true fetal effects or maternally-mediated effects. We show results of simulations that demonstrate nominal type I error rate and good power. The methods are then applied to dbGaP data on the birth defect oral cleft, using both Asian and Caucasian families with cleft. PMID:26941777

  9. Effects of arsenic upon the no-disyuntion and X chromosome loss mechanisms in Drosophila melanogaster

    International Nuclear Information System (INIS)

    In the present investigation we make the analysis of the effect of the sodium arsenite chemistry in concentration 0.2 m M over the events of no-disyuntion and chromosome loss X in germinal cells of Drosophila melanogaster. The Drosophila lineages used for this assay were: females (y2 wa / y2 wa ; e/e) and males (XC2 yf bb- / Bs Y y+). Those lineages were propagated and isolated for to be used after in the assays. Subsequently these, we make some links types with these individuals with the object to observed the effects of the oral administration of sodium arsenite in the adult individuals, in each one, we induce a damage in the sperm of the male with gamma radiation (25 Gy) and was observed immediately the results of the different assay applied in the first generation (F1). Finally, we analyze and compare the results in contrast with and other investigation we find that the chemistry cause a significant increment in the chromosome loss X either the No-disyuntion was not significative. Also, the arsenite sodium increment the male descendant productivity, so, we deduced that the sodium arsenite do not cause an inhibition of the reparation mechanisms present in the Drosophila melanogaster female ovocites, but the chemistry operated like a modulator of this mechanisms, and prevent an increment of the damage provoked for the gamma radiation over the Drosophila melanogaster male sperm. (Author)

  10. Chromosomal jumping from the DXS165 locus allows molecular characterization of four microdeletions and a de novo chromosome X/13 translocation associated with choroideremia.

    OpenAIRE

    Cremers, F P; van de Pol, D J; Wieringa, B; Collins, F S; Sankila, E M; Siu, V. M.; Flintoff, W F; Brunsmann, F.; Blonden, L A; Ropers, H H

    1989-01-01

    Choroideremia (tapeto-choroidal dystrophy, TCD), an X chromosome-linked disorder of retina and choroid, causes progressive nightblindness and central blindness in affected males by the third to fourth decade of life. Recently, we have been able to map the TCD gene to a small region of overlap between five different, male-viable Xq21 deletions that were found in patients with TCD and other clinical features. Two families were identified in which classical, nonsyndromic TCD is associated with s...

  11. Epigenetic modifications on X chromosomes in marsupial and monotreme mammals and implications for evolution of dosage compensation.

    Science.gov (United States)

    Rens, Willem; Wallduck, Margaret S; Lovell, Frances L; Ferguson-Smith, Malcolm A; Ferguson-Smith, Anne C

    2010-10-12

    X chromosome dosage compensation in female eutherian mammals is regulated by the noncoding Xist RNA and is associated with the differential acquisition of active and repressive histone modifications, resulting in repression of most genes on one of the two X chromosome homologs. Marsupial mammals exhibit dosage compensation; however, they lack Xist, and the mechanisms conferring epigenetic control of X chromosome dosage compensation remain elusive. Oviparous mammals, the monotremes, have multiple X chromosomes, and it is not clear whether they undergo dosage compensation and whether there is epigenetic dimorphism between homologous pairs in female monotremes. Here, using antibodies against DNA methylation, eight different histone modifications, and HP1, we conduct immunofluorescence on somatic cells of the female Australian marsupial possum Trichosurus vulpecula, the female platypus Ornithorhynchus anatinus, and control mouse cells. The two marsupial X's were different for all epigenetic features tested. In particular, unlike in the mouse, both repressive modifications, H3K9me3 and H4K20Me3, are enriched on one of the X chromosomes, and this is associated with the presence of HP1 and hypomethylation of DNA. Using sequential labeling, we determine that this DNA hypomethylated X correlates with histone marks of inactivity. These results suggest that female marsupials use a repressive histone-mediated inactivation mechanism and that this may represent an ancestral dosage compensation process that differs from eutherians that require Xist transcription and DNA methylation. In comparison to the marsupial, the monotreme exhibited no epigenetic differences between homologous X chromosomes, suggesting the absence of a dosage compensation process comparable to that in therians. PMID:20861449

  12. Chromosomal assignments of the genes coding for human types II, III, and IV collagen: a dispersed gene family.

    OpenAIRE

    Solomon, E; Hiorns, L R; Spurr, N; Kurkinen, M.; Barlow, D; Hogan, B L; Dalgleish, R.

    1985-01-01

    The human type II collagen gene, COL2A1, has been assigned to chromosome 12, the type III gene, COL3A1, to chromosome 2, and one of the type IV genes, COL4A1, to chromosome 13. These assignments were made by using cloned genes as probes on Southern blots of DNA from a panel of mouse/human somatic cell hybrids. The two genes of type I collagen, COL1A1 and COL2A1, have been mapped previously to chromosomes 17 and 7, respectively. This family of conserved genes seems therefore to be dispersed th...

  13. Cytogenetic analysis of mechanism of formation of radiation-induced chromosome exchanges. [Crepis capillaris, x radiation

    Energy Technology Data Exchange (ETDEWEB)

    Azatyan, R.A.; Akif' ev, A.P.; Shavel' zon, R.A.; Voskanyan, A.Z.; Zakaryan, M.S.

    1977-01-01

    An unusual spectrum of aberrations, characterized by a sharp exchange deficiency, was demonstrated in germinating seeds of Crepis capillaris L. synchronized with 2'-deoxy-5-fluorouridine at the start of the S phase following exposure to 100 R x-rays. The modification of the cytogenetic effect of x-radiation of dry crepis seeds (10 and 15 kR) by 5-aminouracil consisted of a higher yield of aberrations without decrease in share of exchanges of the chromosome type. The obtained data are consistent with the hypothesis that exchange aberrations occur due to interaction between spontaneous single-stranded DNA defects limited to identical or similar repeated nucleotide sequences The exchange interactions are blocked when the cells move into the stage of DNA synthesis.

  14. Clinical diversity and chromosomal localization of X-linked cone dystrophy (CODI)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hee-Kyung; Ferrell, R.E.; Gorin, M.B. [Univ. of Pittsburgh, PA (United States)

    1994-12-01

    X-linked progressive cone dystrophy (COD1) causes progressive deterioration of visual acuity, deepening of central scotomas, macular changes, and bull`s-eye lesions. The cone electroretinography (ERG) is variably abnormal in affected males, and the rod ERG may also be abnormal. The clinical picture of heterozygous females ranges from asymptomatic to a widespread spectrum of cone-mediated dysfunction. A prior linkage study demonstrated linkage between the COD1 locus and the marker locus DXS84, assigned to Xp21.1, with no recombination. In the present study, we have clinically characterized a large four-generation family with COD1 and have performed a linkage analysis using seven polymorphic markers on the short arm of the X chromosome. No recombination was observed between the disease and the marker loci DXS7 and MAOA, suggesting that the location of COD1 is in the region Xp11.3, distal to DXS84 and proximal to ARAF1.

  15. Specific chromosomal imbalances in human papillomavirus-transfected cells during progression toward immortality

    OpenAIRE

    Solinas-Toldo, Sabina; Dürst, Matthias; Lichter, Peter

    1997-01-01

    High risk human papillomaviruses (HPVs) known to be closely associated with cervical cancer, such as HPV16 and HPV18, have the potential to immortalize human epithelial cells in culture. Four lines of HPV-transfected keratinocytes were analyzed by comparative genomic hybridization at different time points after transfection. A number of chromosomal imbalances was found to be highly characteristic for the cultures progressing toward immortality. Whereas several of these were new and previously...

  16. Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone.

    OpenAIRE

    Ketner, G; Spencer, F; Tugendreich, S; C. Connelly; Hieter, P

    1994-01-01

    A yeast artificial chromosome (YAC) containing a complete human adenovirus type 2 genome was constructed, and viral DNA derived from the YAC was shown to be infectious upon introduction into mammalian cells. The adenovirus YAC could be manipulated efficiently using homologous recombination-based methods in the yeast host, and mutant viruses, including a variant that expresses the human analog of the Saccharomyces cerevisiae CDC27 gene, were readily recovered from modified derivatives of the Y...

  17. Prematurely condensed chromosome rings after neutron irradiation of human lymphocytes

    International Nuclear Information System (INIS)

    Calibration curves for fission spectrum neutrons and other high linear energy transfer (LET) radiations are scarce in cytogenetic dosimetry and particularly for Prematurely Condensed Chromosome Rings (PCC-ring). Here we analyzed the behavior of the PCC-ring frequency and PCC index after neutron irradiation in a broad dose interval from 1 to 26 Gy. PCC-rings were induced in lymphocytes with Calyculin A. 6455 PCC cells in G1, G2/M and M/A stages were analyzed. The best fitting between the frequency of PCC ring (Y) and the Dose (D) was obtained with the equation Y= (0.059±0.003) D. The saturation of the PCC-ring was observed after around 4 Gy, but it was still possible to analyze cells exposed up to 26 Gy. The distribution of rings by cell follows Poisson or Neyman type distribution for all doses. This PCC-ring dose effect curve can be used in case of accidental overexposure to neutron radiation, allowing a dose assessment in a reliable way. Additionally, the PCC index seems to be well correlated with radiation dose and decrease in a dose dependent manner from 13% in non exposed sample down to 0.2%. This observation allows the possibility to perform a quick classification of victims exposed to high doses of both gamma and neutron radiations. The PCC assay can then be used for both neutron dose estimation up to 4 Gy and for the rapid classification of victims exposed to higher doses. This assay could be included in the multiparametric approach developed to optimize the medical treatment of radiation victims. (author)

  18. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans.

    Science.gov (United States)

    Lieber, Michael R; Gu, Jiafeng; Lu, Haihui; Shimazaki, Noriko; Tsai, Albert G

    2010-01-01

    Double-strand breaks (DSBs) arise in dividing cells about ten times per cell per day. Causes include replication across a nick, free radicals of oxidative metabolism, ionizing radiation, and inadvertent action by enzymes of DNA metabolism (such as failures of type II topoisomerases or cleavage by recombinases at off-target sites). There are two major double-strand break repair pathways. Homologous recombination (HR) can repair double-strand breaks, but only during S phase and typically only if there are hundreds of base pairs of homology. The more commonly used pathway is nonhomologous DNA end joining, abbreviated NHEJ. NHEJ can repair a DSB at any time during the cell cycle and does not require any homology, although a few nucleotides of terminal microhomology are often utilized by the NHEJ enzymes, if present. The proteins and enzymes of NHEJ include Ku, DNA-PKcs, Artemis, DNA polymerase mu (Pol micro), DNA polymerase lambda (Pol lambda), XLF (also called Cernunnos), XRCC4, and DNA ligase IV. These enzymes constitute what some call the classical NHEJ pathway, and in wild type cells, the vast majority of joining events appear to proceed using these components. NHEJ is present in many prokaryotes, as well as all eukaryotes, and very similar mechanistic flexibility evolved both convergently and divergently. When two double-strand breaks occur on different chromosomes, then the rejoining is almost always done by NHEJ. The causes of DSBs in lymphomas most often involve the RAG or AID enzymes that function in the specialized processes of antigen receptor gene rearrangement. PMID:20012587

  19. Analysis of the frequency of unstable chromosome aberrations in human lymphocytes irradiated with 60Co

    International Nuclear Information System (INIS)

    The aim of this study was to analyze the frequency of unstable chromosomal aberrations induced by gamma radiation from a 60Co source at two different doses. Samples were obtained from a healthy donor and exposed to 60Co source (Gammacel 220 ) located in the Department of Nuclear Energy of Pernambuco Federal University (DEN/UFPe/Brazil) with a rate of air Kerma to 3,277 Gy/h. Exposures resulted in absorbed dose 0.51 Gy and 0.77 Gy. Mitotic metaphases were obtained by culturing lymphocytes for chromosome analysis and the slides were stained with 5% Giemsa. Among the unstable chromosomal aberrations the dicentric chromosomes, ring chromosomes and acentric fragments were analyzed. To calculate the significance level the chi - square test was used, considering relevant differences between the frequencies when the value of p < 0.05. To calculate the significance level of the chi - square test was used, considering relevant differences between the frequencies when the value of p < 0.05. The results showed that there was significant difference of the frequencies of dicentric chromosomes (from 0.18 to 0.51 to 0.37 Gy to 0.77 Gy), however there was no statistically significant difference between the frequencies of acentric fragments ( 0.054 to 0, 51 Gy to 0.063 to 0.77 Gy) and ring chromosomes (0.001 to 0.51 Gy to 0.003 to 0.77 Gy). The low number of rings is found justified, considering that in irradiated human lymphocytes, its appearance is rare relative to dicentrics. The results confirm that dicentrics are the most reliable biomarkers in estimating dose after exposure to gamma radiation. These two points will make the calibration curve dose-response being built for Biological Dosimetry Laboratory of CRCN-NE/CNEN

  20. Reactivation of chromosomally integrated human herpesvirus-6 by telomeric circle formation.

    Directory of Open Access Journals (Sweden)

    Bhupesh K Prusty

    Full Text Available More than 95% of the human population is infected with human herpesvirus-6 (HHV-6 during early childhood and maintains latent HHV-6 genomes either in an extra-chromosomal form or as a chromosomally integrated HHV-6 (ciHHV-6. In addition, approximately 1% of humans are born with an inheritable form of ciHHV-6 integrated into the telomeres of chromosomes. Immunosuppression and stress conditions can reactivate latent HHV-6 replication, which is associated with clinical complications and even death. We have previously shown that Chlamydia trachomatis infection reactivates ciHHV-6 and induces the formation of extra-chromosomal viral DNA in ciHHV-6 cells. Here, we propose a model and provide experimental evidence for the mechanism of ciHHV-6 reactivation. Infection with Chlamydia induced a transient shortening of telomeric ends, which subsequently led to increased telomeric circle (t-circle formation and incomplete reconstitution of circular viral genomes containing single viral direct repeat (DR. Correspondingly, short t-circles containing parts of the HHV-6 DR were detected in cells from individuals with genetically inherited ciHHV-6. Furthermore, telomere shortening induced in the absence of Chlamydia infection also caused circularization of ciHHV-6, supporting a t-circle based mechanism for ciHHV-6 reactivation.

  1. Biphasic Effects of Nitric Oxide Radicals on Radiation-Induced Lethality and Chromosome Aberrations in Human Lung Cancer Cells Carrying Different p53 Gene Status

    International Nuclear Information System (INIS)

    Purpose: The aim of this study was to clarify the effects of nitric oxide (NO) on radiation-induced cell killing and chromosome aberrations in two human lung cancer cell lines with a different p53 gene status. Methods and Materials: We used wild-type (wt) p53 and mutated (m) p53 cell lines that were derived from the human lung cancer H1299 cell line, which is p53 null. The wtp53 and mp53 cell lines were generated by transfection of the appropriate p53 constructs into the parental cells. Cells were pretreated with different concentrations of isosorbide dinitrate (ISDN) (an NO donor) and/or 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) (an NO scavenger) and then exposed to X-rays. Cell survival, apoptosis, and chromosome aberrations were scored by use of a colony-forming assay, Hoechst 33342 staining assay and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP [deoxyuridine triphosphate] nick end labeling) assay, and chromosomal banding techniques, respectively. Results: In wtp53 cells the induction of radioresistance and the inhibition of apoptosis and chromosome aberrations were observed in the presence of ISDN at low 2- to 10-μmol/L concentrations before X-irradiation. The addition of c-PTIO and ISDN into the culture medium 6 h before irradiation almost completely suppressed these effects. However, at high concentrations of ISDN (100-500 μmol/L), clear evidence of radiosensitization, enhancement of apoptosis, and chromosome aberrations was detected. However, these phenomena were not observed in mp53 cells at either concentration range with ISDN. Conclusions: These results indicate that low and high concentrations of NO radicals can choreograph inverse radiosensitivity, apoptosis, and chromosome aberrations in human lung cancer cells and that NO radicals can affect the fate of wtp53 cells.

  2. The mechanism of chromosomal translocation t(11;14) involving the T-cell receptor C delta locus on human chromosome 14q11 and a transcribed region of chromosome 11p15.

    OpenAIRE

    Boehm, T.; Baer, R; Lavenir, I; Forster, A; Waters, J J; Nacheva, E; Rabbitts, T H

    1988-01-01

    A chromosomal translocation t(11;14) (p15;q11) is described in a human acute T-cell leukaemia of immature phenotype (CD3-, CD4-, CD8-). The translocation occurs at a T-cell receptor joining J delta segment, 12 kb upstream of the constant C delta gene and 98 kb upstream of the C alpha gene at chromosome band 14q11. Nucleotide sequencing shows that both J delta and C delta are very conserved between mouse and man. The region of chromosome 11 involved in the translocation is transcriptionally ac...

  3. Effect of cysteamine on chromosomal aberrations yield in gamma irradiated lymphocytes from human blood

    International Nuclear Information System (INIS)

    Cytogenetic analysis is made of lymphocyte cultures following in vitro gamma-irradiation of human whole venous blood with 93, 188, 372 and 448 rad from ''Rocos'' gamma-therapeutic apparatus, with or without chemical protection. The radioprotector - cysteamine - is added to the blood 15 minutes before irradiation in a dose of 200 micrograms per milliliter of blood. Lymphocyte cultures are fixed 52 hours after stimulation. No quantitative differences are found between the patterns of chromosomal anomalies induced in nonprotected and in protected lymphocyte cultures. There are less chromosomal fragments, dicentrics, interstitial deletions, rings and chromosomal interchanges, aberrant cells and breaks after irradiation in the presence of cysteamine. The protective effect varied depending on the radiation dose: very weak (18.4 per cent) after irradiation with 93 rad, increasing to 75.7 per cent after exposure to 448 rad. (A.B.)

  4. Cytogenetic biological dosimetry in radiological protection: chromosome aberration analysis in human lymphocyties

    International Nuclear Information System (INIS)

    The effects of ionizing radiation on chromosomes have been know for several decades and dose effect relationships are also fairly well established for several doses and dose rates. Apart from its biological significance, the interpretation of chromosome aberration frequency associated with human exposure to radiation plays an important role in dose assessment, particularly in cases where exposure is though to have occurred but no physical dose monitoring system was present. Based on the cytogenetic data obtained from seven cases of exposure to radiation the aberration frequency have been fitted to the quadratic function Y= αD + βD2 as the dose response curves from literature. The dose equivalent estimate by frequency of chromosomic aberration found here was compared with 60Co and 192Ir already published curves obtained at almost similar dose rate together with some hematological data. (author)

  5. Effects of 252Cf neutrons, transmitted through an iron block on human lymphocyte chromosome

    International Nuclear Information System (INIS)

    Chromosome aberration of human peripheral blood lymphocytes exposed to californium-252 (252Cf) neutrons transmitted through a 15 cm thick iron block was analysed. The spectrum of the filtered neutrons ranged from 0.1 to 2MeV with a peak at 0.7 MeV, simulating the Hiroshima atomic bomb neutron spectrum as shown in the Dosimetry System 1986 (DS86). Chromosome aberration frequencies after exposure to filtered and unfiltered 252Cf radiation were compared. Acentric ring chromosomes were significantly increased (p 0.1). The relative biological effectiveness (RBE) of the neutrons with respect to the formation of dicentrics and centric rings was 10.9 and 12.3 in the filtered and unfiltered conditions respectively, but the difference was not statistically significant. These results provide useful information for the re-evaluation of the biological effect of the Hiroshima atomic bomb radiations. (Author)

  6. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose-effect curve)

    International Nuclear Information System (INIS)

    In order to draw a dose-effect curve, experimentally gamma ray induced chromosomal aberrations in human peripheral lymphocytes from eight healthy people were studied. Samples from 4 males and 4 females were irradiated in tubes with 0.15, 0.25, 0.5, 1, 1.5, 2, 2.5 gray of gamma ray (Co60 at dose rate 0.3 Gy/min). Irradiated and control samples were incubated in 37 centigrade for 48 hours cell cultures. Cell cultures then were stopped and metaphases spread, Giemsa stained to score the induced chromosomal aberrations. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics + rings and total numbers of breaks in cell for each individual or for all people were drawn. An increase of all chromosomal aberrations types with the elevation of the doses was observed. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  7. Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions

    Science.gov (United States)

    Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael D.; Wilson, Bobby; Wu, Honglu

    2015-01-01

    Lung cancer induced from exposures to space radiation is one of the most significant health risks for long-term space travels. Evidences show that low- and high- Linear energy transfer (LET)-induced transformation of normal human bronchial epithelial cells (HBEC) that are immortalized through the expression of Cdk4 and hTERT. The cells were exposed to gamma rays and high-energy Fe ions for the selection of transformed clones. Transformed HBEC are identified and analyzed chromosome aberrations (i.e. genomic instability) using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. Our results show chromosomal translocations between different chromosomes and several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed and the parental HBEC regardless of the exposure conditions. We observed chromosomal aberrations in the lowand high-LET radiation-induced transformed clones and they are imperfectly different from clones obtain in spontaneous soft agar growth.

  8. On the spontaneous frequency of the structural chromosome aberrations (anomalies) in lymphocytes from human blood

    International Nuclear Information System (INIS)

    Chromosomal aberrations are observed both in irradiated cells and in cells which have not been irradiated but submitted to the action of the natural radioactive background. The reasons for these ''spontaneous chromosomal aberrations'' are both the natural radioactivity and a complex of physical, chemical and biological factors. A cytogenetic analysis of 6000 lymphocytes metaphases from the peripheral blood of 47 people indicates that the overall amount of the spontaneous aberrations is 2% with a ratio of chromosomal type aberrations to chromatide type aberrations of 1:5. Chromatide type aberrations are seen as the result of purely mechanical factors acting during slides preparation but yet another unknown moments cannot be excluded. They are more one hit type aberrations - chromatide and chromosomal fragments, wereas the two hit aberrations are very rare - one dicentric per 3000 cells. The chromosome type aberrations are proposed for comparison with radiation induced aberrations in human lymphocytes. They have a frequency of 0.0035 per cell or 0.0040 breakages per cell. Ionizing radiation does not induce qualitatively specific type of aberrations but increases many times the yield of anomalies, which are spontaneously observed. (A.B.)

  9. Cloning, chromosome localization and features of a novel human gene, MATH2

    Indian Academy of Sciences (India)

    Lingchen Guo; Min Jiang; Yushu Ma; Haipeng Cheng; Xiaohua Ni; Yangsheng Jin; Yi Xie; Yumin Mao

    2002-04-01

    We report cloning and some features of a novel human gene, MATH2, which encodes a protein of 337 amino acid residues with a basic helix–loop–helix domain and exhibits 98% similarity to mouse Math2. Results of Northern blot analysis revealed two transcripts of the MATH2 gene of 1.7 kb and 2.4 kb in human brain. We localized MATH2 to chromosome 7 at 7p14–15 by matching with the Human Genome Sequence Database. Human MATH2 and mouse Math2 may have the same functions in the nervous system.

  10. Amplification and chromosomal dispersion of human endogenous retroviral sequences

    International Nuclear Information System (INIS)

    Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification and dispersion events may be linked

  11. Amplification and chromosomal dispersion of human endogenous retroviral sequences

    Energy Technology Data Exchange (ETDEWEB)

    Steele, P.E.; Martin, M.A.; Rabson, A.B.; Bryan, T.; O' Brien, S.J.

    1986-09-01

    Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification and dispersion events may be linked.

  12. Towards single particle imaging of human chromosomes at SACLA

    Science.gov (United States)

    Robinson, Ian; Schwenke, Joerg; Yusuf, Mohammed; Estandarte, Ana; Zhang, Fucai; Chen, Bo; Clark, Jesse; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tono, Kensuke; Yabashi, Makina; Ratnasari, Gina; Kaneyoshi, Kohei; Takata, Hideaki; Fukui, Kiichi

    2015-12-01

    Single particle imaging (SPI) is one of the front-page opportunities which were used to motivate the construction of the first x-ray free electron lasers (XFELs). SPI’s big advantage is that it avoids radiation damage to biological samples because the diffraction takes place in femtosecond single shots before any atomic motion can take place in the sample, hence before the onset of radiation damage. This is the ‘diffract before destruction’ theme, destruction being assured from the high x-ray doses used. This article reports our collaboration’s first attempt at SPI using the SACLA XFEL facility in June 2015. The report is limited to experience with the instrumentation and examples of data because we have not yet had time to invert them to images.

  13. Influence of the shielding on the induction of chromosomal aberrations in human lymphocytes exposed to high-energy iron ions

    International Nuclear Information System (INIS)

    Computer code calculations based on biophysical models are commonly used to evaluate the effectiveness of shielding in reducing the biological damage caused by cosmic radiation in space flights. Biological measurements are urgently needed to benchmark the codes. We have measured the induction of chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to 56Fe-ion beams accelerated at the Heavy for Medical Accelerator in Chiba (HIMAC) synchrotron in Chiba. Isolated lymphocytes were exposed to the 500 MeV/n iron beam (dose range 0.1-1 Gy)after traversal of 0 to 8 g/cm2 of either polymethylmethacrylate (PMMA) (lucite, a common plastic material) or aluminum. Three PMMA shield thickness and one Al shield thickness were used. For comparison, cells were exposed to 200 MeV/n iron ions and to X-rays. Chromosomes were prematurely condensed by a phosphatase inhibitor (calyculin A) to avoid cell-cycle selection produced by the exposure to high-linear energy transfer (LET) heavy ion beams. Aberrations were scored in chromosomes 1, 2,and 4 following fluorescence in situ hybridization. The yield of chromosomal aberrations per unit dose at the sample position was poorly dependent on the shield thickness and material. However, the yield of aberrations per unit ion incident on the shield was increased by the shielding. This increase is associated to the increased dose-rate measured behind the shield as compared to the direct beam. These preliminary results prove that shielding can increase the effectiveness of heavy ions, and the damage is dependent upon shield thickness and material. (author)

  14. Chromosomal locations of members of a family of novel endogenous human retroviral genomes

    International Nuclear Information System (INIS)

    Human cellular DNA contains two distinguishable families of retroviral related sequences. One family shares extensive nucleotide sequence homology with infectious mammalian type C retroviral genomes. The other family contains major regions of homology with the pol genes of infectious type A and B and avian type C and D retroviral genomes. Analysis of the human recombinant clone HLM-2 has shown that the pol gene in the latter family is located within an endogenous proviral genome. The authors show that the proviral genome in HLM-2 and the related recombinant clone HLM-25 are located, respectively, on human chromosomes 1 and 5. Other related proviral genomes are located on chromosomes 7, 8, 11, 14, and 17

  15. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  16. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    International Nuclear Information System (INIS)

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs

  17. Identification of mediator complex 26 (Crsp7) gametologs on platypus X1 and Y5 sex chromosomes: a candidate testis-determining gene in monotremes?

    OpenAIRE

    Tsend-Ayush, E.; Kortschak, R.; Bernard, P.; Lim, S.; Ryan, J.; R. Rosenkranz; Borodina, T.; Dohm, J.; Himmelbauer, H.; Harley, V; Grützner, F.

    2012-01-01

    The basal lineage