WorldWideScience

Sample records for chromosomes human x

  1. The DNA sequence of the human X chromosome

    OpenAIRE

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L; Jennifer L Ashurst; Fulton, Robert S.

    2005-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a...

  2. The DNA sequence of the human X chromosome.

    Science.gov (United States)

    Ross, Mark T; Grafham, Darren V; Coffey, Alison J; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R; Burrows, Christine; Bird, Christine P; Frankish, Adam; Lovell, Frances L; Howe, Kevin L; Ashurst, Jennifer L; Fulton, Robert S; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C; Hurles, Matthew E; Andrews, T Daniel; Scott, Carol E; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P; Hunt, Sarah E; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Ainscough, Rachael; Ambrose, Kerrie D; Ansari-Lari, M Ali; Aradhya, Swaroop; Ashwell, Robert I S; Babbage, Anne K; Bagguley, Claire L; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E; Barlow, Karen F; Barrett, Ian P; Bates, Karen N; Beare, David M; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M; Brown, Andrew J; Brown, Mary J; Bonnin, David; Bruford, Elspeth A; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y; Clarke, Graham; Clee, Chris M; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G; Conquer, Jen S; Corby, Nicole; Connor, Richard E; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; Deshazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A; Hawes, Alicia; Heath, Paul D; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J; Huckle, Elizabeth J; Hume, Jennifer; Hunt, Paul J; Hunt, Adrienne R; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J; Joseph, Shirin S; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M; Loulseged, Hermela; Loveland, Jane E; Lovell, Jamieson D; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O'Dell, Christopher N; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V; Pearson, Danita M; Pelan, Sarah E; Perez, Lesette; Porter, Keith M; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A; Schlessinger, David; Schueler, Mary G; Sehra, Harminder K; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M; Shownkeen, Ratna; Skuce, Carl D; Smith, Michelle L; Sotheran, Elizabeth C; Steingruber, Helen E; Steward, Charles A; Storey, Roy; Swann, R Mark; Swarbreck, David; Tabor, Paul E; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C; d'Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L; Whiteley, Mathew N; Wilkinson, Jane E; Willey, David L; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L; Wray, Paul W; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J; Hillier, Ladeana W; Willard, Huntington F; Wilson, Richard K; Waterston, Robert H; Rice, Catherine M; Vaudin, Mark; Coulson, Alan; Nelson, David L; Weinstock, George; Sulston, John E; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A; Beck, Stephan; Rogers, Jane; Bentley, David R

    2005-03-17

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.

  3. Deficit of mitonuclear genes on the human X chromosome predates sex chromosome formation.

    Science.gov (United States)

    Dean, Rebecca; Zimmer, Fabian; Mank, Judith E

    2015-01-29

    Two taxa studied to date, the therian mammals and Caenorhabditis elegans, display underrepresentations of mitonuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions over the generality of the role of sexual conflict in shaping the distribution of mt-N genes. Here we tested whether mt-N genes moved off of the therian X chromosome following sex chromosome formation, consistent with the role of sexual conflict, or whether the paucity of mt-N genes on the therian X is a chance result of an underrepresentation on the ancestral regions that formed the X chromosome. We used a synteny-based approach to identify the ancestral regions in the platypus and chicken genomes that later formed the therian X chromosome. We then quantified the movement of mt-N genes on and off of the X chromosome and the distribution of mt-N genes on the human X and ancestral X regions. We failed to find an excess of mt-N gene movement off of the X. The bias of mt-N genes on ancestral therian X chromosomes was also not significantly different from the biases on the human X. Together our results suggest that, rather than conflict driving mt-N genes off of the mammalian X, random biases on chromosomes that formed the X chromosome could explain the paucity of mt-N genes in the therian lineage.

  4. Targeted sequencing of the human X chromosome exome.

    Science.gov (United States)

    Mondal, Kajari; Shetty, Amol Carl; Patel, Viren; Cutler, David J; Zwick, Michael E

    2011-10-01

    We used a RainDance Technologies (RDT) expanded content library to enrich the human X chromosome exome (2.5 Mb) from 26 male samples followed by Illumina sequencing. Our multiplex primer library covered 98.05% of the human X chromosome exome in a single tube with 11,845 different PCR amplicons. Illumina sequencing of 24 male samples showed coverage for 97% of the targeted sequences. Sequence from 2 HapMap samples confirmed missing data rates of 2-3% at sites successfully typed by the HapMap project, with an accuracy of at least ~99.5% as compared to reported HapMap genotypes. Our demonstration that a RDT expanded content library can efficiently enrich and enable the routine sequencing of the human X chromosome exome suggests a wide variety of potential research and clinical applications for this platform.

  5. Mapping and ordered cloning of the human X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, C.T.; Nelson, D.L.

    1992-12-01

    Progress is reported on gathering X chromosome specific libraries and integrating those with the library produced in this project. Further studies on understanding Fragile X Syndrome and other hereditary diseases related to the X chromosome are described. (DT)

  6. A worldwide phylogeography for the human X chromosome.

    Directory of Open Access Journals (Sweden)

    Simone S Santos-Lopes

    Full Text Available BACKGROUND: We reasoned that by identifying genetic markers on human X chromosome regions where recombination is rare or absent, we should be able to construct X chromosome genealogies analogous to those based on Y chromosome and mitochondrial DNA polymorphisms, with the advantage of providing information about both male and female components of the population. METHODOLOGY/PRINCIPAL FINDINGS: We identified a 47 Kb interval containing an Alu insertion polymorphism (DXS225 and four microsatellites in complete linkage disequilibrium in a low recombination rate region of the long arm of the human X chromosome. This haplotype block was studied in 667 males from the HGDP-CEPH Human Genome Diversity Panel. The haplotypic diversity was highest in Africa (0.992+/-0.0025 and lowest in the Americas (0.839+/-0.0378, where no insertion alleles of DXS225 were observed. Africa shared few haplotypes with other geographical areas, while those exhibited significant sharing among themselves. Median joining networks revealed that the African haplotypes were numerous, occupied the periphery of the graph and had low frequency, whereas those from the other continents were few, central and had high frequency. Altogether, our data support a single origin of modern man in Africa and migration to occupy the other continents by serial founder effects. Coalescent analysis permitted estimation of the time of the most recent common ancestor as 182,000 years (56,700-479,000 and the estimated time of the DXS225 Alu insertion of 94,400 years (24,300-310,000. These dates are fully compatible with the current widely accepted scenario of the origin of modern mankind in Africa within the last 195,000 years and migration out-of-Africa circa 55,000-65,000 years ago. CONCLUSIONS/SIGNIFICANCE: A haplotypic block combining an Alu insertion polymorphism and four microsatellite markers on the human X chromosome is a useful marker to evaluate genetic diversity of human populations and

  7. X chromosome inactivation is initiated in human preimplantation embryos

    NARCIS (Netherlands)

    van den Berg, Ilse M; Laven, Joop S E; Stevens, Mary; Jonkers, Iris; Galjaard, Robert-Jan; Gribnau, Joost; van Doorninck, J Hikke

    2009-01-01

    X chromosome inactivation (XCI) is the mammalian mechanism that compensates for the difference in gene dosage between XX females and XY males. Genetic and epigenetic regulatory mechanisms induce transcriptional silencing of one X chromosome in female cells. In mouse embryos, XCI is initiated at the

  8. Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation.

    Science.gov (United States)

    Sahakyan, Anna; Kim, Rachel; Chronis, Constantinos; Sabri, Shan; Bonora, Giancarlo; Theunissen, Thorold W; Kuoy, Edward; Langerman, Justin; Clark, Amander T; Jaenisch, Rudolf; Plath, Kathrin

    2017-01-05

    Naive human embryonic stem cells (hESCs) can be derived from primed hESCs or directly from blastocysts, but their X chromosome state has remained unresolved. Here, we show that the inactive X chromosome (Xi) of primed hESCs was reactivated in naive culture conditions. Like cells of the blastocyst, the resulting naive cells contained two active X chromosomes with XIST expression and chromosome-wide transcriptional dampening and initiated XIST-mediated X inactivation upon differentiation. Both establishment of and exit from the naive state (differentiation) happened via an XIST-negative XaXa intermediate. Together, these findings identify a cell culture system for functionally exploring the two X chromosome dosage compensation processes in early human development: X dampening and X inactivation. However, remaining differences between naive hESCs and embryonic cells related to mono-allelic XIST expression and non-random X inactivation highlight the need for further culture improvement. As the naive state resets Xi abnormalities seen in primed hESCs, it may provide cells better suited for downstream applications.

  9. Evaluating the relationship between spermatogenic silencing of the X chromosome and evolution of the Y chromosome in chimpanzee and human.

    Science.gov (United States)

    Mulugeta Achame, Eskeatnaf; Baarends, Willy M; Gribnau, Joost; Grootegoed, J Anton

    2010-12-14

    Chimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural selection acting on the MSY as a unit. Positive selection might involve the performance of the MSY in spermatogenesis. Chimpanzees have a highly polygamous mating behavior, so that sperm competition is thought to provide a strong selective force acting on the Y chromosome in the chimpanzee lineage. In consequence of evolution of the heterologous sex chromosomes in mammals, meiotic sex chromosome inactivation (MSCI) results in a transcriptionally silenced XY body in male meiotic prophase, and subsequently also in postmeiotic repression of the sex chromosomes in haploid spermatids. This has evolved to a situation where MSCI has become a prerequisite for spermatogenesis. Here, by analysis of microarray testicular expression data representing a small number of male chimpanzees and men, we obtained information indicating that meiotic and postmeiotic X chromosome silencing might be more effective in chimpanzee than in human spermatogenesis. From this, we suggest that the remarkable reorganization of the chimpanzee Y chromosome, compared to the human Y chromosome, might have an impact on its meiotic interactions with the X chromosome and thereby on X chromosome silencing in spermatogenesis. Further studies will be required to address comparative functional aspects of MSCI in chimpanzee, human, and other placental mammals.

  10. Evaluating the relationship between spermatogenic silencing of the X chromosome and evolution of the Y chromosome in chimpanzee and human.

    Directory of Open Access Journals (Sweden)

    Eskeatnaf Mulugeta Achame

    Full Text Available Chimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY, representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural selection acting on the MSY as a unit. Positive selection might involve the performance of the MSY in spermatogenesis. Chimpanzees have a highly polygamous mating behavior, so that sperm competition is thought to provide a strong selective force acting on the Y chromosome in the chimpanzee lineage. In consequence of evolution of the heterologous sex chromosomes in mammals, meiotic sex chromosome inactivation (MSCI results in a transcriptionally silenced XY body in male meiotic prophase, and subsequently also in postmeiotic repression of the sex chromosomes in haploid spermatids. This has evolved to a situation where MSCI has become a prerequisite for spermatogenesis. Here, by analysis of microarray testicular expression data representing a small number of male chimpanzees and men, we obtained information indicating that meiotic and postmeiotic X chromosome silencing might be more effective in chimpanzee than in human spermatogenesis. From this, we suggest that the remarkable reorganization of the chimpanzee Y chromosome, compared to the human Y chromosome, might have an impact on its meiotic interactions with the X chromosome and thereby on X chromosome silencing in spermatogenesis. Further studies will be required to address comparative functional aspects of MSCI in chimpanzee, human, and other placental mammals.

  11. A first-generation X-inactivation profile of the human X chromosome.

    Science.gov (United States)

    Carrel, L; Cottle, A A; Goglin, K C; Willard, H F

    1999-12-01

    In females, most genes on the X chromosome are generally assumed to be transcriptionally silenced on the inactive X as a result of X inactivation. However, particularly in humans, an increasing number of genes are known to "escape" X inactivation and are expressed from both the active (Xa) and inactive (Xi) X chromosomes; such genes reflect different molecular and epigenetic responses to X inactivation and are candidates for phenotypes associated with X aneuploidy. To identify genes that escape X inactivation and to generate a first-generation X-inactivation profile of the X, we have evaluated the expression of 224 X-linked genes and expressed sequence tags by reverse-transcription-PCR analysis of a panel of multiple independent mouse/human somatic cell hybrids containing a normal human Xi but no Xa. The resulting survey yields an initial X-inactivation profile that is estimated to represent approximately 10% of all X-linked transcripts. Of the 224 transcripts tested here, 34 (three of which are pseudoautosomal) were expressed in as many as nine Xi hybrids and thus appear to escape inactivation. The genes that escape inactivation are distributed nonrandomly along the X; 31 of 34 such transcripts map to Xp, implying that the two arms of the X are epigenetically and/or evolutionarily distinct and suggesting that genetic imbalance of Xp may be more severe clinically than imbalance of Xq. A complete X-inactivation profile will provide information relevant to clinical genetics and genetic counseling and should yield insight into the genomic and epigenetic organization of the X chromosome.

  12. A new region of conservation is defined between human and mouse X chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Dinulos, M.B.; Disteche, C.M. [Univ. of Washington, Seattle, WA (United States); Bassi, M.T. [Univ. of Siena (Italy)] [and others

    1996-07-01

    Comparative mapping of the X chromosome in eutherian mammals have revealed distinct regions of conservation as well as evolutionary rearrangements between human and mouse. Recently, we and others mapped the murine homologue of CLCN4 (Chloride channel 4) to band F4 of the X chromosome in Mus spretus but to chromosome 7 in laboratory strains. We now report the mapping of the murine homologues of APXL (Apical protein Xenopus laevis-like) and OA1 (Ocular albinism type I), two genes that are located on the human X chromosome at band p22.3 and in close proximity to CLCN4. Interestingly, Oa1 and Apxl map to bands F2-F3 in both M. spretus and the laboratory strain C57BL/6J, defining a new rearrangement between human and mouse X chromosomes. 17 refs., 2 figs., 1 tab.

  13. Abnormal X : autosome ratio, but normal X chromosome inactivation in human triploid cultures

    Directory of Open Access Journals (Sweden)

    Norwood Thomas H

    2006-07-01

    Full Text Available Abstract Background X chromosome inactivation (XCI is that aspect of mammalian dosage compensation that brings about equivalence of X-linked gene expression between females and males by inactivating one of the two X chromosomes (Xi in normal female cells, leaving them with a single active X (Xa as in male cells. In cells with more than two X's, but a diploid autosomal complement, all X's but one, Xa, are inactivated. This phenomenon is commonly thought to suggest 1 that normal development requires a ratio of one Xa per diploid autosomal set, and 2 that an early event in XCI is the marking of one X to be active, with remaining X's becoming inactivated by default. Results Triploids provide a test of these ideas because the ratio of one Xa per diploid autosomal set cannot be achieved, yet this abnormal ratio should not necessarily affect the one-Xa choice mechanism for XCI. Previous studies of XCI patterns in murine triploids support the single-Xa model, but human triploids mostly have two-Xa cells, whether they are XXX or XXY. The XCI patterns we observe in fibroblast cultures from different XXX human triploids suggest that the two-Xa pattern of XCI is selected for, and may have resulted from rare segregation errors or Xi reactivation. Conclusion The initial X inactivation pattern in human triploids, therefore, is likely to resemble the pattern that predominates in murine triploids, i.e., a single Xa, with the remaining X's inactive. Furthermore, our studies of XIST RNA accumulation and promoter methylation suggest that the basic features of XCI are normal in triploids despite the abnormal X:autosome ratio.

  14. Deficit of mito-nuclear genes on the human X chromosome predates sex chromosome formation

    OpenAIRE

    Dean, R; Zimmer, F.; Mank, J E

    2015-01-01

    Two taxa studied to date, the therian mammals and Caenorhaditis elegans, display under-representations of mito-nuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions ov...

  15. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies.

    Science.gov (United States)

    Dominguez, Antonia A; Chiang, H Rosaria; Sukhwani, Meena; Orwig, Kyle E; Reijo Pera, Renee A

    2014-09-22

    Turner syndrome is caused by complete or partial loss of the second sex chromosome and is characterized by spontaneous fetal loss in >90% of conceptions. Survivors possess an array of somatic and germline clinical characteristics. Induced pluripotent stem cells (iPSCs) offer an opportunity for insight into genetic requirements of the X chromosome linked to Turner syndrome. We derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We demonstrate that two X chromosomes are not necessary for reprogramming or maintenance of pluripotency and that there are minimal differences in gene expression, at the single cell level, linked to X chromosome aneuploidies. Formation of germ cells, as assessed in vivo through a murine xenotransplantation model, indicated that undifferentiated iPSCs, independent of X chromosome composition, are capable of forming germ-cell-like cells (GCLCs) in vivo. In combination with clinical data regarding infertility in women with X chromosome aneuploidies, results suggest that two intact X chromosomes are not required for human germ cell formation, qualitatively or quantitatively, but rather are likely to be required for maintenance of human germ cells to adulthood.

  16. Genetic Diversity on the Human X Chromosome Does Not Support a Strict Pseudoautosomal Boundary.

    Science.gov (United States)

    Cotter, Daniel J; Brotman, Sarah M; Wilson Sayres, Melissa A

    2016-05-01

    Unlike the autosomes, recombination between the X chromosome and the Y chromosome is often thought to be constrained to two small pseudoautosomal regions (PARs) at the tips of each sex chromosome. PAR1 spans the first 2.7 Mb of the proximal arm of the human sex chromosomes, whereas the much smaller PAR2 encompasses the distal 320 kb of the long arm of each sex chromosome. In addition to PAR1 and PAR2, there is a human-specific X-transposed region that was duplicated from the X to the Y chromosome. The X-transposed region is often not excluded from X-specific analyses, unlike the PARs, because it is not thought to routinely recombine. Genetic diversity is expected to be higher in recombining regions than in nonrecombining regions because recombination reduces the effect of linked selection. In this study, we investigated patterns of genetic diversity in noncoding regions across the entire X chromosome of a global sample of 26 unrelated genetic females. We found that genetic diversity in PAR1 is significantly greater than in the nonrecombining regions (nonPARs). However, rather than an abrupt drop in diversity at the pseudoautosomal boundary, there is a gradual reduction in diversity from the recombining through the nonrecombining regions, suggesting that recombination between the human sex chromosomes spans across the currently defined pseudoautosomal boundary. A consequence of recombination spanning this boundary potentially includes increasing the rate of sex-linked disorders (e.g., de la Chapelle) and sex chromosome aneuploidies. In contrast, diversity in PAR2 is not significantly elevated compared to the nonPARs, suggesting that recombination is not obligatory in PAR2. Finally, diversity in the X-transposed region is higher than in the surrounding nonPARs, providing evidence that recombination may occur with some frequency between the X and Y chromosomes in the X-transposed region.

  17. A high-resolution interval map of the q21 region of the human X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, C.; Monaco, A.P. [ICRF Laboratories, Oxford (United Kingdom)] [and others; Arnould, C. [Laboratoire de Genetique Humaine, Vandoeuvre-les-Nancy (France)] [and others

    1995-06-10

    In a previous study, we have developed a panel of chromosomal rearrangements for the physical mapping of the q13-q21 region of the human X chromosome. Here, we report the physical localization of 36 additional polymorphic markers by polymerase chain reaction analysis. The high density of chromosomal breakpoints in Xq21 allows us to map 58 DNA loci in 22 intervals. As a result, this segment of the X chromosome is saturated with approximately three sequence tagged sites per megabase of DNA, which will facilitate the construction of a YAC contig of this region. 26 refs., 1 fig., 1 tab.

  18. MAOA and GYG2 are submitted to X chromosome inactivation in human fibroblasts.

    Science.gov (United States)

    Stabellini, Raquel; Vasques, Luciana R; de Mello, Joana Carvalho Moreira; Hernandes, Lys Molina; Pereira, Lygia V

    2009-08-16

    X chromosome inactivation (XCI) is a comprehensively studied phenomenon that helped to highlight the heritable nature of epigenetic modifications. Although it consists of the transcriptional inactivation of a whole X chromosome in females, some genes escape this process and present bi-allelic expression. Using human fibroblasts with skewed inactivation, we determined allele-specific expression of two X-linked genes previously described to escape XCI in rodent/human somatic cell hybrids, MAOA and GYG2, and the pattern of DNA methylation of their 5' end. Results from these complementary methodologies let us to conclude that both genes are subjected to X inactivation in normal human fibroblasts, indicating that hybrid cells are not an adequate system for studying epigenotypes. We emphasize the need of an analysis of XCI in normal human cell lines, helping us to determine more precisely which X-linked genes contribute to differences among genders and to the phenotypes associated with sex chromosomes aneuploidies.

  19. Stable X Chromosome Reactivation in Female Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Tahsin Stefan Barakat

    2015-02-01

    Full Text Available In placental mammals, balanced expression of X-linked genes is accomplished by X chromosome inactivation (XCI in female cells. In humans, random XCI is initiated early during embryonic development. To investigate whether reprogramming of female human fibroblasts into induced pluripotent stem cells (iPSCs leads to reactivation of the inactive X chromosome (Xi, we have generated iPSC lines from fibroblasts heterozygous for large X-chromosomal deletions. These fibroblasts show completely skewed XCI of the mutated X chromosome, enabling monitoring of X chromosome reactivation (XCR and XCI using allele-specific single-cell expression analysis. This approach revealed that XCR is robust under standard culture conditions, but does not prevent reinitiation of XCI, resulting in a mixed population of cells with either two active X chromosomes (Xas or one Xa and one Xi. This mixed population of XaXa and XaXi cells is stabilized in naive human stem cell medium, allowing expansion of clones with two Xas.

  20. A 6. 5-Mb yeast artificial chromosome contig incorporating 33 DNA markers on the human X chromosome at Xq22

    Energy Technology Data Exchange (ETDEWEB)

    Vetrie, D.; Kendall, E.; Coffey, A.; Hassock, S.; Collins, J.; Todd, C.; Bobrow, M.; Bentley, D.R. (Paediatric Research Unit, London (United Kingdom)); Lehrach, H. (Imperial Cancer Research Fund, London (United Kingdom)); Harris, A. (John Radcliffe Hospital, Oxford (United Kingdom))

    1994-01-01

    The Xq22 region of the human X chromosome contains genes for a number of inherited disorders. Sixty-nine yeast artificial chromosome clones have been isolated and assembled into a 6.5-Mb contig that contains 33 DNA markers localized to this region. This contig extends distally from DXS366 to beyond DXS87 and includes the genes involved in X-linked agammaglobulinemia (btk), Fabry disease (GLA), and Pelizaeus-Merzbacher disease (PLP). The order of markers in this contig is consistent with the known genetic and physical mapping information of Xq22. This cloned material provides a source from which to isolate other genes located in this part of the X chromosome. 45 refs., 2 figs., 2 tabs.

  1. DNA methylation signature in peripheral blood reveals distinct characteristics of human X chromosome numerical aberrations

    OpenAIRE

    2015-01-01

    Background Abnormal sex chromosome numbers in humans are observed in Turner (45,X) and Klinefelter (47,XXY) syndromes. Both syndromes are associated with several clinical phenotypes, whose molecular mechanisms are obscure, and show a range of inter-individual penetrance. In order to understand the effect of abnormal numbers of X chromosome on the methylome and its correlation to the variable clinical phenotype, we performed a genome-wide methylation analysis using MeDIP and Illumina’s Infiniu...

  2. Evolution of homologous sequences on the human X and Y chromosomes, outside of the meiotic pairing segment.

    OpenAIRE

    Bickmore, W A; Cooke, H J

    1987-01-01

    A sequence isolated from the long arm of the human Y chromosome detects a highly homologous locus on the X. This homology extends over at least 50 kb of DNA and is postulated to be the result of a transposition event between the X and Y chromosomes during recent human evolution, since homologous sequences are shown to be present on the X chromosome alone in the chimpanzee and gorilla.

  3. Mapping and ordered cloning of the human X chromosome. Progress report, September 1991--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, C.T.; Nelson, D.L.

    1992-12-01

    Progress is reported on gathering X chromosome specific libraries and integrating those with the library produced in this project. Further studies on understanding Fragile X Syndrome and other hereditary diseases related to the X chromosome are described. (DT)

  4. Unstable chromosome aberrations do not accumulate in normal human fibroblast after fractionated x-irradiation.

    Directory of Open Access Journals (Sweden)

    Mitsuaki Ojima

    Full Text Available We determined the frequencies of dicentric chromosomes per cell in non-dividing confluent normal human fibroblasts (MRC-5 irradiated with a single 1 Gy dose or a fractionated 1 Gy dose (10X0.1 Gy, 5X0.2 Gy, and 2X0.5 Gy. The interval between fractions was between 1 min to 1440 min. After the completion of X-irradiation, the cells were incubated for 24 hours before re-plating at a low density. Then, demecolcine was administrated at 6 hours, and the first mitotic cells were collected for 42 hours. Our study demonstrated that frequencies of dicentric chromosomes in cells irradiated with a 1 Gy dose at different fractions were significantly reduced if the fraction interval was increased from 1 min to 5 min (p<0.05, χ2-test. Further increasing the fraction interval from 5 up to 1440 min did not significantly affect the frequency of dicentric chromosomes. Since misrejoining of two independent chromosome breaks introduced in close proximity gives rise to dicentric chromosome, our results indicated that such circumstances might be quite infrequent in cells exposed to fractionated X-irradiation with prolonged fraction intervals. Our findings should contribute to improve current estimation of cancer risk from chronic low-dose-rate exposure, or intermittent exposure of low-dose radiation by medical exposure.

  5. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture.

    Science.gov (United States)

    Darrow, Emily M; Huntley, Miriam H; Dudchenko, Olga; Stamenova, Elena K; Durand, Neva C; Sun, Zhuo; Huang, Su-Chen; Sanborn, Adrian L; Machol, Ido; Shamim, Muhammad; Seberg, Andrew P; Lander, Eric S; Chadwick, Brian P; Aiden, Erez Lieberman

    2016-08-02

    During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the "Barr body." Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called "superdomains," such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called "superloops." DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.

  6. Dosage regulation of the active X chromosome in human triploid cells.

    Directory of Open Access Journals (Sweden)

    Xinxian Deng

    2009-12-01

    Full Text Available In mammals, dosage compensation is achieved by doubling expression of X-linked genes in both sexes, together with X inactivation in females. Up-regulation of the active X chromosome may be controlled by DNA sequence-based and/or epigenetic mechanisms that double the X output potentially in response to autosomal factor(s. To determine whether X expression is adjusted depending on ploidy, we used expression arrays to compare X-linked and autosomal gene expression in human triploid cells. While the average X:autosome expression ratio was about 1 in normal diploid cells, this ratio was lower (0.81-0.84 in triploid cells with one active X and higher (1.32-1.4 in triploid cells with two active X's. Thus, overall X-linked gene expression in triploid cells does not strictly respond to an autosomal factor, nor is it adjusted to achieve a perfect balance. The unbalanced X:autosome expression ratios that we observed could contribute to the abnormal phenotypes associated with triploidy. Absolute autosomal expression levels per gene copy were similar in triploid versus diploid cells, indicating no apparent global effect on autosomal expression. In triploid cells with two active X's our data support a basic doubling of X-linked gene expression. However, in triploid cells with a single active X, X-linked gene expression is adjusted upward presumably by an epigenetic mechanism that senses the ratio between the number of active X chromosomes and autosomal sets. Such a mechanism may act on a subset of genes whose expression dosage in relation to autosomal expression may be critical. Indeed, we found that there was a range of individual X-linked gene expression in relation to ploidy and that a small subset ( approximately 7% of genes had expression levels apparently proportional to the number of autosomal sets.

  7. Evaluating the relationship between spermatogenic silencing of the X chromosome and evolution of the Y chromosome in chimpanzee and human

    NARCIS (Netherlands)

    E.M. Achame; W.M. Baarends (Willy); J.H. Gribnau (Joost); J.A. Grootegoed (Anton)

    2010-01-01

    textabstractChimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural

  8. X-chromosome inactivation in Rett Syndrome human induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Aaron YL Cheung

    2012-03-01

    Full Text Available Rett Syndrome (RTT is a neurodevelopmental disorder that affects girls due primarily to heterozygous mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MECP2. Random X-chromosome inactivation (XCI results in cellular mosaicism in which some cells express wild-type MECP2 while other cells express mutant MECP2. The generation of patient-specific human induced Pluripotent Stem cells (hiPSCs facilitates the production of RTT-hiPSC-derived neurons in vitro to investigate disease mechanisms and identify novel drug treatments. The generation of RTT-hiPSCs has been reported by many laboratories, however, the XCI status of RTT-hiPSCs has been inconsistent. Some report RTT-hiPSCs retain the inactive X-chromosome (post-XCI of the founder somatic cell allowing isogenic RTT-hiPSCs that express only the wild-type or mutant MECP2 allele to be isolated from the same patient. Post-XCI RTT-hiPSCs-derived neurons retain this allele-specific expression pattern of wild-type or mutant MECP2. Conversely, others report RTT-hiPSCs in which the inactive X-chromosome of the founder somatic cell reactivates (pre-XCI upon reprogramming into RTT-hiPSCs. Pre-XCI RTT-hiPSC-derived neurons exhibit random XCI resulting in cellular mosaicism with respect to wild-type and mutant MECP2 expression. Here we review and attempt to interpret the inconsistencies in XCI status of RTT-hiPSCs generated to date by comparison to other pluripotent systems in vitro and in vivo and the methods used to analyze XCI. Finally, we discuss the relative strengths and weaknesses of post- and pre-XCI hiPSCs in the context of RTT, and other X-linked and autosomal disorders for translational medicine.

  9. Activation of X Chromosome Inactivation

    NARCIS (Netherlands)

    C.M. Maduro (Cheryl)

    2016-01-01

    markdownabstractIn mammals, males are the heterogametic sex having an X chromosome and a Y chromosome whereas females have two X chromosomes. Despite originating from an ancient homologous autosomal pair, the X and Y chromosome now differ greatly in size and gene content after ~180 MY of evolution.

  10. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Salido, E.C. (Faculty of Medicine, La Laguna (Spain)); Yen, P.H.; Koprivnikar, K.; Shapiro, L.J. (University of California School of Medicine, Torrence (United States)); Yu, Lohchung (Lawrence Livermore National Laboratory, CA (United States))

    1992-02-01

    Amelogenins, a family of extracellular matrix proteins of the dental enamel, are transiently but abundantly expressed by ameloblasts during tooth development. In this paper the authors report the characterization of the AMGX and AMGY genes on the short arms of the human X and Y chromosomes which encode the amelogenins. Their studies on the expression of the amelogenin genes in male developing tooth buds showed that both the AMGX and AMGY genes are transcriptionally active and encode potentially functional proteins. They have isolated genomic and cDNA clones form both the AMGX and AMGY loci and have studied the sequence organization of these two genes. Reverse transcriptase (RT)PCR amplification of the 5[prime] portion of the amelogenin transcripts revealed several alternatively spliced products. This information will be useful for studying the molecular basis of X-linked amelogenesis imperfecta, for understanding the evolution and regulation of gene expression on the mammalian sex chromosomes, and for investigating the role of amelogenin genes during tooth development.

  11. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    Science.gov (United States)

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  12. Report of the Fourth International Workshop on human X chromosome mapping 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schlessinger, D.; Mandel, J.L.; Monaco, A.P.; Nelson, D.L.; Willard, H.F. [eds.

    1993-12-31

    Vigorous interactive efforts by the X chromosome community have led to accelerated mapping in the last six months. Seventy-five participants from 12 countries around the globe contributed progress reports to the Fourth International X Chromosome Workshop, at St. Louis, MO, May 9-12, 1993. It became clear that well over half the chromosome is now covered by YAC contigs that are being extended, verified, and aligned by their content of STSs and other markers placed by cytogenetic or linkage mapping techniques. The major aim of the workshop was to assemble the consensus map that appears in this report, summarizing both consensus order and YAC contig information.

  13. The X chromosome Alu insertions as a tool for human population genetics: data from European and African human groups.

    Science.gov (United States)

    Athanasiadis, Georgios; Esteban, Esther; Via, Marc; Dugoujon, Jean-Michel; Moschonas, Nicholas; Chaabani, Hassen; Moral, Pedro

    2007-05-01

    Alu elements are the most abundant mobile elements in the human genome (approximately 1,100,000 copies). Polymorphic Alu elements have been proved to be useful in studies of human origins and relationships owing to two important advantages: identity by descent and absence of the Alu element known to be the ancestral state. Alu variation in the X chromosome has been described previously in human populations but, as far as we know, these elements have not been used in population relationship studies. Here, we describe the allele frequencies of 13 'young' Alu elements of the X chromosome (Ya5DP62, Ya5DP57, Yb8DP49, Ya5a2DP1, Yb8DP2, Ya5DP3, Ya5NBC37, Yd3JX437, Ya5DP77, Ya5NBC491, Yb8NBC578, Ya5DP4 and Ya5DP13) in six human populations from sub-Saharan Africa (the Ivory Coast), North Africa (Moroccan High Atlas, Siwa oasis in Egypt, Tunisia), Greece (Crete Island) and Spain (Basque Country). Eight out of 13 Alu elements have shown remarkably high gene diversity values in all groups (average heterozygosities: 0.342 in the Ivory Coast, 0.250 in North Africa, 0.209 in Europe). Genetic relationships agree with a geographical pattern of differentiation among populations, with some peculiar features observed in North Africans. Crete Island and the Basque Country show the lowest genetic distance (0.0163) meanwhile Tunisia, in spite of its geographical location, lies far from the other two North African samples. The results of our work demonstrate that X chromosome Alu elements comprise a reliable set of genetic markers useful to describe human population relationships for fine-scale geographical studies.

  14. Isolation, Mapping, DNA Sequence and RFLPs Studies of Random Single-Copy DNA Segments on Human X Chromosome

    Institute of Scientific and Technical Information of China (English)

    谭骏; 邱信芳; 薛京伦; 朱锡华; 纪贤文; 张冬梅; 秦世真

    1994-01-01

    Using the total human/mouse DNA as the probe, screening has been carried out three times with in situ plaque hybridization to obtain the single-copy DNA sequence from the human X chromosome genomic library. The effective rate of screening is 1. 45%. DNAs from clones containing single-copy inserts have been analyzed by a panel of hybrid cells with or without human X chromosome. Three segments, designated by DXFD52,73,75, are mapped to the X chromosome. DXFD52 has been precisely localized on Xq12-q13 with in situ chromosomal hybridization. DXFD52 has been partially sequenced. The results indicate that DXFD52 is a new isolated single-copy segment on the X chromosome. Great progress in the RFLPs study with DXFD52 has been achieved in the population of Chongqing, Sichuan Province. The results show that the DXFD52 can be used to detect the RFLP with Hind Ⅲ, Bgl Ⅱ, and Hinf Ⅰ. DXFD52 will be a potential "landmark" for the construction of the complete linkage map of human genome and the analysis of genomic s

  15. Dynamics of X Chromosome Inactivation

    NARCIS (Netherlands)

    F. Loos (Friedemann)

    2015-01-01

    markdownabstract__Abstract__ Dosage compensation evolved to account for the difference in expression of sex chromosome-linked genes. In mammals dosage compensation is achieved by inactivation of one X chromosome during early female embryogenesis in a process called X chromosome inactivation (XCI).

  16. Intergenic DNA sequences from the human X chromosome reveal high rates of global gene flow

    Directory of Open Access Journals (Sweden)

    Wall Jeffrey D

    2008-11-01

    Full Text Available Abstract Background Despite intensive efforts devoted to collecting human polymorphism data, little is known about the role of gene flow in the ancestry of human populations. This is partly because most analyses have applied one of two simple models of population structure, the island model or the splitting model, which make unrealistic biological assumptions. Results Here, we analyze 98-kb of DNA sequence from 20 independently evolving intergenic regions on the X chromosome in a sample of 90 humans from six globally diverse populations. We employ an isolation-with-migration (IM model, which assumes that populations split and subsequently exchange migrants, to independently estimate effective population sizes and migration rates. While the maximum effective size of modern humans is estimated at ~10,000, individual populations vary substantially in size, with African populations tending to be larger (2,300–9,000 than non-African populations (300–3,300. We estimate mean rates of bidirectional gene flow at 4.8 × 10-4/generation. Bidirectional migration rates are ~5-fold higher among non-African populations (1.5 × 10-3 than among African populations (2.7 × 10-4. Interestingly, because effective sizes and migration rates are inversely related in African and non-African populations, population migration rates are similar within Africa and Eurasia (e.g., global mean Nm = 2.4. Conclusion We conclude that gene flow has played an important role in structuring global human populations and that migration rates should be incorporated as critical parameters in models of human demography.

  17. Report of the fifth international workshop on human X chromosome mapping

    Energy Technology Data Exchange (ETDEWEB)

    Willard, H.F.; Cremers, F.; Mandel, J.L.; Monaco, A.P.; Nelson, D.L.; Schlessinger, D.

    1994-12-31

    A high-quality integrated genetic and physical map of the X chromosome from telomere to telomere, based primarily on YACs formatted with probes and STSs, is increasingly close to reality. At the Fifth International X Chromosome Workshop, organized by A.M. Poustka and D. Schlessinger in Heidelberg, Germany, April 24--27, 1994, substantial progress was recorded on extension and refinement of the physical map, on the integration of genetic and cytogenetic data, on attempts to use the map to direct gene searches, and on nascent large-scale sequencing efforts. This report summarizes physical and genetic mapping information presented at the workshop and/or published since the reports of the fourth International X Chromosome Workshop. The principle aim of the workshop was to derive a consensus map of the chromosome, in terms of physical contigs emphasizing the location of genes and microsatellite markers. The resulting map is presented and updates previous versions. This report also updates the list of highly informative microsatellites. The text highlights the working state of the map, the genes known to reside on the X, and the progress toward integration of various types of data.

  18. The X chromosome and immune associated genes.

    Science.gov (United States)

    Bianchi, Ilaria; Lleo, Ana; Gershwin, M Eric; Invernizzi, Pietro

    2012-05-01

    The X chromosome is known to contain the largest number of immune-related genes of the whole human genome. For this reason, X chromosome has recently become subject of great interest and attention and numerous studies have been aimed at understanding the role of genes on the X chromosome in triggering and maintaining the autoimmune aggression. Autoimmune diseases are indeed a growing heath burden affecting cumulatively up to 10% of the general population. It is intriguing that most X-linked primary immune deficiencies carry significant autoimmune manifestations, thus illustrating the critical role played by products of single gene located on the X chromosome in the onset, function and homeostasis of the immune system. Again, the plethora of autoimmune stigmata observed in patients with Turner syndrome, a disease due to the lack of one X chromosome or the presence of major X chromosome deletions, indicate that X-linked genes play a unique and major role in autoimmunity. There have been several reports on a role of X chromosome gene dosage through inactivation or duplication in women with autoimmune diseases, for example through a higher rate of circulating cells with a single X chromosome (i.e. with X monosomy). Finally, a challenge for researchers in the coming years will be to dissect the role for the large number of X-linked microRNAs from the perspective of autoimmune disease development. Taken together, X chromosome might well constitute the common trait of the susceptibility to autoimmune diseases, other than to explain the female preponderance of these conditions. This review will focus on the available evidence on X chromosome changes and discuss their potential implications and limitations.

  19. Cell death, chromosome damage and mitotic delay in normal human, ataxia telangiectasia and retinoblastoma fibroblasts after x-irradiation.

    Science.gov (United States)

    Zampetti-Bosseler, F; Scott, D

    1981-05-01

    We recently showed (Scott and Zampetti-Bosseler 1980) that X-ray sensitive mouse lymphoma cells sustain more chromosome damage, mitotic delay and spindle defects than X-ray resistant cells. We proposed that (a) chromosome aberrations contribute much more to lethality than spindle defects, and (b) that DNA lesions are less effectively repaired in the sensitive cells and give rise to more G2 mitotic delay and chromosome aberrations. Our present results on human fibroblasts with reported differential sensitivity to ionizing radiation (i.e. normal donors and patients with ataxia telangiectasia and retinoblastoma) support the first hypothesis since we observed a positive correlation between chromosome aberration frequencies and cell killing and no induced spindle defects. Our second hypothesis is however not substantiated since X-ray sensitive fibroblasts from the ataxia patient suffered less mitotic delay than cells from normal donors. A common lesion for mitotic delay and chromosome aberrations can still be assumed by adopting the hypothesis of Painter and Young (1981) that the defect in ataxia cells is not in repair but in a failure of DNA damage to initiate mitotic delay. In contrast to other reports, we found the retinoblastoma cells to be of normal radiation sensitivity (cell killing and aberration).

  20. Strong Selective Sweeps on the X Chromosome in the Human-Chimpanzee Ancestor Explain Its Low Divergence.

    Directory of Open Access Journals (Sweden)

    Julien Y Dutheil

    2015-08-01

    Full Text Available The human and chimpanzee X chromosomes are less divergent than expected based on autosomal divergence. We study incomplete lineage sorting patterns between humans, chimpanzees and gorillas to show that this low divergence can be entirely explained by megabase-sized regions comprising one-third of the X chromosome, where polymorphism in the human-chimpanzee ancestral species was severely reduced. We show that background selection can explain at most 10% of this reduction of diversity in the ancestor. Instead, we show that several strong selective sweeps in the ancestral species can explain it. We also report evidence of population specific sweeps in extant humans that overlap the regions of low diversity in the ancestral species. These regions further correspond to chromosomal sections shown to be devoid of Neanderthal introgression into modern humans. This suggests that the same X-linked regions that undergo selective sweeps are among the first to form reproductive barriers between diverging species. We hypothesize that meiotic drive is the underlying mechanism causing these two observations.

  1. Variations of X chromosome inactivation occur in early passages of female human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Tamar Dvash

    Full Text Available X chromosome inactivation (XCI is a dosage compensation mechanism essential for embryonic development and cell physiology. Human embryonic stem cells (hESCs derived from inner cell mass (ICM of blastocyst stage embryos have been used as a model system to understand XCI initiation and maintenance. Previous studies of undifferentiated female hESCs at intermediate passages have shown three possible states of XCI; 1 cells in a pre-XCI state, 2 cells that already exhibit XCI, or 3 cells that never undergo XCI even upon differentiation. In this study, XCI status was assayed in ten female hESC lines between passage 5 and 15 to determine whether XCI variations occur in early passages of hESCs. Our results show that three different states of XCI already exist in the early passages of hESC. In addition, we observe one cell line with skewed XCI and preferential expression of X-linked genes from the paternal allele, while another cell line exhibits random XCI. Skewed XCI in undifferentiated hESCs may be due to clonal selection in culture instead of non-random XCI in ICM cells. We also found that XIST promoter methylation is correlated with silencing of XIST transcripts in early passages of hESCs, even in the pre-XCI state. In conclusion, XCI variations already take place in early passages of hESCs, which may be a consequence of in vitro culture selection during the derivation process. Nevertheless, we cannot rule out the possibility that XCI variations in hESCs may reflect heterogeneous XCI states in ICM cells that stochastically give rise to hESCs.

  2. Chromosomal rearrangement interferes with meiotic X chromosome inactivation.

    Science.gov (United States)

    Homolka, David; Ivanek, Robert; Capkova, Jana; Jansa, Petr; Forejt, Jiri

    2007-10-01

    Heterozygosity for certain mouse and human chromosomal rearrangements is characterized by the incomplete meiotic synapsis of rearranged chromosomes, by their colocalization with the XY body in primary spermatocytes, and by male-limited sterility. Previously, we argued that such X-autosomal associations could interfere with meiotic sex chromosome inactivation. Recently, supporting evidence has reported modifications of histones in rearranged chromosomes by a process called the meiotic silencing of unsynapsed chromatin (MSUC). Here, we report on the transcriptional down-regulation of genes within the unsynapsed region of the rearranged mouse chromosome 17, and on the subsequent disturbance of X chromosome inactivation. The partial transcriptional suppression of genes in the unsynapsed chromatin was most prominent prior to the mid-pachytene stage of primary spermatocytes. Later, during the mid-late pachytene, the rearranged autosomes colocalized with the XY body, and the X chromosome failed to undergo proper transcriptional silencing. Our findings provide direct evidence on the MSUC acting at the mRNA level, and implicate that autosomal asynapsis in meiosis may cause male sterility by interfering with meiotic sex chromosome inactivation.

  3. Robustness of the inference of human population structure: A comparison of X-chromosomal and autosomal microsatellites

    Directory of Open Access Journals (Sweden)

    Ramachandran Sohini

    2004-01-01

    Full Text Available Abstract In this paper, data on 20 X-chromosomal microsatellite polymorphisms from the HGDP-CEPH cell line panel are used to infer human population structure. Inferences from these data are compared to those obtained from autosomal microsatellites. Some of the major features of the structure seen with 377 autosomal markers are generally visible with the X-linked markers, although the latter provide less resolution. Differences between the X-chromosomal and autosomal results can be explained without requiring major differences in demographic parameters between males and females. The dependence of the partitioning on the number of individuals sampled from each region and on the number of markers used is discussed.

  4. Affected kindred analysis of human X chromosome exomes to identify novel X-linked intellectual disability genes.

    Directory of Open Access Journals (Sweden)

    Tejasvi S Niranjan

    Full Text Available X-linked Intellectual Disability (XLID is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders.

  5. Affected kindred analysis of human X chromosome exomes to identify novel X-linked intellectual disability genes.

    Science.gov (United States)

    Niranjan, Tejasvi S; Skinner, Cindy; May, Melanie; Turner, Tychele; Rose, Rebecca; Stevenson, Roger; Schwartz, Charles E; Wang, Tao

    2015-01-01

    X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families) using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders.

  6. A History of the Discovery of Random X Chromosome Inactivation in the Human Female and its Significance

    Directory of Open Access Journals (Sweden)

    Sophia Balderman

    2011-07-01

    Full Text Available Genetic determinants of sex in placental mammals developed by the evolution of primordial autosomes into the male and female sex chromosomes. The Y chromosome determines maleness by the action of the gene SRY, which encodes a protein that initiates a sequence of events prompting the embryonic gonads to develop into testes. The X chromosome in the absence of a Y chromosome results in a female by permitting the conversion of the embryonic gonads into ovaries. We trace the historical progress that resulted in the discovery that one X chromosome in the female is randomly inactivated in early embryogenesis, accomplishing approximate equivalency of X chromosome gene dosage in both sexes. This event results in half of the somatic cells in a tissue containing proteins encoded by the genes of the maternal X chromosome and half having proteins encoded by the genes of the paternal X chromosome, on average, accounting for the phenotype of a female heterozygote with an X chromosome mutation. The hypothesis of X chromosome inactivation as a random event early in embryogenesis was first described as a result of studies of variegated coat color in female mice. Similar results were found in women using the X chromosome-linked gene, glucose-6-phosphate dehydrogenase, studied in red cells. The random inactivation of the X chromosome-bearing genes for isoenzyme types A and B of glucose-6-phosphate dehydrogenase was used to establish the clonal origin of neoplasms in informative women with leiomyomas. Behind these discoveries are the stories of the men and women scientists whose research enlightened these aspects of X chromosome function and their implication for medicine.

  7. Micro RNAs and DNA methylation are regulatory players in human cells with altered X chromosome to autosome balance

    Science.gov (United States)

    Rajpathak, Shriram N.; Deobagkar, Deepti D.

    2017-01-01

    The gene balance hypothesis predicts that an imbalance in the dosage sensitive genes affects the cascade of gene networks that may influence the fitness of individuals. The phenotypes associated with chromosomal aneuploidies demonstrate the importance of gene dosage balance. We have employed untransformed human fibroblast cells with different number of X chromosomes to assess the expression of miRNAs and autosomal genes in addition to the DNA methylation status. High throughput NGS analysis using illumina Next seq500 has detected several autosomal as well as X linked miRNAs as differentially expressed in X monosomy and trisomy cells. Two of these miRNAs (hsa-miR-125a-5p and 335-5p) are likely to be involved in regulation of the autosomal gene expression. Additionally, our data demonstrates altered expression and DNA methylation signatures of autosomal genes in X monosomy and trisomy cells. In addition to miRNAs, expression of DNMT1 which is an important epigenetic player involved in many processes including cancer, is seen to be altered. Overall, present study provides a proof for regulatory roles of micro RNAs and DNA methylation in human X aneuploidy cells opening up possible new ways for designing therapeutic strategies. PMID:28233878

  8. Transcriptional organization of a 450-kb region of the human X chromosome in Xq28

    Energy Technology Data Exchange (ETDEWEB)

    Bione, S.; Tamanini, F.; Maestrini, E.; Tribioli, C.; Rivella, S.; Toniolo, D. (Instituto di Genetica Biochimica ed Evoluzionistica, Pavia (Italy)); Poustka, A. (German Cancer Research Center, Heidelberg (Germany))

    1993-11-15

    In this paper, the authors report the transcriptional organization of a 450-kb gene cluster in Xq28, flanked by the glucose-6-phosphate dehydrogenase and the color vision genes. CpG islands previously identified and mapped to distal Xq28 have helped in construction of a continuous contig of cosmids and in identification of cDNAs corresponding to eight transcripts. Thirteen to 16 small genes with CpG islands are clustered in a region of 250-300 kb. Many are highly expressed in muscle or brain and may be the genes responsible for muscle or neurological disorders mapped to distal Xq28. The analysis indicates that, in this region of the genome, genes not related in sequence are organized in transcriptional domains of 100 kb and that this organization may be important for establishing and regulating gene expression in relation to tissue distribution and X chromosome inactivation.

  9. Transcriptional organization of a 450-kb region of the human X chromosome in Xq28.

    Science.gov (United States)

    Bione, S; Tamanini, F; Maestrini, E; Tribioli, C; Poustka, A; Torri, G; Rivella, S; Toniolo, D

    1993-12-01

    In this paper, we report the transcriptional organization of a 450-kb gene cluster in Xq28, flanked by the glucose-6-phosphate dehydrogenase and the color vision genes. CpG islands previously identified and mapped to distal Xq28 have helped in construction of a continuous contig of cosmids and in identification of cDNAs corresponding to eight transcripts. Thirteen to 16 small genes with CpG islands are clustered in a region of 250-300 kb. Many are highly expressed in muscle or brain and may be the genes responsible for muscle or neurological disorders mapped to distal Xq28. Our analysis indicates that, in this region of the genome, genes not related in sequence are organized in transcriptional domains of 100 kb and that this organization may be important for establishing and regulating gene expression in relation to tissue distribution and X chromosome inactivation.

  10. Recent insights into the regulation of X-chromosome inactivation

    Directory of Open Access Journals (Sweden)

    Valencia K

    2015-05-01

    Full Text Available Karmele Valencia, Anton Wutz Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland Abstract: X-chromosome inactivation (XCI is the mechanism by which mammals compensate gene dosage differences between males and females. XCI is required for female development and has implications for human disease. As a result, a single X chromosome is transcriptionally active in both male and female cells. Functional hemizygosity of the X chromosomes greatly predisposes to phenotypic consequences of mutations. In females, X chromosomes are randomly chosen to become inactivated leading to a mosaic pattern of cells expressing genes from either chromosome. This facilitates the masking of phenotypic consequences of heterozygous X-linked mutations. Skewing of XCI in favor of one chromosome can result in increased severity of disease symptoms, if the X chromosome with a gene mutation remains preferentially active. In addition, phenotypic masking of X-linked mutations is not always observed. Rett syndrome represents a paradigm of this statement. Dosage compensation can also mask some aspects of sex chromosome aneuploidies. X-chromosome aneuploidies include Klinefelter, Turner, and X-trisomy syndromes. In all these cases, a single active X chromosome is present. However, in those cases with two or more X chromosomes, some genes from the inactivated X chromosome escape from XCI becoming active. Therefore, dose imbalances of escape genes cause pathologies. Defects in the structure and silencing of the inactive X chromosome are further observed in human pluripotent stem cells and in certain tumors. Taken together, these findings suggest that aspects of XCI are relevant for a large number of human diseases. Here we review basic and clinical research on XCI with the aim of illustrating connections and highlighting opportunities for future investigation. Keywords: XCI, X-linked diseases, sex chromosome

  11. Identification of a yeast artificial chromosome that spans the human papillary renal cell carcinoma-associated t(X;1) breakpoint in Xp11.2

    NARCIS (Netherlands)

    Suijkerbuijk, R F; Meloni, A M; Sinke, R J; de Leeuw, B; Wilbrink, M; Janssen, H A; Geraghty, M T; Monaco, A P; Sandberg, A A; Geurts van Kessel, A

    1993-01-01

    Recently, a specific chromosome abnormality, t(X;1)(p11;q21), was described for a subgroup of human papillary renal cell carcinomas. The translocation breakpoint in Xp11 is located in the same region as that in t(X;18)(p11;q11)-positive synovial sarcoma. We used fluorescence in situ hybridization (F

  12. Induction of chromosome aberration in human lymphocytes and its dependence on X ray energy

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Carbajal, C.; Edwards, A.A.; Lloyd, D.C

    2003-07-01

    The variations of dose response with X ray energy observed with the human lymphocyte dicentric assay is examined. In order to determine reliably the initial slopes (RBE{sub m}) many cells need to be analysed at low doses. Insufficient analysis may explain some reported interlaboratory differences in fitted dose-response coefficients. One such discrepancy at 150 kV{sub p}, E(mean) = 70 keV is examined. Data are also presented for an X ray spectrum of 80 kV{sub p}, E(mean) = 58 keV. Over the photon energy range 20 keV X rays to 1.25 MeV gamma rays RBE{sub m} varies by about a factor of 5, with the lower energies being more effective. This is consistent with microdosimetric theory. By contrast, in radiological protection a radiation weighting factor of 1.0 is assumed for all photons when assessing the risk of inducing cancer at low doses. The measured variations of biological effect with photon energy have led to suggestions that the lower energies, as used for some diagnostic radiology, carry a greater risk per unit dose than is normally assumed by those involved in radiological protection. Interpretation of the data reported in this paper does not support this view. (author)

  13. Chromosomal rearrangement interferes with meiotic X chromosome inactivation

    OpenAIRE

    Homolka, David; Ivanek, Robert; Capkova, Jana; Jansa, Petr; Forejt, Jiri

    2007-01-01

    Heterozygosity for certain mouse and human chromosomal rearrangements is characterized by the incomplete meiotic synapsis of rearranged chromosomes, by their colocalization with the XY body in primary spermatocytes, and by male-limited sterility. Previously, we argued that such X–autosomal associations could interfere with meiotic sex chromosome inactivation. Recently, supporting evidence has reported modifications of histones in rearranged chromosomes by a process called the meiotic silencin...

  14. Isolation of cDNAs from the human X chromosome and derivation of related STSs. Final progress report, April 1992--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D.L.

    1995-09-01

    Over the course of this funding period, the number of genes assigned to the human X chromosome has approximately tripled from less than one hundred to nearly three hundred characterized, cloned genes assigned to it. The aims of this project were to develop methods for gene identification and to identify and characterize expressed sequences from the X chromosome. The rapidly changing environment of the human genome project provided abundant resources for gene characterization, and since methods for gene identification became rather robust over this period, these aims were de-emphasized during the project. Among the methods developed was a local one (reciprocal probing) that was developed by Drs. Cheng Chi Lee and C. Thomas Caskey, with emphasis on the human X chromosome. The development of this method offered significant expressed sequence resources for this project, particularly when coupled with the efforts to identify cosmid clones from specific X chromosome locations, as the reciprocal probing process results in paired genomic (cosmid) and cDNA materials. Attention, then has been paid to characterization of genes rather than to their identification.

  15. The importance of having two X chromosomes.

    Science.gov (United States)

    Arnold, Arthur P; Reue, Karen; Eghbali, Mansoureh; Vilain, Eric; Chen, Xuqi; Ghahramani, Negar; Itoh, Yuichiro; Li, Jingyuan; Link, Jenny C; Ngun, Tuck; Williams-Burris, Shayna M

    2016-02-19

    Historically, it was thought that the number of X chromosomes plays little role in causing sex differences in traits. Recently, selected mouse models have been used increasingly to compare mice with the same type of gonad but with one versus two copies of the X chromosome. Study of these models demonstrates that mice with one X chromosome can be strikingly different from those with two X chromosomes, when the differences are not attributable to confounding group differences in gonadal hormones. The number of X chromosomes affects adiposity and metabolic disease, cardiovascular ischaemia/reperfusion injury and behaviour. The effects of X chromosome number are likely the result of inherent differences in expression of X genes that escape inactivation, and are therefore expressed from both X chromosomes in XX mice, resulting in a higher level of expression when two X chromosomes are present. The effects of X chromosome number contribute to sex differences in disease phenotypes, and may explain some features of X chromosome aneuploidies such as in Turner and Klinefelter syndromes.

  16. Chromosome X aneuploidy in Brazilian schizophrenic patients.

    Science.gov (United States)

    de Moraes, Leopoldo Silva; Khayat, André Salim; de Lima, Patrícia Danielle Lima; Lima, Eleonidas Moura; Pinto, Giovanny Rebouças; Leal, Mariana Ferreira; de Arruda Cardoso Smith, Marília; Burbano, Rommel Rodríguez

    2010-01-01

    The identification of cytogenetic abnormalities in schizophrenic patients may provide clues to the genes involved in this disease. For this reason, a chromosomal analysis of samples from 62 schizophrenics and 70 controls was performed with trypsin-Giemsa banding and fluorescence in situ hybridization of the X chromosome. A clonal pericentric inversion on chromosome 9 was detected in one male patient, and we also discovered mosaicism associated with X chromosome aneuploidy in female patients, primarily detected in schizophrenic and normal female controls over 40 years old. When compared with age-matched female controls, the frequency of X chromosome loss was not significantly different between schizophrenics and controls, except for the 40- to 49-year-old age group. Our findings suggest that the X chromosome loss seen in schizophrenic patients is inherent to the normal cellular aging process. However, our data also suggest that X chromosome gain may be correlated with schizophrenia in this Brazilian population.

  17. Molecular mapping of chromosomes 17 and X

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1989-01-01

    The basic aims of this project are the construction of high density genetic maps of chromosomes 17 and X and the utilization of these maps for the subsequent isolation of a set of physically overlapping DNA segment clones. The strategy depends on the utilization of chromosome specific libraries of small (1--15 kb) segments from each of the two chromosomes. Since the time of submission of our previous progress report, we have refined the genetic map of markers which we had previously isolated for chromosome 17. We have completed our genetic mapping in CEPH reference and NF1 families of 15 markers in the pericentric region of chromosome 17. Physical mapping results with three probes, were shown be in very close genetic proximity to the NF1 gene, with respect to two translocation breakpoints which disrupt the activity of the gene. All three of the probes were found to lie between the centromere and the most proximal translocation breakpoint, providing important genetic markers proximal to the NF1 gene. Our primary focus has shifted to the X chromosome. We have isolated an additional 30 polymorphic markers, bringing the total number we have isolated to over 80. We have invested substantial effort in characterizing the polymorphisms at each of these loci and constructed plasmid subclones which reveal the polymorphisms for nearly all of the loci. These subclones are of practical value in that they produce simpler and stronger patterns on human genomic Southern blots, thus improving the efficiency of the genetic mapping experiments. These subclones may also be of value for deriving DNA sequence information at each locus, necessary for establishing polymerase chain reaction primers specific for each locus. Such information would allow the use of each locus as a sequence tagged site.

  18. Chromosomes and irradiation: in vitro study of the action of X-rays on human lymphocytes; Chromosomes et radiations: etude in vitro de l'action des rayons X sur les lymphocytes humains

    Energy Technology Data Exchange (ETDEWEB)

    Mouriquand, C.; Patet, J.; Gilly, C.; Wolff, C

    1966-07-01

    Radioinduced chromosomal aberrations were studied in vitro on leukocytes of human peripheral blood after x irradiation at 25, 50, 100, 200, and 300 R. The numeric and structural anomalies were examined on 600 karyotypes. The relationship between these disorders and the dose delivered to the blood are discussed. An explanation on their mechanism of formation is tentatively given. (authors) [French] L'etude in vitro des anomalies chromosomiques radioinduites a ete pratiquee sur des leucocytes de sang peripherique preleve chez 4 sujets et irradie aux doses de 25, 50, 100, 200, 300 R. Les aberrations numeriques et structurales ont ete examinees sur 600 caryotypes. Les rapports entre ces anomalies et les doses appliquees sont etudies. Une hypothese sur leur mecanisme de formation est avancee. (auteurs)

  19. Developmental regulation of X-chromosome inactivation.

    Science.gov (United States)

    Payer, Bernhard

    2016-08-01

    With the emergence of sex-determination by sex chromosomes, which differ in composition and number between males and females, appeared the need to equalize X-chromosomal gene dosage between the sexes. Mammals have devised the strategy of X-chromosome inactivation (XCI), in which one of the two X-chromosomes is rendered transcriptionally silent in females. In the mouse, the best-studied model organism with respect to XCI, this inactivation process occurs in different forms, imprinted and random, interspersed by periods of X-chromosome reactivation (XCR), which is needed to switch between the different modes of XCI. In this review, I describe the recent advances with respect to the developmental control of XCI and XCR and in particular their link to differentiation and pluripotency. Furthermore, I review the mechanisms, which influence the timing and choice, with which one of the two X-chromosomes is chosen for inactivation during random XCI. This has an impact on how females are mosaics with regard to which X-chromosome is active in different cells, which has implications on the severity of diseases caused by X-linked mutations.

  20. X chromosome inactivation and X-linked mental retardation

    Energy Technology Data Exchange (ETDEWEB)

    Willard, H.F. [Case Western Reserve Univ. School of Medicine, Cleveland, OH (United States)]|[Univ. Hospitals of Cleveland, OH (United States)

    1996-07-12

    The expression of X-linked genes in females heterozygous for X-linked defects can be modulated by epigenetic control mechanisms that constitute the X chromosome inactivation pathway. At least four different effects have been found to influence, in females, the phenotypic expression of genes responsible for X-linked mental retardation (XLMR). First, non-random X inactivation, due either to stochastic or genetic factors, can result in tissues in which one cell type (for example, that in which the X chromosome carrying a mutant XLMR gene is active) dominates, instead of the normal mosaic cell population expected as a result of random X inactivation. Second, skewed inactivation of the normal X in individuals carrying a deletion of part of the X chromosome has been documented in a number of mentally retarded females. Third, functional disomy of X-linked genes that are expressed inappropriately due to the absence of X inactivation has been found in mentally retarded females with structurally abnormal X chromosomes that do not contain the X inactivation center. And fourth, dose-dependent overexpression of X-linked genes that normally {open_quotes}escape{close_quotes} X inactivation may account for the mental and developmental delay associated with increasing numbers of otherwise inactive X chromosomes in individuals with X chromosome aneuploidy. 53 refs., 1 fig.

  1. Human male meiotic sex chromosome inactivation.

    Science.gov (United States)

    de Vries, Marieke; Vosters, Sanne; Merkx, Gerard; D'Hauwers, Kathleen; Wansink, Derick G; Ramos, Liliana; de Boer, Peter

    2012-01-01

    In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI), which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.

  2. Human male meiotic sex chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Marieke de Vries

    Full Text Available In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI, which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.

  3. [Dosage compensation mechanism of X chromosome].

    Science.gov (United States)

    Wang, Yan-Yun; Chen, Mei; Li, Bin

    2012-08-01

    Dosage compensation mechanism is crucial for the balance expression of X chromosome genes, which ensures the protein or enzyme encoded by the X chromosome to be equal or almost equal expression amounts between males and females. However, different organisms have evolved distinct dosage compensation strategies, and so far three kinds of dosage compensation strategies among organisms have been reported. The first strategy is that the single male X chromosome expression is doubly activated; the second one is to inactivate one female X chromosome by leaving both sexes with one active allele; and the third one is to reduce the expression to half activity in both X chromosomes of the female. The study of dosage compensation will be useful to reveal the mechanism of regulation of X-linked genes as well as the evolution and the differentiation progress of the sex chromosome, and it can also contribute to illustrate mutation and distortion of sex chromosome. Therefore, this paper briefly reviewed and discussed the progresses and prospects of the important mechanism of dosage compensation.

  4. Homologies between human and marmoset (Callithrix jacchus) chromosomes revealed by comparative chromosome painting

    Energy Technology Data Exchange (ETDEWEB)

    Sherlock, J.K.; Griffin, D.K.; Delhanty, J.D.A.; Parrington, J.M. [Univ. College London (United Kingdom)

    1996-04-15

    Regions of DNA homology between human and marmoset (Callithrix jacchus) chromosomes have been demonstrated using fluorescence in situ hybridization. All 24 chromosome paints and two centromere repeat sequences from Homo sapiens (HSA) have been annealed to previously G-banded metaphase spreads of Callithrix jacchus. All human paint probes, except Y, successfully hybridized to marmoset chromosomes. Fifteen of them hybridized to one region only, seven to two regions, and paint 1 to three regions. Homologies proposed from previous banding comparisons have been confirmed for HSA 2, 4-6, 10-12, 18, 19, 21, and X and partially confirmed for HSA 1 and 3, but were not in agreement for HSA 14 and 17. Human centromere repeat sequences for X and 18 did not hybridize to marmoset chromosomes. Because, at present, there is the confusing situation of several different numbering systems for marmoset chromosomes, we propose a new simpler nomenclature based on descending order of chromosome size. 25 refs., 3 figs.

  5. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  6. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus.

    Science.gov (United States)

    Brooks, Wesley H; Renaudineau, Yves

    2015-01-01

    Autoimmune diseases occur more often in females, suggesting a key role for the X chromosome. X chromosome inactivation, a major epigenetic feature in female cells that provides dosage compensation of X-linked genes to avoid overexpression, presents special vulnerabilities that can contribute to the disease process. Disruption of X inactivation can result in loss of dosage compensation with expression from previously sequestered genes, imbalance of gene products, and altered endogenous material out of normal epigenetic context. In addition, the human X has significant differences compared to other species and these differences can contribute to the frequency and intensity of the autoimmune disease in humans as well as the types of autoantigens encountered. Here a link is demonstrated between autoimmune diseases, such as systemic lupus erythematosus, and the X chromosome by discussing cases in which typically non-autoimmune disorders complicated with X chromosome abnormalities also present lupus-like symptoms. The discussion is then extended to the reported spatial and temporal associations of the inactive X chromosome with the nucleolus. When frequent episodes of cellular stress occur, the inactive X chromosome may be disrupted and inadvertently become involved in the nucleolar stress response. Development of autoantigens, many of which are at least transiently components of the nucleolus, is then described. Polyamines, which aid in nucleoprotein complex assembly in the nucleolus, increase further during cell stress, and appear to have an important role in the autoimmune disease process. Autoantigenic endogenous material can potentially be stabilized by polyamines. This presents a new paradigm for autoimmune diseases: that many are antigen-driven and the autoantigens originate from altered endogenous material due to episodes of cellular stress that disrupt epigenetic control. This suggests that epigenetics and the X chromosome are important aspects of autoimmune

  7. Absence of Y chromosome in human placental site trophoblastic tumor.

    Science.gov (United States)

    Hui, Pei; Wang, Hanlin L; Chu, Peiguo; Yang, Bin; Huang, Jiaoti; Baergen, Rebecca N; Sklar, Jeffrey; Yang, Ximing J; Soslow, Robert A

    2007-10-01

    Placental site trophoblastic tumor is a neoplasm of extravillous intermediate trophoblast at the implantation site, preceded in the majority of cases by a female gestational event. Our pilot investigation suggested that the development of this tumor might require a paternally derived X chromosome and the absence of a Y chromosome. Twenty cases of placental site trophoblastic tumor were included in this study. Genotyping at 15 polymorphic loci and one sex determination locus was performed by multiplex PCR followed by capillary electrophoresis. X chromosome polymorphisms were determined by PCR amplification of exon 1 of the human androgen receptor gene using primers flanking the polymorphic CAG repeats within this region. Genotyping at 15 polymorphic loci was informative and paternal alleles were present in all tumors, confirming the trophoblastic origin of the tumors. The presence of an X chromosome and the absence of a Y chromosome were observed in all tumors. Among 13 cases in which analysis of the X chromosome polymorphism was informative, all but one demonstrated at least two X alleles and seven cases showed one identifiable paternal X allele. These results confirm a unique pathogenetic mechanism in placental site trophoblastic tumor, involving an exclusion of the Y chromosome from the genome and, therefore, a tumor arising from the trophectoderm of a female conceptus. As epigenetic regulations of imprinting during X chromosome inactivation are of significant biological implications, placental site trophoblastic tumor may provide an important model for studying the sex chromosome biology and the proliferative advantage conferred by the paternal X chromosome.

  8. X-chromosome SNP analyses in 11 human Mediterranean populations show a high overall genetic homogeneity except in North-west Africans (Moroccans

    Directory of Open Access Journals (Sweden)

    Ben Dhiab Mohamed

    2008-02-01

    Full Text Available Abstract Background Due to its history, with a high number of migration events, the Mediterranean basin represents a challenging area for population genetic studies. A large number of genetic studies have been carried out in the Mediterranean area using different markers but no consensus has been reached on the genetic landscape of the Mediterranean populations. In order to further investigate the genetics of the human Mediterranean populations, we typed 894 individuals from 11 Mediterranean populations with 25 single-nucleotide polymorphisms (SNPs located on the X-chromosome. Results A high overall homogeneity was found among the Mediterranean populations except for the population from Morocco, which seemed to differ genetically from the rest of the populations in the Mediterranean area. A very low genetic distance was found between populations in the Middle East and most of the western part of the Mediterranean Sea. A higher migration rate in females versus males was observed by comparing data from X-chromosome, mt-DNA and Y-chromosome SNPs both in the Mediterranean and a wider geographic area. Multilocus association was observed among the 25 SNPs on the X-chromosome in the populations from Ibiza and Cosenza. Conclusion Our results support both the hypothesis of (1 a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2 the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean area could be interpreted as the result of the Neolithic wave caused by a large demic diffusion and/or more recent migration events. A differentiated contribution of males and females to the genetic landscape of the Mediterranean area was observed with a higher migration rate in females than in males. A certain level of background linkage disequilibrium in populations in Ibiza and Cosenza could be attributed to their demographic background.

  9. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.C.; Zoghbi, H.Y.; Moseley, A.B.; Rosenblatt, H.M.; Belmont, J.W. (Baylor College of Medicine, Houston (United States))

    1992-12-01

    The human androgen-receptor gene (HUMARA; GenBank) contains a highly polymorphic trinucleotide repeat in the first exon. The authors have found that the methylation of HpaII and HhaI sites less than 100 pb away from this polymorphic short tandem repeat (STR) correlates with X inactivation. The close proximity of the restriction-enzyme sites to the STR allows the development of a PCR assay that distinguishes between the maternal and paternal alleles and identifies their methylation status. The accuracy of this assay was tested on (a) DNA from hamster/human hybrid cell lines containing either an active or inactive human X chromosome; (b) DNA from normal males and females; and (c) DNA from females showing nonrandom patterns of X inactivation. Data obtained using this assay correlated substantially with those obtained using the PGK, HPRT, and M27[beta] probes, which detect X inactivation patterns by Southern blot analysis. In order to demonstrate one application of this assay, the authors examined X inactivation patterns in the B lymphocytes of potential and obligate carriers of X-linked agammaglobulinemia. 42 refs., 5 figs., 1 tab.

  10. Small Supernumerary Marker Chromosomes in Human Infertility.

    Science.gov (United States)

    Armanet, Narjes; Tosca, Lucie; Brisset, Sophie; Liehr, Thomas; Tachdjian, Gérard

    2015-01-01

    Small supernumerary marker chromosomes (sSMC) are structurally abnormal chromosomes that cannot be unambiguously identified by banding cytogenetics. The objective of this study was to provide an overview of sSMC frequency and characterization in a context of infertility and to review the literature describing sSMC in relation with male and female infertility. Therefore, a systematic literature review on sSMC associated with infertility was conducted by means of a PubMed literature and a sSMC database (http://ssmc-tl.com/sSMC.html) search. A total of 234 patients with infertility were identified as carriers of sSMC. All chromosomes, except chromosomes 10, 19 and the X, were involved in sSMC, and in 72% the sSMC originated from acrocentric chromosomes. Euchromatic imbalances were caused by the presence of sSMC in 30% of the cases. Putative genes have been identified in only 1.2% of sSMC associated with infertility. The implication of sSMC in infertility could be due to a partial trisomy of some genes but also to mechanical effects perturbing meiosis. Further precise molecular and interphase-architecture studies on sSMC are needed in the future to characterize the relationship between this chromosomal anomaly and human infertility.

  11. Fluorescent in-situ hybridization of cattle and sheep chromosomes with cloned human fragile-X DNA

    DEFF Research Database (Denmark)

    Ali, Ahmd; Thomsen, Preben Dybdahl; Babar, M.E.

    2009-01-01

    An extensive study on spontaneous and 5-Fluorodeoxyuridine induced fragile sites identified Xq31 in cattle (Bos taurus) and (Xq24, Xq26) in sheep (Ovis aries) in addition to several autosomal fragile sites (under publication). A ZOO-FISH study using three cloned human fragile-X probes with CCG/CG...

  12. A comparative transcriptional map of a region of 250 kb on the human and mouse X chromosome between the G6PD and the FLN1 genes.

    Science.gov (United States)

    Rivella, S; Tamanini, F; Bione, S; Mancini, M; Herman, G; Chatterjee, A; Maestrini, E; Toniolo, D

    1995-08-10

    The transcriptional organization of the region of the mouse X chromosome between the G6pd and the Fln1 genes was studied in detail, and it was compared with the syntenic region of the human chromosome. A cosmid contig of 250 kb was constructed by screening mouse cosmid libraries with probes for human genes and with whole cosmids. Overlapping cosmids were aligned by comparing EcoRI and rare-cutter restriction enzyme digestions. The gene order and the orientation of transcription were determined by hybridization with fragments from the 5' and 3' moieties of each cDNA. Our work demonstrates that all of the new genes identified in human are present in the mouse. The size of the region, 250 kb, is also very similar, as are gene order and gene organization: the transcriptional organization in "domains" described in human is found to be identical in the mouse. The major difference detected is the much lower content in rare-cutter restriction sites, which is related to the lower G+C and CpG content of mouse DNA. The very high conservation that we have described suggests that a potent selective pressure has contributed to such conservation of gene organization.

  13. A comparative transcriptional map of a region of 250 kb on the human and mouse X chromosome between the G6PD and the FLN1 genes

    Energy Technology Data Exchange (ETDEWEB)

    Rivella, S.; Tamanini, F.; Bione, S.; Mancini, M. [Istituto de Genetica Biochinica ed Evoluzionistica, Pavia (Italy)] [and others

    1995-08-10

    The transcriptional organization of the region of the mouse X chromosome between the G6pd and the Fln1 genes was studied in detail, and it was compared with the syntenic region of the human chromosome. A cosmid contig of 250 kb was constructed by screening mouse cosmid libraries with probes for human genes and with whole cosmids. Overlapping cosmids were aligned by comparing EcoRI and rare-cutter restriction enzyme digestions. The gene order and the orientation of transcription were determined by hybridization with fragments from the 5{prime} and 3{prime} moieties of each cDNA. Our work demonstrates that all of the new genes identified in human are present in the mouse. The size of the region, 250 kb, is also very similar, as are gene order and gene organizations: the transcriptional organization in {open_quotes}domains{close_quotes} described in human is found to be identical in the mouse. The major difference detected is the much lower content in rare-cutter restriction sites, which is related to the lower G+C and CpG content of mouse DNA. The very high conservation that we have described suggests that a potent selective pressure has contributed to such conservation of gene organization. 17 refs., 4 figs.

  14. Occurrence of aneuploidy for the X chromosome in over 1,300 unrelated specimens screened for the fragile X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-15

    An apparent association between the occurrence of the fragile X syndrome and Klinefelter and Down syndromes has been reported over the past few years. We reported 3 cells with extra X chromosomes [XXY (one cell), XXXY (2 cells)] in a fragile X male who exhibited 37 fragile X chromosomes in 200 cells studied. After making this observation, we decided to determine the number of X chromosomes in all fragile X chromosome analyses to see if there was any increased mitotic nondisjunction for the X chromosome. We conclude that there was no association between the fragile X syndrome and X chromosome mitotic nondisjunction/aneuploidy in this group of individuals. 9 refs., 1 tab.

  15. Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome.

    Science.gov (United States)

    Zhang, Yong E; Vibranovski, Maria D; Landback, Patrick; Marais, Gabriel A B; Long, Manyuan

    2010-10-05

    Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution.

  16. Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome.

    Directory of Open Access Journals (Sweden)

    Yong E Zhang

    Full Text Available Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI. These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution.

  17. Molecular mapping of chromosomes 17 and X

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition of new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping clones from a larger genome.

  18. Status of dosage compensation of X chromosome in bovine genome.

    Science.gov (United States)

    Ka, Sojeong; Ahn, Hyeonju; Seo, Minseok; Kim, Heebal; Kim, Jin Nam; Lee, Hyun-Jeong

    2016-08-01

    Dosage compensation system with X chromosome upregulation and inactivation have evolved to overcome the genetic imbalance between sex chromosomes in both male and female of mammals. Although recent development of chromosome-wide technologies has allowed us to test X upregulation, discrete data processing and analysis methods draw disparate conclusions. A series of expression studies revealed status of dosage compensation in some species belonging to monotremes, marsupials, rodents and primates. However, X upregulation in the Artiodactyla order including cattle have not been studied yet. In this study, we surveyed the genome-wide transcriptional upregulation in X chromosome in cattle RNA-seq data using different gene filtration methods. Overall examination of RNA-seq data revealed that X chromosome in the pituitary gland expressed more genes than in other peripheral tissues, which was consistent with the previous results observed in human and mouse. When analyzed with globally expressed genes, a median X:A expression ratio was 0.94. The ratio of 1-to-1 ortholog genes between chicken and mammals, however, showed considerable reduction to 0.68. These results indicate that status of dosage compensation for cattle is not deviated from those found in rodents and primate, and this is consistent with the evolutionary history of cattle.

  19. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation.

    Science.gov (United States)

    Khil, Pavel P; Smirnova, Natalya A; Romanienko, Peter J; Camerini-Otero, R Daniel

    2004-06-01

    Sex chromosomes are subject to sex-specific selective evolutionary forces. One model predicts that genes with sex-biased expression should be enriched on the X chromosome. In agreement with Rice's hypothesis, spermatogonial genes are over-represented on the X chromosome of mice and sex- and reproduction-related genes are over-represented on the human X chromosome. Male-biased genes are under-represented on the X chromosome in worms and flies, however. Here we show that mouse spermatogenesis genes are relatively under-represented on the X chromosome and female-biased genes are enriched on it. We used Spo11(-/-) mice blocked in spermatogenesis early in meiosis to evaluate the temporal pattern of gene expression in sperm development. Genes expressed before the Spo11 block are enriched on the X chromosome, whereas those expressed later in spermatogenesis are depleted. Inactivation of the X chromosome in male meiosis may be a universal driving force for X-chromosome demasculinization.

  20. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome.

    Science.gov (United States)

    Pessia, Eugénie; Makino, Takashi; Bailly-Bechet, Marc; McLysaght, Aoife; Marais, Gabriel A B

    2012-04-03

    How and why female somatic X-chromosome inactivation (XCI) evolved in mammals remains poorly understood. It has been proposed that XCI is a dosage-compensation mechanism that evolved to equalize expression levels of X-linked genes in females (2X) and males (1X), with a prior twofold increase in expression of X-linked genes in both sexes ("Ohno's hypothesis"). Whereas the parity of X chromosome expression between the sexes has been clearly demonstrated, tests for the doubling of expression levels globally along the X chromosome have returned contradictory results. However, changes in gene dosage during sex-chromosome evolution are not expected to impact on all genes equally, and should have greater consequences for dosage-sensitive genes. We show that, for genes encoding components of large protein complexes (≥ 7 members)--a class of genes that is expected to be dosage-sensitive--expression of X-linked genes is similar to that of autosomal genes within the complex. These data support Ohno's hypothesis that XCI acts as a dosage-compensation mechanism, and allow us to refine Ohno's model of XCI evolution. We also explore the contribution of dosage-sensitive genes to X aneuploidy phenotypes in humans, such as Turner (X0) and Klinefelter (XXY) syndromes. X aneuploidy in humans is common and is known to have mild effects because most of the supernumerary X genes are inactivated and not affected by aneuploidy. Only genes escaping XCI experience dosage changes in X-aneuploidy patients. We combined data on dosage sensitivity and XCI to compute a list of candidate genes for X-aneuploidy syndromes.

  1. Hierarchical radial and polar organisation of chromosomes in human sperm.

    Science.gov (United States)

    Millan, N M; Lau, P; Hann, M; Ioannou, D; Hoffman, D; Barrionuevo, M; Maxson, W; Ory, S; Tempest, H G

    2012-10-01

    It is well established that chromosomes occupy distinct positions within the interphase nuclei, conferring a potential functional implication to the genome. In addition, alterations in the nuclear organisation patterns have been associated with disease phenotypes (e.g. cancer or laminopathies). The human sperm is the smallest cell in the body with specific DNA packaging and the mission of delivering the paternal genome to the oocyte during fertilisation. Studies of nuclear organisation in the sperm have postulated nonrandom chromosome position and have proposed a chromocentre model with the centromeres facing toward the interior and the telomeres toward the periphery of the nucleus. Most studies have assessed the nuclear address in the sperm longitudinally predominantly using centromeric or telomeric probes and to a lesser extent with whole chromosome paints. To date, studies investigating the radial organisation of human sperm have been limited. The purpose of this study was to utilise whole chromosome paints for six clinically important chromosomes (18, 19, 21, 22, X, and Y) to investigate nuclear address by assessing their radial and longitudinal nuclear organisation. A total of 10,800 sperm were analysed in nine normozoospermic individuals. The results have shown nonrandom chromosome position for all chromosomes using both methods of analysis. We present novel radial and polar analysis of chromosome territory localization within the human sperm nucleus. Specifically, a hierarchical organisation was observed radially with chromosomes organised from the interior to the periphery (chromosomes 22, 21, Y, X, 19, and 18 respectively) and polar organisation from the sperm head to tail (chromosomes X, 19, Y, 22, 21, and 18, respectively). We provide evidence of defined nuclear organisation in the human sperm and discuss the function of organisation and potential possible clinical ramifications of these results in regards to male infertility and early human development.

  2. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    DEFF Research Database (Denmark)

    Machiela, Mitchell J; Zhou, Weiyin; Karlins, Eric

    2016-01-01

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chrom...

  3. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Science.gov (United States)

    Machiela, Mitchell J.; Zhou, Weiyin; Karlins, Eric; Sampson, Joshua N.; Freedman, Neal D.; Yang, Qi; Hicks, Belynda; Dagnall, Casey; Hautman, Christopher; Jacobs, Kevin B.; Abnet, Christian C.; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Arslan, Alan A.; Beane-Freeman, Laura E.; Berndt, Sonja I.; Black, Amanda; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Brinton, Louise A.; Bueno-de-Mesquita, H Bas; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Canzian, Federico; Carreón, Tania; Chaffee, Kari G.; Chang, I-Shou; Chatterjee, Nilanjan; Chen, Chu; Chen, Constance; Chen, Kexin; Chung, Charles C.; Cook, Linda S.; Crous Bou, Marta; Cullen, Michael; Davis, Faith G.; De Vivo, Immaculata; Ding, Ti; Doherty, Jennifer; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Friedenreich, Christine M.; Fuchs, Charles S.; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M.; Garcia-Closas, Montserrat; Gaudet, Mia M.; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Haiman, Christopher A.; Hallmans, Goran; Hankinson, Susan E.; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hong, Yun-Chul; Hoover, Robert N.; Hsiung, Chao A.; Hu, Nan; Hu, Wei; Hunter, David J.; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Alison P.; Klein, Robert; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Lan, Qing; Landi, Maria Teresa; Marchand, Loic Le; Li, Donghui; Liang, Xiaolin; Liao, Linda M.; Lin, Dongxin; Liu, Jianjun; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Malats, Nuria; Matsuo, Keitaro; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Moore, Lee; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Patiño-Garcia, Ana; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Pooler, Loreall; Prescott, Jennifer; Prokunina-Olsson, Ludmila; Purdue, Mark P.; Qiao, You-Lin; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Risch, Harvey A.; Rodriguez-Santiago, Benjamin; Ruder, Avima M.; Savage, Sharon A.; Schumacher, Fredrick; Schwartz, Ann G.; Schwartz, Kendra L.; Seow, Adeline; Wendy Setiawan, Veronica; Severi, Gianluca; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Van Den Berg, David; Visvanathan, Kala; Wacholder, Sholom; Wang, Jiu-Cun; Wang, Zhaoming; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S.; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Ziegler, Regina G.; Perez-Jurado, Luis A.; Caporaso, Neil E.; Rothman, Nathaniel; Tucker, Margaret; Dean, Michael C.; Yeager, Meredith; Chanock, Stephen J.

    2016-01-01

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases. PMID:27291797

  4. Human male meiotic sex chromosome inactivation

    NARCIS (Netherlands)

    Vries, M. de; Vosters, S.; Merkx, G.F.M.; Hauwers, K.W.M. d'; Wansink, D.G.; Ramos, L.; Boer, P. de

    2012-01-01

    In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylate

  5. AB048. X-chromosomal SNPs variation in populations of Russia

    OpenAIRE

    Stepanov, Vadim; Vagaitseva, Kseniya; Kharkov, Vladimir

    2015-01-01

    X-chromosome markers are informative tool for studying a genetic diversity in human populations and have become a useful in DNA identification when certain complex kinship cases need to be unravelled. In this work we present population genetic data on X-chromosome-wide SNPs in North Eurasian populations and report XSNP multiplex system for forensic genetics. A total of 2,867 X-chromosomal SNPs were genotyped in 12 populations using Illumina microarray platform. Twelve populations under study ...

  6. Complexities of X chromosome inactivation status in female human induced pluripotent stem cells-a brief review and scientific update for autism research.

    Science.gov (United States)

    Dandulakis, Mary G; Meganathan, Kesavan; Kroll, Kristen L; Bonni, Azad; Constantino, John N

    2016-01-01

    Induced pluripotent stem cells (iPSCs) allow researchers to make customized patient-derived cell lines by reprogramming noninvasively retrieved somatic cells. These cell lines have the potential to faithfully represent an individual's genetic background; therefore, in the absence of available human brain tissue from a living patient, these models have a significant advantage relative to other models of neurodevelopmental disease. When using human induced pluripotent stem cells (hiPSCs) to model X-linked developmental disorders or inherited conditions that undergo sex-specific modulation of penetrance (e.g., autism spectrum disorders), there are significant complexities in the course and status of X chromosome inactivation (XCI) that are crucial to consider in establishing the validity of cellular models. There are major gaps and inconsistencies in the existing literature regarding XCI status during the derivation and maintenance of hiPSCs and their differentiation into neurons. Here, we briefly describe the importance of the problem, review the findings and inconsistencies of the existing literature, delineate options for specifying XCI status in clonal populations, and develop recommendations for future studies.

  7. Construction and characterization of genomic libraries from specific human chromosomes.

    Science.gov (United States)

    Krumlauf, R; Jeanpierre, M; Young, B D

    1982-05-01

    Highly purified fractions of human chromosomes 21 and 22 were isolated from a suspension of metaphase chromosomes stained with ethidium bromide by using a fluorescence-activated cell sorter (FACS II). Two recombinant DNA libraries, representing chromosomes 21 and 22, were constructed by complete digestion of DNA from these fractions with EcoRI and insertion into the vector lambda gtWES lambda B. Twenty clones selected at random from the chromosome 22 library hybridized to EcoRI-digested human DNA, and five of these clones hybridized to single bands identical in size to the phage inserts. These five single-copy sequences and a clone coding for an 8S RNA isolated by screening the chromosome 22 library for expressed sequences were characterized in detail. Hybridization of all six clones to a panel of sorted chromosomes and hybrid cell lines confirmed the assignment of the sequences to chromosome 22. The sequences were localized to regions of chromosome 22 by hybridization to translocated chromosomes sorted from a cell line having a balanced translocation t(17;22)(p13;q11) and to hybrid cell lines containing the various portions of another translocation t(X;22)(q13;q112). Five clones reside on the long arm of chromosome 22 between q112 and pter, while one clone and an 18S rRNA gene isolated from the chromosome 22 library reside pter and g112. The construction of chromosome-specific libraries by this method has the advantage of being direct and applicable to nearly all human chromosomes and will be important in molecular analysis of human genetic diseases.

  8. Chromosome Variations And Human Behavior

    Science.gov (United States)

    Soudek, D.

    1974-01-01

    Article focused on the science of cytogenetics, which studied the transmission of the units of heredity called chromosomes, and considered the advantage of proper diagnosis of genetic diseases, treated on the chromosomal level. (Author/RK)

  9. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  10. PJA1, encoding a RING-H2 finger ubiquitin ligase, is a novel human X chromosome gene abundantly expressed in brain.

    Science.gov (United States)

    Yu, Ping; Chen, Yiwang; Tagle, Danilo A; Cai, Tao

    2002-06-01

    RING-finger proteins contain cysteine-rich, zinc-binding domains and are involved in the formation of macromolecular scaffolds important for transcriptional repression and ubiquitination. In this study, we have identified a RING-H2 finger gene, PJA1 (for praja-1), from a human brain cDNA library and mapped it to human chromosome Xq12 between markers DXS983 and DXS1216, a region implicated in X-linked mental retardation (MRX). Northern blot analysis indicated a 2.7-kb transcript that was abundantly expressed in the brain, including regions of the cerebellum, cerebral cortex, medulla, occipital pole, frontal lobe, temporal lobe, and putamen. Amino acid sequence analysis of the 71-kDa protein PJA1 showed 52.3% identity to human PJA2 (for praja-2, also known as NEURODAP1/KIAA0438) and also a significant identity to its homologs in rat, mouse, and zebrafish. In vitro binding and immunoprecipitation assays demonstrated that both PJA1 and PJA2 are able to bind the ubiquitin-conjugating enzyme UbcH5B. Moreover, the ubiquitination assay indicated that PJA1 and PJA2 have an E2-dependent E3 ubiquitin ligase activity. Thus our findings demonstrate that PJA1 can be involved in protein ubiquitination in the brain and is a suitable candidate gene for MRX.

  11. X chromosome regulation of autosomal gene expression in bovine blastocysts

    OpenAIRE

    Itoh, Yuichiro; Arnold, Arthur P.

    2014-01-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions b...

  12. X-chromosome tiling path array detection of copy number variants in patients with chromosome X-linked mental retardation

    Directory of Open Access Journals (Sweden)

    Martínez F

    2007-11-01

    Full Text Available Abstract Background Aproximately 5–10% of cases of mental retardation in males are due to copy number variations (CNV on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH, may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. Results Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb, all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%. Conclusion This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients.

  13. Research on automatic human chromosome image analysis

    Science.gov (United States)

    Ming, Delie; Tian, Jinwen; Liu, Jian

    2007-11-01

    Human chromosome karyotyping is one of the essential tasks in cytogenetics, especially in genetic syndrome diagnoses. In this thesis, an automatic procedure is introduced for human chromosome image analysis. According to different status of touching and overlapping chromosomes, several segmentation methods are proposed to achieve the best results. Medial axis is extracted by the middle point algorithm. Chromosome band is enhanced by the algorithm based on multiscale B-spline wavelets, extracted by average gray profile, gradient profile and shape profile, and calculated by the WDD (Weighted Density Distribution) descriptors. The multilayer classifier is used in classification. Experiment results demonstrate that the algorithms perform well.

  14. The X and Y chromosome in meiosis: how and why they keep silent

    Institute of Scientific and Technical Information of China (English)

    Godfried W van der Heijden; Maureen Eijpe; Willy M Baarends

    2011-01-01

    The XX/XY sex chromosomal system of mammals,including human,challenges the chromosome pairing mechanism during male meiosis.Pairing and subsequent separation of homologous chromosomes generates haploid cells from diploid cells during the meiotic divisions.One of the basic requirements for recognition between homologous chromosomes is DNA sequence identity.Since the X and Y chromosome share little homology,their quest for each other is difficult,and has special characteristics.During the lengthy meiotic prophase,all autosomal chromosomes synapse,by forming a special protein structure called the synaptonemal complex,which connects the chromosomal axes.In contrast,the X and Y chromosome synapse only in the short homologous pseudoautosomal regions,and form the so-called XY body.

  15. Incidence of X and Y Chromosomal Aneuploidy in a Large Child Bearing Population

    OpenAIRE

    Samango-Sprouse, Carole; Kırkızlar, Eser; Hall, Megan P.; Lawson, Patrick; Demko, Zachary; Zneimer, Susan M.; Curnow, Kirsten J.; Gross, Susan; Gropman, Andrea

    2016-01-01

    Background X&Y chromosomal aneuploidies are among the most common human whole-chromosomal copy number changes, but the population-based incidence and prevalence in the child-bearing population is unclear. Methods This retrospective analysis of prospectively collected data leveraged a routine non-invasive prenatal test (NIPT) using parental genotyping to estimate the population-based incidence of X&Y chromosome variations in this population referred for NIPT (generally due to advanced maternal...

  16. Influence of the X-Chromosome on Neuroanatomy: Evidence from Turner and Klinefelter Syndromes

    OpenAIRE

    2014-01-01

    Studies of sex effects on neurodevelopment have traditionally focused on animal models investigating hormonal influences on brain anatomy. However, more recent evidence suggests that sex chromosomes may also have direct upstream effects that act independently of hormones. Sex chromosome aneuploidies provide ideal models to examine this framework in humans, including Turner syndrome (TS), where females are missing one X-chromosome (45X), and Klinefelter syndrome (KS), where males have an addit...

  17. A Plain English Map of the Human Chromosomes.

    Science.gov (United States)

    Offner, Susan

    1992-01-01

    Presents a chromosome map for 19 known chromosomes in human genetics. Describes the characteristics attributed to the genetic codes for each of the chromosomes and discusses the teaching applications of the chromosome map. (MDH)

  18. The inactive X chromosome in the human female is enriched in 5-methylcytosine to an unusual degree and appears to contain more of this modified nucleotide than the remainder of the genome

    Indian Academy of Sciences (India)

    Deepti D. Deobagkar; H. Sharat Chandra

    2003-04-01

    By employing a procedure that combines ELISA and photoacoustic spectroscopy, we have examined the content of 5-methylcytosine (m5C) in DNA of individuals who differed from one another in the number of X chromosomes in their genomes. The results show that the human inactive X chromosome (Xi) contains very high amounts of this modified nucleotide. We estimate that in the 46,XX female there is more m5C in Xi (∼3.6 × 107) than in all the remaining chromosomes put together (∼2.1 × 107). Our results also suggest that nearly one-fifth of all cytosines in Xi are methylated and that, in addition to CpG methylation, there is extensive non-CpG methylation as well.

  19. Unusual maternal uniparental isodisomic x chromosome mosaicism with asymmetric y chromosomal rearrangement.

    Science.gov (United States)

    Lee, B Y; Kim, S Y; Park, J Y; Choi, E Y; Kim, D J; Kim, J W; Ryu, H M; Cho, Y H; Park, S Y; Seo, J T

    2014-01-01

    Infertile men with azoospermia commonly have associated microdeletions in the azoospermia factor (AZF) region of the Y chromosome, sex chromosome mosaicism, or sex chromosome rearrangements. In this study, we describe an unusual 46,XX and 45,X mosaicism with a rare Y chromosome rearrangement in a phenotypically normal male patient. The patient's karyotype was 46,XX[50]/45,X[25]/46,X,der(Y)(pter→q11.222::p11.2→pter)[25]. The derivative Y chromosome had a deletion at Yq11.222 and was duplicated at Yp11.2. Two copies of the SRY gene were confirmed by fluorescence in situ hybridization analysis, and complete deletion of the AZFb and AZFc regions was shown by multiplex-PCR for microdeletion analysis. Both X chromosomes of the predominant mosaic cell line (46,XX) were isodisomic and derived from the maternal gamete, as determined by examination of short tandem repeat markers. We postulate that the derivative Y chromosome might have been generated during paternal meiosis or early embryogenesis. Also, we suggest that the very rare mosaicism of isodisomic X chromosomes might be formed during maternal meiosis II or during postzygotic division derived from the 46,X,der(Y)/ 45,X lineage because of the instability of the derivative Y chromosome. To our knowledge, this is the first confirmatory study to verify the origin of a sex chromosome mosaicism with a Y chromosome rearrangement.

  20. Paradigm Lost: The Human Chromosome Story.

    Science.gov (United States)

    Unger, Lawrence; Blystone, Robert V.

    1996-01-01

    Discusses whether the discovery in 1956 that humans have a chromosome number of 46, as opposed to 47 or 48 as previously thought, fits into a paradigm shift of the Kuhnian type. Concludes that Kuhn probably would not have considered the chromosome number shift to be large enough to be a focus for one of his paradigms. (AIM)

  1. Molecular mapping of chromosomes 17 and X. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1989-12-31

    The basic aims of this project are the construction of high density genetic maps of chromosomes 17 and X and the utilization of these maps for the subsequent isolation of a set of physically overlapping DNA segment clones. The strategy depends on the utilization of chromosome specific libraries of small (1--15 kb) segments from each of the two chromosomes. Since the time of submission of our previous progress report, we have refined the genetic map of markers which we had previously isolated for chromosome 17. We have completed our genetic mapping in CEPH reference and NF1 families of 15 markers in the pericentric region of chromosome 17. Physical mapping results with three probes, were shown be in very close genetic proximity to the NF1 gene, with respect to two translocation breakpoints which disrupt the activity of the gene. All three of the probes were found to lie between the centromere and the most proximal translocation breakpoint, providing important genetic markers proximal to the NF1 gene. Our primary focus has shifted to the X chromosome. We have isolated an additional 30 polymorphic markers, bringing the total number we have isolated to over 80. We have invested substantial effort in characterizing the polymorphisms at each of these loci and constructed plasmid subclones which reveal the polymorphisms for nearly all of the loci. These subclones are of practical value in that they produce simpler and stronger patterns on human genomic Southern blots, thus improving the efficiency of the genetic mapping experiments. These subclones may also be of value for deriving DNA sequence information at each locus, necessary for establishing polymerase chain reaction primers specific for each locus. Such information would allow the use of each locus as a sequence tagged site.

  2. Meiotic chromosome abnormalities in human spermatogenesis.

    Science.gov (United States)

    Martin, Renée H

    2006-08-01

    The last few years have witnessed an explosion in the information about chromosome abnormalities in human sperm and the meiotic events that predispose to these abnormalities. We have determined that all chromosomes are susceptible to nondisjunction, but chromosomes 21 and 22 and, especially, the sex chromosomes have an increased frequency of aneuploidy. Studies are just beginning on the effects of potential mutagens on the chromosomal constitution of human sperm. The effects of pesticides and cancer therapeutic agents have been reviewed. In the last decade, there has been a great impetus to study chromosome abnormalities in sperm from infertile men because the advent of intracytoplasmic sperm injection (ICSI) made it possible for these men to father pregnancies. A large number of studies have demonstrated that infertile men have an increased frequency of chromosomally abnormal sperm and children, even when they have a normal somatic karyotype. Meiotic studies on the pachytene stage of spermatogenesis have demonstrated that infertile men have impaired chromosome synapsis, a significantly decreased frequency of recombination, and an increased frequency of chromosomes completely lacking a recombination site. Such errors make these cells susceptible to meiotic arrest and the production of aneuploid gametes.

  3. X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus

    Directory of Open Access Journals (Sweden)

    Adauto Lima Cardoso

    2015-06-01

    Full Text Available Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes.

  4. Microdissection and chromosome painting of X and B chromosomes in Locusta migratoria.

    Science.gov (United States)

    Teruel, María; Cabrero, Josefa; Montiel, Eugenia E; Acosta, Manuel J; Sánchez, Antonio; Camacho, Juan Pedro M

    2009-01-01

    Acquisition of knowledge of the nature and DNA content of B chromosomes has been triggered by a collection of molecular techniques, one of which, microdissection, has provided interesting results in a number of B chromosome systems. Here we provide the first data on the molecular composition of B chromosomes in Locusta migratoria, after microdissection of the B and X chromosomes, DNA amplification by one (B) or two (X) different methods, and chromosome painting. The results showed that B chromosomes share at least two types of repetitive DNA sequences with the A chromosomes, suggesting that Bs in this species most likely arose intraspecifically. One of these repetitive DNAs is located on the heterochromatic distal half of the B chromosome and in the pericentromeric regions of about half of the A chromosomes, including the X. The other type of repetitive DNA is located interspersedly over the non-centromeric euchromatic regions of all A chromosomes and in an interstitial part of the proximal euchromatic half of the B chromosome. Chromosome painting, however, did not provide results sufficiently reliable to determine, in this species, which A chromosome gave rise to the B; this might be done by detailed analysis of the microdissected DNA sequences.

  5. Chromosome

    Science.gov (United States)

    Chromosomes are structures found in the center (nucleus) of cells that carry long pieces of DNA. DNA ... is the building block of the human body. Chromosomes also contain proteins that help DNA exist in ...

  6. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.

    Science.gov (United States)

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F Alex; Lemke, Cornelia; Tong, Eric J; Chen, Cuixia; Wai, Ching Man; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-08-21

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y(h)). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y(h) chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution.

  7. Study of 25 X-chromosome SNPs in the Portuguese

    DEFF Research Database (Denmark)

    Pereira, Vania; Tomas Mas, Carmen; Amorim, António

    2011-01-01

    The importance of X-chromosome markers in individual identifications, population genetics, forensics and kinship testing is getting wide recognition. In this work, we studied the distributions of 25 X-chromosome single nucleotide polymorphisms (X-SNPs) in population samples from Northern, Central...

  8. A Revised Map of the Human Chromosomes.

    Science.gov (United States)

    Offner, Susan

    1993-01-01

    Presents an updated map of the human chromosomes, building on a "plain English map" that was previously published. A brief summary of genes research is included in the gene explanations accompanying the map. (PR)

  9. Number of X-chromosome genes influences social behavior and vasopressin gene expression in mice.

    Science.gov (United States)

    Cox, Kimberly H; Quinnies, Kayla M; Eschendroeder, Alex; Didrick, Paula M; Eugster, Erica A; Rissman, Emilie F

    2015-01-01

    Sex differences in behavior are widespread and often caused by hormonal differences between the sexes. In addition to hormones, the composition and numbers of the sex chromosomes also affect a variety of sex differences. In humans, X-chromosome genes are implicated in neurobehavioral disorders (i.e. fragile-X, autism). To investigate the role of X-chromosome genes in social behavior, we used a mouse model that has atypical sex chromosome configurations resembling Turner (45, XO) and Klinefelter syndromes (47, XXY). We examined a number of behaviors in juvenile mice. Mice with only one copy of most X-chromosome genes, regardless of gonadal sex, were less social in dyadic interaction and social preference tasks. In the elevated plus maze, mice with one X-chromosome spent less time in the distal ends of the open arms as compared to mice with two copies of X-chromosome genes. Using qRTPCR, we noted that amygdala from female mice with one X-chromosome had higher expression levels of vasopressin (Avp) as compared to mice in the other groups. Finally, in plasma from girls with Turner syndrome we detected reduced vasopressin (AVP) concentrations as compared to control patients. These novel findings link sex chromosome genes with social behavior via concentrations of AVP in brain, adding to our understanding of sex differences in neurobehavioral disorders.

  10. Mapping of a liver phosphorylase kinase [alpha]-subunit gene on the mouse x chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yan; Derry, J.M.J.; Barnard, P.J. (MRC Molecular Neurobiology Unit, Cambridge (United Kingdom)); Hendrickx, J.; Coucke, P.; Willems, P.R. (Univ. of Antwerp (Belgium))

    1993-01-01

    Phosphorylase kinase (PHK) is a regulatory enzyme of the glycogenolytic pathway composed of a complex of four subunits. We recently mapped the muscle [alpha]-subunit gene (Phka) to the mouse X chromosome in a region syntenic with the proximal long arm of the human X chromosome and containing the human homologue of this gene, PHKA. We now report the mapping of the liver [alpha]-subunit gene to the telomeric end of the mouse X chromosome. This mapping position would suggest a location for the human liver [alpha]-subunit gene on the proximal short arm of the X chromosome, a region recently implicated in X-linked liver glycogenosis (XLG). 20 refs., 2 figs.

  11. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    OpenAIRE

    Teruko Taketo

    2015-01-01

    The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resulta...

  12. [Assessing the inactivation pattern in chromosome X among symptomatic carriers and women with haemophilia].

    Science.gov (United States)

    Mundo-Ayala, Jessica Noemi; Jaloma-Cruz, Ana Rebeca

    2008-01-01

    X chromosome inactivation is a stochastic event that occurs early in female embryo development to achieve dosage compensation with males. Certain genetic mechanisms affect the normal process causing a skewed X inactivation pattern which has clinical relevance in female carriers of X-linked recessive disorders, like haemophilia. The most commonly used assay to evaluate the X inactivation pattern is the PCR amplification of the human androgen receptor gene (HUMARA). The use of this technique in bleeding carriers and women with haemophilia allows identifying if their hemorrhagic symptoms are due to an unfavourable lyonization. Furthermore, these studies are important for understanding the X chromosome inactivation process in humans.

  13. Engineered human dicentric chromosomes show centromere plasticity.

    Science.gov (United States)

    Higgins, Anne W; Gustashaw, Karen M; Willard, Huntington F

    2005-01-01

    The centromere is essential for the faithful distribution of a cell's genetic material to subsequent generations. Despite intense scrutiny, the precise genetic and epigenetic basis for centromere function is still unknown. Here, we have used engineered dicentric human chromosomes to investigate mammalian centromere structure and function. We describe three classes of dicentric chromosomes isolated in different cell lines: functionally monocentric chromosomes, in which one of the two genetically identical centromeres is consistently inactivated; functionally dicentric chromosomes, in which both centromeres are consistently active; and dicentric chromosomes heterogeneous with respect to centromere activity. A study of serial single cell clones from heterogeneous cell lines revealed that while centromere activity is usually clonal, the centromere state (i.e. functionally monocentric or dicentric) in some lines can switch within a growing population of cells. Because pulsed field gel analysis indicated that the DNA at the centromeres of these chromosomes did not change detectably, this switching of the centromere state is most likely due to epigenetic changes. Inactivation of one of the two active centromeres in a functionally dicentric chromosome was observed in a percentage of cells after treatment with Trichostatin A, an inhibitor of histone deacetylation. This study provides evidence that the activity of human centromeres, while largely stable, can be subject to dynamic change, most likely due to epigenetic modification.

  14. Neocentric X-chromosome in a girl with Turner-like syndrome

    Directory of Open Access Journals (Sweden)

    Hemmat Morteza

    2012-06-01

    Full Text Available Abstract Background Neocentromeres are rare human chromosomal aberrations in which a new centromere has formed in a previously non-centromeric location. We report the finding of a structurally abnormal X chromosome with a neocentromere in a 15-year-old girl with clinical features suggestive of Turner syndrome, including short stature and primary amenorrhea. Result G-banded chromosome analysis revealed a mosaic female karyotype involving two abnormal cell lines. One cell line (84% of analyzed metaphases had a structurally abnormal X chromosome (duplication of the long arm and deletion of the short arm and a normal X chromosome. The other cell line (16% of cells exhibited monosomy X. C-banding studies were negative for the abnormal X chromosome. FISH analysis revealed lack of hybridization of the abnormal X chromosome with both the X centromere-specific probe and the “all human centromeres” probe, a pattern consistent with lack of the X chromosome endogenous centromere. A FISH study using an XIST gene probe revealed the presence of two XIST genes, one on each long arm of the iso(Xq, required for inactivation of the abnormal X chromosome. R-banding also demonstrated inactivation of the abnormal X chromosome. An assay for centromeric protein C (CENP-C was positive on both the normal and the abnormal X chromosomes. The position of CENP-C in the abnormal X chromosome defined a neocentromere, which explains its mitotic stability. The karyotype is thus designated as 46,X,neo(X(qter- > q12::q12- > q21.2- > neo- > q21.2- > qter[42]/45,X[8], which is consistent with stigmata of Turner syndrome. The mother of this patient has a normal karyotype; however, the father was not available for study. Conclusion To our knowledge, this is the first case of mosaic Turner syndrome involving an analphoid iso(Xq chromosome with a proven neocentromere among 90 previously described cases with a proven neocentromere.

  15. ASAR15, A cis-acting locus that controls chromosome-wide replication timing and stability of human chromosome 15.

    Directory of Open Access Journals (Sweden)

    Nathan Donley

    2015-01-01

    Full Text Available DNA replication initiates at multiple sites along each mammalian chromosome at different times during each S phase, following a temporal replication program. We have used a Cre/loxP-based strategy to identify cis-acting elements that control this replication-timing program on individual human chromosomes. In this report, we show that rearrangements at a complex locus at chromosome 15q24.3 result in delayed replication and structural instability of human chromosome 15. Characterization of this locus identified long, RNA transcripts that are retained in the nucleus and form a "cloud" on one homolog of chromosome 15. We also found that this locus displays asynchronous replication that is coordinated with other random monoallelic genes on chromosome 15. We have named this locus ASynchronous replication and Autosomal RNA on chromosome 15, or ASAR15. Previously, we found that disruption of the ASAR6 lincRNA gene results in delayed replication, delayed mitotic condensation and structural instability of human chromosome 6. Previous studies in the mouse found that deletion of the Xist gene, from the X chromosome in adult somatic cells, results in a delayed replication and instability phenotype that is indistinguishable from the phenotype caused by disruption of either ASAR6 or ASAR15. In addition, delayed replication and chromosome instability were detected following structural rearrangement of many different human or mouse chromosomes. These observations suggest that all mammalian chromosomes contain similar cis-acting loci. Thus, under this scenario, all mammalian chromosomes contain four distinct types of essential cis-acting elements: origins, telomeres, centromeres and "inactivation/stability centers", all functioning to promote proper replication, segregation and structural stability of each chromosome.

  16. Evolutionarily conserved sequences on human chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Kelly A.; Sheehan, John B.; Stokowski, Renee P.; Chen, Xiyin; Hosseini, Roya; Cheng, Jan-Fang; Fodor, Stephen P.A.; Cox, David R.; Patil, Nila

    2001-09-01

    Comparison of human sequences with the DNA of other mammals is an excellent means of identifying functional elements in the human genome. Here we describe the utility of high-density oligonucleotide arrays as a rapid approach for comparing human sequences with the DNA of multiple species whose sequences are not presently available. High-density arrays representing approximately 22.5 Mb of nonrepetitive human chromosome 21 sequence were synthesized and then hybridized with mouse and dog DNA to identify sequences conserved between humans and mice (human-mouse elements) and between humans and dogs (human-dog elements). Our data show that sequence comparison of multiple species provides a powerful empiric method for identifying actively conserved elements in the human genome. A large fraction of these evolutionarily conserved elements are present in regions on chromosome 21 that do not encode known genes.

  17. Utility of X-chromosome SNPs in relationship testing

    DEFF Research Database (Denmark)

    Tomas, Carmen; Sanchez, Juan Jose; Castro, J.A.;

    2008-01-01

    X-chromosome markers may complement the results obtained from other genetic markers in complex relationship cases. Until now, reports on relationship testing using X-chromosome markers have mainly included data of short tandem repeats (STRs) while little data on single nucleotide polymorphisms (S...

  18. Detection of skewed X-chromosome inactivation in Fragile X syndrome and X chromosome aneuploidy using quantitative melt analysis.

    Science.gov (United States)

    Godler, David E; Inaba, Yoshimi; Schwartz, Charles E; Bui, Quang M; Shi, Elva Z; Li, Xin; Herlihy, Amy S; Skinner, Cindy; Hagerman, Randi J; Francis, David; Amor, David J; Metcalfe, Sylvia A; Hopper, John L; Slater, Howard R

    2015-07-01

    Methylation of the fragile X mental retardation 1 (FMR1) exon 1/intron 1 boundary positioned fragile X related epigenetic element 2 (FREE2), reveals skewed X-chromosome inactivation (XCI) in fragile X syndrome full mutation (FM: CGG > 200) females. XCI skewing has been also linked to abnormal X-linked gene expression with the broader clinical impact for sex chromosome aneuploidies (SCAs). In this study, 10 FREE2 CpG sites were targeted using methylation specific quantitative melt analysis (MS-QMA), including 3 sites that could not be analysed with previously used EpiTYPER system. The method was applied for detection of skewed XCI in FM females and in different types of SCA. We tested venous blood and saliva DNA collected from 107 controls (CGG chromosome test; (ii) locus-specific XCI skewing towards the hypomethylated state in FM females; and (iii) skewed XCI towards the hypermethylated state in SCA with 3 or more X chromosomes, and in 5% of the 47,XXY individuals. MS-QMA output also showed significant correlation with the EpiTYPER reference method in FM males and females (P < 0.0001) and SCAs (P < 0.05). In conclusion, we demonstrate use of MS-QMA to quantify skewed XCI in two applications with diagnostic utility.

  19. Globally Divergent but Locally Convergent X- and Y-Chromosome Influences on Cortical Development.

    Science.gov (United States)

    Raznahan, Armin; Lee, Nancy Raitano; Greenstein, Deanna; Wallace, Gregory L; Blumenthal, Jonathan D; Clasen, Liv S; Giedd, Jay N

    2016-01-01

    Owing to their unique evolutionary history, modern mammalian X- and Y-chromosomes have highly divergent gene contents counterbalanced by regulatory features, which preferentially restrict expression of X- and Y-specific genes. These 2 characteristics make opposing predictions regarding the expected dissimilarity of X- vs. Y-chromosome influences on biological structure and function. Here, we quantify this dissimilarity using in vivo neuroimaging within a rare cohort of humans with diverse sex chromosome aneuploidies (SCAs). We show that X- and Y-chromosomes have opposing effects on overall brain size but exert highly convergent influences on local brain anatomy, which manifest across biologically distinct dimensions of the cerebral cortex. Large-scale online meta-analysis of functional neuroimaging data indicates that convergent sex chromosome dosage effects preferentially impact centers for social perception, communication, and decision-making. Thus, despite an almost complete lack of sequence homology, and opposing effects on overall brain size, X- and Y-chromosomes exert congruent effects on the proportional size of cortical systems involved in adaptive social functioning. These convergent X-Y effects (i) track the dosage of those few genes that are still shared by X- and Y-chromosomes, and (ii) may provide a biological substrate for the link between SCA and increased rates of psychopathology.

  20. Frequent gene conversion events between the X and Y homologous chromosomal regions in primates

    Directory of Open Access Journals (Sweden)

    Hirai Hirohisa

    2010-07-01

    Full Text Available Abstract Background Mammalian sex-chromosomes originated from a pair of autosomes. A step-wise cessation of recombination is necessary for the proper maintenance of sex-determination and, consequently, generates a four strata structure on the X chromosome. Each stratum shows a specific per-site nucleotide sequence difference (p-distance between the X and Y chromosomes, depending on the time of recombination arrest. Stratum 4 covers the distal half of the human X chromosome short arm and the p-distance of the stratum is ~10%, on average. However, a 100-kb region, which includes KALX and VCX, in the middle of stratum 4 shows a significantly lower p-distance (1-5%, suggesting frequent sequence exchanges or gene conversions between the X and Y chromosomes in humans. To examine the evolutionary mechanism for this low p-distance region, sequences of a corresponding region including KALX/Y from seven species of non-human primates were analyzed. Results Phylogenetic analysis of this low p-distance region in humans and non-human primate species revealed that gene conversion like events have taken place at least ten times after the divergence of New World monkeys and Catarrhini (i.e., Old World monkeys and hominoids. A KALY-converted KALX allele in white-handed gibbons also suggests a possible recent gene conversion between the X and Y chromosomes. In these primate sequences, the proximal boundary of this low p-distance region is located in a LINE element shared between the X and Y chromosomes, suggesting the involvement of this element in frequent gene conversions. Together with a palindrome on the Y chromosome, a segmental palindrome structure on the X chromosome at the distal boundary near VCX, in humans and chimpanzees, may mediate frequent sequence exchanges between X and Y chromosomes. Conclusion Gene conversion events between the X and Y homologous regions have been suggested, mainly in humans. Here, we found frequent gene conversions in the

  1. BRCA1-mediated repression of select X chromosome genes

    Directory of Open Access Journals (Sweden)

    Ropers H Hilger

    2004-09-01

    Full Text Available Abstract Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling. Significance was determined using parametric statistics with P

  2. Strong purifying selection at genes escaping X chromosome inactivation.

    Science.gov (United States)

    Park, Chungoo; Carrel, Laura; Makova, Kateryna D

    2010-11-01

    To achieve dosage balance of X-linked genes between mammalian males and females, one female X chromosome becomes inactivated. However, approximately 15% of genes on this inactivated chromosome escape X chromosome inactivation (XCI). Here, using a chromosome-wide analysis of primate X-linked orthologs, we test a hypothesis that such genes evolve under a unique selective pressure. We find that escape genes are subject to stronger purifying selection than inactivated genes and that positive selection does not significantly affect the evolution of these genes. The strength of selection does not differ between escape genes with similar versus different expression levels in males versus females. Intriguingly, escape genes possessing Y homologs evolve under the strongest purifying selection. We also found evidence of stronger conservation in gene expression levels in escape than inactivated genes. We hypothesize that divergence in function and expression between X and Y gametologs is driving such strong purifying selection for escape genes.

  3. The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary

    OpenAIRE

    Wienberg, Johannes; Jauch, Anna; Lüdecke, H J; Senger, G.; Horsthemke, B; Claussen, U.; Cremer, Thomas; Arnold, N; Lengauer, Christoph

    1994-01-01

    Fluorescencein situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescencein situ hybridization and comparative mapping of the chromosomes of ...

  4. Microdissection and chromosome painting of X and B chromosomes in the grasshopper Eyprepocnemis plorans.

    Science.gov (United States)

    Teruel, M; Cabrero, J; Perfectti, F; Acosta, M J; Sánchez, A; Camacho, J P M

    2009-01-01

    The relative location of 2 repetitive DNAs, i.e. ribosomal (rDNA) and a tandemly repeated satellite DNA (satDNA), with respect to the centromere, suggested that B chromosomes in the grasshopper Eyprepocnemis plorans derived intraspecifically from the X chromosome. To test this hypothesis, we microdissected X and B chromosomes and amplified the obtained DNA by 2 different procedures, the conventional DOP-PCR method and the single-cell whole-genome amplification GenomePlex method. We then generated DNA probes to perform chromosome painting. Our results have confirmed that X and B chromosomes share many DNA sequences between them and with most of the autosomes, especially at locations where the satDNA and rDNA reside, in consistency with previous information. This supports the hypothesis of an intraspecific origin of B chromosomes in E. plorans. Nevertheless, the present results did not help to clarify whether Bs were derived from the X chromosome or else from 1 or more autosomes.

  5. Strategies for sequencing human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.R.

    1996-06-01

    This project funded for four years (02.92 to 01.96) was a renewal of a project funded for 2.5 years (07.89 to 01.92). This report covers the period 07.89 to 07.94. The original project was entitled {open_quotes}Correlation of physical and genetic maps of Human Chromosome 16{close_quotes}. The aim over this period was to construct a cytogenetic-based physical map of chromosome 16, to enable integration of its physical and genetic maps. This was achieved by collaboration and isolation of new markers until each bin on the physical map contained a polymorphic marker on the linkage map. A further aim was to integrate all mapping data for this chromosome and to achieve contig closure over band q24.

  6. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  7. X-chromosome inactivation in monkey embryos and pluripotent stem cells.

    Science.gov (United States)

    Tachibana, Masahito; Ma, Hong; Sparman, Michelle L; Lee, Hyo-Sang; Ramsey, Cathy M; Woodward, Joy S; Sritanaudomchai, Hathaitip; Masterson, Keith R; Wolff, Erin E; Jia, Yibing; Mitalipov, Shoukhrat M

    2012-11-15

    Inactivation of one X chromosome in female mammals (XX) compensates for the reduced dosage of X-linked gene expression in males (XY). However, the inner cell mass (ICM) of mouse preimplantation blastocysts and their in vitro counterparts, pluripotent embryonic stem cells (ESCs), initially maintain two active X chromosomes (XaXa). Random X chromosome inactivation (XCI) takes place in the ICM lineage after implantation or upon differentiation of ESCs, resulting in mosaic tissues composed of two cell types carrying either maternal or paternal active X chromosomes. While the status of XCI in human embryos and ICMs remains unknown, majority of human female ESCs show non-random XCI. We demonstrate here that rhesus monkey ESCs also display monoallelic expression and methylation of X-linked genes in agreement with non-random XCI. However, XIST and other X-linked genes were expressed from both chromosomes in isolated female monkey ICMs indicating that ex vivo pluripotent cells retain XaXa. Intriguingly, the trophectoderm (TE) in preimplantation monkey blastocysts also expressed X-linked genes from both alleles suggesting that, unlike the mouse, primate TE lineage does not support imprinted paternal XCI. Our results provide insights into the species-specific nature of XCI in the primate system and reveal fundamental epigenetic differences between in vitro and ex vivo primate pluripotent cells.

  8. Staining and embedding of human chromosomes for 3-d serial block-face scanning electron microscopy.

    Science.gov (United States)

    Yusuf, Mohammed; Chen, Bo; Hashimoto, Teruo; Estandarte, Ana Katrina; Thompson, George; Robinson, Ian

    2014-12-01

    The high-order structure of human chromosomes is an important biological question that is still under investigation. Studies have been done on imaging human mitotic chromosomes using mostly 2-D microscopy methods. To image micron-sized human chromosomes in 3-D, we developed a procedure for preparing samples for serial block-face scanning electron microscopy (SBFSEM). Polyamine chromosomes are first separated using a simple filtration method and then stained with heavy metal. We show that the DNA-specific platinum blue provides higher contrast than osmium tetroxide. A two-step procedure for embedding chromosomes in resin is then used to concentrate the chromosome samples. After stacking the SBFSEM images, a familiar X-shaped chromosome was observed in 3-D.

  9. A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation.

    NARCIS (Netherlands)

    Tarpey, P.S.; Smith, R.; Pleasance, E.; Whibley, A.; Edkins, S.; Hardy, C.; O'Meara, S.; Latimer, C.; Dicks, E.; Menzies, A.; Stephens, P.; Blow, M.; Greenman, C.; Xue, Y.; Tyler-Smith, C.; Thompson, D.; Gray, K.; Andrews, J.; Barthorpe, S.; Buck, G.; Cole, J.; Dunmore, R.; Jones, D.; Maddison, M.; Mironenko, T.; Turner, R.; Turrell, K.; Varian, J.; West, S.; Widaa, S.; Wray, P.; Teague, J.; Butler, A.; Jenkinson, A.; Jia, M.; Richardson, D.; Shepherd, R.; Wooster, R.; Tejada, M.I.; Martinez, F.; Carvill, G.; Goliath, R.; Brouwer, A.P.M. de; Bokhoven, H. van; Esch, H. van; Chelly, J.; Raynaud, M.; Ropers, H.H.; Abidi, F.E.; Srivastava, A.K.; Cox, J.; Luo, Y.; Mallya, U.; Moon, J.; Parnau, J.; Mohammed, S.; Tolmie, J.L.; Shoubridge, C.; Corbett, M.; Gardner, A.; Haan, E.; Rujirabanjerd, S.; Shaw, M.A.; Vandeleur, L.; Fullston, T.; Easton, D.F.; Boyle, J.; Partington, M.; Hackett, A.; Field, M.; Skinner, C.; Stevenson, R.E.; Bobrow, M.; Turner, G.; Schwartz, C.E.; Gecz, J.; Raymond, F.L.; Futreal, P.A.; Stratton, M.R.

    2009-01-01

    Large-scale systematic resequencing has been proposed as the key future strategy for the discovery of rare, disease-causing sequence variants across the spectrum of human complex disease. We have sequenced the coding exons of the X chromosome in 208 families with X-linked mental retardation (XLMR),

  10. Imbalance between the expression dosages of X-chromosome and autosomal genes in mammalian oocytes.

    Science.gov (United States)

    Fukuda, Atsushi; Tanino, Motohiko; Matoba, Ryo; Umezawa, Akihiro; Akutsu, Hidenori

    2015-09-15

    Oocytes have unique characteristics compared with other cell types. In mouse and human oocytes, two X chromosomes are maintained in the active state. Previous microarray studies have shown that the balance of the expression state is maintained in haploid oocytes. Here, we investigated transcripts using RNA-sequence technology in mouse and human oocytes. The median expression ratio between X chromosome and autosomal genes (X:A) in immature mouse oocytes increased as the gene expression levels increased, reaching a value of 1. However, the ratio in mature oocytes was under 1 for all expression categories. Moreover, we observed a markedly low ratio resulting from the bimodal expression patterns of X-linked genes. The low X:A expression ratio in mature oocyte was independent of DNA methylation. While mature human oocytes exhibited a slightly low X:A expression ratio, this was the result of the skewed high frequency of lowly expressed X-linked genes rather than the bimodal state. We propose that this imbalance between the expression dosages of X-chromosome and autosomal genes is a feature of transcripts in mammalian oocytes lacking X-chromosome inactivation.

  11. Human Sperm Chromosome Analysis—Study on Human Sperm Chromosome Mutagenesis Induced by Carbon Disulfide

    Institute of Scientific and Technical Information of China (English)

    LEJUN-YI; FUXIAO-MIN

    1996-01-01

    The aim of this study was to investigate the effect CS2 of on human sperm chromosomal aberration.The human sperm/hamster egg fusion techniquse was used to analyze 203 human sperm chromosome complement form 9 healthy volunteers.The incidence of numerical aberration was 1.0%,and that of structural chromosome aberration was 5.9% and total abnormalities was 6.9%.Structural aberrations consisted of breaks,deletions, centric rings,fragments,and chromatid exchange.The results from high concentration group(10μmol·L-1 CS2)showed that the incidence of chromosomal aberration rate was significantly higher than that of the control group.The results indicate that high concentration of CS2 might directly cause mutatenesis f the germ cell.

  12. Masculinization of the x chromosome in the pea aphid.

    Directory of Open Access Journals (Sweden)

    Julie Jaquiéry

    Full Text Available Evolutionary theory predicts that sexually antagonistic mutations accumulate differentially on the X chromosome and autosomes in species with an XY sex-determination system, with effects (masculinization or feminization of the X depending on the dominance of mutations. Organisms with alternative modes of inheritance of sex chromosomes offer interesting opportunities for studying sexual conflicts and their resolution, because expectations for the preferred genomic location of sexually antagonistic alleles may differ from standard systems. Aphids display an XX/X0 system and combine an unusual inheritance of the X chromosome with the alternation of sexual and asexual reproduction. In this study, we first investigated theoretically the accumulation of sexually antagonistic mutations on the aphid X chromosome. Our results show that i the X is always more favourable to the spread of male-beneficial alleles than autosomes, and should thus be enriched in sexually antagonistic alleles beneficial for males, ii sexually antagonistic mutations beneficial for asexual females accumulate preferentially on autosomes, iii in contrast to predictions for standard systems, these qualitative results are not affected by the dominance of mutations. Under the assumption that sex-biased gene expression evolves to solve conflicts raised by the spread of sexually antagonistic alleles, one expects that male-biased genes should be enriched on the X while asexual female-biased genes should be enriched on autosomes. Using gene expression data (RNA-Seq in males, sexual females and asexual females of the pea aphid, we confirm these theoretical predictions. Although other mechanisms than the resolution of sexual antagonism may lead to sex-biased gene expression, we argue that they could hardly explain the observed difference between X and autosomes. On top of reporting a strong masculinization of the aphid X chromosome, our study highlights the relevance of organisms displaying

  13. Turner syndrome mosaicism: an unusual case with a de novo large dicentric marker chromosome: mos 45,X/46,X, ter rea(X;X)(p22.3;p22.3).

    Science.gov (United States)

    Nucaro, Anna Lisa; Melis, Paola; Casini, Maria Rosaria; Rossino, Rossano; Cau, Milena; Melis, Maria Antonietta; Loche, Sandro

    2008-01-01

    X/X translocations are quite rare in humans. The effect of this anomaly on the phenotype is variable and depends on the amount of deleted material and whether the chromosomes are joined by their long or short arms. We report an unusual case of Turner syndrome mosaicism in a 16-year-old girl, who was referred to our Institute for primary amenorrhoea associated with short stature. Endocrine evaluation revealed hypergonadotropic hypogonadism, which required a study of the karyotype. Cytogenetic analysis, performed on peripheral blood leucocytes, showed a mos 45,X/46,X,ter rea (X;X)(p22.3;p22.3) de novo karyotype. The prevalent cell line was 45,X (90% cells). A second cell line (10% cells) showed a very large marker chromosome, similar to a large metacentric chromosome. FISH (fluorescent in situ hybridisation) and molecular analysis revealed that the marker chromosome was dicentric and totally derived from the paternal X chromosome.

  14. The probability to initiate X chromosome inactivation is determined by the X to autosomal ratio and X chromosome specific allelic properties

    NARCIS (Netherlands)

    K. Monkhorst (Kim); B. de Hoon (Bas); I.H. Jonkers (Iris); E.M. Achame; W. Monkhorst; J.W. Hoogerbrugge (Jos); E. Rentmeester (Eveline); H.V. Westerhoff (Hans); F.G. Grosveld (Frank); J.A. Grootegoed (Anton); J.H. Gribnau (Joost)

    2009-01-01

    textabstractBackground: In female mammalian cells, random X chromosome inactivation (XCI) equalizes the dosage of X-encoded gene products to that in male cells. XCI is a stochastic process, in which each X chromosome has a probability to be inactivated. To obtain more insight in the factors setting

  15. Structural organization of the inactive X chromosome in the mouse.

    Science.gov (United States)

    Giorgetti, Luca; Lajoie, Bryan R; Carter, Ava C; Attia, Mikael; Zhan, Ye; Xu, Jin; Chen, Chong Jian; Kaplan, Noam; Chang, Howard Y; Heard, Edith; Dekker, Job

    2016-07-28

    X-chromosome inactivation (XCI) involves major reorganization of the X chromosome as it becomes silent and heterochromatic. During female mammalian development, XCI is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Xist coats the chromosome in cis and induces silencing of almost all genes via its A-repeat region, although some genes (constitutive escapees) avoid silencing in most cell types, and others (facultative escapees) escape XCI only in specific contexts. A role for Xist in organizing the inactive X (Xi) chromosome has been proposed. Recent chromosome conformation capture approaches have revealed global loss of local structure on the Xi chromosome and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite. However, the molecular architecture of the Xi chromosome, in both the silent and expressed regions,remains unclear. Here we investigate the structure, chromatin accessibility and expression status of the mouse Xi chromosome in highly polymorphic clonal neural progenitors (NPCs) and embryonic stem cells. We demonstrate a crucial role for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) and RNA sequencing. Deletion of the boundary disrupts mega-domain formation, and induction of Xist RNA initiates formation of the boundary and the loss of DNA accessibility. We also show that in NPCs, the Xi chromosome lacks active/inactive compartments and topologically associating domains (TADs), except around genes that escape XCI. Escapee gene clusters display TAD-like structures and retain DNA accessibility at promoter-proximal and CTCF-binding sites. Furthermore, altered patterns of facultative escape genes indifferent neural progenitor clones are associated with the presence of different TAD

  16. Short communication: Imputation of markers on the bovine X chromosome.

    Science.gov (United States)

    Mao, Xiaowei; Johansson, Anna Maria; Sahana, Goutam; Guldbrandtsen, Bernt; De Koning, Dirk-Jan

    2016-09-01

    Imputation is a cost-effective approach to augment marker data for genomic selection and genome-wide association studies. However, most imputation studies have focused on autosomes. Here, we assessed the imputation of markers on the X chromosome in Holstein cattle for nongenotyped animals and animals genotyped with low-density (Illumina BovineLD, Illumina Inc., San Diego, CA) chips, using animals genotyped with medium-density (Illumina BovineSNP50) chips. A total of 26,884 genotyped Holstein individuals genotyped with medium-density chips were used in this study. Imputation was carried out using FImpute V2.2. The following parameters were examined: treating the pseudoautosomal region as autosomal or as X specific, different sizes of reference groups, different male/female proportions in the reference group, and cumulated degree of relationship between the reference group and target group. The imputation accuracy of markers on the X chromosome was improved if the pseudoautosomal region was treated as autosomal. Increasing the proportion of females in the reference group improved the imputation accuracy for the X chromosome. Imputation for nongenotyped animals in general had lower accuracy compared with animals genotyped with the low-density single nucleotide polymorphism array. In addition, higher cumulative pedigree relationships between the reference group and the target animal led to higher imputation accuracy. In the future, better marker coverage of the X chromosome should be developed to facilitate genomic studies involving the X chromosome.

  17. [DNA image-fluorimetry of individual human chromosomes].

    Science.gov (United States)

    Agafonova, N A; Sakuta, G A; Rozanov, Iu M; Shteĭn, G I; Kudriavtsev, B N

    2013-01-01

    Mucrofluorimetric method for the determination of DNA content in individual human chromosomes has been developed. The method is based on a preliminary identification of chromosomes with Hoechst 33258, followed by staining of the chromosomes with Feulgen reaction using Schiffs reagent type ethidium bromide-SO2, then measuring the fluorescence intensity of the chromosomes using an image analyzer. The method allows to determine the DNA content of individual chromosomes with accuracy up to 4.5 fg. DNA content of individual human chromosomes, their p-and q-arms as well as homologous chromosomes were measured using the developed method. It has been shown that the DNA content in the chromosomes of normal human karyotype is unstable. Fluctuations in the DNA content in some chromosomes can vary 35-40 fg.

  18. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae.

    OpenAIRE

    Nikolai Windbichler; Philippos Aris Papathanos; Andrea Crisanti

    2008-01-01

    Author Summary A. gambiae mosquitoes are the main vectors of human malaria. The inadequacy of existing control measures for these mosquitoes has prompted research into methods for genetic control. We have genetically engineered A. gambiae mosquitoes to express, during spermatozoa development, an enzyme that selectively cuts a DNA sequence present only on a family of essential genes located on the X chromosome. We found that in heterozygous male mosquitoes, this genetic modification induced co...

  19. A Syntenic Region Conserved from Fish to Mammalian X Chromosome

    Directory of Open Access Journals (Sweden)

    Guijun Guan

    2014-01-01

    Full Text Available Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system, the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus, is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH and the random amplified polymorphic DNA (RAPD approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes.

  20. Nonrandon X chromosome inactivation in B cells from carriers of X chromosome-linked severe combined immunodeficiency

    Energy Technology Data Exchange (ETDEWEB)

    Conley, M.E.; Lavoie, A.; Briggs, C.; Brown, P.; Guerra, C.; Puck, J.M.

    1988-05-01

    X chromosome-linked sever combined immunodeficiency (XSCID) is characterized by markedly reduced numbers of T cells, the absence of proliferative responses to mitogens, and hypogammaglobulinemia but normal or elevated number of B cells. To determine if the failure of the B cells to produce immunoglobulin might be due to expression of the XSCID gene defect in B-lineage cells as well as T cells, the authors analyzed patterns of X chromosome inactivation in B cells from nine obligate carriers of this disorder. A series of somatic cell hybrids that selectively retained the active X chromosome was produced from Epstein-Barr virus-stimulated B cells from each woman. To distinguish between the two X chromosome, the hybrids from each woman were analyzed using an X-linked restriction fragment length polymorphism for which the woman in question was heterozygous. In all obligate carriers of XSCID, the B-cell hybrids demonstrated preferential use of a single X chromosome, the nonmutant X, as the active X. To determine if the small number of B-cell hybrids that contained the mutant X were derived from an immature subset of B cells, lymphocytes from three carriers were separated into surface IgM positive and surface IgM negative B cells prior to exposure to Epstein-Barr virus and production of B-cell hybrids. The results demonstrated normal random X chromosome inactivation in B-cell hybrids derived from the less mature surface IgM positive B cells. These results suggest that the XSCID gene product has a direct effect on B cells as well as T cells and is required during B-cell maturation.

  1. European gene mapping project (EUROGEM) : Breakpoint panels for human chromosomes based on the CEPH reference families

    NARCIS (Netherlands)

    Attwood, J; Bryant, SP; Bains, R; Povey, R; Povey, S; Rebello, M; Kapsetaki, M; Moschonas, NK; Grzeschik, KH; Otto, M; Dixon, M; Sudworth, HE; Kooy, RF; Wright, A; Teague, P; Terrenato, L; Vergnaud, G; Monfouilloux, S; Weissenbach, J; Alibert, O; Dib, C; Faure, S; Bakker, E; Pearson, NM; Vossen, RHAM; Gal, A; MuellerMyhsok, B; Cann, HM; Spurr, NK

    1996-01-01

    Meiotic breakpoint panels for human chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17; 18, 20 and X were constructed from genotypes from the CEPH reference families. Each recombinant chromosome included has a breakpoint well-supported with reference to defined quantitative criteria. The panels

  2. The DNA sequence, annotation and analysis of human chromosome 3

    DEFF Research Database (Denmark)

    Muzny, Donna M; Scherer, Steven E; Kaul, Rajinder

    2006-01-01

    After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chr...

  3. Clinical utility of the X-chromosome array.

    Science.gov (United States)

    Zarate, Yuri A; Dwivedi, Alka; Bartel, Frank O; Bellomo, M Allison; Cathey, Sara S; Champaigne, Neena L; Clarkson, L Kate; Dupont, Barbara R; Everman, David B; Geer, Joseph S; Gordon, Barbara C; Lichty, Angie W; Lyons, Michael J; Rogers, R Curtis; Saul, Robert A; Schroer, Richard J; Skinner, Steven A; Stevenson, Roger E

    2013-01-01

    Previous studies have limited the use of specific X-chromosome array designed platforms to the evaluation of patients with intellectual disability. In this retrospective analysis, we reviewed the clinical utility of an X-chromosome array in a variety of scenarios. We divided patients according to the indication for the test into four defined categories: (1) autism spectrum disorders and/or developmental delay and/or intellectual disability (ASDs/DD/ID) with known family history of neurocognitive disorders; (2) ASDs/DD/ID without known family history of neurocognitive disorders; (3) breakpoint definition of an abnormality detected by a different cytogenetic test; and (4) evaluation of suspected or known X-linked conditions. A total of 59 studies were ordered with 27 copy number variants detected in 25 patients (25/59 = 42%). The findings were deemed pathogenic/likely pathogenic (16/59 = 27%), benign (4/59 = 7%) or uncertain (7/59 = 12%). We place particular emphasis on the utility of this test for the diagnostic evaluation of families affected with X-linked conditions and how it compares to whole genome arrays in this setting. In conclusion, the X-chromosome array frequently detects genomic alterations of the X chromosome and it has advantages when evaluating some specific X-linked conditions. However, careful interpretation and correlation with clinical findings is needed to determine the significance of such changes. When the X-chromosome array was used to confirm a suspected X-linked condition, it had a yield of 63% (12/19) and was useful in the evaluation and risk assessment of patients and families.

  4. Influence of the X-chromosome on neuroanatomy: evidence from Turner and Klinefelter syndromes.

    Science.gov (United States)

    Hong, David S; Hoeft, Fumiko; Marzelli, Matthew J; Lepage, Jean-Francois; Roeltgen, David; Ross, Judith; Reiss, Allan L

    2014-03-05

    Studies of sex effects on neurodevelopment have traditionally focused on animal models investigating hormonal influences on brain anatomy. However, more recent evidence suggests that sex chromosomes may also have direct upstream effects that act independently of hormones. Sex chromosome aneuploidies provide ideal models to examine this framework in humans, including Turner syndrome (TS), where females are missing one X-chromosome (45X), and Klinefelter syndrome (KS), where males have an additional X-chromosome (47XXY). As these disorders essentially represent copy number variants of the sex chromosomes, investigation of brain structure across these disorders allows us to determine whether sex chromosome gene dosage effects exist. We used voxel-based morphometry to investigate this hypothesis in a large sample of children in early puberty, to compare regional gray matter volumes among individuals with one (45X), two (typically developing 46XX females and 46XY males), and three (47XXY) sex chromosomes. Between-group contrasts of TS and KS groups relative to respective sex-matched controls demonstrated highly convergent patterns of volumetric differences with the presence of an additional sex chromosome being associated with relatively decreased parieto-occipital gray matter volume and relatively increased temporo-insular gray matter volumes. Furthermore, z-score map comparisons between TS and KS cohorts also suggested that this effect occurs in a linear dose-dependent fashion. We infer that sex chromosome gene expression directly influences brain structure in children during early stages of puberty, extending our understanding of genotype-phenotype mechanisms underlying sex differences in the brain.

  5. Mixed-Up Sex Chromosomes: Identification of Sex Chromosomes in the X1X1X2X2/X1X2Y System of the Legless Lizards of the Genus Lialis (Squamata: Gekkota: Pygopodidae).

    Science.gov (United States)

    Rovatsos, Michail; Johnson Pokorná, Martina; Altmanová, Marie; Kratochvíl, Lukáš

    2016-01-01

    Geckos in general show extensive variability in sex determining systems, but only male heterogamety has been demonstrated in the members of their legless family Pygopodidae. In the pioneering study published more than 45 years ago, multiple sex chromosomes of the type X1X1X2X2/X1X2Y were described in Burton's legless lizard (Lialisburtonis) based on conventional cytogenetic techniques. We conducted cytogenetic analyses including comparative genomic hybridization and fluorescence in situ hybridization (FISH) with selected cytogenetic markers in this species and the previously cytogenetically unstudied Papua snake lizard (Lialis jicari) to better understand the nature of these sex chromosomes and their differentiation. Both species possess male heterogamety with an X1X1X2X2/X1X2Y sex chromosome system; however, the Y and one of the X chromosomes are not small chromosomes as previously reported in L. burtonis, but the largest macrochromosomal pair in the karyotype. The Y chromosomes in both species have large heterochromatic blocks with extensive accumulations of GATA and AC microsatellite motifs. FISH with telomeric probe revealed an exclusively terminal position of telomeric sequences in L. jicari (2n = 42 chromosomes in females), but extensive interstitial signals, potentially remnants of chromosomal fusions, in L.burtonis (2n = 34 in females). Our study shows that even largely differentiated and heteromorphic sex chromosomes might be misidentified by conventional cytogenetic analyses and that the application of more sensitive cytogenetic techniques for the identification of sex chromosomes is beneficial even in the classical examples of multiple sex chromosomes.

  6. Late-replicating X-chromosome: replication patterns in mammalian females

    Directory of Open Access Journals (Sweden)

    Tunin Karen

    2002-01-01

    Full Text Available The GTG-banding and 5-BrdU incorporation patterns of the late-replicating X-chromosome were studied in female dogs and cattle, and compared to human female patterns. The replication patterns of the short arm of the X-chromosomes did not show any difference between human, dog and cattle females. As to the long arm, some bands showed differences among the three studied species regarding the replication kinetics pattern. These differences were observed in a restricted region of the X-chromosome, delimited by Xq11 -> q25 in humans, by Xq1 -> q8 in dogs, and by Xq12 -> q32 in cattle. In an attempt to find out if these differences in the replication kinetics could be a reflection of differences in the localization of genes in that region of the X-chromosome, we used the probe for the human androgen receptor gene (AR localized at Xq12, which is in the region where we observed differences among the three studied species. We did not, however, observe hybridization signals. Our study goes on, using other human probes for genes located in the region Xq11 -> Xq25.

  7. Molecular mapping of chromosomes 17 and X. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition of new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping@ clones from a larger genome.

  8. Mapping genes on human chromosome 20

    Energy Technology Data Exchange (ETDEWEB)

    Keith, T.; Phipps, P.; Serino, K. [Collaborative Research, Inc., Waltham, MA (United States)] [and others

    1994-09-01

    While a substantial number of genes have been physically localized to human chromosome 20, few have been genetically mapped. In the process of developing a genetic linkage map of chromosome 20, we have mapped microsatellite polymorphisms associated with six genes. Three of these had highly informative polymorphisms (greater than 0.70) that were originally identified by other investigators. These include avian sarcoma oncogene homolog (SRC), ribophorin II (RPN2), and phosphoenolpyruvate carboxykinase (PCK1). Polymorphisms associated with two genes were determined following a screen of their DNA sequences in GenBank. These include dinucleotide polymorphisms in introl II of cystatin c (CST3) and in the promoter region of neuroendocrine convertase 2 (NEC2) with heterozygosities of 0.52 and 0.54, respectively. A sixth gene, prodynorphin (PDYN) was mapped following the identification of a dinucleotide repeat polymorphism (heterozygosity of 0.35) in a cosmid subclone from a YAC homologous to the original phage clone. CA-positive cosmid subclones from a YAC for an additional gene, guanine nucleotide binding protein, alpha (GNAS10), have been identified and sequencing is in progress. Similar efforts were utilized to identify a microsatellite polymorphism from a half-YAC cloned by W. Brown and localized by FISH to 20pter. This polymorphism is highly informative, with a heterozygosity of 0.83, and serves to delimit the genetic map of the short arm of this chromosome.

  9. The X factor: X chromosome dosage compensation in the evolutionarily divergent monotremes and marsupials.

    Science.gov (United States)

    Whitworth, Deanne J; Pask, Andrew J

    2016-08-01

    Marsupials and monotremes represent evolutionarily divergent lineages from the majority of extant mammals which are eutherian, or placental, mammals. Monotremes possess multiple X and Y chromosomes that appear to have arisen independently of eutherian and marsupial sex chromosomes. Dosage compensation of X-linked genes occurs in monotremes on a gene-by-gene basis, rather than through chromosome-wide silencing, as is the case in eutherians and marsupials. Specifically, studies in the platypus have shown that for any given X-linked gene, a specific proportion of nuclei within a cell population will silence one locus, with the percentage of cells undergoing inactivation at that locus being highly gene-specific. Hence, it is perhaps not surprising that the expression level of X-linked genes in female platypus is almost double that in males. This is in contrast to the situation in marsupials where one of the two X chromosomes is inactivated in females by the long non-coding RNA RSX, a functional analogue of the eutherian XIST. However, marsupial X chromosome inactivation differs from that seen in eutherians in that it is exclusively the paternal X chromosome that is silenced. In addition, marsupials appear to have globally upregulated X-linked gene expression in both sexes, thus balancing their expression levels with those of the autosomes, a process initially proposed by Ohno in 1967 as being a fundamental component of the X chromosome dosage compensation mechanism but which may not have evolved in eutherians.

  10. 45,X mosaicism with Y chromosome presenting female phenotype.

    Science.gov (United States)

    Fukui, Shinji; Watanabe, Masato; Yoshino, Kaoru

    2015-07-01

    Prophylactic gonadectomy is recommended in patients with 45,X mosaicism with the Y chromosome and presenting a female phenotype because of the risk of gonadoblastoma development. The characteristics of this disorder remain unclear because of its low incidence. We report 4 patients with 45,X mosaicism with the Y chromosome and presenting complete female external genitalia. We analyzed the characteristics and the macroscopic and histopathological findings of their gonads and performed hormonal assays of the 4 patients. All 4 patients were referred to us with short stature as the chief complaint. Chromosomal studies revealed 45,X/47,XYY in 1, and the others had a 45,X/46,XY karyotype. Three patients (6 gonads) underwent laparoscopic bilateral gonadectomy. The macroscopic appearance of gonads of 1 patient was similar to an ovary, whereas gonads of the rest appeared as streak gonads. The histopathological findings revealed bilateral gonadoblastoma in 1 patient, although the macroscopic findings did not show tumor characteristics. It is impossible to distinguish the histopathological findings of gonads according to their macroscopic appearance among patients with 45,X mosaicism with the Y chromosome and presenting a female phenotype.

  11. Flow karyotyping and sorting of human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.W.; Lucas, J.; Peters, D.; Pinkel, D.; Trask, B.; van den Engh, G.; Van Dilla, M.A.

    1986-07-16

    Flow cytometry and sorting are becoming increasingly useful as tools for chromosome classfication and for the detection of numerical and structural chromosome aberrations. Chromosomes of a single type can be purified with these tools to facilitate gene mapping or production of chromosome specific recombinant DNA libraries. For analysis of chromosomes with flow cytometry, the chromosomes are extracted from mitotic cells, stained with one or more fluorescent dyes and classified one-by-one according to their dye content(s). Thus, the flow approach is fundamentally different than conventional karyotyping where chromosomes are classified within the context of a metaphase spread. Flow sorting allows purification of chromosomes that can be distinguished flow cytometrically. The authors describe the basic principles of flow cytometric chromosome classification i.e. flow karyotyping, and chromosome sorting and describe several applications. 30 refs., 8 figs.

  12. Dosage compensation of X-chromosome inactivation center-linked genes in porcine preimplantation embryos: Non-chromosome-wide initiation of X-chromosome inactivation in blastocysts.

    Science.gov (United States)

    Hwang, Jae Yeon; Oh, Jong-Nam; Park, Chi-Hun; Lee, Dong-Kyung; Lee, Chang-Kyu

    2015-11-01

    X-chromosome inactivation (XCI) is an epigenetic mechanism that occurs in the eutherian embryo development to equalize the dosage of X-linked genes between males and females. This event is regulated by various factors, and the genes located in the X-chromosome inactivation center (XIC), which is known to be an evolutionary conserved region, are associated with XCI; however, a number of studies regarding this epigenetic event and genomic region are primarily performed in mouse models despite its species-specific features. Thus, in this study, the porcine XIC was identified, and we analyzed the expression of XIC-linked genes in porcine preimplantation embryos. Comparative sequence analysis revealed that the porcine XIC is synteny with that of human and the non-coding RNAs were less conserved compared with the protein coding genes in the XIC. Among the XIC-linked genes, the expression levels of CHIC1 and RLIM were decreased from morula to blastocyst development and their dosage was compensated between the male and female blastocysts. Additionally, the CpG sites of CHIC1 were approximately 50% methylated in parthenote blastocysts. Contrary to these genes, XIST and LOC102165544, an uncharacterized non-coding gene, showed dramatically increased expression levels after the morula stage and preferential female expression in blastocysts. Imprinted XIST expression was not observed, and their CpG sites were hypo-methylated in parthenogenic blastocysts. These results demonstrate that the porcine XIC consists of an evolutionary conserved structure with fewer sequences conserved non-coding RNAs. In addition, a few XIC-linked genes would likely achieve dosage compensation, but XCI would not be completed in porcine blastocysts.

  13. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    Science.gov (United States)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-02-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it.

  14. Contrasting Levels of Molecular Evolution on the Mouse X Chromosome.

    Science.gov (United States)

    Larson, Erica L; Vanderpool, Dan; Keeble, Sara; Zhou, Meng; Sarver, Brice A J; Smith, Andrew D; Dean, Matthew D; Good, Jeffrey M

    2016-08-01

    The mammalian X chromosome has unusual evolutionary dynamics compared to autosomes. Faster-X evolution of spermatogenic protein-coding genes is known to be most pronounced for genes expressed late in spermatogenesis, but it is unclear if these patterns extend to other forms of molecular divergence. We tested for faster-X evolution in mice spanning three different forms of molecular evolution-divergence in protein sequence, gene expression, and DNA methylation-across different developmental stages of spermatogenesis. We used FACS to isolate individual cell populations and then generated cell-specific transcriptome profiles across different stages of spermatogenesis in two subspecies of house mice (Mus musculus), thereby overcoming a fundamental limitation of previous studies on whole tissues. We found faster-X protein evolution at all stages of spermatogenesis and faster-late protein evolution for both X-linked and autosomal genes. In contrast, there was less expression divergence late in spermatogenesis (slower late) on the X chromosome and for autosomal genes expressed primarily in testis (testis-biased). We argue that slower-late expression divergence reflects strong regulatory constraints imposed during this critical stage of sperm development and that these constraints are particularly acute on the tightly regulated sex chromosomes. We also found slower-X DNA methylation divergence based on genome-wide bisulfite sequencing of sperm from two species of mice (M. musculus and M. spretus), although it is unclear whether slower-X DNA methylation reflects development constraints in sperm or other X-linked phenomena. Our study clarifies key differences in patterns of regulatory and protein evolution across spermatogenesis that are likely to have important consequences for mammalian sex chromosome evolution, male fertility, and speciation.

  15. Isolation and characterization of DNA probes for human chromosome 21.

    Science.gov (United States)

    Watkins, P C

    1990-01-01

    A coordinated effort to map and sequence the human genome has recently become a national priority. Chromosome 21, the smallest human chromosome accounting for less than 2% of the human genome, is an attractive model system for developing and evaluating genome mapping technology. Several strategies are currently being explored including the development of chromosome 21 libraries from somatic cell hybrids as reported here, the cloning of chromosome 21 in yeast artificial chromosomes (McCormick et al., 1989b), and the construction of chromosome 21 libraries using chromosome flow-sorting techniques (Fuscoe et al., 1989). This report describes the approaches used to identify DNA probes that are useful for mapping chromosome 21. Probes were successfully isolated from both phage and cosmid libraries made from two somatic cell hybrids that contain human chromosome 21 as the only human chromosome. The 15 cosmid clones from the WA17 library, reduced to cloned DNA sequences of an average size of 3 kb, total 525 kb of DNA which is approximately 1% of chromosome 21. From these clones, a set of polymorphic DNA markers that span the length of the long arm of chromosome 21 has been generated. All of the probes thus far analyzed from the WA17 libraries have been mapped to chromosome 21 both by physical and genetic mapping methods. It is therefore likely that the WA17 hybrid cell line contains human chromosome 21 as the only human component, in agreement with cytogenetic observation. The 153E7b cosmid libraries will provide an alternative source of cloned chromosome 21 DNA. Library screening techniques can be employed to obtain cloned DNA sequences from the same genetic loci of the two different chromosome 21s. Comparative analysis will allow direct estimation of DNA sequence variation for different regions of chromosome 21. Mapped DNA probes make possible the molecular analysis of chromosome 21 at a level of resolution not achievable by classical cytogenetic techniques (Graw et al

  16. Incidence of X and Y Chromosomal Aneuploidy in a Large Child Bearing Population

    Science.gov (United States)

    Kırkızlar, Eser; Hall, Megan P.; Demko, Zachary; Zneimer, Susan M.; Curnow, Kirsten J.; Gross, Susan; Gropman, Andrea

    2016-01-01

    Background X&Y chromosomal aneuploidies are among the most common human whole-chromosomal copy number changes, but the population-based incidence and prevalence in the child-bearing population is unclear. Methods This retrospective analysis of prospectively collected data leveraged a routine non-invasive prenatal test (NIPT) using parental genotyping to estimate the population-based incidence of X&Y chromosome variations in this population referred for NIPT (generally due to advanced maternal age). Results From 141,916 women and 29,336 men, 119 X&Y chromosomal abnormalities (prevalence: 1 in 1,439) were identified. Maternal findings include: 43 cases of 45,X (40 mosaic); 30 cases of 47,XXX (12 mosaic); 3 cases of 46,XX uniparental disomy; 2 cases of 46,XY/46,XX; 23 cases of mosaicism of unknown type; 2 cases of 47,XX,i(X)(q10). Paternal findings include: 2 cases of 47,XXY (1 mosaic); 10 cases of 47,XYY (1 mosaic); 4 partial Y deletions. Conclusions Single chromosome aneuploidy was present in one of every 1,439 individuals considered in this study, showing 47,XXX; 47,XX,i(X)(q10); 47,XYY; 47,XXY, partial Y deletions, and a high level of mosaicism for 45,X. This expands significantly our understanding of X&Y chromosomal variations and fertility issues, and is critical for families and adults affected by these disorders. This current and extensive information on fertility will be beneficial for genetic counseling on prenatal diagnoses as well as for newly diagnosed postnatal cases. PMID:27512996

  17. Large-scale reconstruction of 3D structures of human chromosomes from chromosomal contact data.

    Science.gov (United States)

    Trieu, Tuan; Cheng, Jianlin

    2014-04-01

    Chromosomes are not positioned randomly within a nucleus, but instead, they adopt preferred spatial conformations to facilitate necessary long-range gene-gene interactions and regulations. Thus, obtaining the 3D shape of chromosomes of a genome is critical for understanding how the genome folds, functions and how its genes interact and are regulated. Here, we describe a method to reconstruct preferred 3D structures of individual chromosomes of the human genome from chromosomal contact data generated by the Hi-C chromosome conformation capturing technique. A novel parameterized objective function was designed for modeling chromosome structures, which was optimized by a gradient descent method to generate chromosomal structural models that could satisfy as many intra-chromosomal contacts as possible. We applied the objective function and the corresponding optimization method to two Hi-C chromosomal data sets of both a healthy and a cancerous human B-cell to construct 3D models of individual chromosomes at resolutions of 1 MB and 200 KB, respectively. The parameters used with the method were calibrated according to an independent fluorescence in situ hybridization experimental data. The structural models generated by our method could satisfy a high percentage of contacts (pairs of loci in interaction) and non-contacts (pairs of loci not in interaction) and were compatible with the known two-compartment organization of human chromatin structures. Furthermore, structural models generated at different resolutions and from randomly permuted data sets were consistent.

  18. Segregation of an X ring chromosome in two generations.

    Science.gov (United States)

    Dallapiccola, B; Bruni, L; Boscherini, B; Pasquino, A M; Chessa, L; Vignetti, P

    1980-01-01

    A 45,X/46,X,r(X) mosaicism was found in a mother and daughter. Characterisation of the ring by banding studies showed that breakpoints had occurred at bands Xp13 and Xq27. It is confirmed that women heterozygotes for partial deficiencies of the short arm of an X chromosome are fertile. Although the mother developed secondary amenorrhoea at the age of 29, it is suggested that fertility per se may not be affected by deficiencies of the distal part of Xq. Images PMID:7205906

  19. X Chromosome Inactivation and Breast Cancer: Epigenetic Alteration in Tumor Initiation and Progression

    Science.gov (United States)

    2007-09-01

    types of mammary tumors, but not others. For instance, X chromosomal abnormalities appear to be associated with basal-like human breast cancer (BLC...andDNA damage-repair pathways to ensure genome integrity (Deng, 2006; Venkitaraman, 2002). In addition, BRCA1 plays a role in meiotic XY inactivation...find- ing that meiotic XY silencing proceeds by a mechanism involving silencing of unsynapsed DNA (Turner et al., 2006), which is distinct from X

  20. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Directory of Open Access Journals (Sweden)

    Laurence D Hurst

    2015-12-01

    Full Text Available X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE and data from the Functional Annotation of the Mammalian Genome (FANTOM5 project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds, as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased

  1. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Science.gov (United States)

    Hurst, Laurence D; Ghanbarian, Avazeh T; Forrest, Alistair R R; Huminiecki, Lukasz

    2015-12-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  2. A highly conserved pericentromeric domain in human and gorilla chromosomes.

    Science.gov (United States)

    Pita, M; Gosálvez, J; Gosálvez, A; Nieddu, M; López-Fernández, C; Mezzanotte, R

    2009-01-01

    Significant similarity between human and gorilla genomes has been found in all chromosome arms, but not in centromeres, using whole-comparative genomic hybridization (W-CGH). In human chromosomes, centromeric regions, generally containing highly repetitive DNAs, are characterized by the presence of specific human DNA sequences and an absence of homology with gorilla DNA sequences. The only exception is the pericentromeric area of human chromosome 9, which, in addition to a large block of human DNA, also contains a region of homology with gorilla DNA sequences; the localization of these sequences coincides with that of human satellite III. Since highly repetitive DNAs are known for their high mutation frequency, we hypothesized that the chromosome 9 pericentromeric DNA conserved in human chromosomes and deriving from the gorilla genome may thus play some important functional role.

  3. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes.

    Science.gov (United States)

    Holubcová, Zuzana; Blayney, Martyn; Elder, Kay; Schuh, Melina

    2015-06-05

    Aneuploidy in human eggs is the leading cause of pregnancy loss and several genetic disorders such as Down syndrome. Most aneuploidy results from chromosome segregation errors during the meiotic divisions of an oocyte, the egg's progenitor cell. The basis for particularly error-prone chromosome segregation in human oocytes is not known. We analyzed meiosis in more than 100 live human oocytes and identified an error-prone chromosome-mediated spindle assembly mechanism as a major contributor to chromosome segregation defects. Human oocytes assembled a meiotic spindle independently of either centrosomes or other microtubule organizing centers. Instead, spindle assembly was mediated by chromosomes and the small guanosine triphosphatase Ran in a process requiring ~16 hours. This unusually long spindle assembly period was marked by intrinsic spindle instability and abnormal kinetochore-microtubule attachments, which favor chromosome segregation errors and provide a possible explanation for high rates of aneuploidy in human eggs.

  4. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome

    KAUST Repository

    Hurst, Laurence D.

    2015-12-18

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  5. A cross-species comparison of escape from X inactivation in Eutheria: implications for evolution of X chromosome inactivation.

    Science.gov (United States)

    Al Nadaf, Shafagh; Deakin, Janine E; Gilbert, Clément; Robinson, Terence J; Graves, Jennifer A M; Waters, Paul D

    2012-02-01

    Sex chromosome dosage compensation in both eutherian and marsupial mammals is achieved by X chromosome inactivation (XCI)--transcriptional repression that silences one of the two X chromosomes in the somatic cells of females. We recently used RNA fluorescent in situ hybridization (FISH) to show, in individual nuclei, that marsupial X inactivation (in the absence of XIST) occurs on a gene-by-gene basis, and that escape from inactivation is stochastic and independent of gene location. In the absence of similar data from fibroblast cell lines of eutherian representatives, a meaningful comparison is lacking. We therefore used RNA-FISH to examine XCI in fibroblast cell lines obtained from three distantly related eutherian model species: African savannah elephant (Loxodonta africana), mouse (Mus musculus) and human (Homo sapiens). We show that, unlike the orthologous marsupial X, inactivation of the X conserved region (XCR) in eutherians generally is complete. Two-colour RNA-FISH on female human, mouse and elephant interphase nuclei showed that XCR loci have monoallelic expression in almost all nuclei. However, we found that many loci located in the evolutionarily distinct recently added region (XAR) displayed reproducible locus-specific frequencies of nuclei with either one or two active X alleles. We propose that marsupial XCI retains features of an ancient incomplete silencing mechanism that was augmented by the evolution of the XIST gene that progressively stabilized the eutherian XCR. In contrast, the recently added region of the eutherian X displays an incomplete inactivation profile similar to that observed on the evolutionarily distinct marsupial X and the independently evolved monotreme X chromosomes.

  6. Scanning conductance microscopy investigations on fixed human chromosomes

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Lange, Jacob Moresco; Jensen, Linda Boye;

    2008-01-01

    Scanning conductance microscopy investigations were carried out in air on human chromosomes fixed on pre-fabricated SiO2 surfaces with a backgate. The point of the investigation was to estimate the dielectric constant of fixed human chromosomes in order to use it for microfluidic device...... optimization. The phase shift caused by the electrostatic forces, together with geometrical measurements of the atomic force microscopy (AFM) cantilever and the chromosomes were used to estimate a value,for the dielectric constant of different human chromosomes....

  7. The probability to initiate X chromosome inactivation is determined by the X to autosomal ratio and X chromosome specific allelic properties.

    Directory of Open Access Journals (Sweden)

    Kim Monkhorst

    Full Text Available In female mammalian cells, random X chromosome inactivation (XCI equalizes the dosage of X-encoded gene products to that in male cells. XCI is a stochastic process, in which each X chromosome has a probability to be inactivated. To obtain more insight in the factors setting up this probability, we studied the role of the X to autosome (X ratio A ratio in initiation of XCI, and have used the experimental data in a computer simulation model to study the cellular population dynamics of XCI.To obtain more insight in the role of the XratioA ratio in initiation of XCI, we generated triploid mouse ES cells by fusion of haploid round spermatids with diploid female and male ES cells. These fusion experiments resulted in only XXY triploid ES cells. XYY and XXX ES lines were absent, suggesting cell death related either to insufficient X-chromosomal gene dosage (XYY or to inheritance of an epigenetically modified X chromosome (XXX. Analysis of active (Xa and inactive (Xi X chromosomes in the obtained triploid XXY lines indicated that the initiation frequency of XCI is low, resulting in a mixed population of XaXiY and XaXaY cells, in which the XaXiY cells have a small proliferative advantage. This result, and findings on XCI in diploid and tetraploid ES cell lines with different X ratio A ratios, provides evidence that the X ratio A ratio determines the probability for a given X chromosome to be inactivated. Furthermore, we found that the kinetics of the XCI process can be simulated using a probability for an X chromosome to be inactivated that is proportional to the X ratio A ratio. These simulation studies re-emphasize our hypothesis that the probability is a function of the concentration of an X-encoded activator of XCI, and of X chromosome specific allelic properties determining the threshold for this activator.The present findings reveal that the probability for an X chromosome to be inactivated is proportional to the X ratio A ratio. This finding

  8. A method for the analysis of 32 X chromosome insertion deletion polymorphisms in a single PCR

    DEFF Research Database (Denmark)

    Pereira, Rui; Pereira, Vania; Gomes, Iva;

    2012-01-01

    , given its special transmission pattern. The X chromosome markers brought new insights into the history of modern human populations and also proved useful in forensic kinship investigations, namely in deficient relationship cases and in cases where autosomes are uninformative. This work describes an X......-Indel multiplex system amplifying 32 biallelic markers in one single PCR. The multiplex includes X-Indels shown to be polymorphic in the major human population groups and follows a short amplicon strategy. The set was applied in the genetic characterization of sub-Saharan African, European and East Asian...

  9. A new chromosome x exon-specific microarray platform for screening of patients with X-linked disorders.

    Science.gov (United States)

    Bashiardes, Stavros; Kousoulidou, Ludmila; van Bokhoven, Hans; Ropers, Hans-Hilger; Chelly, Jamel; Moraine, Claude; de Brouwer, Arjan P M; Van Esch, Hilde; Froyen, Guy; Patsalis, Philippos C

    2009-11-01

    Recent studies and advances in high-density oligonucleotide arrays have shown that microdeletions and microduplications occur at a high frequency in the human genome, causing various genetic conditions including mental retardation. Thus far little is known about the pathways leading to this disease, and implementation of microarrays is hampered by their increasing cost and complexity, underlining the need for new diagnostic tools. The aim of this study was to introduce a new targeted platform called "chromosome X exon-specific array" and to apply this new platform to screening of 20 families (including one blind positive control) with suspected X-linked mental retardation, to identify new causative X-linked mental retardation genes. The new microarray contains of 21,939 oligonucleotides covering 92.9% of all exons of all genes on chromosome X. Patient screening resulted in successful identification of the blind positive control included in the sample of 20 families, and one of the remaining 19 families was found to carry a 1.78-kilobase deletion involving all exons of pseudogene BRAF2. The BRAF2 deletion segregated in the family and was not found in 200 normal male samples, and no copy number variations are reported in this region. Further studies and focused investigation of X-linked disorders have the potential to reveal the molecular basis of human genetic pathological conditions that are caused by copy-number changes in chromosome X genes.

  10. Chromosomal patterns in human malignant astrocytomas.

    Science.gov (United States)

    Rey, J A; Bello, M J; de Campos, J M; Kusak, M E; Ramos, C; Benitez, J

    1987-12-01

    Cytogenetic analysis by direct and/or in vitro preparations was performed on 34 malignant astrocytomas. Thirty tumors showed near-diploid chromosome numbers, whereas, tritetraploid chromosome complements were present in four tumors. The most frequent chromosomal changes implied numerical deviations by a gain of chromosomes #7, #19, and #20, and by losses of #10, #22, and Y. Structural rearrangements were present in stem- or side lines of 24 tumors. Although no common chromosomal rearrangement seems to exist among those tumors, chromosomes #1, #6, #7, and #9 were predominantly involved. Polysomy and structural rearrangements of chromosome #7 could be related to the overexpression of epidermal growth factor gene, previously observed in some malignant gliomas.

  11. Human-chromosome alterations induced by argon laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Simi, S.; Colella, C. (Consiglio Nazionale delle Ricerche, Pisa (Italy). Lab. di Mutagenesi e Differenziamento); Agati, G.; Fusi, F. (Florence Univ. (Italy). Ist. di Farmacologia); Corsi, M.F.; Pratesi, R. (Consiglio Nazionale delle Ricerche, Florence (Italy). Lab. di Elettronica Quantistica); Tocco, G.A. (Naples Univ. (Italy). Ist. di Istologia ed Embrilogia)

    1984-07-01

    The possible occurrence of genetic damage arising from exposure of human cells to visible laser light has been evaluated in PHA-stimulated human lymphocytes. Aneuploidy and chromosome aberrations have been observed after exposure to an argon laser. These findings appear of special interest in view of the possible role of these chromosome alterations in carcinogenesis.

  12. Genotype/phenotype correlation in women with nonmosaic X chromosome deletions and Turner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Zinn, A.R. [Univ. of Texas Southwestern Medical School, Dallas, TX (United States)

    1994-09-01

    Turner syndrome is a complex human developmental disorder associated with the absence of the second sex chromosome (monosomy X). Cardinal features of the Turner phenotype include high intrauterine lethality, growth retardation, gonadal failure, and the variable presence of specific somatic abnormalities such as webbed neck, lymphedema, and skeletal abnormalities. Recent observations support the hypothesis that the phenotype associated with monosomy X results from haploid dosage of genes common the X and Y chromosomes that escape X-inactivation ({open_quotes}Turner genes{close_quotes}). Apart from a locus causing short stature that maps to the pseudoautosomal region on the distal short arm, the location of X-linked Turner genes is not known. Karyotype/phenotype correlations in women with partial X deletions have been inconsistent. However, previous studies have focused on sporadic sex chromosome aberrations and may have been confounded by occult mosaicism. In addition, mapping of deletions was limited by the resolution of cytogenetic techniques. I am reexamining genotype/phenotype correlations in partial X monosomy, focusing on a subset of cases in which mosaicism is highly unlikely (e.g., unbalanced X-autosome translocations, familial X deletions), and using molecular techniques to map deletions. I have collected eight cases of nonmosaic X deletions in women with varied manifestations of Turner syndrome. Cytogenetic data suggests that genes responsible for Turner anatomic abnormalities may lie within a critical region of the very proximal portion of the short arm (Xp11). Molecular characterization of the deletions is in progress. Methods include (1) fluorescence in situ hybridization of metaphase spreads from patient-derived cell lines, using cosmid probes that map to known locations on Xp, and (2) sequence tagged site (STS) content mapping of somatic cell hybrids retaining the deleted X chromosomes derived from these cell lines.

  13. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.

    Directory of Open Access Journals (Sweden)

    Tanmoy Bhattacharyya

    2014-02-01

    Full Text Available Hybrid sterility (HS belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.

  14. Selection and fine mapping of chromosome-specific cDNAs: application to human chromosome 1.

    Science.gov (United States)

    Mancini, M; Sala, C; Rivella, S; Toniolo, D

    1996-12-01

    We have developed a methodology for identification and fine mapping of chromosome-specific transcripts. Combining digestion of DNA with different restriction enzymes, ligation to "bubble" linkers, and PCR amplification from Alu and "bubble" primers, we have synthesized human chromosome 1-specific sequences from DNA of a somatic cell hybrid, A9Neol. After hybridization to human fetal brain cDNA, we could efficiently capture chromosome 1-specific cDNAs. The cDNAs were sequenced and used as probes in hybridizations to high-density filters containing the arrayed CEPH Mega-YAC library and to the arrayed cDNA library from infant brain made by B. Soares, which has been extensively sequenced. By this approach we have been able to select chromosome 1-specific cDNAs, to map them to chromosome 1 YAC contigs, and to identify and map corresponding longer cDNAs and ESTs.

  15. Altered chromosome 6 in immortal human fibroblasts.

    Science.gov (United States)

    Hubbard-Smith, K; Patsalis, P; Pardinas, J R; Jha, K K; Henderson, A S; Ozer, H L

    1992-05-01

    Human diploid fibroblasts have a limited life span in vitro, and spontaneous immortalization is an extremely rare event. We have used transformation of human diploid fibroblasts by an origin-defective simian virus 40 genome to develop series of genetically matched immortal cell lines to analyze immortalization. Comparison of a preimmortal transformant (SVtsA/HF-A) with its uncloned and cloned immortalized derivatives (AR5 and HAL) has failed to reveal any major alteration involving the simian virus 40 genome. Karyotypic analysis, however, demonstrated that all of the immortal cell lines in this series have alterations of chromosome 6 involving loss of the portion distal to 6q21. The karyotypic analysis was corroborated by DNA analyses. Southern analysis demonstrated that only one copy of three proto-oncogene loci (ros1, c-myb, and mas1) on 6q was retained in immortal cells. Polymerase chain reaction analysis of the microsatellite polymorphism at 6q22 (D6S87) showed loss of heterozygosity. In addition, elevated expression of c-myb (6q22-23) was observed. We hypothesize that the region at and/or distal to 6q21 plays a role in immortalization, consistent with the presence of a growth suppressor gene.

  16. Altered chromosome 6 in immortal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard-Smith, K.; Pardinas, J.R.; Jha, K.K.; Ozer, H.L. (New Jersey Medical School, Newark, NJ (United States)); Patsalis, P.; Henderson, A.S. (City Univ. of New York, NY (United States))

    1992-05-01

    Human diploid fibroblasts have a limited life span in vitro, and spontaneous immortalization is an extremely rare event. We have used transformation of human diploid fibroblasts by an origin-defective simian virus 40 genome to develop series of genetically matched immortal cell lines to analyze immortalization. Comparison of a preimmortal transformant (SVtsA/HF-A) with its uncloned and cloned immortalized derivatives (AR5 and HAL) has failed to reveal any major alteration involving the simian virus 40 genome. Karyotypic analysis, however, demonstrated that all of the immortal cell lines in this series have alterations of chromosome 6 involving loss of the portion distal to 6q21. The karyotypic analysis was corroborated by DNA analyses. Southern analysis demonstrated that only one copy of three proto-oncogene loci (ros1, c-myb, and mas1) on 6q was retained in immortal cells. Polymerase chain reaction analysis of the microsatellite polymorphism at 6q22 (D6S87) showed loss of heterozygosity. In addition, elevated expression of c-myb (6q22-23) was observed. We hypothesize that the region at and/or distal to 6q21 plays a role in immortalization, consistent with the presence of a growth suppressor gene. 66 refs., 6 figs., 2 tabs.

  17. Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease.

    Science.gov (United States)

    De La Fuente, Rabindranath; Baumann, Claudia; Viveiros, Maria M

    2011-08-01

    Functional differentiation of chromatin structure is essential for the control of gene expression, nuclear architecture, and chromosome stability. Compelling evidence indicates that alterations in chromatin remodeling proteins play an important role in the pathogenesis of human disease. Among these, α-thalassemia mental retardation X-linked protein (ATRX) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres and telomeres as well as facultative heterochromatin on the murine inactive X chromosome. Mutations in human ATRX result in an X-linked neurodevelopmental condition with various degrees of gonadal dysgenesis (ATRX syndrome). Patients with ATRX syndrome may exhibit skewed X chromosome inactivation (XCI) patterns, and ATRX-deficient mice exhibit abnormal imprinted XCI in the trophoblast cell line. Non-random or skewed XCI can potentially affect both the onset and severity of X-linked disease. Notably, failure to establish epigenetic modifications associated with the inactive X chromosome (Xi) results in several conditions that exhibit genomic and chromosome instability such as fragile X syndrome as well as cancer development. Insight into the molecular mechanisms of ATRX function and its interacting partners in different tissues will no doubt contribute to our understanding of the pathogenesis of ATRX syndrome as well as the epigenetic origins of aneuploidy. In turn, this knowledge will be essential for the identification of novel drug targets and diagnostic tools for cancer progression as well as the therapeutic management of global epigenetic changes commonly associated with malignant neoplastic transformation.

  18. Effects of hepatitis B virus infection on human sperm chromosomes

    Institute of Scientific and Technical Information of China (English)

    Jian-Min Huang; Tian-Hua Huang; Huan-Ying Qiu; Xiao-Wu Fang; Tian-Gang Zhuang; Hong-Xi Liu; Yong-Hua Wang; Li-Zhi Deng; Jie-Wen Qiu

    2003-01-01

    AIM: To evaluate the level of sperm chromosome aberrations in male patients with hepatitis B, and to directly detect whether there are HBV DNA integrations in sperm chromosomes of hepatitis B patients.METHODS: Sperm chromosomes of 14 tested subjects (5healthy controls, 9 patients with HBV infection, including 1with acute hepatitis B, 2 with chronic active hepatitis B, 4with chronic persistent hepatitis B, 2 chronic HBsAg carriers with no clinical symptoms) were prepared using interspecific in vitro fertilization between zona-free golden hamster ova and human spermatozoa, and the frequencies of aberration spermatozoa were compared between subjects of HBV infection and controls. Fluorescence in situ hybridization (FISH) to sperm chromosome spreads was carried out with biotin-labeled full length HBV DNA probe to detect the specific HBV DNA sequences in the sperm chromosomes.RESULTS: The total frequency of sperm chromosome aberrations in HBV infection group (14.8%, 33/223) was significantly higher than that in the control group (4.3%,5/116). Moreover, the sperm chromosomes in HBV infection patients commonly presented stickiness, clumping, failure to staining, etc, which would affect the analysis of sperm chromosomes. Specific fluorescent signal spots for HBV DNA were seen in sperm chromosomes of one patient with chronic persistent hepatitis. In 9 (9/42) sperm chromosome complements containing fluorescent signal spots, one presented 5 obvious FISH spots, others presented 2 to 4signals. There was significant difference of fluorescence intensity among the signal spots. The distribution of signal sites among chromosomes was random.CONCLUSION: HBV infection can bring about mutagenic effects on sperm chromosomes. Integrations of viral DNA into sperm chromosomes which are multisites and nonspecific, can further increase the instability of sperm chromosomes. This study suggested that HBV infection can create extensively hereditary effects by alteration genetic constituent and

  19. Induction of chromosomal aberrations in human lymphocytes by fission neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcia Augusta da; Coelho, Paulo Rogerio Pinto; Bartolini, Paolo; Okazaki, Kayo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: kokazaki@ipen.br

    2009-07-01

    Chromosome aberrations induced by sparsely ionizing radiation (low-LET) are well known and cytogenetic analyses of irradiated human lymphocytes have been widely applied to biological dosimetry. However, much less is known about chromosome aberrations induced by densely ionizing radiation (high LET), such as that of alpha particles or neutrons. Such particles induce DNA strand breaks, as well as chromosome breakage and rearrangements of high complexity. This damage is more localized and less efficiently repaired than after X- or {gamma}-ray irradiation. This preferential production of complex aberrations by densely ionizing radiation is related to the unique energy deposition patterns, which produces highly localized multiple DNA damage at the chromosomal level. A better knowledge of the interactions between different types of radiation and cellular DNA is of importance, not only from the radiobiological viewpoint but also for dosimetric and therapeutic purposes. The objective of the present study was to analyse the cytogenetic effects of fission neutrons on peripheral blood lymphocytes in order to evaluate structural and numerical aberrations and number of cells in the different mitotic cycles. So, blood samples from five healthy donors, 22-25 years old, of both sexes, were irradiated in the Research Reactor IEA-R1 of our Institute (IPEN/CNEN-SP) with thermal and fast neutrons at doses of 0.2; 0.3; 0.5 and 1.0 Gy. The {gamma} contribution to the total absorbed dose was about 30%. These doses were monitored by thermoluminescent dosemeters: LiF-600 (for neutrons) and LiF-700 (for {gamma}-rays). The data concerning structural aberrations were evaluated with regard to three parameters: percentage of cells with aberrations, number of aberrations/cell and number of dicentric/cell. The cytogenetic results showed an increase in the three parameters after irradiation with neutrons, as a function of radiation dose. Apparently, there was no influence of neutrons on the

  20. Small supernumerary marker chromosomes (sSMC in humans; are there B chromosomes hidden among them

    Directory of Open Access Journals (Sweden)

    Ogilvie Caroline

    2008-06-01

    Full Text Available Abstract Background Small supernumerary marker chromosomes (sSMC and B-chromosomes represent a heterogeneous collection of chromosomes added to the typical karyotype, and which are both small in size. They may consist of heterochromatic and/or euchromatic material. Also a predominance of maternal transmission was reported for both groups. Even though sSMC and B-chromosomes show some similarity it is still an open question if B-chromosomes are present among the heterogeneous group of sSMC. According to current theories, sSMC would need drive, drift or beneficial effects to increase in frequency in order to become B chromosome. However, up to now no B-chromosomes were described in human. Results Here we provide first evidence and discuss, that among sSMC B-chromosomes might be hidden. We present two potential candidates which may already be, or may in future evolve into B chromosomes in human: (i sSMC cases where the marker is stainable only by DNA derived from itself; and (ii acrocentric-derived inverted duplication sSMC without associated clinical phenotype. Here we report on the second sSMC stainable exclusively by its own DNA and show that for acrocentric derived sSMC 3.9× more are familial cases than reported for other sSMC. Conclusion The majority of sSMC are not to be considered as B-chromosomes. Nonetheless, a minority of sSMC show similarities to B-chromosomes. Further studies are necessary to come to final conclusions for that problem.

  1. Nonrandom involvement of chromosomal segments in human hematologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J. D.

    1977-01-01

    The consistent occurrence of nonrandom chromosome changes in human malignancies suggests that they are not trivial epiphenomena. Whereas we do not understand their significance at present, one possible role which they may fulfill is to provide the chromosomally aberrant cells with a proliferative advantage as the result of alteration of the number and/or location of genes related to nucleic acid biosynthesis. It would be expected that the proliferative advantage provided by various chromosome aberrations differs in patients with different genetic constitutions.

  2. The finished DNA sequence of human chromosome 12.

    Science.gov (United States)

    Scherer, Steven E; Muzny, Donna M; Buhay, Christian J; Chen, Rui; Cree, Andrew; Ding, Yan; Dugan-Rocha, Shannon; Gill, Rachel; Gunaratne, Preethi; Harris, R Alan; Hawes, Alicia C; Hernandez, Judith; Hodgson, Anne V; Hume, Jennifer; Jackson, Andrew; Khan, Ziad Mohid; Kovar-Smith, Christie; Lewis, Lora R; Lozado, Ryan J; Metzker, Michael L; Milosavljevic, Aleksandar; Miner, George R; Montgomery, Kate T; Morgan, Margaret B; Nazareth, Lynne V; Scott, Graham; Sodergren, Erica; Song, Xing-Zhi; Steffen, David; Lovering, Ruth C; Wheeler, David A; Worley, Kim C; Yuan, Yi; Zhang, Zhengdong; Adams, Charles Q; Ansari-Lari, M Ali; Ayele, Mulu; Brown, Mary J; Chen, Guan; Chen, Zhijian; Clerc-Blankenburg, Kerstin P; Davis, Clay; Delgado, Oliver; Dinh, Huyen H; Draper, Heather; Gonzalez-Garay, Manuel L; Havlak, Paul; Jackson, Laronda R; Jacob, Leni S; Kelly, Susan H; Li, Li; Li, Zhangwan; Liu, Jing; Liu, Wen; Lu, Jing; Maheshwari, Manjula; Nguyen, Bao-Viet; Okwuonu, Geoffrey O; Pasternak, Shiran; Perez, Lesette M; Plopper, Farah J H; Santibanez, Jireh; Shen, Hua; Tabor, Paul E; Verduzco, Daniel; Waldron, Lenee; Wang, Qiaoyan; Williams, Gabrielle A; Zhang, Jingkun; Zhou, Jianling; Allen, Carlana C; Amin, Anita G; Anyalebechi, Vivian; Bailey, Michael; Barbaria, Joseph A; Bimage, Kesha E; Bryant, Nathaniel P; Burch, Paula E; Burkett, Carrie E; Burrell, Kevin L; Calderon, Eliana; Cardenas, Veronica; Carter, Kelvin; Casias, Kristal; Cavazos, Iracema; Cavazos, Sandra R; Ceasar, Heather; Chacko, Joseph; Chan, Sheryl N; Chavez, Dean; Christopoulos, Constantine; Chu, Joseph; Cockrell, Raynard; Cox, Caroline D; Dang, Michelle; Dathorne, Stephanie R; David, Robert; Davis, Candi Mon'Et; Davy-Carroll, Latarsha; Deshazo, Denise R; Donlin, Jeremy E; D'Souza, Lisa; Eaves, Kristy A; Egan, Amy; Emery-Cohen, Alexandra J; Escotto, Michael; Flagg, Nicole; Forbes, Lisa D; Gabisi, Abdul M; Garza, Melissa; Hamilton, Cerissa; Henderson, Nicholas; Hernandez, Omar; Hines, Sandra; Hogues, Marilyn E; Huang, Mei; Idlebird, DeVincent G; Johnson, Rudy; Jolivet, Angela; Jones, Sally; Kagan, Ryan; King, Laquisha M; Leal, Belita; Lebow, Heather; Lee, Sandra; LeVan, Jaclyn M; Lewis, Lakeshia C; London, Pamela; Lorensuhewa, Lorna M; Loulseged, Hermela; Lovett, Demetria A; Lucier, Alice; Lucier, Raymond L; Ma, Jie; Madu, Renita C; Mapua, Patricia; Martindale, Ashley D; Martinez, Evangelina; Massey, Elizabeth; Mawhiney, Samantha; Meador, Michael G; Mendez, Sylvia; Mercado, Christian; Mercado, Iracema C; Merritt, Christina E; Miner, Zachary L; Minja, Emmanuel; Mitchell, Teresa; Mohabbat, Farida; Mohabbat, Khatera; Montgomery, Baize; Moore, Niki; Morris, Sidney; Munidasa, Mala; Ngo, Robin N; Nguyen, Ngoc B; Nickerson, Elizabeth; Nwaokelemeh, Ogechi O; Nwokenkwo, Stanley; Obregon, Melissa; Oguh, Maryann; Oragunye, Njideka; Oviedo, Rodolfo J; Parish, Bridgette J; Parker, David N; Parrish, Julia; Parks, Kenya L; Paul, Heidie A; Payton, Brett A; Perez, Agapito; Perrin, William; Pickens, Adam; Primus, Eltrick L; Pu, Ling-Ling; Puazo, Maria; Quiles, Miyo M; Quiroz, Juana B; Rabata, Dina; Reeves, Kacy; Ruiz, San Juana; Shao, Hongmei; Sisson, Ida; Sonaike, Titilola; Sorelle, Richard P; Sutton, Angelica E; Svatek, Amanda F; Svetz, Leah Anne; Tamerisa, Kavitha S; Taylor, Tineace R; Teague, Brian; Thomas, Nicole; Thorn, Rachel D; Trejos, Zulma Y; Trevino, Brenda K; Ukegbu, Ogechi N; Urban, Jeremy B; Vasquez, Lydia I; Vera, Virginia A; Villasana, Donna M; Wang, Ling; Ward-Moore, Stephanie; Warren, James T; Wei, Xuehong; White, Flower; Williamson, Angela L; Wleczyk, Regina; Wooden, Hailey S; Wooden, Steven H; Yen, Jennifer; Yoon, Lillienne; Yoon, Vivienne; Zorrilla, Sara E; Nelson, David; Kucherlapati, Raju; Weinstock, George; Gibbs, Richard A

    2006-03-16

    Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.

  3. A Tth111I RFLP in intron 1 of the mouse Pgk-1 gene allows tracing of X chromosome inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugan, V.; Saha, B.K. [Emory Univ. School of Medicine, Atlanta, GA (United States)

    1994-09-01

    The X-linked immunodeficiency (xid) in CBA/N mice serves as a model for the X-linked agammaglobulinemia (XLA) syndrome in humans. Like the XLA carriers, the female mice heterozygous for xid (X{sup xid}/X{sup W}) are asymptomatic. The pattern of X chromosome inactivation in the F1 heterozygotes [CBA/N (X{sup xid}/X{sup xid}) X CAST/Ei (X{sup W}/Y)] was investigated by monitoring the methylation status of the two Pgk-1 alleles. Methylation of a CpG dinucleotide in the 5{prime} region of the Pgk-1 gene was previously shown to absolutely correlate with the inactivation of the corresponding X chromosome. In order to distinguish the two alleles, the proximal end of intron 1 of the Pgk-1 gene from CBA/N and CAST/Ei was sequenced. Several nucleotide polymorphisms, including a Tth111I RFLP, were detected in close proximity of the critical CpG dinucleotide. This allowed us to devise an assay based on PCR-amplification of a target DNA encompassing the CpG site as well as the Tth111I site. Results indicate that in circulating B lymphocytes of the female heterozygote only the X-chromosome carrying the normal allele is active (non-random inactivation of the X chromosome) whereas in non-B cells both the X chromosomes are active (random inactivation of the X chromosome). These results were further confirmed by direct measurement of transcription of the two alleles (X{sup xid} and X{sup W}).

  4. Conserved synteny between pig chromosome 8 and human chromosome 4 but rearranged and distorted linkage maps

    Energy Technology Data Exchange (ETDEWEB)

    Ellegren, H.; Edfors-Lilja, I.; Anderson, L. (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)); Wintero, A.K. (Royal Veterinary and Agricultural Univ., Fredriksberg (Denmark))

    1993-09-01

    The porcine genes encoding interleukin 2, alcohol dehydrogenase (class I) gamma polypeptide, and osteopontin were mapped to chromosome 8 by linkage analysis. Together with previous assignments to this chromosome (the albumin, platelet-derived growth factor receptor A, and fibrinogen genes), an extensive syntenic homology with human chromosome 4 was discovered. Loci from about three-quarters of the q arm of human chromosome 4 are on pig chromosome 8. However, the linear order of the markers is not identical in the two species, and there are several examples of interspecific differences in the recombination fractions between adjacent markers. The conserved synteny between man and the pig gives strong support to a previous suggestion that a synteny group present in the ancestor of mammalian species has been retained on human chromosome 4q. Since loci from this synteny group are found on two cattle chromosomes, the bovine rearrangement must have occurred after the split of Suidae and Bovidae within Artiodactyla. 29 refs., 3 figs., 1 tab.

  5. Chromosomal distribution of two multigene families and the unusual occurrence of an X1X1X2X2/X1X2Y sex chromosome system in the dolphinfish (Coryphaenidae): an evolutionary perspective.

    Science.gov (United States)

    Soares, R X; Bertollo, L A C; Cioffi, M B; Costa, G W W F; F Molina, W

    2014-04-03

    Dolphinfishes (Coryphaenidae) are pelagic predators distributed throughout all tropical and subtropical oceans and are very important for commercial, traditional, and sport fishing. This small family contains the Coryphaena hippurus and Coryphaena equiselis species whose chromosomal aspects remain unknown, despite recent advances in cytogenetic data assimilation for Perciformes. In this study, both species were cytogenetically analyzed using different staining techniques (C-, Ag-, and CMA3 banding) and fluorescence in situ hybridization, to detect 18S rDNA and 5S rDNA. C. hippurus females exhibit 2n = 48 chromosomes, with 2m+4sm+42a (NF = 54). In C. equiselis, where both sexes could be analyzed, females displayed 2n = 48 chromosomes (2m+6sm+40a) and males exhibited 2n = 47 chromosomes (3m+6sm+38a) (NF = 56), indicating the presence of X1X1X2X2/X1X2Y multiple sex chromosomes. Sex-chromosome systems are rare in Perciformes, with this study demonstrating the first occurrence in a marine pelagic species. It remains unknown as to whether this system extends to other populations; however, these data are important with respect to evolutionary, phylogenetic, and speciation issues, as well as for elucidating the genesis of this unique sex system.

  6. Forensic usefulness of a 25 X-chromosome single-nucleotide polymorphism marker set

    DEFF Research Database (Denmark)

    Tomas, Carmen; Sanchez, Juan J; Castro, Jose Aurelio

    2010-01-01

    BACKGROUND: The analysis of X-chromosome markers can be valuable in particular situations, for example, deficiency kinship cases, where the putative father cannot be typed. X-chromosome short-tandem repeats (X-STRs) are widely used in forensic genetics, while the use of X-chromosome single....... The usefulness of X-chromosome markers was particularly illustrative in Case 1, where the typing of 25 X-SNPs would have been sufficient to exclude paternity. CONCLUSION: The high level of polymorphism, low degree of linkage disequilibrium, and very low probability of mutation of the 25 X-SNPs makes this set...

  7. Chromosomal mosaicism in human preimplantation embryos : a systematic review

    NARCIS (Netherlands)

    van Echten-Arends, Jannie; Mastenbroek, Sebastiaan; Sikkema-Raddatz, Birgit; Korevaar, Johanna C.; Heineman, Maas Jan; van der Veen, Fulco; Repping, Sjoerd

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is d

  8. Chromosomal mosaicism in human preimplantation embryos: a systematic review.

    NARCIS (Netherlands)

    Echten-Arends, J. van; Mastenbroek, S.; Sikkema-Raddatz, B.; Korevaar, J.C.; Heineman, M.J.; Veen, F. van der; Repping, S.

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is d

  9. Correlation of physical and genetic maps of human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.R.

    1991-01-01

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentially 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.

  10. Apoptosis preferentially eliminates irradiated g0 human lymphocytes bearing dicentric chromosomes.

    Science.gov (United States)

    Belloni, P; Meschini, R; Lewinska, D; Palitti, F

    2008-02-01

    G(0) human peripheral blood lymphocytes were X-irradiated to determine whether there is a direct relationship between radiation-induced dicentric chromosomes and the triggering of apoptosis. Immediately after X-ray exposure, control and irradiated lymphocytes were analyzed for viability, apoptosis and chromosome damage using the premature chromosome condensation technique. A batch of lymphocytes was kept in liquid holding for 48 h and then loaded on Ficoll-Paque medium to separate apoptotic (high-density) and normal (normal-density) cells. Then the same end points were analyzed in high-density and normal-density fractions of control and irradiated lymphocytes. After 48 h of liquid holding, the majority of apoptotic cells contained dicentric chromosomes. These results demonstrate that in human lymphocytes, the type of chromosome damage influences the induction of programmed cell death and provide direct evidence that cells bearing dicentrics are eliminated by apoptosis. G0 lymphocytes are the most common tissue used in biodosimetry studies, and the amount of chromosomal damage detected depends on the time between exposure and sampling. Since the radiation-induced apoptotic cells show the presence of dicentrics, radiation-induced damage can be underestimated. These results may have relevance in evaluations of the efficacy of radiotherapy based on the frequencies of chromosomal aberrations.

  11. Dielectrophoretic manipulation of human chromosomes in microfluidic channels: extracting chromosome dielectric properties

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Buckley, Sonia;

    2011-01-01

    An investigation of the dielectric properties of polyamine buffer prepared human chromosomes is presented in this paper. Chromosomes prepared in this buffer are only a few micrometers in size and shaped roughly like spherical discs. Dielectrophoresis was therefore chosen as the method...... of manipulation combined with a custom designed microfluidic system containing the required electrodes for dielectrophoresis experiments. Our results show that although this system is presently not able to distinguish between the different chromosomes, it can provide average data for the dielectric properties...... of human chromosomes in polyamine buffer. These can then be used to optimize system designs for further characterization and even sorting. The experimental data from the dielectrophoretic manipulation were combined with theoretical calculations to extract a range of values for the permittivity...

  12. Selection and mapping of replication origins from a 500-kb region of the human X chromosome and their relationship to gene expression.

    Science.gov (United States)

    Rivella, S; Palermo, B; Pelizon, C; Sala, C; Arrigo, G; Toniolo, D

    1999-11-15

    In higher eukaryotes the mechanism controlling initiation of DNA replication remains largely unknown. New technologies are needed to shed light on how DNA replication initiates along the genome in specific regions. To identify the human DNA sequence requirements for initiation of replication, we developed a new method that allows selection of replication origins starting from large genomic regions of human DNA. We repeatedly isolated 15 new putative replication origins (PROs) from a human DNA region of 500 kb in which 17 genes have previously been characterized. Fine-mapping of these PROs showed that DNA replication can initiate at many specific points along actively transcribed DNA in the cell lines used for our selection. In conclusion, in this paper we describe a new method to identify PROs that suggests that the availability of initiation sites is dependent on the transcriptional state of the DNA.

  13. The tricky path to recombining X and Y chromosomes in meiosis.

    Science.gov (United States)

    Kauppi, Liisa; Jasin, Maria; Keeney, Scott

    2012-09-01

    Sex chromosomes are the Achilles' heel of male meiosis in mammals. Mis-segregation of the X and Y chromosomes leads to sex chromosome aneuploidies, with clinical outcomes such as infertility and Klinefelter syndrome. Successful meiotic divisions require that all chromosomes find their homologous partner and achieve recombination and pairing. Sex chromosomes in males of many species have only a small region of homology (the pseudoautosomal region, PAR) that enables pairing. Until recently, little was known about the dynamics of recombination and pairing within mammalian X and Y PARs. Here, we review our recent findings on PAR behavior in mouse meiosis. We uncovered unexpected differences between autosomal chromosomes and the X-Y chromosome pair, namely that PAR recombination and pairing occurs later, and is under different genetic control. These findings imply that spermatocytes have evolved distinct strategies that ensure successful X-Y recombination and chromosome segregation.

  14. Strong selective sweeps associated with ampliconic regions in great ape X chromosomes

    DEFF Research Database (Denmark)

    Nam, Kiwoong; Munch, Kasper; Hobolth, Asger

    2014-01-01

    The unique inheritance pattern of X chromosomes makes them preferential targets of adaptive evolution. We here investigate natural selection on the X chromosome in all species of great apes. We find that diversity is more strongly reduced around genes on the X compared with autosomes, and that a ......The unique inheritance pattern of X chromosomes makes them preferential targets of adaptive evolution. We here investigate natural selection on the X chromosome in all species of great apes. We find that diversity is more strongly reduced around genes on the X compared with autosomes...

  15. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  16. Enrichment of brain-related genes on the mammalian X chromosome is ancient and predates the divergence of synapsid and sauropsid lineages.

    Science.gov (United States)

    Kemkemer, Claus; Kohn, Matthias; Kehrer-Sawatzki, Hildegard; Fundele, Reinald H; Hameister, Horst

    2009-01-01

    Previous studies have revealed an enrichment of reproduction- and brain-related genes on the human X chromosome. In the present study, we investigated the evolutionary history that underlies this functional specialization. To do so, we analyzed the orthologous building blocks of the mammalian X chromosome in the chicken genome. We used Affymetrix chicken genome microarrays to determine tissue-selective gene expression in several tissues of the chicken, including testis and brain. Subsequently, chromosomal distribution of genes with tissue-selective expression was determined. These analyzes provided several new findings. Firstly, they showed that chicken chromosomes orthologous to the mammalian X chromosome exhibited an increased concentration of genes expressed selectively in brain. More specifically, the highest concentration of brain-selectively expressed genes was found on chicken chromosome GGA12, which shows orthology to the X chromosomal regions with the highest enrichment of non-syndromic X-linked mental retardation (MRX) genes. Secondly, and in contrast to the first finding, no enrichment of testis-selective genes could be detected on these chicken chromosomes. These findings indicate that the accumulation of brain-related genes on the prospective mammalian X chromosome antedates the divergence of sauropsid and synapsid lineages 315 million years ago, whereas the accumulation of testis-related genes on the mammalian X chromosome is more recent and due to adaptational changes.

  17. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    Science.gov (United States)

    Taketo, Teruko

    2015-01-01

    The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.

  18. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    Directory of Open Access Journals (Sweden)

    Teruko Taketo

    2015-06-01

    Full Text Available The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.

  19. The third international workshop of human chromosome 5. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Third International Workshop on Human Chromosome 5 was held in Laguna Beach, California, March 5-8, 1994. The pace at which new mapping information has been published in the last year make almost any report outdated before publication. Much of the information in this report and the most recent data from the Human chromosome 5 Genome Center at U.C. Irvine on the physical map of chromosome 5 are accessible via a WWW server. For most loci referred to in this report that can be detected by Polymerase Chain Reaction, the sequences of the oligonucleotide primers are available and some primer sequences are provided in this report.

  20. X-chromosome kiss and tell: how the Xs go their separate ways.

    Science.gov (United States)

    Anguera, M C; Sun, B K; Xu, N; Lee, J T

    2006-01-01

    Loci associated with noncoding RNAs have important roles in X-chromosome inactivation (XCI), the dosage compensation mechanism by which one of two X chromosomes in female cells becomes transcriptionally silenced. The Xs start out as epigenetically equivalent chromosomes, but XCI requires a cell to treat two identical X chromosomes in completely different ways: One X chromosome must remain transcriptionally active while the other becomes repressed. In the embryo of eutherian mammals, the choice to inactivate the maternal or paternal X chromosome is random. The fact that the Xs always adopt opposite fates hints at the existence of a trans-sensing mechanism to ensure the mutually exclusive silencing of one of the two Xs. This paper highlights recent evidence supporting a model for mutually exclusive choice that involves homologous chromosome pairing and the placement of asymmetric chromatin marks on the two Xs.

  1. Scanning electron microscope studies of human metaphase chromosomes.

    Science.gov (United States)

    Shemilt, L A; Estandarte, A K C; Yusuf, M; Robinson, I K

    2014-03-06

    Scanning electron microscopy (SEM) is used to evaluate potential chromosome preparations and staining methods for application in high-resolution three-dimensional X-ray imaging. Our starting point is optical fluorescence microscopy, the standard method for chromosomes, which only gives structural detail at the 200 nm scale. In principle, with suitable sample preparation protocols, including contrast enhancing staining, the surface structure of the chromosomes can be viewed at the 1 nm level by SEM. Here, we evaluate a heavy metal nucleic-acid-specific stain, which gives strong contrast in the backscattered electron signal. This study uses SEM to examine chromosomes prepared in different ways to establish a sample preparation protocol for X-rays. Secondary electron and backscattered electron signals are compared to evaluate the effectiveness of platinum-based stains used to enhance the contrast.

  2. Transcriptional changes in response to X chromosome dosage in the mouse: implications for X inactivation and the molecular basis of Turner Syndrome

    Directory of Open Access Journals (Sweden)

    Sargent Carole A

    2010-02-01

    Full Text Available Abstract Background X monosomic mice (39,XO have a remarkably mild phenotype when compared to women with Turner syndrome (45,XO. The generally accepted hypothesis to explain this discrepancy is that the number of genes on the mouse X chromosome which escape X inactivation, and thus are expressed at higher levels in females, is very small. However this hypothesis has never been tested and only a small number of genes have been assayed for their X-inactivation status in the mouse. We performed a global expression analysis in four somatic tissues (brain, liver, kidney and muscle of adult 40,XX and 39,XO mice using the Illumina Mouse WG-6 v1_1 Expression BeadChip and an extensive validation by quantitative real time PCR, in order to identify which genes are expressed from both X chromosomes. Results We identified several genes on the X chromosome which are overexpressed in XX females, including those previously reported as escaping X inactivation, as well as new candidates. However, the results obtained by microarray and qPCR were not fully concordant, illustrating the difficulty in ascertaining modest fold changes, such as those expected for genes escaping X inactivation. Remarkably, considerable variation was observed between tissues, suggesting that inactivation patterns may be tissue-dependent. Our analysis also exposed several autosomal genes involved in mitochondrial metabolism and in protein translation which are differentially expressed between XX and XO mice, revealing secondary transcriptional changes to the alteration in X chromosome dosage. Conclusions Our results support the prediction that the mouse inactive X chromosome is largely silent, while providing a list of the genes potentially escaping X inactivation in rodents. Although the lower expression of X-linked genes in XO mice may not be relevant in the particular tissues/systems which are affected in human X chromosome monosomy, genes deregulated in XO mice are good candidates for

  3. Fourth international workshop on human chromosome 5. Final progress report

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, J.D.

    1996-12-31

    The Fourth International Workshop on Human Chromosome 5 was held in Manchester, UK on November 9--10, 1996 and was hosted by the University of Manchester. The major goals of the workshop were: (1) to collate the various genetic, cytogenetic and physical maps of human chromosome 5; (2) to integrate these maps and identify/correct discrepancies between them wherever possible; (3) to catalogue the sequence-ready contigs of the chromosome; (4) to co-ordinate the various sequencing efforts to avoid future duplication; (5) to establish the first (to the author`s knowledge) web site for the human chromosome 5 community which contains the above information in a readily accessible form.

  4. Human oocyte chromosome analysis: complicated cases and major pitfalls

    Indian Academy of Sciences (India)

    Bernd Rosenbusch; Michael Schneider; Hans Wilhelm Michelmann

    2008-08-01

    Human oocytes that remained unfertilized in programmes of assisted reproduction have been analysed cytogenetically for more than 20 years to assess the incidence of aneuploidy in female gametes. However, the results obtained so far are not indisputable as a consequence of difficulties in evaluating oocyte chromosome preparations. Because of the lack of guidelines, we decided to summarize for the first time, the possible pitfalls in human oocyte chromosome analysis. Therefore, we screened the material from our previous studies and compiled representative, complicated cases with recommendations for their cytogenetic classification. We point out that maturity and size of the oocyte are important parameters and that fixation artefacts, as well as the particular structure of oocyte chromosomes, may predispose one to misinterpretations. Moreover, phenomena related to oocyte activation and fertilization are illustrated and explained. This compilation may help to avoid major problems in future studies and contribute to a more precise, and uniform assessment of human oocyte chromosomes.

  5. Spread of X-chromosome inactivation into chromosome 15 is associated with Prader-Willi syndrome phenotype in a boy with a t(X;15)(p21.1;q11.2) translocation.

    Science.gov (United States)

    Sakazume, Satoru; Ohashi, Hirofumi; Sasaki, Yuki; Harada, Naoki; Nakanishi, Katsumi; Sato, Hidenori; Emi, Mitsuru; Endoh, Kazushi; Sohma, Ryoichi; Kido, Yasuhiro; Nagai, Toshiro; Kubota, Takeo

    2012-01-01

    X-chromosome inactivation (XCI) is an essential mechanism in females that compensates for the genome imbalance between females and males. It is known that XCI can spread into an autosome of patients with X;autosome translocations. The subject was a 5-year-old boy with Prader-Willi syndrome (PWS)-like features including hypotonia, hypo-genitalism, hypo-pigmentation, and developmental delay. G-banding, fluorescent in situ hybridization, BrdU-incorporated replication, human androgen receptor gene locus assay, SNP microarrays, ChIP-on-chip assay, bisulfite sequencing, and real-time RT-PCR were performed. Cytogenetic analyses revealed that the karyotype was 46,XY,der(X)t(X;15)(p21.1;q11.2),-15. In the derivative chromosome, the X and half of the chromosome 15 segments showed late replication. The X segment was maternal, and the chromosome 15 region was paternal, indicating its post-zygotic origin. The two chromosome 15s had a biparental origin. The DNA methylation level was relatively high in the region proximal from the breakpoint, and the level decreased toward the middle of the chromosome 15 region; however, scattered areas of hypermethylation were found in the distal region. The promoter regions of the imprinted SNRPN and the non-imprinted OCA2 genes were completely and half methylated, respectively. However, no methylation was found in the adjacent imprinted gene UBE3A, which contained a lower density of LINE1 repeats. Our findings suggest that XCI spread into the paternal chromosome 15 led to the aberrant hypermethylation of SNRPN and OCA2 and their decreased expression, which contributes to the PWS-like features and hypo-pigmentation of the patient. To our knowledge, this is the first chromosome-wide methylation study in which the DNA methylation level is demonstrated in an autosome subject to XCI.

  6. The Divergence of Neandertal and Modern Human Y Chromosomes.

    Science.gov (United States)

    Mendez, Fernando L; Poznik, G David; Castellano, Sergi; Bustamante, Carlos D

    2016-04-07

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes-including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447-806 kya). This is ∼2.1 (95% CI: 1.7-2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups.

  7. Nanodissection of human chromosomes with near-infrared femtosecond laser pulses.

    Science.gov (United States)

    König, K; Riemann, I; Fritzsche, W

    2001-06-01

    Near-infrared laser pulses of a compact 80-MHz femtosecond laser source at 800 nm, a mean power of 15-100 mW, 170-fs pulse width, and millisecond beam dwell times at the target have been used for multiphoton-mediated nanoprocessing of human chromosomes. By focusing of the laser beam with high-numerical-aperture objectives of a scanning microscope to diffraction-limited spots and with light intensities of terawatts per cubic centimeter, precise submicrometer holes and cuts in human chromosomes have been processed by single-point exposure and line scans. A minimum FWHM cut size of ~100 nm during a partial dissection of chromosome 1, which is below the diffraction-limited spot size, and a minimum material removal of ~0.003mum (3) were determined by a scanning-force microscope. The plasma-induced ablated material corresponds to ~1/400 of the chromosome 1 volume and to ~65x10(3) base pairs of chromosomal DNA. A complete dissection could be performed with FWHM cut sizes below 200 nm. High-repetition-frequency femtosecond lasers at low mean power in combination with high-numerical-aperture focusing optics appear therefore as appropriate noncontact tools for nanoprocessing of bulk and (or) surfaces of transparent materials such as chromosomes. In particular, the noninvasive inactivation of certain genomic regions on single chromosomes within living cells becomes possible.

  8. Cryptic mosaicism involving a second chromosome X in patients with Turner syndrome

    Directory of Open Access Journals (Sweden)

    A. Araújo

    2008-05-01

    Full Text Available The high abortion rate of 45,X embryos indicates that patients with Turner syndrome and 45,X karyotype could be mosaics, in at least one phase of embryo development or cellular lineage, due to the need for the other sex chromosome presence for conceptus to be compatible with life. In cases of structural chromosomal aberrations or hidden mosaicism, conventional cytogenetic techniques can be ineffective and molecular investigation is indicated. Two hundred and fifty patients with Turner syndrome stigmata were studied and 36 who had female genitalia and had been cytogenetically diagnosed as having "pure" 45,X karyotype were selected after 100 metaphases were analyzed in order to exclude mosaicism and the presence of genomic Y-specific sequences (SRY, TSPY, and DAZ was excluded by PCR. Genomic DNA was extracted from peripheral blood and screened by the human androgen receptor (HUMARA assay. The HUMARA gene has a polymorphic CAG repeat and, in the presence of a second chromosome with a different HUMARA allele, a second band will be amplified by PCR. Additionally, the CAG repeats contain two methylation-sensitive HpaII enzyme restriction sites, which can be used to verify skewed inactivation. Twenty-five percent (9/36 of the cases showed a cryptic mosaicism involving a second X and approximately 14% (5/36, or 55% (5/9 of the patients with cryptic mosaicism, also presented skewed inactivation. The laboratory identification of the second X chromosome and its inactivation pattern are important for the clinical management (hormone replacement therapy, and inclusion in an oocyte donation program and prognostic counseling of patients with Turner syndrome.

  9. Caenorhabditis elegans histone methyltransferase MET-2 shields the male X chromosome from checkpoint machinery and mediates meiotic sex chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Paula M Checchi

    2011-09-01

    Full Text Available Meiosis is a specialized form of cellular division that results in the precise halving of the genome to produce gametes for sexual reproduction. Checkpoints function during meiosis to detect errors and subsequently to activate a signaling cascade that prevents the formation of aneuploid gametes. Indeed, asynapsis of a homologous chromosome pair elicits a checkpoint response that can in turn trigger germline apoptosis. In a heterogametic germ line, however, sex chromosomes proceed through meiosis with unsynapsed regions and are not recognized by checkpoint machinery. We conducted a directed RNAi screen in Caenorhabditis elegans to identify regulatory factors that prevent recognition of heteromorphic sex chromosomes as unpaired and uncovered a role for the SET domain histone H3 lysine 9 histone methyltransferase (HMTase MET-2 and two additional HMTases in shielding the male X from checkpoint machinery. We found that MET-2 also mediates the transcriptional silencing program of meiotic sex chromosome inactivation (MSCI but not meiotic silencing of unsynapsed chromatin (MSUC, suggesting that these processes are distinct. Further, MSCI and checkpoint shielding can be uncoupled, as double-strand breaks targeted to an unpaired, transcriptionally silenced extra-chromosomal array induce checkpoint activation in germ lines depleted for met-2. In summary, our data uncover a mechanism by which repressive chromatin architecture enables checkpoint proteins to distinguish between the partnerless male X chromosome and asynapsed chromosomes thereby shielding the lone X from inappropriate activation of an apoptotic program.

  10. Caenorhabditis elegans histone methyltransferase MET-2 shields the male X chromosome from checkpoint machinery and mediates meiotic sex chromosome inactivation.

    Science.gov (United States)

    Checchi, Paula M; Engebrecht, JoAnne

    2011-09-01

    Meiosis is a specialized form of cellular division that results in the precise halving of the genome to produce gametes for sexual reproduction. Checkpoints function during meiosis to detect errors and subsequently to activate a signaling cascade that prevents the formation of aneuploid gametes. Indeed, asynapsis of a homologous chromosome pair elicits a checkpoint response that can in turn trigger germline apoptosis. In a heterogametic germ line, however, sex chromosomes proceed through meiosis with unsynapsed regions and are not recognized by checkpoint machinery. We conducted a directed RNAi screen in Caenorhabditis elegans to identify regulatory factors that prevent recognition of heteromorphic sex chromosomes as unpaired and uncovered a role for the SET domain histone H3 lysine 9 histone methyltransferase (HMTase) MET-2 and two additional HMTases in shielding the male X from checkpoint machinery. We found that MET-2 also mediates the transcriptional silencing program of meiotic sex chromosome inactivation (MSCI) but not meiotic silencing of unsynapsed chromatin (MSUC), suggesting that these processes are distinct. Further, MSCI and checkpoint shielding can be uncoupled, as double-strand breaks targeted to an unpaired, transcriptionally silenced extra-chromosomal array induce checkpoint activation in germ lines depleted for met-2. In summary, our data uncover a mechanism by which repressive chromatin architecture enables checkpoint proteins to distinguish between the partnerless male X chromosome and asynapsed chromosomes thereby shielding the lone X from inappropriate activation of an apoptotic program.

  11. A region of euchromatin coincides with an extensive tandem repeat on the mouse (Mus musculus) inactive X chromosome.

    Science.gov (United States)

    Darrow, Emily M; Seberg, Andrew P; Das, Sunny; Figueroa, Debbie M; Sun, Zhuo; Moseley, Shawn C; Chadwick, Brian P

    2014-09-01

    Euchromatic features are largely absent from the human inactive X chromosome (Xi), with the exception of several large tandem repeats that can be detected as euchromatin bands at metaphase. Despite residing megabases apart, these tandem repeats make frequent inactive X-specific interactions. The mouse homologue has been reported for at least one of the tandem repeats, but whether the mouse Xi is also characterized by distinct bands of euchromatin remains unknown. We examined the mouse Xi for the presence of euchromatin bands by examining the pattern of histone H3 dimethylated at lysine 4 and detected two major signals. The first band resides in the subtelomeric region of band XF5 and may correspond to the pseudoautosomal region. The second band localizes to XE3 and coincides with an extensive complex repeat composed of a large tandem and inverted repeat segment as well as several large short interspersed nuclear element (SINE)-rich tandem repeats. Fluorescence in situ hybridization reveals that sequences with homology to the repeat region are scattered along the length of the Y chromosome. Immunofluorescence analysis of histone H3 trimethylated at lysine 9 on metaphase chromosomes indicates that the repeat region corresponds to a band of constitutive heterochromatin on the male X and female active X chromosomes, whereas the euchromatin signal appears to be female specific. These data suggest that the band of euchromatin observed at XE3 is unique to the mouse Xi, comparable to the chromatin arrangement of several large tandem repeats located on the human X chromosome.

  12. Evolutionarily different alphoid repeat DNA on homologous chromosomes in human and chimpanzee.

    OpenAIRE

    Jørgensen, A L; Laursen, H B; Jones, C; Bak, A L

    1992-01-01

    Centromeric alphoid DNA in primates represents a class of evolving repeat DNA. In humans, chromosomes 13 and 21 share one subfamily of alphoid DNA while chromosomes 14 and 22 share another subfamily. We show that similar pairwise homogenizations occur in the chimpanzee (Pan troglodytes), where chromosomes 14 and 22, homologous to human chromosomes 13 and 21, share one partially homogenized alphoid DNA subfamily and chromosomes 15 and 23, homologous to human chromosomes 14 and 22, share anothe...

  13. Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome

    Directory of Open Access Journals (Sweden)

    Nurminsky Dmitry I

    2011-05-01

    Full Text Available Abstract Background Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven. Results Microarray-based study and qRT-PCR analyses show that the dynamics of gene expression during testis development are very similar between X-linked and autosomal genes, with both showing transcriptional activation concomitant with meiosis. However, the genes showing at least ten-fold expression bias toward testis are significantly underrepresented on the X chromosome. Intriguingly, the genes with similar expression bias toward tissues other than testis, even those not apparently associated with reproduction, are also strongly underrepresented on the X. Bioinformatics analysis shows that while tissue-specific genes often bind silencing-associated factors in embryonic and cultured cells, this trend is less prominent for the X-linked genes. Conclusions Our data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila. Paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue-biased genes on this chromosome. Our analyses suggest that the activation/repression switch mechanisms that probably orchestrate the highly-biased expression of tissue-specific genes are generally not efficient on the X chromosome. This effect, probably caused by dosage compensation counteracting repression of the X-linked genes, may be the cause of the exodus of highly tissue-biased genes to the autosomes.

  14. The human chromosome. Electron microscopic observations on chromatin fiber organization.

    Science.gov (United States)

    Abuelo, J G; Moore, D E

    1969-04-01

    Human lymphocytes were grown in short-term tissue culture and were arrested in metaphase with Colcemid. Their chromosomes were prepared by the Langmuir trough-critical point drying technique and were examined under the electron microscope. In addition, some chromosomes were digested with trypsin, Pronase, or DNase. The chromosomes consist entirely of tightly packed, 240 +/- 50-A chromatin fibers. Trypsin and Pronase treatments induce relaxation of fiber packing and reveal certain underlying fiber arrangements. Furthermore, trypsin treatment demonstrates that the chromatin fiber has a 25-50 A trypsin-resistant core surrounded by a trypsin-sensitive sheath. DNase digestion suggests that this core contains DNA.

  15. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J; Han, C; Gordon, L A; Terry, A; Prabhakar, S; She, X; Xie, G; Hellsten, U; Chan, Y M; Altherr, M; Couronne, O; Aerts, A; Bajorek, E; Black, S; Blumer, H; Branscomb, E; Brown, N; Bruno, W J; Buckingham, J; Callen, D F; Campbell, C S; Campbell, M L; Campbell, E W; Caoile, C; Challacombe, J F; Chasteen, L A; Chertkov, O; Chi, H C; Christensen, M; Clark, L M; Cohn, J D; Denys, M; Detter, J C; Dickson, M; Dimitrijevic-Bussod, M; Escobar, J; Fawcett, J J; Flowers, D; Fotopulos, D; Glavina, T; Gomez, M; Gonzales, E; Goodstein, D; Goodwin, L A; Grady, D L; Grigoriev, I; Groza, M; Hammon, N; Hawkins, T; Haydu, L; Hildebrand, C E; Huang, W; Israni, S; Jett, J; Jewett, P B; Kadner, K; Kimball, H; Kobayashi, A; Krawczyk, M; Leyba, T; Longmire, J L; Lopez, F; Lou, Y; Lowry, S; Ludeman, T; Manohar, C F; Mark, G A; McMurray, K L; Meincke, L J; Morgan, J; Moyzis, R K; Mundt, M O; Munk, A C; Nandkeshwar, R D; Pitluck, S; Pollard, M; Predki, P; Parson-Quintana, B; Ramirez, L; Rash, S; Retterer, J; Ricke, D O; Robinson, D; Rodriguez, A; Salamov, A; Saunders, E H; Scott, D; Shough, T; Stallings, R L; Stalvey, M; Sutherland, R D; Tapia, R; Tesmer, J G; Thayer, N; Thompson, L S; Tice, H; Torney, D C; Tran-Gyamfi, M; Tsai, M; Ulanovsky, L E; Ustaszewska, A; Vo, N; White, P S; Williams, A L; Wills, P L; Wu, J; Wu, K; Yang, J; DeJong, P; Bruce, D; Doggett, N A; Deaven, L; Schmutz, J; Grimwood, J; Richardson, P; Rokhsar, D S; Eichler, E E; Gilna, P; Lucas, S M; Myers, R M; Rubin, E M; Pennacchio, L A

    2005-04-06

    Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes, and 3 RNA pseudogenes. These genes include metallothionein, cadherin, and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. While the segmental duplications of chromosome 16 are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events likely to have had an impact on the evolution of primates and human disease susceptibility.

  16. "Micro-deletions" of the human Y chromosome and their relationship with male infertility

    Institute of Scientific and Technical Information of China (English)

    Zheng Li; Christopher J Haines; Yibing Han

    2008-01-01

    The Y chromosome evolves from an autochromosome and accumulates male-related genes including sex-determining region of Y-chromosome (SRY) and several spermatogenesis-related genes.The human Y chromosome (60 Mb long) is largely composed of repeti-tive sequences that give it a heterochromatic appearance,and it consists of pseudoautosomal,euchromatic,and heterochromatic regions.Located on the two extremities of the Y chromosome,pseudoautosomal regions 1 and 2 (PAR1 and PAR2,2.6 Mb and 320 bp long,re-spectively) are homologs with the termini of the X chromosome.The euchromatic region and some of the repeat-rich heterochromatic parts of the Y chromosome are called "male-specific Y" (MSY),which occupy more than 95% of the whole Y chromosome.After evolu-tion,the Y chromosome becomes the smallest in size with the least number of genes but with the most number of copies of genes that are mostly spermatogenesis-related.The Y chromosome is characterized by highly repetitive sequences (including direct repeats,inverted repeats,and palindromes) and high polymorphism.Several gene rearrangements on the Y chromosome occur during evolution owing to its specific gene structure.The consequences of such rearrangements are not only loss but also gain of specific genes.One hundred and fifty three haplotypes have been discovered in the human Y chromosome.The structure of the Y chromosome in the GenBank belongs to haplotype R1.There are 220 genes (104 coding genes,111 pseudogenes,and 5 other uncategorized genes) according to the most recent count.The 104 coding genes encode a total of about 48 proteins/protein families (including putative proteins/protein families).Among them,16 gene products have been discovered in the azoospermia factor region (AZF) and are related to spermatogenesis.It has been dis-covered that one subset of gene rearrangements on the Y chromosome,"micro-deletions",is a major cause of male infertility in some populations.However,controversies exist about different Y

  17. In situ hybridization analysis of isodicentric X-chromosomes with short arm fusion

    DEFF Research Database (Denmark)

    Koch, J E; Kølvraa, S; Hertz, Jens Michael;

    1990-01-01

    We present here an alternative approach to the study of mosaic cell lines containing dicentric chromosomes. The approach is based on chromosome-specific non-radioactive in situ hybridization with centromere (alpha satellite DNA) probes. The hybridization analysis may be used as an alternative...... it for the analysis of two cases of isodicentric X-chromosomes. The approach is expected to be generally applicable, so that it may be applied to the scoring of other types of chromosomal mosaicism as well....

  18. AB048. X-chromosomal SNPs variation in populations of Russia

    Science.gov (United States)

    Stepanov, Vadim; Vagaitseva, Kseniya; Kharkov, Vladimir

    2015-01-01

    X-chromosome markers are informative tool for studying a genetic diversity in human populations and have become a useful in DNA identification when certain complex kinship cases need to be unravelled. In this work we present population genetic data on X-chromosome-wide SNPs in North Eurasian populations and report XSNP multiplex system for forensic genetics. A total of 2,867 X-chromosomal SNPs were genotyped in 12 populations using Illumina microarray platform. Twelve populations under study (Komi, Mordva, Russians, Kirghiz, Kazakh, Uzbek, Buryat, Yakut, Evenk, Tuva, Khanty, Ket) represent various language families and geographic regions of North Eurasia (Eastern Europe, Central Asia, Siberia and North Asia). North Eurasian populations are highly genetically differentiated with respect to XSNPs allele frequencies. Average level of genetic differentiation (Gst) for 12 populations is 6.03% and ranged from 1.05% to 30.05% per individual SNP. Principal component analysis of allele frequencies demonstrated geographic pattern of population clustering, as well as longitudinal gradient in genetic diversity. The 66 XSNPs characterized by high expected heterozygosity and linkage equilibrium in populations under study were selected for constructing a panel for forensic genetic applications. Average heterozygosity of selected SNPs varied from 0.4925 to 0.4958. Overall values of power of discrimination for males and females (PDm and PDf) obtained with these XSNPs set are several magnitude higher than those for standard forensic STR panels. Protocol for multiplex amplification of 66 XSNPs in two separate multiplex PCR reactions and MALDI-TOF mass spectrometry genotyping was developed. North Eurasian populations demonstrate high level of genetic diversity and differentiation for X-chromosome-wide SNPs. Based on obtained population genetic data, highly informative multiplex XSNPs panel for forensic genetics was developed.

  19. The Divergence of Neandertal and Modern Human Y Chromosomes

    Science.gov (United States)

    Mendez, Fernando L.; Poznik, G. David; Castellano, Sergi; Bustamante, Carlos D.

    2016-01-01

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes—including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447–806 kya). This is ∼2.1 (95% CI: 1.7–2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. PMID:27058445

  20. Rapid de novo evolution of X chromosome dosage compensation in Silene latifolia, a plant with young sex chromosomes.

    Science.gov (United States)

    Muyle, Aline; Zemp, Niklaus; Deschamps, Clothilde; Mousset, Sylvain; Widmer, Alex; Marais, Gabriel A B

    2012-01-01

    Silene latifolia is a dioecious plant with heteromorphic sex chromosomes that have originated only ∼10 million years ago and is a promising model organism to study sex chromosome evolution in plants. Previous work suggests that S. latifolia XY chromosomes have gradually stopped recombining and the Y chromosome is undergoing degeneration as in animal sex chromosomes. However, this work has been limited by the paucity of sex-linked genes available. Here, we used 35 Gb of RNA-seq data from multiple males (XY) and females (XX) of an S. latifolia inbred line to detect sex-linked SNPs and identified more than 1,700 sex-linked contigs (with X-linked and Y-linked alleles). Analyses using known sex-linked and autosomal genes, together with simulations indicate that these newly identified sex-linked contigs are reliable. Using read numbers, we then estimated expression levels of X-linked and Y-linked alleles in males and found an overall trend of reduced expression of Y-linked alleles, consistent with a widespread ongoing degeneration of the S. latifolia Y chromosome. By comparing expression intensities of X-linked alleles in males and females, we found that X-linked allele expression increases as Y-linked allele expression decreases in males, which makes expression of sex-linked contigs similar in both sexes. This phenomenon is known as dosage compensation and has so far only been observed in evolutionary old animal sex chromosome systems. Our results suggest that dosage compensation has evolved in plants and that it can quickly evolve de novo after the origin of sex chromosomes.

  1. X microchromosome with additional chromosome anomalies found in Ullrich-Turner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Wydner, K.L.; Sciorra, L.J. [Univ. of Medicine and Dentistry, New Brunswick, NJ (United States); Singer-Granick, C. [Hahnemann Univ., Philadelphia, PA (United States)] [and others

    1995-03-27

    Using standard cytogenetic methods coupled with molecular techniques, the following karyotype mos 45,X/46,XXq+/46,X-mar(X)/47,XXq+, +mar(X), was identified in a patient with Ullrich-Turner syndrome (UTS). High-resolution banding (n = 650) of the metaphase chromosomes yielded a breakpoint at q28 on the Xq+ rearranged chromosome. FISH was used to determine the presence of Y-containing DNA in the Xq+ and the mar(X) chromosomes. The following molecular probes were used: DYZ1, DYZ3, and spectrum orange WCP Y. The lack of specific hybridization of these probes was interpreted as a low risk of gonadoblastoma in this patient. Using X-chromosome- and centromere-specific probes, FISH demonstrated the presence of hybridizing material on both rearranged chromosomes, the Xq+ and mar(X). Finally, we determined that the mar(X) and Xq+ chromosomes contained telomeres in the absence of any interstitial telomeric hybridizing material. A micro-X chromosome is present in this UTS patient. Delineation of events leading toward the mechanisms responsible for the multiple DNA rearrangements required to generate the micro-X and Xq+ chromosomes awaits future studies. 25 refs., 6 figs., 1 tab.

  2. The WSTF-ISWI chromatin remodeling complex transiently associates with the human inactive X chromosome during late S-phase prior to BRCA1 and γ-H2AX.

    Directory of Open Access Journals (Sweden)

    Ashley E Culver-Cochran

    Full Text Available Replicating the genome prior to each somatic cell division not only requires precise duplication of the genetic information, but also accurately reestablishing the epigenetic signatures that instruct how the genetic material is to be interpreted in the daughter cells. The mammalian inactive X chromosome (Xi, which is faithfully inherited in a silent state in each daughter cell, provides an excellent model of epigenetic regulation. While much is known about the early stages of X chromosome inactivation, much less is understood with regards to retaining the Xi chromatin through somatic cell division. Here we report that the WSTF-ISWI chromatin remodeling complex (WICH associates with the Xi during late S-phase as the Xi DNA is replicated. Elevated levels of WICH at the Xi is restricted to late S-phase and appears before BRCA1 and γ-H2A.X. The sequential appearance of WICH and BRCA1/γ-H2A.X implicate each as performing important but distinct roles in the maturation and maintenance of heterochromatin at the Xi.

  3. Alteration of chromosome behavior and synchronization of parental chromosomes after successive generations in Brassica napus x Orychophragmus violaceus hybrids.

    Science.gov (United States)

    Zhao, Zhigang; Ma, Ni; Li, Zaiyun

    2007-02-01

    In an earlier study, the progenies of intergeneric hybrids Brassica napus (2n = 38) x Orychophragmus violaceus (2n = 24) were investigated in successive generations (F1-F4) for the cytological phenomenon of parental genome separation during mitotic and meiotic division. In the present study, inbred lines (F5-F8) derived from 1 such hybrid were characterized for morphology, chromosome pairing behaviour, and genome composition. One F5 plant (2n = 31) with slightly yellow petals and 12:19 and 15:16 segregation ratios in its pollen mother cells (PMCs) produced F6 plants with distinct morphological characteristics and wide variations in fertility and chromosome numbers (2n = 25-38). F7 and F8 lines with distinctive morphology and wide ranges in chromsome numbers were established. In PMCs of F7 plants from 4 F6 plants, 0-12 labelled chromosomes from O. violaceus, which predominantly appeared as bivalents, were identified by genomic in situ hybridization. They behaved synchronously with B. napus chromosomes during meiotic division. The results provide molecular cytogenetic evidence of the inclusion of O. violaceus chromosomes in the original hybrids and the cytology in the hybrids documented earlier. They also show that chromosome behaviour was altered and the parental chromosomes became synchronized after successive generations.

  4. Engineering targeted chromosomal amplifications in human breast epithelial cells.

    Science.gov (United States)

    Springer, Simeon; Yi, Kyung H; Park, Jeenah; Rajpurohit, Anandita; Price, Amanda J; Lauring, Josh

    2015-07-01

    Chromosomal amplifications are among the most common genetic alterations found in human cancers. However, experimental systems to study the processes that lead to specific, recurrent amplification events in human cancers are lacking. Moreover, some common amplifications, such as that at 8p11-12 in breast cancer, harbor multiple driver oncogenes, which are poorly modeled by conventional overexpression approaches. We sought to develop an experimental system to model recurrent chromosomal amplification events in human cell lines. Our strategy is to use homologous-recombination-mediated gene targeting to deliver a dominantly selectable, amplifiable marker to a specified chromosomal location. We used adeno-associated virus vectors to target human MCF-7 breast cancer cells at the ZNF703 locus, in the recurrent 8p11-12 amplicon, using the E. coli inosine monophosphate dehydrogenase (IMPDH) enzyme as a marker. We applied selective pressure using IMPDH inhibitors. Surviving clones were found to have increased copy number of ZNF703 (average 2.5-fold increase) by droplet digital PCR and FISH. Genome-wide array comparative genomic hybridization confirmed that amplifications had occurred on the short arm of chromosome 8, without changes on 8q or other chromosomes. Patterns of amplification were variable and similar to those seen in primary human breast cancers, including "sawtooth" patterns, distal copy number loss, and large continuous regions of copy number gain. This system will allow study of the cis- and trans-acting factors that are permissive for chromosomal amplification and provide a model to analyze oncogene cooperativity in amplifications harboring multiple candidate driver genes.

  5. Adaptive evolution of genes duplicated from the Drosophila pseudoobscura neo-X chromosome.

    Science.gov (United States)

    Meisel, Richard P; Hilldorfer, Benedict B; Koch, Jessica L; Lockton, Steven; Schaeffer, Stephen W

    2010-08-01

    Drosophila X chromosomes are disproportionate sources of duplicated genes, and these duplications are usually the result of retrotransposition of X-linked genes to the autosomes. The excess duplication is thought to be driven by natural selection for two reasons: X chromosomes are inactivated during spermatogenesis, and the derived copies of retroposed duplications tend to be testis expressed. Therefore, autosomal derived copies of retroposed genes provide a mechanism for their X-linked paralogs to "escape" X inactivation. Once these duplications have fixed, they may then be selected for male-specific functions. Throughout the evolution of the Drosophila genus, autosomes have fused with X chromosomes along multiple lineages giving rise to neo-X chromosomes. There has also been excess duplication from the two independent neo-X chromosomes that have been examined--one that occurred prior to the common ancestor of the willistoni species group and another that occurred along the lineage leading to Drosophila pseudoobscura. To determine what role natural selection plays in the evolution of genes duplicated from the D. pseudoobscura neo-X chromosome, we analyzed DNA sequence divergence between paralogs, polymorphism within each copy, and the expression profiles of these duplicated genes. We found that the derived copies of all duplicated genes have elevated nonsynonymous polymorphism, suggesting that they are under relaxed selective constraints. The derived copies also tend to have testis- or male-biased expression profiles regardless of their chromosome of origin. Genes duplicated from the neo-X chromosome appear to be under less constraints than those duplicated from other chromosome arms. We also find more evidence for historical adaptive evolution in genes duplicated from the neo-X chromosome, suggesting that they are under a unique selection regime in which elevated nonsynonymous polymorphism provides a large reservoir of functional variants, some of which are fixed

  6. Assignment of the protein kinase C [delta] polypeptide gene (PRKCD) to human chromosome 3 and mouse chromosome 14

    Energy Technology Data Exchange (ETDEWEB)

    Huppi, K.; Siwarski, D.; Goodnight, J.; Mischak, H. (Molecular Genetics Section Lab. of Genetics, Bethesda, MD (United States))

    1994-01-01

    The protein kinase C (pkc) enzymes are a family of serine-threonine protein kinases, each encoded by a distinct and separate gene. The chromosomal locations of human PRKCA, PRKCB, and PRKCG have previously been established. The authors now report that PRKCD, a novel member of the pkc gene family, maps to human chromosome 3. The chromosomal location of Pkcd has also been determined in the mouse by analysis of recombination frequency in an interspecific panel of back-cross mice. They find that the locus encoding pkcd resides proximal to nucleoside phosphorylase (Np-2) and Tcra on mouse chromosome 14 in a region syntenic with human 3p. 9 refs., 2 tabs.

  7. Assignment of the protein kinase C delta polypeptide gene (PRKCD) to human chromosome 3 and mouse chromosome 14.

    Science.gov (United States)

    Huppi, K; Siwarski, D; Goodnight, J; Mischak, H

    1994-01-01

    The protein kinase C (pkc) enzymes are a family of serine-threonine protein kinases, each encoded by a distinct and separate gene. The chromosomal locations of human PRKCA, PRKCB, and PRKCG have previously been established. We now report that PRKCD, a novel member of the pkc gene family, maps to human chromosome 3. The chromosomal location of Pkcd has also been determined in the mouse by analysis of recombination frequency in an interspecific panel of backcross mice. We find that the locus encoding pkcd resides proximal to nucleoside phosphorylase (Np-2) and Tcra on mouse chromosome 14 in a region syntenic with human 3p.

  8. Little evidence for demasculinization of the Drosophila X chromosome among genes expressed in the male germline.

    Science.gov (United States)

    Meiklejohn, Colin D; Presgraves, Daven C

    2012-01-01

    Male-biased genes-those expressed at higher levels in males than in females-are underrepresented on the X chromosome of Drosophila melanogaster. Several evolutionary models have been posited to explain this so-called demasculinization of the X. Here, we show that the apparent paucity of male-biased genes on the X chromosome is attributable to global X-autosome differences in expression in Drosophila testes, owing to a lack of sex chromosome dosage compensation in the male germline, but not to any difference in the density of testis-specific or testis-biased genes on the X chromosome. First, using genome-wide gene expression data from 20 tissues, we find no evidence that genes with testis-specific expression are underrepresented on the X chromosome. Second, using contrasts in gene expression profiles among pairs of tissues, we recover a statistical underrepresentation of testis-biased genes on the X but find that the pattern largely disappears once we account for the lack of dosage compensation in the Drosophila male germline. Third, we find that computationally "demasculinizing" the autosomes is not sufficient to produce an expression profile similar to that of the X chromosome in the testes. Our findings thus show that the lack of sex chromosome dosage compensation in Drosophila testes can explain the apparent signal of demasculinization on the X, whereas evolutionary demasculinization of the X cannot explain its overall reduced expression in the testes.

  9. Xist RNA is confined to the nuclear territory of the silenced X chromosome throughout the cell cycle

    NARCIS (Netherlands)

    Jonkers, Iris; Monkhorst, Kim; Rentmeester, Eveline; Grootegoed, J Anton; Grosveld, Frank; Gribnau, Joost

    2008-01-01

    In mammalian female cells, one X chromosome is inactivated to prevent a dose difference in the expression of X-encoded proteins between males and females. Xist RNA, required for X chromosome inactivation, is transcribed from the future inactivated X chromosome (Xi), where it spreads in cis, to initi

  10. Establishment of X chromosome inactivation and epigenomic features of the inactive X depend on cellular contexts.

    Science.gov (United States)

    Vallot, Céline; Ouimette, Jean-François; Rougeulle, Claire

    2016-09-01

    X chromosome inactivation (XCI) is an essential epigenetic process that ensures X-linked gene dosage equilibrium between sexes in mammals. XCI is dynamically regulated during development in a manner that is intimately linked to differentiation. Numerous studies, which we review here, have explored the dynamics of X inactivation and reactivation in the context of development, differentiation and diseases, and the phenotypic and molecular link between the inactive status, and the cellular context. Here, we also assess whether XCI is a uniform mechanism in mammals by analyzing epigenetic signatures of the inactive X (Xi) in different species and cellular contexts. It appears that the timing of XCI and the epigenetic signature of the inactive X greatly vary between species. Surprisingly, even within a given species, various Xi configurations are found across cellular states. We discuss possible mechanisms underlying these variations, and how they might influence the fate of the Xi.

  11. HIM-8 binds to the X chromosome pairing center and mediateschromosome-specific meiotic synapsis

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Carolyn M.; Wong, Chihunt; Bhalla, Needhi; Carlton,Peter M.; Weiser, Pinky; Meneely, Philip M.; Dernburg, Abby F.

    2005-06-05

    The him-8 gene is essential for proper meiotic segregationof the X chromosomes in C. elegans. Herewe show that loss of him-8function causes profound X-chromosome-specific defects in homolog pairingand synapsis.him-8 encodes a C2H2 zinc finger protein that is expressedduring meiosis andconcentrates at a site on the X chromosome known as themeiotic Pairing Center (PC). A role for HIM-8 in PC function is supportedby genetic interactions between PC lesions and him-8 mutations.HIM-8-bound chromosome sites associate with the nuclear envelope (NE)throughout meiotic prophase. Surprisingly, a point mutation in him-8 thatretains both chromosome binding and NE localization fails to stabilizepairing or promote synapsis. These observations indicate thatstabilization of homolog pairing is an active process in which thetethering of chromosome sites to the NE may be necessary but is notsufficient.

  12. The DNA Sequence And Comparative Analysis Of Human Chromosome5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, Steve; Gordon, Laurie A.; Scott, Duncan; Xie,Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black,Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan,Yee Man; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner,Kristen; Kimball, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou,Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar,Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Retterer, James; Rodriguez, Alex; Rogers,Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang,Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, SusanM.; Myers, Richard M.; Rubin, Edward M.

    2004-08-01

    Chromosome 5 is one of the largest human chromosomes and contains numerous intrachromosomal duplications, yet it has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding conservation with non-mammalian vertebrates, suggesting that they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-coding genes including the protocadherin and interleukin gene families. We also completely sequenced versions of the large chromosome-5-specific internal duplications. These duplications are very recent evolutionary events and probably have a mechanistic role in human physiological variation, as deletions in these regions are the cause of debilitating disorders including spinal muscular atrophy.

  13. Positioning of human chromosomes in murine cell hybrids according to synteny.

    Science.gov (United States)

    Meaburn, Karen J; Newbold, Robert F; Bridger, Joanna M

    2008-12-01

    Chromosomes occupy non-random spatial positions in interphase nuclei. It remains unclear what orchestrates this high level of organisation. To determine how the nuclear environment influences the spatial positioning of chromosomes, we utilised a panel of stable mouse hybrid cell lines carrying a single, intact human chromosome. Eleven of 22 human chromosomes revealed an alternative location in hybrid nuclei compared to that of human fibroblasts, with the majority becoming more internally localised. Human chromosomes in mouse nuclei position according to neither their gene density nor size, but rather the position of human chromosomes in hybrid nuclei appears to mimic that of syntenic mouse chromosomes. These results suggest that chromosomes adopt the behaviour of their host species chromosomes and that the nuclear environment is an important determinant of the interphase positioning of chromosomes.

  14. Culture of human oocytes with granulocyte-macrophage colony-stimulating factor has no effect on embryonic chromosomal constitution

    DEFF Research Database (Denmark)

    Agerholm, Inge; Loft, Anne; Hald, Finn

    2010-01-01

    women donating 86 oocytes. The primary endpoint was to investigate the chromosomal constitution of human embryos (fluorescence in-situ hybridization analysis for chromosomes 13, 16, 18, 21, 22, X and Y) cultured with or without GM-CSF. The secondary endpoints were number of top-quality embryos (TQE......) and number of normally developed embryos evaluated morphologically on day 3. The cytogenetic analyses demonstrated non-inferiority and therefore the chromosomal constitution of human embryos cultured in vitro in the presence of 2 ng/ml GM-CSF was no worse than the control group cultured without GM-CSF. In...

  15. Comprehensive evaluation of the contribution of X chromosome genes to platinum sensitivity.

    Science.gov (United States)

    Gamazon, Eric R; Im, Hae Kyung; O'Donnell, Peter H; Ziliak, Dana; Stark, Amy L; Cox, Nancy J; Dolan, M Eileen; Huang, Rong Stephanie

    2011-03-01

    Using a genome-wide gene expression data set generated from Affymetrix GeneChip Human Exon 1.0ST array, we comprehensively surveyed the role of 322 X chromosome gene expression traits on cellular sensitivity to cisplatin and carboplatin. We identified 31 and 17 X chromosome genes whose expression levels are significantly correlated (after multiple testing correction) with sensitivity to carboplatin and cisplatin, respectively, in the combined HapMap CEU (Utah residents with ancestry from northern and western Europe) and YRI (Yoruba in Ibahan, Nigeria) populations (false discovery rate, FDR gene expression quantification method, the Illumina Sentrix Human-6 Expression BeadChip, measured on the same HapMap cell lines, we found that 4 and 2 of these genes are significantly associated with carboplatin and cisplatin sensitivity, respectively, in both analyses. Two genes, CTPS2 and DLG3, were identified by both genome-wide gene expression analyses as correlated with cellular sensitivity to both platinating agents. The expression of DLG3 gene was also found to correlate with cellular sensitivity to platinating agents in NCI-60 cancer cell lines. In addition, we evaluated whether the expression of X chromosome genes contributed to the observed differences in sensitivity to the platinums between CEU and YRI-derived cell lines. Of the 34 distinct genes significantly correlated with either carboplatin or cisplatin sensitivity, 14 are differentially expressed (defined as P genes play a role in cellular sensitivity to platinating agents and differences in the expression level of these genes are an important source of variation that should be included in comprehensive pharmacogenomic studies.

  16. Does the human X contain a third evolutionary block? Origin of genes on human Xp11 and Xq28.

    Science.gov (United States)

    Delbridge, Margaret L; Patel, Hardip R; Waters, Paul D; McMillan, Daniel A; Marshall Graves, Jennifer A

    2009-08-01

    Comparative gene mapping of human X-borne genes in marsupials defined an ancient conserved region and a recently added region of the eutherian X, and the separate evolutionary origins of these regions was confirmed by their locations on chicken chromosomes 4p and 1q, respectively. However, two groups of genes, from the pericentric region of the short arm of the human X (at Xp11) and a large group of genes from human Xq28, were thought to be part of a third evolutionary block, being located in a single region in fish, but mapping to chicken chromosomes other than 4p and 1q. We tested this hypothesis by comparative mapping of genes in these regions. Our gene mapping results show that human Xp11 genes are located on the marsupial X chromosome and platypus chromosome 6, indicating that the Xp11 region was part of original therian X chromosome. We investigated the evolutionary origin of genes from human Xp11 and Xq28, finding that chicken paralogs of human Xp11 and Xq28 genes had been misidentified as orthologs, and their true orthologs are represented in the chicken EST database, but not in the current chicken genome assembly. This completely undermines the evidence supporting a separate evolutionary origin for this region of the human X chromosome, and we conclude, instead, that it was part of the ancient autosome, which became the conserved region of the therian X chromosome 166 million years ago.

  17. Chromosomal and Genetic Analysis of a Human Lung Adenocarcinoma Cell Line OM

    Institute of Scientific and Technical Information of China (English)

    Yong-Wu Li; Lin Bai; Lyu-Xia Dai; Xu He; Xian-Ping Zhou

    2016-01-01

    Background: Lung cancer has become the leading cause of death in many regions.Carcinogenesis is caused by the stepwise accumulation of genetic and chromosomal changes.The aim of this study was to investigate the chromosome and gene alterations in the human lung adenocarcinoma cell line OM.Methods: We used Giemsa banding and multiplex fluorescence in situ hybridization focusing on the human lung adenocarcinoma cell line OM to analyze its chromosome alterations.In addition, the gains and losses in the specific chromosome regions were identified by comparative genomic hybridization (CGH) and the amplifications of cancer-related genes were also detected by polymerase chain reaction (PCR).Results: We identified a large number of chromosomal numerical alterations on all chromosomes except chromosome X and 19.Chromosome 10 is the most frequently involved in translocations with six different interchromosomal translocations.CGH revealed the gains on chromosome regions of 3q25.3-28, 5p13, 12q22-23.24, and the losses on 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p 13.31-13.33 and 17p 13.1-13.3.And PCR showed the amplification of genes: Membrane metalloendopeptidase (MME), sucrase-isomaltase (SI), butyrylcholinesterase (BCHE), and kininogen (KNG).Conclusions: The lung adenocarcinoma cell line OM exhibited multiple complex karyotypes, and chromosome 10 was frequently involved in chromosomal translocation, which may play key roles in tumorigenesis.We speculated that the oncogenes may be located at 3q25.3-28, 5p13, 12q22-23.24, while tumor suppressor genes may exist in 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p 13.31-13.33, and 17p 13.1-13.3.Moreover, at least four genes (MME, SI, BCHE, and KNG) may be involved in the human lung adenocarcinoma cell line OM.

  18. Enlightening the contribution of the dark matter to the X chromosome inactivation process in mammals.

    Science.gov (United States)

    Casanova, Miguel; Liyakat Ali, Tharvesh Moideen; Rougeulle, Claire

    2016-08-01

    X-chromosome inactivation (XCI) in mammals represents an exceptional example of transcriptional co-regulation occurring at the level of an entire chromosome. XCI is considered as a means to compensate for gene dosage imbalance between sexes, yet the largest part of the chromosome is composed of repeated elements of different nature and origins. Here we consider XCI from a repeat point of view, interrogating the mechanisms for inactivating X chromosome-derived repeated sequences and discussing the contribution of repetitive elements to the silencing process itself and to its evolution.

  19. [Developing a physical map of human chromosome 22]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M.I.

    1991-12-31

    We have developed bacterial F-factor based systems for cloning large fragments of human DNA in E. coli. In addition to large size, these systems are capable of maintaining human DNA with a high degree of stability. The cosmid size clones are called Fosmids and the clones containing larger inserts (100--200 kb) are called bacterial artificial chromosomes (BACs). The ultimate test of the effectiveness of cloning and mapping technology is the degree to which it can be efficiently applied to solve complex mapping problems. We, therefore, plan to use the large fragment cloning procedure as well as a variety of other approaches to generate a complete map of overlapping clones corresponding to human chromosome 22. We have thus far prepared two human chromosome 22 specific Fosmid libraries and we are in the process of constructing a chromosome 22 specific BAC library composed of fragments larger than 100 kb. We will further optimize the technology so that libraries of fragments larger than 200 kb can be readily prepared.

  20. (Developing a physical map of human chromosome 22)

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M.I.

    1991-01-01

    We have developed bacterial F-factor based systems for cloning large fragments of human DNA in E. coli. In addition to large size, these systems are capable of maintaining human DNA with a high degree of stability. The cosmid size clones are called Fosmids and the clones containing larger inserts (100--200 kb) are called bacterial artificial chromosomes (BACs). The ultimate test of the effectiveness of cloning and mapping technology is the degree to which it can be efficiently applied to solve complex mapping problems. We, therefore, plan to use the large fragment cloning procedure as well as a variety of other approaches to generate a complete map of overlapping clones corresponding to human chromosome 22. We have thus far prepared two human chromosome 22 specific Fosmid libraries and we are in the process of constructing a chromosome 22 specific BAC library composed of fragments larger than 100 kb. We will further optimize the technology so that libraries of fragments larger than 200 kb can be readily prepared.

  1. Repeat Sequences and Base Correlations in Human Y Chromosome Palindromes

    Institute of Scientific and Technical Information of China (English)

    Neng-zhi Jin; Zi-xian Liu; Yan-jiao Qi; Wen-yuan Qiu

    2009-01-01

    On the basis of information theory and statistical methods, we use mutual information, n-tuple entropy and conditional entropy, combined with biological characteristics, to analyze the long range correlation and short range correlation in human Y chromosome palindromes. The magnitude distribution of the long range correlation which can be reflected by the mutual information is P5>P5a>P5b (P5a and P5b are the sequences that replace solely Alu repeats and all interspersed repeats with random uncorrelated sequences in human Y chromosome palindrome 5, respectively); and the magnitude distribution of the short range correlation which can be reflected by the n-tuple entropy and the conditional entropy is P5>P5a>P5b>random uncorrelated sequence. In other words, when the Alu repeats and all interspersed repeats replace with random uncorrelated sequence, the long range and short range correlation decrease gradually. However, the random uncorrelated sequence has no correlation. This research indicates that more repeat sequences result in stronger correlation between bases in human Y chromosome. The analyses may be helpful to understand the special structures of human Y chromosome palindromes profoundly.

  2. Physical mapping of the elephant X chromosome: conservation of gene order over 105 million years.

    Science.gov (United States)

    Delgado, Claudia Leticia Rodríguez; Waters, Paul D; Gilbert, Clément; Robinson, Terence J; Graves, Jennifer A Marshall

    2009-01-01

    All therian mammals (eutherians and marsupials) have an XX female/XY male sex chromosome system or some variant of it. The X and Y evolved from a homologous pair of autosomes over the 166 million years since therian mammals diverged from monotremes. Comparing the sex chromosomes of eutherians and marsupials defined an ancient X conserved region that is shared between species of these mammalian clades. However, the eutherian X (and the Y) was augmented by a recent addition (XAR) that is autosomal in marsupials. XAR is part of the X in primates, rodents, and artiodactyls (which belong to the eutherian clade Boreoeutheria), but it is uncertain whether XAR is part of the X chromosome in more distantly related eutherian mammals. Here we report on the gene content and order on the X of the elephant (Loxodonta africana)-a representative of Afrotheria, a basal endemic clade of African mammals-and compare these findings to those of other documented eutherian species. A total of 17 genes were mapped to the elephant X chromosome. Our results support the hypothesis that the eutherian X and Y chromosomes were augmented by the addition of autosomal material prior to eutherian radiation. Not only does the elephant X bear the same suite of genes as other eutherian X chromosomes, but gene order appears to have been maintained across 105 million years of evolution, perhaps reflecting strong constraints posed by the eutherian X inactivation system.

  3. Chromosome painting reveals asynaptic full alignment of homologs and HIM-8-dependent remodeling of X chromosome territories during Caenorhabditis elegans meiosis.

    Directory of Open Access Journals (Sweden)

    Kentaro Nabeshima

    2011-08-01

    Full Text Available During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs with mobile patches of the nuclear envelope (NE-spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners.

  4. Characterization of human PGD blastocysts with unbalanced chromosomal translocations and human embryonic stem cell line derivation?

    Science.gov (United States)

    Frydman, N; Féraud, O; Bas, C; Amit, M; Frydman, R; Bennaceur-Griscelli, A; Tachdjian, G

    2009-01-01

    Novel embryonic stem cell lines derived from embryos carrying structural chromosomal abnormalities obtained after preimplantation genetic diagnosis (PGD) are of interest to study in terms of the influence of abnormalities on further development. A total of 22 unbalanced blastocysts obtained after PGD were analysed for structural chromosomal defects. Morphological description and chromosomal status of these blastocysts was established and they were used to derive human embryonic stem cell (ESC) lines. An outgrowth of cells was observed for six blastocysts (6/22; 27%). For two blastocysts, the exact morphology was unknown since they were at early stage, and for four blastocysts, the inner cell mass was clearly visible. Fifteen blastocysts carried an unbalanced chromosomal defect linked to a reciprocal translocation, resulting in a positive outgrowth of cells for five blastocysts. One human ESC line was obtained from a blastocyst carrying a partial chromosome-21 monosomy and a partial chromosome-1 trisomy. Six blastocysts carried an unbalanced chromosomal defect linked to a Robertsonian translocation, and one showed a positive outgrowth of cells. One blastocyst carried an unbalanced chromosomal defect linked to an insertion and no outgrowth was observed. The efficiency of deriving human ESC lines with constitutional chromosomal disorders was low and probably depends on the initial morphological aspect of the blastocysts and/or the type of the chromosomal disorders.

  5. Contrasting patterns of X/Y polymorphism distinguish Carica papaya from other sex chromosome systems.

    Science.gov (United States)

    Weingartner, Laura A; Moore, Richard C

    2012-12-01

    The sex chromosomes of the tropical crop papaya (Carica papaya) are evolutionarily young and consequently allow for the examination of evolutionary mechanisms that drive early sex chromosome divergence. We conducted a molecular population genetic analysis of four X/Y gene pairs from a collection of 45 wild papaya accessions. These population genetic analyses reveal striking differences in the patterns of polymorphism between the X and Y chromosomes that distinguish them from other sex chromosome systems. In most sex chromosome systems, the Y chromosome displays significantly reduced polymorphism levels, whereas the X chromosome maintains a level of polymorphism that is comparable to autosomal loci. However, the four papaya sex-linked loci that we examined display diversity patterns that are opposite this trend: the papaya X alleles exhibit significantly reduced polymorphism levels, whereas the papaya Y alleles maintain greater than expected levels of diversity. Our analyses suggest that selective sweeps in the regions of the X have contributed to this pattern while also revealing geographically restricted haplogroups on the Y. We discuss the possible role sexual selection and/or genomic conflict have played in shaping the contrasting patterns of polymorphism found for the papaya X and Y chromosomes.

  6. Dialkyl Phosphate Urinary Metabolites and Chromosomal Abnormalities in Human Sperm

    Science.gov (United States)

    Figueroa, Zaida I.; Young, Heather A.; Meeker, John D.; Martenies, Sheena E.; Barr, Dana Boyd; Gray, George; Perry, Melissa J.

    2015-01-01

    Background The past decade has seen numerous human health studies seeking to characterize the impacts of environmental exposures, such as organophosphate (OP) insecticides, on male reproduction. Despite an extensive literature on OP toxicology, many hormone-mediated effects on the testes are not well understood. Objectives This study investigated environmental exposures to OPs and their association with the frequency of sperm chromosomal abnormalities (i.e., disomy) among adult men. Methods Men (n=159) from a study assessing the impact of environmental exposures on male reproductive health were included in this investigation. Multi-probe fluorescence in situ hybridization (FISH) for chromosomes X, Y, and 18 was used to determine XX18, YY18, XY18 and total disomy in sperm nuclei. Urine was analyzed using gas chromatography coupled with mass spectrometry for concentrations of dialkyl phosphate (DAP) metabolites of OPs [dimethylphosphate (DMP); dimethylthiophosphate (DMTP); dimethyldithiophosphate (DMDTP); diethylphosphate (DEP); diethylthiophosphate (DETP); and diethyldithiophosphate (DEDTP)]. Poisson regression was used to model the association between OP exposures and disomy measures. Incidence rate ratios (IRRs) were calculated for each disomy type by exposure quartiles for most metabolites, controlling for age, race, BMI, smoking, specific gravity, total sperm concentration, motility, and morphology. Results A significant positive trend was seen for increasing IRRs by exposure quartiles of DMTP, DMDTP, DEP and DETP in XX18, YY18, XY18 and total disomy. A significant inverse association was observed between DMP and total disomy. Findings for total sum of DAP metabolites concealed individual associations as those results differed from the patterns observed for each individual metabolite. Dose-response relationships appeared nonmonotonic, with most of the increase in disomy rates occurring between the second and third exposure quartiles and without additional

  7. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-08-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  8. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    Science.gov (United States)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  9. Uniparental disomy of the entire X chromosome in Turner syndrome patient-specific induced pluripotent stem cells.

    Science.gov (United States)

    Luo, Yumei; Zhu, Detu; Du, Rong; Gong, Yu; Xie, Chun; Xu, Xiangye; Fan, Yong; Yu, Bolan; Sun, Xiaofang; Chen, Yaoyong

    2015-01-01

    The human induced pluripotent stem cell (iPSC) technique promises to provide an unlimited, reliable source of genetically matched pluripotent cells for personalized therapy and disease modeling. Recently, it is observed that cells with ring chromosomes 13 or 17 autonomously correct the defects via compensatory uniparental disomy during cellular reprogramming to iPSCs. This breakthrough finding suggests a potential therapeutic approach to repair large-scale chromosomal aberrations. However, due to the scarceness of ring chromosome samples, the reproducibility of this approach in different individuals is not carefully evaluated yet. Moreover, the underlying mechanism and the applicability to other types of chromosomal aberrations remain unknown. Here we generated iPSCs from four 45,X chorionic villous fibroblast lines and found that only one reprogrammed line acquired 46,XX karyotype via uniparental disomy of the entire X chromosome. The karyotype correction was reproducible in the same cell line by either retroviral or episomal reprogramming. The karyotype-corrected iPSCs were subject to X chromosome inactivation and obtained better colony morphology and higher proliferation rate than other uncorrected ones. Further transcriptomic comparison among the fibroblast lines identified a distinct expression pattern of cell cycle regulators in the uncorrectable ones. These findings demonstrate that the iPSC technique holds the potential to correct X monosomy, but the correction rate is very low, probably due to differential regulation of cell cycle genes between individuals. Our data strongly suggest that more systematic investigations are needed before defining the iPSC technique as a novel means of chromosome therapy.

  10. Report on the Second International Workshop on Human Chromosome 9

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowski, D.J. [Brigham and Women`s Hospital, Boston, MA (United States); Armour, J. [Univ. of Leicester (England). Dept. of Genetics; Bale, A.E. [Yale Univ., New Haven, CT (United States). Dept. of Genetics] [and others

    1993-12-31

    The Second International Workshop on Human Chromosome 9 was held in Chatham, Massachusetts on April 18--20, 1993. Fifty-three abstracts were received and the data presented on posters. The purpose of the meeting was to bring together all interested investigators working on the map of chromosome 9, many of whom had disease-specific interests. After a brief presentation of interests and highlighted results, the meeting broke up into the following subgroups for production of consensus maps: 9p; 9cen-q32; 9q32 ter. A global mapping group also met. Reports of each of these working groups is presented in the summary.

  11. Construction of a genetic map of human chromosome 17 by use of chromosome-mediated gene transfer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiming; Gorman, P.A.; Rider, S.H.; Hedge, P.J.; Moore, G.; Prichard, C.; Sheer, D.; Solomon, E. (Imperial Cancer Research Fund, London (England))

    1988-11-01

    The authors used somatic-cell hybrids, containing as their only human genetic contribution part or all of chromosome 17, as donors for chromosome-mediated gene transfer. A total of 54 independent transfectant clones were isolated and analyzed by use of probes or isoenzymes for >20 loci located on chromosome 17. By combining the data from this chromosome-mediated gene transfer transfectant panel, conventional somatic-cell hybrids containing well-defined breaks on chromosome 17, and in situ hybridization they propose the following order for these loci; pter-(TP53-RNP2-D17S1)-(MYH2-MYH1)-D17Z1-CRYB1-(ERBA1-GCSF-NGL)-acute promyelocytic leukemia breakpoint-RNU2-HOX2-(NGFR-COLIAI-MPO)-GAA-UMPH-GHC-TK1-GALK-qter. Using chromosome-mediated gene transfer, they have also regionally localized the random probes D17S6 to D17S19 on chromosome 17.

  12. A new multiple sex chromosome system X1X1X2X2/X1Y1X2Y2 in Siluriformes: cytogenetic characterization of Bunocephalus coracoideus (Aspredinidae).

    Science.gov (United States)

    Ferreira, Milena; Garcia, Caroline; Matoso, Daniele Aparecida; de Jesus, Isac Silva; Feldberg, Eliana

    2016-10-01

    We analyzed one Bunocephalus coracoideus population from the Negro River basin using cytogenetic techniques. The results showed a diploid number of 42 chromosomes in both sexes, with the karyotypic formula 4m + 14sm + 24a and fundamental number (FN) = 60 for females and the formula 5m + 14sm + 23a and FN = 61 for males, constituting an X1X1X2X2/X1Y1X2Y2 multiple sex chromosome system. The constitutive heterochromatin is distributed in the pericentromeric regions of most of the chromosomes, except for the sex chromosomes, of which the X1, X2, and Y1 chromosomes were euchromatic and the Y2 chromosome was partially heterochromatic. 18S rDNA mapping confirmed the presence of nucleolar organizer regions on the short arms of the fifth chromosomal pair for both sexes. The 5S rDNA is present in the terminal regions of the short arms on the 2nd, 10th, and 12th pairs and on the X2 chromosome of both sexes; however, we observed variations in the presence of these ribosomal cistrons on the Y1 chromosome, on which the cistrons are pericentromeric, and on the Y2 chromosome, on which these cistrons are present in the terminal portions of the short and long arms. Telomeric sequences are located in the terminal regions of all of the chromosomes, particularly conspicuous blocks on the 10th and 12th pairs and internal telomeric sequences in the centromeric regions of the 1st, 6th, and 9th pairs for both sexes. This work describes an new sex chromosomes system for the Siluriformes and increases our genetic knowledge of the Aspredinidae family.

  13. Condensin-driven remodelling of X chromosome topology during dosage compensation

    Science.gov (United States)

    Crane, Emily; Bian, Qian; McCord, Rachel Patton; Lajoie, Bryan R.; Wheeler, Bayly S.; Ralston, Edward J.; Uzawa, Satoru; Dekker, Job; Meyer, Barbara J.

    2015-07-01

    The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (~1 Mb) resembling mammalian topologically associating domains (TADs). TADs on X chromosomes have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X chromosomes coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X chromosomes by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using

  14. siRNAs from an X-linked satellite repeat promote X-chromosome recognition in Drosophila melanogaster.

    Science.gov (United States)

    Menon, Debashish U; Coarfa, Cristian; Xiao, Weimin; Gunaratne, Preethi H; Meller, Victoria H

    2014-11-18

    Highly differentiated sex chromosomes create a lethal imbalance in gene expression in one sex. To accommodate hemizygosity of the X chromosome in male fruit flies, expression of X-linked genes increases twofold. This is achieved by the male- specific lethal (MSL) complex, which modifies chromatin to increase expression. Mutations that disrupt the X localization of this complex decrease the expression of X-linked genes and reduce male survival. The mechanism that restricts the MSL complex to X chromatin is not understood. We recently reported that the siRNA pathway contributes to localization of the MSL complex, raising questions about the source of the siRNAs involved. The X-linked 1.688 g/cm(3) satellite related repeats (1.688(X) repeats) are restricted to the X chromosome and produce small RNA, making them an attractive candidate. We tested RNA from these repeats for a role in dosage compensation and found that ectopic expression of single-stranded RNAs from 1.688(X) repeats enhanced the male lethality of mutants with defective X recognition. In contrast, expression of double-stranded hairpin RNA from a 1.688(X) repeat generated abundant siRNA and dramatically increased male survival. Consistent with improved survival, X localization of the MSL complex was largely restored in these males. The striking distribution of 1.688(X) repeats, which are nearly exclusive to the X chromosome, suggests that these are cis-acting elements contributing to identification of X chromatin.

  15. Mixed gonadal dysgenesis in a 45,X neonate with chromosome Y material in the dysgenetic gonad.

    Science.gov (United States)

    Karatza, Ageliki; Chrysis, Dionisios; Stefanou, Eunice-Georgia; Mantagos, Stefanos; Salakos, Christos

    2009-11-01

    We report on a neonate with a disorder of sex development, Prader 3-4 external genitalia and a palpable structure in the right inguinal canal suggestive of gonadal tissue. Chromosome studies on blood lymphocytes showed monosomy of chromosome X. Laparoscopy identified a streak-like gonad on the left side, unicorn uterus and a dysgenetic testis on the right, attached to a Fallopian tube. Because of the unilateral palpable gonad and the presence of ambiguous genitalia we investigated further for the presence of Y material. Quantitative fluorescent PCR analysis of material from the dysgenetic gonad and skin fibroblasts revealed the presence of chromosome Y-derived sequences, suggesting sex chromosome mosaicism. In 45,X/46,XY mosaicism, chromosome studies carried out on peripheral lymphocytes do not always reflect the proportion of cell lines in the gonads. The detection of Y chromosome material in a dysgenetic gonad is extremely significant, due to the high risk of malignant transformation.

  16. Systematic analysis of human protein complexes identifies chromosome segregation proteins.

    Science.gov (United States)

    Hutchins, James R A; Toyoda, Yusuke; Hegemann, Björn; Poser, Ina; Hériché, Jean-Karim; Sykora, Martina M; Augsburg, Martina; Hudecz, Otto; Buschhorn, Bettina A; Bulkescher, Jutta; Conrad, Christian; Comartin, David; Schleiffer, Alexander; Sarov, Mihail; Pozniakovsky, Andrei; Slabicki, Mikolaj Michal; Schloissnig, Siegfried; Steinmacher, Ines; Leuschner, Marit; Ssykor, Andrea; Lawo, Steffen; Pelletier, Laurence; Stark, Holger; Nasmyth, Kim; Ellenberg, Jan; Durbin, Richard; Buchholz, Frank; Mechtler, Karl; Hyman, Anthony A; Peters, Jan-Michael

    2010-04-30

    Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification-mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the gamma-tubulin ring complex--large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells.

  17. Chromosomal Aberrations in Humans Induced by Urban Air Pollution

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, Hannu; Gamborg, Michael O.

    1999-01-01

    We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes...... that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....

  18. X-chromosomal inactivation directly influences the phenotypic manifestation of X-linked protoporphyria.

    Science.gov (United States)

    Brancaleoni, V; Balwani, M; Granata, F; Graziadei, G; Missineo, P; Fiorentino, V; Fustinoni, S; Cappellini, M D; Naik, H; Desnick, R J; Di Pierro, E

    2016-01-01

    X-linked protoporphyria (XLP), a rare erythropoietic porphyria, results from terminal exon gain-of-function mutations in the ALAS2 gene causing increased ALAS2 activity and markedly increased erythrocyte protoporphyrin levels. Patients present with severe cutaneous photosensitivity and may develop liver dysfunction. XLP was originally reported as X-linked dominant with 100% penetrance in males and females. We characterized 11 heterozygous females from six unrelated XLP families and show markedly varying phenotypic and biochemical heterogeneity, reflecting the degree of X-chromosomal inactivation of the mutant gene. ALAS2 sequencing identified the specific mutation and confirmed heterozygosity among the females. Clinical history, plasma and erythrocyte protoporphyrin levels were determined. Methylation assays of the androgen receptor and zinc-finger MYM type 3 short tandem repeat polymorphisms estimated each heterozygotes X-chromosomal inactivation pattern. Heterozygotes with equal or increased skewing, favoring expression of the wild-type allele had no clinical symptoms and only slightly increased erythrocyte protoporphyrin concentrations and/or frequency of protoporphyrin-containing peripheral blood fluorocytes. When the wild-type allele was preferentially inactivated, heterozygous females manifested the disease phenotype and had both higher erythrocyte protoporphyrin levels and circulating fluorocytes. These findings confirm that the previous dominant classification of XLP is inappropriate and genetically misleading, as the disorder is more appropriately designated XLP.

  19. X chromosome-linked and mitochondrial gene control of Leber hereditary optic neuropathy: Evidence from segregation analysis for dependence on X chromosome inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Xiangdong Bu; Rotter, J.I. (Cedars-Sinai Medical Center, Los Angeles, CA (United States) Univ. of California, Los Angeles (United States))

    1991-09-15

    Leber hereditary optic neuropathy (LHON) has been shown to involve mutation(s) of mitochondrial DNA, yet there remain several confusing aspects of its inheritance not explained by mitochondrial inheritance alone, including male predominance, reduced penetrance, and a later age of onset in females. By extending segregation analysis methods to disorders that involve both a mitochondrial and a nuclear gene locus, the authors show that the available pedigree data for LHON are most consistent with a two-locus disorder, with one responsible gene being mitochondrial and the other nuclear and X chromosome-linked. Furthermore, they have been able to extend the two-locus analytic method and demonstrate that a proportion of affected females are likely heterozygous at the X chromosome-linked locus and are affected due to unfortunate X chromosome inactivation, thus providing an explanation for the later age of onset in females. The estimated penetrance for a heterozygous female is 0.11{plus minus}0.02. The calculated frequency of the X chromosome-linked gene for LHON is 0.l08. Among affected females, 60% are expected to be heterozygous, and the remainder are expected to be homozygous at the responsible X chromosome-linked locus.

  20. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, Jane; Gordon, Laurie A.; Olsen, Anne; Terry, Astrid; Schmutz, Jeremy; Lamerdin, Jane; Hellsten, Uffe; Goodstein, David; Couronne, Olivier; Tran-Gyamfi, Mary; Aerts, Andrea; Altherr, Michael; Ashworth, Linda; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caenepeel, Sean; Carrano, Anthony; Caoile, Chenier; Chan, Yee Man; Christensen, Mari; Cleland, Catherine A.; Copeland, Alex; Dalin, Eileen; Dehal, Paramvir; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Garcia, Carmen; Georgescu, Anca M.; Glavina, Tijana; Gomez, Maria; Gonzales, Eldelyn; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Ho, Issac; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Larionov, Vladimer; Leem, Sun-Hee; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Malfatti, Stephanie; Martinez, Diego; McCready, Paula; Medina, Catherine; Morgan, Jenna; Nelson, Kathryn; Nolan, Matt; Ovcharenko, Ivan; Pitluck, Sam; Pollard, Martin; Popkie, Anthony P.; Predki, Paul; Quan, Glenda; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanine; Salamov, Asaf; Salazar, Angelica; She, Xinwei; Smith, Doug; Slezak, Tom; Solovyev, Victor; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wagner, Mark; Wheeler, Jeremy; Wu, Kevin; Xie, Gary; Yang, Joan; Dubchak, Inna; Furey, Terrence S.; DeJong, Pieter; Dickson, Mark; Gordon, David; Eichler, Evan E.; Pennacchio, Len A.; Richardson, Paul; Stubbs, Lisa; Rokhsar, Daniel S.; Myers, Richard M.; Rubin, Edward M.; Lucas, Susan M.

    2003-09-15

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G1C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9 percent of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25 percent of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, a nd segments of coding and non-coding conservation with the distant fish species Takifugu.

  1. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  2. The DNA sequence and biology of human chromosome 19.

    Science.gov (United States)

    Grimwood, Jane; Gordon, Laurie A; Olsen, Anne; Terry, Astrid; Schmutz, Jeremy; Lamerdin, Jane; Hellsten, Uffe; Goodstein, David; Couronne, Olivier; Tran-Gyamfi, Mary; Aerts, Andrea; Altherr, Michael; Ashworth, Linda; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caenepeel, Sean; Carrano, Anthony; Caoile, Chenier; Chan, Yee Man; Christensen, Mari; Cleland, Catherine A; Copeland, Alex; Dalin, Eileen; Dehal, Paramvir; Denys, Mirian; Detter, John C; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Garcia, Carmen; Georgescu, Anca M; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Ho, Isaac; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Larionov, Vladimer; Leem, Sun-Hee; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Malfatti, Stephanie; Martinez, Diego; McCready, Paula; Medina, Catherine; Morgan, Jenna; Nelson, Kathryn; Nolan, Matt; Ovcharenko, Ivan; Pitluck, Sam; Pollard, Martin; Popkie, Anthony P; Predki, Paul; Quan, Glenda; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanine; Salamov, Asaf; Salazar, Angelica; She, Xinwei; Smith, Doug; Slezak, Tom; Solovyev, Victor; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wagner, Mark; Wheeler, Jeremy; Wu, Kevin; Xie, Gary; Yang, Joan; Dubchak, Inna; Furey, Terrence S; DeJong, Pieter; Dickson, Mark; Gordon, David; Eichler, Evan E; Pennacchio, Len A; Richardson, Paul; Stubbs, Lisa; Rokhsar, Daniel S; Myers, Richard M; Rubin, Edward M; Lucas, Susan M

    2004-04-01

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G + C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  3. Chromosomal aberrations related to metastasis of human solid tumors

    Institute of Scientific and Technical Information of China (English)

    Lun-Xiu Qin

    2002-01-01

    The central role of sequential accumulation of genetic alterations during the development of cancer has been firmly established since the pioneering cytogenetic studies successfully defined recurrent chromosome changes in spedfic types of tumor. In the course of carcinogenesis, cells experience several genetic alterations that are associated with the transition from a preneoplastic lesion to an invasive tumor and finally to the metastatic state. Tumor progression is characterized by stepwise accumulation of genetic alterations.So does the dominant metastatic clone. Modern molecular genetic analyses have clarified that genomic changes accumulate during the development and progression of cancers. In comparison with the corresponding primary tumor,additional events of chromosomal aberrations (including gains or allelic losses) are frequently found in metastases, and the incidence of combined chromosomal alterations in the primary tumor, plus the occurrence of additional aberrations inthe distant metastases, correlated significantly with decreased postmetastatic survival. The deletions at 3p, 4p, 6q, 8p, 10q,11p, 11q, 12p, 13q, 16q, 17p, 18q, 21q, and 22q, as well as the over-representations at 1q, 8q, 9q, 14q and 15q, have been found to associate preferentially with the metastatic phenotype of human cancers. Among of them, the deletions on chromosomes 8p, 17p, 11p and 13p seem to be more significant, and more detail fine regions of them, including 8p11, 8p21-12, 8p22, 8p23, 17p13.3, 11p15.5, and 13q12-13 have been suggested harboring metastasis-suppressor genes.During the past decade, several human chromosomes have been functionally tested through the use of microcell-mediated chromosome transfer (MMCT), and metastasis-suppressor activities have been reported on chromosomes 1, 6, 7, 8, 10,11, 12, 16, and 17. However, it is not actually known at what stage of the metastatic cascade these alterations have occurred.There is still controversial with the association

  4. The mapping of novel genes to human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Buenaventura, J.M. [Sarah Lawrence College, Bronxville, NY (United States)

    1994-12-01

    The principle goal of our laboratory is the discovery of new genes on human chromosome 19. One of the strategies to achieve this goal is through the use of cDNA clones known as {open_quotes}expressed sequence tags{close_quotes} (ESTs). ESTs, short segments of sequence from a cDNA clone that correspond to the mRNA, occur as unique regions in the genome and, therefore, can be used as markers for specific positions. In collaboration with researchers from Genethon in France, fifteen cDNA clones from a normalized human infant brain cDNA library were tested and determined to map to chromosome 19. A verification procedure is then followed to confirm assignment to chromosome 19. First, primers for each cDNA clone are developed and then amplified by polymerase chain reaction from genomic DNA. Next, a {sup 32}P-radiolabeled probe is made by polymerase chain reaction for each clone and then hybridized against filters containing an LLNL chromosome 19-specific cosmid library to find putative locations on the chromosome. The location is then verified by running a polymerase chain reactions from the positive cosmids. With the Browser database at LLNL, additional information about the positive cosmids can be found. Through use of the BLAST database at the National Library of Medicine, homologous sequences to the clones can be found. Among the fifteen cDNA clones received from Genethon, all have been amplified by polymerase chain reaction. Three have turned out as repetitive elements in the genome. Ten have been mapped to specific locations on chromosome 19. Putative locations have been found for the remaining two clones and thus verification testing will proceed.

  5. Human interphase chromosomes: a review of available molecular cytogenetic technologies

    Directory of Open Access Journals (Sweden)

    Yurov Yuri B

    2010-01-01

    Full Text Available Abstract Human karyotype is usually studied by classical cytogenetic (banding techniques. To perform it, one has to obtain metaphase chromosomes of mitotic cells. This leads to the impossibility of analyzing all the cell types, to moderate cell scoring, and to the extrapolation of cytogenetic data retrieved from a couple of tens of mitotic cells to the whole organism, suggesting that all the remaining cells possess these genomes. However, this is far from being the case inasmuch as chromosome abnormalities can occur in any cell along ontogeny. Since somatic cells of eukaryotes are more likely to be in interphase, the solution of the problem concerning studying postmitotic cells and larger cell populations is interphase cytogenetics, which has become more or less applicable for specific biomedical tasks due to achievements in molecular cytogenetics (i.e. developments of fluorescence in situ hybridization -- FISH, and multicolor banding -- MCB. Numerous interphase molecular cytogenetic approaches are restricted to studying specific genomic loci (regions being, however, useful for identification of chromosome abnormalities (aneuploidy, polyploidy, deletions, inversions, duplications, translocations. Moreover, these techniques are the unique possibility to establish biological role and patterns of nuclear genome organization at suprachromosomal level in a given cell. Here, it is to note that this issue is incompletely worked out due to technical limitations. Nonetheless, a number of state-of-the-art molecular cytogenetic techniques (i.e multicolor interphase FISH or interpahase chromosome-specific MCB allow visualization of interphase chromosomes in their integrity at molecular resolutions. Thus, regardless numerous difficulties encountered during studying human interphase chromosomes, molecular cytogenetics does provide for high-resolution single-cell analysis of genome organization, structure and behavior at all stages of cell cycle.

  6. DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria.

    Science.gov (United States)

    Ruiz-Ruano, F J; Ruiz-Estévez, M; Rodríguez-Pérez, J; López-Pino, J L; Cabrero, J; Camacho, J P M

    2011-01-01

    We analyzed the DNA amount in X and B chromosomes of 2 XX/X0 grasshopper species (Eyprepocnemis plorans and Locusta migratoria), by means of Feulgen image analysis densitometry (FIAD), using previous estimates in L. migratoria as standard (5.89 pg). We first analyzed spermatids of 0B males and found a bimodal distribution of integrated optical densities (IODs), suggesting that one peak corresponded to +X and the other to -X spermatids. The difference between the 2 peaks corresponded to the X chromosome DNA amount, which was 1.28 pg in E. plorans and 0.80 pg in L. migratoria. In addition, the +X peak in E. plorans gave an estimate of the C-value in this species (10.39 pg). We next analyzed diplotene cells from 1B males in E. plorans and +B males in L. migratoria (a species where Bs are mitotically unstable and no integer B number can be defined for an individual) and measured B chromosome IOD relative to X chromosome IOD, within the same cell, taking advantage of the similar degree of condensation for both positively heteropycnotic chromosomes at this meiotic stage. From this proportion, we estimated the DNA amount for 3 different B chromosome variants found in individuals from 3 E. plorans Spanish populations (0.54 pg for B1 from Saladares, 0.51 pg for B2 from Salobreña and 0.64 for B24 from Torrox). Likewise, we estimated the DNA amount of the B chromosome in L. migratoria to be 0.15 pg. To automate measurements, we wrote a GPL3 licensed Python program (pyFIA). We discuss the utility of the present approach for estimating X and B chromosome DNA amount in a variety of situations, and the meaning of the DNA amount estimates for X and B chromosomes in these 2 species.

  7. Self-assembly and DNA binding of the blocking factor in x chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Mario Nicodemi

    2007-11-01

    Full Text Available X chromosome inactivation (XCI is the phenomenon occurring in female mammals whereby dosage compensation of X-linked genes is obtained by transcriptional silencing of one of their two X chromosomes, randomly chosen during early embryo development. The earliest steps of random X-inactivation, involving counting of the X chromosomes and choice of the active and inactive X, are still not understood. To explain "counting and choice," the longstanding hypothesis is that a molecular complex, a "blocking factor" (BF, exists. The BF is present in a single copy and can randomly bind to just one X per cell which is protected from inactivation, as the second X is inactivated by default. In such a picture, the missing crucial step is to explain how the molecular complex is self-assembled, why only one is formed, and how it binds only one X. We answer these questions within the framework of a schematic Statistical Physics model, investigated by Monte Carlo computer simulations. We show that a single complex is assembled as a result of a thermodynamic process relying on a phase transition occurring in the system which spontaneously breaks the symmetry between the X's. We discuss, then, the BF interaction with X chromosomes. The thermodynamics of the mechanism that directs the two chromosomes to opposite fates could be, thus, clarified. The insights on the self-assembling and X binding properties of the BF are used to derive a quantitative scenario of biological implications describing current experimental evidences on "counting and choice."

  8. Social cognition and underlying cognitive mechanisms in children with an extra X chromosome : a comparison with autism spectrum disorder

    NARCIS (Netherlands)

    van Rijn, S.; Stockmann, L.; van Buggenhout, G.; van Ravenswaaij-Arts, C.; Swaab, H.

    2014-01-01

    Individuals with an extra X chromosome are at increased risk for autism symptoms. This study is the first to assess theory of mind and facial affect labeling in children with an extra X chromosome. Forty-six children with an extra X chromosome (29 boys with Klinefelter syndrome and 17 girls with Tri

  9. Synteny mapping of five human chromosome 7 genes on bovine chromosomes 4 and 21.

    Science.gov (United States)

    Antoniou, E; Womack, J E; Grosz, M D

    1999-01-01

    Five genes on human chromosome 7 (HSA 7) were assigned to bovine chromosome 21 (BTA 21) and 4 (BTA 4) using a bovine-rodent somatic hybrid cell panel. These five genes were alpha-I subunit of adenylate cyclase-inhibiting G-protein (GNAI1), alpha/beta preprotachykinin (TAC1), reelin (RELN), c-AMP dependant protein kinase type II beta regulatory chain (PRKAR2B) and apolipoprotein A1 regulatory protein 1 (TFCOUP2). Four genes mapped to BTA 4 (GNAI1, TAC1, RELN, PRKAR2B) while one gene mapped to BTA 21 (TFCOUP2). This study confirms the synteny conservation between HSA 7 and BTA 4, finely maps the breakpoints of conserved synteny on HSA 7 and defines a new synteny conservation between HSA 7 and BTA 21.

  10. Chromosome territories, X;Y translocation and Premature Ovarian Failure: is there a relationship?

    Directory of Open Access Journals (Sweden)

    Betri Enrico

    2009-09-01

    Full Text Available Abstract Background Premature ovarian failure (POF is a secondary hypergonadotrophic amenorrhea occurring before the age of 40 and affecting 1-3% of females. Chromosome anomalies account for 6-8% of POF cases, but only few cases are associated with translocations involving X and Y chromosomes. This study shows the cytogenetic and molecular analysis of a POF patient came to our attention as she developed a left ovary choriocarcinoma at the age of 10 and at 14 years of age she presented secondary amenorrhea with elevated levels of gonadotropins. Results Breakpoint position on X and Y chromosomes was investigated using Fluorescent In Situ Hybridisation (FISH with a panel of specific BAC probes, microsatellite analysis and evaluation of copy number changes and loss of heterozigosity by Affymetrix® GeneChip platform (Santa Clara, CA, USA. Patient's karyotype resulted 46, X, der(Yt(X;Y(q13.1;q11.223. X inactivation study was assessed by RBA banding and showed preferential inactivation of derivative chromosome. The reciprocal spatial disposition of sexual chromosome territories was investigated using whole chromosome painting and centromeres probes: patient's results didn't show a significant difference in comparison to normal controls. Conclusion The peculiar clinical case come to our attention highlighted the complexity of POF aetiology and of the translocation event, even if our results seem to exclude any effect on nuclear organisation. POF phenotype could be partially explained by skewed X chromosome inactivation that influences gene expression.

  11. Mapping the Stability of Human Brain Asymmetry across Five Sex-Chromosome Aneuploidies

    Science.gov (United States)

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L.; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N.

    2015-01-01

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. PMID:25568109

  12. Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies.

    Science.gov (United States)

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N; Raznahan, Armin

    2015-01-07

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry.

  13. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans.

    Science.gov (United States)

    Reardon, Paul Kirkpatrick; Clasen, Liv; Giedd, Jay N; Blumenthal, Jonathan; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin

    2016-02-24

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings.

  14. Construction and characterization of human chromosome 2-specific cosmid, fosmid, and PAC clone libraries

    Energy Technology Data Exchange (ETDEWEB)

    Gingrich, J.C.; Boehrer, D.M.; Garnes, J.A. [Lawrence Livermore National Lab., CA (United States)] [and others

    1996-02-15

    This article discusses the construction and characterization of three human chromosome 2-specific clone libraries. A chromosome 2-specific PAC library was also constructed from a hybrid cell line. The chromosome 2 coverage of each of the three libraries was further determined by PCR screening clone pools with 82 chromosome 2-specific STSs. 47 refs., 3 figs., 1 tab.

  15. The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression.

    Science.gov (United States)

    Mueller, Jacob L; Mahadevaiah, Shantha K; Park, Peter J; Warburton, Peter E; Page, David C; Turner, James M A

    2008-06-01

    According to the prevailing view, mammalian X chromosomes are enriched in spermatogenesis genes expressed before meiosis and deficient in spermatogenesis genes expressed after meiosis. The paucity of postmeiotic genes on the X chromosome has been interpreted as a consequence of meiotic sex chromosome inactivation (MSCI)--the complete silencing of genes on the XY bivalent at meiotic prophase. Recent studies have concluded that MSCI-initiated silencing persists beyond meiosis and that most genes on the X chromosome remain repressed in round spermatids. Here, we report that 33 multicopy gene families, representing approximately 273 mouse X-linked genes, are expressed in the testis and that this expression is predominantly in postmeiotic cells. RNA FISH and microarray analysis show that the maintenance of X chromosome postmeiotic repression is incomplete. Furthermore, X-linked multicopy genes exhibit a similar degree of expression as autosomal genes. Thus, not only is the mouse X chromosome enriched for spermatogenesis genes functioning before meiosis, but in addition, approximately 18% of mouse X-linked genes are expressed in postmeiotic cells.

  16. The large-X effect in plants: increased species divergence and reduced gene flow on the Silene X-chromosome.

    Science.gov (United States)

    Hu, Xin-Sheng; Filatov, Dmitry A

    2016-06-01

    The disproportionately large involvement of the X-chromosome in the isolation of closely related species (the large-X effect) has been reported for many animals, where X-linked genes are mostly hemizygous in the heterogametic sex. The expression of deleterious recessive mutations is thought to drive the frequent involvement of the X-chromosome in hybrid sterility, as well as to reduce interspecific gene flow for X-linked genes. Here, we evaluate the role of the X-chromosome in the speciation of two closely related plant species - the white and red campions (Silene latifolia and S. dioica) - that hybridize widely across Europe. The two species evolved separate sexes and sex chromosomes relatively recently (~10(7)  years), and unlike most animal species, most X-linked genes have intact Y-linked homologs. We demonstrate that the X-linked genes show a very small and insignificant amount of interspecific gene flow, while gene flow involving autosomal loci is significant and sufficient to homogenize the gene pools of the two species. These findings are consistent with the hypothesis of the large-X effect in Silene and comprise the first report of this effect in plants. Nonhemizygosity of many X-linked genes in Silene males indicates that exposure of recessive mutations to selection may not be essential for the occurrence of the large-X effect. Several possible causes of the large-X effect in Silene are discussed.

  17. Differentiation of the XY sex chromosomes in the fish Hoplias malabaricus (Characiformes, Erythrinidae): unusual accumulation of repetitive sequences on the X chromosome.

    Science.gov (United States)

    Cioffi, M B; Martins, C; Vicari, M R; Rebordinos, L; Bertollo, L A C

    2010-01-01

    The wolf fish Hoplias malabaricus (Erythrinidae) presents a high karyotypic diversity, with 7 karyomorphs identified. Karyomorph A is characterized by 2n = 42 chromosomes, without morphologically differentiated sex chromosomes. Karyomorph B also has 2n = 42 chromosomes for both sexes, but differs by a distinct heteromorphic XX/XY sex chromosome system. The cytogenetic mapping of 5 classes of repetitive DNA indicated similarities between both karyomorphs and the probable derivation of the XY chromosomes from pair No. 21 of karyomorph A. These chromosomes appear to be homeologous since the distribution of (GATA)(n) sequences, 18S rDNA and 5SHindIII-DNA sites supports their potential relatedness. Our data indicate that the differentiation of the long arms of the X chromosome occurred by accumulation of heterochromatin and 18S rDNA cistrons from the ancestral homomorphic pair No. 21 present in karyomorph A. These findings are further supported by the distribution of the Cot-1 DNA fraction. In addition, while the 18S rDNA cistrons were maintained and amplified on the X chromosomes, they were lost in the Y chromosome. The X chromosome was a clearly preferred site for the accumulation of DNA repeats, representing an unusual example of an X clustering more repetitive sequences than the Y during sex chromosome differentiation in fish.

  18. Have humans lost control: The elusive X-controlling element.

    Science.gov (United States)

    Peeters, Samantha B; Yang, Christine; Brown, Carolyn J

    2016-08-01

    The process of X-chromosome inactivation (XCI) randomly silences one of two X chromosomes in normal female cells. The ability to predict if there is a preference for one of the two Xs to be chosen (and survive) more often as the active X has important repercussions in human health and X-linked disease. Mice have a genetic component that modulates non-random skewing called the X-controlling element (Xce). Although the nature of the locus and its mechanisms of action are still under investigation, it is clear that different mouse strains carry unique Xce alleles on their X chromosomes, resulting in distinct skewing phenotypes in the F1 progeny of hybrid crosses. Whether a similar mechanism exists in humans is unclear, and challenges to identifying such a locus include the complexity and diversity of the human genome, the restricted time points and tissue(s) of examination in human subjects, and the lack of a model system recapitulating XCI in early development. In this review we consider the evidence for such a controlling locus in humans, in addition to discussing if we have the power to recognize it given the contribution of selective growth in causing skewed patterns of XCI.

  19. Widespread over-expression of the X chromosome in sterile F₁hybrid mice.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Good

    2010-09-01

    Full Text Available The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F₁ males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F₁ hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility.

  20. A new light on DNA replication from the inactive X chromosome.

    Science.gov (United States)

    Aladjem, Mirit I; Fu, Haiqing

    2014-06-01

    While large portions of the mammalian genome are known to replicate sequentially in a distinct, tissue-specific order, recent studies suggest that the inactive X chromosome is duplicated rapidly via random, synchronous DNA synthesis at numerous adjacent regions. The rapid duplication of the inactive X chromosome was observed in high-resolution studies visualizing DNA replication patterns in the nucleus, and by allele-specific DNA sequencing studies measuring the extent of DNA synthesis. These studies conclude that inactive X chromosomes complete replication earlier than previously thought and suggest that the strict order of DNA replication detected in the majority of genomic regions is not preserved in non-transcribed, "silent" chromatin. These observations alter current concepts about the regulation of DNA replication in non-transcribed portions of the genome in general and in the inactive X-chromosome in particular.

  1. Refining the genetic portrait of Portuguese Roma through X-chromosomal markers

    DEFF Research Database (Denmark)

    Pereira, Vania; Gusmão, Leonor; Valente, Cristina

    2012-01-01

    of Portuguese Roma (Gypsies) by analyzing 43 X-chromosomal markers and 53 autosomal markers. Portuguese individuals of non-Gypsy ancestry were also studied. Compared with the host population, reduced levels of diversity on the X chromosome and autosomes were detected in Gypsies; this result was in line...... with known patterns of genetic diversity typical of Roma groups. As a consequence of the complex demographic past of the Roma, during which admixture and genetic drift played major roles, the amount of linkage disequilibrium (LD) on the X chromosome in Gypsies was considerably higher than that observed...... in non-Gypsies. When the pattern of differentiation on the X chromosome was compared with that of autosomes, there was evidence for asymmetries in female and male effective population sizes during the admixture between Roma and non-Roma. This result supplements previous data provided by mtDNA and the Y...

  2. DNA methylation profiling of human chromosomes 6, 20 and 22

    OpenAIRE

    Eckhardt, Florian; Lewin, Joern; Cortese, Rene; Rakyan, Vardhman K.; Attwood, John; Burger, Matthias; Burton, John; Cox, Tony V.; Davies, Rob; Down, Thomas A; Haefliger, Carolina; Horton, Roger; Howe, Kevin; Jackson, David K.; Kunde, Jan

    2006-01-01

    DNA methylation constitutes the most stable type of epigenetic modifications modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation reference profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of 6 annotation categories, revealed evolutionary conserved regions to be the predominant sites for differential DNA methyl...

  3. New insights into human nondisjunction of chromosome 21 in oocytes.

    Directory of Open Access Journals (Sweden)

    Tiffany Renee Oliver

    2008-03-01

    Full Text Available Nondisjunction of chromosome 21 is the leading cause of Down syndrome. Two risk factors for maternal nondisjunction of chromosome 21 are increased maternal age and altered recombination. In order to provide further insight on mechanisms underlying nondisjunction, we examined the association between these two well established risk factors for chromosome 21 nondisjunction. In our approach, short tandem repeat markers along chromosome 21 were genotyped in DNA collected from individuals with free trisomy 21 and their parents. This information was used to determine the origin of the nondisjunction error and the maternal recombination profile. We analyzed 615 maternal meiosis I and 253 maternal meiosis II cases stratified by maternal age. The examination of meiosis II errors, the first of its type, suggests that the presence of a single exchange within the pericentromeric region of 21q interacts with maternal age-related risk factors. This observation could be explained in two general ways: 1 a pericentromeric exchange initiates or exacerbates the susceptibility to maternal age risk factors or 2 a pericentromeric exchange protects the bivalent against age-related risk factors allowing proper segregation of homologues at meiosis I, but not segregation of sisters at meiosis II. In contrast, analysis of maternal meiosis I errors indicates that a single telomeric exchange imposes the same risk for nondisjunction, irrespective of the age of the oocyte. Our results emphasize the fact that human nondisjunction is a multifactorial trait that must be dissected into its component parts to identify specific associated risk factors.

  4. Regions of XY homology in the pig X chromosome and the boundary of the pseudoautosomal region

    Directory of Open Access Journals (Sweden)

    Skinner Benjamin M

    2013-01-01

    Full Text Available Abstract Background Sex chromosomes are subject to evolutionary pressures distinct from the remainder of the genome, shaping their structure and sequence content. We are interested in the sex chromosomes of domestic pigs (Sus scrofa, how their structure and gene content compares and contrasts with other mammalian species, and the role of sex-linked genes in fertility. This requires an understanding of the XY-homologous sequence on these chromosomes. To this end, we performed microarray-based comparative genomic hybridisation (array-CGH with male and female Duroc genomic DNA on a pig X-chromosome BAC tiling-path microarray. Putative XY-homologous BACs from regions of interest were subsequently FISH mapped. Results We show that the porcine PAR is approximately 6.5-6.9 Mb at the beginning of the short arm of the X, with gene content reflective of the artiodactyl common ancestor. Our array-CGH data also shows an XY-homologous region close to the end of the X long arm, spanning three X BACs. These BACs were FISH mapped, and paint the entire long arm of SSCY. Further clones of interest revealed X-autosomal homology or regions containing repetitive content. Conclusions This study has identified regions of XY homology in the pig genome, and defined the boundary of the PAR on the X chromosome. This adds to our understanding of the evolution of the sex chromosomes in different mammalian lineages, and will prove valuable for future comparative genomic work in suids and for the construction and annotation of the genome sequence for the sex chromosomes. Our finding that the SSCYq repetitive content has corresponding sequence on the X chromosome gives further insight into structure of SSCY, and suggests further functionally important sequences remain to be discovered on the X and Y.

  5. The gene for human glutaredoxin (GLRX) is localized to human chromosome 5q14

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, C.A.; Holmgren, A. [Karolinska Inst., Stockholm (Sweden); Bajalica, S.; Lagercrantz, J. [Karolinska Hospital, Stockholm (Sweden)

    1996-03-05

    Glutaredoxin is a small protein (12 kDa) catalyzing glutathione-dependent disulfide oxidoreduction reactions in a coupled system with NADPH, GSH, and glutathione reductase. A cDNA encoding the human glutaredoxin gene (HGMW-approved symbol GLRX) has recently been isolated and cloned from a human fetal spleen cDNA library. The screening of a human fetal spleen cDNA library. The screening of a human genomic library in Charon 4A led to the identification of three genomic clones. Using fluorescence in situ hybridization to metaphase chromosomes with one genomic clone as a probe, the human glutaredoxin gene was localized to chromosomal region 5q14. This localization at chromosome 5 was in agreement with the somatic cell hybrid analysis, using DNA from a human-hamster and a human-mouse hybrid panel and using a human glutaredoxin cDNA as a probe. 13 refs., 2 figs.

  6. Evolutionarily diverged regulation of X-chromosomal genes as a primal event in mouse reproductive isolation.

    Science.gov (United States)

    Oka, Ayako; Takada, Toyoyuki; Fujisawa, Hironori; Shiroishi, Toshihiko

    2014-04-01

    Improper gene regulation is implicated in reproductive isolation, but its genetic and molecular bases are unknown. We previously reported that a mouse inter-subspecific X chromosome substitution strain shows reproductive isolation characterized by male-specific sterility due to disruption of meiotic entry in spermatogenesis. Here, we conducted comprehensive transcriptional profiling of the testicular cells of this strain by microarray. The results clearly revealed gross misregulation of gene expression in the substituted donor X chromosome. Such misregulation occurred prior to detectable spermatogenetic impairment, suggesting that it is a primal event in reproductive isolation. The misregulation of X-linked genes showed asymmetry; more genes were disproportionally downregulated rather than upregulated. Furthermore, this misregulation subsequently resulted in perturbation of global transcriptional regulation of autosomal genes, probably by cascading deleterious effects. Remarkably, this transcriptional misregulation was substantially restored by introduction of chromosome 1 from the same donor strain as the X chromosome. This finding implies that one of regulatory genes acting in trans for X-linked target genes is located on chromosome 1. This study collectively suggests that regulatory incompatibility is a major cause of reproductive isolation in the X chromosome substitution strain.

  7. Dosage Effects of X and Y Chromosomes on Language and Social Functioning in Children with Supernumerary Sex Chromosome Aneuploidies: Implications for Idiopathic Language Impairment and Autism Spectrum Disorders

    Science.gov (United States)

    Lee, Nancy Raitano; Wallace, Gregory L.; Adeyemi, Elizabeth I.; Lopez, Katherine C.; Blumenthal, Jonathan D.; Clasen, Liv S.; Giedd, Jay N.

    2012-01-01

    Background: Supernumerary sex chromosome aneuploidies (X/Y-aneuploidies), the presence of extra X and/or Y chromosomes, are associated with heightened rates of language impairments and social difficulties. However, no single study has examined different language domains and social functioning in the same sample of children with tri-, tetra-, and…

  8. Chromosome segregation regulation in human zygotes : Altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex

    NARCIS (Netherlands)

    Van De Werken, C.; Avo Santos, M.; Laven, J. S E; Eleveld, C.; Fauser, B. C J M; Lens, S. M A; Baart, E. B.

    2015-01-01

    STUDY QUESTION Are the kinase feedback loops that regulate activation and centromeric targeting of the chromosomal passenger complex (CPC), functional during mitosis in human embryos? SUMMARY ANSWER Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal

  9. X chromosome array-CGH for the identification of novel X-linked mental retardation genes.

    Science.gov (United States)

    Bauters, Marijke; Van Esch, Hilde; Marynen, Peter; Froyen, Guy

    2005-01-01

    Array-CGH technology for the detection of submicroscopic copy number changes in the genome has recently been developed for the identification of novel disease-associated genes. It has been estimated that submicroscopic genomic deletions or duplications will be present in 5-7% of patients with idiopathic mental retardation (MR). Since 30% more males than females are diagnosed with MR, we have developed a full coverage X chromosome array-CGH with a theoretical resolution of 82 kb, for the detection of copy number alterations in patients with suspected X-linked mental retardation (XLMR). First, we have validated the genomic location of X-derived clones through male versus female hybridisations. Next, we validated our array for efficient and reproducible detection of known alterations in XLMR patients. In all cases, we were able to detect the deletions and duplications in males as well as females. Due to the high resolution of our X-array, the boundaries of the genomic aberrations could clearly be identified making genotype-phenotype studies more reliable. Here, we describe the production and validation of a full coverage X-array-CGH, which will allow for fast and easy screening of submicroscopic copy number alterations in XLMR patients with the aim to identify novel MR genes or mechanisms involved in a deranged cognitive development.

  10. Amenorréia e anormalidades do cromossomo X Amenorrhea and X chromosome abnormalities

    Directory of Open Access Journals (Sweden)

    Rafael Fabiano Machado Rosa

    2008-10-01

    Full Text Available OBJETIVO: correlacionar as manifestações clínicas de pacientes com amenorréia e anormalidades do cromossomo X. MÉTODOS: realizou-se uma análise retrospectiva dos achados clínicos e laboratoriais das pacientes com amenorréia e anormalidades do cromossomo X, atendidas entre janeiro de 1975 e novembro de 2007. Suas medidas antropométricas foram avaliadas através de tabelas de crescimento padrão, sendo que, quando presentes, dismorfias menores e maiores foram anotadas. O estudo dos cromossomos foi realizado através do cariótipo com bandamento GTG. RESULTADOS: do total de 141 pacientes com amenorréia, 16% apresentavam anormalidades numéricas e 13% estruturais do cromossomo X. Destas pacientes com anormalidade do X (n=41, 35 possuíam descrição clínica completa. Todas elas apresentavam hipogonadismo hipergonadotrófico. Amenorréia primária foi observada em 24 pacientes, das quais 91,7% com fenótipo de síndrome de Turner. Com exceção de um caso com deleção Xq22-q28, todas as demais pacientes com este fenótipo apresentavam alterações envolvendo Xp (uma com uma linhagem 46,XY associada. Os dois casos restantes com apenas amenorréia primária possuíam deleções proximais de Xq. Entre as 11 pacientes com amenorréia secundária, 54,5% apresentavam fenótipo de Turner (todas com monossomia do X isolada ou em mosaico. Entre aquelas com fenótipo de falência ovariana isolada observaram-se somente deleções Xq e trissomia do X. CONCLUSÕES: a análise cromossômica deve sempre ser realizada em mulheres com falência ovariana de causa não conhecida, mesmo na ausência de achados dismórficos. Esta também é de extrema importância em pacientes sindrômicas, pois, além de confirmar o diagnóstico, é capaz de identificar pacientes em risco, como nos casos com uma linhagem 46,XY.PURPOSE: to correlate the clinical manifestations of patients with amenorrhea and X chromosome abnormalities. METHODS: a retrospective analysis of the

  11. Human estrogen sulfotransferase gene (STE): Cloning, structure, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Her, Chengtao; Aksoy, I.A.; Weinshilboum, M. [Mayo Foundation, Rochester, MI (United States)] [and others

    1995-09-01

    Sulfation is an important pathway in the metabolism of estrogens. We recently cloned a human liver estrogen sulfotransferase (EST) cDNA. We have now determined the structure and chromosomal localization of the EST gene, STE, as a step toward molecular genetic studies of the regulation of EST in humans. STE spans approximately 20 kb and consists of 8 exons, ranging in length from 95 to 181 bp. The locations of most exon-intron splice junctions within STE are identical to those found in a human phenol ST (PST) gene, STM, and in a rat PST gene. In addition, the locations of five STE introns are also conserved in the human dehydroepiandrosterone (DBEA) ST gene, STD. The 5{prime} flanking region of STE contains one CCAAT and two TATA sequences. The location of one of the TATA box elements is in excellent agreement with the site of transcription initiation as determined by 5{prime}-rapid amplification of cDNA ends. STE was mapped to human chromosome 4q13.1 by fluorescence in situ hybridization. Cloning and structural characterization of STE will now make it possible to study potential molecular genetic mechanisms involved in the regulation of EST in human tissues. 50 refs., 6 figs., 1 tab.

  12. Mean expression of the X chromosome is associated with neuronal density

    Directory of Open Access Journals (Sweden)

    James Thomas Swingland

    2012-11-01

    Full Text Available Neurodegenerative diseases are characterised by neuronal loss. Neuronal loss causes a varying density of neurons across samples which confounds results from gene expression studies. Chromosome X is known to be specifically important in brain. We hypothesised the existence of a chromosomal signature of gene expression associated with the X-chromosome for neurological conditions not normally associated with that chromosome. The hypothesis was investigated using microarray datasets from studies on Parkinson's disease, Alzheimer's disease and Huntington's disease. Data were analysed using Chromowave, an analytical tool for detecting spatially extended expression changes across chromosomes. To examine associations with neuronal density, expressions from a set of neuron specific genes were extracted. The association between these genes and the expression patterns extracted by Chromowave was then analyzed. We observed an extended pattern of low expression of ChrX consistent in all the neurodegenerative disease brain datasets. There was a strong correlation between mean ChrX expression and the pattern extracted from the autosomal neuronal specific genes, but no correlation with mean autosomal expression. No chromosomal patterns associated with the neuron specific genes were found on other chromosomes. The chromosomal expression pattern was not present in datasets from blood cells. The ChrX:Autosome expression ratio was also higher in neuronal cells than in tissues with a mix of cell types.The results suggest that a loss of neurons manifests in gene expression experiments primarily as a reduction in mean expression of genes along ChrX. The most likely explanation for this finding relates to the documented general up-regulation of ChrX in brain tissue which, this work suggests, occurs primarily in neurons. The purpose and mechanisms behind this cell specific higher expression warrant further research, which may also help elucidate connectio

  13. Distal 5q trisomy resulting from an X;5 translocation detected by chromosome painting.

    Science.gov (United States)

    Abuelo, D N; Ahsanuddin, A N; Mark, H F

    2000-10-23

    We describe the case of a 13-year-old girl with an apparently de novo unbalanced translocation resulting in the presence of additional chromosomal material on the short arm of one X chromosome, which was detected by conventional G-banding studies. Fluorescence in situ hybridization (FISH) using the Chromoprobe Multiprobe-M protocol confirmed that the additional chromosomal material originated from chromosome 5. The karyotype of this patient is now established to be 46,X,der(X) t(X;5)(p22.3;q33), with a deletion of Xp22.3-pter and partial trisomy of 5q33-qter. The distal 5q trisomy genotype has been associated with clinical signs that include growth and mental retardation, eczema, craniofacial anomalies, and malformations of heart, lungs, abdomen, limbs, and genitalia. Our patient also has short stature, a prominent nasal bridge, a flat philtrum, a thin upper lip, dental caries, and limb and cardiac malformations, but she appears to be mildly affected compared with previously reported cases. This is the first case of distal 5q trisomy arising from a translocation with the X chromosome. Replication studies on this patient show that the derivative t(X;5) chromosome is late replicating in almost all cells examined, which indicates that this chromosome is preferentially inactivated. However, the translocated segment of chromosome 5 appears to be early replicating, which implies that the trisomic 5q segment is transcriptionally active. We cannot determine from these studies whether all or only some genes in this segment are expressed, but this patient's relatively mild clinical signs suggest that the critical region(s) that contribute to the distal 5q trisomy phenotype are at least partly suppressed. A review of other patients with X-chromosome translocations indicates that many but not all of them also have attenuated phenotypes. The mechanism of inactivation of autosomal material attached to the X chromosome is complex, with varying effects on the phenotype of the

  14. Multicolor FISHs for simultaneous detection of genes and DNA segments on human chromosomes.

    Science.gov (United States)

    Shimizu, Nobuyoshi; Maekawa, Masahiko; Asai, Satoko; Shimizu, Yoshiko

    2015-12-01

    We have developed a convenient multicolor fluorescent in situ hybridization (FISH) (five-, four-, three-, and two-color FISHs) for detecting specific genes/DNA segments on the human chromosomes. As a foundation of multicolor FISH, we first isolated 80 bacterial artificial chromosome (BAC) probes that specifically detect the peri-centromeres (peri-CEN) and subtelomeres (subTEL) of 24 different human chromosomes (nos. 1~22, X, and Y) by screening our homemade BAC library (Keio BAC library) consisting of 200,000 clones. Five-color FISH was performed using human DNA segments specific for peri-CEN or subTEL, which were labeled with five different fluorescent dyes [7-diethylaminocoumarin (DEAC): blue, fluorescein isothiocyanate (FITC): green, rhodamine 6G (R6G): yellow, TexRed: red, and cyanine5 (Cy5): purple]. To observe FISH signals under a fluorescence microscope, five optic filters were carefully chosen to avoid overlapping fluorescence emission. Five-color FISH and four-color FISH enabled us to accurately examine the numerical anomaly of human chromosomes. Three-color FISH using two specific BAC clones, that distinguish 5' half of oncogene epidermal growth factor receptor (EGFR) from its 3' half, revealed the amplification and truncation of EGFR in EGFR-overproducing cancer cells. Moreover, two-color FISH readily detected a fusion gene in leukemia cells such as breakpoint cluster region (BCR)/Abelson murine leukemia viral oncogene homologue (ABL) on the Philadelphia (Ph') chromosome with interchromosomal translocation. Some other successful cases such as trisomy 21 of Down syndrome are presented. Potential applications of multicolor FISH will be discussed.

  15. Chromosome surveys of human populations: between epidemiology and anthropology.

    Science.gov (United States)

    de Chadarevian, Soraya

    2014-09-01

    It is commonly held that after 1945 human genetics turned medical and focussed on the individual rather than on the study of human populations that had become discredited. However, a closer look at the research practices at the time quickly reveals that human population studies, using old and new tools, prospered in this period. The essay focuses on the rise of chromosome analysis as a new tool for the study of human populations. It reviews a broad array of population studies ranging from newborn screening programmes to studies of isolated or 'primitive' people. Throughout, it highlights the continuing role of concerns and opportunities raised by the propagation of atomic energy for civilian and military uses, the collection of large data bases and computers, and the role of international organisations like the World Health Organisation and the International Biological Programme in shaping research agendas and carving out a space for human heredity in the postwar era.

  16. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation.

    Directory of Open Access Journals (Sweden)

    Hélène Royo

    2015-10-01

    Full Text Available During the pachytene stage of meiosis in male mammals, the X and Y chromosomes are transcriptionally silenced by Meiotic Sex Chromosome Inactivation (MSCI. MSCI is conserved in therian mammals and is essential for normal male fertility. Transcriptomics approaches have demonstrated that in mice, most or all protein-coding genes on the X chromosome are subject to MSCI. However, it is unclear whether X-linked non-coding RNAs behave in a similar manner. The X chromosome is enriched in microRNA (miRNA genes, with many exhibiting testis-biased expression. Importantly, high expression levels of X-linked miRNAs (X-miRNAs have been reported in pachytene spermatocytes, indicating that these genes may escape MSCI, and perhaps play a role in the XY-silencing process. Here we use RNA FISH to examine X-miRNA expression in the male germ line. We find that, like protein-coding X-genes, X-miRNAs are expressed prior to prophase I and are thereafter silenced during pachynema. X-miRNA silencing does not occur in mouse models with defective MSCI. Furthermore, X-miRNAs are expressed at pachynema when present as autosomally integrated transgenes. Thus, we conclude that silencing of X-miRNAs during pachynema in wild type males is MSCI-dependent. Importantly, misexpression of X-miRNAs during pachynema causes spermatogenic defects. We propose that MSCI represents a chromosomal mechanism by which X-miRNAs, and other potential X-encoded repressors, can be silenced, thereby regulating genes with critical late spermatogenic functions.

  17. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation.

    Science.gov (United States)

    Royo, Hélène; Seitz, Hervé; ElInati, Elias; Peters, Antoine H F M; Stadler, Michael B; Turner, James M A

    2015-10-01

    During the pachytene stage of meiosis in male mammals, the X and Y chromosomes are transcriptionally silenced by Meiotic Sex Chromosome Inactivation (MSCI). MSCI is conserved in therian mammals and is essential for normal male fertility. Transcriptomics approaches have demonstrated that in mice, most or all protein-coding genes on the X chromosome are subject to MSCI. However, it is unclear whether X-linked non-coding RNAs behave in a similar manner. The X chromosome is enriched in microRNA (miRNA) genes, with many exhibiting testis-biased expression. Importantly, high expression levels of X-linked miRNAs (X-miRNAs) have been reported in pachytene spermatocytes, indicating that these genes may escape MSCI, and perhaps play a role in the XY-silencing process. Here we use RNA FISH to examine X-miRNA expression in the male germ line. We find that, like protein-coding X-genes, X-miRNAs are expressed prior to prophase I and are thereafter silenced during pachynema. X-miRNA silencing does not occur in mouse models with defective MSCI. Furthermore, X-miRNAs are expressed at pachynema when present as autosomally integrated transgenes. Thus, we conclude that silencing of X-miRNAs during pachynema in wild type males is MSCI-dependent. Importantly, misexpression of X-miRNAs during pachynema causes spermatogenic defects. We propose that MSCI represents a chromosomal mechanism by which X-miRNAs, and other potential X-encoded repressors, can be silenced, thereby regulating genes with critical late spermatogenic functions.

  18. The evolution of X chromosome inactivation in mammals: the demise of Ohno's hypothesis?

    Science.gov (United States)

    Pessia, Eugénie; Engelstädter, Jan; Marais, Gabriel A B

    2014-04-01

    Ohno's hypothesis states that dosage compensation in mammals evolved in two steps: a twofold hyperactivation of the X chromosome in both sexes to compensate for gene losses on the Y chromosome, and silencing of one X (X-chromosome inactivation, XCI) in females to restore optimal dosage. Recent tests of this hypothesis have returned contradictory results. In this review, we explain this ongoing controversy and argue that a novel view on dosage compensation evolution in mammals is starting to emerge. Ohno's hypothesis may be true for a few, dosage-sensitive genes only. If so few genes are compensated, then why has XCI evolved as a chromosome-wide mechanism? This and several other questions raised by the new data in mammals are discussed, and future research directions are proposed.

  19. Non-meiotic chromosome instability in human immature oocytes.

    Science.gov (United States)

    Daina, Gemma; Ramos, Laia; Rius, Mariona; Obradors, Albert; Del Rey, Javier; Giralt, Magda; Campillo, Mercedes; Velilla, Esther; Pujol, Aïda; Martinez-Pasarell, Olga; Benet, Jordi; Navarro, Joaquima

    2014-02-01

    Aneuploidy has been a major issue in human gametes and is closely related to fertility problems, as it is known to be present in cleavage stage embryos and gestational losses. Pre-meiotic chromosome abnormalities in women have been previously described. The aim of this study is to assess the whole-chromosome complement in immature oocytes to find those abnormalities caused by mitotic instability. For this purpose, a total of 157 oocytes at the germinal vesicle or metaphase I stage, and discarded from IVF cycles, were analysed by CGH. Fifty-six women, between 18 and 45 years old (mean 32.5 years), including 32 IVF patients (25-45 years of age) and 24 IVF oocyte donors (18-33 years of age), were included in the study. A total of 25/157 (15.9%) of the oocytes analysed, obtained from three IVF clinics, contained chromosome abnormalities, including both aneuploidy (24/157) and structural aberrations (9/157). Independently of the maternal age, the incidence of abnormal oocytes which originated before meiosis is 15.9%, and these imbalances were found in 33.9% of the females studied. This work sheds light on the relevance of mitotic instability responsible for the generation of the abnormalities present in human oocytes.

  20. Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, P.E.; Gosden, J.; Lawson, D. [Western General Hospital, Edinburgh (United Kingdom)] [and others

    1996-04-15

    Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize and spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.

  1. Preleptotene chromosome condensation stage in human foetal and neonatal testes.

    Science.gov (United States)

    Luciani, J M; Devictor, M; Stahl, A

    1977-04-01

    A preleptotene stage of chromosome condensation analogous to that already described in various plants and in the oocytes of several animal species has been observed in the human foetal testis. Contrary to what has been previously described, this stage in the testis is not followed by decondensation leading to leptotene filaments. This observation underlines the problem of the precise significance of this stage and its relation to initiation of meiosis. It is suggested that meiosis may be initiated during this condensation phase and that the male germ cell, despite its XY chromosome constitution, tends to evolve towards meiosis. This proposal pleads in favour of both the role of somatic cells in the inhibition of meiosis in the male foetus and the role of environmental factors rather than genetic constitution of the germ cell in meiotic induction.

  2. HACking the centromere chromatin code: insights from human artificial chromosomes.

    Science.gov (United States)

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  3. A novel method for sex determination by detecting the number of X chromosomes.

    Science.gov (United States)

    Nakanishi, Hiroaki; Shojo, Hideki; Ohmori, Takeshi; Hara, Masaaki; Takada, Aya; Adachi, Noboru; Saito, Kazuyuki

    2015-01-01

    A novel method for sex determination, based on the detection of the number of X chromosomes, was established. Current methods, based on the detection of the Y chromosome, can directly identify an unknown sample as male, but female gender is determined indirectly, by not detecting the Y chromosome. Thus, a direct determination of female gender is important because the quality (e.g., fragmentation and amelogenin-Y null allele) of the Y chromosome DNA may lead to a false result. Thus, we developed a novel sex determination method by analyzing the number of X chromosomes using a copy number variation (CNV) detection technique (the comparative Ct method). In this study, we designed a primer set using the amelogenin-X gene without the CNV region as the target to determine the X chromosome copy number, to exclude the influence of the CNV region from the comparative Ct value. The number of X chromosomes was determined statistically using the CopyCaller software with real-time PCR. All DNA samples from participants (20 males, 20 females) were evaluated correctly using this method with 1-ng template DNA. A minimum of 0.2-ng template DNA was found to be necessary for accurate sex determination with this method. When using ultraviolet-irradiated template DNA, as mock forensic samples, the sex of the samples could not be determined by short tandem repeat (STR) analysis but was correctly determined using our method. Thus, we successfully developed a method of sex determination based on the number of X chromosomes. Our novel method will be useful in forensic practice for sex determination.

  4. X-chromosomal inactivation directly influences the phenotypic manifestation of X-linked protoporphyria

    Science.gov (United States)

    Brancaleoni, V.; Balwani, M.; Granata, F.; Graziadei, G.; Missineo, P.; Fiorentino, V.; Fustinoni, S.; Cappellini, M.D.; Naik, H.; Desnick, R.J.; Di Pierro, E.

    2015-01-01

    X-linked protoporphyria (XLP), a rare erythropoietic porphyria, results from terminal exon gain-of-function mutations in the ALAS2 gene causing increased ALAS2 activity and markedly increased erythrocyte protoporphyrin levels. Patients present with severe cutaneous photosensitivity and may develop liver dysfunction. XLP was originally reported as X-linked dominant with 100% penetrance in males and females. We characterized 11 heterozygous females from six unrelated XLP families and show markedly varying phenotypic and biochemical heterogeneity, reflecting the degree of X-chromsomal inactivation of the mutant gene. ALAS2 sequencing identified the specific mutation and confirmed heterozygosity among the females. Clinical history, plasma and erythrocyte protoporphyrin levels were determined. Methylation assays of the androgen receptor and zinc-finger MYM type 3 short tandem repeat polymorphisms estimated each heterozygotes X-chromosomal inactivation pattern. Heterozygotes with equal or increased skewing, favoring expression of the wild-type allele had no clinical symptoms and only slightly increased erythrocyte protoporphyrin concentrations and/or frequency of protoporphyrin-containing peripheral blood fluorocytes. When the wild-type allele was preferentially inactivated, heterozygous females manifested the disease phenotype and had both higher erythrocyte protoporphyrin levels and circulating fluorocytes. These findings confirm that the previous dominant classification of XLP is inappropriate and genetically misleading, as the disorder is more appropriately designated XLP. PMID:25615817

  5. X-Chromosome Control of Genome-Scale Recombination Rates in House Mice.

    Science.gov (United States)

    Dumont, Beth L

    2017-02-03

    Sex differences in recombination are widespread in mammals, but the causes of this pattern are poorly understood. Previously, males from two interfertile subspecies of house mice, Mus musculus musculus and M. m. castaneus, were shown to exhibit a ~30% difference in their global crossover frequencies. Much of this crossover rate divergence is explained by six autosomal loci and a large-effect locus on the X chromosome. Intriguingly, the allelic effects at this X-linked locus are transgressive, with the allele conferring increased crossover rate transmitted by the low crossover rate M. m. castaneus parent. Despite the pronounced divergence between males, females from these subspecies exhibit similar crossover rates, raising the question of how recombination is genetically controlled in this sex. Here, I analyze publicly available genotype data from early generations of the Collaborative Cross, an 8-way panel of recombinant inbred strains, to estimate crossover frequencies in female mice with sex chromosome genotypes of diverse sub-specific origins. Consistent with the transgressive influence of the X chromosome in males, I show that females inheriting a M. m. castaneus X possess higher average crossover rates than females lacking the M. m. castaneus X chromosome. The differential inheritance of the X chromosome in males and females provides a simple genetic explanation for sex-limited evolution of this trait. Further, the presence of X-linked and autosomal crossover rate modifiers with antagonistic effects hints at an underlying genetic conflict fueled by selection for distinct crossover rate optima in males and females.

  6. A high density of human communication-associated genes in chromosome 7q31-q36: differential expression in human and non-human primate cortices.

    Science.gov (United States)

    Schneider, E; Jensen, L R; Farcas, R; Kondova, I; Bontrop, R E; Navarro, B; Fuchs, E; Kuss, A W; Haaf, T

    2012-01-01

    The human brain is distinguished by its remarkable size, high energy consumption, and cognitive abilities compared to all other mammals and non-human primates. However, little is known about what has accelerated brain evolution in the human lineage. One possible explanation is that the appearance of advanced communication skills and language has been a driving force of human brain development. The phenotypic adaptations in brain structure and function which occurred on the way to modern humans may be associated with specific molecular signatures in today's human genome and/or transcriptome. Genes that have been linked to language, reading, and/or autism spectrum disorders are prime candidates when searching for genes for human-specific communication abilities. The database and genome-wide expression analyses we present here revealed a clustering of such communication-associated genes (COAG) on human chromosomes X and 7, in particular chromosome 7q31-q36. Compared to the rest of the genome, we found a high number of COAG to be differentially expressed in the cortices of humans and non-human primates (chimpanzee, baboon, and/or marmoset). The role of X-linked genes for the development of human-specific cognitive abilities is well known. We now propose that chromosome 7q31-q36 also represents a hot spot for the evolution of human-specific communication abilities. Selective pressure on the T cell receptor beta locus on chromosome 7q34, which plays a pivotal role in the immune system, could have led to rapid dissemination of positive gene variants in hitchhiking COAG.

  7. A new species of Endecous Saussure, 1878 (Orthoptera, Gryllidae) from northeast Brazil with the first X1X20 chromosomal sex system in Gryllidae.

    Science.gov (United States)

    Zefa, Edison; Redü, Darlan Rutz; Da Costa, Maria Kátia Matiotti; Fontanetti, Carmem S; Gottschalk, Marco Silva; Padilha, Giovanna Boff; Fernandes e Silva, Anelise; Martins, Luciano De P

    2014-08-06

    In this paper we describe a new species of Luzarinae cricket collected from the cave "Gruta de Ubajara, municipality of Ubajara, State of Ceará, Brazil, highlighting phallic sclerites morphology and chromosome complement as diagnostic characters. We presented meiotic and mitotic characterization in order to define the karyotype with 2n = 12 + X1X2♂/12 + X1X1X2X2♀. This represents the first record of X1X20 chromosomal sex system in Gryllidae.

  8. Patterns of association in the human metaphase complement: ring analysis and estimation of associativity of specific chromosome regions.

    Science.gov (United States)

    Rodman, T C; Flehinger, B J; Squire, R D

    1978-02-23

    The pattern of metaphase chromosome association in the human complement was studied by two methods of statistical analysis of interchromosomal distances. Those methods included ring analysis in which a characteristic position of the centromere of each chromosome relative to the center of a two dimensional representation of a metaphase complement was defined, and estimation of the capacity for associativity of each of three regions of each chromosome: the centromere (c) and the ends of each arm (p, q). The following information was obtained: 1. In general, the distance from the center is directly related to chromosome size. 2. The most notable deviation from that size-related progression is displayed by the X chromosomes. The markedly peripheral position of the X is characteristic of both X's of the female and the single X of the male. 3. The relative associativity of each chromosome of the complement is, in general, inversely related to size with an additional preferential capacity of associativity displayed by the acrocentric chromosomes. Analyses of the different inter-regional classes established that the supplementary associativity factor of the acrocentric chromosomes was inherent in their pericentromeric and p-arm regions and excluded the ends of the q arms from participation in that factor. 4. Those analyses demonstrated that the specific morphology or 'geometry' of the acrocentric chromosomes contributes little to their high relative associativity. In addition to the tendency for the c/p regions of the acrocentric chromosomes to associate with each other, presumably because of their common function in nucleolar organization, those regions also displayed a propensity to associate with the distal regions of the arms of other chromosomes. A molecular basis for that propensity other than that of ribosomal DNA is postulated to be that of other fractions of highly reiterated DNA sequences. 5. Analysis of the relative associativities of each of the three regions

  9. A Cmv2 QTL on chromosome X affects MCMV resistance in New Zealand male mice.

    Science.gov (United States)

    Rodriguez, Marisela R; Lundgren, Alyssa; Sabastian, Pearl; Li, Qian; Churchill, Gary; Brown, Michael G

    2009-07-01

    NK cell-mediated resistance to viruses is subject to genetic control in humans and mice. Here we used classical and quantitative genetic strategies to examine NK-mediated murine cytomegalovirus (MCMV) control in genealogically related New Zealand white (NZW) and black (NZB) mice. NZW mice display NK cell-dependent MCMV resistance while NZB NK cells fail to limit viral replication after infection. Unlike Ly49H(+) NK resistance in C57BL/6 mice, NZW NK-mediated MCMV control was Ly49H-independent. Instead, MCMV resistance in NZW (Cmv2) involves multiple genetic factors. To establish the genetic basis of Cmv2 resistance, we further characterized a major chromosome X-linked resistance locus (DXMit216) responsible for innate MCMV control in NZW x NZB crosses. We found that the DXMit216 locus affects early MCMV control in New Zealand F(2) crosses and demonstrate that the NZB-derived DXMit216 allele enhances viral resistance in F(2) males. The evolutionary conservation of the DXMit216 region in mice and humans suggests that a Cmv2-related mechanism may affect human antiviral responses.

  10. Nonrandom X chromosome inactivation in natural killer cells from obligate carriers of X-linked severe combined immunodeficiency

    Energy Technology Data Exchange (ETDEWEB)

    Wengler, G.S.; Parolini, O.; Conley, M.E. (Univ. of Tennessee, Memphis (United States) St. Jude Children' s Research Hospital, Memphis, TN (United States)); Allen, R.C. (Baylor College of Medicine, Houston, TX (United States)); Smith, H. (St. Jude Children' s Research Hospital, Memphis, TN (United States))

    1993-01-15

    X-linked severe combined immunodeficiency (XSCID) is characterized by hypogammaglobulinemia, markedly reduced numbers of T cells, absent mitogen responses, decreased numbers of NK cells, and normal or elevated numbers of B cells. The abnormalities in the NK cell and B cell lineages could be attributed to dependence of these cell lineages on T cells or T cell-derived factors, or to expression of the XSCID gene defect in these cell lineages. In past experiments, the authors have examined X chromosome inactivation patterns in T cells and cultured B cells from female obligate carriers of XSCID and have found that both cell lineages demonstrate nonrandom X chromosome inactivation. This indicates that the gene defect is intrinsic to both of these cell lineages. In the present experiments, a polymerase chain reaction technique was used to evaluate X chromosome inactivation patterns in highly purified populations of freshly isolated NK cells, B cells, CD4[sup +] cells, and CD8[sup +] cells from three obligate carriers of XSCID. All four lymphoid cell populations from these three women exhibited exclusive use of a single X as the active X. In contrast, both X chromosomes were used as the active X in neutrophils and monocytes. These findings indicate that the XSCID gene is expressed in the NK cell lineage as well as in T cells and B cells. This observation makes it highly unlikely that the XSCID gene is involved in Ag receptor gene rearrangements. 21 refs., 4 figs.

  11. Sequence and expression analysis of gaps in human chromosome 20

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Seemann, Stefan; Mang, Yuan;

    2012-01-01

    The finished human genome-assemblies comprise several hundred un-sequenced euchromatic gaps, which may be rich in long polypurine/polypyrimidine stretches. Human chromosome 20 (chr 20) currently has three unfinished gaps remaining on its q-arm. All three gaps are within gene-dense regions and....../or overlap disease-associated loci, including the DLGAP4 locus. In this study, we sequenced ~99% of all three unfinished gaps on human chr 20, determined their complete genomic sizes and assessed epigenetic profiles using a combination of Sanger sequencing, mate pair paired-end high-throughput sequencing...... and chromatin, methylation and expression analyses. We found histone 3 trimethylated at Lysine 27 to be distributed across all three gaps in immortalized B-lymphocytes. In one gap, five novel CpG islands were predominantly hypermethylated in genomic DNA from peripheral blood lymphocytes and human cerebellum...

  12. Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Daniela, E-mail: d.kraft@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Ritter, Sylvia, E-mail: s.ritter@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Durante, Marco, E-mail: m.durante@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Institute for Condensed Matter Physics, Physics Department, Technical University Darmstadt, Hochschulstraße 6-8, 64289 Darmstadt (Germany); Seifried, Erhard, E-mail: e.seifried@blutspende.de [Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Fournier, Claudia, E-mail: c.fournier@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Tonn, Torsten, E-mail: t.tonn@blutspende.de [Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Technische Universität Dresden, Med. Fakultät Carl Gustav Carus, Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Blasewitzer Straße 68/70, 01307 Dresden (Germany)

    2015-07-15

    Highlights: • Radiation induced formation and transmission of chromosomal aberrations were assessed. • Cytogenetic analysis was performed in human CD34+ HSPC by mFISH. • We report transmission of stable aberrations in irradiated, clonally expanded HSPC. • Unstable aberrations in clonally expanded HSPC occur independently of irradiation. • Carbon ions and X-rays bear a similar risk for propagation of cytogenetic changes. - Abstract: In radiation-induced acute myeloid leukemia (rAML), clonal chromosomal abnormalities are often observed in bone marrow cells of patients, suggesting that their formation is crucial in the development of the disease. Since rAML is considered to originate from hematopoietic stem and progenitor cells (HSPC), we investigated the frequency and spectrum of radiation-induced chromosomal abnormalities in human CD34{sup +} cells. We then measured stable chromosomal abnormalities, a possible biomarker of leukemia risk, in clonally expanded cell populations which were grown for 14 days in a 3D-matrix (CFU-assay). We compared two radiation qualities used in radiotherapy, sparsely ionizing X-rays and densely ionizing carbon ions (29 and 60–85 keV/μm, doses between 0.5 and 4 Gy). Only a negligible number of de novo arising, unstable aberrations (≤0.05 aberrations/cell, 97% breaks) were measured in the descendants of irradiated HSPC. However, stable aberrations were detected in colonies formed by irradiated HSPC. All cells of the affected colonies exhibited one or more identical aberrations, indicating their clonal origin. The majority of the clonal rearrangements (92%) were simple exchanges such as translocations (77%) and pericentric inversions (15%), which are known to contribute to the development of rAML. Carbon ions were more efficient in inducing cell killing (maximum of ∼30–35% apoptotic cells for 2 Gy carbon ions compared to ∼25% for X-rays) and chromosomal aberrations in the first cell-cycle after exposure (∼70% and

  13. Culture of human oocytes with granulocyte-macrophage colony-stimulating factor has no effect on embryonic chromosomal constitution

    DEFF Research Database (Denmark)

    Agerholm, Inge; Loft, Anne; Hald, Finn;

    2010-01-01

    The effect on ploidy rate in donated human oocytes after in-vitro culture with recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF; 2 ng/ml) from fertilization until day 3 was examined in a multicentre, prospective placebo-controlled and double-blinded study including 73......) and number of normally developed embryos evaluated morphologically on day 3. The cytogenetic analyses demonstrated non-inferiority and therefore the chromosomal constitution of human embryos cultured in vitro in the presence of 2 ng/ml GM-CSF was no worse than the control group cultured without GM-CSF. In-vitro...... women donating 86 oocytes. The primary endpoint was to investigate the chromosomal constitution of human embryos (fluorescence in-situ hybridization analysis for chromosomes 13, 16, 18, 21, 22, X and Y) cultured with or without GM-CSF. The secondary endpoints were number of top-quality embryos (TQE...

  14. Accounting for eXentricities: analysis of the X chromosome in GWAS reveals X-linked genes implicated in autoimmune diseases.

    Directory of Open Access Journals (Sweden)

    Diana Chang

    Full Text Available Many complex human diseases are highly sexually dimorphic, suggesting a potential contribution of the X chromosome to disease risk. However, the X chromosome has been neglected or incorrectly analyzed in most genome-wide association studies (GWAS. We present tailored analytical methods and software that facilitate X-wide association studies (XWAS, which we further applied to reanalyze data from 16 GWAS of different autoimmune and related diseases (AID. We associated several X-linked genes with disease risk, among which (1 ARHGEF6 is associated with Crohn's disease and replicated in a study of ulcerative colitis, another inflammatory bowel disease (IBD. Indeed, ARHGEF6 interacts with a gastric bacterium that has been implicated in IBD. (2 CENPI is associated with three different AID, which is compelling in light of known associations with AID of autosomal genes encoding centromere proteins, as well as established autosomal evidence of pleiotropy between autoimmune diseases. (3 We replicated a previous association of FOXP3, a transcription factor that regulates T-cell development and function, with vitiligo; and (4 we discovered that C1GALT1C1 exhibits sex-specific effect on disease risk in both IBDs. These and other X-linked genes that we associated with AID tend to be highly expressed in tissues related to immune response, participate in major immune pathways, and display differential gene expression between males and females. Combined, the results demonstrate the importance of the X chromosome in autoimmunity, reveal the potential of extensive XWAS, even based on existing data, and provide the tools and incentive to properly include the X chromosome in future studies.

  15. Accounting for eXentricities: analysis of the X chromosome in GWAS reveals X-linked genes implicated in autoimmune diseases.

    Science.gov (United States)

    Chang, Diana; Gao, Feng; Slavney, Andrea; Ma, Li; Waldman, Yedael Y; Sams, Aaron J; Billing-Ross, Paul; Madar, Aviv; Spritz, Richard; Keinan, Alon

    2014-01-01

    Many complex human diseases are highly sexually dimorphic, suggesting a potential contribution of the X chromosome to disease risk. However, the X chromosome has been neglected or incorrectly analyzed in most genome-wide association studies (GWAS). We present tailored analytical methods and software that facilitate X-wide association studies (XWAS), which we further applied to reanalyze data from 16 GWAS of different autoimmune and related diseases (AID). We associated several X-linked genes with disease risk, among which (1) ARHGEF6 is associated with Crohn's disease and replicated in a study of ulcerative colitis, another inflammatory bowel disease (IBD). Indeed, ARHGEF6 interacts with a gastric bacterium that has been implicated in IBD. (2) CENPI is associated with three different AID, which is compelling in light of known associations with AID of autosomal genes encoding centromere proteins, as well as established autosomal evidence of pleiotropy between autoimmune diseases. (3) We replicated a previous association of FOXP3, a transcription factor that regulates T-cell development and function, with vitiligo; and (4) we discovered that C1GALT1C1 exhibits sex-specific effect on disease risk in both IBDs. These and other X-linked genes that we associated with AID tend to be highly expressed in tissues related to immune response, participate in major immune pathways, and display differential gene expression between males and females. Combined, the results demonstrate the importance of the X chromosome in autoimmunity, reveal the potential of extensive XWAS, even based on existing data, and provide the tools and incentive to properly include the X chromosome in future studies.

  16. No severe and global X chromosome inactivation in meiotic male germline of Drosophila

    Directory of Open Access Journals (Sweden)

    Mikhaylova Lyudmila M

    2012-06-01

    Full Text Available Abstract This article is a response to Vibranovski et al. See correspondence article http://www.biomedcentral.com/1741-7007/10/49 and the original research article http://www.biomedcentral.com/1741-7007/9/29 We have previously reported a high propensity of testis-expressed X-linked genes to activation in meiotic cells, a similarity in global gene expression between the X chromosome and autosomes in meiotic germline, and under-representation of various types of tissue-specific genes on the X chromosome. Based on our findings and a critical review of the current literature, we believe that there is no global and severe silencing of the X chromosome in the meiotic male germline of Drosophila. The term 'meiotic sex chromosome inactivation' (MSCI therefore seems misleading when used to describe the minor underexpression of the X chromosome in the testis of Drosophila, because this term erroneously implies a profound and widespread silencing of the X-linked genes, by analogy to the well-studied MSCI system in mammals, and therefore distracts from identification and analysis of the real mechanisms that orchestrate gene expression and evolution in this species.

  17. Human Chromosome 21: Mapping of the chromosomes and cloning of cDNAs

    Energy Technology Data Exchange (ETDEWEB)

    Antonarakis, S.E.

    1991-09-01

    The objective of the research funded by DOE grant DE-FG02-89ER60857 from 6/15/89 to 8/31/91 was to contribute to the physical mapping of human chromosome 21 (HC21) by cloning large fragments of DNA into Yeast Artificial Chromosomes (YACs) and identify YACs that map on HC21. A total of 54 sequence tagged sites (STS) have been developed and mapped in our laboratory to HC21 and can be used as initial reference points for YAC identification and construction of overlapping clones. A small YAC library was constructed which is HC21 specific. DNA from somatic cell hybrid WAV17 or from flow-sorted HC21 was partially digested with EcoRI, ligated into vectors PJS97, PJS98, and YACs have been obtained with average size insert of more than 300 kb. This library has been deposited in D. Patterson's lab for the Joint YAC screening effort. Additional YAC libraries from ICI Pharmaceuticals or from Los Alamos National Laboratories have been screened with several STS and positive YACs have been identified. Work in progress includes screening of YAC libraries in order to construct overlapping clones, characterization of the cloning ends of YACs, characterization of additional STS and cloning of HC21 specific cDNAs. 15 refs., 2 figs., 5 tabs.

  18. Mapping of guanylin to murine chromosome 4 and human chromosome 1p34-p35

    Energy Technology Data Exchange (ETDEWEB)

    Sciaky, D.; Cohen, M.B. [Univ. of Cincinnati, OH (United States); Jenkins, N.A. [Mammalian Genetics Lab., Frederick, MD (United States)] [and others

    1995-03-20

    Guanylin is a 15-amino-acid peptide similar in structure and in function to ST{sub a}, the heat stable enterotoxin of enterotoxigenic Escherichia coli (4). Both guanylin and ST{sub a} bind guanylyl cyclase-C (GC-C), resulting in increased levels of intracellular cGMP and induction of Cl- secretion (4) via the cystic fibrosis transmembrane regulator (CFM) (2). Guanylin is a highly regulated intestinal gene that is differentially expressed along the duodenal-to-colonic and villus-to-crypt axes. Guanylin mRNA abundance is maximal in the distal small intestine and proximal colon, where the mRNA is detected mainly in differentiated villus epithelial cells and superficial colonic epithelial cells, respectively. The murine guanylin gene (Guca2) has been isolated and sequenced; the gene is 1.7 kb and consists of 3 exons. We report here the mapping of Guca2 to mouse chromosome 4 by linkage analysis and to human chromosome region 1p34-p35 using fluorescence in situ hybridization (FISH). 20 refs., 2 figs.

  19. Chromosome Aberration in Human Blood Lymphocytes Exposed to Energetic Protons

    Science.gov (United States)

    Hada, M.; George, Kerry A.; Cucinotta, F. A.

    2008-01-01

    During space flight, astronauts are exposed to a space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/micrometer. and doses ranged from 0.2 to 3 Gy. Over this energy the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction produces such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are LET dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.

  20. Transillumination spatially modulated illumination microscopy for human chromosome imaging

    Science.gov (United States)

    Pitris, Costas; Heracleous, Peter; Patsalis, Philippos

    2005-03-01

    Human chromosome analysis is an essential task in cytogenetics, especially in prenatal screening, genetic syndrome diagnosis, cancer pathology research and mutagen dosimetry. Chromosomal analysis begins with the creation of a karyotype, which is a layout of chromosome images organized by decreasing size in pairs. Both manual and automatic classification of chromosomes are limited by the resolution of the microscope and imaging system used. One way to improve the results of classification and even detect subtleties now remaining undetected, is to enhance the resolution of the images. It is possible to achieve lateral resolution beyond the classical limit, by using spatially modulated illumination (SMI) in a wide-field, non-confocal microscope. In this case, the sample is illuminated with spatially modulated light, which makes normally inaccessible high-resolution information visible in the observed image by shifting higher frequencies within the OTF limits of the microscope. Although, SMI microscopes have been reported in the past, this manuscript reports the development of a transillumination microscope for opaque, non-fluorescent samples. The illumination path consisted of a light source illuminating a ruled grating which was subsequently imaged on the sample. The grating was mounted on a rotating and translating stage so that the magnification and rotation of the pattern could be adjusted. The imaging lens was a 1.25 NA oil immersion objective. Test samples showed resolution improvement, as judged from a comparison of the experimentally obtained FWHM. Further studies using smaller fringe distance or laser interference pattern illumination will be evaluated to further optimize the SMI results.

  1. Chromosome aberrations in human blood lymphocytes exposed to energetic protons

    Science.gov (United States)

    Hada, Megumi; George, Ms Kerry; Cucinotta, Francis A.

    During space flight, astronauts are exposed to space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and are therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/µm. and doses ranged from 0.2 to 3 Gy. Over this energy range the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction products such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are energy dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.

  2. [Non-fluorescent Y chromosome in a 45,X/46,XY mosaic (author's transl)].

    Science.gov (United States)

    Kaluzewski, B; Jakubowski, L; Moruzgala, T; Bjanid, O; Romer, T E

    1978-09-01

    The case of a 18-year-old boy with small testes and deficient growth is reported. Histological examinations revealed an abnormal structure of the testicular tissue. The X chromatin test in buccal smears and the Y chromatin test in peripheral blood lymphocytes were negative. By chromosomal studies a 45,X/46,XY mosaicism was diagnosed. The Y chromosome did not show the typical fluorescence. Autoradiographic as well as Q- and G-banding techniques were performed in both the patient and his father. The patient's Y chromosome was shorter than his father's one, but longer than the non-fluorescent part of the paternal Y. The autoradiographic grain counts, Q- and G-band patterns showed a difference between the proband's Y chromosome and that of the father. The mechanism of the observed aberration is discussed.

  3. Progress towards construction of a total restriction fragment map of a human chromosome.

    NARCIS (Netherlands)

    H. Vissing; F.G. Grosveld (Frank); E. Solomon; G. Moore; N. Lench; N. Shennan; R. Williamson

    1987-01-01

    textabstractWe present an approach to the construction of an overlapping restriction fragment map of a single human chromosome. A genomic cosmid library genome was constructed from a mouse-human hybrid cell line containing chromosome 17 as its only human genetic component. Cosmids containing human i

  4. The X chromosome: does it have a role in Bloom syndrome, a genomic instability disorder?

    Science.gov (United States)

    Aslan, Deniz

    2014-01-01

    The Bloom syndrome, caused by mutations in a single gene [BLM (15q26.1)], is a rare genomic instability syndrome. Despite its autosomal recessive transmission, it shows a male dominance, suggesting the possibility of a subgroup with X-linked recessive inheritance. In view of the latest molecular developments achieved in the other genomic instability syndromes, the potential functions of the X chromosome in maintaining genomic stability, and particularly, the first clues of Bloom syndrome development by mechanisms other than the BLM, we suggest herein that the X chromosome should be investigated in Bloom syndrome.

  5. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome.

    Science.gov (United States)

    Thévenin, Annelyse; Ein-Dor, Liat; Ozery-Flato, Michal; Shamir, Ron

    2014-09-01

    Genomes undergo changes in organization as a result of gene duplications, chromosomal rearrangements and local mutations, among other mechanisms. In contrast to prokaryotes, in which genes of a common function are often organized in operons and reside contiguously along the genome, most eukaryotes show much weaker clustering of genes by function, except for few concrete functional groups. We set out to check systematically if there is a relation between gene function and gene organization in the human genome. We test this question for three types of functional groups: pairs of interacting proteins, complexes and pathways. We find a significant concentration of functional groups both in terms of their distance within the same chromosome and in terms of their dispersal over several chromosomes. Moreover, using Hi-C contact map of the tendency of chromosomal segments to appear close in the 3D space of the nucleus, we show that members of the same functional group that reside on distinct chromosomes tend to co-localize in space. The result holds for all three types of functional groups that we tested. Hence, the human genome shows substantial concentration of functional groups within chromosomes and across chromosomes in space.

  6. Tissue-specific differences in the spatial interposition of X-chromosome and 3R chromosome regions in the malaria mosquito Anopheles messeae Fall.

    Directory of Open Access Journals (Sweden)

    Gleb Artemov

    Full Text Available Spatial organization of a chromosome in a nucleus is very important in biology but many aspects of it are still generally unresolved. We focused on tissue-specific features of chromosome architecture in closely related malaria mosquitoes, which have essential inter-specific differences in polytene chromosome attachments in nurse cells. We showed that the region responsible for X-chromosome attachment interacts with nuclear lamina stronger in nurse cells, then in salivary glands cells in Anopheles messeae Fall. The inter-tissue differences were demonstrated more convincingly in an experiment of two distinct chromosomes interposition in the nucleus space of cells from four tissues. Microdissected DNA-probes from nurse cells X-chromosome (2BC and 3R chromosomes (32D attachment regions were hybridized with intact nuclei of nurse cells, salivary gland cells, follicle epithelium cells and imaginal disсs cells in 3D-FISH experiments. We showed that only salivary gland cells and follicle epithelium cells have no statistical differences in the interposition of 2BC and 32D. Generally, the X-chromosome and 3R chromosome are located closer to each other in cells of the somatic system in comparison with nurse cells on average. The imaginal disсs cell nuclei have an intermediate arrangement of chromosome interposition, similar to other somatic cells and nurse cells. In spite of species-specific chromosome attachments there are no differences in interposition of nurse cells chromosomes in An. messeae and An. atroparvus Thiel. Nurse cells have an unusual chromosome arrangement without a chromocenter, which could be due to the special mission of generative system cells in ontogenesis and evolution.

  7. Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus

    Science.gov (United States)

    Bondarenko, Semen M.; Artemov, Gleb N.; Stegniy, Vladimir N.

    2017-01-01

    Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in Anopheles. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the Anopheles atroparvus ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO—a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells. PMID:28158219

  8. Refining the genetic portrait of Portuguese Roma through X-chromosomal markers.

    Science.gov (United States)

    Pereira, Vânia; Gusmão, Leonor; Valente, Cristina; Pereira, Rui; Carneiro, João; Gomes, Iva; Morling, Niels; Amorim, António; João Prata, Maria

    2012-07-01

    Due to differences in transmission between X-chromosomal and autosomal DNA, the comparison of data derived from both markers allows deeper insight into the forces that shape the patterns of genetic diversity in populations. In this study, we applied this comparative approach to a sample of Portuguese Roma (Gypsies) by analyzing 43 X-chromosomal markers and 53 autosomal markers. Portuguese individuals of non-Gypsy ancestry were also studied. Compared with the host population, reduced levels of diversity on the X chromosome and autosomes were detected in Gypsies; this result was in line with known patterns of genetic diversity typical of Roma groups. As a consequence of the complex demographic past of the Roma, during which admixture and genetic drift played major roles, the amount of linkage disequilibrium (LD) on the X chromosome in Gypsies was considerably higher than that observed in non-Gypsies. When the pattern of differentiation on the X chromosome was compared with that of autosomes, there was evidence for asymmetries in female and male effective population sizes during the admixture between Roma and non-Roma. This result supplements previous data provided by mtDNA and the Y chromosome, underlining the importance of using combined information from the X chromosome and autosomes to dissect patterns of genetic diversity. Following the out-of-India dispersion, the Roma acquired a complex genetic pattern that was influenced by drift and introgression with surrounding populations, with important contributions from both males and females. We provide evidence that a sex-biased admixture with Europeans is probably associated with the founding of the Portuguese Gypsies.

  9. Many X-linked microRNAs escape meiotic sex chromosome inactivation.

    Science.gov (United States)

    Song, Rui; Ro, Seungil; Michaels, Jason D; Park, Chanjae; McCarrey, John R; Yan, Wei

    2009-04-01

    Meiotic sex chromosome inactivation (MSCI) during spermatogenesis is characterized by transcriptional silencing of genes on both the X and Y chromosomes in mid-to-late pachytene spermatocytes. MSCI is believed to result from meiotic silencing of unpaired DNA because the X and Y chromosomes remain largely unpaired throughout first meiotic prophase. However, unlike X-chromosome inactivation in female embryonic cells, where 25-30% of X-linked structural genes have been reported to escape inactivation, previous microarray- and RT-PCR-based studies of expression of >364 X-linked mRNA-encoding genes during spermatogenesis have failed to reveal any X-linked gene that escapes the silencing effects of MSCI in primary spermatocytes. Here we show that many X-linked miRNAs are transcribed and processed in pachytene spermatocytes. This unprecedented escape from MSCI by these X-linked miRNAs suggests that they may participate in a critical function at this stage of spermatogenesis, including the possibility that they contribute to the process of MSCI itself, or that they may be essential for post-transcriptional regulation of autosomal mRNAs during the late meiotic and early postmeiotic stages of spermatogenesis.

  10. The constrained maximal expression level owing to haploidy shapes gene content on the mammalian X chromosome

    DEFF Research Database (Denmark)

    Hurst, Laurence D.; Ghanbarian, Avazeh T.; Forrest, Alistair R R;

    2015-01-01

    abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed...

  11. High-speed AFM of human chromosomes in liquid

    Science.gov (United States)

    Picco, L. M.; Dunton, P. G.; Ulcinas, A.; Engledew, D. J.; Hoshi, O.; Ushiki, T.; Miles, M. J.

    2008-09-01

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  12. Chromosome region-specific libraries for human genome analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Fa-Ten.

    1991-01-01

    We have made important progress since the beginning of the current grant year. We have further developed the microdissection and PCR- assisted microcloning techniques using the linker-adaptor method. We have critically evaluated the microdissection libraries constructed by this microtechnology and proved that they are of high quality. We further demonstrated that these microdissection clones are useful in identifying corresponding YAC clones for a thousand-fold expansion of the genomic coverage and for contig construction. We are also improving the technique of cloning the dissected fragments in test tube by the TDT method. We are applying both of these PCR cloning technique to human chromosomes 2 and 5 to construct region-specific libraries for physical mapping purposes of LLNL and LANL. Finally, we are exploring efficient procedures to use unique sequence microclones to isolate cDNA clones from defined chromosomal regions as valuable resources for identifying expressed gene sequences in the human genome. We believe that we are making important progress under the auspices of this DOE human genome program grant and we will continue to make significant contributions in the coming year. 4 refs., 4 figs.

  13. Investigating the role of X chromosome breakpoints in premature ovarian failure

    Directory of Open Access Journals (Sweden)

    Baronchelli Simona

    2012-07-01

    Full Text Available Abstract The importance of the genetic factor in the aetiology of premature ovarian failure (POF is emphasized by the high percentage of familial cases and X chromosome abnormalities account for 10% of chromosomal aberrations. In this study, we report the detailed analysis of 4 chromosomal abnormalities involving the X chromosome and associated with POF that were detected during a screening of 269 affected women. Conventional and molecular cytogenetics were valuable tools for locating the breakpoint regions and thus the following karyotypes were defined: 46,X,der(Xt(X;19(p21.1;q13.42mat, 46,X,t(X;2(q21.33;q14.3dn, 46,X,der(Xt(X;Y(q26.2;q11.223mat and 46,X,t(X;13(q13.3;q31dn. A bioinformatic analysis of the breakpoint regions identified putative candidate genes for ovarian failure near the breakpoint regions on the X chromosome or on autosomes that were involved in the translocation event. HS6ST1, HS6ST2 and MATER genes were identified and their functions and a literature review revealed an interesting connection to the POF phenotype. Moreover, the 19q13.32 locus is associated with the age of onset of the natural menopause. These results support the position effect of the breakpoint on flanking genes, and cytogenetic techniques, in combination with bioinformatic analysis, may help to improve what is known about this puzzling disorder and its diagnostic potential.

  14. Quantitative genetics of CTCF binding reveal local sequence effects and different modes of X-chromosome association.

    Directory of Open Access Journals (Sweden)

    Zhihao Ding

    2014-11-01

    Full Text Available Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome.

  15. Small supernumerary marker chromosomes (sSMC) in humans; are there B chromosomes hidden among them

    OpenAIRE

    Ogilvie Caroline; Kosyakova Nadezda; Mrasek Kristin; Liehr Thomas; Vermeesch Joris; Trifonov Vladimir; Rubtsov Nikolai

    2008-01-01

    Abstract Background Small supernumerary marker chromosomes (sSMC) and B-chromosomes represent a heterogeneous collection of chromosomes added to the typical karyotype, and which are both small in size. They may consist of heterochromatic and/or euchromatic material. Also a predominance of maternal transmission was reported for both groups. Even though sSMC and B-chromosomes show some similarity it is still an open question if B-chromosomes are present among the heterogeneous group of sSMC. Ac...

  16. A molecularly defined duplication set for the X chromosome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Venken, Koen J. T.; Popodi, Ellen; Holtzman, Stacy L.; Schulze, Karen L.; Park, Soo; Carlson, Joseph W.; Hoskins, Roger A.; Bellen, Hugo J.; Kaufman, Thomas C.

    2010-07-22

    We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using C31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

  17. Detection of Selection Signatures on the X Chromosome in Three Sheep Breeds

    Directory of Open Access Journals (Sweden)

    Caiye Zhu

    2015-08-01

    Full Text Available Artificial selection has played a critical role in animal breeding. Detection of artificial selection footprints in genomic regions can provide insights for understanding the function of specific phenotypic traits and better guide animal breeding. To more fully understand the relationship between genomic composition and phenotypic diversity arising from breed development, a genome-wide scan was conducted using an OvineSNP50 BeadChip and integrated haplotype score and fixation index analyses to detect selection signatures on the X chromosome in three sheep breeds. We identified 49, 34, and 55 candidate selection regions with lengths of 27.49, 16.47, and 25.42 Mb in German Mutton, Dorper, and Sunit sheep, respectively. Bioinformatics analysis showed that some of the genes in these regions with selection signatures, such as BMP15, were relevant to reproduction. We also identified some selection regions harboring genes that had human orthologs, including BKT, CENPI, GUCY2F, MSN, PCDH11X, PLP1, VSIG4, PAK3, WAS, PCDH19, PDHA1, and SRPX2. The VSIG4 and PCDH11X genes are associated with the immune system and disease, PDHA1 is associated with biosynthetic related pathways, and PCDH19 is expressed in the nervous system and skin. These genes may be useful as candidate genes for molecular breeding.

  18. Detection of Selection Signatures on the X Chromosome in Three Sheep Breeds.

    Science.gov (United States)

    Zhu, Caiye; Fan, Hongying; Yuan, Zehu; Hu, Shijin; Zhang, Li; Wei, Caihong; Zhang, Qin; Zhao, Fuping; Du, Lixin

    2015-08-28

    Artificial selection has played a critical role in animal breeding. Detection of artificial selection footprints in genomic regions can provide insights for understanding the function of specific phenotypic traits and better guide animal breeding. To more fully understand the relationship between genomic composition and phenotypic diversity arising from breed development, a genome-wide scan was conducted using an OvineSNP50 BeadChip and integrated haplotype score and fixation index analyses to detect selection signatures on the X chromosome in three sheep breeds. We identified 49, 34, and 55 candidate selection regions with lengths of 27.49, 16.47, and 25.42 Mb in German Mutton, Dorper, and Sunit sheep, respectively. Bioinformatics analysis showed that some of the genes in these regions with selection signatures, such as BMP15, were relevant to reproduction. We also identified some selection regions harboring genes that had human orthologs, including BKT, CENPI, GUCY2F, MSN, PCDH11X, PLP1, VSIG4, PAK3, WAS, PCDH19, PDHA1, and SRPX2. The VSIG4 and PCDH11X genes are associated with the immune system and disease, PDHA1 is associated with biosynthetic related pathways, and PCDH19 is expressed in the nervous system and skin. These genes may be useful as candidate genes for molecular breeding.

  19. Cultivation and differentiation change nuclear localization of chromosome centromeres in human mesenchymal stem cells.

    Science.gov (United States)

    Voldgorn, Yana I; Adilgereeva, Elmira P; Nekrasov, Evgeny D; Lavrov, Alexander V

    2015-01-01

    Chromosome arrangement in the interphase nucleus is not accidental. Strong evidences support that nuclear localization is an important mechanism of epigenetic regulation of gene expression. The purpose of this research was to identify differences in the localization of centromeres of chromosomes 6, 12, 18 and X in human mesenchymal stem cells depending on differentiation and cultivating time. We analyzed centromere positions in more than 4000 nuclei in 19 mesenchymal stem cell cultures before and after prolonged cultivation and after differentiation into osteogenic and adipogenic directions. We found a centromere reposition of HSAX at late passages and after differentiation in osteogenic direction as well as of HSA12 and HSA18 after adipogenic differentiation. The observed changes of the nuclear structure are new nuclear characteristics of the studied cells which may reflect regulatory changes of gene expression during the studied processes.

  20. Cultivation and differentiation change nuclear localization of chromosome centromeres in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Yana I Voldgorn

    Full Text Available Chromosome arrangement in the interphase nucleus is not accidental. Strong evidences support that nuclear localization is an important mechanism of epigenetic regulation of gene expression. The purpose of this research was to identify differences in the localization of centromeres of chromosomes 6, 12, 18 and X in human mesenchymal stem cells depending on differentiation and cultivating time. We analyzed centromere positions in more than 4000 nuclei in 19 mesenchymal stem cell cultures before and after prolonged cultivation and after differentiation into osteogenic and adipogenic directions. We found a centromere reposition of HSAX at late passages and after differentiation in osteogenic direction as well as of HSA12 and HSA18 after adipogenic differentiation. The observed changes of the nuclear structure are new nuclear characteristics of the studied cells which may reflect regulatory changes of gene expression during the studied processes.

  1. Tissue- and stage-dependent dosage compensation on the Neo-X chromosome in drosophila pseudoobscura

    KAUST Repository

    Nozawa, Masafumi

    2013-12-03

    Sex chromosome dosage compensation (DC) is widely accepted in various organisms. This concept is mostly supported by comparisons of gene expression between chromosomes and between sexes. However, genes on the X chromosome and autosomes are mostly not homologous, and the average gene expression level on these chromosomes may not be the same even under DC, which complicates comparisons between chromosomes. Many genes with sex-biased expression also make comparisons between sexes difficult. To overcome these issues, we investigated DC by comparing the expression of neo-X-linked genes in Drosophila pseudoobscura with those of their autosomal orthologs in other Drosophila species. The ratio of the former to the latter in males would be 1 under DC, whereas it becomes 0.5 without DC. We found that the ratio was ∼0.85 for adult whole bodies, indicating that the DC is incomplete on the neo-X chromosome in adults as a whole. The ratio (∼0.90) was also significantly less than 1 for adult bodies without gonads, whereas it was ∼1.0 for adult heads. These results indicate that DC varies among tissues. Our sliding-window analysis of the ratio also revealed that the upregulation of neo-X-linked genes in males occurred chromosome wide in all tissues analyzed, indicating global upregulation mechanisms. However, we found that gene functions also affected the levels of DC. Furthermore, most of the genes recently moved to the X were already under DC at the larval stage but not at the adult stage. These results suggest that DC in Drosophila species operates in a tissue/stage-dependent manner. © 2013 The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.

  2. Isolation and comparative mapping of a human chromosome 20-specific alpha-satellite DNA clone.

    Science.gov (United States)

    Baldini, A; Archidiacono, N; Carbone, R; Bolino, A; Shridhar, V; Miller, O J; Miller, D A; Ward, D C; Rocchi, M

    1992-01-01

    We have isolated and characterized a human genomic DNA clone (PZ20, locus D20Z2) that identifies, under high-stringency hybridization conditions, an alphoid DNA subset specific for chromosome 20. The specificity was determined using fluorescence in situ hybridization. Sequence analysis confirmed our previously reported data on the great similarity between the chromosome 20 and chromosome 2 alphoid subsets. Comparative mapping of pZ20 on chimpanzee and gorilla chromosomes, also performed under high-stringency conditions, indicates that the alphoid subset has ancestral sequences on chimpanzee chromosome 11 and gorilla chromosome 19. However, no hybridization was observed to chromosomes 21 in the great apes, the homolog of human chromosome 20.

  3. Accelerated pseudogenization on the neo-X chromosome in Drosophila miranda

    KAUST Repository

    Nozawa, Masafumi

    2016-11-29

    Y chromosomes often degenerate via the accumulation of pseudogenes and transposable elements. By contrast, little is known about X-chromosome degeneration. Here we compare the pseudogenization process between genes on the neo-sex chromosomes in Drosophila miranda and their autosomal orthologues in closely related species. The pseudogenization rate on the neo-X is much lower than the rate on the neo-Y, but appears to be higher than the rate on the orthologous autosome in D. pseudoobscura. Genes under less functional constraint and/or genes with male-biased expression tend to become pseudogenes on the neo-X, indicating the accumulation of slightly deleterious mutations and the feminization of the neo-X. We also find a weak trend that the genes with female-benefit/male-detriment effects identified in D. melanogaster are pseudogenized on the neo-X, implying the masculinization of the neo-X. These observations suggest that both X and Y chromosomes can degenerate due to a complex suite of evolutionary forces.

  4. A ring chromosome X in a child with features of Kabuki Make-up syndrome

    Energy Technology Data Exchange (ETDEWEB)

    McGinniss, M.J.; Spring, N.; Brown, D.H. [Children`s Hospital, San Diego, CA (United States)] [and others

    1994-09-01

    The clinical features of this female patient (severe developmental delay, prominent finger pads, long palpebral fissures, short stature and history of hypotonia) suggested a diagnosis of Kabuki Make-up syndrome (KMS). Cytogenetic analyses showed this patient had a small ring X chromosome in 83% of cells and the parents were karyotypically normal. We hypothesized that deletion or rearrangement of X chromosome-derived sequences might be associated with the KMS-like phenotype observed in this patient. The breakpoints and parental origin of this small ring X were ascertained using a combination of genotyping with highly informative STRs and quantitative Southern blotting. PCR-based genotyping showed this female patient was heterozygous for X-linked loci SBMA (Xq11-q12) and DXS227 (Xq13.1). Hemizygosity was observed at several loci: DMD STR-49 (Xp21.2), DXS101 (Xq21.3), FMR-1 (Xq27.3) and DXYS64 (Xq28). Genotyping results at MIC2 (Xp22.3) and DXYS156 were not informative. These molecular genetic data indicate a large deletion of the distal long arm of the X chromosome and suggest a partial deletion of the distal short arm consistent with a small ring X chromosome with breakpoints near p21.2 and q13.1. This ring X chromosome is paternally-derived based on the observation that only the maternal alleles are inherited at three loci: (DMD STR-49, DXS101, and FMR-1). Studies to determine if the XIST gene at Xq13.3 is present and functioning on the ring chromosome are underway.

  5. Pattern of X-Y chromosome pairing in the Taiwan vole, Microtus kikuchii.

    Science.gov (United States)

    Mekada, K; Harada, M; Lin, L K; Koyasu, K; Borodin, P M; Oda, S I

    2001-02-01

    Pairing of X and Y chromosomes at meiotic prophase and the G- and C-banding patterns and nucleolar organizer region (NOR) distribution were analyzed in Microtus kikuchii. M. kikuchii is closely related to M. oeconomus and M. montebelli, karyologically and systematically. The formation of a synaptonemal complex between the X and Y chromosomes at pachytene and end-to-end association at diakinesis--metaphase I are only observed in three species in the genus Microtus; M. kikuchii, M. oeconomus, and M. montebelli. All the other species that have been studied so far have had asynaptic X-Y chromosomes. These data confirm that M. kikuchii, M. oeconomus, and M. montebelli are very closely related, and support the separation of asynaptic and synaptic groups on the phylogenetic tree.

  6. Micronuclei versus Chromosomal Aberrations Induced by X-Ray in Radiosensitive Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Cristina Plamadeala

    2015-03-01

    Full Text Available An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages.In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening.The first parameter consisting in micronuclei relative frequency has led to higher linear correlation coefficient than the second one consistent with chromosomal aberrations relative frequency. However, the latter parameter estimated as the sum of all chromosomal aberrations appeared to be more sensitive to radiation dose increasing in the studied dose range, from 0 to 3 Gy. The number of micronuclei occurring simultaneously in a single cell was not higher than 3, while the number of chromosomal aberrations observed in the same cell reached the value of 5 for doses over 1 Gy.Polynomial dose-response curves were evidenced for cells with Ni micronuclei (i=1,3 while non-monotonic curves were evidenced through detailed analysis of aberrant cells with Ni chromosomal changes [Formula: see text] - in concordance with in vitro studies from literature. The investigation could be important for public health issues where micronucleus screening is routinely applied but also for research purposes where various chromosomal aberrations could be of particular interest.

  7. The Social Behavioral Phenotype in Boys and Girls with an Extra X Chromosome (Klinefelter Syndrome and Trisomy X): A Comparison with Autism Spectrum Disorder

    Science.gov (United States)

    van Rijn, Sophie; Stockmann, Lex; Borghgraef, Martine; Bruining, Hilgo; van Ravenswaaij-Arts, Conny; Govaerts, Lutgarde; Hansson, Kerstin; Swaab, Hanna

    2014-01-01

    The present study aimed to gain more insight in the social behavioral phenotype, and related autistic symptomatology, of children with an extra X chromosome in comparison to children with ASD. Participants included 60 children with an extra X chromosome (34 boys with Klinefelter syndrome and 26 girls with Trisomy X), 58 children with ASD and 106…

  8. Autoimmunity and Klinefelter’s syndrome: when men have two X chromosomes

    OpenAIRE

    2009-01-01

    Similar to other autoimmune diseases, systemic lupus erythematosus (SLE) predominately affects women. Recent reports demonstrate excess Klinefelter’s among men with SLE and a possible under-representation of Turner’s syndrome among women with SLE as well as a case report of a 46,XX boy with SLE. These data suggest that risk of SLE is related to a gene dose effect for the X chromosome. Such an effect could be mediated by abnormal inactivation of genes on the X chromosome as has been demonstrat...

  9. Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16.

    Science.gov (United States)

    Goidts, Violaine; Szamalek, Justyna M; de Jong, Pieter J; Cooper, David N; Chuzhanova, Nadia; Hameister, Horst; Kehrer-Sawatzki, Hildegard

    2005-09-01

    Analyses of chromosomal rearrangements that have occurred during the evolution of the hominoids can reveal much about the mutational mechanisms underlying primate chromosome evolution. We characterized the breakpoints of the pericentric inversion of chimpanzee chromosome 18 (PTR XVI), which is homologous to human chromosome 16 (HSA 16). A conserved 23-kb inverted repeat composed of satellites, LINE and Alu elements was identified near the breakpoints and could have mediated the inversion by bringing the chromosomal arms into close proximity with each other, thereby facilitating intrachromosomal recombination. The exact positions of the breakpoints may then have been determined by local DNA sequence homologies between the inversion breakpoints, including a 22-base pair direct repeat. The similarly located pericentric inversion of gorilla (GGO) chromosome XVI, was studied by FISH and PCR analysis. The p- and q-arm breakpoints of the inversions in PTR XVI and GGO XVI were found to occur at slightly different locations, consistent with their independent origin. Further, FISH studies of the homologous chromosomal regions in macaque and orangutan revealed that the region represented by HSA BAC RP11-696P19, which spans the inversion breakpoint on HSA 16q11-12, was derived from the ancestral primate chromosome homologous to HSA 1. After the divergence of orangutan from the other great apes approximately 12 million years ago (Mya), a duplication of the corresponding region occurred followed by its interchromosomal transposition to the ancestral chromosome 16q. Thus, the most parsimonious interpretation is that the gorilla and chimpanzee homologs exhibit similar but nonidentical derived pericentric inversions, whereas HSA 16 represents the ancestral form among hominoids.

  10. Assessment of aneuploidy in human oocytes and preimplantation embryos by chromosome painting

    Energy Technology Data Exchange (ETDEWEB)

    Rougier, N.; Viegas-Pequignot, E.; Plachot, M. [Hospital Necker, Paris (France)] [and others

    1994-09-01

    The poor quality of chromosome preparations often observed after fixation of oocytes and embryos did not usually allow accurate identification of chromosomes involved in non-disjunctions. We, therefore, used chromosome painting to determine the incidence of abnormalities for chromosomes 1 and 7. A total of 50 oocytes inseminated for IVF and showing no signs of fertilization as well as 37 diploid embryos donated for research were fixed according to the Dyban`s technique. Fluorescence in situ hybridization was carried out using whole chromosome painting DNA probes specific for human chromosome 1 and 7. The incidence of aneuploidy was 28%, 10% and 60% for metaphase II, polar body and sperm chromosomes, respectively. The high incidence of aneuploidy observed in sperm prematurely condensed sperm chromosomes is due to the fact that usually far less than 23 sperm chromatids are observed, maybe as a consequence of incomplete chromosome condensation. Thirty seven embryos were analyzed with the same probes. 48% of early embryos were either monosomic 1 or 7 or mosaics comprising blastomeres with 1, 2 or 3 signals. Thus, 8 among the 11 abnormal embryos had hypodiploid cells (25 to 37 chromosomes) indicating either an artefactual loss of chromosomes or a complex anomaly of nuclear division (maltinucleated blastomeres, abnormal migration of chromosomes at anaphase). We therefore calculated a {open_quotes}corrected{close_quotes} incidence of aneuploidy for chromosomes 1 or 7 in early embryos: 18%. 86% of the blastocysts showed mosaicism 2n/3 or 4n as a consequence of the formation of the syncitiotrophoblast. To conclude, chromosome painting is an efficient method to accurately identify chromosomes involved in aneuploidy. This technique should allow us to evaluate the incidence of non-disjunction for all chromosome pairs. Our results confirm the high incidence of chromosome abnormalities occurring as a consequence of meiotic or mitotic non-disjunctions in human oocytes and embryos.

  11. Nonsense Mutations in SMPX, Encoding a Protein Responsive to Physical Force, Result in X-Chromosomal Hearing Loss

    Science.gov (United States)

    Huebner, Antje K.; Gandia, Marta; Frommolt, Peter; Maak, Anika; Wicklein, Eva M.; Thiele, Holger; Altmüller, Janine; Wagner, Florian; Viñuela, Antonio; Aguirre, Luis A.; Moreno, Felipe; Maier, Hannes; Rau, Isabella; Gießelmann, Sebastian; Nürnberg, Gudrun; Gal, Andreas; Nürnberg, Peter; Hübner, Christian A.; del Castillo, Ignacio; Kurth, Ingo

    2011-01-01

    The fact that hereditary hearing loss is the most common sensory disorder in humans is reflected by, among other things, an extraordinary allelic and nonallelic genetic heterogeneity. X-chromosomal hearing impairment represents only a minor fraction of all cases. In a study of a Spanish family the locus for one of the X-chromosomal forms was assigned to Xp22 (DFNX4). We mapped the disease locus in the same chromosomal region in a large German pedigree with X-chromosomal nonsyndromic hearing impairment by using genome-wide linkage analysis. Males presented with postlingual hearing loss and onset at ages 3–7, whereas onset in female carriers was in the second to third decades. Targeted DNA capture with high-throughput sequencing detected a nonsense mutation in the small muscle protein, X-linked (SMPX) of affected individuals. We identified another nonsense mutation in SMPX in patients from the Spanish family who were previously analyzed to map DFNX4. SMPX encodes an 88 amino acid, cytoskeleton-associated protein that is responsive to mechanical stress. The presence of Smpx in hair cells and supporting cells of the murine cochlea indicates its role in the inner ear. The nonsense mutations detected in the two families suggest a loss-of-function mechanism underlying this form of hearing impairment. Results obtained after heterologous overexpression of SMPX proteins were compatible with this assumption. Because responsivity to physical force is a characteristic feature of the protein, we propose that long-term maintenance of mechanically stressed inner-ear cells critically depends on SMPX function. PMID:21549336

  12. Genetic dosage and position effect of small supernumerary marker chromosome (sSMC) in human sperm nuclei in infertile male patient.

    Science.gov (United States)

    Olszewska, Marta; Wanowska, Elzbieta; Kishore, Archana; Huleyuk, Nataliya; Georgiadis, Andrew P; Yatsenko, Alexander N; Mikula, Mariya; Zastavna, Danuta; Wiland, Ewa; Kurpisz, Maciej

    2015-11-30

    Chromosomes occupy specific distinct areas in the nucleus of the sperm cell that may be altered in males with disrupted spermatogenesis. Here, we present alterations in the positioning of the human chromosomes 15, 18, X and Y between spermatozoa with the small supernumerary marker chromosome (sSMC; sSMC(+)) and spermatozoa with normal chromosome complement (sSMC(-)), for the first time described in the same ejaculate of an infertile, phenotypically normal male patient. Using classical and confocal fluorescent microscopy, the nuclear colocalization of chromosomes 15 and sSMC was analyzed. The molecular cytogenetic characteristics of sSMC delineated the karyotype as 47,XY,+der(15)(pter->p11.2::q11.1->q11.2::p11.2->pter)mat. Analysis of meiotic segregation showed a 1:1 ratio of sSMC(+) to sSMC(-) spermatozoa, while evaluation of sperm aneuploidy status indicated an increased level of chromosome 13, 18, 21 and 22 disomy, up to 7 × (2.7 - 15.1). Sperm chromatin integrity assessment did not reveal any increase in deprotamination in the patient's sperm chromatin. Importantly, we found significant repositioning of chromosomes X and Y towards the nuclear periphery, where both chromosomes were localized in close proximity to the sSMC. This suggests the possible influence of sSMC/XY colocalization on meiotic chromosome division, resulting in abnormal chromosome segregation, and leading to male infertility in the patient.

  13. Gene structure of the human DDX3 and chromosome mapping of its related sequences.

    Science.gov (United States)

    Kim, Y S; Lee, S G; Park, S H; Song, K

    2001-10-31

    The human DDX3 gene (GenBank accession No. U50553) is the human homologue of the mouse Ddx3 gene and is a member of the gene family that contains DEAD motifs. Previously, we mapped the gene to the Xp11.3-11.23. In this report, we describe the structural organization of the human DDX3 gene. It consisted of 17 exons that span approximately 16 kb. An Alu element was present in the intron 13. Its organization was the same as that of the human DBY gene, a closely related sequence present on the Y chromosome. We also identified two processed pseudogenes (DDX3) with a sequence that is highly homologous to those of DDX3 cDNAs, but contain a translation termination codon within its open-reading frame. Pseudogenes are mapped on human chromosomes 4 and X, respectively. In this paper, we discuss the relationships between DDX3 and its related sequences that have been isolated.

  14. Should the markers on X chromosome be used for genomic prediction?

    DEFF Research Database (Denmark)

    Su, Guosheng; Guldbrandtsen, Bernt; Aamand, Gert Pedersen;

    2013-01-01

    excluding the X chromosome.Averaged over 15 traits, the gains in reliability from the X chromosome rangedfrom 0.3% to 0.5% points among the three data sets and models. Using a model with a G-matrix accounting for sex-linkedrelationship appropriately or a model which divided genomic breeding value intoan......This study investigated theaccuracy of imputation from LD (7K) to 54K panel and compared accuracy ofgenomic prediction with or without the X chromosome information, based on data ofNordic Holstein bulls. Beagle and Findhap were used for imputation. Averagedover two imputation datasets, the allele...... correct rates of imputation usingFindhap were 98.2% for autosomal markers, 89.7% for markers on the pseudoautosomal region of the X chromosome, and 96.4% for X-specific markers. Theallele correct rates were 98.9%, 91.2% and 96.8%, respectively, when usingBeagle. Genomic predictions were carried out for 15...

  15. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence.

    Science.gov (United States)

    D'Aiuto, L; Antonacci, R; Marzella, R; Archidiacono, N; Rocchi, M

    1993-11-01

    We have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed.

  16. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. (Universita di Bari (Italy)); Antonacci, R. (Instituto Anatomia Umana Normale, Modena (Italy))

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  17. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    Science.gov (United States)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  18. Human nucleolus organizers on nonhomologous chromosomes can share the same ribosomal gene variants.

    OpenAIRE

    Krystal, M; D'Eustachio, P; Ruddle, F H; Arnheim, N

    1981-01-01

    The distributions of three human ribosomal gene polymorphisms among individual chromosomes containing nucleolus organizers were analyzed by using mouse--human hybrid cells. Different nucleolus organizers can contain the same variant, suggesting the occurrence of genetic exchanges among ribosomal gene clusters on nonhomologous chromosomes. Such exchanges appear to occur less frequently in mice. This difference is discussed in terms of the nucleolar organization and chromosomal location of ribo...

  19. Frequency of fragile X chromosome in normal females.

    Science.gov (United States)

    Abuelo, D; Castree, K; Pueschel, S; Padre-Mendoza, T; Zolnierz, K

    1985-08-01

    Because of the ambiguities in diagnosing carriers of the fragile X syndrome, we studied thirty-six normal females to determine whether the fragile site at Xq27 can be seen in noncarrier females and at what frequency. A fragile site at Xq27 was identified in one out of thirty-six females, occurring at a frequency of 0.5% in her peripheral lymphocytes. We conclude that the fragile Xq27 site occurs only rarely in noncarrier females and that each laboratory should determine its own baseline frequencies of fragile X in order to most accurately distinguish between normal and carrier women.

  20. Three new loci for determining x chromosome inactivation patterns

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Tümer, Zeynep; Ravn, Kirstine

    2011-01-01

    on two differentially methylated restriction enzyme sites (HpaII) and a polymorphic repeat located within this locus. Although highly informative, this locus is not always sufficient to evaluate the X-inactivation status in X-linked disorders. We have identified three new loci that can be used...... to determine XCI patterns in a methylation-sensitive PCR-based assay. All three loci contain polymorphic repeats and a methylation-sensitive restriction enzyme (HpaII) site, methylation of which was shown to correlate with XCI. DNA from 60 females was used to estimate the heterozygosity of these new loci...

  1. The constrained maximal expression level owing to haploidy shapes gene content on the mammalian X chromosome

    DEFF Research Database (Denmark)

    Hurst, Laurence D.; Ghanbarian, Avazeh T.; Forrest, Alistair R R

    2015-01-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functional...

  2. [Azoospermia and 45,X/46,XY chromosomal mosaicism: a case report].

    Science.gov (United States)

    Le Chatton, M; Zaccabri, A; Agopiantz, M; Leheup, B; Weryha, G; Foliguet, B

    2013-03-01

    Chromosomal abnormalities are common in patients with oligozoospermia or azoospermia. We report the case of a 32-year patient, with male phenotype, and without hormonal or morphological abnormalities, with a severely reduced spermatogenesis. It was revealed a 45,X/46,XY gonadal dysgenesis. We have reviewed the various problems inherent in the discovery of this rare gonadal dysgenesis, including genetic, cancer and fertility risks.

  3. Exploring the power of rice (O. sativa x O. rufipogon) chromosome segment substitution line libraries

    Science.gov (United States)

    Transgressive variation was reported as an increase in grain yield for several rice (Oryza sativa x O. rufipogon) advanced backcross mapping populations. The objective of this study was to develop chromosome segment substitution line (CSSL) libraries to further dissect the reported transgressive var...

  4. Copy number variants on the X chromosome in women with primary ovarian insufficiency

    NARCIS (Netherlands)

    Knauff, Erik A. H.; Blauw, Hylke M.; Pearson, Peter L.; Kok, Klaas; Wijmenga, Cisca; Veldink, Jan H.; van den Berg, Leonard H.; Bouchard, Philippe; Fauser, Bart C. J. M.; Franke, Lude

    2011-01-01

    Objective: To investigate whether submicroscopic copy number variants (CNVs) on the X chromosome can be identified in women with primary ovarian insufficiency (POI), defined as spontaneous secondary amenorrhea before 40 years of age accompanied by follicle-stimulating hormone levels above 40 IU/L on

  5. Reactivation of inactive X chromosome in buccal smear of carcinoma of breast

    Directory of Open Access Journals (Sweden)

    Natekar Prashant

    2008-01-01

    Full Text Available Buccal mucosal smears of 100 female patients of carcinoma of breast were compared with 100 controls matched accordingly. The frequency of Barr bodies was significantly lower in carcinoma of breast patients (menstruating and menopausal women P < 0.001 when compared with controls indicating reactivation of the inactive X chromosome.

  6. Chromosomal localization of the gonadotropin-releasing hormone receptor gene to human chromosome 4q13. 1-q21. 1 and mouse chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.B.; Dushkin, H.; Beier, D.R.; Chin, W.W. (Harvard Medical School, Boston, MA (United States)); Altherr, M.R. (Los Alamos National Lab., NM (United States))

    1994-04-01

    The gonadotropin-releasing hormone receptor (GRHR) is a G-protein-coupled receptor on the cell surface of pituitary gonadotropes, where it serves to transduce signals from the extracellular ligand, the hypothalamic factor gonadotropin-releasing hormone, and to modulate the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. The authors have localized the GRHR gene to the q13.1-q21.1 region of the human chromosome 4 using mapping panels of human/rodent somatic cell hybrids containing different human chromosomes or different regions of human chromosome 4. Furthermore, using linkage analysis of single-strand conformational polymorphisms, the murine GRHR gene was localized to mouse chromosome 5, linked to the endogenous retroviral marker Pmv-11. This is consistent with the evolutionary conservation of homology between these two regions, as has been previously suggested from comparative mapping of several other loci. The localization of the GRHR gene may be useful in the study of disorders of reproduction. 22 refs., 2 figs.

  7. Chromosome numbers, characterization of chromosomal pairing during meiosis, origin and natural propagation in polyploid cytotypes (4x, 5x and 6x) of Agrimonia eupatoria L. (Rosaceae) in northwest Himalayas (India).

    Science.gov (United States)

    Kumar, Puneet; Rana, Pawan K; Himshikha; Singhal, Vijay Kumar; Gupta, R C

    2014-07-01

    Despite the presence of intraspecific polyploidy (2x, 4x, 5x and 6x) in Agrimonia eupatoria, origin of these cytotypes has never been addressed adequately. The aim of the present study was to record the original chromosome counts and characterize chromosomal pairing during meiosis and microsporogenesis in the 5x cytotype, and discussing the hypothesis regarding the possible origin of polyploid cytotypes (4x, 5x and 6x) in the species. The geographical distribution pattern of cytotypes in the Indian Himalayas and elsewhere has also been analyzed. The present meiotic analysis revealed three chromosomes counts, the tetraploid (2n = 4x = 56), the pentaploid (2n = 5x = 70) and the hexaploid (2n = 6x = 84) cytotypes based on x = 14. Meiotic course was perfectly normal in the 4x and 6x cytotypes resulting into high pollen fertility (94-100 %). Meiotic course in the imbalanced 5x cytotype has been found to be irregular characterized by the presence of high frequency of univalents at diakinesis and metaphase-I. Abnormal meiotic course contributed towards high pollen sterility (74-88 %). Even the apparently fertile/stained pollen grains were of irregular shape and of heterogeneous sizes. Meiotic behaviour of the 5x cytotype is like typical of allopolyploid. Individuals of 5x cytotype did not produce seeds and propagate vegetatively (root suckers) while 4x and 6x cytotypes exploited sexual (seeds) as well as vegetative means for propagation. Chromosomal pairing in pentaploid cytotype is like typical of an allopolyploid and we assume that it might have originated owing to natural inter-cytotype hybridization between 4x and 6x cytotypes in a mixed population. Analysis of geographical distribution pattern of cytotypes shows that Indian Himalayas represent the most cytotype-diverse region for A. eupatoria with the existence of all the four cytotypes (2x, 4x, 5x, 6x). This shows the dynamic nature of the species at chromosomal level in this part of the world.

  8. Systems-level chromosomal parameters represent a suprachromosomal basis for the non-random chromosomal arrangement in human interphase nuclei

    Science.gov (United States)

    Fatakia, Sarosh N.; Mehta, Ishita S.; Rao, Basuthkar J.

    2016-01-01

    Forty-six chromosome territories (CTs) are positioned uniquely in human interphase nuclei, wherein each of their positions can range from the centre of the nucleus to its periphery. A non-empirical basis for their non-random arrangement remains unreported. Here, we derive a suprachromosomal basis of that overall arrangement (which we refer to as a CT constellation), and report a hierarchical nature of the same. Using matrix algebra, we unify intrinsic chromosomal parameters (e.g., chromosomal length, gene density, the number of genes per chromosome), to derive an extrinsic effective gene density matrix, the hierarchy of which is dominated largely by extrinsic mathematical coupling of HSA19, followed by HSA17 (human chromosome 19 and 17, both preferentially interior CTs) with all CTs. We corroborate predicted constellations and effective gene density hierarchy with published reports from fluorescent in situ hybridization based microscopy and Hi-C techniques, and delineate analogous hierarchy in disparate vertebrates. Our theory accurately predicts CTs localised to the nuclear interior, which interestingly share conserved synteny with HSA19 and/or HSA17. Finally, the effective gene density hierarchy dictates how permutations among CT position represents the plasticity within its constellations, based on which we suggest that a differential mix of coding with noncoding genome modulates the same. PMID:27845379

  9. Variation of X-chromosomal microsatellites in Belarus within the context of their genetic diversity in Europe.

    Science.gov (United States)

    Rębała, Krzysztof; Kotova, Svetlana A; Rybakova, Veranika I; Zabauskaya, Tatsiana V; Shyla, Alena A; Spivak, Alena A; Tsybovsky, Iosif S; Szczerkowska, Zofia

    2015-05-01

    More and more X-STR data are becoming available for worldwide human populations for forensic and anthropological investigations, but the European datasets analysed so far represent mainly the central, northern, western and southern part of the continent with populations of Eastern Europe being practically uninvestigated. In the present study, we assessed genetic variation and linkage disequilibrium of 19 X-chromosomal STR markers (DXS7132, DXS7133, DXS7423, DXS7424, DXS8377, DXS8378, DXS9895, DXS10074, DXS10075, DXS10079, DXS10101, DXS10103, DXS10134, DXS10135, DXS10146, DXS10147, DXS10148, GATA172D05, HPRTB) in four regional populations of an Eastern European state of Belarus, including 12 loci incorporated in the Argus X-12 kit. Our results revealed cumulative power of discrimination of the tested X-STR loci to amount to 0.999999999999996 and 0.999999997 in females and males, respectively. Analysis of molecular variance demonstrated regional stratification within the country, excluding the use of a common X-STR database for Belarus in forensic casework. However, development of a separate X-STR database for the northwestern part of the country or exclusion of four loci displaying regional differences from the dataset were shown to eliminate the observed geographic substructure among Belarusians. Comparison of the Belarusian genotypes with X-STR data from other European populations disclosed a geography-driven northeast-southwest gradient extending from Belarus and Finland to Iberia and Italy. This study is the first extensive report on variation of X-STR markers in populations from Eastern Europe and the first comprehensive analysis of diversity of X-chromosomal microsatellites in Europe.

  10. Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome

    DEFF Research Database (Denmark)

    da Rocha, Simão Teixeira; Boeva, Valentina; Escamilla-Del-Arenal, Martin;

    2014-01-01

    During X chromosome inactivation (XCI), the Polycomb Repressive Complex 2 (PRC2) is thought to participate in the early maintenance of the inactive state. Although Xist RNA is essential for the recruitment of PRC2 to the X chromosome, the precise mechanism remains unclear. Here, we demonstrate th...

  11. Gonadoblastomas in 45,X/46,XY mosaicism: analysis of Y chromosome distribution by fluorescence in situ hybridization.

    Science.gov (United States)

    Iezzoni, J C; Von Kap-Herr, C; Golden, W L; Gaffey, M J

    1997-08-01

    Gonadoblastomas are composed of nests of neoplastic germ cells and sex cord derivatives surrounded by ovarian-type stroma. These tumors are found almost exclusively in persons with gonadal dysgenesis associated with a Y chromosome or Y chromosome fragment, and accordingly, the Y chromosome has been implicated in gonadoblastoma oncogenesis. To evaluate this association, we used two-color fluorescence in situ hybridization with chromosome-specific probes to determine the distribution of the X and Y chromosomes in the tumor nests and surrounding stromal cells in paraffin tissue sections of three gonadoblastomas in two patients with gonadal dysgenesis and 45,X/46,XY mosaicism. Statistical analysis of the data from the fluorescence in situ hybridization demonstrated that in all three gonadoblastomas, the proportion of nuclei with a Y chromosome signal was significantly higher in the tumor cells than in the nontumoral cells of the surrounding stroma (P<.001). These results suggest that Y chromosome material participates in gonadoblastoma tumorigenesis.

  12. Construction of a consistent YAC contig for human chromosome region 3p14.1

    NARCIS (Netherlands)

    Bardenheuer, W; Michaelis, S; Lux, A; Vieten, L; Brocker, F; Julicher, K; Willers, C; Siebert, R; Smith, DI; vanderHout, AH; Buys, C; Schutte, J; Opalka, B

    1996-01-01

    Chromosomal deletions and translocations of human chromosome region 3p14 are observed in various human malignancies and suggest the existence of a tumor suppressor gene locus within this region. Tumors most frequently affected by these aberrations are small-cell lung cancer and renal-cell carcinoma.

  13. A role for Aurora C in the chromosomal passenger complex during human preimplantation embryo development

    NARCIS (Netherlands)

    Santos, Margarida Avo; van de Werken, Christine; de Vries, Marieke; Jahr, Holger; Vromans, Martijn J. M.; Laven, Joop S. E.; Fauser, Bart C.; Kops, Geert J.; Lens, Susanne M.; Baart, Esther B.

    2011-01-01

    BACKGROUND: Human embryos generated by IVF demonstrate a high incidence of chromosomal segregation errors during the cleavage divisions. To analyse underlying molecular mechanisms, we investigated the behaviour of the chromosomal passenger complex (CPC) in human oocytes and embryos. This important m

  14. 45,X/46,XY chromosome mosaicism detected by midtrimester amniocentesis in amniocyte clones.

    Science.gov (United States)

    Hecht, F; Hecht, B K

    1982-07-01

    Amniocyte clones from a mild-trimester pregnancy disclosed 45,X/46,XY sex chromosome mosaicism. Because of the uncertainty concerning the phenotype of the fetus, the parents elected to terminate the pregnancy. Mixed (asymmetrical) gonadal dysgenesis was not found. The fetus appeared to have a normal male uro-genital system. No malformations of any type were detected, although as expected, the fetus did have 45,X/46,XY mosaicism.

  15. CHARACTERIZATION AND CHROMOSOMAL ASSIGNMENT OF YEAST ARTIFICIAL CHROMOSOMES CONTAINING HUMAN 3P13-P21-SPECIFIC SEQUENCE-TAGGED SITES

    NARCIS (Netherlands)

    MICHAELIS, SC; BARDENHEUER, W; LUX, A; SCHRAMM, A; GOCKEL, A; SIEBERT, R; WILLERS, C; SCHMIDTKE, K; TODT, B; VANDERHOUT, AH; BUYS, CHCM; HEPPELLPARTON, AC; RABBITTS, PH; UNGAR, S; SMITH, D; LEPASLIER, D; COHEN, D; OPALKA, B; SCHUTTE, J

    1995-01-01

    Human chromosomal region 3p12-p23 is proposed to harbor at least three tumor suppressor genes involved in the development of lung cancer, renal cell carcinoma, and other neoplasias. In order to identify one of these genes we defined sequence tagged sites (STSs) specific for 3p13-p24.2 by analyzing a

  16. Construction of human artificial chromosome vectors by recombineering.

    Science.gov (United States)

    Kotzamanis, George; Cheung, Wing; Abdulrazzak, Hassan; Perez-Luz, Sara; Howe, Steven; Cooke, Howard; Huxley, Clare

    2005-05-23

    Human artificial chromosomes (HACs) can be formed de novo by transfection of large fragments of cloned alphoid DNA into human HT1080 cells in tissue culture. In order to generate HACs carrying a gene of interest, one can either co-transfect the alphoid DNA and the gene of interest, or one can clone both into a single vector prior to transfection. Here we describe linking approximately 70 kb of alphoid DNA onto a 156-kb BAC carrying the human HPRT gene using Red homologous recombination in the EL350 Escherichia coli host [Lee et al., Genomics 73 (2001) 56-65]. A selectable marker and EGFP marker were then added by loxP/Cre recombination using the arabinose inducible cre gene in the EL350 bacteria. The final construct generates minichromosomes in HT1080 cells and the HPRT gene is expressed. The retrofitting vector can be used to add the approximately 70 kb of alphoid DNA to any BAC carrying a gene of interest to generate a HAC vector. The method can also be used to link any unrelated BAC or PAC insert onto another BAC clone. The EL350 bacteria are an excellent host for building up complex vectors by a combination of homologous and loxP/Cre recombination.

  17. Screening of 20 patients with X-linked mental retardation using chromosome X-specific array-MAPH.

    Science.gov (United States)

    Kousoulidou, Ludmila; Parkel, Sven; Zilina, Olga; Palta, Priit; Puusepp, Helen; Remm, Maido; Turner, Gillian; Boyle, Jackie; van Bokhoven, Hans; de Brouwer, Arjan; Van Esch, Hilde; Froyen, Guy; Ropers, Hans-Hilger; Chelly, Jamel; Moraine, Claude; Gecz, Jozef; Kurg, Ants; Patsalis, Philippos C

    2007-01-01

    The rapid advancement of high-resolution DNA copy number assessment methods revealed the significant contribution of submicroscopic genetic imbalances to abnormal phenotypes, including mental retardation. In order to detect submicroscopic genetic imbalances, we have screened 20 families with X-linked mental retardation (XLMR) using a chromosome X-specific array-MAPH platform with median resolution of 238kb. Among the 20 families, 18 were experimental, as they were not previously screened with any microarray method, and two were blind controls with known aberrations, as they were previously screened by array-CGH. This study presents the first clinical application of chromosome X-specific array-MAPH methodology. The screening of 20 affected males from 20 unrelated XLMR families resulted in the detection of an unknown deletion, spanning a region of 7-23kb. Family studies and population screening demonstrated that the detected deletion is an unknown rare copy number variant. One of the control samples, carrying approximately 6-Mb duplication was correctly identified, moreover it was found to be interrupted by a previously unknown 19kb region of normal copy number. The second control 50kb deletion was not identified, as this particular region was not covered by array-MAPH probes. This study demonstrates that the chromosome X-specific array-MAPH platform is a valuable tool for screening patients with XLMR, or other X-linked disorders, and emerges the need for introducing new high-resolution screening methods for the detection of genetic imbalances.

  18. Physical mapping and YAC contig analysis of the region surrounding Xist on the mouse X chromosome.

    Science.gov (United States)

    Heard, E; Simmler, M C; Larin, Z; Rougeulle, C; Courtier, B; Lehrach, H; Avner, P

    1993-03-01

    The Xist sequence has been proposed as a potential candidate for the X-inactivation center based both on its localization within the candidate region for the X-inactivation center in man and mouse and on its unique pattern of expression from the inactive X chromosome. We have cloned 550 kb of DNA surrounding the mouse Xist sequence in contiguously overlapping YAC clones and have developed a long-range restriction map that spans almost 1 Mb of this region and includes this YAC contig. The detailed restriction map we have established provides a framework for the identification of expressed sequences other than Xist that may equally exhibit unusual expression characteristics associated with X inactivation. The presence of possible structural or methylation differences within this region between the active and inactive X chromosomes has been investigated through comparative analysis of male and female genomic DNA, and we report here the identification of certain CpG-containing restriction sites around Xist that have an interesting differential methylation status on the inactive and active X chromosomes.

  19. Influence of DMSO on Carbon K ultrasoft X-rays induced chromosome aberrations in V79 Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Adayapalam T., E-mail: natarajan@live.nl [University of Tuscia, Viterbo (Italy); Palitti, Fabrizio [University of Tuscia, Viterbo (Italy); Hill, Mark A. [CRUK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom); MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD (United Kingdom); Stevens, David L. [MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD (United Kingdom); Ahnstroem, Gunnar [Department of Microbiology and Genetic Toxicology, Stockholm University, Stockholm (Sweden)

    2010-09-10

    Ultrasoft X-rays have been shown to be very efficient in inducing chromosomal aberrations in mammalian cells. The present study was aimed to evaluate the modifying effects of DMSO (a potent scavenger of free radicals) on the frequencies of chromosome aberrations induced by soft X-rays. Confluent held G1 Chinese hamster cells (V79) were irradiated with Carbon K ultrasoft X-rays in the presence and absence of 1 M DMSO and frequencies of chromosome aberrations in the first division cells were determined. DMSO reduced the frequencies of exchange types of aberrations (dicentrics and centric rings) by a factor of 2.1-3.5. The results indicate that free radicals induced by ultrasoft X-rays contribute to a great extent to the induction of chromosome aberrations. The possible implications of these results in interpreting the mechanisms involved in the high efficiency of ultrasoft X-rays in the induction of chromosome aberrations are discussed.

  20. Phospho-Bcl-xL(Ser62) influences spindle assembly and chromosome segregation during mitosis.

    Science.gov (United States)

    Wang, Jianfang; Beauchemin, Myriam; Bertrand, Richard

    2014-01-01

    Functional analysis of a series of phosphorylation mutants reveals that Bcl-xL(Ser62Ala) influences cell entry into anaphase and mitotic exit in taxol-exposed cells compared with cells expressing wild-type Bcl-xL or a series of other phosphorylation mutants, an effect that appears to be independent of its anti-apoptotic activity. During normal mitosis progression, Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at the prometaphase, metaphase, and the anaphase boundaries, while it is de-phosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin and in the mitotic cytosol with some spindle-assembly checkpoint signaling components, including PLK1, BubR1, and Mad2. In taxol- and nocodazole-exposed cells, phospho-Bcl-xL(Ser62) also binds to Cdc20- Mad2-, BubR1-, and Bub3-bound complexes, while Bcl-xL(Ser62Ala) does not. Silencing Bcl-xL expression and expressing the phosphorylation mutant Bcl-xL(Ser62Ala) lead to an increased number of cells harboring mitotic spindle defects including multipolar spindle, chromosome lagging and bridging, aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h. Together, the data indicate that during mitosis, Bcl-xL(Ser62) phosphorylation impacts on spindle assembly and chromosome segregation, influencing chromosome stability. Observations of mitotic cells harboring aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h were also made with cells expressing the phosphorylation mutant Bcl-xL(Ser49Ala) and dual mutant Bcl-xL(Ser49/62Ala).

  1. Y-chromosome haplotype distribution in Han Chinese populations and modern human origin in East Asians

    Institute of Scientific and Technical Information of China (English)

    KE; Yuehai

    2001-01-01

    [1]Cann, R. L., Stoneking, M., Wilson, A. C., Mitochondria DNA and human evolution, Nature, 1987, 325: 31-36.[2]Vigilant, L., Stoneking, M., Harpending, H. et al., African populations and the evolution of human mitochondrial DNA, Science, 1997, 253: 1503-1507.[3]Cavalli-Sforza, L. L., Piazza, M. P., The History and Geography of Human Genes, Princeton: Princeton University Press, 1994.[4]Brooks, A. S., Wood, B., Paleoanthropology, The Chinese side of the story, Nature, 1990, 344: 288-289.[5]Li, T., Etler, D. A., New middle Pleistocene hominid crania from Yunxian in China, Nature, 1992, 357: 404-407.[6]Wu, X. Z., Poirier, F. E., Human Evolution in China, Oxford: Oxford University Press, 1995.[7]Etler, D. A., The fossil evidence for human evolution in Asia, Annu. Rev. Anthropol., 1996, 25: 275-301.[8]Wolpoff, M. H., Interpretations of multiregional evolution, Science, 1996, 274: 704-707.[9]Stringer, C. B., Andrew, P., Genetic and fossil evidence for the origin of modern humans, Science ,1988, 239: 1263-1268.[10]Wilson, A. C.,Cann, R. L., The recent African genesis of humans, Scientific American, 1992, (4): 68-75.[11]Weng, Z., Yuan, Y., Du, R., Analysis of the genetic structure of human populations in China, Acta Anthropol. Sin. (in Chi-nese)1989, 8: 261-268.[12]Zhao, T., Zhang, G., Zhu, Y. et al., The distribution of immunoglobulin Gm allotypes in forty Chinese populations, Acta Anthropol. Sin. (in Chinese), 1986, 6: 1-8.[13]Chu, J. Y., Huang, W., Kuang, S. Q. et al., Genetic relationship of populations in China, Proc. Natl. Acad. Sci., 1998, 95: 11763-11768.[14]Jobling, M. A., Tyler-Smith, C., Fathers and sons: the Y chromosome and human evolution, Trends in Genetics,1995, 11: 449-455.[15]Oefner, P. J., Underhill, P. A., Comparative DNA sequencing by denaturing high-performance liquid chromatography (DHPLC), Am. J. Hum. Genet., 1995, 57: A266.[16]Oefner, P. J., Underhill, P. A., DNA mutation detection

  2. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Stimpson

    2010-08-01

    Full Text Available Genome rearrangement often produces chromosomes with two centromeres (dicentrics that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.

  3. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes.

    Science.gov (United States)

    Stimpson, Kaitlin M; Song, Ihn Young; Jauch, Anna; Holtgreve-Grez, Heidi; Hayden, Karen E; Bridger, Joanna M; Sullivan, Beth A

    2010-08-12

    Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.

  4. The Social Behavioral Phenotype in Boys and Girls with an Extra X Chromosome (Klinefelter Syndrome and Trisomy X) : A Comparison with Autism Spectrum Disorder

    NARCIS (Netherlands)

    van Rijn, Sophie; Stockmann, Lex; Borghgraef, Martine; Bruining, Hilgo; van Ravenswaaij-Arts, Conny; Govaerts, Lutgarde; Hansson, Kerstin; Swaab, Hanna

    2014-01-01

    The present study aimed to gain more insight in the social behavioral phenotype, and related autistic symptomatology, of children with an extra X chromosome in comparison to children with ASD. Participants included 60 children with an extra X chromosome (34 boys with Klinefelter syndrome and 26 girl

  5. Human ring chromosomes and small supernumerary marker chromosomes-do they have telomeres?

    Science.gov (United States)

    Guilherme, Roberta Santos; Klein, Elisabeth; Venner, Claudia; Hamid, Ahmed B; Bhatt, Samarth; Melaragno, Maria Isabel; Volleth, Marianne; Polityko, Anna; Kulpanovich, Anna; Kosyakova, Nadezda; Liehr, Thomas

    2012-10-01

    Ring chromosomes and small supernumerary marker chromosomes (sSMC) are enigmatic types of derivative chromosomes, in which the telomeres are thought to play a crucial role in their formation and stabilization. Considering that there are only a few studies that evaluate the presence of telomeric sequences in ring chromosomes and on sSMC, here, we analyzed 14 ring chromosomes and 29 sSMC for the presence of telomeric sequences through fluorescence in situ hybridization (FISH). The results showed that ring chromosomes can actually fall into two groups: the ones with or without telomeres. Additionally, telomeric signals were detectable at both ends of centric and neocentric sSMC with inverted duplication shape, as well as in complex sSMC. Apart from that, generally both ring- and centric minute-shaped sSMC did not present telomeric sequences neither detectable by FISH nor by a second protein-directed immunohistochemical approach. However, the fact that telomeres are absent does not automatically mean that the sSMC has a ring shape, as often deduced in the previous literature. Overall, the results obtained by FISH studies directed against telomeres need to be checked carefully by other approaches.

  6. A case of acute lymphoblastic leukemia with additional chromosomes X and 5 associated with a Philadelphia chromosome in the bone marrow

    Directory of Open Access Journals (Sweden)

    Burak Durmaz

    2010-12-01

    Full Text Available We report herein a very rare case of acute lymphoblastic leukemia having a chromosomal constitution of 48,XY,+X,+5,t(9;22(q34;q11 in the bone marrow. A patient with additional chromosomes X and 5 with a Philadelphia chromosome has not been reported previously. However, no abnormal karyotype was obtained from the lymphocytes in our patient, and he did not have the characteristics of Klinefelter syndrome. He achieved a complete remission with IDA-FLAG and dasatinib therapy. The mechanism of trisomy 5 or any other chromosomal aneuploidy in the pathogenesis of leukemogenesis remains unclear. Further studies involving the genes affected by this karyotype and their products may lead to strategies to further increase the understanding of drug-resistant acute lymphoblastic leukemia and may represent the next frontier in the targeted therapy of those patients.

  7. A small supernumerary marker chromosome present in a Turner syndrome patient not derived from X- or Y-chromosome: a case report

    OpenAIRE

    Vermeesch Joris; Andrieux Joris; Desai Manisha; Sheth Jayesh; Weise Anja; Kosyakova Nadezda; Ewers Elisabeth; Sheth Frenny; Hamid Ahmed B; Ziegler Monika; Liehr Thomas

    2009-01-01

    Abstract Background Small supernumerary marker chromosomes (sSMC) can be present in numerically abnormal karyotypes like in a 'Turner-syndrome karyotype' mos 45,X/46,X,+mar. Results Here we report the first case of an sSMC found in Turner syndrome karyotypes (sSMCT) derived from chromosome 14 in a Turner syndrome patient. According to cytogenetic and molecular cytogenetic characterization the karyotype was 46,X,+del(14)(q11.1). The present case is the third Turner syndrome case with an sSMCT ...

  8. A small supernumerary marker chromosome present in a Turner syndrome patient not derived from X- or Y-chromosome: a case report

    Directory of Open Access Journals (Sweden)

    Vermeesch Joris

    2009-11-01

    Full Text Available Abstract Background Small supernumerary marker chromosomes (sSMC can be present in numerically abnormal karyotypes like in a 'Turner-syndrome karyotype' mos 45,X/46,X,+mar. Results Here we report the first case of an sSMC found in Turner syndrome karyotypes (sSMCT derived from chromosome 14 in a Turner syndrome patient. According to cytogenetic and molecular cytogenetic characterization the karyotype was 46,X,+del(14(q11.1. The present case is the third Turner syndrome case with an sSMCT not derived from the X- or the Y-chromosome. Conclusion More comprehensive characterization of such sSMCT might identify them to be more frequent than only ~0.6% in Turner syndrome cases according to available data.

  9. Topology, structures, and energy landscapes of human chromosomes.

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter G

    2015-05-12

    Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward "ideal" chromosome structures that represent hierarchical fibrils of fibrils.

  10. A simple filtration technique for obtaining purified human chromosomes in suspension.

    Science.gov (United States)

    Yusuf, Mohammed; Parmar, Neha; Bhella, Gurdeep K; Robinson, Ian K

    2014-05-01

    Here we present a simple method for cleaning polyamine human mitotic chromosomes in solution. This was achieved by filtering intact (unburst) nuclei along with both large and small cytoplasmic debris through a series of different pore sized filters. Pure human chromosomes were recovered using a simple reverse filtration step. Fluorescence microscopy was used to validate the chromosome suspension after each filtration step. This reverse filtration technique is an improvement in both procedure time and chromosome recovery compared to currently used post-purification methods. Chromosomes purified by our method could be used for many applications, such as structural studies using microfluidics and high resolution imaging or generation of chromosome paints and sequencing after flow cytometry.

  11. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    Directory of Open Access Journals (Sweden)

    Maria Balcova

    2016-04-01

    Full Text Available Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm and Mus m. domesticus (Mmd, it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2 genomic locus on Chromosome X (Chr X by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s responsible for variation in the global recombination rate between closely related mouse subspecies.

  12. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    Science.gov (United States)

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-04-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.

  13. A Newborn with Genital Ambiguity, 45,X/46,XY Mosaicism, a Jumping Chromosome Y, and Congenital Adrenal Hyperplasia.

    Science.gov (United States)

    Zhang, Lei; Cooley, Linda D; Chandratre, Sonal R; Ahmed, Atif; Jacobson, Jill D

    2013-01-01

    Disorders of sex development (DSD), formerly termed "intersex" conditions, arise from numerous causes. CAH secondary to 21-hydroxylase deficiency is the most common cause of DSD. Sex chromosome disorders, including sex chromosome mosaicism, are the second most common cause of DSD. We discuss a medically complex neonate with DSD presenting with ambiguous genitalia. Hormone levels suggested 21-hydroxylase deficiency. Molecular analysis revealed compound heterozygous mutations in the 21-hydroxylase gene (CYP21A2), confirming the diagnosis of CAH. Chromosome analysis revealed sex chromosome mosaicism with three cell lines: 45,X[8]/45,X,tas(Y;16)(p11.32;p13.3)[8]/45,X,t(Y;8)(p11.32;p23.3)[4] with the Y chromosome in telomere association with chromosomes 8p and 16p in different cell lines, a "jumping translocation." Histologically, the right gonad had irregular, distended seminiferous tubules with hyperplastic germ cells contiguous with ovarian stroma and primordial follicles. The left gonad had scant ovarian stroma and embryonic remnants. Chromosome analyses showed mosaicism in both gonads: 45,X[17]/45,X,tas(Y;8)(p11.32;p23.3)[3]. This is the first case of coexisting CAH and 45,X/46,XY mosaicism reported in the English literature and the third case of a constitutional chromosome Y "jumping translocation." Our report documents the medical and genetic complexity of children such as this one with ambiguous genitalia and discusses the need for a multidisciplinary team approach.

  14. Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells.

    Directory of Open Access Journals (Sweden)

    Iris Müller

    Full Text Available Despite the distinctive structure of mitotic chromosomes, it has not been possible to visualise individual chromosomes in living interphase cells, where chromosomes spend over 90% of their time. Studies of interphase chromosome structure and dynamics use fluorescence in-situ hybridisation (FISH on fixed cells, which potentially damages structure and loses dynamic information. We have developed a new methodology, involving photoactivation of labelled histone H3 at mitosis, to visualise individual and specific human chromosomes in living interphase cells. Our data revealed bulk chromosome volume and morphology are established rapidly after mitosis, changing only incrementally after the first hour of G1. This contrasted with the behaviour of specific loci on labelled chromosomes, which showed more progressive reorganisation, and revealed that "looping out" of chromatin from chromosome territories is a dynamic state. We measured considerable heterogeneity in chromosome decondensation, even between sister chromatids, which may reflect local structural impediments to decondensation and could potentially amplify transcriptional noise. Chromosome structure showed tremendous resistance to inhibitors of transcription, histone deacetylation and chromatin remodelling. Together, these data indicate steric constraints determine structure, rather than innate chromosome architecture or function-driven anchoring, with interphase chromatin organisation governed primarily by opposition between needs for decondensation and the space available for this to happen.

  15. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Sato

    2017-01-01

    Full Text Available Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV. Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  16. Characterization of cDNAs encoding human leukosialin and localization of the leukosialin gene to chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Pallant, A.; Eskenazi, A.; Frelinger, J.G. (Univ. of Rochester Medical Center, NY (USA)); Mattei, M.G. (Hopital d' Enfants de la Timone, Marseille (France)); Fournier, R.E.K. (Fred Hutchinson Cancer Research Center, Seattle, WA (USA)); Carlsson, S.R.; Fukuda, M. (La Jolla Center Research Foundation, CA (USA))

    1989-02-01

    The authors describe the isolation and characterization of cDNA clones encoding human leukosialin, a major sialoglycoprotein of human leukocytes. Leukosialin is very closely related or identical to the sialophorin molecule, which is involved in T-cell proliferation and whose expression is altered in Wiskott-Aldrich syndrome (WAS), an X-chromosome-linked immunodeficiency disease. Using a rabbit antiserum to leukosialin, a cDNA clone was isolated from a {lambda}gt11 cDNA library constructed from human peripheral blood cells. The {lambda}gt11 clone was used to isolate longer cDNA clones that correspond to the entire coding sequence of leukosialin. DNA sequence analysis reveals three domains in the predicted mature protein. The extracellular domain is enriched for Ser, Thr, and Pro and contains four contiguous 18-amino acid repeats. The transmembrane and intracellular domains of the human leukosialin molecule are highly homologous to the rat W3/13 molecule. RNA gel blot analysis reveals two polyadenylylated species of 2.3 and 8 kilobases. Southern blot analysis suggests that human leukosialin is a single-copy gene. Analysis of monochromosomal cell hybrids indicates that the leukosialin gene is not X chromosome linked and in situ hybridization shows leukosialin is located on chromosome 16. These findings demonstrate that the primary mutation in WAS is not a defect in the structural gene for leukosialin.

  17. Extensive fragmentation of the X chromosome in the bed bug Cimex lectularius Linnaeus, 1758 (Heteroptera, Cimicidae): a survey across Europe.

    Science.gov (United States)

    Sadílek, David; Sťáhlavský, František; Vilímová, Jitka; Zima, Jan

    2013-10-03

    Variation in the number of chromosomes was revealed in 61 samples of Cimex lectularius Linnaeus, 1758 from the Czech Republic and other European countries, hosted on Myotis Kaup, 1829 (4) and Homo sapiens Linnaeus, 1758 (57). The karyotype of all the specimens of Cimex lectularius analysed contained 26 autosomes and a varying number of the sex chromosomes. The number of sex chromosomes showed extensive variation, and up to 20 fragments were recorded. Altogether, 12 distinct karyotypes were distinguished. The male karyotypes consisted of 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 42 and 47 chromosomes. The females usually exhibited the number of chromosomes which was complementary to the number established in the males from the same sample. However, 11 polymorphic samples were revealed in which the karyotypes of females and males were not complementary each other. The complement with 2n = 26+X1X2Y was found in 44% of the specimens and 57,4% samples of bed bugs studied. The karyotypes with higher chromosome numbers as well as individuals with chromosomal mosaics were usually found within the samples exhibiting particularly extensive variation between individuals, and such complements were not found within samples contaning a few or single specimen. The occurrence of chromosomal mosaics with the karyotype constitution varying between cells of single individual was observed in five specimens (4.3%) from five samples. We assume that polymorphism caused by fragmentation of the X chromosome may result in meiotic problems and non-disjunction can produce unbalanced gametes and result in lowered fitness of individuals carrying higher numbers of the X chromosome fragments. This effect should be apparently enhanced with the increasing number of the fragments and this may be the reason for the observed distribution pattern of individual karyotypes in the studied samples and the rarity of individuals with extremely high chromosome numbers. The assumed lowering of the fitness of

  18. Human and mouse mitochondrial orthologs of bacterial ClpX

    DEFF Research Database (Denmark)

    Corydon, T J; Wilsbech, M; Jespersgaard, C;

    2000-01-01

    We have determined the cDNA sequence and exon/intron structure of the human CLPX gene encoding a human ortholog of the E. coli ClpX chaperone and protease subunit. The CLPX gene comprises 14 exons and encodes a 633-amino acid-long precursor polypeptide. The polypeptide contains an N-terminal puta......We have determined the cDNA sequence and exon/intron structure of the human CLPX gene encoding a human ortholog of the E. coli ClpX chaperone and protease subunit. The CLPX gene comprises 14 exons and encodes a 633-amino acid-long precursor polypeptide. The polypeptide contains an N......-terminal putative mitochondrial transit peptide, and expression of a full-length ClpX cDNA tagged at its C-terminus (Myc-His) shows that the polypeptide is transported into mitochondria. FISH analysis localized the CLPX gene to human Chromosome (Chr) 15q22.1-22.32. This localization was refined by radiation hybrid...... variability between mouse ClpX cDNAs from different strains. Alignment of the human and mouse ClpX amino acid sequences with ClpX sequences from other organisms shows that they display the typical modular organization of domains with one AAA(+) domain common to a large group of ATPases and several other...

  19. Fragile X syndrome and an isodicentric X chromosome in a woman with multiple anomalies, developmental delay, and normal pubertal development.

    Science.gov (United States)

    Freedenberg, D L; Gane, L W; Richards, C S; Lampe, M; Hills, J; O'Connor, R; Manchester, D; Taylor, A; Tassone, F; Hulseberg, D; Hagerman, R J; Patil, S R

    1999-07-30

    We report on an individual with developmental delays, short stature, skeletal abnormalities, normal pubertal development, expansion of the fragile X triplet repeat, as well as an isodicentric X chromosome. S is a 19-year-old woman who presented for evaluation of developmental delay. Pregnancy was complicated by a threatened miscarriage. She was a healthy child with intellectual impairment noted in infancy. Although she had global delays, speech was noted to be disproportionately delayed with few words until age 3.5 years. Facial appearance was consistent with fragile X syndrome. Age of onset of menses was 11 years with normal breast development. A maternal male second cousin had been identified with fragile X syndrome based on DNA studies. The mother of this child (S's maternal first cousin) and the grandfather (S's maternal uncle) were both intellectually normal but were identified as carrying triplet expansions in the premutation range. S's mother had some school difficulties but was not identified as having global delays. Molecular analysis of S's fragile X alleles noted an expansion of more than 400 CGG repeats in one allele. Routine cytogenetic studies of peripheral blood noted the presence of an isodicentric X in 81of 86 cells scored. Five of 86 cells were noted to be 45,X. Cytogenetic fra(X) studies from peripheral blood showed that the structurally normal chromosome had the fragile site in approximately 16% of the cells. Analysis of maternal fragile X alleles identified an allele with an expansion to approximately 110 repeats. FMRP studies detected the expression of the protein in 24% of cells studied. To our knowledge, this is the first patient reported with an isodicentric X and fragile X syndrome. Whereas her clinical phenotype is suggestive of fragile X syndrome, her skeletal abnormalities may represent the presence of the isodicentric X. Treatment of S with 20 mg/day of Prozac improved her behavior. In the climate of cost con trol, this individual

  20. No severe and global X chromosome inactivation in meiotic male germline of Drosophila

    OpenAIRE

    Mikhaylova Lyudmila M; Nurminsky Dmitry I

    2012-01-01

    Abstract This article is a response to Vibranovski et al. See correspondence article http://www.biomedcentral.com/1741-7007/10/49 and the original research article http://www.biomedcentral.com/1741-7007/9/29 We have previously reported a high propensity of testis-expressed X-linked genes to activation in meiotic cells, a similarity in global gene expression between the X chromosome and autosomes in meiotic germline, and under-representation of various types of tissue-specific genes on the X c...

  1. Buccal cell FISH and blood PCR-Y detect high rates of X chromosomal mosaicism and Y chromosomal derivatives in patients with Turner syndrome.

    Science.gov (United States)

    Freriks, Kim; Timmers, Henri J L M; Netea-Maier, Romana T; Beerendonk, Catharina C M; Otten, Barto J; van Alfen-van der Velden, Janiëlle A E M; Traas, Maaike A F; Mieloo, Hanneke; van de Zande, Guillaume W H J F L; Hoefsloot, Lies H; Hermus, Ad R M M; Smeets, Dominique F C M

    2013-09-01

    Turner syndrome (TS) is the result of (partial) X chromosome monosomy. In general, the diagnosis is based on karyotyping of 30 blood lymphocytes. This technique, however, does not rule out tissue mosaicism or low grade mosaicism in the blood. Because of the associated risk of gonadoblastoma, mosaicism is especially important in case this involves a Y chromosome. We investigated different approaches to improve the detection of mosaicisms in 162 adult women with TS (mean age 29.9 ± 10.3). Standard karyotyping identified 75 patients (46.3%) with a non-mosaic monosomy 45,X. Of these 75 patients, 63 underwent additional investigations including FISH on buccal cells with X- and Y-specific probes and PCR-Y on blood. FISH analysis of buccal cells revealed a mosaicism in 19 of the 63 patients (30.2%). In five patients the additional cell lines contained a (derivative) Y chromosome. With sensitive real-time PCR we confirmed the presence of this Y chromosome in blood in three of the five cases. Although Y chromosome material was established in ovarian tissue in two patients, no gonadoblastoma was found. Our results confirm the notion that TS patients with 45,X on conventional karyotyping often have tissue specific mosaicisms, some of which include a Y chromosome. Although further investigations are needed to estimate the risk of gonadoblastoma in patients with Y chromosome material in buccal cells, we conclude that FISH or real-time PCR on buccal cells should be considered in TS patients with 45,X on standard karyotyping.

  2. Drinking beer reduces radiation-induced chromosome aberrations in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Monobe, Manami [Chiba Univ. (Japan). Graduate School of Science and Technology; Ando, Koichi [National Inst. of Radiological Sciences, Chiba (Japan)

    2002-09-01

    We here investigated and reported the effects of beer drinking on radiation-induced chromosome aberrations in blood lymphocytes. Human blood that was collected either before or after drinking a 700 ml beer was in vitro irradiated with 200 kVp X rays or 50 keV/{mu}m carbon ions. The relation between the radiation dose and the aberration frequencies (fragments and dicentrics) was significantly (P<0.05) lower for lymphocytes collected 3 h after beer drinking than those before drinking. Fitting the dose response to a linear quadratic model showed that the alpha term of carbon ions was significantly (P<0.05) decreased by beer drinking. A decrease of dicentric formation was detected as early as 0.5 h after beer drinking, and lasted not shorter than 4.5 h. The mitotic index of lymphocytes was higher after beer drinking than before, indicating that a division delay would not be responsible for the low aberrations induced by beer drinking. An in vitro treatment of normal lymphocytes with 0.1 M ethanol, which corresponded to a concentration of 6-times higher than the maximum ethanol concentration in the blood after beer drinking, reduced the dicentric formation caused by X-ray irradiation, but not by carbon-ion irradiation. The beer-induced reduction of dicentric formation was not affected by serum. It is concluded that beer could contain non-ethanol elements that reduce the chromosome damage of lymphocytes induced by high-LET radiation. (author)

  3. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21

    DEFF Research Database (Denmark)

    McGinniss, M J; Kazazian, H H; Stetten, G;

    1992-01-01

    We studied the mechanism of ring chromosome 21 (r(21)) formation in 13 patients (11 unique r(21)s), consisting of 7 from five families with familial r(21) and 6 with de novo r(21). The copy number of chromosome 21 sequences in the rings of these patients was determined by quantitative dosage......), resulting in deletion of varying amounts of 21q22.1 to 21qter. The data from one individual who had a Down syndrome phenotype were consistent with asymmetric breakage and reunion of 21q sequences from an intermediate isochromosome or Robertsonian translocation chromosome as reported by Wong et al. Another...... patient, who also exhibited Down syndrome, showed evidence of a third mechanism of ring formation. The likely initial event was breakage and reunion of the short and long arms, resulting in a small r(21), followed by a sister-chromatid exchange resulting in a double-sized and symmetrically dicentric r(21...

  4. Evidence for linkage to psychosis and cerebral asymmetry (relative hand skill) on the X chromosome.

    Science.gov (United States)

    Laval, S H; Dann, J C; Butler, R J; Loftus, J; Rue, J; Leask, S J; Bass, N; Comazzi, M; Vita, A; Nanko, S; Shaw, S; Peterson, P; Shields, G; Smith, A B; Stewart, J; DeLisi, L E; Crow, T J

    1998-09-01

    The hypothesis that psychosis arises as a part of the genetic diversity associated with the evolution of language generates the prediction that illness will be linked to a gene determining cerebral asymmetry, which, from the evidence of sex chromosome aneuploidies, is present in homologous form on the X and Y chromosomes. We investigated evidence of linkage to markers on the X chromosome in 1) 178 families multiply affected with schizophrenia or schizoaffective disorder with a series of 16 markers spanning the centromere (study 1), and 2) 180 pairs of left-handed brothers with 14 markers spanning the whole chromosome (study 2). In study 1, excess allele-sharing was observed in brother-brother pairs (but not brother-sister or a small sample of sister-sister pairs) over a region of approximately 20 cM, with a maximum LOD score of 1.5 at DXS991. In study 2, an association between allele-sharing and degree of left-handedness was observed extending over approximately 60 cM, with a maximum lod score of 2.8 at DXS990 (approximately 20 cM from DXS991). Within the overlap of allele-sharing is located a block in Xq21 that transposed to the Y chromosome in recent hominid evolution and is now represented as two segments on Yp. In one of two XX males with psychosis we found that the breakpoint on the Y is located within the distal region of homology to the block in Xq21. These findings are consistent with the hypothesis that an X-Y homologous determinant of cerebral asymmetry carries the variation that contributes to the predisposition to psychotic illness.

  5. Fine-Scale Crossover Rate Variation on the Caenorhabditis elegans X Chromosome

    Science.gov (United States)

    Bernstein, Max R.; Rockman, Matthew V.

    2016-01-01

    Meiotic recombination creates genotypic diversity within species. Recombination rates vary substantially across taxa, and the distribution of crossovers can differ significantly among populations and between sexes. Crossover locations within species have been found to vary by chromosome and by position within chromosomes, where most crossover events occur in small regions known as recombination hotspots. However, several species appear to lack hotspots despite significant crossover heterogeneity. The nematode Caenorhabditis elegans was previously found to have the least fine-scale variation in crossover distribution among organisms studied to date. It is unclear whether this pattern extends to the X chromosome given its unique compaction through the pachytene stage of meiotic prophase in hermaphrodites. We generated 798 recombinant nested near-isogenic lines (NILs) with crossovers in a 1.41 Mb region on the left arm of the X chromosome to determine if its recombination landscape is similar to that of the autosomes. We find that the fine-scale variation in crossover rate is lower than that of other model species, and is inconsistent with hotspots. The relationship of genomic features to crossover rate is dependent on scale, with GC content, histone modifications, and nucleosome occupancy being negatively associated with crossovers. We also find that the abundances of 4- to 6-bp DNA motifs significantly explain crossover density. These results are consistent with recombination occurring at unevenly distributed sites of open chromatin. PMID:27172189

  6. Testing for Hardy–Weinberg equilibrium at biallelic genetic markers on the X chromosome

    Science.gov (United States)

    Graffelman, J; Weir, B S

    2016-01-01

    Testing genetic markers for Hardy–Weinberg equilibrium (HWE) is an important tool for detecting genotyping errors in large-scale genotyping studies. For markers at the X chromosome, typically the χ2 or exact test is applied to the females only, and the hemizygous males are considered to be uninformative. In this paper we show that the males are relevant, because a difference in allele frequency between males and females may indicate HWE not to hold. The testing of markers on the X chromosome has received little attention, and in this paper we lay down the foundation for testing biallelic X-chromosomal markers for HWE. We develop four frequentist statistical test procedures for X-linked markers that take both males and females into account: the χ2 test, likelihood ratio test, exact test and permutation test. Exact tests that include males are shown to have a better Type I error rate. Empirical data from the GENEVA project on venous thromboembolism is used to illustrate the proposed tests. Results obtained with the new tests differ substantially from tests that are based on female genotype counts only. The new tests detect differences in allele frequencies and seem able to uncover additional genotyping error that would have gone unnoticed in HWE tests based on females only. PMID:27071844

  7. X chromosome inactivation and Xist evolution in a rodent lacking LINE-1 activity.

    Science.gov (United States)

    Cantrell, Michael A; Carstens, Bryan C; Wichman, Holly A

    2009-07-15

    Dosage compensation in eutherian mammals occurs by inactivation of one X chromosome in females. Silencing of that X chromosome is initiated by Xist, a large non-coding RNA, whose coating of the chromosome extends in cis from the X inactivation center. LINE-1 (L1) retrotransposons have been implicated as possible players for propagation of the Xist signal, but it has remained unclear whether they are essential components. We previously identified a group of South American rodents in which L1 retrotransposition ceased over 8 million years ago and have now determined that at least one species of these rodents, Oryzomys palustris, still retains X inactivation. We have also isolated and analyzed the majority of the Xist RNA from O. palustris and a sister species retaining L1 activity, Sigmodon hispidus, to determine if evolution in these sequences has left signatures that might suggest a critical role for L1 elements in Xist function. Comparison of rates of Xist evolution in the two species fails to support L1 involvement, although other explanations are possible. Similarly, comparison of known repeats and potential RNA secondary structures reveals no major differences with the exception of a new repeat in O. palustris that has potential to form new secondary structures.

  8. Imprinted X chromosome inactivation: evolution of mechanisms in distantly related mammals

    Directory of Open Access Journals (Sweden)

    Shafagh A. Waters

    2015-03-01

    Full Text Available In females, X chromosome inactivation (XCI ensures transcriptional silencing of one of the two Xs (either in a random or imprinted fashion in somatic cells. Comparing this silencing between species has offered insight into different mechanisms of X inactivation, providing clues into the evolution of this epigenetic process in mammals. Long-noncoding RNAs have emerged as a common theme in XCI of therian mammals (eutherian and marsupial. Eutherian X inactivation is regulated by the noncoding RNA product of XIST, within a cis-acting master control region called the X inactivation center (XIC. Marsupials XCI is XIST independent. Instead, XCI is controlled by the long-noncoding RNA Rsx, which appears to be a functional analog of the eutherian XIST gene, insofar that its transcript coats the inactive X and represses activity of genes in cis. In this review we discuss XCI in eutherians, and contrast imprinted X inactivation in mouse and marsupials. We provide particular focus on the evolution of genomic elements that confer the unique epigenetic features that characterize the inactive X chromosome.

  9. Search for linkage to schizophrenia on the X and Y chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Devoto, M.; Ott, J. [Columbia Univ., New York, NY (United States); Vita, A. [Univ. of Milan (Italy)] [and others

    1994-06-15

    Markers for X chromosome loci were used in linkage studies of a large group of small families (n = 126) with at least two schizophrenic members in one sibship. Based on the hypothesis that a gene for schizophrenia could be X-Y linked, with homologous loci on both X and Y, our analyses included all families regardless of the pattern of familial inheritance. Lod scores were computed with both standard X-linked and a novel X-Y model, and sib-pair analyses were performed for all markers examining the sharing of maternal alleles. Small positive lod scores were obtained for loci pericentromeric, from Xp11.4 to Xq12. Lod scores were also computed separately in families selected for evidence of maternal inheritance and absence of male to male transmission of psychosis. The lod scores for linkage to the locus DXS7 reached a maximum of 1.83 at 0.08% recombination, assuming dominant inheritance on the X chromosome in these families (n = 34). Further investigation of the X-Y homologous gene hypothesis focussing on this region is warranted. 39 refs. 1 fig., 6 tabs.

  10. Effect of aspirin on chromosome aberration and DNA damage induced by X-rays in mice

    Science.gov (United States)

    Niikawa, M.; Chuuriki, K.; Shibuya, K.; Seo, M.; Nagase, H.

    In order to reveal the anticlastogenic potency of aspirin, we evaluated the suppressive ability of aspirin on chromosome aberrations induced by X-ray. Aspirin at doses of 0.5, 5 and 50 mg/kg was administrated intraperitoneally or orally at 0.5 h after or before the X-ray irradiation. The anticlastogenic activity of aspirin on chromosome aberrations induced by X-ray was determined in the mouse micronucleus test and alkaline single cell gel electrophoresis (SCG) assay in vivo. The frequency by polychromatic erythrocytes with micronuclei (MNPCEs) was decreased by about 19-61% at 0.5 h after and about 23-62% at 0.5 h before the X-ray irradiation. DNA damage by X-ray was significantly decreased by oral administration of aspirin at 0.5 h after or before the X-ray irradiation for the SCG assay. We consider aspirin can be used as preventive agents against exposure of X-ray.

  11. X-ray induced visible alterations in the giant chromosomes of Phryne cincta (Nematocera, Diptera): relation of radiation sensitivity to pronuclear chromosome structure.

    Science.gov (United States)

    Israelewski, N

    1975-12-10

    In order to induce chromosomal rearrangements, males were exposed to x-rays and then mated to non-irradiated females. The number of each type of structural alteration was determined by examination of the polytene chromosomes of the F1 progeny. -- A comparison of the results with similar studies made on Drosophila revealed a significantly greater sensitivity in Phryne. Parallel to that an extremely high frequency of small inversions was ascertained in Phryne, and the observed ratio of inversions to translocations was the inverse of that which would be expected from purely mathematical considerations based on the lengths of the different chromosomes. These facts allow the conclusion that the paternal pronuclear chromosomes in Phryne are highly spiralized. Besides, the kinetochore-to-translocation-breakpoint distance was measured in both of the chromosomes involved in each reciprocal translocation and the differences (kinetochore-break distance differences) were registered and from them the arrangement of the chromosomes in the pronucleus of Phryne deduced. The data obtained support the assumption of an ordered, polar-field type of orientation. In Drosophila, in contrast, the comparable data showed that the pronuclear chromosomes are not spiralized and are randomly arranged (Bauer, 1939). -- These results seem to indicate that a close correlation exists between the different radiation sensitivities of Drosophila and Phryne and the different states of spiralisation and arrangements of their chromosomes in the pronucleus stage. It is hypothesized that the influence of the maternal genome on the degree of spiralization of the paternal chromosomes could account for differences in the pronuclear chromosome structure of both species.

  12. Chromosomal mapping of the human M6 genes

    Energy Technology Data Exchange (ETDEWEB)

    Olinsky, S.; Loop, B.T.; DeKosky, A. [Univ. of Pittsburgh, PA (United States)] [and others

    1996-05-01

    M6 is a neuronal membrane glycoprotein that may have an important role in neural development. This molecule was initially defined by a monoclonal antibody that affected the survival of cultured cerebellar neurons and the outgrowth of neurites. The nature of the antigen was discovered by expression cDNA cloning using this monoclonal antibody. Two distinct murine M6 cDNAs (designated M6a and M6b) whose deduced amino acid sequences were remarkably similar to that of the myelin proteolipid protein human cDNA and genomic clones encoding M6a and M6b and have characterized them by restriction mapping, Southern hybridization with cDNA probes, and sequence analysis. We have localized these genes within the human genome by FISH (fluorescence in situ hybridization). The human M6a gene is located at 4q34, and the M6b gene is located at Xp22.2 A number of human neurological disorders have been mapped to the Xp22 region, including Aicardi syndrome (MIM 304050), Rett syndrome (MIM 312750), X-linked Charcot-Marie-Tooth neuropathy (MIM 302801), and X-linked mental retardation syndromes (MRX1, MIM 309530). This raises the possibility that a defect in the M6b gene is responsible for one of these neurological disorders. 8 refs., 3 figs.

  13. Report of the Second International Workshop on Human Chromosome 5 Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.A.; Neuman, W.L. [Chicago Univ., IL (United States); McPherson, J.; Wasmuth, J. [California Univ., Irvine, CA (United States). Dept. of Biological Chemistry; Camper, S. [Michigan Univ., Ann Arbor, MI (United States). Medical School; Plaetke, R. [Eceles Inst. of Human Genetics, Salt Lake City, UT (United States). Dept. of Human Genetics; Williamson, R. [St. Mary`s Hospital Medical School, London (United Kingdom). Dept. of Biochemistry and Molecular Genetics

    1993-12-31

    This report describes the accomplishments of the Second International Workshop on Human Chromosome 5 as was held May 11--13,1992 at the University of Chicago. Included in the report are abstract of individual presentations and a consensus map of the chromosome.

  14. Replication Banding Patterns in Human Chromosomes Detected Using 5-ethynyl-2'-deoxyuridine Incorporation.

    Science.gov (United States)

    Hoshi, Osamu; Ushiki, Tatsuo

    2011-10-26

    A novel technique using the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into replicating DNA is described for the analysis of replicating banding patterns of human metaphase chromosomes. Human lymphocytes were synchronized with excess thymidine and treated with EdU during the late S phase of the cell cycle. The incorporated EdU was then detected in metaphase chromosomes using Alexa Fluor® 488 azides, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acetylene group of EdU. Chromosomes with incorporated EdU showed a banding pattern similar to G-banding of normal human chromosomes. Imaging by atomic force microscopy (AFM) in liquid conditions showed that the structure of the chromosomes was well preserved even after EdU treatment. Comparison between fluorescence microscopy and AFM images of the same chromosome 1 indicated the presence of ridges and grooves in the chromatid arm, features that have been previously reported in relation to G-banding. These results suggest an intimate relationship between EdU-induced replication bands and G- or R-bands in human chromosomes. This technique is thus useful for analyzing the structure of chromosomes in relation to their banding patterns following DNA replication in the S phase.

  15. Identification of novel RFLPs in the vicinity of CpG islands in Xq28: application to the analysis of the pattern of X chromosome inactivation.

    Science.gov (United States)

    Maestrini, E; Rivella, S; Tribioli, C; Rocchi, M; Camerino, G; Santachiara-Benerecetti, S; Parolini, O; Notarangelo, L D; Toniolo, D

    1992-01-01

    Probes for CpG islands were cloned from the distal long arm of the human X chromosome; three of them were found to be polymorphic. A HindIII RFLP was identified by the probe 2-25 (DXS606), and it was mapped to the Xq27-Xq28 boundary. Probes 2-19 (DXS605) and 2-55 (DXS707), which identify EcoRI and MspI polymorphisms, respectively, have been mapped to the distal part of Xq28, in the G6PD-RCP/GCP gene region. Probe 2-19 has been further localized about 16 kb from the 3' end of the G6PD gene. The new RFLPs may be useful for the precise mapping of the many disease genes localized in this part of the human X chromosome. Probe 2-19 is highly informative, and it has been studied in greater detail. Using the methylation-sensitive rare-cutter enzyme EagI in conjunction with the polymorphic EcoRI site, we were able to demonstrate that the RFLP may be used both to study randomness of X chromosome inactivation and for carrier detection in X-linked syndromes where nonrandom X inactivation occurs. It is conceivable that the combined use of 2-19 and of the probes described so far (pSPT-PGK and M27 beta) will make analysis of X inactivation feasible in virtually every female.

  16. Identification of novel RFLPs in the vicinity of CpG islands in Xq28: Application to the analysis of the pattern of X chromosome inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Camerino, G.; Santachiara-Benerecetti, S. (Univ. di Pavia (Italy)); Rocchi, M. (Univ. di Bari (Italy)); Parolini, O.; Notarangelo, L.D. (Univ. di Brecscia (Italy)); Maestrini, E.; Rivella, S.; Tribioli, C.; Toniolo, D.

    1992-01-01

    Probes of CpG islands were cloned from the distal long arm of the human X chromosome; three of them were found to be polymorphic. A HindIII RFLP was identified by the probe 2-25 (DXS606), and it was mapped to the Xq27-Xq28 boundary. Probes 2-19 (DXS605) and 2-55 (DXS707), which identify EcoRI and MspI polymorphisms, respectively, have been mapped to the distal part of Xq28, in the G6PD-RCP/GCP gene region. Probe 2-19 has been further localized about 16 kb from the 3{prime} end of the G6PD gene. The new RFLPs may be useful for the precise mapping of the many disease genes localized in this part of the human X chromosome. Using the methylation-sensitive rare-cutter enzyme EagI in conjunction with the polymorphic EcoRI site, the authors were able to demonstrate that the RFLP may be used both to study randomness of X chromosome inactivation and for carrier detection in X-linked syndromes where nonrandom X inactivation occurs. It is conceivable that the combined use of 2-19 and of the probes described so far (pSPT-PGK and M27{beta}) will make analysis of X inactivation feasible in virtually every female.

  17. Chromosome Structural Alteration an Unusual Abnormality Characterizing Human Neoplasia

    Directory of Open Access Journals (Sweden)

    Abolfazl Movafagh

    2016-04-01

    Full Text Available Background and Aim: Ring chromosomes are rare cytogenetic abnormalities that occur in less than 10% of hematopoietic malignancies. They are rare in blood disorder. The present review has focused on the ring chromosome associated with oncology malignancies. Materials and Methods: By reviewing the web-based search for all English scientific peer review articles published, was initiated using Medline/PubMed, Mitelman database (http://cgap.nci.nih.gov/Chromosomes/Mitelman, and other pertinent references on websites about ring chromosomes in Oncology. The software program as End Note was used to handle the proper references for instruction to author. Karyotype descriptions were cited according to ISCN.Conclusion: Ring chromosomes are rare chromosomal aberrations, almost many times are of de novo origin, presenting a different phenotype regarding the loss of genetic material. The karyotype represents the main analysis for detection of ring chromosomes, but other molecular technics are necessary for complete characterization. The information of this review article adds to the spectrum of both morphology and genetic rearrangements in the field of oncology malignancies.

  18. Transcriptional and post-transcriptional profile of human chromosome 21.

    Science.gov (United States)

    Nikolaev, Sergey I; Deutsch, Samuel; Genolet, Raphael; Borel, Christelle; Parand, Leila; Ucla, Catherine; Schütz, Frederic; Duriaux Sail, Genevieve; Dupré, Yann; Jaquier-Gubler, Pascale; Araud, Tanguy; Conne, Beatrice; Descombes, Patrick; Vassalli, Jean-Dominique; Curran, Joseph; Antonarakis, Stylianos E

    2009-08-01

    Recent studies have demonstrated extensive transcriptional activity across the human genome, a substantial fraction of which is not associated with any functional annotation. However, very little is known regarding the post-transcriptional processes that operate within the different classes of RNA molecules. To characterize the post-transcriptional properties of expressed sequences from human chromosome 21 (HSA21), we separated RNA molecules from three cell lines (GM06990, HeLa S3, and SK-N-AS) according to their ribosome content by sucrose gradient fractionation. Polyribosomal-associated RNA and total RNA were subsequently hybridized to genomic tiling arrays. We found that approximately 50% of the transcriptional signals were located outside of annotated exons and were considered as TARs (transcriptionally active regions). Although TARs were observed among polysome-associated RNAs, RT-PCR and RACE experiments revealed that approximately 40% were likely to represent nonspecific cross-hybridization artifacts. Bioinformatics discrimination of TARs according to conservation and sequence complexity allowed us to identify a set of high-confidence TARs. This set of TARs was significantly depleted in the polysomes, suggesting that it was not likely to be involved in translation. Analysis of polysome representation of RefSeq exons showed that at least 15% of RefSeq transcripts undergo significant post-transcriptional regulation in at least two of the three cell lines tested. Among the regulated transcripts, enrichment analysis revealed an over-representation of genes involved in Alzheimer's disease (AD), including APP and the BACE1 protease that cleaves APP to produce the pathogenic beta 42 peptide. We demonstrate that the combination of RNA fractionation and tiling arrays is a powerful method to assess the transcriptional and post-transcriptional properties of genomic regions.

  19. Karyotyping human and mouse cells using probes from single-sorted chromosomes and open source software.

    Science.gov (United States)

    Potapova, Tamara A; Unruh, Jay R; Box, Andrew C; Bradford, William D; Seidel, Christopher W; Slaughter, Brian D; Sivagnanam, Shamilene; Wu, Yuping; Li, Rong

    2015-12-01

    Multispectral karyotyping analyzes all chromosomes in a single cell by labeling them with chromosome-specific probes conjugated to unique combinations of fluorophores. Currently available multispectral karyotyping systems require the purchase of specialized equipment and reagents. However, conventional laser scanning confocal microscopes that are capable of separating multiple overlapping emission spectra through spectral imaging and linear unmixing can be utilized for classifying chromosomes painted with multicolor probes. Here, we generated multicolor chromosome paints from single-sorted human and mouse chromosomes and developed the Karyotype Identification via Spectral Separation (KISS) analysis package, a set of freely available open source ImageJ tools for spectral unmixing and karyotyping. Chromosome spreads painted with our multispectral probe sets can be imaged on widely available spectral laser scanning confocal microscopes and analyzed using our ImageJ tools. Together, our probes and software enable academic labs with access to a laser-scanning spectral microscope to perform multicolor karyotyping in a cost-effective manner.

  20. Techniques for imaging human metaphase chromosomes in liquid conditions by atomic force microscopy

    Science.gov (United States)

    Ushiki, Tatsuo; Shigeno, Masatsugu; Hoshi, Osamu

    2008-09-01

    The purpose of this study was to obtain three-dimensional images of wet chromosomes by atomic force microscopy (AFM) in liquid conditions. Human metaphase chromosomes—obtained either by chromosome spreads or by an isolation technique—were observed in a dynamic mode by AFM in a buffer solution. Under suitable operating conditions with a soft triangular cantilever (with the spring constant of 0.08-0.4 N m-1), clear images of fixed chromosomes in the chromosome spread were obtained by AFM. For imaging isolated chromosomes with the height of more than 400 nm, a cantilever with a high aspect ratio probing tip was required. The combination of a Q-control system and the sampling intelligent scan (SIS) system in dynamic force mode AFM was useful for obtaining high-quality images of the isolated chromosomes, in which globular or cord-like structures about 50 nm thick were clearly observed on the surface of each chromatid.

  1. The Relationship Between Spontaneous Telomere Loss and Chromosome Instability in a Human Tumor Cell Line

    Directory of Open Access Journals (Sweden)

    Bijan Fouladi

    2000-01-01

    Full Text Available Chromosome instability plays an important role in cancer by promoting the alterations in the genome required for tumor cell progression. The loss of telomeres that protect the ends of chromosomes and prevent chromosome fusion has been proposed as one mechanism for chromosome instability in cancer cells, however, there is little direct evidence to support this hypothesis. To investigate the relationship between spontaneous telomere loss and chromosome instability in human cancer cells, clones of the EJ-30 tumor cell line were isolated in which a herpes simplex virus thymidine kinase (HSV-tk gene was integrated immediately adjacent to a telomere. Selection for HSV-tkdeficient cells with ganciclovir demonstrated a high rate of loss of the end these "marked" chromosomes (10-4 events/cell per generation. DNA sequence and cytogenetic analysis suggests that the loss of function of the HSV-tk gene most often involves telomere loss, sister chromatid fusion, and prolonged periods of chromosome instability. In some HSV-tk-deficient cells, telomeric repeat sequences were added on to the end of the truncated HSV-tk gene at a new location, whereas in others, no telomere was detected on the end of the marked chromosome. These results suggest that spontaneous telomere loss is a mechanism for chromosome instability in human cancer cells.

  2. Sporadic male patients with intellectual disability: contribution of X-chromosome copy number variants.

    Science.gov (United States)

    Isrie, M; Froyen, G; Devriendt, K; de Ravel, T; Fryns, J P; Vermeesch, J R; Van Esch, H

    2012-11-01

    Genome-wide array comparative genome hybridization has become the first in line diagnostic tool in the clinical work-up of patients presenting with intellectual disability. As a result, chromosome X-copy number variations are frequently being detected in routine diagnostics. We retrospectively reviewed genome wide array-CGH data in order to determine the frequency and nature of chromosome X-copy number variations (X-CNV) in a cohort of 2222 sporadic male patients with intellectual disability (ID) referred to us for diagnosis. In this cohort, 68 males were found to have at least one X-CNV (3.1%). However, correct interpretation of causality remains a challenging task, and is essential for proper counseling, especially when the CNV is inherited. On the basis of these data, earlier experience and literature data we designed and propose an algorithm that can be used to evaluate the clinical relevance of X-CNVs detected in sporadic male ID patients. Applied to our cohort, 19 male ID patients (0.85%) were found to carry a (likely) pathogenic X-CNV.

  3. A Role for the X Chromosome in Sex Differences in Variability in General Intelligence?

    Science.gov (United States)

    Johnson, Wendy; Carothers, Andrew; Deary, Ian J

    2009-11-01

    There is substantial evidence that males are more variable than females in general intelligence. In recent years, researchers have presented this as a reason that, although there is little, if any, mean sex difference in general intelligence, males tend to be overrepresented at both ends of its overall distribution. Part of the explanation could be the presence of genes on the X chromosome related both to syndromal disorders involving mental retardation and to population variation in general intelligence occurring normally. Genes on the X chromosome appear overrepresented among genes with known involvement in mental retardation, which is consistent with a model we developed of the population distribution of general intelligence as a mixture of two normal distributions. Using this model, we explored the expected ratios of males to females at various points in the distribution and estimated the proportion of variance in general intelligence potentially due to genes on the X chromosome. These estimates provide clues to the extent to which biologically based sex differences could be manifested in the environment as sex differences in displayed intellectual abilities. We discuss these observations in the context of sex differences in specific cognitive abilities and evolutionary theories of sexual selection.

  4. Associations between Variation in X Chromosome Male Reproductive Genes and Sperm Competitive Ability in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Leah Greenspan

    2011-01-01

    Full Text Available Variation in reproductive success has long been thought to be mediated in part by genes encoding seminal proteins. Here we explore the effect on male reproductive phenotypes of X-linked polymorphisms, a chromosome that is depauperate in genes encoding seminal proteins. Using 57 X chromosome substitution lines, sperm competition was tested both when the males from the wild-extracted line were the first to mate (“defense” crosses, followed by a tester male, and when extracted-line males were the second to mate, after a tester male (“offfense” crosses. We scored the proportion of progeny sired by each male, the fecundity, the remating rate and refractoriness to remating, and tested the significance of variation among lines. Eleven candidate genes were chosen based on previous studies, and portions of these genes were sequenced in all 57 lines. A total of 131 polymorphisms were tested for associations with the reproductive phenotypes using linear models. Nine polymorphisms in 4 genes were found to show significant associations (at a 5% FDR. Overall, it appears that the X chromosomes harbor abundant variation in sperm competition, especially considering the paucity of seminal protein genes. This suggests that much of the male reproductive variation lies outside of genes that encode seminal proteins.

  5. Normal newborn with prenatal suspicion of X chromosome monosomy due to confined placental mosaicism.

    Science.gov (United States)

    Serapinas, Danielius; Bartkeviciene, Daiva; Valantinaviciene, Emilija; Machtejeviene, Egle

    2016-10-01

    The recent introduction of cell-free DNA (cfDNA)-based noninvasive prenatal testing (NIPT) offers pregnant women a more accurate method than traditional serum screening methods for detecting fetal aneuploidies. Clinical trials have demonstrated the efficacy of NIPT for Down, Edwards and Patau syndromes. However NIPT approaches that take advantage of single-nucelotide polymorphism (SNP) information potentially allow the identification of triploidy, chromosomal microdeletion syndromes and other unusual genetic variants. To highlight this approach of NIPT we present a rare case of confined placental X chromosome monosomy mosaicism that was prenatally suspected with a single-nucleotide polymorphism-based noninvasive prenatal test. The results of invasive tests (amniocentesis) showed small proportion of X chromosome mosaicism (45, X[5]/46, XX[95]). After birth karyotype of the girl revealed no abnormalities (46 XX), confirming that mosaicism was limited to the placenta. These results highlight the need of patient's informed consent and thorough pretest and postest counseling to ensure that they understand the limitations and advantages of the tests and the implications of the resultss.

  6. How-to-Do-It. Human Chromosome Preparation.

    Science.gov (United States)

    Lundberg, Doug

    1990-01-01

    Described is a laboratory activity in which high school students may perform a karyotype analysis of their own chromosomes. Materials and procedures are detailed. A source of materials for this exercise is provided. (CW)

  7. The effects of severe mixed environmental pollution on human chromosomes.

    OpenAIRE

    Katsantoni, A; Nakou, S; Antoniadou-Koumatou, I; Côté, G B

    1986-01-01

    Cytogenetic studies were conducted on healthy young mothers, shortly after child birth, in two residential areas each with an approximate population of 20,000, situated about 25 km from Athens, Greece. One of the areas, Elefsis, is subject to severe mixed industrial pollution, and the other, Koropi, is relatively free of pollution. Chromosomal aberrations were investigated in 16 women from each area in 72 hour lymphocyte cultures treated with gentian violet to enhance any chromosomal instabil...

  8. Re-analysis of the larval testis data on meiotic sex chromosome inactivation revealed evidence for tissue-specific gene expression related to the drosophila X chromosome

    Directory of Open Access Journals (Sweden)

    Vibranovski Maria D

    2012-06-01

    Full Text Available Abstract Background Meiotic sex chromosome inactivation (MSCI during spermatogenesis has been proposed as one of the evolutionary driving forces behind both the under-representation of male-biased genes on, and the gene movement out of, the X chromosome in Drosophila. However, the relevance of MSCI in shaping sex chromosome evolution is controversial. Here we examine two aspects of a recent study on testis gene expression (Mikhaylova and Nurminsky, BMC Biol 2011, 9:29 that failed to support the MSCI in Drosophila. First, Mikhaylova and Nurminsky found no differences between X-linked and autosomal genes based on the transcriptional profiling of the early testis development, and thus concluded that MSCI does not occur in D. melanogaster. Second, they also analyzed expression data from several D. melanogaster tissues and concluded that under-representation on the X chromosome is not an exclusive property of testis-biased genes, but instead, a general property of tissue-specific genes. Results By re-analyzing the Mikhaylova and Nurminsky's testis data and the expression data on several D. melanogaster tissues, we made two major findings that refuted their original claims. First, the developmental testis data has generally greater experimental error than conventional analyses, which reduced significantly the power to detect chromosomal differences in expression. Nevertheless, our re-analysis observed significantly lower expression of the X chromosome in the genomic transcriptomes of later development stages of the testis, which is consistent with the MSCI hypothesis. Second, tissue-specific genes are also in general enriched with genes more expressed in testes than in ovaries, that is testis-biased genes. By completely excluding from the analyses the testis-biased genes, which are known to be under-represented in the X, we found that all the other tissue-specific genes are randomly distributed between the X chromosome and the autosomes. Conclusions

  9. Recombinant chromosome 7 in a mosaic 45,X/47,XXX patient.

    Science.gov (United States)

    Tirado, Carlos A; Gotway, Garrett; Torgbe, Emmanuel; Iyer, Santha; Dallaire, Stephanie; Appleberry, Taylor; Suterwala, Mohamed; Garcia, Rolando; Valdez, Federico; Patel, Sangeeta; Koduru, Prasad

    2012-01-01

    Individuals with pericentric inversions are at risk for producing offspring with chromosomal gains and losses, while those carrying paracentric inversions usually produce unviable gametes [Madan, 1995]. In this current study, we present a newborn with dysmorphic features and malformations, whose karyotype showed an abnormal copy of chromomosome 7 described at first as add(7)(q32) as well as mos 45,X/47,XXX. Array comparative genomic hybridization (CGH) revealed an interstitial deletion in the long arm of chromosome 7 involving bands q35 to q36.3 but retaining the 7q subtelomere. The patient's deletion is believed to be due to meiotic recombination in the inversion loop in the phenotypically normal father who seems to carry two paracentric inversions in the long arm of chromosome 7, which was described as rec(7)(7pter- > q35::q36.3- > 7qter)pat. The abnormal copy of chromosome 7 in the father has been described as: der(7)(7pter- > q22.1::q36.3- > q35::q22.1- > q35::q36.3- > 7qter). This is a unique karyotype that to our knowledge has not been previously reported in the literature and predisposes to meiotic recombination that can result in deletions or duplications of 7q35-36.

  10. Non-Canonical and Sexually Dimorphic X Dosage Compensation States in the Mouse and Human Germline.

    Science.gov (United States)

    Sangrithi, Mahesh N; Royo, Helene; Mahadevaiah, Shantha K; Ojarikre, Obah; Bhaw, Leena; Sesay, Abdul; Peters, Antoine H F M; Stadler, Michael; Turner, James M A

    2017-02-06

    Somatic X dosage compensation requires two mechanisms: X inactivation balances X gene output between males (XY) and females (XX), while X upregulation, hypothesized by Ohno and documented in vivo, balances X gene with autosomal gene output. Whether X dosage compensation occurs in germ cells is unclear. We show that mouse and human germ cells exhibit non-canonical X dosage states that differ from the soma and between the sexes. Prior to genome-wide reprogramming, X upregulation is present, consistent with Ohno's hypothesis. Subsequently, however, it is erased. In females, erasure follows loss of X inactivation, causing X dosage excess. Conversely, in males, erasure leads to permanent X dosage decompensation. Sex chromosomally abnormal models exhibit a "sex-reversed" X dosage state: XX males, like XX females, develop X dosage excess, while XO females, like XY males, develop X dosage decompensation. Thus, germline X dosage compensation states are determined by X chromosome number, not phenotypic sex. These unexpected differences in X dosage compensation states between germline and soma offer unique perspectives on sex chromosome infertility.

  11. Prognostic value of X-chromosome inactivation in symptomatic female carriers of dystrophinopathy

    Directory of Open Access Journals (Sweden)

    Juan-Mateu Jonàs

    2012-10-01

    Full Text Available Abstract Background Between 8% and 22% of female carriers of DMD mutations exhibit clinical symptoms of variable severity. Development of symptoms in DMD mutation carriers without chromosomal rearrangements has been attributed to skewed X-chromosome inactivation (XCI favouring predominant expression of the DMD mutant allele. However the prognostic use of XCI analysis is controversial. We aimed to evaluate the correlation between X-chromosome inactivation and development of clinical symptoms in a series of symptomatic female carriers of dystrophinopathy. Methods We reviewed the clinical, pathological and genetic features of twenty-four symptomatic carriers covering a wide spectrum of clinical phenotypes. DMD gene analysis was performed using MLPA and whole gene sequencing in blood DNA and muscle cDNA. Blood and muscle DNA was used for X-chromosome inactivation (XCI analysis thought the AR methylation assay in symptomatic carriers and their female relatives, asymptomatic carriers as well as non-carrier females. Results Symptomatic carriers exhibited 49.2% more skewed XCI profiles than asymptomatic carriers. The extent of XCI skewing in blood tended to increase in line with the severity of muscle symptoms. Skewed XCI patterns were found in at least one first-degree female relative in 78.6% of symptomatic carrier families. No mutations altering XCI in the XIST gene promoter were found. Conclusions Skewed XCI is in many cases familial inherited. The extent of XCI skewing is related to phenotype severity. However, the assessment of XCI by means of the AR methylation assay has a poor prognostic value, probably because the methylation status of the AR gene in muscle may not reflect in all cases the methylation status of the DMD gene.

  12. A 2-megabase physical contig incorporating 43 DNA markers on the human X chromosome at p11.23-p11.22 from ZNF21 to DXS255

    Energy Technology Data Exchange (ETDEWEB)

    Boycott, K.M.; Bech-Hansen, N.T. [Univ. of Calgary, Alberta (Canada); Halley, G.R.; Schlessinger, D. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1996-05-01

    A comprehensive physical contig of yeast artificial chromosomes (YACs) and cosmid clones between ZNF21 and DXS255 has been constructed, spanning 2 Mb within the region Xp11.23-p11.22. As a portion of the region was found to be particularly unstable in yeast, the integrity of the contig is dependent on additional information provided by the sequence-tagged site (STS) content of cosmid clones and DNA marker retention in conventional and radiation hybrids. The contig was formatted with 43 DNA markers, including 19 new STSs from YAC insert ends and an internal Alu-PCR product. The density of STSs across the contig ranges from one marker every 20 kb to one every 60 kb, with an average density of one marker every 50 kb. The relative order of previously known gene and expressed sequence tags in this region is predicted to be Xpter-ZNF21-DXS7465E (MG66)-DXS7927E (MG81)-WASP, DXS1011E, DXS7467E (MG21)-DXS-7466E (MG44)-GATA1-DXS7469E (Xp664)-TFE3-SYP (DXS1007E)-Xcen. This contig extends the coverage in Xp11 and provides a framework for the future identification and mapping of new genes, as well as the resources for developing DNA sequencing templates. 47 refs., 1 fig., 4 tabs.

  13. A high-resolution comparative map between pig chromosome 17 and human chromosomes 4, 8, and 20: Identification of synteny breakpoints

    DEFF Research Database (Denmark)

    Lahbib-Mansais, Yvette; Karlskov-Mortensen, Peter; Mompart, Florence;

    2005-01-01

    We report on the construction of a high-resolution comparative map of porcine chromosome 17 (SSC17) focusing on evolutionary breakpoints with human chromosomes. The comparative map shows high homology with human chromosome 20 but suggests more limited homologies with other human chromosomes. SSC17...... is of particular interest in studies of chromosomal organization due to the presence of QTLs that affect meat quality and carcass composition. A total of 158 pig ESTs available in databases or developed by the Sino-Danish Pig Genome Sequencing Consortium were mapped using the INRA-University of Minnesota porcine...... radiation hydrid panel. The high-resolution map was further anchored by fluorescence in situ hybridization. This study confirmed the extensive conservation between SSC17 and HSA20 and enabled the gene order to be determined. The homology of the SSC17 pericentromeric region was extended to other human...

  14. ALLELE DISTRIBUTION OF FIVE X-CHROMOSOME SHORT TANDEM REPEAT LOCI IN EWENKE POPULATION OF NORTH CHINA

    Institute of Scientific and Technical Information of China (English)

    Shan-zhi Gu; Teng Chen; Qing-bo Liu; Bing Yu; Sheng-bin Li

    2005-01-01

    Objective To study the allele genetic polymorphism of five short tandem repeat (STR) loci on X-chromosome in Ewenke population of north China and to provide basic data for forensic identification.Methods Genomic DNA was extracted from EDTA-whole blood of Ewenke population by Chelex-100. The DNA samples were amplified by PCR and were analyzed by polyacrylamide gel electrophoresis and silver staining. The sequence length variations of DXS6799, DXS8378, DXS101, HPRTB, and DXS6789 loci on X-chromosome in 98unrelated Ewenke individuals were investigated.Results All five loci analyzed showed high polymorphism and genetic stability. The data of the five X-chromosome STR loci in Ewenke ethnic group of China was in accordance with Hardy-Weinberg equilibrium by Chi-square test.Conclusion Allele polymorphism of five X-chromosome STR loci can be used as a genetic marker for forensic identification and population genetic research.

  15. X Chromosomal effects on social cognitive processing and emotion regulation : A study with Klinefelter men (47,XXY)

    NARCIS (Netherlands)

    van Rijn, S; Swaab, H; Aleman, A; Kahn, RS

    2006-01-01

    Studying Klinefelter syndrome (47,XXY), a genetically defined disorder characterized by the presence of an additional X chromosome, can reveal insights into genotype-phenotype associations. Increased vulnerability to psychiatric disorders characterized by difficulties in social interactions, such as

  16. Comparison of the Giemsa C-banded karyotypes of the three subspecies of Psathyrostachys fragilis, subspp. villosus (2x), secaliformis (2x, 4x), and fragilis (2x) (Poaceae), with notes on chromosome pairing

    DEFF Research Database (Denmark)

    Linde-Laursen, I.; Baden, C.

    1994-01-01

    The karyotypes of diploid P. fragilis subsp. villosus (2n = 2x = 14) and tetraploid subsp. secaliformis (2n = 4x = 28) were studied by Giemsa C- and N-banding, and AgNO3 staining and compared with the karyotype of subsp. fragilis (2x). The complements of subsp. villosus and subsp. fragilis were...... in chromosome morphology and C-banding patterns identified homology of all chromosomes of subsp. villosus, but for 12 pairs only in subsp. secaliformis. Between plants, reliable identification of homology and homoeology (subsp. secaliformis) was possible only for the SAT-chromosomes and the shortest...

  17. Chromosomal localization of murine and human oligodendrocyte-specific protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Bronstein, J.M.; Wu, S.; Korenberg, J.R. [UCLA School of Medicine, Los Angeles, CA (United States)] [and others

    1996-06-01

    Oligodendrocyte-specific protein (OSP) is a recently described protein present only in myelin of the central nervous system. Several inherited disorders of myelin are caused by mutations in myelin genes but the etiology of many remain unknown. We mapped the location of the mouse OSP gene to the proximal region of chromosome 3 using two sets of multilocus crosses and to human chromosome 3 using somatic cell hybrids. Fine mapping with fluorescence in situ hybridization placed the OSP gene at human chromosome 3q26.2-q26.3. To date, there are no known inherited neurological disorders that localize to these regions. 24 refs., 2 figs.

  18. Effects of age on segregation of the X and Y chromosomes in cultured lymphocytes from Chinese men.

    Science.gov (United States)

    Song, Yaxian; Chen, Qian; Zhang, Zhen; Hou, Heli; Zhang, Ding; Shi, Qinghua

    2009-08-01

    Chromosome malsegregation in binucleated lymphocytes is a useful endpoint to evaluate age effect on genetic stability. However, the investigations on chromosome malsegregation in binucleated lymphocytes from Chinese are scarce. In this study, peripheral blood lymphocytes were collected from 14 old (60-70 years) and 10 young (22-26 years) healthy Chinese men. To detect malsegregation of the sex chromosomes, multi-color fluorescence in situ hybridization (FISH) was performed on binucleated lymphocytes, cytokinesis-blocked by cytochalasin B at the first mitosis after phytohaemagglutinin stimulation. Compared with that in young men, a significant increase in frequencies of loss of chromosome X (9.2 +/- 3.2 per thousand vs. 1.1 +/- 0.9 per thousand, P men. Similarly, nondisjunction of chromosome X (16.5 +/- 3.4 per thousand vs. 3.5 +/- 1.1 per thousand, P men than in young men. Regardless of donor's age, nondisjunction is more prevalent than loss for both chromosome X and Y. The frequencies of observed simultaneous malsegregation were relatively higher than the expected, suggesting an association between malsegregation. These results indicated that in Chinese men, malsegregation of the sex chromosomes increases with age in an associated fashion, and nondisjunction accounts for the majority of spontaneous chromosome malsegregation.

  19. Y chromosome in Turner syndrome: detection of hidden mosaicism and the report of a rare X;Y translocation case.

    Science.gov (United States)

    Bispo, Adriana Valéria Sales; Burégio-Frota, Pollyanna; Oliveira dos Santos, Luana; Leal, Gabriela Ferraz; Duarte, Andrea Rezende; Araújo, Jacqueline; Cavalcante da Silva, Vanessa; Muniz, Maria Tereza Cartaxo; Liehr, Thomas; Santos, Neide

    2014-10-01

    Turner syndrome (TS) is a common genetic disorder in females associated with the absence of complete or parts of a second sex chromosome. In 5-12% of patients, mosaicism for a cell line with a normal or structurally abnormal Y chromosome is identified. The presence of Y-chromosome material is of medical importance because it results in an increased risk of developing gonadal tumours and virilisation. Molecular study and fluorescence in situ hybridisation approaches were used to study 74 Brazilian TS patients in order to determine the frequency of hidden Y-chromosome mosaicism, and to infer the potential risk of developing malignancies. Additionally, we describe one TS girl with a very uncommon karyotype 46,X,der(X)t(X;Y)(p22.3?2;q11.23) comprising a partial monosomy of Xp22.3?2 together with a partial monosomy of Yq11.23. The presence of cryptic Y-chromosome-specific sequences was detected in 2.7% of the cases. All patients with Y-chromosome-positive sequences showed normal female genitalia with no signs of virilisation. Indeed, the clinical data from Y-chromosome-positive patients was very similar to those with Y-negative results. Therefore, we recommend that the search for hidden Y-chromosome mosaicism should be carried out in all TS cases and not be limited to virilised patients or carriers of a specific karyotype.

  20. A new resource for characterizing X-linked genes in Drosophila melanogaster: systematic coverage and subdivision of the X chromosome with nested, Y-linked duplications.

    Science.gov (United States)

    Cook, R Kimberley; Deal, Megan E; Deal, Jennifer A; Garton, Russell D; Brown, C Adam; Ward, Megan E; Andrade, Rachel S; Spana, Eric P; Kaufman, Thomas C; Cook, Kevin R

    2010-12-01

    Interchromosomal duplications are especially important for the study of X-linked genes. Males inheriting a mutation in a vital X-linked gene cannot survive unless there is a wild-type copy of the gene duplicated elsewhere in the genome. Rescuing the lethality of an X-linked mutation with a duplication allows the mutation to be used experimentally in complementation tests and other genetic crosses and it maps the mutated gene to a defined chromosomal region. Duplications can also be used to screen for dosage-dependent enhancers and suppressors of mutant phenotypes as a way to identify genes involved in the same biological process. We describe an ongoing project in Drosophila melanogaster to generate comprehensive coverage and extensive breakpoint subdivision of the X chromosome with megabase-scale X segments borne on Y chromosomes. The in vivo method involves the creation of X inversions on attached-XY chromosomes by FLP-FRT site-specific recombination technology followed by irradiation to induce large internal X deletions. The resulting chromosomes consist of the X tip, a medial X segment placed near the tip by an inversion, and a full Y. A nested set of medial duplicated segments is derived from each inversion precursor. We have constructed a set of inversions on attached-XY chromosomes that enable us to isolate nested duplicated segments from all X regions. To date, our screens have provided a minimum of 78% X coverage with duplication breakpoints spaced a median of nine genes apart. These duplication chromosomes will be valuable resources for rescuing and mapping X-linked mutations and identifying dosage-dependent modifiers of mutant phenotypes.

  1. A Turner Syndrome Patient Carrying a Mosaic Distal X Chromosome Marker

    Directory of Open Access Journals (Sweden)

    Roberto L. P. Mazzaschi

    2014-01-01

    Full Text Available A skin sample from a 17-year-old female was received for routine karyotyping with a set of clinical features including clonic seizures, cardiomyopathy, hepatic adenomas, and skeletal dysplasia. Conventional karyotyping revealed a mosaic Turner syndrome karyotype with a cell line containing a small marker of X chromosome origin. This was later confirmed on peripheral blood cultures by conventional G-banding, fluorescence in situ hybridisation and microarray analysis. Similar Turner mosaic marker chromosome cases have been previously reported in the literature, with a variable phenotype ranging from the mild “classic” Turner syndrome to anencephaly, agenesis of the corpus callosum, complex heart malformation, and syndactyly of the fingers and toes. This case report has a phenotype that is largely discordant with previously published cases as it lies at the severe end of the Turner variant phenotype scale. The observed cytogenetic abnormalities in this study may represent a coincidental finding, but we cannot exclude the possibility that the marker has a nonfunctioning X chromosome inactivation locus, leading to functional disomy of those genes carried by the marker.

  2. A Turner Syndrome Patient Carrying a Mosaic Distal X Chromosome Marker

    Science.gov (United States)

    Mazzaschi, Roberto L. P.; Taylor, Juliet; Robertson, Stephen P.; Love, Donald R.; George, Alice M.

    2014-01-01

    A skin sample from a 17-year-old female was received for routine karyotyping with a set of clinical features including clonic seizures, cardiomyopathy, hepatic adenomas, and skeletal dysplasia. Conventional karyotyping revealed a mosaic Turner syndrome karyotype with a cell line containing a small marker of X chromosome origin. This was later confirmed on peripheral blood cultures by conventional G-banding, fluorescence in situ hybridisation and microarray analysis. Similar Turner mosaic marker chromosome cases have been previously reported in the literature, with a variable phenotype ranging from the mild “classic” Turner syndrome to anencephaly, agenesis of the corpus callosum, complex heart malformation, and syndactyly of the fingers and toes. This case report has a phenotype that is largely discordant with previously published cases as it lies at the severe end of the Turner variant phenotype scale. The observed cytogenetic abnormalities in this study may represent a coincidental finding, but we cannot exclude the possibility that the marker has a nonfunctioning X chromosome inactivation locus, leading to functional disomy of those genes carried by the marker. PMID:24778889

  3. Chemotherapy induces transient sex chromosomal and autosomal aneuploidy in human sperm.

    Science.gov (United States)

    Robbins, W A; Meistrich, M L; Moore, D; Hagemeister, F B; Weier, H U; Cassel, M J; Wilson, G; Eskenazi, B; Wyrobek, A J

    1997-05-01

    Each year more than 20,000 children and young persons of reproductive age are exposed to known mutagens in the form of chemo- and/or radiotherapy for cancer in the States. As more of these treatments are effective there is growing concern that genetic defects are introduced in the germ cells of these young patients. It is well documented for male rodents that treatment with chemo- and radio-therapeutic agents before mating can cause genetic damage in the germ line, and the magnitude of heritable effects depends on the spermatogenic cell stage treated. Similar germinal effects are suspected to occur in humans but remain unproven. Hodgkin's disease (HD) is an example of a malignancy which is typically diagnosed during a patient's reproductive years. In our study we observed eight male HD patients who were treated with NOVP (Novanthrone, Oncovin, Vinblastine, Prednisone) chemotherapy. We evaluated sperm aneuploidy using multi-colour fluorescence in situ hybridization (FISH), and found approximately 5-fold increases in sperm with disomies, diploidies and complex genotypes involving chromosome X, Y and 8. Increases in sex chromosome aneuploidies arose from segregation errors at meiosis I as well as meiosis II. The aneuploidy effects were transient, however, declining to pretreatment levels within approximately 100 days after the end of the therapy. When compared with normal men, some HD patients showed higher proportions of certain sperm aneuploidy types even before their first therapy.

  4. The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes.

    Science.gov (United States)

    Estandarte, Ana Katrina; Botchway, Stanley; Lynch, Christophe; Yusuf, Mohammed; Robinson, Ian

    2016-08-16

    Chromatin undergoes dramatic condensation and decondensation as cells transition between the different phases of the cell cycle. The organization of chromatin in chromosomes is still one of the key challenges in structural biology. Fluorescence lifetime imaging (FLIM), a technique which utilizes a fluorophore's fluorescence lifetime to probe changes in its environment, was used to investigate variations in chromatin compaction in fixed human chromosomes. Fixed human metaphase and interphase chromosomes were labeled with the DNA minor groove binder, DAPI, followed by measurement and imaging of the fluorescence lifetime using multiphoton excitation. DAPI lifetime variations in metaphase chromosome spreads allowed mapping of the differentially compacted regions of chromatin along the length of the chromosomes. The heteromorphic regions of chromosomes 1, 9, 15, 16, and Y, which consist of highly condensed constitutive heterochromatin, showed statistically significant shorter DAPI lifetime values than the rest of the chromosomes. Differences in the DAPI lifetimes for the heteromorphic regions suggest differences in the structures of these regions. DAPI lifetime variations across interphase nuclei showed variation in chromatin compaction in interphase and the formation of chromosome territories. The successful probing of differences in chromatin compaction suggests that FLIM has enormous potential for application in structural and diagnostic studies.

  5. Studies on the integration of hepatitis B virusDNA sequence in human sperm chromosomes

    Institute of Scientific and Technical Information of China (English)

    Jian-MinHUANG; Tian-HuaHUANG

    2002-01-01

    Aim:To study the integration of hepatitis Bvirus(HBV)DNAinto sperm chromosomes in hepatitsBpatients and the features of its integration.Methods:Sperm chromosomes of 14subjects(5healthy controls and9HBpatients,including1acute hepatitis B,2chronic active hepatitisB,4chronic persistent hepatitsB,2HBsAg chronic carriers with no clinical symptoms)were prepared using imterspecific in vitro fertilization between zona-free hamster oocytes and human spermatozoa.Fluosescence in situ hybridization(FISH)to sperm chromosome spreads was carried out with biotin-labeled full length HBVDNAprobe to detect the specificHBVDNA sequences in the sperm chromosomes.Results:Specific fluorescent signal spots for HBVDNAwere seen iv sperm chromosomes of one patient with chronic persistent hepatitisB.In9(9/42)sperm chromosome complements containing fluorescent signal spots,one presented5obvious FISHspots and the others2to4signals.The fluorescence intensity showed significant difference among the signal spots.The distribution of signal sites among chromosomes seems to be random.Con clusion:HBV could integrate into human sperm chromosomes.Results suggest that the possibility of vertical transmission of HBVvia the germ line tothe next generation is present.

  6. Associations of homologous RNA-binding motif gene on the X chromosome (RBMX) and its like sequence on chromosome 9(RBMXL9) with non-obstructive azoospermia

    Institute of Scientific and Technical Information of China (English)

    Akira Tsujimura; Masao Ota; Akihiko Okuyama; Kazutoshi Fujita; Kazuhiko Komori; Phanu Tanjapatkul; Yasushi Miyagawa; Shingo Takada; Kiyomi Matsumiya; Masaharu Sada; Yoshihiko Katsuyama

    2006-01-01

    Aim: To investigate the associations of autosomal and X-chromosome homologs of the RNA-binding-motif (RNA-binding-motif on the Y chromosome, RBMY) gene with non-obstructive azoospermia (NOA), as genetic factors for NOA may map to chromosomes other than the Y chromosome. Methods: Genomic DNA was extracted using a salting-out procedure after treatment of peripheral blood leukocytes with proteinase K from Japanese patients with NOA (n = 67) and normal fertile volunteers (n = 105). The DNA were analyzed for RBMX by expressed sequence tag (EST) deletion and for the like sequence on chromosome 9 (RBMXL9) by microsatellite polymorphism. Results: We examined six ESTs in and around RBMX and found a deletion of SHGC31764 in one patient with NOA and a deletion of DXS7491 in one other patient with NOA. No deletions were detected in control subjects. The association study with nine microsatellite markers near RBMXL9 revealed that D9S319 was less prevalent in patients than in control subjects, whereas D9S1853 was detected more frequently in patients than that in control subjects. Conclusion: We provide evidence that deletions in or around RBMX may be involved in NOA. In addition, analyses of markers in the vicinity of RBMXL9 on chromosome 9 suggest the possibility that variants of this gene may be associated with NOA.Although further studies are necessary, this is the first report of the association between RBMX and RBMXL9 with NOA.

  7. Loss of DNMT1o disrupts imprinted X chromosome inactivation and accentuates placental defects in females.

    Directory of Open Access Journals (Sweden)

    Serge McGraw

    2013-11-01

    Full Text Available The maintenance of key germline derived DNA methylation patterns during preimplantation development depends on stores of DNA cytosine methyltransferase-1o (DNMT1o provided by the oocyte. Dnmt1o(mat-/- mouse embryos born to Dnmt1(Δ1o/Δ1o female mice lack DNMT1o protein and have disrupted genomic imprinting and associated phenotypic abnormalities. Here, we describe additional female-specific morphological abnormalities and DNA hypomethylation defects outside imprinted loci, restricted to extraembryonic tissue. Compared to male offspring, the placentae of female offspring of Dnmt1(Δ1o/Δ1o mothers displayed a higher incidence of genic and intergenic hypomethylation and more frequent and extreme placental dysmorphology. The majority of the affected loci were concentrated on the X chromosome and associated with aberrant biallelic expression, indicating that imprinted X-inactivation was perturbed. Hypomethylation of a key regulatory region of Xite within the X-inactivation center was present in female blastocysts shortly after the absence of methylation maintenance by DNMT1o at the 8-cell stage. The female preponderance of placental DNA hypomethylation associated with maternal DNMT1o deficiency provides evidence of additional roles beyond the maintenance of genomic imprints for DNA methylation events in the preimplantation embryo, including a role in imprinted X chromosome inactivation.

  8. Correlation of physical and genetic maps of human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.R.

    1990-01-01

    This project is now progressing strongly. Thirteen somatic cell hybrids containing rearranged {number sign}16 chromosomes have been constructed, bringing the total number of hybrids constructed by the group to 27 which divides chromosome 16 into 29 regions. 170 probes have been mapped into these regions. Although this is the second progress report for this contract it essentially contains all the work carried out since the first progress report covered a period of less than three months during which little had been done other than setting up. The project has been progressing very well and has led to numerous collaborations with other groups involved in mapping this chromosome or studying genes on it. 7 refs., 1 fig., 2 tabs.

  9. Chromosome Aberrations in Human Lymphocytes Irradiated with Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of the present experiment was to provide data on the dose-dependent production of chromosome aberrations such as dicentrics, centric rings, and excess acentrics. Radiation is one of the more dangerous clastogens in the environment. Ionizing radiation causes chromosome breakages and various cytogenetic aberrations in exposed cells. In an investigation into radiation emergencies, it is important to estimate the dose to exposed persons for several reasons. Physical dosimeters (e. g., film badges) may misrepresent the actual radiation dose and may not be available in a radiological accident or terrorism incident. Biological dosimetry is suitable for estimating the radiation dose during such accidents. The dicentric chromosome assay is very sensitive and a reliable bio-indicator in cases of accidental overexposure.

  10. Evaluating the X chromosome-specific diversity of Colombian populations using insertion/deletion polymorphisms.

    Directory of Open Access Journals (Sweden)

    Adriana Ibarra

    Full Text Available The European and African contribution to the pre-existing Native American background has influenced the complex genetic pool of Colombia. Because colonisation was not homogeneous in this country, current populations are, therefore, expected to have different proportions of Native American, European and African ancestral cont