WorldWideScience

Sample records for chromosome linkage map

  1. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The distances between nine loci on barley chromosome 5 have been studied in five two-point tests, three three-point tests, and one four-point test. Our previous chromosome 5 linkage map, which contained eleven loci mapped from literature data (Jensen and Jørgensen 1975), is extended with four loci......-position is fixed on the map by a locus (necl), which has a good marker gene located centrally in the linkage group. The positions of the other loci are their distances in centimorgans from the 0-position; loci in the direction of the short chromosome arm are assigned positive values and those...

  2. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The literature is surveyed for data on recombination between loci on chromosome 5 of barley; 13 loci fall into the category “mapped” loci, more than 20 into the category “associated” loci and nine into the category “loci once suggested to be on chromosome 5”. A procedure was developed...... for estimating a linkage map; it involves (1) transformation by the Kosambi mapping function of the available recombination percentages to additive map distances, (2) calculations of a set of map distances from the transformed recombination percentages by a maximum likelihood method in which all the available...... data are utilized jointly, and (3) omission of inconsistent data and determination of the most likely order of the loci. This procedure was applied to the 42 recombination percentages available for the 13 “mapped” loci. Due to inconsistencies 14 of the recombination percentages and, therefore, two...

  3. The CEPH consortium linkage map of human chromosome 13

    Energy Technology Data Exchange (ETDEWEB)

    Bowcock, A.M.; Barnes, R.I. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States); Gerken, S.C.; Leppert, M. [Univ. of Utah School of Medicine, Salt Lake City, UT (United States); Shiang, R. [Univ. of Iowa, Iowa City, IA (United States); Jabs, E.W.; Warren, A.C.; Antonarakis, S. [Johns Hopkins School of Medicine, Baltimore, MD (United States); Retief, A.E. [Univ. of Stellenbosch, Tygerberg (South Africa); Vergnaud, G. [Centre d`Etudes du Bouchet, Vert le Petit (France)] [and others

    1993-05-01

    The CEPH consortium map of chromosome 13 is presented. This map contains 59 loci defined by genotypes generated from CEPH family DNAs with 94 different probe and restriction enzyme combinations contributed by 9 laboratories. A total of 25 loci have been placed on the map with likelihood support of at least 1000:1. The map extends from loci in the centromeric region of chromosome 13 to the terminal band of the long arm. Multipoint linkage analyses provided estimates that the male, female, and sex-averaged maps extend for 158, 203, and 178cM respectively. The largest interval is 24 cM and is between D13Z1 (alphaRI) and ATP1AL1. The mean genetic distance between the 25 uniquely placed loci is 7 cM. 76 refs., 3 figs., 5 tabs.

  4. Mapping autism risk loci using genetic linkage and chromosomal rearrangements

    Science.gov (United States)

    Szatmari, Peter; Paterson, Andrew; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John; Skaug, Jennifer; Thompson, Ann; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan; Jones, Marshall; Marshall, Christian; Scherer, Stephen; Vieland, Veronica; Bartlett, Christopher; Mangin, La Vonne; Goedken, Rhinda; Segre, Alberto; Pericak-Vance, Margaret; Cuccaro, Michael; Gilbert, John; Wright, Harry; Abramson, Ruth; Betancur, Catalina; Bourgeron, Thomas; Gillberg, Christopher; Leboyer, Marion; Buxbaum, Joseph; Davis, Kenneth; Hollander, Eric; Silverman, Jeremy; Hallmayer, Joachim; Lotspeich, Linda; Sutcliffe, James; Haines, Jonathan; Folstein, Susan; Piven, Joseph; Wassink, Thomas; Sheffield, Val; Geschwind, Daniel; Bucan, Maja; Brown, Ted; Cantor, Rita; Constantino, John; Gilliam, Conrad; Herbert, Martha; Lajonchere, Clara; Ledbetter, David; Lese-Martin, Christa; Miller, Janet; Nelson, Stan; Samango-Sprouse, Carol; Spence, Sarah; State, Matthew; Tanzi, Rudolph; Coon, Hilary; Dawson, Geraldine; Devlin, Bernie; Estes, Annette; Flodman, Pamela; Klei, Lambertus; Mcmahon, William; Minshew, Nancy; Munson, Jeff; Korvatska, Elena; Rodier, Patricia; Schellenberg, Gerard; Smith, Moyra; Spence, Anne; Stodgell, Chris; Tepper, Ping Guo; Wijsman, Ellen; Yu, Chang-En; Rogé, Bernadette; Mantoulan, Carine; Wittemeyer, Kerstin; Poustka, Annemarie; Felder, Bärbel; Klauck, Sabine; Schuster, Claudia; Poustka, Fritz; Bölte, Sven; Feineis-Matthews, Sabine; Herbrecht, Evelyn; Schmötzer, Gabi; Tsiantis, John; Papanikolaou, Katerina; Maestrini, Elena; Bacchelli, Elena; Blasi, Francesca; Carone, Simona; Toma, Claudio; Van Engeland, Herman; De Jonge, Maretha; Kemner, Chantal; Koop, Frederieke; Langemeijer, Marjolein; Hijmans, Channa; Staal, Wouter; Baird, Gillian; Bolton, Patrick; Rutter, Michael; Weisblatt, Emma; Green, Jonathan; Aldred, Catherine; Wilkinson, Julie-Anne; Pickles, Andrew; Le Couteur, Ann; Berney, Tom; Mcconachie, Helen; Bailey, Anthony; Francis, Kostas; Honeyman, Gemma; Hutchinson, Aislinn; Parr, Jeremy; Wallace, Simon; Monaco, Anthony; Barnby, Gabrielle; Kobayashi, Kazuhiro; Lamb, Janine; Sousa, Ines; Sykes, Nuala; Cook, Edwin; Guter, Stephen; Leventhal, Bennett; Salt, Jeff; Lord, Catherine; Corsello, Christina; Hus, Vanessa; Weeks, Daniel; Volkmar, Fred; Tauber, Maïté; Fombonne, Eric; Shih, Andy; Meyer, Kacie

    2007-01-01

    Autism spectrum disorders (ASD) are common, heritable neurodevelopmental conditions. The genetic architecture of ASD is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASD by using Affymetrix 10K single nucleotide polymorphism (SNP) arrays and 1168 families with ≥ 2 affected individuals to perform the largest linkage scan to date, while also analyzing copy number variation (CNV) in these families. Linkage and CNV analyses implicate chromosome 11p12-p13 and neurexins, respectively, amongst other candidate loci. Neurexins team with previously-implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for ASD. PMID:17322880

  5. An integrated linkage, chromosome, and genome map for the yellow fever mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Vladimir A Timoshevskiy

    Full Text Available BACKGROUND: Aedes aegypti, the yellow fever mosquito, is an efficient vector of arboviruses and a convenient model system for laboratory research. Extensive linkage mapping of morphological and molecular markers localized a number of quantitative trait loci (QTLs related to the mosquito's ability to transmit various pathogens. However, linking the QTLs to Ae. aegypti chromosomes and genomic sequences has been challenging because of the poor quality of polytene chromosomes and the highly fragmented genome assembly for this species. METHODOLOGY/PRINCIPAL FINDINGS: Based on the approach developed in our previous study, we constructed idiograms for mitotic chromosomes of Ae. aegypti based on their banding patterns at early metaphase. These idiograms represent the first cytogenetic map developed for mitotic chromosomes of Ae. aegypti. One hundred bacterial artificial chromosome clones carrying major genetic markers were hybridized to the chromosomes using fluorescent in situ hybridization. As a result, QTLs related to the transmission of the filarioid nematode Brugia malayi, the avian malaria parasite Plasmodium gallinaceum, and the dengue virus, as well as sex determination locus and 183 Mbp of genomic sequences were anchored to the exact positions on Ae. aegypti chromosomes. A linear regression analysis demonstrated a good correlation between positions of the markers on the physical and linkage maps. As a result of the recombination rate variation along the chromosomes, 12 QTLs on the linkage map were combined into five major clusters of QTLs on the chromosome map. CONCLUSION: This study developed an integrated linkage, chromosome, and genome map-iMap-for the yellow fever mosquito. Our discovery of the localization of multiple QTLs in a few major chromosome clusters suggests a possibility that the transmission of various pathogens is controlled by the same genomic loci. Thus, the iMap will facilitate the identification of genomic determinants of

  6. X-linkage in bipolar affective illness. Perspectives on genetic heterogeneity, pedigree analysis and the X-chromosome map.

    Science.gov (United States)

    Baron, M; Rainer, J D; Risch, N

    1981-06-01

    The search for genetic markers is a powerful strategy in psychiatric genetics. The present article examines four areas relevant to discrepancies among X-linkage studies in bipolar affective disorder. These are questions of ascertainment, analytic methods, the X-chromosome map and genetic heterogeneity. The following conclusions are reached: (a) Positive linkage findings cannot be attributed to ascertainment bias or association between affective illness and colorblindness. (b) The possibility that falsely positive linkage results were obtained by using inappropriate analytic methods is ruled out. (c) Reported linkages of bipolar illness to colorblind and G6PD loci are compatible with known map distances between X-chromosome loci. Linkage to the Xg antigen remains uncertain. (d) The discrepancy among the various data sets on affective illness and colorblindness is best explained by significant linkage heterogeneity among pedigrees informative for the two traits. PMID:6454708

  7. Construction of the High-Density Genetic Linkage Map and Chromosome Map of Large Yellow Croaker (Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Jingqun Ao

    2015-11-01

    Full Text Available High-density genetic maps are essential for genome assembly, comparative genomic analysis and fine mapping of complex traits. In this study, 31,191 single nucleotide polymorphisms (SNPs evenly distributed across the large yellow croaker (Larimichthys crocea genome were identified using restriction-site associated DNA sequencing (RAD-seq. Among them, 10,150 high-confidence SNPs were assigned to 24 consensus linkage groups (LGs. The total length of the genetic linkage map was 5451.3 cM with an average distance of 0.54 cM between loci. This represents the densest genetic map currently reported for large yellow croaker. Using 2889 SNPs to target specific scaffolds, we assigned 533 scaffolds, comprising 421.44 Mb (62.04% of the large yellow croaker assembled sequence, to the 24 linkage groups. The mapped assembly scaffolds in large yellow croaker were used for genome synteny analyses against the stickleback (Gasterosteus aculeatus and medaka (Oryzias latipes. Greater synteny was observed between large yellow croaker and stickleback. This supports the hypothesis that large yellow croaker is more closely related to stickleback than to medaka. Moreover, 1274 immunity-related genes and 195 hypoxia-related genes were mapped to the 24 chromosomes of large yellow croaker. The integration of the high-resolution genetic map and the assembled sequence provides a valuable resource for fine mapping and positional cloning of quantitative trait loci associated with economically important traits in large yellow croaker.

  8. Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly Bicyclus anynana, covering all 28 karyotyped chromosomes.

    Directory of Open Access Journals (Sweden)

    Arjen E Van't Hof

    Full Text Available BACKGROUND: The chromosome characteristics of the butterfly Bicyclus anynana, have received little attention, despite the scientific importance of this species. This study presents the characterization of chromosomes in this species by means of cytogenetic analysis and linkage mapping. METHODOLOGY/PRINCIPAL FINDINGS: Physical genomic features in the butterfly B. anynana were examined by karyotype analysis and construction of a linkage map. Lepidoptera possess a female heterogametic W-Z sex chromosome system. The WZ-bivalent in pachytene oocytes of B. anynana consists of an abnormally small, heterochromatic W-chromosome with the Z-chromosome wrapped around it. Accordingly, the W-body in interphase nuclei is much smaller than usual in Lepidoptera. This suggests an intermediate stage in the process of secondary loss of the W-chromosome to a ZZ/Z sex determination system. Two nucleoli are present in the pachytene stage associated with an autosome and the WZ-bivalent respectively. Chromosome counts confirmed a haploid number of n = 28. Linkage mapping had to take account of absence of crossing-over in females, and of our use of a full-sib crossing design. We developed a new method to determine and exclude the non-recombinant uninformative female inherited component in offspring. The linkage map was constructed using a novel approach that uses exclusively JOINMAP-software for Lepidoptera linkage mapping. This approach simplifies the mapping procedure, avoids over-estimation of mapping distance and increases the reliability of relative marker positions. A total of 347 AFLP markers, 9 microsatellites and one single-copy nuclear gene covered all 28 chromosomes, with a mapping distance of 1354 cM. Conserved synteny of Tpi on the Z-chromosome in Lepidoptera was confirmed for B. anynana. The results are discussed in relation to other mapping studies in Lepidoptera. CONCLUSIONS/SIGNIFICANCE: This study adds to the knowledge of chromosome structure and

  9. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits

    OpenAIRE

    Geísa Pinheiro Paes; José Marcelo Soriano Viana; Fabyano Fonseca e Silva; Gabriel Borges Mundim

    2016-01-01

    Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kerne...

  10. Cosmopolitan linkage disequilibrium maps

    Directory of Open Access Journals (Sweden)

    Gibson Jane

    2005-03-01

    Full Text Available Abstract Linkage maps have been invaluable for the positional cloning of many genes involved in severe human diseases. Standard genetic linkage maps have been constructed for this purpose from the Centre d'Etude du Polymorphisme Humain and other panels, and have been widely used. Now that attention has shifted towards identifying genes predisposing to common disorders using linkage disequilibrium (LD and maps of single nucleotide polymorphisms (SNPs, it is of interest to consider a standard LD map which is somewhat analogous to the corresponding map for linkage. We have constructed and evaluated a cosmopolitan LD map by combining samples from a small number of populations using published data from a 10-megabase region on chromosome 20. In support of a pilot study, which examined a number of small genomic regions with a lower density of markers, we have found that a cosmopolitan map, which serves all populations when appropriately scaled, recovers 91 to 95 per cent of the information within population-specific maps. Recombination hot spots appear to have a dominant role in shaping patterns of LD. The success of the cosmopolitan map might be attributed to the co-localisation of hot spots in all populations. Although there must be finer scale differences between populations due to other processes (mutation, drift, selection, the results suggest that a whole-genome standard LD map would indeed be a useful resource for disease gene mapping.

  11. Physical mapping of 49 microsatellite markers on chromosome 19 and correlation with the genetic linkage map

    Energy Technology Data Exchange (ETDEWEB)

    Reguigne-Arnould, I.; Mollicone, R.; Candelier, J.J. [INSERM, Villejuif (France)] [and others

    1996-03-05

    We have regionally localized 49 microsatellite markers developed by Genethon using a panel of previously characterized somatic cell hybrids that retain fragments from chromosome 19. The tight correlation observed between the physical and the genetic orders of the microsatellites provide cytogenetic anchorages to the genetic map data. We propose a position for the centromere just above D19S415, from the study of two hybrids, each of which retains one of the two derivatives of a balanced translocation t(1;19)(q11;q11). Microsatellites, which can be identified by a standard PCR protocol, are useful tools for the localization of disease genes and for the establishment of YAC or cosmid contigs. These markers can also judiciously be used for the characterization of new hybrid cell line panels. We report such a characterization of 11 clones, 8 of which were obtained by irradiation-fusion. Using the whole hybrid panel, we were able to define the order of 12 pairs of genetically colocalized microsatellites. As examples of gene mapping by the combined use of microsatellites and hybrid cell lines, we regionally assigned the PVS locus between the 19q13.2 markers D19S417 and D19S423 and confirmed the locations of fucosyltransferase loci FUT1, FUT2, and FUT5. 13 refs., 1 fig.

  12. Chromosomal assignment of chicken clone contigs by extending the consensus linkage map

    NARCIS (Netherlands)

    Aerts, J.; Veenendaal, T.; Poel, van der J.J.; Crooijmans, R.P.M.A.; Groenen, M.A.M.

    2005-01-01

    The bacterial artificial clone-based physical map for chicken plays an important role in the integration of the consensus linkage map and the whole-genome shotgun sequence. It also provides a valuable resource for clone selection within applications such as fluorescent in situ hybridization and posi

  13. A dense linkage map for Chinook salmon (Oncorhynchus tshawytscha) reveals variable chromosomal divergence after an ancestral whole genome duplication event.

    Science.gov (United States)

    Brieuc, Marine S O; Waters, Charles D; Seeb, James E; Naish, Kerry A

    2014-03-20

    Comparisons between the genomes of salmon species reveal that they underwent extensive chromosomal rearrangements following whole genome duplication that occurred in their lineage 58-63 million years ago. Extant salmonids are diploid, but occasional pairing between homeologous chromosomes exists in males. The consequences of re-diploidization can be characterized by mapping the position of duplicated loci in such species. Linkage maps are also a valuable tool for genome-wide applications such as genome-wide association studies, quantitative trait loci mapping or genome scans. Here, we investigated chromosomal evolution in Chinook salmon (Oncorhynchus tshawytscha) after genome duplication by mapping 7146 restriction-site associated DNA loci in gynogenetic haploid, gynogenetic diploid, and diploid crosses. In the process, we developed a reference database of restriction-site associated DNA loci for Chinook salmon comprising 48528 non-duplicated loci and 6409 known duplicated loci, which will facilitate locus identification and data sharing. We created a very dense linkage map anchored to all 34 chromosomes for the species, and all arms were identified through centromere mapping. The map positions of 799 duplicated loci revealed that homeologous pairs have diverged at different rates following whole genome duplication, and that degree of differentiation along arms was variable. Many of the homeologous pairs with high numbers of duplicated markers appear conserved with other salmon species, suggesting that retention of conserved homeologous pairing in some arms preceded species divergence. As chromosome arms are highly conserved across species, the major resources developed for Chinook salmon in this study are also relevant for other related species.

  14. Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology

    NARCIS (Netherlands)

    Tang, X.; Boer, de J.M.; Eck, van H.J.; Bachem, C.W.B.; Visser, R.G.F.; Jong, de J.H.

    2009-01-01

    A cytogenetic map has been developed for diploid potato (Solanum tuberosum), in which the arms of the 12 potato bivalents can be identified in pachytene complements using multicolor fluorescence in situ hybridization (FISH) with a set of 60 genetically anchored bacterial artificial chromosome (BAC)

  15. Linkage mapping of the locus for inherited ovine arthrogryposis (IOA) to sheep chromosome 5.

    Science.gov (United States)

    Murphy, Angela M; MacHugh, David E; Park, Stephen D E; Scraggs, Erik; Haley, Chris S; Lynn, David J; Boland, Maurice P; Doherty, Michael L

    2007-01-01

    Arthrogryposis is a congenital malformation affecting the limbs of newborn animals and infants. Previous work has demonstrated that inherited ovine arthrogryposis (IOA) has an autosomal recessive mode of inheritance. Two affected homozygous recessive (art/art) Suffolk rams were used as founders for a backcross pedigree of half-sib families segregating the IOA trait. A genome scan was performed using 187 microsatellite genetic markers and all backcross animals were phenotyped at birth for the presence and severity of arthrogryposis. Pairwise LOD scores of 1.86, 1.35, and 1.32 were detected for three microsatellites, BM741, JAZ, and RM006, that are located on sheep Chr 5 (OAR5). Additional markers in the region were identified from the genetic linkage map of BTA7 and by in silico analyses of the draft bovine genome sequence, three of which were informative. Interval mapping of all autosomes produced an F value of 21.97 (p < 0.01) for a causative locus in the region of OAR5 previously flagged by pairwise linkage analysis. Inspection of the orthologous region of HSA5 highlighted a previously fine-mapped locus for human arthrogryposis multiplex congenita neurogenic type (AMCN). A survey of the HSA5 genome sequence identified plausible candidate genes for both IOA and human AMCN.

  16. Examination of X chromosome markers in Rett syndrome: Exclusion mapping with a novel variation on multilocus linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, K.A.; Fill, C.P. (Baylor College of Medicine, Houston, TX (United States)); Terwililger, J.; Percy, A.K.; Zobhbi, H. (Columbia University, NY (United States)); DeGennaro, L.J.; Ott, J. (University of Massachusetts Medical School, Worcester (United States)); Anvret, M.; Martin-Gallardo, A. (National Institutes of Health, Bethesda, MD (United States))

    1992-02-01

    Rett syndrome is a neurologic disorder characterized by early normal development followed by regression, acquired deceleration of head growth, autism, ataxia, and sterotypic hand movements. The exclusive occurrence of the syndrome in females and the occurrence of a few familial cases with inheritance through maternal lines suggest that this disorder is most likely secondary to a mutation on the X chromosome. To address this hypothesis and to identify candidate regions for the Rett syndrome gene locus, genotypic analysis was performed in two families with maternally related affected half-sisters by using 63 DNA markers from the X chromosome. Nineteen of the loci studied were chosen for multipoint linkage analysis because they have been previously genetically mapped using a large number of meioses from reference families. Using the exclusion criterion of a lod score less than [minus]2, the authors were able to exclude the region between the Duchenne muscular dystrophy locus and the DXS456 locus. This region extends from Xp21.2 to Xq21-q23. The use of the multipoint linkage analysis approach outlined in this study should allow the exclusion of additional regions of the X chromosome as new markers are analyzed.

  17. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits

    Directory of Open Access Journals (Sweden)

    Geísa Pinheiro Paes

    2016-03-01

    Full Text Available Abstract The objectives of this study were to assess linkage disequilibrium (LD and selection-induced changes in single nucleotide polymorphism (SNP frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D, the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis.

  18. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits

    Science.gov (United States)

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca e; Mundim, Gabriel Borges

    2016-01-01

    Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  19. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits.

    Science.gov (United States)

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca E; Mundim, Gabriel Borges

    2016-03-01

    The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  20. The linkage disequilibrium maps of three human chromosomes across four populations reflect their demographic history and a common underlying recombination pattern

    OpenAIRE

    De La Vega, Francisco M.; Isaac, Hadar; Collins, Andrew; Scafe, Charles R.; Halldórsson, Bjarni V; Su, Xiaoping; Lippert, Ross A.; Wang, Yu; Laig-Webster, Marion; Koehler, Ryan T.; Ziegle, Janet S.; Wogan, Lewis T.; Stevens, Junko F.; Leinen, Kyle M.; Olson, Sheri J.

    2005-01-01

    The extent and patterns of linkage disequilibrium (LD) determine the feasibility of association studies to map genes that underlie complex traits. Here we present a comparison of the patterns of LD across four major human populations (African-American, Caucasian, Chinese, and Japanese) with a high-resolution single-nucleotide polymorphism (SNP) map covering almost the entire length of chromosomes 6, 21, and 22. We constructed metric LD maps formulated such that the units measure the extent of...

  1. Chromosomal differences between European and North American Atlantic salmon discovered by linkage mapping and supported by fluorescence in situ hybridization analysis

    Directory of Open Access Journals (Sweden)

    Brenna-Hansen Silje

    2012-08-01

    Full Text Available Abstract Background Geographical isolation has generated a distinct difference between Atlantic salmon of European and North American Atlantic origin. The European Atlantic salmon generally has 29 pairs of chromosomes and 74 chromosome arms whereas it has been reported that the North American Atlantic salmon has 27 chromosome pairs and an NF of 72. In order to predict the major chromosomal rearrangements causing these differences, we constructed a dense linkage map for Atlantic salmon of North American origin and compared it with the well-developed map for European Atlantic salmon. Results The presented male and female genetic maps for the North American subspecies of Atlantic salmon, contains 3,662 SNPs located on 27 linkage groups. The total lengths of the female and male linkage maps were 2,153 cM and 968 cM respectively, with males characteristically showing recombination only at the telomeres. We compared these maps with recently published SNP maps from European Atlantic salmon, and predicted three chromosomal reorganization events that we then tested using fluorescence in situ hybridization (FISH analysis. The proposed rearrangements, which define the differences in the karyotypes of the North American Atlantic salmon relative to the European Atlantic salmon, include the translocation of the p arm of ssa01 to ssa23 and polymorphic fusions: ssa26 with ssa28, and ssa08 with ssa29. Conclusions This study identified major chromosomal differences between European and North American Atlantic salmon. However, while gross structural differences were significant, the order of genetic markers at the fine-resolution scale was remarkably conserved. This is a good indication that information from the International Cooperation to Sequence the Atlantic salmon Genome, which is sequencing a European Atlantic salmon, can be transferred to Atlantic salmon from North America.

  2. A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit reveals putative X/Y sex-determining chromosomes

    Directory of Open Access Journals (Sweden)

    Gill Geoffrey P

    2009-03-01

    Full Text Available Abstract Background The genus Actinidia (kiwifruit consists of woody, scrambling vines, native to China, and only recently propagated as a commercial crop. All species described are dioecious, but the genetic mechanism for sex-determination is unknown, as is the genetic basis for many of the cluster of characteristics making up the unique fruit. It is, however, an important crop in the New Zealand economy, and a classical breeding program would benefit greatly by knowledge of the trait alleles carried by both female and male parents. The application of marker assisted selection (MAS in seedling populations would also aid the accurate and efficient development of novel fruit types for the market. Results Gene-rich female, male and consensus linkage maps of the diploid species A. chinensis have been constructed with 644 microsatellite markers. The maps consist of twenty-nine linkage groups corresponding to the haploid number n = 29. We found that sex-linked sequence characterized amplified region (SCAR markers and the 'Flower-sex' phenotype consistently mapped to a single linkage group, in a subtelomeric region, in a section of inconsistent marker order. The region also contained markers of expressed genes, some of unknown function. Recombination, assessed by allelic distribution and marker order stability, was, in the remainder of the linkage group, in accordance with other linkage groups. Fully informative markers to other genes in this linkage group identified the comparative linkage group in the female map, where recombination ratios determining marker order were similar to the autosomes. Conclusion We have created genetic linkage maps that define the 29 linkage groups of the haploid genome, and have revealed the position and extent of the sex-determining locus in A. chinensis. As all Actinidia species are dioecious, we suggest that the sex-determining loci of other Actinidia species will be similar to that region defined in our maps. As the

  3. Association Between Pachytene Chromosomes and Linkage Groups in Carrot

    Science.gov (United States)

    The genome of carrot (Daucus carota L.) consists of ~ 480 Mb/1C organized in 9 chromosome pairs. The importance of carrots in human nutrition is triggering the development of genomic resources, including carrot linkage maps, a bacterial artificial chromosome (BAC) clone library and BAC end sequence...

  4. Molecular Cytogenetic Maps of Sorghum Linkage Groups 2 and 8

    OpenAIRE

    Kim, Jeong-Soon; Klein, Patricia E; Klein, Robert R.; Price, H. James; Mullet, John E.; Stelly, David M.

    2005-01-01

    To integrate genetic, physical, and cytological perspectives of the Sorghum bicolor genome, we selected 40 landed bacterial artificial chromosome (BAC) clones that contain different linkage map markers, 21 from linkage group 2 (LG-02) and 19 from linkage group 8 (LG-08). Multi-BAC probe cocktails were constructed for each chromosome from the landed BACs, which were also preevaluated for FISH signal quality, relative position, and collective chromosome coverage. Comparison to the corresponding...

  5. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations.

    Science.gov (United States)

    2014-12-11

    Cassava (Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400-500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculenta Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480 meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. We used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selection-enhanced breeding of this important crop.

  6. Linkage mapping of the gene for Type III collagen (COL3A1) to human chromosome 2q using a VNTR polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Tiller, G.E.; Polumbo, P.A.; Summar, M.L. (Vanderbilt Univ. Medical Center, Nashville, TN (United States))

    1994-03-15

    The gene for the [alpha]1(III) chain of type III collagen, COL3A1, has been previously mapped to human chromosome 2q24.3-q31 by in situ hybridization. Physical mapping by pulsed-field gel electrophoresis has demonstrated that COL3A1 lies within 35 kb of COL5A2. The authors genotyped the CEPH families at the COL3A2 locus using a pentanucleotide repeat polymorphism within intron 25. They demonstrated significant linkage to 18 anonymous markers as well as the gene for carbamyl phosphate synthetase (CPSI), which had been previously mapped to this region. No recombination was seen between COL3A1 and COL5A2 (Z = 9.93 at [theta] = 0) or D2S24 (Z = 10.55 at [theta] = 0). The locus order is (D2S32-D2S138-D2S148)-(D2S24-COL5A2-COL3A1)-(D2S118-D2S161), with odds of 1:2300 for the next most likely order. These relationships are consistent with the physical mapping of COL3A1 to the distal portion of 2q and place it proximal to CPSI by means of multipoint analysis. These linkage relationships should prove useful in further studies of Ehlers-Danlos syndrome type IV and carbamyl phosphate synthetase I deficiency and provide an additional framework for localizing other genes in this region. 13 refs., 2 figs., 1 tab.

  7. Mapping one form of autosomal dominant postaxial polydactyly type A to chromosome 7p15-q11.23 by linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishna, U.; Mehenni, H.; Antonarakis, S.E. [Geneva Medical School (Switzerland)] [and others

    1997-03-01

    Postaxial polydactyly type-A (PAP-A) in humans is an autosomal dominant trait characterized by an extra digit in the ulnar and/or fibular side of the upper and/or lower extremities. The extra digit is well formed and articulates with the fifth, or extra, metacarpal/metatarsal, and thus it is usually functional. In order to map the gene responsible for PAP-A, we studied a five-generation Indian family of 37 individuals (15 of whom were affected). A genomewide search with highly informative polymorphic markers on part of the pedigree showed linkage between the PAP-A phenotype and markers on chromosome 7p15-q11.23 (no crossovers were found with D7S526, D7S795, D7S528, D7S521, D7S691, D7S667, D7S478, D7S1830, D7S803, D7S801, or ELN). The highest LOD score was obtained with marker D7S801 (Z{sub max} = 4.21; {theta} = 0). Haplotype analysis enabled the mapping of the PAP-A phenotype in this family between markers D7S2848 and D7S669. Analysis of additional families with PAP-A will narrow down the critical genomic region, facilitate positional cloning of the PAP-A gene, and/or uncover potential genetic heterogeneity. 42 refs., 4 figs., 1 tab.

  8. Linkage mapping bovine EST-based SNP

    Directory of Open Access Journals (Sweden)

    Bennett Gary L

    2005-05-01

    Full Text Available Abstract Background Existing linkage maps of the bovine genome primarily contain anonymous microsatellite markers. These maps have proved valuable for mapping quantitative trait loci (QTL to broad regions of the genome, but more closely spaced markers are needed to fine-map QTL, and markers associated with genes and annotated sequence are needed to identify genes and sequence variation that may explain QTL. Results Bovine expressed sequence tag (EST and bacterial artificial chromosome (BACsequence data were used to develop 918 single nucleotide polymorphism (SNP markers to map genes on the bovine linkage map. DNA of sires from the MARC reference population was used to detect SNPs, and progeny and mates of heterozygous sires were genotyped. Chromosome assignments for 861 SNPs were determined by twopoint analysis, and positions for 735 SNPs were established by multipoint analyses. Linkage maps of bovine autosomes with these SNPs represent 4585 markers in 2475 positions spanning 3058 cM . Markers include 3612 microsatellites, 913 SNPs and 60 other markers. Mean separation between marker positions is 1.2 cM. New SNP markers appear in 511 positions, with mean separation of 4.7 cM. Multi-allelic markers, mostly microsatellites, had a mean (maximum of 216 (366 informative meioses, and a mean 3-lod confidence interval of 3.6 cM Bi-allelic markers, including SNP and other marker types, had a mean (maximum of 55 (191 informative meioses, and were placed within a mean 8.5 cM 3-lod confidence interval. Homologous human sequences were identified for 1159 markers, including 582 newly developed and mapped SNP. Conclusion Addition of these EST- and BAC-based SNPs to the bovine linkage map not only increases marker density, but provides connections to gene-rich physical maps, including annotated human sequence. The map provides a resource for fine-mapping quantitative trait loci and identification of positional candidate genes, and can be integrated with other

  9. Multiple quantitative trait loci for cortical and trabecular bone regulation map to mid-distal mouse chromosome 4 that shares linkage homology to human chromosome 1p36.

    Science.gov (United States)

    Beamer, Wesley G; Shultz, Kathryn L; Coombs, Harold F; Horton, Lindsay G; Donahue, Leah Rae; Rosen, Clifford J

    2012-01-01

    The mid-distal region of mouse chromosome 4 (Chr 4) is homologous with human Chr 1p36. Previously, we reported that mouse Chr 4 carries a quantitative trait locus (QTL) with strong regulatory effect on volumetric bone mineral density (vBMD). The intent of this study is to utilize nested congenic strains to decompose the genetic complexity of this gene-rich region. Adult females and males from 18 nested congenic strains carrying discrete C3H sequences were phenotyped for femoral mineral and volume by pQCT and for trabecular bone volume (BV), tissue volume (TV), trabecular number (Trab.no), and trabecular thickness (Trab.thk) by MicroCT 40. Our data show that the mouse Chr 4 region consists of at least 10 regulatory QTL regions that affected either or both pQCT and MicroCT 40 phenotypes. The pQCT phenotypes were typically similar between sexes, whereas the MicroCT 40 phenotypes were divergent. Individual congenic strains contained one to seven QTL regions. These regions conferred large positive or negative effects in some congenic strains, depending on the particular bone phenotype. The QTL regions II to X are syntenic with human 1p36, containing from 1 to 102 known genes. We identified 13 candidate genes that can be linked to bone within these regions. Six of these genes were linked to osteoblasts, three linked to osteoclasts, and two linked to skeletal development. Three of these genes have been identified in Genome Wide Association Studies (GWAS) linked to 1p36. In region III, there is only one gene, Lck, which conferred negative pQCT and MicroCT 40 phenotypes in both sexes. This gene is important to development and functioning of T cells, has been associated with osteoclast activity, and represents a novel bone regulatory gene that merits further experimental evaluation. In summary, congenic strains are powerful tools for identifying regulatory regions that influence bone biology and offer models for testing hypotheses about gene-gene and gene

  10. Molecular mapping of chromosomes 17 and X

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition of new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping clones from a larger genome.

  11. Constructing Molecular Marker Linkage Maps of Chromosome 14Sh and 22Sh and QTL Mapping for Major Traits by Use of Substitution Lines of Gossypium hirsutum L.

    Institute of Scientific and Technical Information of China (English)

    GUO Xiang-mo; LUAN Ming-bao; SAHA Sukumar; JENKINS Johnie N

    2008-01-01

    @@ CSB14Sh,which is isogenic for its recurrent parent TM-1 except for chromosome 14 short arm,was crossed with TM-1,and the F2 population was produced.A total of 3800 SSR primer pairs covering the whole genome were used to screen polymorphism among two parents,TM-1 and CSB14Sh,and their F1 progeny,which resulted in 15 polymorphic primer pairs.The 15 polymorphic primer pairs amplified 23 marker loci.

  12. Failure to find a chromosome 18 pericentric linkage in families with schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    De Lisi, L.E.; Shields, G. [SUNY Stony Brook, NY (United States); Lehner, T. [Columbia Univ. and New York State Psychiatric Institute, New York, NY (United States)] [and others

    1995-12-18

    A recent report of a possible linkage of bipolar affective disorder to a pericentric region of chromosome 18 initiated the present investigation to search for a similar linkage in 32 families with schizophrenia. The results of a study using 5 markers mapped to this region show negative lod scores and only weak evidence for any linkage by nonparametric analyses. If the previously reported finding is a true positive linkage for bipolar disorder, then either it is unlikely to be related to the genetics of schizophrenia, or the proportion of families linked to this region is small. 12 refs., 4 tabs.

  13. Impact of population structure, effective bottleneck time, and allele frequency on linkage disequilibrium maps

    OpenAIRE

    Zhang, Weihua; Collins, Andrew; Gibson, Jane; Tapper, William J; Hunt, Sarah; Deloukas, Panos; Bentley, David R.; Morton, Newton E.

    2004-01-01

    Genetic maps in linkage disequilibrium (LD) units play the same role for association mapping as maps in centimorgans provide at much lower resolution for linkage mapping. Association mapping of genes determining disease susceptibility and other phenotypes is based on the theory of LD, here applied to relations with three phenomena. To test the theory, markers at high density along a 10-Mb continuous segment of chromosome 20q were studied in African-American, Asian, and Caucasian samples. Popu...

  14. Combined RAPD and RFLP molecular linkage map of asparagus.

    Science.gov (United States)

    Jiang, C; Lewis, M E; Sink, K C

    1997-02-01

    Two linkage maps of asparagus (Asparagus officinalis L.) were constructed using a double pseudotestcross mapping strategy with restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNAs (RAPDs), and allozymes as markers in a population generated from crossing MW25 x A19, two heterozygous parents. All data were inverted and combined with the natural data to detect linkages in repulsion phase. Two sets of data, one for each parent, were formed according to the inheritance patterns of the markers. The maternal MW25 map has a total of 163 marker loci placed in 13 linkage groups covering 1281 cM, with an average and a maximum distance between adjacent loci of 7.9 and 29 cM, respectively. The paternal A19 map has 183 marker loci covering 1324 cM in 9 linkage groups, with an average and a maximum distance between two adjacent loci of 7.7 and 29 cM, respectively. Six multiallelic RFLPs segregating in the pattern a/c x b/c and eight heterozygous loci (four RAPDs, and four RFLPs segregating in the pattern a/b x a/b (HZ loci)) were common to both maps. These 14 loci were used as bridges to align homologous groups between the two maps. In this case, RFLPs were more frequent and informative than RAPDs. Nine linkage groups in the MW25 map were homologous to six groups in the A19 map. In two cases, two or more bridge loci were common to a group; thus, the orientation of homologous linkage groups was also determined. In four other cases, only one locus was common to the two homologous groups and the orientation was unknown. Mdh, four RFLPs, and 14 RAPDs were assigned to chromosome L5, which also has the sex locus M. PMID:18464808

  15. Linkage of familial dilated cardiomyopathy to chromosome 9

    Energy Technology Data Exchange (ETDEWEB)

    Krajinovic, M.; Vatta, M.; Milasin, J. [Univ. of Trieste (Italy)] [and others

    1995-10-01

    Idiopathic dilated cardiomyopathy is a heart muscle disease of unknown etiology, characterized by impaired myocardial contractility and ventricular dilatation. The disorder is an important cause of morbidity and mortality and represents the chief indication for heart transplantation. Familial transmission is often recognized (familial dilated cardiomyopathy, or FDC), mostly with autosomal dominant inheritance. In order to understand the molecular genetic basis of the disease, a large six-generation kindred with autosomal dominant FDC was studied for linkage analysis. A genome-wide search was undertaken after a large series of candidate genes were excluded and was then extended to two other families with autosomal dominant pattern of transmission and identical clinical features. Coinheritance of the disease gene was excluded for >95% of the genome, after 251 polymorphic markers were analyzed. Linkage was found for chromosome 9q13-q22, with a maximum multipoint lod score of 4.2. There was no evidence of heterogeneity. The FDC locus was placed in the interval between loci D9S153 and D9S152. Several candidate genes for causing dilated cardiomyopathy map in this region. 33 refs., 3 figs., 1 tab.

  16. Correlation of physical and genetic maps of human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.R.

    1991-01-01

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentially 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.

  17. Linkage analysis of neurofibromatosis type I, using chromosome 17 DNA markers.

    OpenAIRE

    Kittur, S D; Bagdon, M M; Lubs, M L; Phillips, J. A.; Murray, J C; Slaugenhaupt, S A; Chakravarti, A; Adler, W. H.

    1989-01-01

    The gene for von Recklinghausen neurofibromatosis type 1 (NF1) has recently been mapped to the pericentromeric region of human chromosome 17. To further localize the NF1 gene, linkage analysis using chromosome 17 DNA markers was performed on 11 multigeneration families with 175 individuals, 57 of whom were affected. The markers used were D17Z1 (p17H8), D17S58 (EW301), D17S54 (EW203), D17S57 (EW206), D17S73 (EW207), CRI-L946, HOX-2, and growth hormone. Tight linkage was found between NF1 and D...

  18. Generation of a Restriction Fragment Length Polymorphism Linkage Map for Toxoplasma Gondii

    Science.gov (United States)

    Sibley, L. D.; LeBlanc, A. J.; Pfefferkorn, E. R.; Boothroyd, J. C.

    1992-01-01

    We have constructed a genetic linkage map for the parasitic protozoan, Toxoplasma gondii, using randomly selected low copy number DNA markers that define restriction fragment length polymorphisms (RFLPs). The inheritance patterns of 64 RFLP markers and two phenotypic markers were analyzed among 19 recombinant haploid progeny selected from two parallel genetic crosses between PLK and CEP strains. In these first successful interstrain crosses, these RFLP markers segregated into 11 distinct genetic linkage groups that showed close correlation with physical linkage groups previously defined by molecular karyotype. Separate linkage maps, constructed for each of the 11 chromosomes, indicated recombination frequencies range from approximately 100 to 300 kb per centimorgan. Preliminary linkage assignments were made for the loci regulating sinefungin resistance (snf-1) on chromosome IX and adenine arabinoside (ara-1) on chromosome V by linkage to RFLP markers. Despite random segregation of separate chromosomes, the majority of chromosomes failed to demonstrate internal recombination events and in 3/19 recombinant progeny no intramolecular recombination events were detected. The relatively low rate of intrachromosomal recombination predicts that tight linkage for unknown genes can be established with a relatively small set of markers. This genetic linkage map should prove useful in mapping genes that regulate drug resistance and other biological phenotypes in this important opportunistic pathogen. PMID:1360931

  19. Genome-wide and fine-mapping linkage studies of type 2 diabetes and glucose traits in the Old Order Amish: evidence for a new diabetes locus on chromosome 14q11 and confirmation of a locus on chromosome 1q21-q24.

    Science.gov (United States)

    Hsueh, Wen-Chi; St Jean, Pamela L; Mitchell, Braxton D; Pollin, Toni I; Knowler, William C; Ehm, Margaret G; Bell, Callum J; Sakul, Hakan; Wagner, Michael J; Burns, Daniel K; Shuldiner, Alan R

    2003-02-01

    We conducted a genome scan using a 10-cM map to search for genes linked to type 2 diabetes in 691 individuals from a founder population, the Old Order Amish. We then saturated two regions on chromosomes 1 and 14 showing promising linkage signals with additional markers to produce a approximately 2-cM map for fine mapping. Analyses of both discrete traits (type 2 diabetes and the composite trait of type 2 diabetes and/or impaired glucose homeostasis [IGH]), and quantitative traits (glucose levels during a 75-g oral glucose challenge, designated glucose 0-180 and HbA(1c)) were performed. We obtained significant evidence for linkage to type 2 diabetes in a novel region on chromosome 14q11 (logarithm of odds [LOD] for diabetes = 3.48, P = 0.00005). Furthermore, we observed evidence for the existence of a diabetes-related locus on chromosome 1q21-q24 (LOD for type 2 diabetes/IGH = 2.35, P = 0.0008), a region shown to be linked to diabetes in several other studies. Suggestive evidence for linkage to glucose traits was observed on three other regions: 14q11-q13 (telomeric to that above with LOD = 1.82-1.85 for glucose 150 and 180), 1p31 (LOD = 1.28-2.30 for type 2 diabetes and glucose 120-180), and 18p (LOD = 3.07, P = 0.000085 for HbA(1c) and LOD = 1.50 for glucose 0). In conclusion, our findings provide evidence that type 2 diabetes susceptibility genes reside on chromosomes 1, 14, and 18. PMID:12540634

  20. Linkage analysis of chromosome 14 and essential hypertension in Chinese population

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-yan; HUANG Jian-feng; GE Dong-liang; SU Shao-yong; LI Biao; GU Dong-feng

    2005-01-01

    Background Hypertension is a complex biological trait that influenced by multiple factors. The encouraging results for hypertension research showed that the linkage analysis can be used to replicate other studies and discover new genetic risk factors. Previous studies linked human chromosome 14 to essential hypertension or blood pressure traits. With a Chinese population, we tried to replicate these findings. Methods A linkage scan was performed on chromosome 14 with 14-microsatellite markers with a density of about 10 centi Morgen (cM) in 147 Chinese hypertensive nuclear families. Multipoint non-parametric linkage analysis and exclusion mapping were performed with the GENEHUNTER software, whereas quantitative analysis was performed with the variance component method integrated in the SOLAR package. Results In the qualitative analysis, the highest non-parametric linkage score is 1.0 (P=0.14) at D14S261 in the single point analysis, and no loci achieved non-parametric linkage score more than 1.0 in the multipoint analysis. Maximum-likelihood mapping showed no significant results, either. Subsequently the traditional exclusion criteria of the log-of-the-odds score-2 were adopted, and the chromosome 14 with λs≥2.4 was excluded. In the quantitative analysis of blood pressure with the SOLAR software, two-point analysis and multipoint analysis suggested no evidence for linkage occurred on chromosome 14 for systolic and diastolic blood pressure. Conclusion There was no substantial evidence to support the linkage of chromosome 14 and essential hypertension or blood pressure trait in Chinese hypertensive subjects in this study.

  1. Mapping genes on human chromosome 20

    Energy Technology Data Exchange (ETDEWEB)

    Keith, T.; Phipps, P.; Serino, K. [Collaborative Research, Inc., Waltham, MA (United States)] [and others

    1994-09-01

    While a substantial number of genes have been physically localized to human chromosome 20, few have been genetically mapped. In the process of developing a genetic linkage map of chromosome 20, we have mapped microsatellite polymorphisms associated with six genes. Three of these had highly informative polymorphisms (greater than 0.70) that were originally identified by other investigators. These include avian sarcoma oncogene homolog (SRC), ribophorin II (RPN2), and phosphoenolpyruvate carboxykinase (PCK1). Polymorphisms associated with two genes were determined following a screen of their DNA sequences in GenBank. These include dinucleotide polymorphisms in introl II of cystatin c (CST3) and in the promoter region of neuroendocrine convertase 2 (NEC2) with heterozygosities of 0.52 and 0.54, respectively. A sixth gene, prodynorphin (PDYN) was mapped following the identification of a dinucleotide repeat polymorphism (heterozygosity of 0.35) in a cosmid subclone from a YAC homologous to the original phage clone. CA-positive cosmid subclones from a YAC for an additional gene, guanine nucleotide binding protein, alpha (GNAS10), have been identified and sequencing is in progress. Similar efforts were utilized to identify a microsatellite polymorphism from a half-YAC cloned by W. Brown and localized by FISH to 20pter. This polymorphism is highly informative, with a heterozygosity of 0.83, and serves to delimit the genetic map of the short arm of this chromosome.

  2. Simple Sequence Repeat Genetic Linkage Maps of A-genome Diploid Cotton (Gossypium arboreum)

    Institute of Scientific and Technical Information of China (English)

    Xue-Xia Ma; Bao-Liang Zhou; Yan-Hui Lü; Wang-Zhen Guo; Tian-Zhen Zhang

    2008-01-01

    This study introduces the construction of the first intraspacific genetic linkage map of the A-genome diploid cotton with newly developed simple sequence repeat (SSR) markers using 189 F2 plants derived from the cross of two Asiatic parents were detected using 6 092 pairs of SSR primers. Two-hundred and sixty-eight pairs of SSR pdmers with better polymorphisms were picked out to analyze the F2 population. In total, 320 polymorphic bands were generated and used to construct a linkage map with JoinMap3.0. Two-hundred and sixty-seven loci, Including three phenotypic traits were mapped at a logarithms of odds ratio (LOD) ≥ 3.0 on 13 linkage groups. The total length of the map was 2 508.71 cM, and the average distance between adjacent markers was 9.40 cM. Chromosome assignments were according to the association of linkages with our backbone tetraploid specific map using the 89 similar SSR loci. Comparisons among the 13 suites of orthologous linkage groups revealed that the A-genome chromosomes are largely collinear with the At and Dt sub-genome chromosomes. Chromosomes associated with inversions suggested that allopolyploidization was accompanied by homologous chromosomal rearrangement. The inter-chromosomal duplicated loci supply molecular evidence that the A-genome diploid Asiatic cotton is paleopolyploid.

  3. Construction of a BAC library and mapping BAC clones to the linkage map of Barramundi, Lates calcarifer

    Directory of Open Access Journals (Sweden)

    Lin Grace

    2008-03-01

    Full Text Available Abstract Background Barramundi (Lates calcarifer is an important farmed marine food fish species. Its first generation linkage map has been applied to map QTL for growth traits. To identify genes located in QTL responsible for specific traits, genomic large insert libraries are of crucial importance. We reported herein a bacterial artificial chromosome (BAC library and the mapping of BAC clones to the linkage map. Results This BAC library consisted of 49,152 clones with an average insert size of 98 kb, representing 6.9-fold haploid genome coverage. Screening the library with 24 microsatellites and 15 ESTs/genes demonstrated that the library had good genome coverage. In addition, 62 novel microsatellites each isolated from 62 BAC clones were mapped onto the first generation linkage map. A total of 86 BAC clones were anchored on the linkage map with at least one BAC clone on each linkage group. Conclusion We have constructed the first BAC library for L. calcarifer and mapped 86 BAC clones to the first generation linkage map. This BAC library and the improved linkage map with 302 DNA markers not only supply an indispensable tool to the integration of physical and linkage maps, the fine mapping of QTL and map based cloning genes located in QTL of commercial importance, but also contribute to comparative genomic studies and eventually whole genome sequencing.

  4. Whole genome linkage disequilibrium maps in cattle

    Science.gov (United States)

    Bovine whole genome linkage disequilibrium maps were constructed for eight breeds of cattle. These data provide fundamental information concerning bovine genome organization which will allow the design of studies to associate genetic variation with economically important traits and also provides bac...

  5. A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution.

    Science.gov (United States)

    Paesold, Susanne; Borchardt, Dietrich; Schmidt, Thomas; Dechyeva, Daryna

    2012-11-01

    We developed a reference karyotype for B. vulgaris which is applicable to all beet cultivars and provides a consistent numbering of chromosomes and genetic linkage groups. Linkage groups of sugar beet were assigned to physical chromosome arms by FISH (fluorescent in situ hybridization) using a set of 18 genetically anchored BAC (bacterial artificial chromosome) markers. Genetic maps of sugar beet were correlated to chromosome arms, and North-South orientation of linkage groups was established. The FISH karyotype provides a technical platform for genome studies and can be applied for numbering and identification of chromosomes in related wild beet species. The discrimination of all nine chromosomes by BAC probes enabled the study of chromosome-specific distribution of the major repetitive components of sugar beet genome comprising pericentromeric, intercalary and subtelomeric satellites and 18S-5.8S-25S and 5S rRNA gene arrays. We developed a multicolor FISH procedure allowing the identification of all nine sugar beet chromosome pairs in a single hybridization using a pool of satellite DNA probes. Fiber-FISH was applied to analyse five chromosome arms in which the furthermost genetic marker of the linkage group was mapped adjacently to terminal repetitive sequences on pachytene chromosomes. Only on two arms telomere arrays and the markers are physically linked, hence these linkage groups can be considered as terminally closed making the further identification of distal informative markers difficult. The results support genetic mapping by marker localization, the anchoring of contigs and scaffolds for the annotation of the sugar beet genome sequence and the analysis of the chromosomal distribution patterns of major families of repetitive DNA.

  6. A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution.

    Science.gov (United States)

    Paesold, Susanne; Borchardt, Dietrich; Schmidt, Thomas; Dechyeva, Daryna

    2012-11-01

    We developed a reference karyotype for B. vulgaris which is applicable to all beet cultivars and provides a consistent numbering of chromosomes and genetic linkage groups. Linkage groups of sugar beet were assigned to physical chromosome arms by FISH (fluorescent in situ hybridization) using a set of 18 genetically anchored BAC (bacterial artificial chromosome) markers. Genetic maps of sugar beet were correlated to chromosome arms, and North-South orientation of linkage groups was established. The FISH karyotype provides a technical platform for genome studies and can be applied for numbering and identification of chromosomes in related wild beet species. The discrimination of all nine chromosomes by BAC probes enabled the study of chromosome-specific distribution of the major repetitive components of sugar beet genome comprising pericentromeric, intercalary and subtelomeric satellites and 18S-5.8S-25S and 5S rRNA gene arrays. We developed a multicolor FISH procedure allowing the identification of all nine sugar beet chromosome pairs in a single hybridization using a pool of satellite DNA probes. Fiber-FISH was applied to analyse five chromosome arms in which the furthermost genetic marker of the linkage group was mapped adjacently to terminal repetitive sequences on pachytene chromosomes. Only on two arms telomere arrays and the markers are physically linked, hence these linkage groups can be considered as terminally closed making the further identification of distal informative markers difficult. The results support genetic mapping by marker localization, the anchoring of contigs and scaffolds for the annotation of the sugar beet genome sequence and the analysis of the chromosomal distribution patterns of major families of repetitive DNA. PMID:22775355

  7. Whole genome linkage disequilibrium maps in cattle

    Directory of Open Access Journals (Sweden)

    Mannen Hideyuki

    2007-10-01

    Full Text Available Abstract Background Bovine whole genome linkage disequilibrium maps were constructed for eight breeds of cattle. These data provide fundamental information concerning bovine genome organization which will allow the design of studies to associate genetic variation with economically important traits and also provides background information concerning the extent of long range linkage disequilibrium in cattle. Results Linkage disequilibrium was assessed using r2 among all pairs of syntenic markers within eight breeds of cattle from the Bos taurus and Bos indicus subspecies. Bos taurus breeds included Angus, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black and Limousin while Bos indicus breeds included Brahman and Nelore. Approximately 2670 markers spanning the entire bovine autosomal genome were used to estimate pairwise r2 values. We found that the extent of linkage disequilibrium is no more than 0.5 Mb in these eight breeds of cattle. Conclusion Linkage disequilibrium in cattle has previously been reported to extend several tens of centimorgans. Our results, based on a much larger sample of marker loci and across eight breeds of cattle indicate that in cattle linkage disequilibrium persists over much more limited distances. Our findings suggest that 30,000–50,000 loci will be needed to conduct whole genome association studies in cattle.

  8. Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data

    Directory of Open Access Journals (Sweden)

    Goddard Mike E

    2004-05-01

    Full Text Available Abstract A multi-locus QTL mapping method is presented, which combines linkage and linkage disequilibrium (LD information and uses multitrait data. The method assumed a putative QTL at the midpoint of each marker bracket. Whether the putative QTL had an effect or not was sampled using Markov chain Monte Carlo (MCMC methods. The method was tested in dairy cattle data on chromosome 14 where the DGAT1 gene was known to be segregating. The DGAT1 gene was mapped to a region of 0.04 cM, and the effects of the gene were accurately estimated. The fitting of multiple QTL gave a much sharper indication of the QTL position than a single QTL model using multitrait data, probably because the multi-locus QTL mapping reduced the carry over effect of the large DGAT1 gene to adjacent putative QTL positions. This suggests that the method could detect secondary QTL that would, in single point analyses, remain hidden under the broad peak of the dominant QTL. However, no indications for a second QTL affecting dairy traits were found on chromosome 14.

  9. A long-range restriction map of the human chromosome 19q13 region: close physical linkage between CKMM and the ERCC-1 and ERCC-2 genes.

    NARCIS (Netherlands)

    H. Smeets (Hubert); L. Bachinski; M. Coerwinkel; J. Schepens; J.H.J. Hoeijmakers (Jan); M. van Duin (Mark); K-H. Grzeschik; C.A. Weber (Christine); P. de Jong (Pieter); M.J. Siciliano; B. Wieringa (Bé)

    1990-01-01

    textabstractWe report on the physical ordering of genes in a relatively small area of chromosome 19, segment q13, containing the locus for myotonic dystrophy (DM), the most frequent heritable muscular dystrophy of adulthood in man. DNAs from somatic cell hybrids with der 19q products that carry a br

  10. Linkage Disequilibrium for Two X-Linked Genes in Sardinia and Its Bearing on the Statistical Mapping of the Human X Chromosome

    Science.gov (United States)

    Filippi, G.; Rinaldi, A.; Palmarino, R.; Seravalli, E.; Siniscalco, M.

    1977-01-01

    The distribution of four X-linked mutants (G6PD, Deutan, Protan and Xg) among lowland and once highly malarial populations of Sardinia discloses a clear-cut example of linkage disequilibrium between two of them (G6PD and Protan). In the same populations the distribution of G6PD-deficiency versus colorblindness of the Deutan type and the Xg blood-group is not significantly different from that expected at equilibrium. These data suggest indirectly that the loci for G6PD and Protan may be nearer to one another than those for G6PD and Deutan. PMID:301840

  11. Paroxysmal dystonic choreoathetosis: tight linkage to chromosome 2q.

    OpenAIRE

    Fink, J K; Rainer, S.; Wilkowski, J.; Jones, S. M.; Kume, A.; Hedera, P; Albin, R.; Mathay, J.; Girbach, L.; Varvil, T; Otterud, B; Leppert, M

    1996-01-01

    Paroxysmal dystonic choreoathetosis (PDC) is characterized by attacks of involuntary movements that last up to several hours and occur at rest both spontaneously and following caffeine or alcohol consumption. We analyzed a Polish-American kindred with autosomal dominant PDC and identified tight linkage between the disorder and microsatellite markers on chromosome 2q (maximum two-point LOD score 4.77; recombination fraction 0). Our results clearly establish the existence of a locus for autosom...

  12. QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations

    Institute of Scientific and Technical Information of China (English)

    Lei Meng; Huihui Li; Luyan Zhang; Jiankang Wang

    2015-01-01

    QTL IciMapping is freely available public software capable of building high-density linkage maps and mapping quantitative trait loci (QTL) in biparental populations. Eight func-tionalities are integrated in this software package: (1) BIN:binning of redundant markers;(2) MAP: construction of linkage maps in biparental populations; (3) CMP: consensus map construction from multiple linkage maps sharing common markers; (4) SDL: mapping of segregation distortion loci;(5) BIP:mapping of additive, dominant, and digenic epistasis genes;(6) MET:QTL-by-environment interaction analysis;(7) CSL:mapping of additive and digenic epistasis genes with chromosome segment substitution lines; and (8) NAM: QTL mapping in NAM populations. Input files can be arranged in plain text, MS Excel 2003, or MS Excel 2007 formats. Output files have the same prefix name as the input but with different extensions. As examples, there are two output files in BIN, one for summarizing the identified bin groups and deleted markers in each bin, and the other for using the MAP functionality. Eight output files are generated by MAP, including summary of the completed linkage maps, Mendelian ratio test of individual markers, estimates of recombination frequencies, LOD scores, and genetic distances, and the input files for using the BIP, SDL, and MET functionalities. More than 30 output files are generated by BIP, including results at all scanning positions, identified QTL, permutation tests, and detection powers for up to six mapping methods. Three supplementary tools have also been developed to display completed genetic linkage maps, to estimate recombination frequency between two loci, and to perform analysis of variance for multi-environmental trials.

  13. QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations

    Institute of Scientific and Technical Information of China (English)

    Lei; Meng; Huihui; Li; Luyan; Zhang; Jiankang; Wang

    2015-01-01

    QTL Ici Mapping is freely available public software capable of building high-density linkage maps and mapping quantitative trait loci(QTL) in biparental populations. Eight functionalities are integrated in this software package:(1) BIN: binning of redundant markers;(2) MAP: construction of linkage maps in biparental populations;(3) CMP: consensus map construction from multiple linkage maps sharing common markers;(4) SDL: mapping of segregation distortion loci;(5) BIP: mapping of additive, dominant, and digenic epistasis genes;(6) MET: QTL-by-environment interaction analysis;(7) CSL: mapping of additive and digenic epistasis genes with chromosome segment substitution lines; and(8) NAM: QTL mapping in NAM populations. Input files can be arranged in plain text, MS Excel 2003, or MS Excel 2007 formats. Output files have the same prefix name as the input but with different extensions. As examples, there are two output files in BIN, one for summarizing the identified bin groups and deleted markers in each bin, and the other for using the MAP functionality. Eight output files are generated by MAP, including summary of the completed linkage maps, Mendelian ratio test of individual markers, estimates of recombination frequencies, LOD scores, and genetic distances, and the input files for using the BIP, SDL,and MET functionalities. More than 30 output files are generated by BIP, including results at all scanning positions, identified QTL, permutation tests, and detection powers for up to six mapping methods. Three supplementary tools have also been developed to display completed genetic linkage maps, to estimate recombination frequency between two loci,and to perform analysis of variance for multi-environmental trials.

  14. Data Mining Applied to Linkage Disequilibrium Mapping

    OpenAIRE

    Toivonen, H T T; Onkamo, P.; Vasko, K; Ollikainen, V; Sevon, P; Mannila, H.; Herr, M; Kere, J

    2000-01-01

    We introduce a new method for linkage disequilibrium mapping: haplotype pattern mining (HPM). The method, inspired by data mining methods, is based on discovery of recurrent patterns. We define a class of useful haplotype patterns in genetic case-control data and use the algorithm for finding disease-associated haplotypes. The haplotypes are ordered by their strength of association with the phenotype, and all haplotypes exceeding a given threshold level are used for prediction of disease susc...

  15. A second-generation genetic linkage map for bighead carp (Aristichthys nobilis) based on microsatellite markers.

    Science.gov (United States)

    Zhu, C; Tong, J; Yu, X; Guo, W; Wang, X; Liu, H; Feng, X; Sun, Y; Liu, L; Fu, B

    2014-10-01

    Bighead carp (Aristichthys nobilis) is an important aquaculture fish worldwide. Genetic linkage maps for the species were previously reported, but map resolution remained to be improved. In this study, a second-generation genetic linkage map was constructed for bighead carp through a pseudo-testcross strategy using interspecific hybrids between bighead carp and silver carp. Of the 754 microsatellites genotyped in two interspecific mapping families (with 77 progenies for each family), 659 markers were assigned to 24 linkage groups, which were equal to the chromosome numbers of the haploid genome. The consensus map spanned 1917.3 cM covering 92.8% of the estimated bighead carp genome with an average marker interval of 2.9 cM. The length of linkage groups ranged from 52.2 to 133.5 cM with an average of 79.9 cM. The number of markers per linkage group varied from 11 to 55 with an average of 27.5 per linkage group. Normality tests on interval distances of the map showed a non-normal marker distribution; however, significant correlation was found between the length of linkage group and the number of markers below the 0.01 significance level (two-tailed). The length of the female map was 1.12 times that of the male map, and the average recombination ratio of female to male was 1.10:1. Visual inspection showed that distorted markers gathered in some linkage groups and in certain regions of the male and female maps. This well-defined genetic linkage map will provide a basic framework for further genome mapping of quantitative traits, comparative mapping and marker-assisted breeding in bighead carp. PMID:25040196

  16. Linkage analysis on chromosome 2 in essential hypotension pedigrees

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    It is a new approach to study the important genes related to the control of blood pressure by probing into hypotension and hypertension at the same time. Genome scanning on whole chromosome 2 in 8 hypotension pedigrees has been done and parameter (LOD score) and non-pa- rameter (NPL score) were used in the linkage analysis by GENEHUNTER software. The results show the evidence of linkage between D2S112 and D2S117, indicating a number of critical genes may lie in thisregion and contribute to the mechanism of blood pressure regulation. Also this region has been found in the previous study in hypertension pedigrees. These genes may play an important role in the regulation of blood pressure and can also be the important candidate genes in hypertension studies.

  17. Constructing Linkage Disequilibrium Map with Iterative Approach

    Science.gov (United States)

    Ao, S. I.

    2008-05-01

    With recent advance of the genotyping single nucleotide polymorphisms (SNPs) in mass scale of high density in a candidate region of the human genome, the linkage disequilibrium analysis can offer a much higher resolution of the biological samples than the traditional linkage maps. We have formulated this LD mapping problem as a constrained unidimensional scaling problem. Our method, which is directly based on the measurement of LD among SNPs, is non-parametric. Therefore it is different from LD maps derived from the given Malecot model. We have formulated with the quadratic programming approach for solving this constrained unidimensional scaling problem. Different from the classical metric unidimensional scaling problem, the constrained problem is not an NP-hard combinatorial problem. The optimal solution is determined by using the quadratic programming solver. Nevertheless, because of the large requirement for memory during the running time that may cause the out of memory problems, and the high computational time of the quadratic programming algorithm, the iterative algorithm has been developed for solving this LD constrained unidimensional scaling problem.

  18. AN INTEGRATED MAP OF HUMAN-CHROMOSOME-13 ALLOWING REGIONAL LOCALIZATION OF GENETIC-MARKERS

    NARCIS (Netherlands)

    KOOY, RF; WIJNGAARD, A; VERLIND, E; SCHEFFER, H; BUYS, CHCM

    1995-01-01

    37 CA repeats, 5 STSs, 9 ESTs, and 4 genes were mapped to 19 different intervals of chromosome 13 determined by the cytogenetic breakpoints of 19 different cell lines with interstitial deletions or translocations involving various parts of chromosome 13. A framework genetic linkage map was construct

  19. Molecular mapping of chromosomes 17 and X. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition of new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping@ clones from a larger genome.

  20. Autosomal dominant familial spastic paraplegia: Tight linkage to chromosome 15q

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.K.; Wu, C.T.B.; Jones, S.M.

    1994-09-01

    Familial spastic paraplegia (FSP) (MIM No.18260) constitutes a clinically and genetically diverse group of disorders that share the primary feature of progressive, severe, lower extremity spasticity. FSP is classified according to the mode of inheritance and whether progressive spasticity occurs in isolation ({open_quotes}uncomplicated FSP{close_quotes}) or with other neurologic abnormalities ({open_quotes}complicated FSP{close_quotes}), including optic neuropathy, retinopathy, extrapyramidal disturbance, dementia, ataxia, ichthyosis, mental retardation, or deafness. Recently, autosomal dominant, uncomplicated FSP was shown to be genetically heterogeneous and tightly linked to a group of microsatellite markers on chromosome 14q in one large kindred. We examined 126 members of a non-consanguineous North American kindred of Irish descent. FSP was diagnosed in 31 living subjects who developed insidiously progressive gait disturbance between ages 12 and 35 years. Using genetic linkage analysis to microsatellite DNA polymorphisms, we showed that the FSP locus on chromosome 14q was exluded from linkage with the disorder in our family. Subsequently, we searched for genetic linkage between the disorder and microsatellite DNA polymorphisms spanning approximately 50% of the genome. We observed significantly positive, two-point maximum lod scores (Z) for markers on chromosome 15q: D15S128 (Z=9.70, {theta}=0.05), D15S165 (Z=3.30, {theta}=0.10), and UT511 (Z=3.86, {theta}=0.10). Our data clearly establishes that one locus for autosomal dominant, uncomplicated FSP is mapped to the pericentric region of chromosome 15q. Identifying genes responsible for chromosome 15q-linked and chromosome 14q-linked FSP will greatly advance our understanding of this condition and hopefully other inherited and degenerative brain and spinal cord disorders that are also characterized by axonal degeneration.

  1. Development of a black gram [Vigna mungo (L.) Hepper] linkage map and its comparison with an azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi] linkage map.

    Science.gov (United States)

    Chaitieng, B; Kaga, A; Tomooka, N; Isemura, T; Kuroda, Y; Vaughan, D A

    2006-11-01

    The Asian Vigna group of grain legumes consists of six domesticated species, among them black gram is widely grown in South Asia and to a lesser extent in Southeast Asia. We report the first genetic linkage map of black gram [Vigna mungo (L.) Hepper], constructed using a BC(1)F(1) population consisting of 180 individuals. The BC(1)F(1) population was analyzed in 61 SSR primer pairs, 56 RFLP probes, 27 AFLP loci and 1 morphological marker. About 148 marker loci could be assigned to the 11 linkage groups, which correspond to the haploid chromosome number of black gram. The linkage groups cover a total of 783 cM of the black gram genome. The number of markers per linkage group ranges from 6 to 23. The average distance between adjacent markers varied from 3.5 to 9.3 cM. The results of comparative genome mapping between black gram and azuki bean show that the linkage order of markers is highly conserved. However, inversions, insertions, deletions/duplications and a translocation were detected between the black gram and azuki bean linkage maps. The marker order on parts of linkage groups 1, 2 and 5 is reversed between the two species. One region on black gram linkage group 10 appears to correspond to part of azuki bean linkage group 1. The present study suggests that the azuki bean SSR markers can be widely used for Asian Vigna species and the black gram genetic linkage map will assist in improvement of this crop.

  2. Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa

    OpenAIRE

    Delourme Régine; Falentin Cyril; Parkin Isobel AP; Lydiate Derek J; Wang Jun; Carion Pierre WC; King Graham J

    2011-01-01

    Abstract Background The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate between sequence-tagged loci, and with contiguous genome sequences as these become available. Results We report the first genome-wide...

  3. Assignment of Chinook salmon (Oncorhynchus tshawytscha) linkage groups to specific chromosomes reveals a karyotype with multiple rearrangements of the chromosome arms of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Phillips, Ruth B; Park, Linda K; Naish, Kerry A

    2013-12-09

    The Chinook salmon genetic linkage groups have been assigned to specific chromosomes using fluorescence in situ hybridization with bacterial artificial chromosome probes containing genetic markers mapped to each linkage group in Chinook salmon and rainbow trout. Comparison of the Chinook salmon chromosome map with that of rainbow trout provides strong evidence for conservation of large syntenic blocks in these species, corresponding to entire chromosome arms in the rainbow trout as expected. In almost every case, the markers were found at approximately the same location on the chromosome arm in each species, suggesting conservation of marker order on the chromosome arms of the two species in most cases. Although theoretically a few centric fissions could convert the karyotype of rainbow trout (2N = 58-64) into that of Chinook salmon (2N = 68) or vice versa, our data suggest that chromosome arms underwent multiple centric fissions and subsequent new centric fusions to form the current karyotypes. The morphology of only approximately one-third of the chromosome pairs have been conserved between the two species.

  4. A sequence-based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly

    Directory of Open Access Journals (Sweden)

    Cheng Feng

    2011-05-01

    Full Text Available Abstract Background Brassica rapa is an economically important crop and a model plant for studies concerning polyploidization and the evolution of extreme morphology. The multinational B. rapa Genome Sequencing Project (BrGSP was launched in 2003. In 2008, next generation sequencing technology was used to sequence the B. rapa genome. Several maps concerning B. rapa pseudochromosome assembly have been published but their coverage of the genome is incomplete, anchoring approximately 73.6% of the scaffolds on to chromosomes. Therefore, a new genetic map to aid pseudochromosome assembly is required. Results This study concerns the construction of a reference genetic linkage map for Brassica rapa, forming the backbone for anchoring sequence scaffolds of the B. rapa genome resulting from recent sequencing efforts. One hundred and nineteen doubled haploid (DH lines derived from microspore cultures of an F1 cross between a Chinese cabbage (B. rapa ssp. pekinensis DH line (Z16 and a rapid cycling inbred line (L144 were used to construct the linkage map. PCR-based insertion/deletion (InDel markers were developed by re-sequencing the two parental lines. The map comprises a total of 507 markers including 415 InDels and 92 SSRs. Alignment and orientation using SSR markers in common with existing B. rapa linkage maps allowed ten linkage groups to be identified, designated A01-A10. The total length of the linkage map was 1234.2 cM, with an average distance of 2.43 cM between adjacent marker loci. The lengths of linkage groups ranged from 71.5 cM to 188.5 cM for A08 and A09, respectively. Using the developed linkage map, 152 scaffolds were anchored on to the chromosomes, encompassing more than 82.9% of the B. rapa genome. Taken together with the previously available linkage maps, 183 scaffolds were anchored on to the chromosomes and the total coverage of the genome was 88.9%. Conclusions The development of this linkage map is vital for the integration of genome

  5. An AFLP genetic linkage map of pacific abalone ( Haliotis discus hannai)

    Science.gov (United States)

    Qi, Li; Yanhong, Xu; Ruihai, Yu; Akihiro, Kijima

    2007-07-01

    A genetic linkage map of Pacific abalone ( Haliotis discus hannai) was constructed using AFLP markers based on a two-way pseudo-testeross strategy in a full-sib family. With 33 primer combinations, a total of 455 markers (225 from the female parent and 230 from the male parent) segregated in a 1:1 ratio, corresponding to DNA polymorphism: heterozygous in one parent and null in the other. The female framework map consisted of 174 markers distributed in 18 linkage groups, equivalent to the H. discus hannai haploid chromosome number, and spanning a total length of 2031.4 cM, with an average interval of 13.0 cM between adjacent markers. The male framework map consisted of 195 markers mapped on 19 linkage groups, spanning a total length of 2273.4 cM, with an average spacing of 12.9 cM between adjacent markers. The estimated coverage for the framework linkage maps was 81.2% for the female and 82.1% for the male, on the basis of two estimates of genome length. Fifty-two markers (11.4%) remained unlinked. The level of segregation distortion observed in this cross was 20.4%. These linkage maps will serve as a starting point for linkage studies in the Pacific abalone with potential application for marker-assisted selection in breeding programs.

  6. A consensus linkage map of the grass carp (Ctenopharyngodon idella based on microsatellites and SNPs

    Directory of Open Access Journals (Sweden)

    Li Jiale

    2010-02-01

    Full Text Available Abstract Background Grass carp (Ctenopharyngodon idella belongs to the family Cyprinidae which includes more than 2000 fish species. It is one of the most important freshwater food fish species in world aquaculture. A linkage map is an essential framework for mapping traits of interest and is often the first step towards understanding genome evolution. The aim of this study is to construct a first generation genetic map of grass carp using microsatellites and SNPs to generate a new resource for mapping QTL for economically important traits and to conduct a comparative mapping analysis to shed new insights into the evolution of fish genomes. Results We constructed a first generation linkage map of grass carp with a mapping panel containing two F1 families including 192 progenies. Sixteen SNPs in genes and 263 microsatellite markers were mapped to twenty-four linkage groups (LGs. The number of LGs was corresponding to the haploid chromosome number of grass carp. The sex-specific map was 1149.4 and 888.8 cM long in females and males respectively whereas the sex-averaged map spanned 1176.1 cM. The average resolution of the map was 4.2 cM/locus. BLAST searches of sequences of mapped markers of grass carp against the whole genome sequence of zebrafish revealed substantial macrosynteny relationship and extensive colinearity of markers between grass carp and zebrafish. Conclusions The linkage map of grass carp presented here is the first linkage map of a food fish species based on co-dominant markers in the family Cyprinidae. This map provides a valuable resource for mapping phenotypic variations and serves as a reference to approach comparative genomics and understand the evolution of fish genomes and could be complementary to grass carp genome sequencing project.

  7. A microsatellite genetic linkage map of black rockfish ( Sebastes schlegeli)

    Science.gov (United States)

    Chu, Guannan; Jiang, Liming; He, Yan; Yu, Haiyang; Wang, Zhigang; Jiang, Haibin; Zhang, Quanqi

    2014-12-01

    Ovoviviparous black rockfish ( Sebastes schlegeli) is an important marine fish species for aquaculture and fisheries in China. Genetic information of this species is scarce because of the lack of microsatellite markers. In this study, a large number of microsatellite markers of black rockfish were isolated by constructing microsatellite-enriched libraries. Female- and male-specific genetic linkage maps were constructed using 435 microsatellite markers genotyped in a full-sib family of the fish species. The female linkage map contained 140 microsatellite markers, in which 23 linkage groups had a total genetic length of 1334.1 cM and average inter-marker space of 13.3 cM. The male linkage map contained 156 microsatellite markers, in which 25 linkage groups had a total genetic length of 1359.6 cM and average inter-marker distance of 12.4 cM. The genome coverage of the female and male linkage maps was 68.6% and 69.3%, respectively. The female-to-male ratio of the recombination rate was approximately 1.07:1 in adjacent microsatellite markers. This paper presents the first genetic linkage map of microsatellites in black rockfish. The collection of polymorphic markers and sex-specific linkage maps of black rockfish could be useful for further investigations on parental assignment, population genetics, quantitative trait loci mapping, and marker-assisted selection in related breeding programs.

  8. Linkage localization of TGFB2 and the human homeobox gene GLX1 to chromosome 1q

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, D.Y.; Murray, J.C. (Univ. of Iowa, Iowa City (United States)); Purchio, A.F. (Oncogen, Seattle, WA (United States))

    1993-02-01

    We have identified genetic variation within two human genes, transforming growth factor-[beta]2 (TGFB2) and the homeobox gene HB24 (HLX1). Reported here are four human RFLPs and SSCPs for TGFB2 in humans and gorillas. In addition, we describe an RFLP and a SSCP for HLX1. We propose that HLX1 is the human homologue of the mouse homeobox gene Hlx based on extensive sequence homology between the genes and the close proximity of both genes to TGFB2 in their respective species. We also report the chromosomal localization of HLX1 to the long arm of human chromosome 1. Finally, utilizing the polymorphisms described for TGFB2 and HLX1, we have been able to localize these genes within a framework map of the distal long arm of chromosome 1 and to study the linkage relationship between these two genes. Pairwise linkage analysis shows that these two genes are linked, with a recombination fraction of 3.1% and a lod score of 14.49. 27 refs., 3 figs., 6 tabs.

  9. The first-generation Daphnia magna linkage map

    Directory of Open Access Journals (Sweden)

    De Meester Luc

    2010-09-01

    Full Text Available Abstract Background Daphnia magna is a well-established model species in ecotoxicology, ecology and evolution. Several new genomics tools are presently under development for this species; among them, a linkage map is a first requirement for estimating the genetic background of phenotypic traits in quantitative trait loci (QTL studies and is also very useful in assembling the genome. It also enables comparative studies between D. magna and D. pulex, for which a linkage map already exists. Results Here we describe the first genetic linkage map of D. magna. We generated 214 F2 (intercross clonal lines as the foundation of the linkage analysis. The linkage map itself is based on 109 microsatellite markers, which produced ten major linkage groups ranging in size from 31.1 cM to 288.5 cM. The total size of this linkage map extends to 1211.6 Kosambi cM, and the average interval for the markers within linkage groups is 15.1 cM. The F2 clones can be used to map QTLs for traits that differ between the parental clones. We successfully mapped the location of two loci with infertility alleles, one inherited from the paternal clone (Iinb1 and the other from the maternal clone (Xinb3. Conclusions The D. magna linkage map presented here provides extensive coverage of the genome and a given density of markers that enable us to detect QTLs of moderate to strong effects. It is similar in size to the linkage map of D. pulex.

  10. Construction of microsatellite-based linkage map and mapping of nectarilessness and hairiness genes in Gossypium tomentosum

    Indian Academy of Sciences (India)

    Meiying Hou; Caiping Cai; Shuwen Zhang; Wangzhen Guo; Tianzhen Zhang; Baoliang Zhou

    2013-12-01

    Gossypium tomentosum, a wild tetraploid cotton species with AD genomes, possesses genes conferring strong fibers and high heat tolerance. To effectively transfer these genes into Gossypium hirsutum, an entire microsatellite (simple sequence repeat, SSR)-based genetic map was constructed using the interspecific cross of G. hirsutum × G. tomentosum (HT). We detected 1800 loci from 1347 pairs of polymorphic primers. Of these, 1204 loci were grouped into 35 linkage groups at LOD ≥4. The map covers 3320.8 cM, with a mean density of 2.76 cM per locus. We detected 420 common loci (186 in the At subgenome and 234 in Dt) between the HT map and the map of TM-1 (G. hirsutum) and Hai 7124 (G. barbadense; HB map). The linkage groups were assigned chromosome numbers based on location of common loci and the HB map as reference. A comparison of common markers revealed that no significant chromosomal rearrangement exist between G. tomentosum and G. barbadense. Interestingly, however, we detected numerous (33.7%) segregation loci deviating from 3:1 ratio ($P \\lt 0.05$) in HT, mostly clustering on eight chromosomes in the Dt subgenome, with some on three chromosomes in At. Two morphological traits, leaf hairiness and leaf nectarilessness were mapped on chromosomes 6 (A6) and 26 (D12), respectively. The SSR-based map constructed in this study will be useful for further genetic studies on cotton breeding, including mapping loci controlling quantitative traits associated with fiber quality, stress tolerance and developing chromosome segment specific introgression lines from G. tomentosum into G. hirsutum using marker-assisted selection.

  11. [MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data].

    Science.gov (United States)

    Liu, Ren-Hu; Meng, Jin-Ling

    2003-05-01

    MAPMAKER is one of the most widely used computer software package for constructing genetic linkage maps.However, the PC version, MAPMAKER 3.0 for PC, could not draw the genetic linkage maps that its Macintosh version, MAPMAKER 3.0 for Macintosh,was able to do. Especially in recent years, Macintosh computer is much less popular than PC. Most of the geneticists use PC to analyze their genetic linkage data. So a new computer software to draw the same genetic linkage maps on PC as the MAPMAKER for Macintosh to do on Macintosh has been crying for. Microsoft Excel,one component of Microsoft Office package, is one of the most popular software in laboratory data processing. Microsoft Visual Basic for Applications (VBA) is one of the most powerful functions of Microsoft Excel. Using this program language, we can take creative control of Excel, including genetic linkage map construction, automatic data processing and more. In this paper, a Microsoft Excel macro called MapDraw is constructed to draw genetic linkage maps on PC computer based on given genetic linkage data. Use this software,you can freely construct beautiful genetic linkage map in Excel and freely edit and copy it to Word or other application. This software is just an Excel format file. You can freely copy it from ftp://211.69.140.177 or ftp://brassica.hzau.edu.cn and the source code can be found in Excel's Visual Basic Editor. PMID:15639879

  12. SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo.

    Science.gov (United States)

    Gong, L; Pachner, M; Kalai, K; Lelley, T

    2008-11-01

    The first SSR-based genetic linkage map of Cucurbita moschata was created by integrating the maps of two F2 populations with one common parent developed from the crosses Waltham Butternut (WB) x Nigerian Local (NL) and ZHOU (a hull-less type) x WB. The integrated C. moschata map comprises 205 SSR markers and two morphological traits (Gr and n). The map is composed of 27 linkage groups with a marker density of 7 cM. Comparing the C. moschata map with the published Cucurbita pepo map, we found a high level of macrosynteny. Seventy-two of 76 common SSR markers between C. moschata and C. pepo were located in homologous linkage groups. These markers in general have conserved orders and similar genetic distances; they represent orthologous loci. A reference map based on these SSRs was obtained. No major chromosomal rearrangement between the two species could be detected at present, although four SSR markers were mapped in nonhomologous linkage groups. The comparative alignment of SSR markers did not provide any indication of a possible ancient polyploid origin of the species. The comparative mapping of C. moschata and C. pepo reported here will be useful for further studies on Cucurbit evolution, gene isolation, and breeding work.

  13. A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas

    Directory of Open Access Journals (Sweden)

    Matsumoto Takashi

    2010-04-01

    Full Text Available Abstract Background The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents. Results An F1 progeny of 180 individuals was obtained from a cross between two genetically distant accessions of M. acuminata, 'Borneo' and 'Pisang Lilin' (P. Lilin. Based on the gametic recombination of each parent, two parental maps composed of SSR and DArT markers were established. A significant proportion of the markers (21.7% deviated (p Conclusions We propose a synthetic map with 11 linkage groups containing 489 markers (167 SSRs and 322 DArTs covering 1197 cM. This first saturated map is proposed as a "reference Musa map" for further analyses. We also propose two complete parental maps with interpretations of structural rearrangements localized on the linkage groups. The structural heterozygosity in P. Lilin is hypothesized to result from a duplication likely accompanied by an inversion on another chromosome. This paper also illustrates a methodological approach, transferable to other species, to investigate the mapping of structural rearrangements and determine their consequences on marker

  14. A ddRAD Based Linkage Map of the Cultivated Strawberry, Fragaria xananassa.

    Directory of Open Access Journals (Sweden)

    Jahn Davik

    Full Text Available The cultivated strawberry (Fragaria ×ananassa Duch. is an allo-octoploid considered difficult to disentangle genetically due to its four relatively similar sub-genomic chromosome sets. This has been alleviated by the recent release of the strawberry IStraw90 whole genome genotyping array. However, array resolution relies on the genotypes used in the array construction and may be of limited general use. SNP detection based on reduced genomic sequencing approaches has the potential of providing better coverage in cases where the studied genotypes are only distantly related from the SNP array's construction foundation. Here we have used double digest restriction-associated DNA sequencing (ddRAD to identify SNPs in a 145 seedling F1 hybrid population raised from the cross between the cultivars Sonata (♀ and Babette (♂. A linkage map containing 907 markers which spanned 1,581.5 cM across 31 linkage groups representing the 28 chromosomes of the species. Comparing the physical span of the SNP markers with the F. vesca genome sequence, the linkage groups resolved covered 79% of the estimated 830 Mb of the F. × ananassa genome. Here, we have developed the first linkage map for F. × ananassa using ddRAD and show that this technique and other related techniques are useful tools for linkage map development and downstream genetic studies in the octoploid strawberry.

  15. A ddRAD Based Linkage Map of the Cultivated Strawberry, Fragaria xananassa.

    Science.gov (United States)

    Davik, Jahn; Sargent, Daniel James; Brurberg, May Bente; Lien, Sigbjørn; Kent, Matthew; Alsheikh, Muath

    2015-01-01

    The cultivated strawberry (Fragaria ×ananassa Duch.) is an allo-octoploid considered difficult to disentangle genetically due to its four relatively similar sub-genomic chromosome sets. This has been alleviated by the recent release of the strawberry IStraw90 whole genome genotyping array. However, array resolution relies on the genotypes used in the array construction and may be of limited general use. SNP detection based on reduced genomic sequencing approaches has the potential of providing better coverage in cases where the studied genotypes are only distantly related from the SNP array's construction foundation. Here we have used double digest restriction-associated DNA sequencing (ddRAD) to identify SNPs in a 145 seedling F1 hybrid population raised from the cross between the cultivars Sonata (♀) and Babette (♂). A linkage map containing 907 markers which spanned 1,581.5 cM across 31 linkage groups representing the 28 chromosomes of the species. Comparing the physical span of the SNP markers with the F. vesca genome sequence, the linkage groups resolved covered 79% of the estimated 830 Mb of the F. × ananassa genome. Here, we have developed the first linkage map for F. × ananassa using ddRAD and show that this technique and other related techniques are useful tools for linkage map development and downstream genetic studies in the octoploid strawberry.

  16. Linkage Disequilibrium Mapping of Meat Quality QTL

    Science.gov (United States)

    Previous studies based on linkage analysis have identified broad areas in the bovine genome associated with meat quality. Linkage disequilibrium (LD) analyses have the potential to identify narrower regions and point towards candidate genes. Tenderness and marbling were chosen to be evaluated in a ...

  17. Molecular characterization of Blau syndrome: Genetic linkage to chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, G.; Duivaniemi, H.; Christiano, A. [Thomas Jefferson Univ., Philadelphia, PA (United States)] [and others

    1994-09-01

    The Blau syndrome is an autosomal, dominantly-inherited disease characterized by multi-organ, tissue-specific inflammation. Its clinical phenotype includes granulomatous uveitis, arthritis and skin rash. The syndrome is unique in that it is the sole human model for a variety of multi-system inflammatory diseases that afflict a significant percentage of the population. Karyotypic analysis of the large, three generation kindred whose disease originally characterized the syndrome was unremarkable. Following exclusion of a number of extracellular matrix candidates genes, a genome-wide search was undertaken of the Blau susceptibility locus. Fifty-seven members of the family were genotyped for about 200 highly polymorphic dinucleotide repeat markers. Linkage analysis was performed using the LINKAGE package of programs under a model of dominant inheritance with reduced penetrance. Five liability classes were used to specify penetrances and phenocopy rates for those affected the arthritis, uveitis, skin rash and combinations thererof. In addition, five age-dependent penetrance classes were used for unaffected individuals. The marker D16S298 gave a maximum lod score of 3.6 at {theta} = 0.05 with two-point analysis. Lod scores for flanking markers were consistent. These data provide convincing evidence that the Blau susceptibility locus is situated within the 16p12-q21 interval. Fine mapping of the candidate interval with additional families exhibiting the Blau phenotype, as well as with more polymorphic markers, is underway.

  18. A gene-based SNP resource and linkage map for the copepod Tigriopus californicus

    Directory of Open Access Journals (Sweden)

    Foley Brad R

    2011-11-01

    Full Text Available Abstract Background As yet, few genomic resources have been developed in crustaceans. This lack is particularly evident in Copepoda, given the extraordinary numerical abundance, and taxonomic and ecological diversity of this group. Tigriopus californicus is ideally suited to serve as a genetic model copepod and has been the subject of extensive work in environmental stress and reproductive isolation. Accordingly, we set out to develop a broadly-useful panel of genetic markers and to construct a linkage map dense enough for quantitative trait locus detection in an interval mapping framework for T. californicus--a first for copepods. Results One hundred and ninety Single Nucleotide Polymorphisms (SNPs were used to genotype our mapping population of 250 F2 larvae. We were able to construct a linkage map with an average intermarker distance of 1.8 cM, and a maximum intermarker distance of 10.3 cM. All markers were assembled into linkage groups, and the 12 linkage groups corresponded to the 12 known chromosomes of T. californicus. We estimate a total genome size of 401.0 cM, and a total coverage of 73.7%. Seventy five percent of the mapped markers were detected in 9 additional populations of T. californicus. Of available model arthropod genomes, we were able to show more colocalized pairs of homologues between T. californicus and the honeybee Apis mellifera, than expected by chance, suggesting preserved macrosynteny between Hymenoptera and Copepoda. Conclusions Our study provides an abundance of linked markers spanning all chromosomes. Many of these markers are also found in multiple populations of T. californicus, and in two other species in the genus. The genomic resource we have developed will enable mapping throughout the geographical range of this species and in closely related species. This linkage map will facilitate genome sequencing, mapping and assembly in an ecologically and taxonomically interesting group for which genomic resources are

  19. Fine mapping quantitative trait loci under selective phenotyping strategies based on linkage and linkage disequilibrium criteria

    DEFF Research Database (Denmark)

    Ansari-Mahyari, S; Berg, P; Lund, M S

    2009-01-01

    In fine mapping of a large-scale experimental population where collection of phenotypes are very expensive, difficult to record or time-demanding, selective phenotyping could be used to phenotype the most informative individuals. Linkage analyses based sampling criteria (LAC) and linkage disequil......In fine mapping of a large-scale experimental population where collection of phenotypes are very expensive, difficult to record or time-demanding, selective phenotyping could be used to phenotype the most informative individuals. Linkage analyses based sampling criteria (LAC) and linkage...... disequilibrium-based sampling criteria (LDC) for selecting individuals to phenotype are compared to random phenotyping in a quantitative trait loci (QTL) verification experiment using stochastic simulation. Several strategies based on LAC and LDC for selecting the most informative 30%, 40% or 50% of individuals...... for phenotyping to extract maximum power and precision in a QTL fine mapping experiment were developed and assessed. Linkage analyses for the mapping was performed for individuals sampled on LAC within families and combined linkage disequilibrium and linkage analyses was performed for individuals...

  20. The first genetic linkage map of Eucommia ulmoides

    Indian Academy of Sciences (India)

    Dawei Wang; Yu Li; Long Li; Yongcheng Wei; Zhouqi Li

    2014-04-01

    In accordance with pseudo-testcross strategy, the first genetic linkage map of Eucommia ulmoides Oliv. was constructed by an F1 population of 122 plants using amplified fragment length polymorphism (AFLP) markers. A total of 22 AFLP primer combinations generated 363 polymorphic markers. We selected 289 markers segregating as 1:1 and used them for constructing the parent-specific linkage maps. Among the candidate markers, 127 markers were placed on the maternal map LF and 108 markers on the paternal map Q1. The maternal map LF spanned 1116.1 cM in 14 linkage groups with a mean map distance of 8.78 cM; the paternal map Q1 spanned 929.6 cM in 12 linkage groups with an average spacing of 8.61 cM. The estimated coverage of the genome through two methods was 78.5 and 73.9% for LF, and 76.8 and 71.2% for Q1, respectively. This map is the first linkage map of E. ulmoides and provides a basis for mapping quantitative-trait loci and breeding applications.

  1. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L. genome

    Directory of Open Access Journals (Sweden)

    Li Shaoxiong

    2010-01-01

    Full Text Available Abstract Background The construction of genetic linkage maps for cultivated peanut (Arachis hypogaea L. has and continues to be an important research goal to facilitate quantitative trait locus (QTL analysis and gene tagging for use in a marker-assisted selection in breeding. Even though a few maps have been developed, they were constructed using diploid or interspecific tetraploid populations. The most recently published intra-specific map was constructed from the cross of cultivated peanuts, in which only 135 simple sequence repeat (SSR markers were sparsely populated in 22 linkage groups. The more detailed linkage map with sufficient markers is necessary to be feasible for QTL identification and marker-assisted selection. The objective of this study was to construct a genetic linkage map of cultivated peanut using simple sequence repeat (SSR markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs, and by "data mining" sequences released in GenBank. Results Three recombinant inbred lines (RILs populations were constructed from three crosses with one common female parental line Yueyou 13, a high yielding Spanish market type. The four parents were screened with 1044 primer pairs designed to amplify SSRs and 901 primer pairs produced clear PCR products. Of the 901 primer pairs, 146, 124 and 64 primer pairs (markers were polymorphic in these populations, respectively, and used in genotyping these RIL populations. Individual linkage maps were constructed from each of the three populations and a composite map based on 93 common loci were created using JoinMap. The composite linkage maps consist of 22 composite linkage groups (LG with 175 SSR markers (including 47 SSRs on the published AA genome maps, representing the 20 chromosomes of A. hypogaea. The total composite map length is 885.4 cM, with an average marker density of 5.8 cM. Segregation distortion in the 3 populations was 23.0%, 13.5% and 7.8% of the markers

  2. Construction of an EST-SSR-based interspecific transcriptome linkage map of fibre development in cotton

    Indian Academy of Sciences (India)

    Chuanxiang Liu; Daojun Yuan; Zhongxu Lin

    2014-12-01

    Quantitative trait locus (QTL) mapping is an important method in marker-assisted selection breeding. Many studies on the QTLs focus on cotton fibre yield and quality; however, most are conducted at the DNA level, which may reveal null QTLs. Hence, QTL mapping based on transcriptome maps at the cDNA level is often more reliable. In this study, an interspecific transcriptome map of allotetraploid cotton was developed based on an F2 population (Emian22 × 3-79) by amplifying cDNA using EST-SSRs. The map was constructed using cDNA obtained from developing fibres at five days post anthesis (DPA). A total of 1270 EST-SSRs were screened for polymorphisms between the mapping parents. The resulting transcriptome linkage map contained 242 markers that were distributed in 32 linkage groups (26 chromosomes). The full length of this map is 1938.72 cM with a mean marker distance of 8.01 cM. The functions of some ESTs have been annotated by exploring homologous sequences. Some markers were related to the differentiation and elongation of cotton fibre, while most were related to the basic metabolism. This study demonstrates that constructing a transcriptome linkage map by amplifying cDNAs using EST-SSRs is a simple and practical method as well as a powerful tool to map eQTLs for fibre quality and other traits in cotton.

  3. Recombination patterns reveal information about centromere location on linkage maps

    DEFF Research Database (Denmark)

    Limborg, Morten T.; McKinney, Garrett J.; Seeb, Lisa W.;

    2016-01-01

    . mykiss) characterized by low and unevenly distributed recombination – a general feature of male meiosis in many species. Further, a high frequency of double crossovers along chromosome arms in barley reduced resolution for locating centromeric regions on most linkage groups. Despite these limitations...

  4. A SNP based high-density linkage map of Apis cerana reveals a high recombination rate similar to Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan Shi

    Full Text Available BACKGROUND: The Eastern honey bee, Apis cerana Fabricius, is distributed in southern and eastern Asia, from India and China to Korea and Japan and southeast to the Moluccas. This species is also widely kept for honey production besides Apis mellifera. Apis cerana is also a model organism for studying social behavior, caste determination, mating biology, sexual selection, and host-parasite interactions. Few resources are available for molecular research in this species, and a linkage map was never constructed. A linkage map is a prerequisite for quantitative trait loci mapping and for analyzing genome structure. We used the Chinese honey bee, Apis cerana cerana to construct the first linkage map in the Eastern honey bee. RESULTS: F2 workers (N = 103 were genotyped for 126,990 single nucleotide polymorphisms (SNPs. After filtering low quality and those not passing the Mendel test, we obtained 3,000 SNPs, 1,535 of these were informative and used to construct a linkage map. The preliminary map contains 19 linkage groups, we then mapped the 19 linkage groups to 16 chromosomes by comparing the markers to the genome of A. mellfiera. The final map contains 16 linkage groups with a total of 1,535 markers. The total genetic distance is 3,942.7 centimorgans (cM with the largest linkage group (180 loci measuring 574.5 cM. Average marker interval for all markers across the 16 linkage groups is 2.6 cM. CONCLUSION: We constructed a high density linkage map for A. c. cerana with 1,535 markers. Because the map is based on SNP markers, it will enable easier and faster genotyping assays than randomly amplified polymorphic DNA or microsatellite based maps used in A. mellifera.

  5. Linkage analysis of 19 French breast cancer families, with five chromosome 17q markers.

    OpenAIRE

    Mazoyer, S.; Lalle, P.; Narod, S A; Bignon, Y J; Courjal, F.; Jamot, B; Dutrillaux, B; Stoppa-Lyonnett, D; Sobol, H

    1993-01-01

    Nineteen French breast and breast-ovarian cancer families were tested for linkage with five chromosome 17q markers. The five breast-ovarian cancer families as a group give positive evidence for linkage, whereas the 14 breast cancer-only families do not. Heterogeneity of linkage of breast and breast-ovarian cancers is significant in France and supports the existence of more than one susceptibility gene.

  6. Report of the Fourth International Workshop on human X chromosome mapping 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schlessinger, D.; Mandel, J.L.; Monaco, A.P.; Nelson, D.L.; Willard, H.F. [eds.

    1993-12-31

    Vigorous interactive efforts by the X chromosome community have led to accelerated mapping in the last six months. Seventy-five participants from 12 countries around the globe contributed progress reports to the Fourth International X Chromosome Workshop, at St. Louis, MO, May 9-12, 1993. It became clear that well over half the chromosome is now covered by YAC contigs that are being extended, verified, and aligned by their content of STSs and other markers placed by cytogenetic or linkage mapping techniques. The major aim of the workshop was to assemble the consensus map that appears in this report, summarizing both consensus order and YAC contig information.

  7. The importance of a sub-region on chromosome 19q13.3 for prognosis of multiple myeloma patients after high-dose treatment and stem cell support: a linkage disequilibrium mapping in RAI and CD3EAP

    DEFF Research Database (Denmark)

    Vangsted, Annette Juul; Klausen, Tobias Wirenfeldt; Gimsing, Peter;

    2011-01-01

    with interferon-a (INF-a) as maintenance treatment, 177 patients treated with thalidomide, and 74 patients treated with bortezomib at relapse and address if the effects of polymorphisms in CD3EAP and RAI are modified by a functional polymorphism in NF¿B1. By linkage disequilibrium mapping, we found that variant...... carriers of RAI-intron1-1 or CD3EAP G-21A had the longest OS. Among patients treated with INF-a or thalidomide, no effect was seen in relation to genotype. Our results indicate that polymorphism in RAI and CD3EAP are associated with outcome of myeloma patients treated with HDT. Combination analyses...

  8. The importance of a sub-region on chromosome 19q13.3 for prognosis of multiple myeloma patients after high-dose treatment and stem cell support: a linkage disequilibrium mapping in RAI and CD3EAP

    DEFF Research Database (Denmark)

    Vangsted, Annette J.; Klausen, Tobias Wirenfeldt; Gimsing, Peter;

    2011-01-01

    with interferon-α (INF-α) as maintenance treatment, 177 patients treated with thalidomide, and 74 patients treated with bortezomib at relapse and address if the effects of polymorphisms in CD3EAP and RAI are modified by a functional polymorphism in NFКB1. By linkage disequilibrium mapping, we found that variant...... carriers of RAI-intron1-1 or CD3EAP G-21A had the longest OS. Among patients treated with INF-α or thalidomide, no effect was seen in relation to genotype. Our results indicate that polymorphism in RAI and CD3EAP are associated with outcome of myeloma patients treated with HDT. Combination analyses...

  9. Evidence of Allopolyploidy in Urochloa humidicola Based on Cytological Analysis and Genetic Linkage Mapping.

    Science.gov (United States)

    Vigna, Bianca B Z; Santos, Jean C S; Jungmann, Leticia; do Valle, Cacilda B; Mollinari, Marcelo; Pastina, Maria M; Pagliarini, Maria Suely; Garcia, Antonio A F; Souza, Anete P

    2016-01-01

    The African species Urochloa humidicola (Rendle) Morrone & Zuloaga (syn. Brachiaria humidicola (Rendle) Schweick.) is an important perennial forage grass found throughout the tropics. This species is polyploid, ranging from tetra to nonaploid, and apomictic, which makes genetic studies challenging; therefore, the number of currently available genetic resources is limited. The genomic architecture and evolution of U. humidicola and the molecular markers linked to apomixis were investigated in a full-sib F1 population obtained by crossing the sexual accession H031 and the apomictic cultivar U. humidicola cv. BRS Tupi, both of which are hexaploid. A simple sequence repeat (SSR)-based linkage map was constructed for the species from 102 polymorphic and specific SSR markers based on simplex and double-simplex markers. The map consisted of 49 linkage groups (LGs) and had a total length of 1702.82 cM, with 89 microsatellite loci and an average map density of 10.6 cM. Eight homology groups (HGs) were formed, comprising 22 LGs, and the other LGs remained ungrouped. The locus that controls apospory (apo-locus) was mapped in LG02 and was located 19.4 cM from the locus Bh027.c.D2. In the cytological analyses of some hybrids, bi- to hexavalents at diakinesis were observed, as well as two nucleoli in some meiocytes, smaller chromosomes with preferential allocation within the first metaphase plate and asynchronous chromosome migration to the poles during anaphase. The linkage map and the meiocyte analyses confirm previous reports of hybridization and suggest an allopolyploid origin of the hexaploid U. humidicola. This is the first linkage map of an Urochloa species, and it will be useful for future quantitative trait locus (QTL) analysis after saturation of the map and for genome assembly and evolutionary studies in Urochloa spp. Moreover, the results of the apomixis mapping are consistent with previous reports and confirm the need for additional studies to search for a co

  10. Genetic linkage maps of chicken chromosomes 6, 7, 8, 11 and 13 from a Brazilian resource population Mapas de ligação dos cromossomos 6, 7, 8, 11 e 13 de uma população brasileira de galinha

    Directory of Open Access Journals (Sweden)

    Marcel Ambo

    2008-01-01

    Full Text Available A linkage map is essential not only for quantitative trait loci (QTL mapping, but also for the organization and location of genes along the chromosomes. The present study is part of a project whose major objective is, besides from construction the linkage maps, the whole genome scan for mapping QTL for performance traits in the Brazilian experimental chicken population. Linkage maps of chicken chromosomes 6 to 8, 11 and 13 were constructed based on this population. The population was developed from two generations of crossbreeding between a broiler and a layer line. Fifty-one microsatellite markers were tested, from which 28 were informative: 4, 8, 7, 4 and 5 for chromosomes 6, 7, 8, 11 and 13, respectively. A SNP located in the leptin receptor gene was included for chromosome 8. Ten parental, 8 F1 and 459 F2 chickens from five full-sib families were genotyped with these markers. The number of total informative meioses per locus varied from 232 to 862, and the number of phase-known informative meioses from 0 to 764. Marker orders in the chromosomes coincided with those of the chicken consensus map, except for markers ADL0147 and MCW0213, on chromosome 13, which were inverted. The reduced number of phase-known informative meioses for ADL0147 (150 may be pointed out as a possible cause for this inversion, apart from the relative short distance between the two markers involved in the inversion (10.5 cM.O mapa de ligação além de ser fundamental no mapeamento de locos de características quantitativas (QTLs é importante na organização e localização de genes distribuídos ao longo dos cromossomos. O presente estudo é parte de um trabalho cujo objetivo maior, é a análise de mapeamento de QTLs para características de desempenho no genoma de uma população experimental desenvolvida no Brasil. Com base nesta população foram construídos os mapas de ligação dos cromossomos 6 a 8, 11 e 13 da galinha. A população foi desenvolvida a partir

  11. Research on Linkage Characteristics of Rheumatoid Arthritis Pathway Genes Located in Chromosome 1 Based on FastMap Algorithm%基于FastMap算法的类风湿病通路基因在1号染色体上的连锁特性的研究

    Institute of Scientific and Technical Information of China (English)

    李嘉宁; 华琳; 夏翃; 闫岩

    2014-01-01

    本文阐述了应用FastMap算法研究类风湿病通路基因在1号染色体上的连锁特性的方法和结果。结果发现,在FGF Signaling in Rheumatoid Arthritis通路中,CTSB、PRKC、ACAT2和MAPK1出现了相似的连锁特性。在IFN Signaling in Rheumatoid Arthritis通路中,IL15、HLA-DR和HLA-DQA1出现了相似的连锁特性。在IL10 Signaling in Rheumatoid Arthritis通路中,HLA-DR和TGFB1,CXCR4和CD86出现了相似的连锁特性。该结果说明同一通路中的基因存在相似的连锁特性,这些基因可能具有潜在的相似功能。%This paper introduced the methods and results of the research on linkage characteristics of rheumatoid arthritis pathway genes located in chromosome 1 by using FastMap algorithm. The results showed that there were similar linkage characteristics among genes including CTSB, PRKC, ACAT2 and MAPK1 in FGF Signaling in Rheumatoid Arthritis pathway and there were similar linkage characteristics among genes including IL15, HLA-DR and HLA-DQA1 in IFN Signaling in Rheumatoid Arthritis pathway while there were similar linkage characteristics between genes including HLA-DR and TGFB1 as well as CXCR4 and CD86 in IL10 Signaling in Rheumatoid Arthritis pathway. The results indicated that the potential functions of the genes with similar linkage characteristics in the same pathway may be similar.

  12. Skewed RAPD markers in linkage maps of Citrus

    Directory of Open Access Journals (Sweden)

    Roberto Pedroso de Oliveira

    2004-01-01

    Full Text Available The objective of this work was to analyze the effects of RAPD markers with skewed segregation on genetic linkage maps. Segregation data for 123 Citrus sinensis (L. Osbeck cv. Pêra markers and 53 C. reticulata Blanco cv. Cravo markers in F1 progeny composed of 94 hybrids were used. Genetic linkage maps of the two varieties were constructed with non-skewed markers (p < 0.05 and p < 0.01 using the program MAPMAKER 3.0 and a pseudo-testcross strategy. The maps were compared to those constructed with all markers. Alterations in the genetic distances were observed based on the location of the skewed markers within the linkage groups. Generally, the skewed markers were located at the end of the linkage groups, sometimes forming entire linkage groups, without causing significant distance modifications. However, skewed markers located between non-skewed markers caused significant distance modifications and, in some cases, altered the order of the markers. Most of the skewed markers can be included in linkage maps, but in each case the degree of distance modification caused by each marker needs to be assessed.

  13. A Sequence-Tagged Linkage Map of Brassica rapa

    OpenAIRE

    Kim, Jung Sun; Chung, Tae Young; King, Graham J; Jin, Mina; Yang, Tae-Jin; Jin, Yong-Moon; Kim, Ho-Il; Park, Beom-Seok

    2006-01-01

    A detailed genetic linkage map of Brassica rapa has been constructed containing 545 sequence-tagged loci covering 1287 cM, with an average mapping interval of 2.4 cM. The loci were identified using a combination of 520 RFLP and 25 PCR-based markers. RFLP probes were derived from 359 B. rapa EST clones and amplification products of 11 B. rapa and 26 Arabidopsis. Including 21 SSR markers provided anchors to previously published linkage maps for B. rapa and B. napus and is followed as the refere...

  14. A dense genetic linkage map for common carp and its integration with a BAC-based physical map.

    Directory of Open Access Journals (Sweden)

    Lan Zhao

    Full Text Available BACKGROUND: Common carp (Cyprinus carpio is one of the most important aquaculture species with an annual global production of 3.4 million metric tons. It is also an important ornamental species as well as an important model species for aquaculture research. To improve the economically important traits of this fish, a number of genomic resources and genetic tools have been developed, including several genetic maps and a bacterial artificial chromosome (BAC-based physical map. However, integrated genetic and physical maps are not available to study quantitative trait loci (QTL and assist with fine mapping, positional cloning and whole genome sequencing and assembly. The objective of this study was to integrate the currently available BAC-based physical and genetic maps. RESULTS: The genetic map was updated with 592 novel markers, including 312 BAC-anchored microsatellites and 130 SNP markers, and contained 1,209 genetic markers on 50 linkage groups, spanning 3,565.9 cM in the common carp genome. An integrated genetic and physical map of the common carp genome was then constructed, which was composed of 463 physical map contigs and 88 single BACs. Combined lengths of the contigs and single BACs covered a physical length of 498.75 Mb, or around 30% of the common carp genome. Comparative analysis between common carp and zebrafish genomes was performed based on the integrated map, providing more insights into the common carp specific whole genome duplication and segmental rearrangements in the genome. CONCLUSION: We integrated a BAC-based physical map to a genetic linkage map of common carp by anchoring BAC-associated genetic markers. The density of the genetic linkage map was significantly increased. The integrated map provides a tool for both genetic and genomic studies of common carp, which will help us to understand the genomic architecture of common carp and facilitate fine mapping and positional cloning of economically important traits for

  15. A genetic linkage map for the saltwater crocodile (Crocodylus porosus

    Directory of Open Access Journals (Sweden)

    Lance Stacey L

    2009-07-01

    Full Text Available Abstract Background Genome elucidation is now in high gear for many organisms, and whilst genetic maps have been developed for a broad array of species, surprisingly, no such maps exist for a crocodilian, or indeed any other non-avian member of the Class Reptilia. Genetic linkage maps are essential tools for the mapping and dissection of complex quantitative trait loci (QTL, and in order to permit systematic genome scans for the identification of genes affecting economically important traits in farmed crocodilians, a comprehensive genetic linage map will be necessary. Results A first-generation genetic linkage map for the saltwater crocodile (Crocodylus porosus was constructed using 203 microsatellite markers amplified across a two-generation pedigree comprising ten full-sib families from a commercial population at Darwin Crocodile Farm, Northern Territory, Australia. Linkage analyses identified fourteen linkage groups comprising a total of 180 loci, with 23 loci remaining unlinked. Markers were ordered within linkage groups employing a heuristic approach using CRIMAP v3.0 software. The estimated female and male recombination map lengths were 1824.1 and 319.0 centimorgans (cM respectively, revealing an uncommonly large disparity in recombination map lengths between sexes (ratio of 5.7:1. Conclusion We have generated the first genetic linkage map for a crocodilian, or indeed any other non-avian reptile. The uncommonly large disparity in recombination map lengths confirms previous preliminary evidence of major differences in sex-specific recombination rates in a species that exhibits temperature-dependent sex determination (TSD. However, at this point the reason for this disparity in saltwater crocodiles remains unclear. This map will be a valuable resource for crocodilian researchers, facilitating the systematic genome scans necessary for identifying genes affecting complex traits of economic importance in the crocodile industry. In addition

  16. Molecular mapping of chromosomes 17 and X

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1989-01-01

    The basic aims of this project are the construction of high density genetic maps of chromosomes 17 and X and the utilization of these maps for the subsequent isolation of a set of physically overlapping DNA segment clones. The strategy depends on the utilization of chromosome specific libraries of small (1--15 kb) segments from each of the two chromosomes. Since the time of submission of our previous progress report, we have refined the genetic map of markers which we had previously isolated for chromosome 17. We have completed our genetic mapping in CEPH reference and NF1 families of 15 markers in the pericentric region of chromosome 17. Physical mapping results with three probes, were shown be in very close genetic proximity to the NF1 gene, with respect to two translocation breakpoints which disrupt the activity of the gene. All three of the probes were found to lie between the centromere and the most proximal translocation breakpoint, providing important genetic markers proximal to the NF1 gene. Our primary focus has shifted to the X chromosome. We have isolated an additional 30 polymorphic markers, bringing the total number we have isolated to over 80. We have invested substantial effort in characterizing the polymorphisms at each of these loci and constructed plasmid subclones which reveal the polymorphisms for nearly all of the loci. These subclones are of practical value in that they produce simpler and stronger patterns on human genomic Southern blots, thus improving the efficiency of the genetic mapping experiments. These subclones may also be of value for deriving DNA sequence information at each locus, necessary for establishing polymerase chain reaction primers specific for each locus. Such information would allow the use of each locus as a sequence tagged site.

  17. Report of the first international workshop on human chromosome 14 mapping 1993

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.W.

    1995-06-01

    The first International Workshop on Human Chromosome 14 mapping was held at Novotel in Toronto, Canada on June 9-12, 1993. There were 23 participants from nine countries. The goals of the workshop were to compile physical maps and a consensus linkage map, to consolidate available data on disease loci, to catalogue and facilitate distribution of resources and to encourage new collaborations and data sharing.

  18. Linkage of morbid obesity with polymorphic microsatellite markers on chromosome 1q31 in a three-generation Canadian kindred

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.D.; Bulman, D.E.; Ebers, G.C. [University Hospital, London (Canada)]|[INSERM, Paris (France)] [and others

    1994-09-01

    Obesity is the most common nutritional disorder affecting Western societies. An estimated 3.7 million Canadians are considered to be overweight, a condition associated with hypertension, accelerated atherosclerosis, diabetes and a host of other medical problems. We have identified a 3 generation kindred in which morbid obesity appears to segregate in an autosomal dominant manner. All individuals were examined. Mass (kg) and heights (m) were measured in order to determine a body mass index (BMI) for each individual. Those individuals with BMI of greater than or equal to 30.0 were designated as affected. In the pedigree studied 25 individuals met this criteria and 12 of these were morbidly obese (BMI greater or equal to 40.0). A search of candidate genes proved unfruitful. A linkage study was initiated. All individuals in the pedigree were genotyped for microsatellite markers which were spaced every 20 centimorgans (cM). Positive evidence of linkage was detected with markers which map to 1q31-32 (lod score of 3.6 at {theta} = 0.05). Notably, strong effects for fatness in pigs have been found on pig chromosome 4 which has synteny with human chromosome 1q21-32. We are currently attempting to refine the position of this gene using linkage analysis with other microsatellite markers from this region of the genome. In addition we are screening other families in which obesity segregates for linkage to 1q31.

  19. A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the Turkey and Chicken genomes

    Directory of Open Access Journals (Sweden)

    Vereijken Addie

    2010-11-01

    Full Text Available Abstract Background The turkey (Meleagris gallopavo is an important agricultural species that is the second largest contributor to the world's poultry meat production. The genomic resources of turkey provide turkey breeders with tools needed for the genetic improvement of commercial breeds of turkey for economically important traits. A linkage map of turkey is essential not only for the mapping of quantitative trait loci, but also as a framework to enable the assignment of sequence contigs to specific chromosomes. Comparative genomics with chicken provides insight into mechanisms of genome evolution and helps in identifying rare genomic events such as genomic rearrangements and duplications/deletions. Results Eighteen full sib families, comprising 1008 (35 F1 and 973 F2 birds, were genotyped for 775 single nucleotide polymorphisms (SNPs. Of the 775 SNPs, 570 were informative and used to construct a linkage map in turkey. The final map contains 531 markers in 28 linkage groups. The total genetic distance covered by these linkage groups is 2,324 centimorgans (cM with the largest linkage group (81 loci measuring 326 cM. Average marker interval for all markers across the 28 linkage groups is 4.6 cM. Comparative mapping of turkey and chicken revealed two inter-, and 57 intrachromosomal rearrangements between these two species. Conclusion Our turkey genetic map of 531 markers reveals a genome length of 2,324 cM. Our linkage map provides an improvement of previously published maps because of the more even distribution of the markers and because the map is completely based on SNP markers enabling easier and faster genotyping assays than the microsatellitemarkers used in previous linkage maps. Turkey and chicken are shown to have a highly conserved genomic structure with a relatively low number of inter-, and intrachromosomal rearrangements.

  20. The first genetic linkage map of Primulina eburnea (Gesneriaceae) based on EST-derived SNP marker

    Indian Academy of Sciences (India)

    CHEN FENG; CHAO FENG; MING KANG

    2016-06-01

    Primulina eburneais a promising candidate for domestication and floriculture, since it is easy to culture and has beautiful flow-ers. An F2population of 189 individuals was established for the construction of first-generation linkage maps based onexpressed sequence tags-derived single-nucleotide polymorphism markers using the massARRAY genotyping platform. Ofthe 232 screened markers, 215 were assigned to 18 LG according to the haploid number of chromosomes in the species. Thelinkage map spanned a total of 3774.7 cM with an average distance of 17.6 cM between adjacent markers. This linkage mapprovides a framework for identification of important genes in breeding programm

  1. A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments.

    Science.gov (United States)

    Chittenden, L M; Schertz, K F; Lin, Y R; Wing, R A; Paterson, A H

    1994-03-01

    The first "complete" genetic linkage map of Sorghum section Sorghum is described, comprised of ten linkage groups putatively corresponding to the ten gametic chromosomes of S. bicolor and S. propinquum. The map includes 276 RFLP loci, predominately detected by PstI-digested S. bicolor genomic probes, segregating in 56 F2 progeny of a cross between S. bicolor and S. propinquum. Although prior cytological evidence suggests that the genomes of these species are largely homosequential, a high level of molecular divergence is evidenced by the abundant RFLP and RAPD polymorphisms, the marked deviations from Mendelian segregation in many regions of the genome, and several species-specific DNA probes. The remarkable level of DNA polymorphism between these species will facilitate development of a high-density genetic map. Further, the high level of DNA polymorphism permitted mapping of multiple loci for 21 (8.2%) DNA probes. Linkage relationships among eight (38%) of these probes suggest ancestral duplication of three genomic regions. Mapping of 13 maize genomic clones in this cross was consistent with prior results. Mapping of heterologous cDNAs from rice and oat suggests that it may be feasible to extend comparative mapping to these distantly-related species, and to ultimately generate a detailed description of chromosome rearrangements among cultivated Gramineae. Limited investigation of a small number of RFLPs showed several alleles common to S. bicolor and S. Halepense ("johnson-grass"), but few alleles common to S. propinquum and S. halepense, raising questions about the origin of S. halepense.

  2. Construction of a microsatellites-based linkage map for the white grouper (Epinephelus aeneus).

    Science.gov (United States)

    Dor, Lior; Shirak, Andrey; Gorshkov, Sergei; Band, Mark R; Korol, Abraham; Ronin, Yefim; Curzon, Arie; Hulata, Gideon; Seroussi, Eyal; Ron, Micha

    2014-08-01

    The white grouper (Epinephelus aeneus) is a promising candidate for domestication and aquaculture due to its fast growth, excellent taste, and high market price. A linkage map is an essential framework for mapping quantitative trait loci for economic traits and the study of genome evolution. DNA of a single individual was deep-sequenced, and microsatellite markers were identified in 177 of the largest scaffolds of the sequence assembly. The success rate of developing polymorphic homologous markers was 94.9% compared with 63.1% of heterologous markers from other grouper species. Of the 12 adult mature fish present in the broodstock tank, two males and two females were identified as parents of the assigned offspring by parenthood analysis using 34 heterologous markers. A single full-sib family of 48 individuals was established for the construction of first-generation linkage maps based on genotyping data of 222 microsatellites. The markers were assigned to 24 linkage groups in accordance to the 24 chromosomal pairs. The female and male maps consisting of 203 and 202 markers spanned 1053 and 886 cM, with an average intermarker distance of 5.8 and 5.0 cM, respectively. Mapping of markers to linkage groups ends was enriched by using markers originating from scaffolds harboring telomeric repeat-containing RNA. Comparative mapping showed high synteny relationships among the white grouper, kelp grouper (E. bruneus), orange-spotted grouper (E. coioides), and Nile tilapia (Oreochromis niloticus). Thus, it would be useful to integrate the markers that were developed for different groupers, depending on sharing of sequence data, into a comprehensive consensus map. PMID:24902605

  3. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  4. Correlation of physical and genetic maps of human chromosome 16. Annual progress report, October 1, 1990--July 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.R.

    1991-12-31

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentially 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.

  5. Fine mapping of multiple interacting quantitative trait loci using combined linkage disequilibrium and linkage information

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Quantitative trait loci (QTL) and their additive, dominance and epistatic effects play a critical role in complex trait variation. It is often infeasible to detect multiple interacting QTL due to main effects often being confounded by interaction effects.Positioning interacting QTL within a small region is even more difficult. We present a variance component approach nested in an empirical Bayesian method, which simultaneously takes into account additive, dominance and epistatic effects due to multiple interacting QTL. The covariance structure used in the variance component approach is based on combined linkage disequilibrium and linkage (LDL) information. In a simulation study where there are complex epistatic interactions between QTL, it is possible to simultaneously fine map interacting QTL using the proposed approach. The present method combined with LDL information can efficiently detect QTL and their dominance and epistatic effects, making it possible to simultaneously fine map main and epistatic QTL.

  6. Fine mapping and single nucleotide polymorphism effects estimation on pig chromosomes 1, 4, 7, 8, 17 and X

    OpenAIRE

    Hidalgo, André M.; Lopes, Paulo S.; Paixão, Débora M.; Silva, Fabyano F; Bastiaansen, John W. M.; Paiva, Samuel R.; Faria, Danielle A; Simone E F Guimarães

    2013-01-01

    Fine mapping of quantitative trait loci (QTL) from previous linkage studies was performed on pig chromosomes 1, 4, 7, 8, 17, and X which were known to harbor QTL. Traits were divided into: growth performance, carcass, internal organs, cut yields, and meat quality. Fifty families were used of a F2 population produced by crossing local Brazilian Piau boars with commercial sows. The linkage map consisted of 237 SNP and 37 microsatellite markers covering 866 centimorgans. QTL were identified by r...

  7. Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L. A. Rich.

    Directory of Open Access Journals (Sweden)

    Rusama Marubodee

    Full Text Available Vigna vexillata (L. A. Rich. (tuber cowpea is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s source for V. unguiculata (cowpea, since it was reported to have various resistance gene(s for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean, V. unguiculata and Phaseolus vulgaris (common bean. An F2 population of 300 plants derived from a cross between salt resistant (V1 and susceptible (V5 accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits.

  8. Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich.

    Science.gov (United States)

    Marubodee, Rusama; Ogiso-Tanaka, Eri; Isemura, Takehisa; Chankaew, Sompong; Kaga, Akito; Naito, Ken; Ehara, Hiroshi; Tomooka, Norihiko

    2015-01-01

    Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits. PMID:26398819

  9. A genetic linkage map of sole (Solea solea: a tool for evolutionary and comparative analyses of exploited (flatfishes.

    Directory of Open Access Journals (Sweden)

    Eveline Diopere

    Full Text Available Linkage maps based on markers derived from genes are essential evolutionary tools for commercial marine fish to help identify genomic regions associated with complex traits and subject to selective forces at play during exploitation or selective breeding. Additionally, they allow the use of genomic information from other related species for which more detailed information is available. Sole (solea solea L. is a commercially important flatfish species in the North Sea, subject to overexploitation and showing evidence of fisheries-induced evolutionary changes in growth- and maturation-related traits. Sole would definitely benefit from a linkage map to better understand how evolution has shaped its genome structure. This study presents a linkage map of sole based on 423 single nucleotide polymorphisms derived from expressed sequence tags and 8 neutral microsatellite markers. The total map length is 1233.8 cM and consists of 38 linkage groups with a size varying between 0 to 92.1 cM. Being derived from expressed sequence tags allowed us to align the map with the genome of four model fish species, namely medaka (Oryzias latipes, Nile tilapia (Oreochromis niloticus, three-spined stickleback (Gasterosteus aculeatus and green spotted pufferfish (Tetraodon nigroviridis. This comparison revealed multiple conserved syntenic regions with all four species, and suggested that the linkage groups represent 21 putative sole chromosomes. The map was also compared to the linkage map of turbot (Scophthalmus maximus, another commercially important flatfish species and closely related to sole. For all putative sole chromosomes (except one a turbot homolog was detected, confirming the even higher degree of synteny between these two flatfish species.

  10. Multistudy fine mapping of chromosome 2q identifies XRCC5 as a chronic obstructive pulmonary disease susceptibility gene

    DEFF Research Database (Denmark)

    Hersh, Craig P; Pillai, Sreekumar G; Zhu, Guohua;

    2010-01-01

    RATIONALE: Several family-based studies have identified genetic linkage for lung function and airflow obstruction to chromosome 2q. OBJECTIVES: We hypothesized that merging results of high-resolution single nucleotide polymorphism (SNP) mapping in four separate populations would lead to the ident......RATIONALE: Several family-based studies have identified genetic linkage for lung function and airflow obstruction to chromosome 2q. OBJECTIVES: We hypothesized that merging results of high-resolution single nucleotide polymorphism (SNP) mapping in four separate populations would lead...... to the identification of chronic obstructive pulmonary disease (COPD) susceptibility genes on chromosome 2q. METHODS: Within the chromosome 2q linkage region, 2,843 SNPs were genotyped in 806 COPD cases and 779 control subjects from Norway, and 2,484 SNPs were genotyped in 309 patients with severe COPD from...

  11. Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench).

    Science.gov (United States)

    Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi

    2014-12-01

    For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information. PMID:25914583

  12. Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench).

    Science.gov (United States)

    Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi

    2014-12-01

    For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information.

  13. Evidence of Allopolyploidy in Urochloa humidicola Based on Cytological Analysis and Genetic Linkage Mapping.

    Science.gov (United States)

    Vigna, Bianca B Z; Santos, Jean C S; Jungmann, Leticia; do Valle, Cacilda B; Mollinari, Marcelo; Pastina, Maria M; Pagliarini, Maria Suely; Garcia, Antonio A F; Souza, Anete P

    2016-01-01

    The African species Urochloa humidicola (Rendle) Morrone & Zuloaga (syn. Brachiaria humidicola (Rendle) Schweick.) is an important perennial forage grass found throughout the tropics. This species is polyploid, ranging from tetra to nonaploid, and apomictic, which makes genetic studies challenging; therefore, the number of currently available genetic resources is limited. The genomic architecture and evolution of U. humidicola and the molecular markers linked to apomixis were investigated in a full-sib F1 population obtained by crossing the sexual accession H031 and the apomictic cultivar U. humidicola cv. BRS Tupi, both of which are hexaploid. A simple sequence repeat (SSR)-based linkage map was constructed for the species from 102 polymorphic and specific SSR markers based on simplex and double-simplex markers. The map consisted of 49 linkage groups (LGs) and had a total length of 1702.82 cM, with 89 microsatellite loci and an average map density of 10.6 cM. Eight homology groups (HGs) were formed, comprising 22 LGs, and the other LGs remained ungrouped. The locus that controls apospory (apo-locus) was mapped in LG02 and was located 19.4 cM from the locus Bh027.c.D2. In the cytological analyses of some hybrids, bi- to hexavalents at diakinesis were observed, as well as two nucleoli in some meiocytes, smaller chromosomes with preferential allocation within the first metaphase plate and asynchronous chromosome migration to the poles during anaphase. The linkage map and the meiocyte analyses confirm previous reports of hybridization and suggest an allopolyploid origin of the hexaploid U. humidicola. This is the first linkage map of an Urochloa species, and it will be useful for future quantitative trait locus (QTL) analysis after saturation of the map and for genome assembly and evolutionary studies in Urochloa spp. Moreover, the results of the apomixis mapping are consistent with previous reports and confirm the need for additional studies to search for a co

  14. High-resolution gene mapping using admixture linkage disequilibrium

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This note reports simulation study on the rate of decay in linkage dis equilibrium (LD) in mixed populations over multiple discrete generations and explores the usefulness of the LD analysis in high-resolution gene mapping. The results indicate that the smaller the recombination fraction and the fewer generati ons since admixtureevent, the higher power of the approach in gene mapping. The expected estimate of recombination fraction would give an estimate that is slig htly biased upwards, if relevant genes are in tight linkage. The estimated recom bination fraction is usually larger than the true value within 2-5 generations. From generations 10-20, the mean estimates are in good agreement with the true value. The method presented here enables estimation of means and corresponding confidence intervals of the recombination fraction at any number of generations.

  15. Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa

    Directory of Open Access Journals (Sweden)

    Delourme Régine

    2011-02-01

    Full Text Available Abstract Background The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate between sequence-tagged loci, and with contiguous genome sequences as these become available. Results We report the first genome-wide integration of Brassica maps based on an automated pipeline which involved collation of genome-wide genotype data for sequence-tagged markers scored on three extensively used amphidiploid Brassica napus (2n = 38 populations. Representative markers were selected from consolidated maps for each population, and skeleton bin maps were generated. The skeleton maps for the three populations were then combined to generate an integrated map for each LG, comparing two different approaches, one encapsulated in JoinMap and the other in MergeMap. The BnaWAIT_01_2010a integrated genetic map was generated using JoinMap, and includes 5,162 genetic markers mapped onto 2,196 loci, with a total genetic length of 1,792 cM. The map density of one locus every 0.82 cM, corresponding to 515 Kbp, increases by at least three-fold the locus and marker density within the original maps. Within the B. napus integrated map we identified 103 conserved collinearity blocks relative to Arabidopsis, including five previously unreported blocks. The BnaWAIT_01_2010a map was used to investigate the integrity and conservation of order proposed for genome sequence scaffolds generated from the constituent A genome of Brassica rapa. Conclusions Our results provide a comprehensive genetic integration of the B. napus genome from a range of sources, which we anticipate will provide valuable information for rapeseed and Canola research.

  16. Linear models for joint association and linkage QTL mapping

    Directory of Open Access Journals (Sweden)

    Fernando Rohan L

    2009-09-01

    Full Text Available Abstract Background Populational linkage disequilibrium and within-family linkage are commonly used for QTL mapping and marker assisted selection. The combination of both results in more robust and accurate locations of the QTL, but models proposed so far have been either single marker, complex in practice or well fit to a particular family structure. Results We herein present linear model theory to come up with additive effects of the QTL alleles in any member of a general pedigree, conditional to observed markers and pedigree, accounting for possible linkage disequilibrium among QTLs and markers. The model is based on association analysis in the founders; further, the additive effect of the QTLs transmitted to the descendants is a weighted (by the probabilities of transmission average of the substitution effects of founders' haplotypes. The model allows for non-complete linkage disequilibrium QTL-markers in the founders. Two submodels are presented: a simple and easy to implement Haley-Knott type regression for half-sib families, and a general mixed (variance component model for general pedigrees. The model can use information from all markers. The performance of the regression method is compared by simulation with a more complex IBD method by Meuwissen and Goddard. Numerical examples are provided. Conclusion The linear model theory provides a useful framework for QTL mapping with dense marker maps. Results show similar accuracies but a bias of the IBD method towards the center of the region. Computations for the linear regression model are extremely simple, in contrast with IBD methods. Extensions of the model to genomic selection and multi-QTL mapping are straightforward.

  17. Localization of the homolog of a mouse craniofacial mutant to human chromosome 18q11 and evaluation of linkage to human CLP and CPO

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, A.J.; Burgess, D.L.; Kohrman, D.C.; Yu, J. [Univ. of Michigan, Ann Arbor, MI (United States)] [and others

    1996-06-15

    The transgene-induced mutation 9257 and the spontaneous mutation twirler cause craniofacial and inner ear malformations and are located on mouse chromosome 18 near the ataxia locus ax. To map the human homolog of 9257, a probe from the transgene insertion site was used to screen a human genomic library. Analysis of a cross-hybridizing human clone identified a 3-kb conserved sequence block that does not appear to contain protein coding sequence. Analysis of somatic cell hybrid panels assigned the human locus to 18q11. The polymorphic microsatellite markers D18S1001 and D18S1002 were isolated from the human locus and mapped by linkage analysis using the CEPH pedigrees. The 9257 locus maps close to the centromeres of human chromosome 18q and mouse chromosome 18 at the proximal end of a conserved linkage group. To evaluate the role of this locus in human craniofacial disorders, linkage to D18S1002 was tested in 11 families with autosomal dominant nonsyndromic cleft lip and palate and 3 families with autosomal dominant cleft palate only. Obligatory recombinants were observed in 8 of the families, and negative lod scores from the other families indicated that these disorders are not linked to the chromosome 18 loci. 23 refs., 4 figs., 2 tabs.

  18. A Linkage Map of 7 Microsatellite Markers in the 11th Chromosome of Cashmere Goats%绒山羊11号染色体7个微卫星标记的连锁图谱的构建

    Institute of Scientific and Technical Information of China (English)

    王敏; 李浛; 赖双英; 乔峰; 李金泉; 赵艳红; 王志新; 张文广; 汪洋; 徐磊

    2011-01-01

    The 7 microsatellite markers in the 11th chromosome were used to construct a linkage map of Cashmere goats with a 632 samples of 5 half-sib pedigrees after paternity testing. The results showed that the allele numbers of the 7 microsatellite markers varied from 8 to 14. The lowest and the highest values of the heterozygosity were 0. 5886 and 0. 9348, respectively, and the average value of it was 0. 8612, indicating abundant genetic diversity in Inner Monglian Cashmere goats. Moreover, the polymorphism information content (PIC) value of 7 markers was from 0. 7712 to 0. 8990, and the average one was 0.8472. The length of the linkage map of the 11th chromosome was 127.7 cM. The nearest genetic distance was 5.1 cM and its location was between ILSTS049 and INRA131, however, the farest one was 41.2 cM and lay in ILSTS028 and INRA108.%本试验利用内蒙古白绒山羊5个家系中的632个个体,用11号染色体上的7个微卫星标记,构建绒山羊11号染色体遗传连锁图.结果表明,7个标记的等位基因数变化范围为8~14,杂合度在0.5886~0.9348之间,平均杂合度为0.8612,各标记的多态信息含量在0.7712~0.8990之间,平均多态信息含量为0.8472.构建的遗传连锁图总长度127.7 cM,其中标记ILSTS028与INRA108间距最大,为41.2 cM;ILSTS049和INRA131间距最小,为5.1 cM.

  19. Integration of 28 STSs into the physical map of human chromosome 18

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, S.; White, R.; Bradley, P. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

    1994-12-01

    Genes on human chromosome 18 are associated with familial glucocorticoid deficiency (MC2R), pemphigus vulgaris (DSG3) and foliaceus (DSG1), familial amyloidosis (TTR), colorectal carcinoma (DCC), erythropoietic protoporphyria (FECH), follicular lymphoma (BCL2, FVT1), and congenital methemoglobinemia (CYB5). As the resolution of human genetic maps improves, linkage between other diseases and specific regions of chromosome 18 will occur. A physical map of human chromosome 18 will prove useful in identifying candidate genes that are associated with these disorders. Using various physical and genetic mapping techniques, over 35 genes and 19 expressed sequence tags (ESTs) are assigned to human chromosome 18. Most of these genes and several of the ESTs were sublocalized using a well-defined panel of somatic cell hybrids that contain different segments of human chromosome 18. Despite recent efforts, progress in mapping human chromosome 18 has lagged behind that achieved for other chromosomes. Thus, the purpose of this study was to integrate 9 new transcriptional tags [8 brain ESTs (8) and the melanocortin 4 receptor (MC4R) (3)] and 19 simple sequence repeats (SSRs) into the physical map of human chromosome 18. The SSRs were isolated by screening genomic DNA libraries constructed in M13mp18 vectors with oligonucleotide probes that detected dinucleotide d(CA)- and tetranucleotide-repeat motifs. DNA sequences of clones that contained microsatellite repeats were obtained by thermal-cycle sequencing, and STSs were developed from clones that contained numerous repeats. STSs that identified highly polymorphic loci in eight unrelated CEPH parents were used for genotyping. Results of linkage analyses and estimates of heterozygosity for these markers will be reported. 9 refs., 1 fig., 1 tab.

  20. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis spp. and mapping of sex-determining loci

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2013-01-01

    Full Text Available Abstract Background Tilapia is the common name for a group of cichlid fishes and is one of the most important aquacultured freshwater food fish. Mozambique tilapia and its hybrids, including red tilapia are main representatives of salt tolerant tilapias. A linkage map is an essential framework for mapping QTL for important traits, positional cloning of genes and understanding of genome evolution. Results We constructed a consensus linkage map of Mozambique tilapia and red tilapia using 95 individuals from two F1 families and 401 microsatellites including 282 EST-derived markers. In addition, we conducted comparative mapping and searched for sex-determining loci on the whole genome. These 401 microsatellites were assigned to 22 linkage groups. The map spanned 1067.6 cM with an average inter-marker distance of 3.3 cM. Comparative mapping between tilapia and stickleback, medaka, pufferfish and zebrafish revealed clear homologous relationships between chromosomes from different species. We found evidence for the fusion of two sets of two independent chromosomes forming two new chromosome pairs, leading to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex determination locus in Mozambique tilapia was mapped on LG1, and verified in five families containing 549 individuals. The major XY sex determination locus in red tilapia was located on LG22, and verified in two families containing 275 individuals. Conclusions A first-generation linkage map of salt tolerant tilapia was constructed using 401 microsatellites. Two separate fusions of two sets of two independent chromosomes may lead to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex-determining loci from Mozambique tilapia and red tilapia were mapped on LG1 and LG22, respectively. This map provides a useful resource for QTL mapping for important traits and comparative genome studies. The DNA markers linked to the sex

  1. Polytene chromosome maps and RAPD polymorphisms in Glossina austeni

    International Nuclear Information System (INIS)

    A combined methodology of cloned RAPD (random amplification of polymorphic DNA) polymorphic bands and in situ hybridisation to polytene chromosomes is an efficient way to initiate construction of a physical and genetic map of insect disease vectors (Dimopoulos et al. 1996, Mutebi et al. 1997). The studies presented here are the first step in developing this approach in tsetse flies. This technology will be used to support tsetse sterile insect technique (SIT) programmes by providing tools with which population structure and isolation can be assessed and genetic markers that can be used to differentiate released flies from wild flies identified. An added benefit is their possible use in unravelling epidemiological complexity and problems regarding speciation (Besansky et al. 1997). Polytene chromosomes of Diptera have been shown to be excellent material for the study of chromosome structure and function as well as for an understanding of the genetics of natural populations (Lefevre 1976). They provide a means for the accurate mapping of chromosome rearrangements and the precise localisation of genes, using both rearrangement analysis and in situ hybridisation. Previous reports on the cytology of the tsetse flies (Riordan 1968, Maudlin 1970, 1979, Southern et al. 1972, Southern and Pell 1973, Davies and Southern 1976, Southern 1980) have described the basic mitotic karyotype in several Glossina species, and demonstrated the presence of well banded polytene chromosomes in pupal trichogen cells (Southern and Pell 1974, 1981, Pell and Southern 1976). Polytene chromosomes were described for G. austeni Newstead, G. morsitans morsitans Westwood, G. pallidipes Austen and G. fuscipes fuscipes Newstead, but these descriptions are difficult to work with as they are drawings of polytene chromosome elements. In this paper, the photographic chromosome maps of pupal scutellar bristles of G. austeni are presented. They show that these chromosomes can be used with much greater ease

  2. Evolutionary origins and dynamics of octoploid strawberry subgenomes revealed by dense targeted capture linkage maps.

    Science.gov (United States)

    Tennessen, Jacob A; Govindarajulu, Rajanikanth; Ashman, Tia-Lynn; Liston, Aaron

    2014-12-04

    Whole-genome duplications are radical evolutionary events that have driven speciation and adaptation in many taxa. Higher-order polyploids have complex histories often including interspecific hybridization and dynamic genomic changes. This chromosomal reshuffling is poorly understood for most polyploid species, despite their evolutionary and agricultural importance, due to the challenge of distinguishing homologous sequences from each other. Here, we use dense linkage maps generated with targeted sequence capture to improve the diploid strawberry (Fragaria vesca) reference genome and to disentangle the subgenomes of the wild octoploid progenitors of cultivated strawberry, Fragaria virginiana and Fragaria chiloensis. Our novel approach, POLiMAPS (Phylogenetics Of Linkage-Map-Anchored Polyploid Subgenomes), leverages sequence reads to associate informative interhomeolog phylogenetic markers with linkage groups and reference genome positions. In contrast to a widely accepted model, we find that one of the four subgenomes originates with the diploid cytoplasm donor F. vesca, one with the diploid Fragaria iinumae, and two with an unknown ancestor close to F. iinumae. Extensive unidirectional introgression has converted F. iinumae-like subgenomes to be more F. vesca-like, but never the reverse, due either to homoploid hybridization in the F. iinumae-like diploid ancestors or else strong selection spreading F. vesca-like sequence among subgenomes through homeologous exchange. In addition, divergence between homeologous chromosomes has been substantially augmented by interchromosomal rearrangements. Our phylogenetic approach reveals novel aspects of the complicated web of genetic exchanges that occur during polyploid evolution and suggests a path forward for unraveling other agriculturally and ecologically important polyploid genomes.

  3. The tyrosinase-positive oculocutaneous albinism locus maps to chromosome 15q11. 2-q12

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, M.; Colman, M.A.; Stevens, G.; Zwane, E.; Kromberg, J.; Jenkins, T. (South African Institute for Medical Research, Johannesburg (South Africa)); Garral, M.

    1992-10-01

    Tyrosinase-positive oculocutaneous albinism (ty-pos OCA), an autosomal recessive disorder of the melanin biosynthetic pathway, is the most common type of albinism occurring worldwide. In southern African Bantu-speaking negroids it has an overall prevalence of about 1/3,900. Since the basic biochemical defect is unknown, a linkage study with candidate loci, candidate chromosomal regions, and random loci was undertaken. The ty-pos OCA locus was found to be linked to two arbitrary loci, D15S10 and D15S13, in the Prader-Willi/Angelman chromosomal region on chromosome 15q11.2-q12. The pink-eyed dilute locus, p, on mouse chromosome 7, maps close to a region of homology on human chromosome 15q, and we postulate that the ty-pos OCA and p loci are homologous. 43 refs., 2 figs., 1 tab.

  4. The first linkage map of the American mink (Mustela vison)

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Menzorov, A.; Serov, O.;

    2007-01-01

    Described herein, the first microsatellite linkage map for the American mink consists of 85 microsatellite markers resolved into 17 linkage groups. The map was constructed using 92 F1 progeny from five sire families created by crossing mink with different colour types. The linkage groups ranged f...

  5. Construction of an integrated high density simple sequence repeat linkage map in cultivated strawberry (Fragaria × ananassa) and its applicability.

    Science.gov (United States)

    Isobe, Sachiko N; Hirakawa, Hideki; Sato, Shusei; Maeda, Fumi; Ishikawa, Masami; Mori, Toshiki; Yamamoto, Yuko; Shirasawa, Kenta; Kimura, Mitsuhiro; Fukami, Masanobu; Hashizume, Fujio; Tsuji, Tomoko; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Tsuruoka, Hisano; Minami, Chiharu; Takahashi, Chika; Wada, Tsuyuko; Ono, Akiko; Kawashima, Kumiko; Nakazaki, Naomi; Kishida, Yoshie; Kohara, Mitsuyo; Nakayama, Shinobu; Yamada, Manabu; Fujishiro, Tsunakazu; Watanabe, Akiko; Tabata, Satoshi

    2013-02-01

    The cultivated strawberry (Fragaria × ananassa) is an octoploid (2n = 8x = 56) of the Rosaceae family whose genomic architecture is still controversial. Several recent studies support the AAA'A'BBB'B' model, but its complexity has hindered genetic and genomic analysis of this important crop. To overcome this difficulty and to assist genome-wide analysis of F. × ananassa, we constructed an integrated linkage map by organizing a total of 4474 of simple sequence repeat (SSR) markers collected from published Fragaria sequences, including 3746 SSR markers [Fragaria vesca expressed sequence tag (EST)-derived SSR markers] derived from F. vesca ESTs, 603 markers (F. × ananassa EST-derived SSR markers) from F. × ananassa ESTs, and 125 markers (F. × ananassa transcriptome-derived SSR markers) from F. × ananassa transcripts. Along with the previously published SSR markers, these markers were mapped onto five parent-specific linkage maps derived from three mapping populations, which were then assembled into an integrated linkage map. The constructed map consists of 1856 loci in 28 linkage groups (LGs) that total 2364.1 cM in length. Macrosynteny at the chromosome level was observed between the LGs of F. × ananassa and the genome of F. vesca. Variety distinction on 129 F. × ananassa lines was demonstrated using 45 selected SSR markers.

  6. HaploSNP affinities and linkage map positions illuminate subgenome composition in the octoploid, cultivated strawberry (Fragaria×ananassa).

    Science.gov (United States)

    Sargent, D J; Yang, Y; Šurbanovski, N; Bianco, L; Buti, M; Velasco, R; Giongo, L; Davis, T M

    2016-01-01

    The cultivated strawberry, Fragaria×ananassa possesses a genetically complex allo-octoploid genome. Advances in genomics research in Fragaria, including the release of a genome sequence for F. vesca, have permitted the development of a high throughput whole genome genotyping array for strawberry, which promises to facilitate genetics and genomics research. In this investigation, we used the Axiom® IStraw90®)array for linkage map development, and produced a linkage map containing 8,407 SNP markers spanning 1,820cM. Whilst the linkage map provides good coverage of the genome of both parental genotypes, the map of 'Monterey' contained significantly fewer mapped markers than did that of 'Darselect'. The array contains a novel marker class known as haploSNPs, which exploit homoeologous sequence variants as probe destabilization sites to effectively reduce marker ploidy. We examined these sites as potential indicators of subgenomic identities by using comparisons to allele states in two ancestral diploids. On this basis, haploSNP loci could be inferred to be derived from F. vesca, F. iinumae, or from an unknown source. When the identity classifications of haploSNPs were considered in conjunction with their respective linkage map positions, it was possible to define two discrete subgenomes, while the remaining homoeologues of each chromosome could not be partitioned into two discrete subgenomic groupings. These findings suggested a novel hypothesis regarding octoploid strawberry subgenome structure and evolutionary origins.

  7. Linkage between sexual orientation and chromosome Xq28 in males but not in females.

    Science.gov (United States)

    Hu, S; Pattatucci, A M; Patterson, C; Li, L; Fulker, D W; Cherny, S S; Kruglyak, L; Hamer, D H

    1995-11-01

    We have extended our analysis of the role of the long arm of the X chromosome (Xq28) in sexual orientation by DNA linkage analyses of two newly ascertained series of families that contained either two gay brothers or two lesbian sisters as well as heterosexual siblings. Linkage between the Xq28 markers and sexual orientation was detected for the gay male families but not for the lesbian families or for families that failed to meet defined inclusion criteria for the study of sex-linked sexual orientation. Our results corroborate the previously reported linkage between Xq28 and male homosexuality in selected kinships and suggest that this region contains a locus that influences individual variations in sexual orientation in men but not in women. PMID:7581447

  8. Construction of the Primary Physical Map of Rice Chromosome 12

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A primary physical map of rice chromosome 12 was constructed using marker-based chromosome landing and chromosome walking. A BAC library from IR64 was screened using 84 RFLP markers, 4 STS markers and 6 microsatellite markers on chromosome 12 by colony hybridization and polymerase chain reaction (PCR) amplification. A total of 59 contigs consisting of 419 BAC clones including 5 single-clones were physically aligned on rice chromosome 12 with the largest BAC contig covering 855 kb. The whole physical map had a size of ~16 Mb and covered about 52% of rice chromosome 12. This physical map will be certainly helpful for map-based gene cloning of agronomically and biological important genes and understanding the genome structure of the chromosome.

  9. A genetic linkage map with 178 SSR and 1 901 SNP markers constructed using a RIL population in wheat (Triticum aestivum L.)

    Institute of Scientific and Technical Information of China (English)

    ZHAI Hui-jie; FENG Zhi-yu; LIU Xin-ye; CHENG Xue-jiao; PENG Hui-ru; YAO Ying-yin; SUN Qi-xin; NI Zhong-fu

    2015-01-01

    The construction of high density genetic linkage map provides a powerful tool to detect and map quantitative trait loci (QTLs) controlling agronomically important traits. In this study, simple sequence repeat (SSR) markers and Illumina 9K iSelect single nucleotide polymorphism (SNP) genechip were employed to construct one genetic linkage map of common wheat (Triticum aestivum L.) using 191 recombinant inbred lines (RILs) derived from cross Yu 8679xJing 411. This map included 1 901 SNP loci and 178 SSR loci, covering 1 659.9 cM and 1 000 marker bins, with an average interval distance of 1.66 cM. A, B and D genomes covered 719.1,703.5 and 237.3 cM, with an average interval distance of 1.66, 1.45 and 2.9 cM, respectively. Notably, the genetic linkage map covered 20 chromosomes, with the exception of chromosome 5D. Bioinformatics analysis revealed that 1 754 (92.27%) of 1 901 mapped SNP loci could be aligned to 1 215 distinct wheat unigenes, among which 1 184 (97.4%) were located on one single chromosome, and the rest 31 (2.6%) were located on 2 to 3 chromosomes. By performing in silico comparison, 214 chromosome deletion bin-mapped expressed sequence tags (ESTs), 1 043 Brachypodium genes and 1 033 rice genes were further added onto the genetic linkage map. This map not only integrated genetic and physical maps, SSR and SNP loci, respectively, but also provided the information of Brachypodium and rice genes corresponding to 1 754 SNP loci. Therefore, it will be a useful tool for comparative genomics analysis, fine mapping of QTL/gene controlling agronomically important traits and marker-assisted selection breeding in wheat.

  10. A genetic linkage map with 178 SSR and 1 901 SNP markers constructed using a RIL population in wheat (Triticum aestivum L.)

    Institute of Scientific and Technical Information of China (English)

    ZHAI Hui-jie; FENG Zhi-yu; LIU Xin-ye; CHENG Xue-jiao; PENG Hui-ru; YAO Ying-yin; SUN Qi-xin; NI Zhong-fu

    2015-01-01

    The construction of high density genetic linkage map provides a powerful tool to detect and map quantitative trait loci (QTLs) control ing agronomical y important traits. In this study, simple sequence repeat (SSR) markers and Il umina 9K iSelect single nucleotide polymorphism (SNP) genechip were employed to construct one genetic linkage map of common wheat (Triticum aestivum L.) using 191 recombinant inbred lines (RILs) derived from cross Yu 8679×Jing 411. This map included 1 901 SNP loci and 178 SSR loci, covering 1 659.9 cM and 1 000 marker bins, with an average interval distance of 1.66 cM. A, B and D genomes covered 719.1, 703.5 and 237.3 cM, with an average interval distance of 1.66, 1.45 and 2.9 cM, respectively. Notably, the genetic linkage map covered 20 chromosomes, with the exception of chromosome 5D. Bioinformatics analysis revealed that 1 754 (92.27%) of 1 901 mapped SNP loci could be aligned to 1 215 distinct wheat unigenes, among which 1 184 (97.4%) were located on one single chromosome, and the rest 31 (2.6%) were located on 2 to 3 chromosomes. By performing in silico comparison, 214 chromosome deletion bin-mapped expressed sequence tags (ESTs), 1 043 Brachypodium genes and 1 033 rice genes were further added onto the genetic linkage map. This map not only integrated genetic and physical maps, SSR and SNP loci, respectively, but also provided the information of Brachypodium and rice genes corresponding to 1 754 SNP loci. Therefore, it wil be a useful tool for comparative genomics analysis, ifne mapping of QTL/gene control ing agronomical y important traits and marker-assisted selection breeding in wheat.

  11. A 2nd generation linkage map of Heterobasidion annosum s.l. based on in silico anchoring of AFLP markers.

    Directory of Open Access Journals (Sweden)

    Mårten Lind

    Full Text Available In this study, we present a 2(nd generation genetic linkage map of a cross between the North American species Heterobasidion irregulare and H. occidentale, based on the alignment of the previously published 1(st generation map to the parental genomes. We anchored 216 of the original 308 AFLP markers to their respective restriction sites using an in silico-approach. The map resolution was improved by adding 146 sequence-tagged microsatellite markers and 39 sequenced gene markers. The new markers confirmed the positions of the anchored AFLP markers, fused the original 39 linkage groups together into 17, and fully expanded 12 of these to single groups covering entire chromosomes. Map coverage of the genome increased from 55.3% to 92.8%, with 96.3% of 430 markers collinearly aligned with the genome sequence. The anchored map also improved the H. irregulare assembly considerably. It identified several errors in scaffold arrangements and assisted in reducing the total number of major scaffolds from 18 to 15. This denser, more comprehensive map allowed sequence-based mapping of three intersterility loci and one mating type locus. This demonstrates the possibility to utilize an in silico procedure to convert anonymous markers into sequence-tagged ones, as well as the power of a sequence-anchored linkage map and its usefulness in the assembly of a whole genome sequence.

  12. Genomewide Linkage Analysis of Bipolar Disorder by Use of a High-Density Single-Nucleotide–Polymorphism (SNP) Genotyping Assay: A Comparison with Microsatellite Marker Assays and Finding of Significant Linkage to Chromosome 6q22

    Science.gov (United States)

    Middleton, F. A.; Pato, M. T.; Gentile, K. L.; Morley, C. P.; Zhao, X.; Eisener, A. F.; Brown, A.; Petryshen, T. L.; Kirby, A. N.; Medeiros, H.; Carvalho, C.; Macedo, A.; Dourado, A.; Coelho, I.; Valente, J.; Soares, M. J.; Ferreira, C. P.; Lei, M.; Azevedo, M. H.; Kennedy, J. L.; Daly, M. J.; Sklar, P.; Pato, C. N.

    2004-01-01

    We performed a linkage analysis on 25 extended multiplex Portuguese families segregating for bipolar disorder, by use of a high-density single-nucleotide–polymorphism (SNP) genotyping assay, the GeneChip Human Mapping 10K Array (HMA10K). Of these families, 12 were used for a direct comparison of the HMA10K with the traditional 10-cM microsatellite marker set and the more dense 4-cM marker set. This comparative analysis indicated the presence of significant linkage peaks in the SNP assay in chromosomal regions characterized by poor coverage and low information content on the microsatellite assays. The HMA10K provided consistently high information and enhanced coverage throughout these regions. Across the entire genome, the HMA10K had an average information content of 0.842 with 0.21-Mb intermarker spacing. In the 12-family set, the HMA10K-based analysis detected two chromosomal regions with genomewide significant linkage on chromosomes 6q22 and 11p11; both regions had failed to meet this strict threshold with the microsatellite assays. The full 25-family collection further strengthened the findings on chromosome 6q22, achieving genomewide significance with a maximum nonparametric linkage (NPL) score of 4.20 and a maximum LOD score of 3.56 at position 125.8 Mb. In addition to this highly significant finding, several other regions of suggestive linkage have also been identified in the 25-family data set, including two regions on chromosome 2 (57 Mb, NPL = 2.98; 145 Mb, NPL = 3.09), as well as regions on chromosomes 4 (91 Mb, NPL = 2.97), 16 (20 Mb, NPL = 2.89), and 20 (60 Mb, NPL = 2.99). We conclude that at least some of the linkage peaks we have identified may have been largely undetected in previous whole-genome scans for bipolar disorder because of insufficient coverage or information content, particularly on chromosomes 6q22 and 11p11. PMID:15060841

  13. High-density Linkage Map of Cultivated Allotetraploid Cotton Based on SSR, TRAP, SRAP and AFLP Markers

    Institute of Scientific and Technical Information of China (English)

    Jiwen Yu; Shuxun Yu; Cairui Lu; Wu Wang; Shuli Fan; Meizhen Song; Zhongxu Lin; Xianlong Zhang; Jinfa Zhang

    2007-01-01

    A high-density linkage map was constructed for an F2 population derived from an interspecific cross of cultivated allotetraploid species between Gossyplum hirsutum L. and G. barbadense L. A total of 186 F2 individuals from the interspecific cross of "CRI 36 × Hai 7124" were genotyped at 1 252 polymorphic loci including a novel marker system,target region amplification polymorphism (TRAP). The map consists of 1 097 markers, including 697 simple sequence repeats (SSRs), 171 TRAPs, 129 sequence-related amplified polymorphisms, 98 amplified fragment length polymorphisms, and two morphological markers, and spanned 4 536.7 cM with an average genetic distance of 4.1 cM per marker. Using 45 duplicated SSR loci among chromosomes, 11 of the 13 pairs of homologous chromosomes were identified in tetraplold cotton. This map will provide an essential resource for high resolution mapping of quantitative trait loci and molecular breeding in cotton.

  14. Comparative genetic mapping points to different sex chromosomes in sibling species of wild strawberry (Fragaria).

    Science.gov (United States)

    Goldberg, Margot T; Spigler, Rachel B; Ashman, Tia-Lynn

    2010-12-01

    Separate sexes have evolved repeatedly from hermaphroditic ancestors in flowering plants, and thus select taxa can provide unparalleled insight into the evolutionary dynamics of sex chromosomes that are thought to be shared by plants and animals alike. Here we ask whether two octoploid sibling species of wild strawberry--one almost exclusively dioecious (males and females), Fragaria chiloensis, and one subdioecious (males, females, and hermaphrodites), F. virginiana--share the same sex-determining chromosome. We created a genetic map of the sex chromosome and its homeologs in F. chiloensis and assessed macrosynteny between it and published maps of the proto-sex chromosome of F. virginiana and the homeologous autosome of hermaphroditic diploid species. Segregation of male and female function in our F. chiloensis mapping population confirmed that linkage and dominance relations are similar to those in F. virginiana. However, identification of the molecular markers most tightly linked to the sex-determining locus in the two octoploid species shows that, in both, this region maps to homeologues of chromosome 6 in diploid congeners, but is located at opposite ends of their respective chromosomes.

  15. First genetic linkage map of Taraxacum koksaghyz Rodin based on AFLP, SSR, COS and EST-SSR markers.

    Science.gov (United States)

    Arias, Marina; Hernandez, Monica; Remondegui, Naroa; Huvenaars, Koen; van Dijk, Peter; Ritter, Enrique

    2016-01-01

    Taraxacum koksaghyz Rodin (TKS) has been studied in many occasions as a possible alternative source for natural rubber production of good quality and for inulin production. Some tire companies are already testing TKS tire prototypes. There are also many investigations on the production of bio-fuels from inulin and inulin applications for health improvement and in the food industry. A limited amount of genomic resources exist for TKS and particularly no genetic linkage map is available in this species. We have constructed the first TKS genetic linkage map based on AFLP, COS, SSR and EST-SSR markers. The integrated linkage map with eight linkage groups (LG), representing the eight chromosomes of Russian dandelion, has 185 individual AFLP markers from parent 1, 188 individual AFLP markers from parent 2, 75 common AFLP markers and 6 COS, 1 SSR and 63 EST-SSR loci. Blasting the EST-SSR sequences against known sequences from lettuce allowed a partial alignment of our TKS map with a lettuce map. Blast searches against plant gene databases revealed some homologies with useful genes for downstream applications in the future. PMID:27488242

  16. First genetic linkage map of Taraxacum koksaghyz Rodin based on AFLP, SSR, COS and EST-SSR markers

    Science.gov (United States)

    Arias, Marina; Hernandez, Monica; Remondegui, Naroa; Huvenaars, Koen; van Dijk, Peter; Ritter, Enrique

    2016-01-01

    Taraxacum koksaghyz Rodin (TKS) has been studied in many occasions as a possible alternative source for natural rubber production of good quality and for inulin production. Some tire companies are already testing TKS tire prototypes. There are also many investigations on the production of bio-fuels from inulin and inulin applications for health improvement and in the food industry. A limited amount of genomic resources exist for TKS and particularly no genetic linkage map is available in this species. We have constructed the first TKS genetic linkage map based on AFLP, COS, SSR and EST-SSR markers. The integrated linkage map with eight linkage groups (LG), representing the eight chromosomes of Russian dandelion, has 185 individual AFLP markers from parent 1, 188 individual AFLP markers from parent 2, 75 common AFLP markers and 6 COS, 1 SSR and 63 EST-SSR loci. Blasting the EST-SSR sequences against known sequences from lettuce allowed a partial alignment of our TKS map with a lettuce map. Blast searches against plant gene databases revealed some homologies with useful genes for downstream applications in the future. PMID:27488242

  17. Pseudovitamin D deficient rickets (PDDR). Linkage disequilibrium mapping in young populations

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, M.; Korab-Laskowska, M.; Labuda, D. [McGill Univ. (Canada)] [and others

    1994-09-01

    PDDR is an autosomal recessive disorder with elevated prevalence in French Canadians. The condition is believed to be due to a deficient renal 25(OH)-vitamin D 1-alpha hydroxylase, but its underlying molecular defect is unknown. By linkage analysis we have earlier mapped PDDR to human chromosome 12q14. Using recently developed microsatellite markers we narrowed down the disease locus to a 5.6 cM interval between two clusters of loci: 234tf12, 207yh10, 249vf9, 329zh9, on proximal, and 259zc9 and 184yf2 on the distal side. Further refinement of the PDDR locus was obtained from analysis of those markers on 85 French Canadian PDDR chromosomes by linkage disequilibrium (LD). Ten-marker haplotype analysis for all chromosomes allowed to divide this sample into two groups, one of Saguenay-Lac St. Jean-Charlevoix (SLSJ-Ch), the other from Nova Scotia and New Brunswick (NS, NB). All SLSJ-Ch PDDR chromosomes shared an identical haplotype for markers 172x38, 184yf2, 259zc9, pointing to a single founder in this population. In the NS, NB group, the founder effect was also pronounced; however, the link of 2 PDDR chromosomes to either of these groups remains to be elucidated. In the absence of recombination in 12 generations of the SLSJ-Ch population, the genetic distance between PDDR and markers 172xd8, 184yf2, 259zc9 was estimated to be less than 0.4 cM. Finally the marker 207va9 was found to be the closest proximal one based on one recombination in a Polish PDDR family, its CEPH map position as well as its localization on the same YAC together with the distal markers 184yf2, 309xh1 and the marker 172xd8, probably the closest to the PDDR gene. Our study clearly shows the potential of LD for mapping human disorders in populations as young as 10-12 generations. Here it allowed narrowing PDDR position down to a single YAC.

  18. Fine mapping under linkage peaks for symptomatic or asymptomatic outcomes of Leishmania infantum infection in Brazil.

    Science.gov (United States)

    Weirather, Jason L; Duggal, Priya; Nascimento, Eliana L; Monteiro, Gloria R; Martins, Daniella R; Lacerda, Henio G; Fakiola, Michaela; Blackwell, Jenefer M; Jeronimo, Selma M B; Wilson, Mary E

    2016-09-01

    Infection with the protozoan Leishmania infantum can lead to asymptomatic infection and protective immunity, or to the progressive and potentially fatal disease visceral leishmaniasis (VL). Published studies show host genetic background determines in part whether infected individuals will develop a symptomatic or asymptomatic outcome. The purpose of the current study was to fine map chromosome regions previously linked with risk for symptomatic (chromosome 9) or asymptomatic (chromosomes 15 and 19) manifestations of L. infantum infection. We conducted a family-based genetic study of VL and asymptomatic infection (detected by a DTH skin test) with a final post quality control sample of 961 individuals with full genotype and phenotype information from highly endemic neighborhoods of northeast Brazil. A total of 5485 SNPs under the linkage peaks on chromosomes 9, 15 and 19 were genotyped. No strong SNP associations were observed for the DTH phenotype. The most significant associations with the VL phenotype were with SNP rs1470217 (p=5.9e-05; pcorrected=0.057) on chromosome 9, and with SNP rs8107014 (p=1.4e-05; pcorrected=0.013) on chromosome 19. SNP rs1470217 is situated in a 180kb intergenic region between TMEM215 (Transmembrane protein 215) and APTX (Aprataxin). SNP rs8107014 lies in the intron between exons 26 and 27 of a 34 exon transcript (ENST00000204005) of LTBP4, (Latent transforming growth factor-beta-binding protein 4a). The latter supports growing evidence that the transforming growth factor-beta pathway is important in the immunopathogenesis of VL. PMID:27155051

  19. SNP identification from RNA sequencing and linkage map construction of rubber tree for anchoring the draft genome.

    Directory of Open Access Journals (Sweden)

    Jeremy R Shearman

    Full Text Available Hevea brasiliensis, or rubber tree, is an important crop species that accounts for the majority of natural latex production. The rubber tree nuclear genome consists of 18 chromosomes and is roughly 2.15 Gb. The current rubber tree reference genome assembly consists of 1,150,326 scaffolds ranging from 200 to 531,465 bp and totalling 1.1 Gb. Only 143 scaffolds, totalling 7.6 Mb, have been placed into linkage groups. We have performed RNA-seq on 6 varieties of rubber tree to identify SNPs and InDels and used this information to perform target sequence enrichment and high throughput sequencing to genotype a set of SNPs in 149 rubber tree offspring from a cross between RRIM 600 and RRII 105 rubber tree varieties. We used this information to generate a linkage map allowing for the anchoring of 24,424 contigs from 3,009 scaffolds, totalling 115 Mb or 10.4% of the published sequence, into 18 linkage groups. Each linkage group contains between 319 and 1367 SNPs, or 60 to 194 non-redundant marker positions, and ranges from 156 to 336 cM in length. This linkage map includes 20,143 of the 69,300 predicted genes from rubber tree and will be useful for mapping studies and improving the reference genome assembly.

  20. The pituitary hormones arginine vasopressin-neurophysin II and oxytocin-neurophysin I show close linkage with interleukin-1 on mouse chromosome 2

    Energy Technology Data Exchange (ETDEWEB)

    Marini, J.C.; Nelson, K.K.; Siracusa, L.D. (Jefferson Cancer Institute, Philadelphia, PA (United States)); Battey, J. (National Institutes of Health/National Cancer Institute, Bethesda, MD (United States))

    1993-01-01

    Arginine vasopressin (AVP) and oxytocin (OXT) are posterior pituitary hormones. AVP is involved in fluid homeostasis, while OXT is involved in lactation and parturition. AVP is derived from a larger precursor, prepro-arginine-vasopressin-neurophysin II (prepro-AVP-NP II; AVP), and is physically linked to prepro-oxytocin-neurophysin I (prepro-OXT-NPI1; OXT). The genes for AVP and OXT are separated by only 12 kb of DNA in humans, whereas in the mouse 3.5 kb of intergenic sequence lies between Avp and Oxt. Interspecific backcross analysis has now been used to map the Avp/Oxt complex to chromosome 2 in the mouse. This map position confirms and extends the known region of linkage conservation between mouse chromosome 2 and human chromosome 20. 16 refs., 2 figs., 1 tab.

  1. Comparative genetic mapping between duplicated segments on maize chromosomes 3 and 8 and homoeologous regions in sorghum and sugarcane.

    Science.gov (United States)

    Dufour, P; Grivet, L; D'Hont, A; Deu, M; Trouche, G; Glaszmann, J C; Hamon, P

    1996-06-01

    Comparative mapping within maize, sorghum and sugarcane has previously revealed the existence of syntenic regions between the crops. In the present study, mapping on the sorghum genome of a set of probes previously located on the maize and sugarcane maps allow a detailed analysis of the relationship between maize chromosomes 3 and 8 and sorghum and sugarcane homoeologous regions. Of 49 loci revealed by 46 (4 sugarcane and 42 maize) polymorphic probes in sorghum, 42 were linked and were assigned to linkage groups G (28), E (10) and I (4). On the basis of common probes, a complete co-linearity is observed between sorghum linkage group G and the two sugarcane linkage groups II and III. The comparison between the consensus sorghum/sugarcane map (G/II/III) and the maps of maize chromosomes 3 and 8 reveals a series of linkage blocks within which gene orders are conserved. These blocks are interspersed with non-homoeologous regions corresponding to the central part of the two maize chromosomes and have been reshuffled, resulting in several inversions in maize compared to sorghum and sugarcane. The results emphasize the fact that duplication will considerably complicate precise comparative mapping at the whole genome scale between maize and other Poaceae. PMID:24166631

  2. A linkage between DNA markers on the X chromosome and male sexual orientation.

    Science.gov (United States)

    Hamer, D H; Hu, S; Magnuson, V L; Hu, N; Pattatucci, A M

    1993-07-16

    The role of genetics in male sexual orientation was investigated by pedigree and linkage analyses on 114 families of homosexual men. Increased rates of same-sex orientation were found in the maternal uncles and male cousins of these subjects, but not in their fathers or paternal relatives, suggesting the possibility of sex-linked transmission in a portion of the population. DNA linkage analysis of a selected group of 40 families in which there were two gay brothers and no indication of nonmaternal transmission revealed a correlation between homosexual orientation and the inheritance of polymorphic markers on the X chromosome in approximately 64 percent of the sib-pairs tested. The linkage to markers on Xq28, the subtelomeric region of the long arm of the sex chromosome, had a multipoint lod score of 4.0 (P = 10(-5), indicating a statistical confidence level of more than 99 percent that at least one subtype of male sexual orientation is genetically influenced. PMID:8332896

  3. A linkage between DNA markers on the X chromosome and male sexual orientation

    Energy Technology Data Exchange (ETDEWEB)

    Hamer, D.H.; Hu, S.; Magnuson, V.L.; Hu, N.; Pattatucci, A.M.L.

    1993-07-16

    The role of genetics in male sexual orientation was investigated by pedigree and linkage analyses on 114 families of homosexual men. Increased rates of same-sex orientation were found in the maternal uncles and male cousins of these subjects, but not in their fathers or paternal relatives, suggesting the possibility of sex-linked transmission in a portion of the population. DNA linkage analysis of a selected group of 40 families in which there were two gay brothers and no indication of nonmaternal transmission revealed a correlation between homosexual orientation and the inheritance of polymorphic markers on the X chromosome in approximately 64 percent of the sib-pairs tested. The linkage to markers on Xq28, the subtelomeric region of the long arm of the sex chromosome, had a multipoint lod score of 4.0(P = 10[sup [minus]5]), indicating a statistical confidence level of more than 99 percent that at least one subtype of male sexual orientation is genetically influenced.

  4. Genetic linkage map and comparative genome analysis for the estuarine Atlantic killifish (Fundulus heteroclitus)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Genetic linkage maps are valuable tools in evolutionary biology; however, their availability for wild populations is extremely limited. Fundulus heteroclitus...

  5. The epitheliogenesis imperfecta locus maps to equine chromosome 8 in American Saddlebred horses.

    Science.gov (United States)

    Lieto, L D; Cothran, E G

    2003-01-01

    Epitheliogenesis imperfecta (EI) is a hereditary junctional mechanobullous disease that occurs in newborn American Saddlebred foals. The pathological signs of epitheliogenesis imperfecta closely match a similar disease in humans known as Herlitz junctional epidermolysis bullosa, which is caused by a mutation in one of the genes (LAMA3, LAMB3 and LAMC2) coding for the subunits of the laminin 5 protein (laminin alpha3, laminin beta3 and laminin gamma2). The LAMA3 gene has been assigned to equine chromosome 8 and LAMB3 and LAMC2 have been mapped to equine chromosome 5. Linkage disequilibrium between microsatellite markers that mapped to equine chromosome 5 and equine chromosome 8 and the EI disease locus was tested in American Saddlebred horses. The allele frequencies of microsatellite alleles at 11 loci were determined for both epitheliogenesis imperfecta affected and unaffected populations of American Saddlebred horses by genotyping and direct counting of alleles. These were used to determine fit to Hardy-Weinberg equilibrium for control and EI populations using Chi square analysis. Two microsatellite loci located on equine chromosome 8q, ASB14 and AHT3, were not in Hardy-Weinberg equilibrium in affected American Saddlebred horses. In comparison, all of the microsatellite markers located on equine chromosome 5 were in Hardy-Weinberg equilibrium in affected American Saddlebred horses. This suggested that the EI disease locus was located on equine chromosome 8q, where LAMA3 is also located. PMID:14970704

  6. A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B

    OpenAIRE

    Kobayashi, F; Wu, J. Z.; Kanamori, H; Tanaka, T.; Katagiri, S.; Karasawa, W.; Kaneko, S.; Watanabe, S; Sakaguchi, T; Šafář, J. (Jan); Šimková, H. (Hana); Mukai, Y.; M. Hamada; Saito, M; Hayakawa, K

    2015-01-01

    Background: A complete genome sequence is an essential tool for the genetic improvement of wheat. Because the wheat genome is large, highly repetitive and complex due to its allohexaploid nature, the International Wheat Genome Sequencing Consortium (IWGSC) chose a strategy that involves constructing bacterial artificial chromosome (BAC)-based physical maps of individual chromosomes and performing BAC-by-BAC sequencing. Here, we report the construction of a physical map of chromosome 6B with t...

  7. An autotetraploid linkage map of rose (Rosa hybrida) validated using the strawberry (Fragaria vesca) genome sequence.

    Science.gov (United States)

    Gar, Oron; Sargent, Daniel J; Tsai, Ching-Jung; Pleban, Tzili; Shalev, Gil; Byrne, David H; Zamir, Dani

    2011-01-01

    Polyploidy is a pivotal process in plant evolution as it increase gene redundancy and morphological intricacy but due to the complexity of polysomic inheritance we have only few genetic maps of autopolyploid organisms. A robust mapping framework is particularly important in polyploid crop species, rose included (2n = 4x = 28), where the objective is to study multiallelic interactions that control traits of value for plant breeding. From a cross between the garden, peach red and fragrant cultivar Fragrant Cloud (FC) and a cut-rose yellow cultivar Golden Gate (GG), we generated an autotetraploid GGFC mapping population consisting of 132 individuals. For the map we used 128 sequence-based markers, 141 AFLP, 86 SSR and three morphological markers. Seven linkage groups were resolved for FC (Total 632 cM) and GG (616 cM) which were validated by markers that segregated in both parents as well as the diploid integrated consensus map.The release of the Fragaria vesca genome, which also belongs to the Rosoideae, allowed us to place 70 rose sequenced markers on the seven strawberry pseudo-chromosomes. Synteny between Rosa and Fragaria was high with an estimated four major translocations and six inversions required to place the 17 non-collinear markers in the same order. Based on a verified linear order of the rose markers, we could further partition each of the parents into its four homologous groups, thus providing an essential framework to aid the sequencing of an autotetraploid genome.

  8. Rapid SNP discovery and a RAD-based high-density linkage map in jujube (Ziziphus Mill..

    Directory of Open Access Journals (Sweden)

    Jin Zhao

    Full Text Available BACKGROUND: Ziziphus Mill. (jujube, the most valued genus of Rhamnaceae, comprises of a number of economically and ecologically important species such as Z. jujuba Mill., Z. acidojujuba Cheng et Liu and Z. mauritiana Lam. Single nucleotide polymorphism (SNP markers and a high-density genetic map are of great benefit to the improvement of the crop, mapping quantitative trait loci (QTL and analyzing genome structure. However, such a high-density map is still absent in the genus Ziziphus and even the family Rhamnaceae. The recently developed restriction-site associated DNA (RAD marker has been proven to be most powerful in genetic map construction. The objective of this study was to construct a high-density linkage map using the RAD tags generated by next generation sequencing. RESULTS: An interspecific F1 population and their parents (Z. jujuba Mill. 'JMS2' × Z. acidojujuba Cheng et Liu 'Xing 16' were genotyped using a mapping-by-sequencing approach, to generate RAD-based SNP markers. A total of 42,784 putative high quality SNPs were identified between the parents and 2,872 high-quality RAD markers were grouped in genetic maps. Of the 2,872 RAD markers, 1,307 were linked to the female genetic map, 1,336 to the male map, and 2,748 to the integrated map spanning 913.87 centi-morgans (cM with an average marker interval of 0.34 cM. The integrated map contained 12 linkage groups (LGs, consistent with the haploid chromosome number of the two parents. CONCLUSION: We first generated a high-density genetic linkage map with 2,748 RAD markers for jujube and a large number of SNPs were also developed. It provides a useful tool for both marker-assisted breeding and a variety of genome investigations in jujube, such as sequence assembly, gene localization, QTL detection and genome structure comparison.

  9. Linkage mapping reveals strong chiasma interference in Sockeye salmon: Implications for interpreting genomic data

    DEFF Research Database (Denmark)

    Limborg, Morten; Waples, Ryan K; Allendorf, Fred W;

    2015-01-01

    Meiotic recombination is fundamental for generating new genetic variation and for securing proper disjunction. Further, recombination plays an essential role during the rediploidization process of polyploid-origin genomes because crossovers between pairs of homeologous chromosomes retain duplicated...... regions. A better understanding of how recombination affects genome evolution is crucial for interpreting genomic data; unfortunately, current knowledge mainly originates from a few model species. Salmonid fishes provide a valuable system for studying the effects of recombination in nonmodel species...... present a detailed interrogation of recombination patterns in sockeye salmon (Oncorhynchus nerka). First, we use RAD sequencing of haploid and diploid gynogenetic families to construct a dense linkage map that includes paralogous loci and location of centromeres. We find a nonrandom distribution...

  10. Evidence for linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect

    Energy Technology Data Exchange (ETDEWEB)

    Stine, O.C.; Xu, Jianfeng; McMahon, F.J. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)] [and others

    1995-12-01

    A susceptibility gene on chromosome18 and a parent-of-origin effect have been suggested for bipolar affective disorder (BPAD). We have studied 28 nuclear families selected for apparent unilineal transmission of the BPAD phenotype, by using 31 polymorphic markers spanning chromosome 18. Evidence for linkage was tested with affected-sib-pair and LOD score methods under two definitions of the affected phenotype. The affected-sib-pair analyses indicated excess allele sharing for markers on 18p within the region reported previously. The greatest sharing was at D18S37: 64% in bipolar and recurrent unipolar (RUP) sib pairs (P = .0006). In addition, excess sharing of the paternally, but not maternally, transmitted alleles was observed at three markers on 18q: at D18S41, 51 bipolar and RUP sib pairs were concordant for paternally transmitted alleles, and 21 pairs were discordant (P = .0004). The evidence for linkage to loci on both 18p and 18q was strongest in the 11 paternal pedigrees, i.e., those in which the father or one of the father`s sibs is affected. In these pedigrees, the greatest allele sharing (81%; P = .00002) and the highest LOD score (3.51; {theta} = 0.0) were observed at D18S41. Our results provide further support for linkage of BPAD to chromosome 18 and the first molecular evidence for a parent-of-origin effect operating in this disorder. The number of loci involved, and their precise location, require further study. 49 refs., 2 figs., 5 tabs.

  11. Isolated familial somatotropinomas: establishment of linkage to chromosome 11q13.1-11q13.3 and evidence for a potential second locus at chromosome 2p16-12.

    Science.gov (United States)

    Gadelha, M R; Une, K N; Rohde, K; Vaisman, M; Kineman, R D; Frohman, L A

    2000-02-01

    The majority of somatotropinomas are sporadic, although a small number occur with a familial aggregation, either as a component of an endocrine neoplasia complex that includes multiple endocrine neoplasia type 1 (MEN-1) and Carney complex (CNC) or as isolated familial somatotropinomas (IFS). IFS is defined as the occurrence of at least two cases of acromegaly or gigantism in a family that does not exhibit MEN-1 or CNC. This rare disease is associated with loss of heterozygosity (LOH) on chromosome 11q13, the locus of the MEN-1 gene, although the MEN-1 sequence and expression appear normal. These data suggest the presence of another tumor suppressor gene located at 11q13 that is important in the control of somatotrope proliferation. To establish linkage of IFS to 11q13 and to define the candidate interval of the IFS gene, we performed haplotype and allelotype analyses on two families with IFS. Collectively, allelic retention in one tumor and a recombinant haplotype in an affected individual mapped the tumor suppressor gene involved in the pathogenesis of IFS to a region of 8.6 cM between polymorphic microsatellite markers D11S1335 and INT-2 located at chromosome 11q13.1-13.3. Maximum two-point LOD scores for five markers within this region were 3.0 or more at theta = 0.0. As somatotropinomas are the predominant pituitary tumor subtype associated with CNC and arise before 30 yr of age, which is strikingly similar to the age at diagnosis for IFS, we explored the possibility that the putative CNC genes might also contribute to the pathogenesis of IFS. Although the genetic defect responsible for the complex is unknown, CNC has been mapped by linkage analysis to chromosomes 2p15-16 and 17q23-24 in different kindreds. Two-point LOD scores less than -2.0 were obtained using marker D17S949 from chromosome 17q23-24, excluding linkage. However, LOD scores of 2.5 were obtained for markers within 2p16-12; therefore, linkage of IFS to chromosome 2p cannot be excluded. This

  12. Evidence for linkage disequilibrium in chromosome 13-linked Duchenne-like muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Othmane, K.B.; Speer, M.C.; Stauffer, J. [Duke Univ. Medical Center, Durham, NC (United States)] [and others

    1995-09-01

    Duchenne-like muscular dystrophy (DLMD) is an autosomal recessive Limb Girdle muscular dystrophy (LGMD2C) characterized by late age of onset, proximal muscle weakness leading to disability, high creatine kinase values, normal intelligence and normal dystrophin in muscle biopsy. We have shown previously that three DLMD families from Tunisia are linked to chromosome 13q12. To further localize the LGMD2C gene, we have investigated seven additional families (119 individuals). Both genotyping and two-point linkage analysis were performed as described elsewhere. 7 refs., 1 fig., 1 tab.

  13. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination

    Directory of Open Access Journals (Sweden)

    Gang Li

    2016-06-01

    Full Text Available High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS. Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0, which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb recombination desert (of virtually zero recombination on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location.

  14. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination.

    Science.gov (United States)

    Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J

    2016-01-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location. PMID:27172201

  15. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination.

    Science.gov (United States)

    Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J

    2016-06-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location.

  16. Genetic linkage of mild pseudoachondroplasia (PSACH) to markers in the pericentromeric region of chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, M.D.; Rasmussen, M.; Garber, P.; Rimoin, D.L.; Cohn, D.H. (Steven Spielberg Pediatric Research Center, Los Angeles, CA (United States)); Weber, J.L. (Marshfield Medical Research Foundation, WI (United States)); Yuen, J.; Reinker, K. (Univ. of Hawaii, Honolulu, HI (United States))

    1993-12-01

    Pseudoachondroplasia (PSACH) is a dominantly inherited form of short-limb dwarfism characterized by dysplastic changes in the spine, epiphyses, and metaphyses and early onset osteoarthropathy. Chondrocytes from affected individuals accumulate an unusual appearing material in the rough endoplasmic reticulum, which has led to the hypothesis that a structural abnormality in a cartilage-specific protein produces the phenotype. The authors recently identified a large family with a mild form of pseudoachondroplasia. By genetic linkage to a dinucleotide repeat polymorphic marker (D19S199), they have localized the disease gene to chromosome 19 (maximum lod score of 7.09 at a recombination fraction of 0.03). Analysis of additional markers and recombinations between the linked markers and the phenotype suggests that the disease gene resides within a 6.3-cM interval in the immediate pericentromeric region of the chromosome. 39 refs., 2 figs., 1 tab.

  17. EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.

    Directory of Open Access Journals (Sweden)

    Studer Bruno

    2010-08-01

    Full Text Available Abstract Background Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm. Results A set of 204 expressed sequence tag (EST-derived simple sequence repeat (SSR markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM, ranging for individual chromosomes from 70 cM of linkage group (LG 6 to 171 cM of LG 2. Conclusions The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species.

  18. A framework radiation hybrid map of buffalo chromosome 1 ordering scaffolds from buffalo genome sequence assembly.

    Science.gov (United States)

    Stafuzza, N B; Naressi, B C M; Yang, E; Cai, J J; Amaral-Trusty, M E J

    2015-01-01

    River buffalo chromosome 1 (BBU1) is a sub-metacentric chromosome homologous to bovine chromosomes 1 and 27. In this study, we constructed a new framework radiation hybrid (RH) map from BBU1 using BBURH5000 panel adding nine new genes (ADRB3, ATP2C1, COPB2, CRYGS, P2RY1, SLC5A3, SLC20A2, SST, and ZDHHC2) and one microsatellite (CSSM043) to the set of markers previously mapped on BBU1. The new framework RH map of BBU1 contained 141 markers (55 genes, 2 ESTs, 10 microsatellites, and 74 SNPs) distributed within one linkage group spanning 2832.62 centirays. Comparison of the RH map to sequences from bovine chromosomes 1 and 27 revealed an inversion close to the telomeric region. In addition, we ordered a set of 34 scaffolds from the buffalo genome assembly UMD_CASPUR_WB_2.0. The RH map could provide a valuable tool to order scaffolds from the buffalo genome sequence, contributing to its annotation. PMID:26535622

  19. The Genetic Linkage Map of the Medicinal Mushroom Agaricus subrufescens Reveals Highly Conserved Macrosynteny with the Congeneric Species Agaricus bisporus.

    Science.gov (United States)

    Foulongne-Oriol, Marie; Rocha de Brito, Manuela; Cabannes, Delphine; Clément, Aurélien; Spataro, Cathy; Moinard, Magalie; Dias, Eustáquio Souza; Callac, Philippe; Savoie, Jean-Michel

    2016-01-01

    Comparative linkage mapping can rapidly facilitate the transfer of genetic information from model species to orphan species. This macrosynteny analysis approach has been extensively used in plant species, but few example are available in fungi, and even fewer in mushroom crop species. Among the latter, the Agaricus genus comprises the most cultivable or potentially cultivable species. Agaricus bisporus, the button mushroom, is the model for edible and cultivable mushrooms. We have developed the first genetic linkage map for the basidiomycete A. subrufescens, an emerging mushroom crop known for its therapeutic properties and potential medicinal applications. The map includes 202 markers distributed over 16 linkage groups (LG), and covers a total length of 1701 cM, with an average marker spacing of 8.2 cM. Using 96 homologous loci, we also demonstrated the high level of macrosynteny with the genome of A. bisporus The 13 main LG of A. subrufescens were syntenic to the 13 A. bisporus chromosomes. A disrupted synteny was observed for the three remaining A. subrufescens LG. Electronic mapping of a collection of A. subrufescens expressed sequence tags on A. bisporus genome showed that the homologous loci were evenly spread, with the exception of a few local hot or cold spots of homology. Our results were discussed in the light of Agaricus species evolution process. The map provides a framework for future genetic or genomic studies of the medicinal mushroom A. subrufescens. PMID:26921302

  20. The Genetic Linkage Map of the Medicinal Mushroom Agaricus subrufescens Reveals Highly Conserved Macrosynteny with the Congeneric Species Agaricus bisporus

    Directory of Open Access Journals (Sweden)

    Marie Foulongne-Oriol

    2016-05-01

    Full Text Available Comparative linkage mapping can rapidly facilitate the transfer of genetic information from model species to orphan species. This macrosynteny analysis approach has been extensively used in plant species, but few example are available in fungi, and even fewer in mushroom crop species. Among the latter, the Agaricus genus comprises the most cultivable or potentially cultivable species. Agaricus bisporus, the button mushroom, is the model for edible and cultivable mushrooms. We have developed the first genetic linkage map for the basidiomycete A. subrufescens, an emerging mushroom crop known for its therapeutic properties and potential medicinal applications. The map includes 202 markers distributed over 16 linkage groups (LG, and covers a total length of 1701 cM, with an average marker spacing of 8.2 cM. Using 96 homologous loci, we also demonstrated the high level of macrosynteny with the genome of A. bisporus. The 13 main LG of A. subrufescens were syntenic to the 13 A. bisporus chromosomes. A disrupted synteny was observed for the three remaining A. subrufescens LG. Electronic mapping of a collection of A. subrufescens expressed sequence tags on A. bisporus genome showed that the homologous loci were evenly spread, with the exception of a few local hot or cold spots of homology. Our results were discussed in the light of Agaricus species evolution process. The map provides a framework for future genetic or genomic studies of the medicinal mushroom A. subrufescens.

  1. A microsatellite marker linkage map of the housefly, Musca domestica : Evidence for male recombination

    NARCIS (Netherlands)

    Feldmeyer, B.; Pen, I.; Beukeboom, L. W.

    2010-01-01

    We present the first molecular marker linkage map for Musca domestica containing 35 microsatellite plus six visible markers. We report the development of 33 new microsatellite markers of which 19 are included in the linkage map. Two hundred and thirty-six F2 individuals were genotyped from three cro

  2. SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Sraphet, Supajit; Boonchanawiwat, Athipong; Thanyasiriwat, Thanwanit; Boonseng, Opas; Tabata, Satoshi; Sasamoto, Shigemi; Shirasawa, Kenta; Isobe, Sachiko; Lightfoot, David A; Tangphatsornruang, Sithichoke; Triwitayakorn, Kanokporn

    2011-04-01

    Simple sequence repeat (SSR) markers provide a powerful tool for genetic linkage map construction that can be applied for identification of quantitative trait loci (QTL). In this study, a total of 640 new SSR markers were developed from an enriched genomic DNA library of the cassava variety 'Huay Bong 60' and 1,500 novel expressed sequence tag-simple sequence repeat (EST-SSR) loci were developed from the Genbank database. To construct a genetic linkage map of cassava, a 100 F(1) line mapping population was developed from the cross Huay Bong 60 by 'Hanatee'. Polymorphism screening between the parental lines revealed that 199 SSRs and 168 EST-SSRs were identified as novel polymorphic markers. Combining with previously developed SSRs, we report a linkage map consisted of 510 markers encompassing 1,420.3 cM, distributed on 23 linkage groups with a mean distance between markers of 4.54 cM. Comparison analysis of the SSR order on the cassava linkage map and the cassava genome sequences allowed us to locate 284 scaffolds on the genetic map. Although the number of linkage groups reported here revealed that this F(1) genetic linkage map is not yet a saturated map, it encompassed around 88% of the cassava genome indicating that the map was almost complete. Therefore, sufficient markers now exist to encompass most of the genomes and efficiently map traits in cassava.

  3. Refined positioning of a quantitative trait locus affecting somatic cell score on chromosome 18 in the German Holstein using linkage disequilibrium.

    Science.gov (United States)

    Baes, C; Brand, B; Mayer, M; Kühn, C; Liu, Z; Reinhardt, F; Reinsch, N

    2009-08-01

    Combined linkage and linkage disequilibrium analysis (LALD) was conducted to more accurately map a previously reported quantitative trait locus (QTL) affecting somatic cell score on bovine chromosome 18. A grand-daughter design consisting of 6 German Holstein grandsire families with 1,054 progeny-tested genotyped sons was used in this study. Twenty microsatellite markers, 5 single nucleotide polymorphisms, and an erythrocyte antigen marker with an average marker spacing of 1.95 cM were analyzed along a chromosomal segment of 50.80 cM. Variance components were estimated and restricted maximum likelihood test statistics were calculated at the midpoint of each marker interval. The test statistics calculated in single-QTL linkage analysis exceeded the genome-wide significance threshold at several putative QTL positions. Using LALD, we were successful in assigning a genome-wide significant QTL to a confidence interval of 10.8 cM between the markers ILSTS002 and BMS833. The QTL in this marker interval was estimated to be responsible for between 5.89 and 13.86% of the genetic variation in somatic cell score. In contrast to the single-QTL linkage analysis model, LALD analyses with a 2-QTL model confirmed the position of one QTL, but gave no conclusive evidence for the existence or position of a second QTL. Ultimately, the QTL position was narrowed down considerably compared with previous results with a refined confidence interval of less than 11 cM. PMID:19620688

  4. A Family with Mental Retardation, Epilepsy and Cerebellar Hypoplasia Showing Linkage to Chromosome 20p11.21-q11.23

    Directory of Open Access Journals (Sweden)

    Fatih Bayrakli

    2014-01-01

    Full Text Available Background: Cerebellar hypoplasia (CH is a rare malformation caused by various etiologies, usually manifesting clinically as nonprogressive cerebellar ataxia with or without mental retardation. The molecular pathogenesis of the autosomal recessive cerebellar ataxias has a wide range of mechanisms. Differential diagnosis and categorization of the recessive cerebellar ataxias, however, need more specific, biochemical and genetic investigation. Methods: This study applied whole-genome linkage analysis to study a family with nonprogressive cerebellar ataxia and additional mental retardation, epilepsy, and facial dysmorphic features. Genotyping and linkage analysis was done using the GeneChip Mapping 250K NspI Array (Affymetrix Inc., Santa Clara, Calif., USA for genome-wide linkage analysis of the genotyping data from the affected children and their parents. Results: Allegro software version 1.2 was used for multipoint linkage analysis. We assumed an autosomal recessive inheritance pattern and assigned a penetrance of 0.999. Single-nucleotide polymorphism allele frequencies were estimated from the Affymetrix data of the Caucasian family studied. Using these parameters, a theoretical maximum logarithm of the odds score of 2.69 was identified at chromosome 20p11.21-q11.23. Conclusions: This chromosomal locus is unprecedented in autosomal recessive and nonprogressive ataxia disorder. Further investigation might reveal a new causative gene generating the CH phenotype.

  5. Search for linkage to schizophrenia on the X and Y chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Devoto, M.; Ott, J. [Columbia Univ., New York, NY (United States); Vita, A. [Univ. of Milan (Italy)] [and others

    1994-06-15

    Markers for X chromosome loci were used in linkage studies of a large group of small families (n = 126) with at least two schizophrenic members in one sibship. Based on the hypothesis that a gene for schizophrenia could be X-Y linked, with homologous loci on both X and Y, our analyses included all families regardless of the pattern of familial inheritance. Lod scores were computed with both standard X-linked and a novel X-Y model, and sib-pair analyses were performed for all markers examining the sharing of maternal alleles. Small positive lod scores were obtained for loci pericentromeric, from Xp11.4 to Xq12. Lod scores were also computed separately in families selected for evidence of maternal inheritance and absence of male to male transmission of psychosis. The lod scores for linkage to the locus DXS7 reached a maximum of 1.83 at 0.08% recombination, assuming dominant inheritance on the X chromosome in these families (n = 34). Further investigation of the X-Y homologous gene hypothesis focussing on this region is warranted. 39 refs. 1 fig., 6 tabs.

  6. Genetic and physical mapping of the bovine X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Chen Chen; Taylor, J.F.; Sanders, J. O. [Texas A& M Univ., College Station, TX (United States)] [and others

    1996-03-01

    Three hundred eighty reciprocal backcross and F{sub 2} full sib progeny from 33 families produced by embryo transfer from 77 Angus (Bos taurus), Brahman (Bos indicus), and F{sub 1} parents and grandparents were used to construct genetic maps of the bovine X and Y chromosomes. All individuals were scored for 15 microsatellite loci, with an average of 608 informative meioses per locus. The length of the bovine X chromosome genetic map was 118.7 cM (female only) and of the pseudoautosomal region was 13.0 cM (male only). The 15-marker framework map in Kosambi centimorgans is (BM6017-6.1-TGLA89-35.8-TEXAN13-3.4-TGLA128-1.3-BM2713-21.1-BM4604-2.4-BR215-12.9-TGLA68-10.0-BM4321-1.0-HEL14-4.9-TGLA15-2.3-INRA120-12.5-TGLA325-1.6-MAF45-3.2-INRA30), with an average interval of 7.91 cM. Clones containing pseudoautosomal or sex-linked microsatellites were isolated from a bovine bacterial artificial chromosome library and were physically mapped to bovine metaphase chromosomes by fluorescence in situ hybridization to orient the X and Y chromosome maps. BAC57, containing the pseudoautosomal microsatellite INRA30, mapped to the distal end of the long arm of the X chromosome at q42-ter and to the short arm of the Y chromosome at p13-ter. This confirms the published assignment of this region to Yp12-ter, but challenges the published assignment of Xp14-ter and thus reorients the X chromosome physical map. BAC204, containing the X-linked microsatellite BM4604, mapped to the middle of the long arm of the X chromosome at q26-q31. The position of the physically mapped to the middle of the long arm of the X chromosome at q26-q31. The position of the physically mapped markers indicates either a lack of microsatellite markers for a large (30 to 50 cM) region of the short arm of the X chromosome or heterogeneity of recombination along the X chromosome. 46 refs., 2 figs., 3 tabs.

  7. Confirmation and Fine Mapping of a Major QTL for Aflatoxin Resistance in Maize Using a Combination of Linkage and Association Mapping

    Science.gov (United States)

    Zhang, Yu; Cui, Min; Zhang, Jimin; Zhang, Lei; Li, Chenliu; Kan, Xin; Sun, Qian; Deng, Dexiang; Yin, Zhitong

    2016-01-01

    Maize grain contamination with aflatoxin from Aspergillus flavus (A. flavus) is a serious health hazard to animals and humans. To map the quantitative trait loci (QTLs) associated with resistance to A. flavus, we employed a powerful approach that differs from previous methods in one important way: it combines the advantages of the genome-wide association analysis (GWAS) and traditional linkage mapping analysis. Linkage mapping was performed using 228 recombinant inbred lines (RILs), and a highly significant QTL that affected aflatoxin accumulation, qAA8, was mapped. This QTL spanned approximately 7 centi-Morgan (cM) on chromosome 8. The confidence interval was too large for positional cloning of the causal gene. To refine this QTL, GWAS was performed with 558,629 single nucleotide polymorphisms (SNPs) in an association population comprising 437 maize inbred lines. Twenty-five significantly associated SNPs were identified, most of which co-localised with qAA8 and explained 6.7% to 26.8% of the phenotypic variation observed. Based on the rapid linkage disequilibrium (LD) and the high density of SNPs in the association population, qAA8 was further localised to a smaller genomic region of approximately 1500 bp. A high-resolution map of the qAA8 region will be useful towards a marker-assisted selection (MAS) of A. flavus resistance and a characterisation of the causal gene. PMID:27598199

  8. Confirmation and Fine Mapping of a Major QTL for Aflatoxin Resistance in Maize Using a Combination of Linkage and Association Mapping

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-09-01

    Full Text Available Maize grain contamination with aflatoxin from Aspergillus flavus (A. flavus is a serious health hazard to animals and humans. To map the quantitative trait loci (QTLs associated with resistance to A. flavus, we employed a powerful approach that differs from previous methods in one important way: it combines the advantages of the genome-wide association analysis (GWAS and traditional linkage mapping analysis. Linkage mapping was performed using 228 recombinant inbred lines (RILs, and a highly significant QTL that affected aflatoxin accumulation, qAA8, was mapped. This QTL spanned approximately 7 centi-Morgan (cM on chromosome 8. The confidence interval was too large for positional cloning of the causal gene. To refine this QTL, GWAS was performed with 558,629 single nucleotide polymorphisms (SNPs in an association population comprising 437 maize inbred lines. Twenty-five significantly associated SNPs were identified, most of which co-localised with qAA8 and explained 6.7% to 26.8% of the phenotypic variation observed. Based on the rapid linkage disequilibrium (LD and the high density of SNPs in the association population, qAA8 was further localised to a smaller genomic region of approximately 1500 bp. A high-resolution map of the qAA8 region will be useful towards a marker-assisted selection (MAS of A. flavus resistance and a characterisation of the causal gene.

  9. Confirmation and Fine Mapping of a Major QTL for Aflatoxin Resistance in Maize Using a Combination of Linkage and Association Mapping.

    Science.gov (United States)

    Zhang, Yu; Cui, Min; Zhang, Jimin; Zhang, Lei; Li, Chenliu; Kan, Xin; Sun, Qian; Deng, Dexiang; Yin, Zhitong

    2016-01-01

    Maize grain contamination with aflatoxin from Aspergillus flavus (A. flavus) is a serious health hazard to animals and humans. To map the quantitative trait loci (QTLs) associated with resistance to A. flavus, we employed a powerful approach that differs from previous methods in one important way: it combines the advantages of the genome-wide association analysis (GWAS) and traditional linkage mapping analysis. Linkage mapping was performed using 228 recombinant inbred lines (RILs), and a highly significant QTL that affected aflatoxin accumulation, qAA8, was mapped. This QTL spanned approximately 7 centi-Morgan (cM) on chromosome 8. The confidence interval was too large for positional cloning of the causal gene. To refine this QTL, GWAS was performed with 558,629 single nucleotide polymorphisms (SNPs) in an association population comprising 437 maize inbred lines. Twenty-five significantly associated SNPs were identified, most of which co-localised with qAA8 and explained 6.7% to 26.8% of the phenotypic variation observed. Based on the rapid linkage disequilibrium (LD) and the high density of SNPs in the association population, qAA8 was further localised to a smaller genomic region of approximately 1500 bp. A high-resolution map of the qAA8 region will be useful towards a marker-assisted selection (MAS) of A. flavus resistance and a characterisation of the causal gene. PMID:27598199

  10. A male linkage map constructed for QTL mapping in Spanish Churra sheep.

    Science.gov (United States)

    Gutiérrez-Gil, B; Arranz, J J; El-Zarei, M F; Alvarez, L; Pedrosa, S; San Primitivo, F; Bayón, Y

    2008-06-01

    A male ovine linkage map has been constructed on the basis of 11 half-sib families of a commercial population of Spanish Churra sheep as part of a genome scan for quantitative trait loci mapping. A total of 1421 daughters and their sires were genotyped for 182 microsatellite markers evenly distributed along the ovine autosomes. A total of 259,192 genotypes were obtained, generating an average of 669 informative meioses per marker. An autosomal genome length of 3262 cM was estimated for the Churra population with a mean marker interval of 17.86 cM. Our map represents an approximate 90% coverage of the autosomal ovine genome and constitutes a useful tool for the genetic dissection of complex traits in this breed. General agreement was found between the Churra map and other published maps for sheep, despite certain length discrepancies.

  11. Evidence for linkage to psychosis and cerebral asymmetry (relative hand skill) on the X chromosome.

    Science.gov (United States)

    Laval, S H; Dann, J C; Butler, R J; Loftus, J; Rue, J; Leask, S J; Bass, N; Comazzi, M; Vita, A; Nanko, S; Shaw, S; Peterson, P; Shields, G; Smith, A B; Stewart, J; DeLisi, L E; Crow, T J

    1998-09-01

    The hypothesis that psychosis arises as a part of the genetic diversity associated with the evolution of language generates the prediction that illness will be linked to a gene determining cerebral asymmetry, which, from the evidence of sex chromosome aneuploidies, is present in homologous form on the X and Y chromosomes. We investigated evidence of linkage to markers on the X chromosome in 1) 178 families multiply affected with schizophrenia or schizoaffective disorder with a series of 16 markers spanning the centromere (study 1), and 2) 180 pairs of left-handed brothers with 14 markers spanning the whole chromosome (study 2). In study 1, excess allele-sharing was observed in brother-brother pairs (but not brother-sister or a small sample of sister-sister pairs) over a region of approximately 20 cM, with a maximum LOD score of 1.5 at DXS991. In study 2, an association between allele-sharing and degree of left-handedness was observed extending over approximately 60 cM, with a maximum lod score of 2.8 at DXS990 (approximately 20 cM from DXS991). Within the overlap of allele-sharing is located a block in Xq21 that transposed to the Y chromosome in recent hominid evolution and is now represented as two segments on Yp. In one of two XX males with psychosis we found that the breakpoint on the Y is located within the distal region of homology to the block in Xq21. These findings are consistent with the hypothesis that an X-Y homologous determinant of cerebral asymmetry carries the variation that contributes to the predisposition to psychotic illness.

  12. Constructing the parental linkage phase and the genetic map over distances <1 cM using pooled haploid DNA.

    Science.gov (United States)

    Gasbarra, Dario; Sillanpää, Mikko J

    2006-02-01

    A new statistical approach for construction of the genetic linkage map and estimation of the parental linkage phase based on allele frequency data from pooled gametic (sperm or egg) samples is introduced. This method can be applied for estimation of recombination fractions (over distances ordering of large numbers (even hundreds) of closely linked markers. This method should be extremely useful in species with a long generation interval and a large genome size such as in dairy cattle or in forest trees; the conifer species have haploid tissues available in megagametophytes. According to Mendelian expectation, two parental alleles should occur in gametes in 1:1 proportions, if segregation distortion does not occur. However, due to mere sampling variation, the observed proportions may deviate from their expected value in practice. These deviations and their dependence along the chromosome can provide information on the parental linkage phase and on the genetic linkage map. Usefulness of the method is illustrated with simulations. The role of segregation distortion as a source of these deviations is also discussed. The software implementing this method is freely available for research purposes from the authors. PMID:16301209

  13. Preliminary genetic linkage map of Indian major carp, Labeo rohita (Hamilton 1822) based on microsatellite markers

    Indian Academy of Sciences (India)

    L. Sahoo; A. Patel; B. P. Sahu; S. Mitra; P. K. Meher; K. D. Mahapatra; S. K. Dash; P. Jayasankar; P. Das

    2015-06-01

    Linkage map with wide marker coverage is an essential resource for genetic improvement study for any species. Sex-averaged genetic linkage map of Labeo rohita, popularly known as ‘rohu’, widely cultured in the Indian subcontinent, was developed by placing 68 microsatellite markers generated by a simplified method. The parents and their F1 progeny (92 individuals) were used as segregating populations. The genetic linkage map spans a sex-averaged total length of 1462.2 cM, in 25 linkage groups. The genome length of rohu was estimated to be 3087.9 cM. This genetic linkage map may facilitate systematic searches of the genome to identify genes associated with commercially important characters and marker-assisted selection programmes of this species.

  14. Amplification, analysis and chromosome mapping of novel homeobox-containing and homeobox-flanking sequences in rice

    Institute of Scientific and Technical Information of China (English)

    刘国振; 严长杰; 翟文学; 何平; 杨江; 李小兵; 朱立煌

    1999-01-01

    Homeobox genes, widely distributed among animal and plant kingdoms, play an important role in developmental process. Several homeobox conserved fragments were amplified by PCR and the flanking regions were also obtained by an LM-PCR procedure. Sequencing and Southern analysis showed that they belong to a homeobox gene family of rice. Six homeobox-containing fragments were mapped on the molecular linkage map of rice. They were located on chromosomes 3, 4 and 7 respectively. It is noteworthy that there are 4 homeobox fragments located on rice chromosome 3 and the result is also consistent with the comparative genomics between rice and maize.

  15. Linkage Map of Escherichia coli K-12, Edition 10: The Physical Map

    OpenAIRE

    Rudd, Kenneth E.

    1998-01-01

    A physical map, EcoMap10, of the now completely sequenced Escherichia coli chromosome is presented. Calculated genomic positions for the eight restriction enzymes BamHI, HindIII, EcoRI, EcoRV, BglI, KpnI, PstI, and PvuII are depicted. Both sequenced and unsequenced Kohara/Isono miniset clones are aligned to this calculated restriction map. DNA sequence searches identify the precise locations of insertion sequence elements and repetitive extragenic palindrome clusters. EcoGene10, a revised set...

  16. Constructing a high-density linkage map for Gossypium hirsutum ? Gossypium barbadense and identifying QTLs for lint percentage

    Institute of Scientific and Technical Information of China (English)

    Yuzhen Shi; Haihong Shang; Juwu Gong; Wankui Gong; Zemao Yang; Feiy Tang; Zhi Liu; Weiping Zhu; Jianxiong Jiang; Xiaonan Yu; Tao Wang; Wentan Li; Wei Wang; Tingting Chen; Kunbo Wang; Zhengsheng Zhang; Youlu Yuan; Aiguo Li; Ruihua Ge; Baocai Zhang; Junzhi Li; Guangping Liu; Junwen Li; Aiying Liu

    2015-01-01

    To introgress the good fiber quality and yield from Gossypium barbadense into a commercial Upland cotton variety, a high‐density simple sequence repeat (SSR) genetic linkage map was developed from a BC1F1 population of Gossypium hirsutum ? Gossypium barbadense. The map com-prised 2,292 loci and covered 5115.16 centiMorgan (cM) of the cotton AD genome, with an average marker interval of 2.23 cM. Of the marker order for 1,577 common loci on this new map, 90.36% agrees well with the marker order on the D genome sequence genetic map. Compared with five pub-lished high‐density SSR genetic maps, 53.14% of marker loci were newly discovered in this map. Twenty‐six quantitative trait loci (QTLs) for lint percentage (LP) were identified on nine chromosomes. Nine stable or common QTLs could be used for marker‐assisted selection. Fifty percent of the QTLs were from G. barbadense and increased LP by 1.07%–2.41%. These results indicated that the map could be used for screening chromosome substitution segments from G. barbadense in the Upland cotton background, identifying QTLs or genes from G. barbadense, and further developing the gene pyramiding effect for improving fiber yield and quality.

  17. Mapping of human chromosomal regions related to neoplasia: evidence from chromosomes 1 and 17

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J.D.

    1977-12-01

    In clonal aberrations leading to an excess or partial excess of chromosome I, trisomy for bands 1q25-1q32 was noted in the myeloid cells from all of 34 patients who had various disorders such as acute leukemia, polycythemia vera, and myelofibrosis. This was not the result of a particularly fragile site in that region of the chromosome because the break points in reciprocal translocations that involve it occurred almost exclusively in the short arm. Two consistent rearrangements that have been observed in chromosome 17 produced either duplication of the entire long arm or a translocation of the distal portion of the long arm to chromosome 15. The nonrandom chromosomal changes found in hematologic disorders can now be correlated with the gene loci on these chromosomes or chromosomal segments. Seventy-five genes related to various metabolic enzymes have been mapped; it may be significant that chromosomes carrying gene loci related to nucleic acid metabolism are more frequently involved in hematologic disorders (and other malignancies as well) than are gene loci related to intermediary or carbohydrate metabolism. Furthermore, the known virus-human chromosome associations are closely correlated with the chromosomes affected in hematologic disorders. If one of the effects of carcinogens (including viruses) is to activate genes that regulate host cell DNA synthesis, and if translocations or duplications of specific chromosomal segments produce the same effect, then either of these mechanisms might provide the affected cell with a proliferative advantage.

  18. Genetic and physical mapping of the bovine X chromosome.

    Science.gov (United States)

    Yeh, C C; Taylor, J F; Gallagher, D S; Sanders, J O; Turner, J W; Davis, S K

    1996-03-01

    Three hundred eighty reciprocal backcross and F(2) full sib progeny from 33 families produced by embryo transfer from 77 Angus (Bos taurus), Brahman (Bos indicus), and F1 parents and grandparents were used to construct genetic maps of the bovine X and Y chromosomes. Ml individuals were scored for 15 microsatellite loci, with an average of 608 informative meioses per locus. The length of the bovine X chromosome genetic map was 118.7 cM (female only) and of the pseudoautosomal region was 13.0 cM (male only). The 15-marker framework map in Kosambi centimorgans is [BM6017-6.1 -TGLA89-35.8-TEXAN13-3.4-TGLA128-1.3 -BM2713 -21.1 -BM4604-2.4-BR215 - 12.9-TGLA68-10.0-BM4321 - 1.0-HEL14-4.9-TGLA15-2.3-INRA12O- 12.5-TGLA325- 1.6-MAF45-3.2-INRA3O], with an average interval of 7.91 cM. Clones containing pseudoautosomal or sex-linked microsatellites were isolated from a bovine bacterial artificial chromosome library and were physically mapped to bovine metaphase chromosomes by fluorescence in situ hybridization to orient the X and Y chromosome maps. BAC57, containing the pseudoautosomal microsatellite INRA3O, mapped to the distal end of the long arm of the X chromosome at q42-ter and to the short arm of the Y chromosome at p13-ter. This confirms the published assignment of this region to Ypl2-ter, but challenges the published assignment of Xpl4-ter and thus reorients the X chromosome physical map. BAC2O4, containing the X-linked microsatellite BM4604, mapped to the middle of the long arm of the X chromosome at q26-q31. The position of the physically mapped markers indicates either a lack of microsatellite markers for a large (30 to 50 cM) region of the short arm of the X chromosome or heterogeneity of recombination along the X chromosome. PMID:8833151

  19. Linkage to chromosome 1p36 for attention-deficit/hyperactivity disorder traits in school and home settings

    NARCIS (Netherlands)

    Zhou, K.; Asherson, P.; Sham, P.; Franke, B.; Anney, R.J.; Buitelaar, J.K.; Ebstein, R.; Gill, M.; Brookes, K.; Buschgens, C.; Campbell, D.; Chen, W.; Christiansen, H.; Fliers, E.; Gabriels, I.; Johansson, L.; Marco, R.; Mulas, F.; Muller, U.; Mulligan, A.; Neale, B.M.; Rijsdijk, F.; Lambregts-Rommelse, N.N.J.; Uebel, H.; Psychogiou, L.; Xu, X.; Banaschewski, T.; Sonuga-Barke, E.; Eisenberg, J.; Manor, I.; Miranda, A.; Oades, R.D.; Roeyers, H.; Rothenberger, A.; Sergeant, J.A.; Steinhausen, H.C.; Taylor, E.; Thompson, M.; Faraone, S.V.

    2008-01-01

    BACKGROUND: Limited success has been achieved through previous attention-deficit/hyperactivity disorder (ADHD) linkage scans, which were all designed to map genes underlying the dichotomous phenotype. The International Multi-centre ADHD Genetics (IMAGE) project performed a whole genome linkage scan

  20. Physical localization of molecular markers and assignment of the 15th linkage group to chromosome 11 of the karyotype in cassava (Manihot esculenta Crantz) by primed in situ labeling.

    Science.gov (United States)

    Wang, Y; Wang, J F; Yin, H; Gao, H Q; Zhuang, N S; Liu, J P

    2015-07-28

    Physical localization of molecular markers and assignment of the 15th linkage group to chromosome 11 of the karyotype in cassava (Manihot esculenta Crantz) were achieved using primed in situ labeling. Amplified signals for both the EST507-1 and SSRY13-5 markers were consistently observed in different stages of cell division. A comparison of the length, arm ratio, and other morphological characteristics of somatic metaphase chromosomes in karyotype analysis indicated that the EST507-1 and SSRY13-5 markers were localized on the short and long arm of cassava chromosome 11 with the relative map positions of 41.67 and 23.07, respectively. The physical localization of the 2 markers on chromosome 11 of the karyotype corresponds to their positions on the 15th linkage group in cassava.

  1. Chromosome mapping of dragline silk genes in the genomes of widow spiders (Araneae, Theridiidae.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhao

    Full Text Available With its incredible strength and toughness, spider dragline silk is widely lauded for its impressive material properties. Dragline silk is composed of two structural proteins, MaSp1 and MaSp2, which are encoded by members of the spidroin gene family. While previous studies have characterized the genes that encode the constituent proteins of spider silks, nothing is known about the physical location of these genes. We determined karyotypes and sex chromosome organization for the widow spiders, Latrodectus hesperus and L. geometricus (Araneae, Theridiidae. We then used fluorescence in situ hybridization to map the genomic locations of the genes for the silk proteins that compose the remarkable spider dragline. These genes included three loci for the MaSp1 protein and the single locus for the MaSp2 protein. In addition, we mapped a MaSp1 pseudogene. All the MaSp1 gene copies and pseudogene localized to a single chromosomal region while MaSp2 was located on a different chromosome of L. hesperus. Using probes derived from L. hesperus, we comparatively mapped all three MaSp1 loci to a single region of a L. geometricus chromosome. As with L. hesperus, MaSp2 was found on a separate L. geometricus chromosome, thus again unlinked to the MaSp1 loci. These results indicate orthology of the corresponding chromosomal regions in the two widow genomes. Moreover, the occurrence of multiple MaSp1 loci in a conserved gene cluster across species suggests that MaSp1 proliferated by tandem duplication in a common ancestor of L. geometricus and L. hesperus. Unequal crossover events during recombination could have given rise to the gene copies and could also maintain sequence similarity among gene copies over time. Further comparative mapping with taxa of increasing divergence from Latrodectus will pinpoint when the MaSp1 duplication events occurred and the phylogenetic distribution of silk gene linkage patterns.

  2. Physical and linkage mapping of the human and murine genes for the [alpha]1 chain of type IX collagen (COL9A1)

    Energy Technology Data Exchange (ETDEWEB)

    Warman, M.L. (Harvard Medical School, Boston, MA (United States) Children' s Hospital/Harvard Medical School, Boston, MA (United States)); Tiller, G.E.; Polumbo, P.A. (Vanderbilt Univ. Medical Center, Nashville, TN (United States)); Seldin, M.F.; Rochelle, J.M. (Duke Univ. Medical Center, Durham, NC (United States)); Knoll, J.H.M.; Cheng, Sou De (Children' s Hospital/Harvard Medical School, Boston, MA (United States)); Olsen, B.R. (Harvard Medical School, Boston, MA (United States))

    1993-09-01

    The IX collagen, a member of the FACIT family of extracellular matrix proteins, is a heterotrimer composed of three genetically distinct [alpha] chains. The cDNAs for the human and mouse [alpha]1(IX) chains have been cloned. In this paper the authors confirm the mapping of the human COL9A1 gene to chromosome 6q12-q13 by fluorescence in situ hybridization utilizing two genomic clones which also contain short tandem repeat polymorphisms. They also report the characterization of these repeats and their incorporation into the chromosome 6 linkage map. The COL9A1 locus shows no recombination with the marker D6Z1 (Z = 27.61 at [theta] = 0) and identifies the most likely locus order of KRAS1P-[D6Z1-COL9A1]-D6S30. In addition, using an interspecific backcross panel, they have mapped murine Col9a1 to mouse chromosome 1. Together with other comparative mapping results, these data suggest that the pericentric region of human chromosome 6 is homologous to the most proximal segment of mouse chromosome 1. These data may facilitate linkage studies with COL9A1 (or col9a1) as a candidate gene for hereditary chondrodysplasias and osteoarthritis. 35 refs., 2 figs., 2 tabs.

  3. An autotetraploid linkage map of rose (Rosa hybrida validated using the strawberry (Fragaria vesca genome sequence.

    Directory of Open Access Journals (Sweden)

    Oron Gar

    Full Text Available Polyploidy is a pivotal process in plant evolution as it increase gene redundancy and morphological intricacy but due to the complexity of polysomic inheritance we have only few genetic maps of autopolyploid organisms. A robust mapping framework is particularly important in polyploid crop species, rose included (2n = 4x = 28, where the objective is to study multiallelic interactions that control traits of value for plant breeding. From a cross between the garden, peach red and fragrant cultivar Fragrant Cloud (FC and a cut-rose yellow cultivar Golden Gate (GG, we generated an autotetraploid GGFC mapping population consisting of 132 individuals. For the map we used 128 sequence-based markers, 141 AFLP, 86 SSR and three morphological markers. Seven linkage groups were resolved for FC (Total 632 cM and GG (616 cM which were validated by markers that segregated in both parents as well as the diploid integrated consensus map.The release of the Fragaria vesca genome, which also belongs to the Rosoideae, allowed us to place 70 rose sequenced markers on the seven strawberry pseudo-chromosomes. Synteny between Rosa and Fragaria was high with an estimated four major translocations and six inversions required to place the 17 non-collinear markers in the same order. Based on a verified linear order of the rose markers, we could further partition each of the parents into its four homologous groups, thus providing an essential framework to aid the sequencing of an autotetraploid genome.

  4. A genetic linkage map of hexaploid naked oat constructed with SSR markers

    Institute of Scientific and Technical Information of China (English)

    Gaoyuan; Song; Pengjie; Huo; Bin; Wu; Zongwen; Zhang

    2015-01-01

    Naked oat is a unique health food crop in China. Using 202 F2 individuals derived from a hybrid between the variety 578 and the landrace Sanfensan, we constructed a genetic linkage map consisting of 22 linkage groups covering 2070.50 c M and including 208 simple sequence repeat(SSR) markers. The minimum distance between adjacent markers was0.01 c M and the average was 9.95 c M. Each linkage group contained 2–22 markers. The largest linkage group covered 174.40 c M and the shortest one covered 36.80 c M, with an average of 94.11 c M. Thirty-six markers(17.3%) showing distorted segregation were distributed across linkage groups LG5 to LG22. This map complements published oat genetic maps and is applicable for quantitative trait locus analysis, gene cloning and molecular marker-assisted selection.

  5. A genetic linkage map of hexaploid naked oat constructed with SSR markers

    Institute of Scientific and Technical Information of China (English)

    Gaoyuan Song; Pengjie Huo; Bin Wu; Zongwen Zhang

    2015-01-01

    Naked oat is a unique health food crop in China. Using 202 F2 individuals derived from a hybrid between the variety 578 and the landrace Sanfensan, we constructed a genetic linkage map consisting of 22 linkage groups covering 2070.50 cM and including 208 simple sequence repeat (SSR) markers. The minimum distance between adjacent markers was 0.01 cM and the average was 9.95 cM. Each linkage group contained 2–22 markers. The largest linkage group covered 174.40 cM and the shortest one covered 36.80 cM, with an average of 94.11 cM. Thirty-six markers (17.3%) showing distorted segregation were distributed across linkage groups LG5 to LG22. This map complements published oat genetic maps and is applicable for quantitative trait locus analysis, gene cloning and molecular marker-assisted selection.

  6. Localization of the CYP2D gene locus to human chromosome 22q13. 1 by polymerase chain reaction, in situ hybridization, and linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gouch, A.C.; Howell, S.M.; Bryant, S.P.; Spurr, N.K. (Clare Hall Lab., Hertfordshire (United Kingdom)); Smith, C.A.D.; Wolf, C.R. (Cancer Research Fund, Edinburgh (United Kingdom))

    1993-02-01

    Using a combination of somatic cell hybrids, in situ hybridization, and linkage mapping, we have been able to localize the cytochrome P450 CYP2D6 gene to chromosome 22 in the region q13.1. Linkage analysis, using locus-specific primers, showed a maximum sex-average lod score of 8.12 ([theta] = 0.00) between the marker pH130 (D22S64) and CYPsD6, of 6.92 ([theta] - 0.00) between the marker KI839 (D22S95) and CYP2D6, and 4.80 ([theta] = 0.036) between the platelet-derived growth factor [beta] subunit gene (PDGFB) and CYP2D6. 16 refs., 2 figs.

  7. Multistudy fine mapping of chromosome 2q identifies XRCC5 as a chronic obstructive pulmonary disease susceptibility gene

    DEFF Research Database (Denmark)

    Hersh, Craig P; Pillai, Sreekumar G; Zhu, Guohua;

    2010-01-01

    RATIONALE: Several family-based studies have identified genetic linkage for lung function and airflow obstruction to chromosome 2q. OBJECTIVES: We hypothesized that merging results of high-resolution single nucleotide polymorphism (SNP) mapping in four separate populations would lead to the...... identification of chronic obstructive pulmonary disease (COPD) susceptibility genes on chromosome 2q. METHODS: Within the chromosome 2q linkage region, 2,843 SNPs were genotyped in 806 COPD cases and 779 control subjects from Norway, and 2,484 SNPs were genotyped in 309 patients with severe COPD from the...... in the Boston Early-Onset COPD Study. MEASUREMENTS AND MAIN RESULTS: Merging the results of the two case-control analyses, 14 of the 790 overlapping SNPs had a combined P < 0.01. Two of these 14 SNPs were consistently associated with COPD in the ICGN families. The association with one SNP, located in...

  8. Linkage disequilibrium mapping via cladistic analysis of single-nucleotide polymorphism haplotypes.

    Science.gov (United States)

    Durrant, Caroline; Zondervan, Krina T; Cardon, Lon R; Hunt, Sarah; Deloukas, Panos; Morris, Andrew P

    2004-07-01

    We present a novel approach to disease-gene mapping via cladistic analysis of single-nucleotide polymorphism (SNP) haplotypes obtained from large-scale, population-based association studies, applicable to whole-genome screens, candidate-gene studies, or fine-scale mapping. Clades of haplotypes are tested for association with disease, exploiting the expected similarity of chromosomes with recent shared ancestry in the region flanking the disease gene. The method is developed in a logistic-regression framework and can easily incorporate covariates such as environmental risk factors or additional unlinked loci to allow for population structure. To evaluate the power of this approach to detect disease-marker association, we have developed a simulation algorithm to generate high-density SNP data with short-range linkage disequilibrium based on empirical patterns of haplotype diversity. The results of the simulation study highlight substantial gains in power over single-locus tests for a wide range of disease models, despite overcorrection for multiple testing.

  9. Genetic and radiation hybrid mapping of the hyperekplexia region on chromosome 5q

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, S.G.; O' Connell, P. (Univ. of Texas Health Science Center, San Antonio (United States)); Dixon, M.J. (Univ. of Manchester (United Kingdom)); Nigro, M.A. (Wayne State Univ., Detroit, MI (United States)); Kelts, K.A. (Black Hills Neurology, Rapid City, SD (United States)); Markand, O.N. (Indiana Univ., Indianopolis (United States)); Shiang, R.; Wasmuth, J.J. (Univ. of California, Irvine (United States)); Terry, J.C.

    1992-12-01

    Hyperekplexia, or startle disease (STHE), is an autosomal dominant neurologic disorder characterized by muscular rigidity of central nervous system origin, particularly in the neonatal period, and by an exaggerated startle response to sudden, unexpected acoustic or tactile stimuli. STHE responds dramatically to the benzodiazepine drug clonazepam, which acts at gamma-aminobutyric acid type A (GABA-A) receptors. The STHE locus (STHE) was recently assigned to chromosome 5q, on the basis of tight linkage to the colony-stimulating factor 1-receptor (CSF1-R) locus in a single large family. The authors performed linkage analysis in the original and three additional STHE pedigrees with eight chromosome 5q microsatellite markers and placed several of the most closely linked markers on an existing radiation hybrid (RH) map of the region. The results provide strong evidence for genetic locus homogeneity and assign STHE to a 5.9-cM interval defined by CSF1-R and D5S379, which are separated by an RH map distance of 74 centirays (roughly 2.2-3.7 Mb). Two polymorphic markers (D5S119 and D5S209) lie within this region, but they could not be ordered with respect to STHE. RH mapping eliminated the candidate genes GABRA1 and GABRG2, which encode GABA-A receptor components, by showing that they are telomeric to the target region. 45 refs., 4 figs., 4 tabs.

  10. Use of an intron length polymorphism to localize the tropoelastin gene to mouse Chromosome 5 in a region of linkage conservation with human Chromosome 7

    Energy Technology Data Exchange (ETDEWEB)

    Wydner, K.S.; Passmore, H.C. [Rutgers Univ., Piscataway, NJ (United States); Sechler, J.L.; Boyd, C.D. [UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ (United States)

    1994-09-01

    The complete coding sequence for mouse tropoelastin was obtained from overlapping reverse transcriptase polymerase chain reaction (PCR) amplimers. These cDNA fragments were derived from mouse tropoelastin mRNA using PCR oligomers complementary to conserved domains within rat tropoelastin mRNA. A comparison of coding domains of mouse and rat tropoelastin mRNA revealed a greater than 93% homology at the nucleotide level and over 96% similarity in the predicted amino acid sequence. PCR primers complementary to regions of the mouse tropoelastin mRNA were used to define a novel intron length polymorphism (ILP) within intron 8 of the mouse tropoelastin gene (Eln). This ILP proved to be informative in an intraspecific backcross in which genomic DNA samples from 75 backcross mice were used to map the tropoelastin gene to a position in the distal half of mouse chromosome 5. The linkage and genetic distances between Eln and the closest molecular markers used in this study are centromere-D5Mit95, D5Mit96-6.7 cM-Gus, Eln-4.0 cM-Zp3-telomere.

  11. Prostate Cancer Aggressiveness Locus on Chromosome 7832-q33 Identified by Linkage and Allelic Imbalance Studies

    Directory of Open Access Journals (Sweden)

    Phillippa J. Neville

    2002-01-01

    Full Text Available The biologic aggressiveness of prostate tumors is an important indicator of prognosis. Chromosome 7g32-q33 was recently reported to show linkage to more aggressive prostate cancer, based on Gleason score, in a large sibling pair study. We report confirmation and narrowing of the linked region using finer-scale genotyping. We also report a high frequency of allelic imbalance. (AI defined within this locus in a series of 48 primary prostate tumors from men unselected for family history or disease status. The highest frequency of AI was observed with adjacent markers D7S2531. (52% and D7S1804. (36%. These two markers delineated a common region of AI, with 24 tumors exhibiting interstitial AI involving one or both markers. The 1.1-Mb candidate region contains relatively few transcripts. Additionally, we observed positive associations between interstitial AI at D7S1804 and early age at diagnosis. (P=.03 as well as a high combined Gleason score and tumor stage. (P=.06. Interstitial AI at D7S2531 was associated with a positive family history of prostate cancer. (P=.05. These data imply that we have localized a prostate cancer tumor aggressiveness loci to chromosome 7832-q33 that is involved in familial and nonfamilial forms of prostate cancer.

  12. A Picea abies linkage map based on SNP markers identifies QTLs for four aspects of resistance to Heterobasidion parviporum infection.

    Directory of Open Access Journals (Sweden)

    Mårten Lind

    Full Text Available A consensus linkage map of Picea abies, an economically important conifer, was constructed based on the segregation of 686 SNP markers in a F1 progeny population consisting of 247 individuals. The total length of 1889.2 cM covered 96.5% of the estimated genome length and comprised 12 large linkage groups, corresponding to the number of haploid P. abies chromosomes. The sizes of the groups (from 5.9 to 9.9% of the total map length correlated well with previous estimates of chromosome sizes (from 5.8 to 10.8% of total genome size. Any locus in the genome has a 97% probability to be within 10 cM from a mapped marker, which makes the map suited for QTL mapping. Infecting the progeny trees with the root rot pathogen Heterobasidion parviporum allowed for mapping of four different resistance traits: lesion length at the inoculation site, fungal spread within the sapwood, exclusion of the pathogen from the host after initial infection, and ability to prevent the infection from establishing at all. These four traits were associated with two, four, four and three QTL regions respectively of which none overlapped between the traits. Each QTL explained between 4.6 and 10.1% of the respective traits phenotypic variation. Although the QTL regions contain many more genes than the ones represented by the SNP markers, at least four markers within the confidence intervals originated from genes with known function in conifer defence; a leucoanthocyanidine reductase, which has previously been shown to upregulate during H. parviporum infection, and three intermediates of the lignification process; a hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyltransferase, a 4-coumarate CoA ligase, and a R2R3-MYB transcription factor.

  13. A first generation microsatellite- and SNP-based linkage map of Jatropha.

    Directory of Open Access Journals (Sweden)

    Chun Ming Wang

    Full Text Available Jatropha curcas is a potential plant species for biodiesel production. However, its seed yield is too low for profitable production of biodiesel. To improve the productivity, genetic improvement through breeding is essential. A linkage map is an important component in molecular breeding. We established a first-generation linkage map using a mapping panel containing two backcross populations with 93 progeny. We mapped 506 markers (216 microsatellites and 290 SNPs from ESTs onto 11 linkage groups. The total length of the map was 1440.9 cM with an average marker space of 2.8 cM. Blasting of 222 Jatropha ESTs containing polymorphic SSR or SNP markers against EST-databases revealed that 91.0%, 86.5% and 79.2% of Jatropha ESTs were homologous to counterparts in castor bean, poplar and Arabidopsis respectively. Mapping 192 orthologous markers to the assembled whole genome sequence of Arabidopsis thaliana identified 38 syntenic blocks and revealed that small linkage blocks were well conserved, but often shuffled. The first generation linkage map and the data of comparative mapping could lay a solid foundation for QTL mapping of agronomic traits, marker-assisted breeding and cloning genes responsible for phenotypic variation.

  14. Preliminary genetic linkage maps of Chinese herb Dendrobium nobile and D. moniliforme

    Indian Academy of Sciences (India)

    Shangguo Feng; Hongyan Zhao; Jiangjie Lu; Junjun Liu; Bo Shen; Huizhong Wang

    2013-08-01

    Dendrobium is an endangered genus in the orchid family with medicinal and horticultural value. Two preliminary genetic linkage maps were constructed using 90 F1 progeny individuals derived from an interspecific cross between D. nobile and D. moniliforme (both, $2n = 38$), using random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR). A total of 286 RAPD loci and 68 ISSR loci were identified and used for genetic linkage analysis. Maps were constructed by double pseudo-testcross mapping strategy using the software Mapmaker/EXP ver. 3.0, and Kosambi map distances were constructed using a LOD score ≥4 and a recombination threshold of 0.4. The resulting frame map of D. nobile was 1474 cM in total length with 116 loci distributed in 15 linkage groups; and the D. moniliforme linkage map had 117 loci placed in 16 linkage groups spanning 1326.5 cM. Both maps showed 76.91% and 73.59% genome coverage for D. nobile and D. moniliforme, respectively. These primary maps provide an important basis for genetic studies and further medicinal and horticultural traits mapping and marker-assisted selection in Dendrobium breeding programmes.

  15. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci

    NARCIS (Netherlands)

    Meuwissen, T.H.E.; Goddard, M.E.

    2000-01-01

    A multimarker linkage disequilibrium mapping method was developed for the fine mapping of quantitative trait loci (QTL) using a dense marker map. The method compares the expected covariances between haplotype effects given a postulated QTL position to the covariances that are found in the data. The

  16. Construction of a genetic linkage map in Lilium using a RIL mapping population based on SRAP marker

    Directory of Open Access Journals (Sweden)

    Chen Li-Jing

    2015-01-01

    Full Text Available A genetic linkage map of lily was constructed using RILs (recombinant inbred lines population of 180 individuals. This mapping population was developed by crossing Raizan No.1 (Formolongo and Gelria (Longiflomm cultivars through single-seed descent (SSD. SRAPs were generated by using restriction enzymes EcoRI in combination with either MseI. The resulting products were separated by electrophoresis on 6% denaturing polyacrylamide gel and visualized by silver staining. The segregation of each marker and linkage analysis was done using the program Mapmaker3.0. With 50 primer pairs, a total of 189 parental polymorphic bands were detected and 78 were used for mapping. The total map length was 2,135.5 cM consisted of 16 linkage groups. The number of markers in the linkage groups varied from 1 to 12. The length of linkage groups was range from 11.2 cM to 425.9 cM and mean marker interval distance range from 9.4 cM to 345.4 cM individually. The mean marker interval distance between markers was 27.4 cM. The map developed in the present study was the first sequence-related amplified polymorphism markers map of lily constructed with recombinant inbred lines, it could be used for genetic mapping and molecular marker assisted breeding and quantitative trait locus mapping of Lilium.

  17. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array.

    Science.gov (United States)

    Rubinstein, Mor; Katzenellenbogen, Mark; Eshed, Ravit; Rozen, Ada; Katzir, Nurit; Colle, Marivi; Yang, Luming; Grumet, Rebecca; Weng, Yiqun; Sherman, Amir; Ophir, Ron

    2015-01-01

    Genotyping arrays are tools for high-throughput genotyping, which is beneficial in constructing saturated genetic maps and therefore high-resolution mapping of complex traits. Since the report of the first cucumber genome draft, genetic maps have been constructed mainly based on simple-sequence repeats (SSRs) or on combinations of SSRs and sequence-related amplified polymorphism (SRAP). In this study, we developed the first cucumber genotyping array consisting of 32,864 single-nucleotide polymorphisms (SNPs). These markers cover the cucumber genome with a median interval of ~2 Kb and have expected genotype calls in parents/F1 hybridizations as a training set. The training set was validated with Fluidigm technology and showed 96% concordance with the genotype calls in the parents/F1 hybridizations. Application of the genotyping array was illustrated by constructing a 598.7 cM genetic map based on a '9930' × 'Gy14' recombinant inbred line (RIL) population comprised of 11,156 SNPs. Marker collinearity between the genetic map and reference genomes of the two parents was estimated at R2 = 0.97. We also used the array-derived genetic map to investigate chromosomal rearrangements, regional recombination rate, and specific regions with segregation distortions. Finally, 82% of the linkage-map bins were polymorphic in other cucumber variants, suggesting that the array can be applied for genotyping in other lines. The genotyping array presented here, together with the genotype calls of the parents/F1 hybridizations as a training set, should be a powerful tool in future studies with high-throughput cucumber genotyping. An ultrahigh-density linkage map constructed by this genotyping array on RIL population may be invaluable for assembly improvement, and for mapping important cucumber QTLs. PMID:25874931

  18. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L. using a single-nucleotide polymorphism genotyping array.

    Directory of Open Access Journals (Sweden)

    Mor Rubinstein

    Full Text Available Genotyping arrays are tools for high-throughput genotyping, which is beneficial in constructing saturated genetic maps and therefore high-resolution mapping of complex traits. Since the report of the first cucumber genome draft, genetic maps have been constructed mainly based on simple-sequence repeats (SSRs or on combinations of SSRs and sequence-related amplified polymorphism (SRAP. In this study, we developed the first cucumber genotyping array consisting of 32,864 single-nucleotide polymorphisms (SNPs. These markers cover the cucumber genome with a median interval of ~2 Kb and have expected genotype calls in parents/F1 hybridizations as a training set. The training set was validated with Fluidigm technology and showed 96% concordance with the genotype calls in the parents/F1 hybridizations. Application of the genotyping array was illustrated by constructing a 598.7 cM genetic map based on a '9930' × 'Gy14' recombinant inbred line (RIL population comprised of 11,156 SNPs. Marker collinearity between the genetic map and reference genomes of the two parents was estimated at R2 = 0.97. We also used the array-derived genetic map to investigate chromosomal rearrangements, regional recombination rate, and specific regions with segregation distortions. Finally, 82% of the linkage-map bins were polymorphic in other cucumber variants, suggesting that the array can be applied for genotyping in other lines. The genotyping array presented here, together with the genotype calls of the parents/F1 hybridizations as a training set, should be a powerful tool in future studies with high-throughput cucumber genotyping. An ultrahigh-density linkage map constructed by this genotyping array on RIL population may be invaluable for assembly improvement, and for mapping important cucumber QTLs.

  19. A Genetic Linkage Map of Brassica rapa Based on AFLP Markers

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jian-jun; WANG Xiao-wu; Guusje Bonnema; SUN Ri-fei; XU Ze-yong; Dick Vreugdenhi; Maarten Koornneef

    2005-01-01

    A F2 mapping population was developed by crossing a Chinese cabbage-pe-tsai variety CC156 and an oil type Rapid cycling RC144 which were different from each other in morphology, maturity, self-compatibility, plant height, etc. Using 244 AFLP markers a map was constructed containing 10 main linkage groups covering a total distance of 857 cM,corresponding to 3.5 cM per marker. Length of linkage groups varied from 43 to 125 cM and the number of AFLP markers linkage to each group ranged from 7 to 41.

  20. Molecular mapping of chromosomes 17 and X. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1989-12-31

    The basic aims of this project are the construction of high density genetic maps of chromosomes 17 and X and the utilization of these maps for the subsequent isolation of a set of physically overlapping DNA segment clones. The strategy depends on the utilization of chromosome specific libraries of small (1--15 kb) segments from each of the two chromosomes. Since the time of submission of our previous progress report, we have refined the genetic map of markers which we had previously isolated for chromosome 17. We have completed our genetic mapping in CEPH reference and NF1 families of 15 markers in the pericentric region of chromosome 17. Physical mapping results with three probes, were shown be in very close genetic proximity to the NF1 gene, with respect to two translocation breakpoints which disrupt the activity of the gene. All three of the probes were found to lie between the centromere and the most proximal translocation breakpoint, providing important genetic markers proximal to the NF1 gene. Our primary focus has shifted to the X chromosome. We have isolated an additional 30 polymorphic markers, bringing the total number we have isolated to over 80. We have invested substantial effort in characterizing the polymorphisms at each of these loci and constructed plasmid subclones which reveal the polymorphisms for nearly all of the loci. These subclones are of practical value in that they produce simpler and stronger patterns on human genomic Southern blots, thus improving the efficiency of the genetic mapping experiments. These subclones may also be of value for deriving DNA sequence information at each locus, necessary for establishing polymerase chain reaction primers specific for each locus. Such information would allow the use of each locus as a sequence tagged site.

  1. Potential chromosomal introgression barriers revealed by linkage analysis in a hybrid of Pinus massoniana and P. hwangshanensis

    Directory of Open Access Journals (Sweden)

    Yin Tongming

    2010-02-01

    Full Text Available Abstract Background Exploring the genetic mechanisms underlying speciation is a hot topic in modern genetics and evolutionary studies. Distortion of marker transmission ratio is frequently ascribed to selection against alleles that cause hybrid incompatibility. The natural introgression between P. massoniana and P. hwangshanensis and their distribution ranges lead to the emergence of the two species as desirable organisms to study the genetic mechanisms for speciation. Results Using seeds sampled from trees at different elevations, we consistently detected sharp decreases in seed germination rates of trees in the hybrid zone, which might be due largely to the hybrid incompatibility. A genetic map was established using 192 megagametophytes from a single tree in the hybrid zone of the two species. Segregation distortion analysis revealed that the percentage of significant-segregation-distortion (SSD markers was extremely high, accounting for more than 25% of the segregating markers. The extension range, the distortion direction, and the distortion intensity of SSD markers also varied dramatically on different linkage groups. Conclusions In this study, we display the potential chromosomal introgression barriers between P. massoniana and P. hwangshanensis. Our study provides a valuable platform for conducting genome-wide association of hybrid incompatible QTLs and/or candidate genes with marker transmission ratio distortion in the hybrid.

  2. Refining the localization of the PKD2 locus on chromosome 4q by linkage analysis in Spanish families with autosomal dominant polycystic kidney disease type 2

    Energy Technology Data Exchange (ETDEWEB)

    San Millan, J.L.; Viribay, M.; Peral, B.; Moreno, F. [Unidad de Genetica Molecular, Madrid (Spain); Martinez, I. [Hospital de Galdacano (Spain); Weissenbach, J. [Genethon, Evry (France)

    1995-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder. At least two distinct forms of ADPKD are now well defined. In {approximately}86% of affected European families, a gene defect localized to 16p13.3 was responsible for ADPKD, while a second locus has been recently localized to 4q13-q23 as candidate for the disease in the remaining families. We present confirmation of linkage to microsatellite markers on chromosome 4q in eight Spanish families with ADPKD, in which the disease was not linked to 16p13.3. By linkage analysis with marker D4S423, a maximum lod score of 9.03 at a recombination fraction of .00 was obtained. Multipoint linkage analysis, as well as a study of recombinant haplotypes, placed the PKD2 locus between D4S1542 and D4S1563, thereby defining a genetic interval of {approximately}1 cM. The refined map will serve as a genetic framework for additional genetic and physical mapping of the region and will improve the accuracy of presymptomatic diagnosis of PKD2. 25 refs., 4 figs., 1 tab.

  3. Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome.

    Science.gov (United States)

    Spigler, R B; Lewers, K S; Main, D S; Ashman, T-L

    2008-12-01

    The evolution of separate sexes (dioecy) from hermaphroditism is one of the major evolutionary transitions in plants, and this transition can be accompanied by the development of sex chromosomes. Studies in species with intermediate sexual systems are providing unprecedented insight into the initial stages of sex chromosome evolution. Here, we describe the genetic mechanism of sex determination in the octoploid, subdioecious wild strawberry, Fragaria virginiana Mill., based on a whole-genome simple sequence repeat (SSR)-based genetic map and on mapping sex determination as two qualitative traits, male and female function. The resultant total map length is 2373 cM and includes 212 markers on 42 linkage groups (mean marker spacing: 14 cM). We estimated that approximately 70 and 90% of the total F. virginiana genetic map resides within 10 and 20 cM of a marker on this map, respectively. Both sex expression traits mapped to the same linkage group, separated by approximately 6 cM, along with two SSR markers. Together, our phenotypic and genetic mapping results support a model of gender determination in subdioecious F. virginiana with at least two linked loci (or gene regions) with major effects. Reconstruction of parental genotypes at these loci reveals that both female and hermaphrodite heterogamety exist in this species. Evidence of recombination between the sex-determining loci, an important hallmark of incipient sex chromosomes, suggest that F. virginiana is an example of the youngest sex chromosome in plants and thus a novel model system for the study of sex chromosome evolution.

  4. High-density genetic linkage mapping in turbot (Scophthalmus maximus L. based on SNP markers and major sex- and growth-related regions detection.

    Directory of Open Access Journals (Sweden)

    Weiji Wang

    Full Text Available This paper describes the development of a high density consensus genetic linkage map of a turbot (Scophthalmus maximus L. family composed of 149 mapping individuals using Single Nucleotide Polymorphisms (SNP developed using the restriction-site associated DNA (RAD sequencing technique with the restriction enzyme, PstI. A total of 6,647 SNPs were assigned to 22 linkage groups, which is equal to the number of chromosome pairs in turbot. For the first time, the average marker interval reached 0.3958 cM, which is equal to approximately 0.1203 Mb of the turbot genome. The observed 99.34% genome coverage indicates that the linkage map was genome-wide. A total of 220 Quantitative Traits Locus (QTLs associated with two body length traits, two body weight traits in different growth periods and sex determination were detected with an LOD > 5.0 in 12 linkage groups (LGs, which explained the corresponding phenotypic variance (R2, ranging from 14.4-100%. Among them, 175 overlapped with linked SNPs, and the remaining 45 were located in regions between contiguous SNPs. According to the QTLs related to growth trait distribution and the changing of LGs during different growth periods, the growth traits are likely controlled by multi-SNPs distributed on several LGs; the effect of these SNPs changed during different growth periods. Most sex-related QTLs were detected at LG 21 with a linkage span of 70.882 cM. Additionally, a small number of QTLs with high feasibility and a narrow R2 distribution were also observed on LG7 and LG14, suggesting that multi LGs or chromosomes might be involved in sex determination. High homology was recorded between LG21 in Cynoglossus semilaevis and turbot. This high-saturated turbot RAD-Seq linkage map is undoubtedly a promising platform for marker assisted selection (MAS and flatfish genomics research.

  5. High-density genetic linkage mapping in turbot (Scophthalmus maximus L.) based on SNP markers and major sex- and growth-related regions detection.

    Science.gov (United States)

    Wang, Weiji; Hu, Yulong; Ma, Yu; Xu, Liyong; Guan, Jiantao; Kong, Jie

    2015-01-01

    This paper describes the development of a high density consensus genetic linkage map of a turbot (Scophthalmus maximus L.) family composed of 149 mapping individuals using Single Nucleotide Polymorphisms (SNP) developed using the restriction-site associated DNA (RAD) sequencing technique with the restriction enzyme, PstI. A total of 6,647 SNPs were assigned to 22 linkage groups, which is equal to the number of chromosome pairs in turbot. For the first time, the average marker interval reached 0.3958 cM, which is equal to approximately 0.1203 Mb of the turbot genome. The observed 99.34% genome coverage indicates that the linkage map was genome-wide. A total of 220 Quantitative Traits Locus (QTLs) associated with two body length traits, two body weight traits in different growth periods and sex determination were detected with an LOD > 5.0 in 12 linkage groups (LGs), which explained the corresponding phenotypic variance (R2), ranging from 14.4-100%. Among them, 175 overlapped with linked SNPs, and the remaining 45 were located in regions between contiguous SNPs. According to the QTLs related to growth trait distribution and the changing of LGs during different growth periods, the growth traits are likely controlled by multi-SNPs distributed on several LGs; the effect of these SNPs changed during different growth periods. Most sex-related QTLs were detected at LG 21 with a linkage span of 70.882 cM. Additionally, a small number of QTLs with high feasibility and a narrow R2 distribution were also observed on LG7 and LG14, suggesting that multi LGs or chromosomes might be involved in sex determination. High homology was recorded between LG21 in Cynoglossus semilaevis and turbot. This high-saturated turbot RAD-Seq linkage map is undoubtedly a promising platform for marker assisted selection (MAS) and flatfish genomics research.

  6. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array

    Directory of Open Access Journals (Sweden)

    Antanaviciute Laima

    2012-05-01

    Full Text Available Abstract Background A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNP-based linkage map of an apple rootstock progeny. Results Of the 7,867 Malus SNP markers on the array, 1,823 (23.2% were heterozygous in one of the two parents of the progeny, 1,007 (12.8% were heterozygous in both parental genotypes, whilst just 2.8% of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the ‘Golden Delicious’ genome sequence. A total of 311 markers (13.7% of all mapped markers mapped to positions that conflicted with their predicted positions on the ‘Golden Delicious’ pseudo-chromosomes, indicating the presence of paralogous genomic regions or mis-assignments of genome sequence contigs during the assembly and anchoring of the genome sequence. Conclusions We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a

  7. Pedigree with frontotemporal lobar degeneration – motor neuron disease and Tar DNA binding protein-43 positive neuropathology: genetic linkage to chromosome 9

    Directory of Open Access Journals (Sweden)

    Loy Clement T

    2008-08-01

    Full Text Available Abstract Background Frontotemporal lobar degeneration (FTLD represents a clinically, pathologically and genetically heterogenous neurodegenerative disorder, often complicated by neurological signs such as motor neuron-related limb weakness, spasticity and paralysis, parkinsonism and gait disturbances. Linkage to chromosome 9p had been reported for pedigrees with the neurodegenerative disorder, frontotemporal lobar degeneration (FTLD and motor neuron disease (MND. The objective in this study is to identify the genetic locus in a multi-generational Australian family with FTLD-MND. Methods Clinical review and standard neuropathological analysis of brain sections from affected pedigree members. Genome-wide scan using microsatellite markers and single nucleotide polymorphism fine mapping. Examination of candidate genes by direct DNA sequencing. Results Neuropathological examination revealed cytoplasmic deposition of the TDP-43 protein in three affected individuals. Moreover, we identify a family member with clinical Alzheimer's disease, and FTLD-Ubiquitin neuropathology. Genetic linkage and haplotype analyses, defined a critical region between markers D9S169 and D9S1845 on chromosome 9p21. Screening of all candidate genes within this region did not reveal any novel genetic alterations that co-segregate with disease haplotype, suggesting that one individual carrying a meiotic recombination may represent a phenocopy. Re-analysis of linkage data using the new affection status revealed a maximal two-point LOD score of 3.24 and a multipoint LOD score of 3.41 at marker D9S1817. This provides the highest reported LOD scores from a single FTLD-MND pedigree. Conclusion Our reported increase in the minimal disease region should inform other researchers that the chromosome 9 locus may be more telomeric than predicted by published recombination boundaries. Moreover, the existence of a family member with clinical Alzheimer's disease, and who shares the disease

  8. Linkage disequilibrium in the human insulin/insulin-like growth factor II region of human chromosome II.

    OpenAIRE

    Cox, N J; Bell, G I; Xiang, K S

    1988-01-01

    Caucasian (N = 128) and Chinese (N = 84) subjects were typed for RFLPs in the insulin (INS)/insulin-like growth factor II (IGF2) region of chromosome 11. Both the analysis of extended haplotypes and the pairwise measures of linkage disequilibrium among the RFLPs indicate that there is extensive linkage disequilibrium in the INS/IGF2 region. The disequilibrium extends across the hypervariable region (HVR) located just 5' to the INS gene and encompasses a region of at least 40 kbp. Previous stu...

  9. Mapping organizational linkages in the agricultural innovation system of Azerbaijan

    NARCIS (Netherlands)

    Temel, T.

    2004-01-01

    This study describes the evolving context and organisational linkages in the agricultural innovation system of Azerbaijan and suggests ways to promote effective organisational ties for the development, distribution and use of new or improved information and knowledge related to agriculture. Graph-th

  10. A synthetic rainbow trout linkage map provides new insights into the salmonid whole genome duplication and the conservation of synteny among teleosts

    Directory of Open Access Journals (Sweden)

    Guyomard René

    2012-03-01

    Full Text Available Abstract Background Rainbow trout is an economically important fish and a suitable experimental organism in many fields of biology including genome evolution, owing to the occurrence of a salmonid specific whole-genome duplication (4th WGD. Rainbow trout is among some of the most studied teleosts and has benefited from substantial efforts to develop genomic resources (e.g., linkage maps. Here, we first generated a synthetic map by merging segregation data files derived from three independent linkage maps. Then, we used it to evaluate genome conservation between rainbow trout and three teleost models, medaka, stickleback and zebrafish and to further investigate the extent of the 4th WGD in trout genome. Results The INRA linkage map was updated by adding 211 new markers. After standardization of marker names, consistency of marker assignment to linkage groups and marker orders was checked across the three different data sets and only loci showing consistent location over all or almost all of the data sets were kept. This resulted in a synthetic map consisting of 2226 markers and 29 linkage groups spanning over 3600 cM. Blastn searches against medaka, stickleback, and zebrafish genomic databases resulted in 778, 824 and 730 significant hits respectively while blastx searches yielded 505, 513 and 510 significant hits. Homology search results revealed that, for most rainbow trout chromosomes, large syntenic regions encompassing nearly whole chromosome arms have been conserved between rainbow trout and its closest models, medaka and stickleback. Large conserved syntenies were also found between the genomes of rainbow trout and the reconstructed teleost ancestor. These syntenies consolidated the known homeologous affinities between rainbow trout chromosomes due to the 4th WGD and suggested new ones. Conclusions The synthetic map constructed herein further highlights the stability of the teleost genome over long evolutionary time scales. This map can be

  11. Refined mapping of a gene responsible for Fukuyama-type congenital muscular dystrophy: Evidence for strong linkage disequilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Tatsushi; Ikegawa, Shiro; Okui, Keiko; Nakamura, Yusuke; Kanazawa, Ichiro [Univ. of Tokyo (Japan); Kondo, Eri; Saito, Kayoko; Fukuyama, Yukio [Tokyo Women`s Medical College (Japan); Yoshioka, Mieko [Kobe General Hospital (Japan); Kumagai, Toshiyuki [Aichi Welfare Center for Persons with Developmental Disabilities, Kasugai (Japan)] [and others

    1994-11-01

    Fukuyama-type congenital muscular dystrophy (FCMD), the second most common form of childhood muscular dystrophy in Japan, is an autosomal recessive severe muscular dystrophy associated with an anomaly of the brain. After our initial mapping of the FCMD locus to chromosome 9q31-33, we further defined the locus within a region of {approximately}5 cM between loci D9S127 and CA246, by homozygosity mapping in patients born to consanguineous marriages and by recombination analyses in other families. We also found evidence for strong linkage disequilibrium between FCMD and a polymorphic microsatellite marker, mfd220, which showed no recombination and a lod score of (Z) 17.49. A {open_quotes}111-bp{close_quotes} allele for the mfd220 was observed in 22 (34%) of 64 FCMD chromosomes, but it was present in only 1 of 120 normal chromosomes. This allelic association with FCMD was highly significant ({chi}{sup 2} = 50.7; P < .0001). Hence, we suspect that the FCMD gene could lie within a few hundred kilobases of the mfd220 locus. 32 refs., 2 figs., 2 tabs.

  12. A physical map of the hyperthermophilic bacterium Aquifex pyrophilus chromosome.

    OpenAIRE

    Shao, Z; Mages, W; Schmitt, R.

    1994-01-01

    A genomic map of the hyperthermophilic hydrogen-oxidizing bacterium Aquifex pyrophilus was established with NotI (GC/GGCCGC), SpeI (A/CTAGT), and XbaI (T/CTAGA). Linking clones and cross-hybridization of restriction fragments revealed a single circular chromosome of 1.6 Mbp. A single flagellin gene and six rRNA gene units were located on this map by Southern hybridization.

  13. A gene for nystagmus-associated episodic ataxia maps to chromosome 19p

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, P.L.; Root, D.; Gancher, S. [and others

    1994-09-01

    Episodic ataxia (EA) is a rare, autosomal dominant disorder, characterized by attacks of generalized ataxia and relatively normal neurological function between attacks. Onset occurs in childhood or adolescence and persists through adulthood. Penetrance is nearly complete. EA is clinically heterogeneous, including at least two distinct entities: (1) episodes of ataxia and dysarthria lasting hours to days, generally with interictal nystagmus (MIM 108500); (2) episodes of ataxia and dysarthria lasting only minutes, with interictal myokymia (MMM 160120). The EA/nystagmus patients sometimes develop persistent ataxia and cerebellar atrophy. Previously we reported linkage in four EA/myokymia families to a K{sup +} channel gene on chromosome 12p. We excluded this region in a large family with EA/nystagmus. We now report evidence for linkage to chromosome 19p in this and in one other EA/nystagmus family, based on eight microsatellite markers which span approximately 30 cM. The region is flanked distally by D19S209 and proximally by D19S226. All six markers within this region gave positive evidence for linkage; the highest total two-point lod scores occurred wtih D19S221 (3.98 at theta = 0.10) and D19S413 (3.37 at theta = 0.05). Interestingly, Joutel et al. (1993) mapped a gene for familial hemiplegic migraine (FHM) to the region around D19S221. Some individuals in these families have ataxia, cerebellar atrophy and interictal nystagmus, but no episodic ataxia. These results demonstrate that the clinical heterogeneity in EA reflects underlying genetic hetreogeneity. In addition, they suggest that EA/nystagmus and some FHM may represent different mutations in the same gene locus on chromosome 19p.

  14. Development of Public Immortal Mapping Populations, Molecular Markers and Linkage Maps for Rapid Cycling Brassica rapa and B. oleracea

    Science.gov (United States)

    In this study we describe public immortal mapping populations of self-compatible lines, molecular markers, and linkage maps for Brassica rapa and B. oleracea. We propose that these resources are valuable reference tools for the Brassica community. The B. rapa population consists of 150 recombinant...

  15. Physical and genetic mapping of the muscle phosphofructokinase gene (PFKM): Reassignment to human chromosome 12q

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T.D.; Akots, G.; Bowden, D.W. [Bowman Gray School of Medicine of Wake Forest Univ., Winston-Salem, NC (United States)

    1996-05-15

    Phosphofructokinase (PFK) is a key rate-limiting enzyme in glycolysis and represents a major control point in the metabolism of glucose. There are at least three known isoforms of PFK in humans, referred to as the muscle, platelet, and liver forms, each of which is differentially expressed in various tissues. The gene for muscle phosphofructokinase, PFKM, is mutated in Tarui disease and conceivably contributes to non-insulin-dependent diabetes mellitus (NIDDM). Based on physical and genetic mapping, we have found that the gene for PFKM does not map to chromosome 1 as previously described, but instead maps to chromosome 12. PCR analysis with a somatic cell hybrid mapping panel using primers derived from intron 6 and exon 18 of the PFKM gene showed consistent amplification of cell lines containing chromosome 12 (concordance, 100%). Fluorescence in situ hybridization analysis with CEPH YAC 762G4, isolated with exon 18 primers, indicated that this clone maps to 12q13, centromeric to the diacylglycerol kinase gene (DAGK) at 12q13.3. A highly informative genetic marker isolated from YAC 762G4 was used to map PFKM genetically between the CHLC framework markers D12S1090 and D12S390. This placement for 762G4 was significantly proximal to the recently reported locus for a third gene for maturity onset diabetes of the young (MODY). The PFKM-associated microsatellite will be a valuable tool in the evaluation of PFKM in diabetic populations as well as in linkage analysis in families with Tarui disease. 23 refs., 3 figs., 2 tabs.

  16. Genetic linkage map of Brassica campestris L. Using AFLP and RAPD markers

    Institute of Scientific and Technical Information of China (English)

    卢钢; 曹家树; 陈杭

    2002-01-01

    A genetic linkage map comprised of 131 loci was constructed with an F2 population derived from an inter-subspecific cross between Brassica 'qisihai'. The genetic map included 93 RAPD loci, 36 AFLP loci and 2 morphological loci organized into 10 main linkage groups (LGs) and 2 small groups, covering 1810.9cM with average distance between adjacent markers being approximately 13.8cM. The map is suitable for identification of molecular markers linked to important agronomic traits, QTL analysis, and even for marker-assisted selection in breeding programs of Chinese cabbage and turnip.

  17. A second-generation genetic linkage map of tilapia (Oreochromis spp.).

    Science.gov (United States)

    Lee, Bo-Young; Lee, Woo-Jai; Streelman, J Todd; Carleton, Karen L; Howe, Aimee E; Hulata, Gideon; Slettan, Audun; Stern, Justin E; Terai, Yohey; Kocher, Thomas D

    2005-05-01

    We constructed a second-generation linkage map of tilapia from the F(2) progeny of an interspecific cross between Oreochromis niloticus and Oreochromis aureus. The map reported here contains 525 microsatellite and 21 gene-based markers. It spans 1311 cM in 24 linkage groups, for an average marker spacing of 2.4 cM. We detected associations of sex and red color with markers on linkage group 3. This map will enable mapping and selective breeding of quantitative traits important to the economic culture of tilapia as a food fish and will contribute to the study of closely related cichlids that have undergone explosive adaptive radiation in the lakes of East Africa. PMID:15716505

  18. Use of linkage disequilibrium approaches to map genes for bipolar disorder in the Costa Rican population

    Energy Technology Data Exchange (ETDEWEB)

    Escamilla, M.A.; Reus, V.I.; Smith, L.B.; Freimer, N.B. [Univ. of California, San Francisco, CA (United States)] [and others

    1996-05-31

    Linkage disequilibrium (LD) analysis provides a powerful means for screening the genome to map the location of disease genes, such as those for bipolar disorder (BP). As described in this paper, the population of the Central Valley of Costa Rica, which is descended from a small number of founders, should be suitable for LD mapping; this assertion is supported by reconstruction of extended haplotypes shared by distantly related individuals in this population suffering low-frequency hearing loss (LFHL1), which has previously been mapped by linkage analysis. A sampling strategy is described for applying LD methods to map genes for BP, and clinical and demographic characteristics of an initially collected sample are discussed. This sample will provide a complement to a previously collected set of Costa Rican BP families which is under investigation using standard linkage analysis. 42 refs., 4 figs., 2 tabs.

  19. Exclusion of candidate genes from the chromosome 1q juvenile glaucoma region and mapping of the peripheral cannabis receptor gene (CNR2) to chromosome 1

    Energy Technology Data Exchange (ETDEWEB)

    Sunden, S.L.F.; Nichols, B.E.; Alward, W.L.M. [Univ. of Iowa, Iowa City, IA (United States)] [and others

    1994-09-01

    Juvenile onset primary open angle glaucoma has been mapped by linkage to 1q21-q31. Several candidate genes were evaluated in the same family used to identify the primary linkage. Atrionatriuretic peptide receptor A (NPR1) and laminin C1 (LAMC1) have been previously mapped to this region and could putatively play a role in the pathogenesis of glaucoma. A third gene, the peripheral cannabis receptor (CNR2) was not initially mapped in humans but was a candidate because of the relief that cannabis affords some patients with primary open angle glaucoma. Microsatellites associated with NPR1 and LAMC1 revealed multiple recombinations in affected members of this pedigree. CNR2 was shown to be on chromosome 1 by PCR amplification of a 150 bp fragment of the 3{prime} untranslated region in monochromosomal somatic cell hybrids (NIGMS panel No. 2). These primers also revealed a two allele single strand conformation polymorphism which showed multiple recombinants with juvenile onset primary open angle glaucoma in large pedigrees, segregating this disorder. The marker was then mapped to 1p34-p36 by linkage, with the most likely location between liver alkaline phosphatase (ALPL) and alpha-L-1 fucosidase (FUCA1).

  20. A RAD-based linkage map and comparative genomics in the gudgeons (genus Gnathopogon, Cyprinidae

    Directory of Open Access Journals (Sweden)

    Kakioka Ryo

    2013-01-01

    Full Text Available Abstract Background The construction of linkage maps is a first step in exploring the genetic basis for adaptive phenotypic divergence in closely related species by quantitative trait locus (QTL analysis. Linkage maps are also useful for comparative genomics in non-model organisms. Advances in genomics technologies make it more feasible than ever to study the genetics of adaptation in natural populations. Restriction-site associated DNA (RAD sequencing in next-generation sequencers facilitates the development of many genetic markers and genotyping. We aimed to construct a linkage map of the gudgeons of the genus Gnathopogon (Cyprinidae for comparative genomics with the zebrafish Danio rerio (a member of the same family as gudgeons and for the future QTL analysis of the genetic architecture underlying adaptive phenotypic evolution of Gnathopogon. Results We constructed the first genetic linkage map of Gnathopogon using a 198 F2 interspecific cross between two closely related species in Japan: river-dwelling Gnathopogon elongatus and lake-dwelling Gnathopogon caerulescens. Based on 1,622 RAD-tag markers, a linkage map spanning 1,390.9 cM with 25 linkage groups and an average marker interval of 0.87 cM was constructed. We also identified a region involving female-specific transmission ratio distortion (TRD. Synteny and collinearity were extensively conserved between Gnathopogon and zebrafish. Conclusions The dense SNP-based linkage map presented here provides a basis for future QTL analysis. It will also be useful for transferring genomic information from a “traditional” model fish species, zebrafish, to screen candidate genes underlying ecologically important traits of the gudgeons.

  1. Familial predisposition to Wilms' tumour does not map to the short arm of chromosome 11.

    Science.gov (United States)

    Grundy, P; Koufos, A; Morgan, K; Li, F P; Meadows, A T; Cavenee, W K

    1988-11-24

    Wilms' tumour of the kidney usually occurs sporadically, but can also segregate as an autosomal dominant trait with incomplete penetrance. Patients with the WAGR syndrome of aniridia, genitourinary anomalies, mental retardation and high risk of Wilms' tumour have overlapping deletions of chromosome 11p13 which has suggested a possible location for a Wilms' tumour locus. Moreover, many sporadic tumours have lost a portion of chromosome 11p. A second locus at 11p15 is implicated by association of the tumour with the Wiedemann-Beckwith syndrome and by tumour-specific losses of chromosome 11 confined to 11p15. Here we report a multipoint linkage analysis of a family segregating for Wilms' tumour, using polymorphic DNA markers mapped to chromosome 11p. The results exclude the predisposing mutation from both locations. In a second family, the 11p15 alleles lost in the tumour were derived from the affected parent, thus precluding this region as the location of the inherited mutation. These findings imply an aetiological heterogeneity for Wilms' tumour and raise questions concerning the general applicability of the carcinogenesis model that has been useful in the understanding of retinoblastoma. PMID:2848199

  2. Genetic mapping of high caries experience on human chromosome 13

    OpenAIRE

    Erika C Küchler; Deeley, Kathleen; Ho, Bao; Linkowski, Samantha; Meyer, Chelsea; Noel, Jacqueline; Kouzbari, M Zahir; Bezamat, Mariana; José M Granjeiro; Antunes, Leonardo S; Antunes, Livia Azeredo; de Abreu, Fernanda Volpe; Marcelo C. Costa; Tannure, Patricia N; SEYMEN, Figen

    2013-01-01

    Background Our previous genome-wide linkage scan mapped five loci for caries experience. The purpose of this study was to fine map one of these loci, the locus 13q31.1, in order to identify genetic contributors to caries. Methods Seventy-two pedigrees from the Philippines were studied. Caries experience was recorded and DNA was extracted from blood samples obtained from all subjects. Sixty-one single nucleotide polymorphisms (SNPs) in 13q31.1 were genotyped. Association between caries experie...

  3. (Developing a physical map of human chromosome 22)

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M.I.

    1991-01-01

    We have developed bacterial F-factor based systems for cloning large fragments of human DNA in E. coli. In addition to large size, these systems are capable of maintaining human DNA with a high degree of stability. The cosmid size clones are called Fosmids and the clones containing larger inserts (100--200 kb) are called bacterial artificial chromosomes (BACs). The ultimate test of the effectiveness of cloning and mapping technology is the degree to which it can be efficiently applied to solve complex mapping problems. We, therefore, plan to use the large fragment cloning procedure as well as a variety of other approaches to generate a complete map of overlapping clones corresponding to human chromosome 22. We have thus far prepared two human chromosome 22 specific Fosmid libraries and we are in the process of constructing a chromosome 22 specific BAC library composed of fragments larger than 100 kb. We will further optimize the technology so that libraries of fragments larger than 200 kb can be readily prepared.

  4. [Developing a physical map of human chromosome 22]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M.I.

    1991-12-31

    We have developed bacterial F-factor based systems for cloning large fragments of human DNA in E. coli. In addition to large size, these systems are capable of maintaining human DNA with a high degree of stability. The cosmid size clones are called Fosmids and the clones containing larger inserts (100--200 kb) are called bacterial artificial chromosomes (BACs). The ultimate test of the effectiveness of cloning and mapping technology is the degree to which it can be efficiently applied to solve complex mapping problems. We, therefore, plan to use the large fragment cloning procedure as well as a variety of other approaches to generate a complete map of overlapping clones corresponding to human chromosome 22. We have thus far prepared two human chromosome 22 specific Fosmid libraries and we are in the process of constructing a chromosome 22 specific BAC library composed of fragments larger than 100 kb. We will further optimize the technology so that libraries of fragments larger than 200 kb can be readily prepared.

  5. An ultra-dense SNP linkage map for the octoploid, cultivated strawberry and its application in genetic research

    Science.gov (United States)

    We will present an ultra-dense genetic linkage map for the octoploid, cultivated strawberry (Fragaria x ananassa) consisting of over 13K Axiom® based SNP markers and 150 previously mapped reference SSR loci. The high quality of the map is demonstrated by the short sizes of each of the 28 linkage gro...

  6. [The construction of the genetic map and QTL locating analysis on chromosome 2 in swine].

    Science.gov (United States)

    Qu, Yan-Chun; Deng, Chang-Yan; Xiong, Yuan-Zhu; Zheng, Rong; Yu, Li; Su, Yu-Hong; Liu, Gui-Lan

    2002-01-01

    The study constructed the genetic linkage map of porcine chromosome 2 and further analysis of quantitative trait loci was conducted. The results of the study demonstrated that all 7 microsatellite loci we chose were with relatively high polymorphism, and its polymorphic information content was from 0.40182 to 0.58477. The genetic map we constructed for resource family was 152.9 cM in length, with the order of all loci highly consistent with the USDA map. All marker intervals were longer than USDA map with the interval between marker Sw2516 and Sw1201 as an exception. Furthermore, we conducted QTLs locating analysis by combining the genetic map with the phenotypic data. QTLs affecting lively estimated traits such as lean meat percentage, were located at 60-65 cM on chromosome 2, while QTLs for the height and marbling of Longissmus dorsi muscle were located at 20 cM and 55 cM, respectively Among them, QTL for estimated lean meat percentage was significant at chromosome-wise level (P < 0.01) and was responsible for 21.55% of the phenotypic variance. QTLs for the height and marbling of Longissmus dorsi muscle were responsible for 10.12% and 10.97% of the phenotypic variance, respectively. The additive and dominance effect of lively estimated traits were in the inverse tendency, while the QTL for the height of Longissmus dorsi muscle had its additive and dominance effect in the same tendency and was with advantageous allele in Large White. The QTLs we detected had relatively large effect on phenotype and built a basis for molecular marker assisted selection and breeding.

  7. [The construction of the genetic map and QTL locating analysis on chromosome 2 in swine].

    Science.gov (United States)

    Qu, Yan-Chun; Deng, Chang-Yan; Xiong, Yuan-Zhu; Zheng, Rong; Yu, Li; Su, Yu-Hong; Liu, Gui-Lan

    2002-01-01

    The study constructed the genetic linkage map of porcine chromosome 2 and further analysis of quantitative trait loci was conducted. The results of the study demonstrated that all 7 microsatellite loci we chose were with relatively high polymorphism, and its polymorphic information content was from 0.40182 to 0.58477. The genetic map we constructed for resource family was 152.9 cM in length, with the order of all loci highly consistent with the USDA map. All marker intervals were longer than USDA map with the interval between marker Sw2516 and Sw1201 as an exception. Furthermore, we conducted QTLs locating analysis by combining the genetic map with the phenotypic data. QTLs affecting lively estimated traits such as lean meat percentage, were located at 60-65 cM on chromosome 2, while QTLs for the height and marbling of Longissmus dorsi muscle were located at 20 cM and 55 cM, respectively Among them, QTL for estimated lean meat percentage was significant at chromosome-wise level (P < 0.01) and was responsible for 21.55% of the phenotypic variance. QTLs for the height and marbling of Longissmus dorsi muscle were responsible for 10.12% and 10.97% of the phenotypic variance, respectively. The additive and dominance effect of lively estimated traits were in the inverse tendency, while the QTL for the height of Longissmus dorsi muscle had its additive and dominance effect in the same tendency and was with advantageous allele in Large White. The QTLs we detected had relatively large effect on phenotype and built a basis for molecular marker assisted selection and breeding. PMID:12645259

  8. Synteny mapping of five human chromosome 7 genes on bovine chromosomes 4 and 21.

    Science.gov (United States)

    Antoniou, E; Womack, J E; Grosz, M D

    1999-01-01

    Five genes on human chromosome 7 (HSA 7) were assigned to bovine chromosome 21 (BTA 21) and 4 (BTA 4) using a bovine-rodent somatic hybrid cell panel. These five genes were alpha-I subunit of adenylate cyclase-inhibiting G-protein (GNAI1), alpha/beta preprotachykinin (TAC1), reelin (RELN), c-AMP dependant protein kinase type II beta regulatory chain (PRKAR2B) and apolipoprotein A1 regulatory protein 1 (TFCOUP2). Four genes mapped to BTA 4 (GNAI1, TAC1, RELN, PRKAR2B) while one gene mapped to BTA 21 (TFCOUP2). This study confirms the synteny conservation between HSA 7 and BTA 4, finely maps the breakpoints of conserved synteny on HSA 7 and defines a new synteny conservation between HSA 7 and BTA 21.

  9. Linkage analysis in Marfan syndrome.

    OpenAIRE

    Schwartz, R C; Blanton, S H; Hyde, C A; Sottile, T R; Hudgins, L.; Sarfarazi, M; Tsipouras, P

    1990-01-01

    We have analysed 40 marker loci on 13 chromosomes for linkage with Marfan syndrome. None of the loci was linked to the Marfan syndrome locus at theta = 0.00. This study provides a basis for an exclusion map and for further collaboration in mapping of the locus.

  10. SSR genetic linkage map construction of pea(Pisum sativum L.) based on Chinese native varieties

    Institute of Scientific and Technical Information of China (English)

    Xuelian; Sun; Tao; Yang; Junjie; Hao; Xiaoyan; Zhang; Rebecca; Ford; Junye; Jiang; Fang; Wang; Jianping; Guan; Xuxiao; Zong

    2014-01-01

    Simple sequence repeat(SSR)markers have previously been applied to linkage mapping of the pea(Pisum sativum L.)genome.However,the transferability of existing loci to the molecularly distinct Chinese winter pea gene pool was limited.A novel set of pea SSR markers was accordingly developed.Together with existing SSR sequences,the genome of the G0003973(winter hardy)×G0005527(cold sensitive)cross was mapped using 190 F2individuals.In total,157 SSR markers were placed in 11 linkage groups with an average interval of 9.7 cM and total coverage of 1518 cM.The novel markers and genetic linkage map will be useful for marker-assisted pea breeding.

  11. Ordered subset linkage analysis supports a susceptibility locus for age-related macular degeneration on chromosome 16p12

    Directory of Open Access Journals (Sweden)

    Weeks Daniel E

    2004-07-01

    Full Text Available Abstract Background Age-related macular degeneration (AMD is a complex disorder that is responsible for the majority of central vision loss in older adults living in developed countries. Phenotypic and genetic heterogeneity complicate the analysis of genome-wide scans for AMD susceptibility loci. The ordered subset analysis (OSA method is an approach for reducing heterogeneity, increasing statistical power for detecting linkage, and helping to define the most informative data set for follow-up analysis. OSA assesses the linkage evidence in subsets of potentially more homogeneous families by rank-ordering family-specific lod scores with respect to trait-associated covariates or phenotypic features. Here, we present results of incorporating five continuous covariates into our genome-wide linkage analysis of 389 microsatellite markers in 62 multiplex families: Body mass index (BMI, systolic (SBP and diastolic (DBP blood pressure, intraocular pressure (IOP, and pack-years of cigarette smoking. Chromosome-wide significance of increases in nonparametric multipoint lod scores in covariate-defined subsets relative to the overall sample was assessed by permutation. Results Using a correction for testing multiple covariates, statistically significant lod score increases were observed for two chromosomal regions: 14q13 with a lod score of 3.2 in 28 families with average IOP ≤ 15.5 (p = 0.002, and 6q14 with a lod score of 1.6 in eight families with average BMI ≥ 30.1 (p = 0.0004. On chromosome 16p12, nominally significant lod score increases (p ≤ 0.05, up to a lod score of 2.9 in 32 families, were observed with several covariate orderings. While less significant, this was the only region where linkage evidence was associated with multiple clinically meaningful covariates and the only nominally significant finding when analysis was restricted to advanced forms of AMD. Families with linkage to 16p12 had higher averages of SBP, IOP and BMI and were

  12. Mapping the gene causing hereditary primary hyperparathyroidism in a Portuguese kindred to chromosome 1q22-q31.

    Science.gov (United States)

    Williamson, C; Cavaco, B M; Jauch, A; Dixon, P H; Forbes, S; Harding, B; Holtgreve-Grez, H; Schoell, B; Pereira, M C; Font, A P; Loureiro, M M; Sobrinho, L G; Santos, M A; Thakker, R V; Jausch, A

    1999-02-01

    A Portuguese kindred with autosomal dominant isolated primary hyperparathyroidism (HPT) that was associated with parathyroid adenomas and carcinomas was investigated with the aim of determining the chromosomal location of this gene, designated HPTPort. Leukocyte DNA from 9 affected and 16 unaffected members and 7 parathyroid tumors from 4 patients was used in comparative genomic hybridization (CGH), tumor loss of heterozygosity (LOH), and family linkage studies. The CGH studies revealed abnormalities of chromosomes 1 and 13, and the results of LOH studies were consistent with the involvements of tumor suppressor genes from these regions. Family segregation studies mapped HPTPort to chromosome 1q22-q31 by establishing linkage with eight loci (D1S254, D1S222, D1S202, D1S238, D1S428, D1S2877, D1S422, and D1S412) (peak two-point LOD scores = 3. 46-5.14 at 0% recombination), and defined the location of HPT Port to a 21 cM region flanked centromerically by D1S215 and telomerically by D1S306. Thus, HPTPort has been mapped to chromosome 1q22-q31, and a characterization of this gene will help to elucidate further the mechanisms that are involved in the development of parathyroid tumors. PMID:9933477

  13. A high-resolution linkage map for comparative genome analysis and QTL fine mapping in Asian seabass, Lates calcarifer

    Directory of Open Access Journals (Sweden)

    Feng Felicia

    2011-04-01

    Full Text Available Abstract Background High density linkage maps are essential for comparative analysis of synteny, fine mapping of quantitative trait loci (QTL, searching for candidate genes and facilitating genome sequence assembly. However, in most foodfish species, marker density is still low. We previously reported a first generation linkage map with 240 DNA markers and its application to preliminarily map QTL for growth traits in Asian seabass (Lates calcarifer. Here, we report a high-resolution linkage map with 790 microsatellites and SNPs, comparative analysis of synteny, fine-mapping of QTL and the identification of potential candidate genes for growth traits. Results A second generation linkage map of Asian seabass was developed with 790 microsatellite and SNP markers. The map spanned a genetic length of 2411.5 cM, with an average intermarker distance of 3.4 cM or 1.1 Mb. This high density map allowed for comparison of the map with Tetraodon nigroviridis genome, which revealed 16 synteny regions between the two species. Moreover, by employing this map we refined QTL to regions of 1.4 and 0.2 cM (or 400 and 50 kb in linkage groups 2 and 3 in a population containing 380 progeny; potential candidate genes for growth traits in QTL regions were further identified using comparative genome analysis, whose effects on growth traits were investigated. Interestingly, a QTL cluster at Lca371 underlying growth traits of Asian seabass showed similarity to the cathepsin D gene of human, which is related to cancer and Alzheimer's disease. Conclusions We constructed a high resolution linkage map, carried out comparative mapping, refined the positions of QTL, identified candidate genes for growth traits and analyzed their effects on growth. Our study developed a framework that will be indispensable for further identification of genes and analysis of molecular variation within the refined QTL to enhance understanding of the molecular basis of growth and speed up genetic

  14. The Chromosome Microdissection and Microcloning Technique.

    Science.gov (United States)

    Zhang, Ying-Xin; Deng, Chuan-Liang; Hu, Zan-Min

    2016-01-01

    Chromosome microdissection followed by microcloning is an efficient tool combining cytogenetics and molecular genetics that can be used for the construction of the high density molecular marker linkage map and fine physical map, the generation of probes for chromosome painting, and the localization and cloning of important genes. Here, we describe a modified technique to microdissect a single chromosome, paint individual chromosomes, and construct single-chromosome DNA libraries. PMID:27511173

  15. An extended anchored linkage map and virtual mapping for the american mink genome based on homology to human and dog

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Ansari, S.; Farid, A.;

    2009-01-01

    hybridization (FISH) and/or by means of human/dog/mink comparative homology. The average interval between markers is 8.5 cM and the linkage groups collectively span 1340 cM. In addition, 217 and 275 mink microsatellites have been placed on human and dog genomes, respectively. In conjunction with the existing...... comparative human/dog/mink data, these assignments represent useful virtual maps for the American mink genome. Comparison of the current human/dog assembled sequential map with the existing Zoo-FISH-based human/dog/mink maps helped to refine the human/dog/mink comparative map. Furthermore, comparison...... of the human and dog genome assemblies revealed a number of large synteny blocks, some of which are corroborated by data from the mink linkage map....

  16. The mapping of novel genes to human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Buenaventura, J.M. [Sarah Lawrence College, Bronxville, NY (United States)

    1994-12-01

    The principle goal of our laboratory is the discovery of new genes on human chromosome 19. One of the strategies to achieve this goal is through the use of cDNA clones known as {open_quotes}expressed sequence tags{close_quotes} (ESTs). ESTs, short segments of sequence from a cDNA clone that correspond to the mRNA, occur as unique regions in the genome and, therefore, can be used as markers for specific positions. In collaboration with researchers from Genethon in France, fifteen cDNA clones from a normalized human infant brain cDNA library were tested and determined to map to chromosome 19. A verification procedure is then followed to confirm assignment to chromosome 19. First, primers for each cDNA clone are developed and then amplified by polymerase chain reaction from genomic DNA. Next, a {sup 32}P-radiolabeled probe is made by polymerase chain reaction for each clone and then hybridized against filters containing an LLNL chromosome 19-specific cosmid library to find putative locations on the chromosome. The location is then verified by running a polymerase chain reactions from the positive cosmids. With the Browser database at LLNL, additional information about the positive cosmids can be found. Through use of the BLAST database at the National Library of Medicine, homologous sequences to the clones can be found. Among the fifteen cDNA clones received from Genethon, all have been amplified by polymerase chain reaction. Three have turned out as repetitive elements in the genome. Ten have been mapped to specific locations on chromosome 19. Putative locations have been found for the remaining two clones and thus verification testing will proceed.

  17. SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species.

    Directory of Open Access Journals (Sweden)

    Rebekah E Oliver

    Full Text Available A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42 has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources.

  18. Chromosome mapping of repetitive sequences in four Serrasalmidae species (Characiformes

    Directory of Open Access Journals (Sweden)

    Leila Braga Ribeiro

    2014-01-01

    Full Text Available The Serrasalmidae family is composed of a number of commercially interesting species, mainly in the Amazon region where most of these fishes occur. In the present study, we investigated the genomic organization of the 18S and 5S rDNA and telomeric sequences in mitotic chromosomes of four species from the basal clade of the Serrasalmidae family: Colossoma macropomum, Mylossoma aureum, M. duriventre, and Piaractus mesopotamicus, in order to understand the chromosomal evolution in the family. All the species studied had diploid numbers 2n = 54 and exclusively biarmed chromosomes, but variations of the karyotypic formulas were observed. C-banding resulted in similar patterns among the analyzed species, with heterochromatic blocks mainly present in centromeric regions. The 18S rDNA mapping of C. macropomum and P. mesopotamicus revealed multiple sites of this gene; 5S rDNA sites were detected in two chromosome pairs in all species, although not all of them were homeologs. Hybridization with a telomeric probe revealed signals in the terminal portions of chromosomes in all the species and an interstitial signal was observed in one pair of C. macropomum.

  19. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements.

    OpenAIRE

    Lagercrantz, U.

    1998-01-01

    Chromosome organization and evolution in the Brassicaceae family was studied using comparative linkage mapping. A total of 160 mapped Arabidopsis thaliana DNA fragments identified 284 homologous loci covering 751 cM in Brassica nigra. The data support that modern diploid Brassica species are descended from a hexaploid ancestor, and that the A. thaliana genome is similar in structure and complexity to those of each of the hypothetical diploid progenitors of the proposed hexaploid. Thus, the Br...

  20. Isolation of candidate genes and physical mapping in the Familial Dysautonomia region of chromosome 9q31

    Energy Technology Data Exchange (ETDEWEB)

    Slaugenhaupt, S.A.; Liebert, C.B.; Monahan, M. [Harvard Medical School, Boston, MA (United States)] [and others

    1994-09-01

    Familial Dysautonomia is an autosomal recessive disorder characterized by the developmental loss of both sensory and autonomic neurons. We have mapped the DYS gene to human chromosome 9q31-33 by genetic linkage analysis of 26 Ashkenazi Jewish pedigrees. The gene is located in a 3 cM interval between D9S310 and D9S105. We have examined several new SSCP and repeat polymorphisms and have successfully narrowed the minimum candidate region to approximately 300 kb using linkage disequilibrium. A YAC contig that spans 1.5 Mb has been constructed using both Alu-PCR and STS screening methods. In addition, the YACs were used to isolate cosmids by direct hybridization to the Lawrence Livermore National Laboratory chromosome 9 flow-sorted cosmid library. Having cloned the minimal candidate region, we are now constructing a detailed transcription map of the DYS region of chromosome 9. Using exon amplification, we have rapidly identified exon sequences and have used these as probes to isolate three candidate genes. These genes are currently being sequenced and will be assessed for mutations using both SSCP analysis and direct sequencing. A detailed physical map of the DYS region, as well as sequence and homology information for DYS candidate genes, will be presented.

  1. Autosomal recessive mental retardation: homozygosity mapping identifies 27 single linkage intervals, at least 14 novel loci and several mutation hotspots.

    Science.gov (United States)

    Kuss, Andreas Walter; Garshasbi, Masoud; Kahrizi, Kimia; Tzschach, Andreas; Behjati, Farkhondeh; Darvish, Hossein; Abbasi-Moheb, Lia; Puettmann, Lucia; Zecha, Agnes; Weissmann, Robert; Hu, Hao; Mohseni, Marzieh; Abedini, Seyedeh Sedigheh; Rajab, Anna; Hertzberg, Christoph; Wieczorek, Dagmar; Ullmann, Reinhard; Ghasemi-Firouzabadi, Saghar; Banihashemi, Susan; Arzhangi, Sanaz; Hadavi, Valeh; Bahrami-Monajemi, Gholamreza; Kasiri, Mahboubeh; Falah, Masoumeh; Nikuei, Pooneh; Dehghan, Atefeh; Sobhani, Masoumeh; Jamali, Payman; Ropers, Hans Hilger; Najmabadi, Hossein

    2011-02-01

    Mental retardation (MR) has a worldwide prevalence of around 2% and is a frequent cause of severe disability. Significant excess of MR in the progeny of consanguineous matings as well as functional considerations suggest that autosomal recessive forms of MR (ARMR) must be relatively common. To shed more light on the causes of autosomal recessive MR (ARMR), we have set out in 2003 to perform systematic clinical studies and autozygosity mapping in large consanguineous Iranian families with non-syndromic ARMR (NS-ARMR). As previously reported (Najmabadi et al. in Hum Genet 121:43-48, 2007), this led us to the identification of 12 novel ARMR loci, 8 of which had a significant LOD score (OMIM: MRT5-12). In the meantime, we and others have found causative gene defects in two of these intervals. Moreover, as reported here, tripling the size of our cohort has enabled us to identify 27 additional unrelated families with NS-ARMR and single-linkage intervals; 14 of these define novel loci for non-syndromic ARMR. Altogether, 13 out of 39 single linkage intervals observed in our cohort were found to cluster at 6 different loci on chromosomes, i.e., 1p34, 4q27, 5p15, 9q34, 11p11-q13 and 19q13, respectively. Five of these clusters consist of two significantly overlapping linkage intervals, and on chr 1p34, three single linkage intervals coincide, including the previously described MRT12 locus. The probability for this distribution to be due to chance is only 1.14 × 10(-5), as shown by Monte Carlo simulation. Thus, in contrast to our previous conclusions, these novel data indicate that common molecular causes of NS-ARMR do exist, and in the Iranian population, the most frequent ones may well account for several percent of the patients. These findings will be instrumental in the identification of the underlying genes. PMID:21063731

  2. Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus

    Indian Academy of Sciences (India)

    Sarika Gupta; Sashi Pandey-Rai; Suchi Srivastava; Subhas Chandra Naithani; Manoj Prasad; Sushil Kumar

    2007-12-01

    An integrated genetic linkage map of the medicinal and ornamental plant Catharanthus roseus, based on different types of molecular and morphological markers was constructed, using a F2 population of 144 plants. The map defines 14 linkage groups (LGs) and consists of 131 marker loci, including 125 molecular DNA markers (76 RAPD, 3 RAPD combinations; 7 ISSR; 2 EST-SSR from Medicago truncatula and 37 other PCR based DNA markers), selected from a total of 472 primers or primer pairs, and six morphological markers (stem pigmentation, leaf lamina pigmentation and shape, leaf petiole and pod size, and petal colour). The total map length is 1131.9 cM (centiMorgans), giving an average map length and distance between two markers equal to 80.9 cM and 8.6 cM, respectively. The morphological markers/genes were found linked with nearest molecular or morphological markers at distances varying from 0.7 to 11.4 cM. Linkage was observed between the morphological markers concerned with lamina shape and petiole size of leaf on LG1 and leaf, stem and petiole pigmentation and pod size on LG8. This is the first genetic linkage map of C. roseus.

  3. A deletion map of the WAGR region on chromosome 11.

    OpenAIRE

    Gessler, M; Thomas, G H; Couillin, P; Junien, C; McGillivray, B C; Hayden, M; Jaschek, G.; Bruns, G. A.

    1989-01-01

    The WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) region has been assigned to chromosome 11p13 on the basis of overlapping constitutional deletions found in affected individuals. We have utilized 31 DNA probes which map to the WAGR deletion region, together with six reference loci and 13 WAGR-related deletions, to subdivide this area into 16 intervals. Specific intervals have been correlated with phenotypic features, leading to the identification of individual ...

  4. Precise localization of multiple epiphyseal dysplasia and pseudoachondroplasia mutations by genetic and physical mapping of chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, R.G.; Cekleniak, J.A. [Jefferson Medical College, Philadelphia, PA (United States); Cohn, D.H. [Cedars-Sinai Medical Center, Los Angeles, CA (United States)] [and others

    1994-09-01

    Multiple epiphyseal dysplasia (EDM1), a dominantly inherited chondrodysplasia resulting in peripheral joint deformities and premature osteoarthritis, and pseudoachondroplasia (PSACH), a more severe disorder associated with short-limbed dwarfism, have recently been mapped to the pericentromeric region of chromosome 19. Chondrocytes from some PSACH patients accumulate lamellar deposits in the endoplasmic reticulum that are immunologically cross-reactive with aggrecan. However, neither aggrecan nor any known candidate gene maps to the EDM1/PSACH region of chromosome 19. Genetic linkage mapping in two lage families had placed the disease locus between D19S215 (19p12) and D19S212 (19p13.1), an interval of about 3.5 Mb. With at least five potentially informative cross-overs within this interval, recombination mapping at greater resolution was undertaken. From cosmids assigned to the region by fluorescence in situ hybridization and contig assembly, dinucleotide repeat tracts were identified for use as polymorphic genetic markers. Linkage data from three new dinucleotide repeat markers from cosmids mapped between D19S212 and D19S215 limit the EDM1/PSACH locus to an interval spanning approximately 2 Mb.

  5. Fine mapping and single nucleotide polymorphism effects estimation on pig chromosomes 1, 4, 7, 8, 17 and X

    Directory of Open Access Journals (Sweden)

    André M. Hidalgo

    2013-01-01

    Full Text Available Fine mapping of quantitative trait loci (QTL from previous linkage studies was performed on pig chromosomes 1, 4, 7, 8, 17, and X which were known to harbor QTL. Traits were divided into: growth performance, carcass, internal organs, cut yields, and meat quality. Fifty families were used of a F2 population produced by crossing local Brazilian Piau boars with commercial sows. The linkage map consisted of 237 SNP and 37 microsatellite markers covering 866 centimorgans. QTL were identified by regression interval mapping using GridQTL. Individual marker effects were estimated by Bayesian LASSO regression using R. In total, 32 QTL affecting the evaluated traits were detected along the chromosomes studied. Seven of the QTL were known from previous studies using our F2 population, and 25 novel QTL resulted from the increased marker coverage. Six of the seven QTL that were significant at the 5% genome-wide level had SNPs within their confidence interval whose effects were among the 5% largest effects. The combined use of microsatellites along with SNP markers increased the saturation of the genome map and led to smaller confidence intervals of the QTL. The results showed that the tested models yield similar improvements in QTL mapping accuracy.

  6. Two-trait-locus linkage analysis: A powerful strategy for mapping complex genetic traits

    Energy Technology Data Exchange (ETDEWEB)

    Schork, N.J.; Boehnke, M. (Univ. of Michigan, Ann Arbor, MI (United States)); Terwilliger, J.D.; Ott, J. (Columbia Univ., New York, NY (United States))

    1993-11-01

    Nearly all diseases mapped to date follow clear Mendelian, single-locus segregation patterns. In contrast, many common familial diseases such as diabetes, psoriasis, several forms of cancer, and schizophrenia are familial and appear to have a genetic component but do not exhibit simple Mendelian transmission. More complex models are required to explain the genetics of these important diseases. In this paper, the authors explore two-trait-locus, two-marker-locus linkage analysis in which two trait loci are mapped simultaneously to separate genetic markers. The authors compare the utility of this approach to standard one-trait-locus, one-marker-locus linkage analysis with and without allowance for heterogeneity. The authors also compare the utility of the two-trait-locus, two-marker-locus analysis to two-trait-locus, one-marker-locus linkage analysis. For common diseases, pedigrees are often bilineal, with disease genes entering via two or more unrelated pedigree members. Since such pedigrees often are avoided in linkage studies, the authors also investigate the relative information content of unilineal and bilineal pedigrees. For the dominant-or-recessive and threshold models that the authors consider, the authors find that two-trait-locus, two-marker-locus linkage analysis can provide substantially more linkage information, as measured by expected maximum lod score, than standard one-trait-locus, one-marker-locus methods, even allowing for heterogeneity, while, for a dominant-or-dominant generating model, one-locus models that allow for heterogeneity extract essentially as much information as the two-trait-locus methods. For these three models, the authors also find that bilineal pedigrees provide sufficient linkage information to warrant their inclusion in such studies. The authors discuss strategies for assessing the significance of the two linkages assumed in two-trait-locus, two-marker-locus models. 37 refs., 1 fig., 4 tabs.

  7. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa using microsatellite and AFLP markers

    Directory of Open Access Journals (Sweden)

    Santoni Sylvain

    2003-12-01

    Full Text Available Abstract Background Alfalfa (Medicago sativa is a major forage crop. The genetic progress is slow in this legume species because of its autotetraploidy and allogamy. The genetic structure of this species makes the construction of genetic maps difficult. To reach this objective, and to be able to detect QTLs in segregating populations, we used the available codominant microsatellite markers (SSRs, most of them identified in the model legume Medicago truncatula from EST database. A genetic map was constructed with AFLP and SSR markers using specific mapping procedures for autotetraploids. The tetrasomic inheritance was analysed in an alfalfa mapping population. Results We have demonstrated that 80% of primer pairs defined on each side of SSR motifs in M. truncatula EST database amplify with the alfalfa DNA. Using a F1 mapping population of 168 individuals produced from the cross of 2 heterozygous parental plants from Magali and Mercedes cultivars, we obtained 599 AFLP markers and 107 SSR loci. All but 3 SSR loci showed a clear tetrasomic inheritance. For most of the SSR loci, the double-reduction was not significant. For the other loci no specific genotypes were produced, so the significant double-reduction could arise from segregation distortion. For each parent, the genetic map contained 8 groups of four homologous chromosomes. The lengths of the maps were 2649 and 3045 cM, with an average distance of 7.6 and 9.0 cM between markers, for Magali and Mercedes parents, respectively. Using only the SSR markers, we built a composite map covering 709 cM. Conclusions Compared to diploid alfalfa genetic maps, our maps cover about 88–100% of the genome and are close to saturation. The inheritance of the codominant markers (SSR and the pattern of linkage repulsions between markers within each homology group are consistent with the hypothesis of a tetrasomic meiosis in alfalfa. Except for 2 out of 107 SSR markers, we found a similar order of markers on

  8. Development of specific chromosomal DNA pool for rice field eel and their application to gene mapping

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The chromosomes 1, 3, 5, 6, 7, 10 and 12 of rice field eel (Monopterus albus Zuiew) have been microdissected successfully from meiosis I diakinesis spreads by using glass microneedle under an inverted microscope. And the DOP-PCR products of the single chromosome dotted on the nylon membrane as "specific chromosomal DNA pool", have been hybridized with 6 probes to map these genes. The mapping results show that Zfa has been mapped to chromosome 1, rDNA to chromosomes 3 and 7, both Gh and Pdeg to chromosome 10, Hsl to chromosome 5 and Hox genes have been detected on chromosomes 1, 3, 6 and 10 meantime. It has initiatively been suggested that chromosome 10 of rice field eel might possess the commom conserved synteny to that on chromosome 17 of human, chromosome 11 of mouse,chromosome 12 of pig and chromosome 19 of bovine. And so chromosome 3 of rice field eel might also contain the commom conserved synteny to that on chromosome 2 of zebrafish. Our study is an attempt to establish a new and feasible method to advance the study of gene mapping and chromosome evolution in fish, and also to provide a new idea to distinguish each chromosome on the base of molecular markers for fish.

  9. Fine mapping of multiple QTL using combined linkage and linkage disequilibrium mapping – A comparison of single QTL and multi QTL methods

    Directory of Open Access Journals (Sweden)

    Meuwissen Theo HE

    2007-04-01

    Full Text Available Abstract Two previously described QTL mapping methods, which combine linkage analysis (LA and linkage disequilibrium analysis (LD, were compared for their ability to detect and map multiple QTL. The methods were tested on five different simulated data sets in which the exact QTL positions were known. Every simulated data set contained two QTL, but the distances between these QTL were varied from 15 to 150 cM. The results show that the single QTL mapping method (LDLA gave good results as long as the distance between the QTL was large (> 90 cM. When the distance between the QTL was reduced, the single QTL method had problems positioning the two QTL and tended to position only one QTL, i.e. a "ghost" QTL, in between the two real QTL positions. The multi QTL mapping method (MP-LDLA gave good results for all evaluated distances between the QTL. For the large distances between the QTL (> 90 cM the single QTL method more often positioned the QTL in the correct marker bracket, but considering the broader likelihood peaks of the single point method it could be argued that the multi QTL method was more precise. Since the distances were reduced the multi QTL method was clearly more accurate than the single QTL method. The two methods combine well, and together provide a good tool to position single or multiple QTL in practical situations, where the number of QTL and their positions are unknown.

  10. A robust linkage map of the porcine autosome based on gene-associated SNPs

    DEFF Research Database (Denmark)

    Vingborg, Rikke K K; Gregersen, Vivi R; Zhan, Bujie;

    2009-01-01

    Background Genetic linkage maps are necessary for mapping of mendelian traits and quantitative trait loci (QTLs). To identify the actual genes, which control these traits, a map based on gene-associated single nucleotide polymorphism (SNP) markers is highly valuable. In this study, the SNPs were...... genotyped in a large family material comprising more than 5,000 piglets derived from 12 Duroc boars crossed with 236 Danish Landrace/Danish Large White sows. The SNPs were identified in sequence alignments of 4,600 different amplicons obtained from the 12 boars and containing coding regions of genes derived...... from expressed sequence tags (ESTs) and genomic shotgun sequences. Results Linkage maps of all 18 porcine autosomes were constructed based on 456 gene-associated and six porcine EST-based SNPs. The total length of the averaged-sex whole porcine autosome was estimated to 1,711.8 cM resulting...

  11. Chironomus group classification according to the mapping of polytene chromosomes

    Science.gov (United States)

    Salleh, Syafinaz; Kutty, Ahmad Abas

    2013-11-01

    Chironomus is one of the important genera in Chironomidae family since they are widely diverse and abundance in aquatic ecosystem. Since Chironomus is very diverse, taxonomic work on this genus is very difficult and incomplete. Objective of this study is to form group classification of Chironomus according to the polytene chromosome mapping. The specific characteristics of polytene chromosomes in the salivary gland appeared to be particularly promising for taxonomic diagnosis of chironomid species. Chironomid larvae were collected from pristine sites at Sg. Langat and cultured in laboratory to reach fourth instar stage. The salivary glands were removed from larvae and chromosomes were stained with aceto orcein. Results showed that polytene chromosomes of Chironomus comprise of three long metacentric or submetacentric arms (BF, CD and AE arms) and one short acrocentric (G arm). In regards to nucleolar organizing region (NOR), Balbiani ring (BR), puffings and chromosome rearrangement, a number of four groups of different banding patterns were found. Two groups called as G group A and B have common NOR on arm BF and BR on arm G. However, group A has rearrangement pattern on arm CD and not in group B. This makes group B separated from group A. Another two groups called as groups C and D do not have common NOR on arm BF and also BR on arm G. Groups C and D were separated using arms G and arm AE. At arm G, only group C rearrangement pattern at unit 23c whereas group D was found to have large NOR at arm G and as well as arm AE, only group D has rearrangement pattern at unit 12c. This study indicates that chromosome arrangement could aid in revealing Chironomus diversity.

  12. A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers

    NARCIS (Netherlands)

    Syed, N.; Sorensen, A.P.; Antonise, R.; Wiel, van de C.C.M.; Linden, van der C.G.; Westende, van 't W.P.C.; Hooftman, D.A.P.; Nijs, den H.C.M.; Flavell, A.

    2006-01-01

    Molecular markers based upon a novel lettuce LTR retrotransposon and the nucleotide binding site-leucine-rich repeat (NBS-LRR) family of disease resistance-associated genes have been combined with AFLP markers to generate a 458 locus genetic linkage map for lettuce. A total of 187 retrotransposon-sp

  13. The construction of a linkage map of Alstroemeria aurea by AFLP markers

    NARCIS (Netherlands)

    Han, T.H.; Eck, van H.J.; Jeu, de M.J.; Jacobsen, E.

    2002-01-01

    An AFLP based linkage map has been generated for the ornamental cropspecies Alstroemeria aurea. In view of the large genome size of Alstroemeria (25,000 Mb) the number of selective nucleotides for AFLPamplification was increased to EcoRI+4/MseI+4 to generatefingerprints of moderate complexity. In ad

  14. An integrated resource for barley linkage map and malting quality QTL alignment

    Science.gov (United States)

    Barley (Hordeum vulgare subsp. vulgare) is an economically important model plant for genetics research that is currently served by a comprehensive set of tools for genetic analysis. High density genetic linkage maps constructed from the inheritance of robust gene-based Single Nucleotide Polymorphism...

  15. Two-trait-locus linkage analysis: a powerful strategy for mapping complex genetic traits.

    OpenAIRE

    Schork, N J; Boehnke, M.; Terwilliger, J D; Ott, J.

    1993-01-01

    Recent advances in molecular biology have provided geneticists with ever-increasing numbers of highly polymorphic genetic markers that have made possible linkage mapping of loci responsible for many human diseases. However, nearly all diseases mapped to date follow clear Mendelian, single-locus segregation patterns. In contrast, many common familial diseases such as diabetes, psoriasis, several forms of cancer, and schizophrenia are familial and appear to have a genetic component but do not e...

  16. Construction of a genetic linkage map in man using restriction fragment length polymorphisms.

    OpenAIRE

    Botstein, D; White, R L; Skolnick, M.; Davis, R W

    1980-01-01

    We describe a new basis for the construction of a genetic linkage map of the human genome. The basic principle of the mapping scheme is to develop, by recombinant DNA techniques, random single-copy DNA probes capable of detecting DNA sequence polymorphisms, when hybridized to restriction digests of an individual's DNA. Each of these probes will define a locus. Loci can be expanded or contracted to include more or less polymorphism by further application of recombinant DNA technology. Suitably...

  17. Localization, by linkage analysis, of the cystinuria type III gene to chromosome 19q13.1

    Energy Technology Data Exchange (ETDEWEB)

    Bisceglia, L.; Totaro, A.; Melchionda, S. [and others

    1997-03-01

    Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (Z{sub max}) of 13.11 at a maximum recombination fraction ({theta}{sub max}) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant Z{sub max} = 3.11 at {theta}{sub max} of .00, with marker D19S225). 33 refs., 2 figs., 1 tab.

  18. Fine genetic mapping of diffuse non-epidermolytic palmoplantar keratoderma to chromosome 12q11-q13: exclusion of the mapped type II keratins.

    Science.gov (United States)

    Kelsell, D P; Stevens, H P; Purkis, P E; Talas, U; Rustin, M H; Leigh, I M

    1999-10-01

    Diffuse non-epidermolytic palmoplantar keratoderma (NEPPK) belongs to the heterogeneous group of skin diseases characterized by thickening of the stratum corneum of the palms and soles (1). This autosomal dominant PPK is characterized by a diffuse pattern of palmar and plantar hyperkeratosis giving the affected areas a thickened yellowish appearance with a marked erythematous edge. Linkage of diffuse NEPPK to chromosome 12q11-q13 has been demonstrated in two independent reports (2, 3). In this study, we describe detailed haplotyping with microsatellite markers mapping to this chromosomal region in three diffuse NEPPK pedigrees from the south of England. Fine mapping of a previously identified recombination event and the identification of a common disease haplotype segregating in the three pedigrees places the diffuse NEPPK locus proximal to the type II keratin gene cluster.

  19. Construction of Commercial Sweet Cherry Linkage Maps and QTL Analysis for Trunk Diameter.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available A cross between the sweet cherry (Prunus avium cultivars 'Wanhongzhu' and 'Lapins' was performed to create a mapping population suitable for the construction of a linkage map. The specific-locus amplified fragment (SLAF sequencing technique used as a single nucleotide polymorphism (SNP discovery platform and generated 701 informative genotypic assays; these, along with 16 microsatellites (SSRs and the incompatibility (S gene, were used to build a map which comprised 8 linkage groups (LGs and covered a genetic distance of 849.0 cM. The mean inter-marker distance was 1.18 cM and there were few gaps > 5 cM in length. Marker collinearity was maintained with the established peach genomic sequence. The map was used to show that trunk diameter (TD is under the control of 4 loci, mapping to 3 different LGs. Different locus influenced TD at a varying stage of the tree's development. The high density 'W×L' genetic linkage map has the potential to enable high-resolution identification of QTLs of agronomically relevant traits, and accelerate sweet cherry breeding.

  20. Construction of Commercial Sweet Cherry Linkage Maps and QTL Analysis for Trunk Diameter.

    Science.gov (United States)

    Wang, Jing; Zhang, Kaichun; Zhang, Xiaoming; Yan, Guohua; Zhou, Yu; Feng, Laibao; Ni, Yang; Duan, Xuwei

    2015-01-01

    A cross between the sweet cherry (Prunus avium) cultivars 'Wanhongzhu' and 'Lapins' was performed to create a mapping population suitable for the construction of a linkage map. The specific-locus amplified fragment (SLAF) sequencing technique used as a single nucleotide polymorphism (SNP) discovery platform and generated 701 informative genotypic assays; these, along with 16 microsatellites (SSRs) and the incompatibility (S) gene, were used to build a map which comprised 8 linkage groups (LGs) and covered a genetic distance of 849.0 cM. The mean inter-marker distance was 1.18 cM and there were few gaps > 5 cM in length. Marker collinearity was maintained with the established peach genomic sequence. The map was used to show that trunk diameter (TD) is under the control of 4 loci, mapping to 3 different LGs. Different locus influenced TD at a varying stage of the tree's development. The high density 'W×L' genetic linkage map has the potential to enable high-resolution identification of QTLs of agronomically relevant traits, and accelerate sweet cherry breeding. PMID:26516760

  1. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine.

    Science.gov (United States)

    Chang, Sungyul; Thurber, Carrie S; Brown, Patrick J; Hartman, Glen L; Lambert, Kris N; Domier, Leslie L

    2014-01-01

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production. PMID

  2. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max reveals extensive chromosome rearrangements in the genus Glycine.

    Directory of Open Access Journals (Sweden)

    Sungyul Chang

    Full Text Available Soybean (Glycine max L. Mer., like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth. Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib. de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L. chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean

  3. Linkage analysis in a large Swedish family supports the presence of a susceptibility locus for adenoma and colorectal cancer on chromosome 9q22.32-31.1

    DEFF Research Database (Denmark)

    Skoglund, J; Djureinovic, T; Zhou, X-L;

    2006-01-01

    dominantly inherited colorectal cancer risk. Recently, a locus on chromosome 9q22.2-31.2 was identified by linkage analysis in sib pairs with colorectal cancer or adenoma. METHODS: Linkage analysis for the suggested locus on chromosome 9 was carried out in an extended Swedish family. This family had...... previously been investigated but following the identification of adenomas in several previously unaffected family members, these subjects were now considered to be gene carriers. RESULTS: In the present study, we found linkage of adenoma and colorectal cancer to chromosome 9q22.32-31.1 with a multipoint LOD...... score of 2.4. We were also able to define the region for this locus to 7.9 cM between the markers D9S280 and D9S277. CONCLUSIONS: Our result supports the presence of a susceptibility locus predisposing to adenoma and colorectal cancer in this chromosomal region....

  4. Genetic linkage between Becker muscular dystrophy and a polymorphic DNA sequence on the short arm of the X chromosome.

    OpenAIRE

    Kingston, H. M.; Thomas, N S; Pearson, P.L.; Sarfarazi, M; Harper, P S

    1983-01-01

    A study of DNA restriction fragment polymorphisms and Becker muscular dystrophy has shown eight families informative for the cloned sequence L1.28, which is located on the short arm of the X chromosome between Xp110 and Xp113. Analysis of these families reveals linkage between the two loci, with the maximum likelihood estimate of the genetic distance being 16 centiMorgans (95% confidence limits between 7 and 32 centiMorgans). Since a study of DNA polymorphisms in Duchenne muscular dystrophy h...

  5. A high-resolution comparative map between pig chromosome 17 and human chromosomes 4, 8, and 20: Identification of synteny breakpoints

    DEFF Research Database (Denmark)

    Lahbib-Mansais, Yvette; Karlskov-Mortensen, Peter; Mompart, Florence;

    2005-01-01

    We report on the construction of a high-resolution comparative map of porcine chromosome 17 (SSC17) focusing on evolutionary breakpoints with human chromosomes. The comparative map shows high homology with human chromosome 20 but suggests more limited homologies with other human chromosomes. SSC1...... chromosomes (HSA4, HSA8) and the chromosomal breakpoint boundaries were accurately defined. In total 15 breakpoints were identified....

  6. Genetic linkage map of Brassica campestris L.using AFLP and RAPD markers

    Institute of Scientific and Technical Information of China (English)

    卢钢; 陈杭; 等

    2002-01-01

    A genetic linkage map comprised of 131 loci was constructed with an F2 population derived from an inter-subspecific cross between Brassica campestris L.ssp.chinensis cv.aijiaohang” and ssp.rapifera cv.,”'isihai”.The genetic map included 93 RAPD loci,36 AFLP loci and 2 morphological loci organized into 10 main linkage groups(LGs) and 2 small groups,covering 1810.9cM with average distance between adjacent markers being approximately 13.8cM.The map is suitable for identification of molecular markers linked to important agronomic traits.QTL analysis,and even for marker-assisted selection in breeding programs of Chinese cabbage and turnip.

  7. High-density linkage mapping and distribution of segregation distortion regions in the oak genome.

    Science.gov (United States)

    Bodénès, Catherine; Chancerel, Emilie; Ehrenmann, François; Kremer, Antoine; Plomion, Christophe

    2016-04-01

    We developed the densest single-nucleotide polymorphism (SNP)-based linkage genetic map to date for the genus Quercus An 8k gene-based SNP array was used to genotype more than 1,000 full-sibs from two intraspecific and two interspecific full-sib families of Quercus petraea and Quercus robur A high degree of collinearity was observed between the eight parental maps of the two species. A composite map was then established with 4,261 SNP markers spanning 742 cM over the 12 linkage groups (LGs) of the oak genome. Nine genomic regions from six LGs displayed highly significant distortions of segregation. Two main hypotheses concerning the mechanisms underlying segregation distortion are discussed: genetic load vs. reproductive barriers. Our findings suggest a predominance of pre-zygotic to post-zygotic barriers. PMID:27013549

  8. An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Rabbi, Ismail Yusuf; Kulembeka, Heneriko Philbert; Masumba, Esther; Marri, Pradeep Reddy; Ferguson, Morag

    2012-07-01

    Cassava (Manihot esculenta Crantz) is one of the most important food security crops in the tropics and increasingly being adopted for agro-industrial processing. Genetic improvement of cassava can be enhanced through marker-assisted breeding. For this, appropriate genomic tools are required to dissect the genetic architecture of economically important traits. Here, a genome-wide SNP-based genetic map of cassava anchored in SSRs is presented. An outbreeder full-sib (F1) family was genotyped on two independent SNP assay platforms: an array of 1,536 SNPs on Illumina's GoldenGate platform was used to genotype a first batch of 60 F1. Of the 1,358 successfully converted SNPs, 600 which were polymorphic in at least one of the parents and was subsequently converted to KBiosciences' KASPar assay platform for genotyping 70 additional F1. High-precision genotyping of 163 informative SSRs using capillary electrophoresis was also carried out. Linkage analysis resulted in a final linkage map of 1,837 centi-Morgans (cM) containing 568 markers (434 SNPs and 134 SSRs) distributed across 19 linkage groups. The average distance between adjacent markers was 3.4 cM. About 94.2% of the mapped SNPs and SSRs have also been localized on scaffolds of version 4.1 assembly of the cassava draft genome sequence. This more saturated genetic linkage map of cassava that combines SSR and SNP markers should find several applications in the improvement of cassava including aligning scaffolds of the cassava genome sequence, genetic analyses of important agro-morphological traits, studying the linkage disequilibrium landscape and comparative genomics.

  9. Sexual antagonism and meiotic drive cause stable linkage disequilibrium and favour reduced recombination on the X chromosome.

    Science.gov (United States)

    Rydzewski, W T; Carioscia, S A; Liévano, G; Lynch, V D; Patten, M M

    2016-06-01

    Sexual antagonism and meiotic drive are sex-specific evolutionary forces with the potential to shape genomic architecture. Previous theory has found that pairing two sexually antagonistic loci or combining sexual antagonism with meiotic drive at linked autosomal loci augments genetic variation, produces stable linkage disequilibrium (LD) and favours reduced recombination. However, the influence of these two forces has not been examined on the X chromosome, which is thought to be enriched for sexual antagonism and meiotic drive. We investigate the evolution of the X chromosome under both sexual antagonism and meiotic drive with two models: in one, both loci experience sexual antagonism; in the other, we pair a meiotic drive locus with a sexually antagonistic locus. We find that LD arises between the two loci in both models, even when the two loci freely recombine in females and that driving haplotypes will be enriched for male-beneficial alleles, further skewing sex ratios in these populations. We introduce a new measure of LD, Dz', which accounts for population allele frequencies and is appropriate for instances where these are sex specific. Both models demonstrate that natural selection favours modifiers that reduce the recombination rate. These results inform observed patterns of congealment found on driving X chromosomes and have implications for patterns of natural variation and the evolution of recombination rates on the X chromosome.

  10. A gene for autosomal dominant hypohidrotic ectodermal dysplasia (EDA3) maps to chromosome 2q11-q13.

    OpenAIRE

    Ho, L.; Williams, M S; Spritz, R A

    1998-01-01

    Autosomal dominant hypohidrotic ectodermal dysplasia (ADHED) is a disorder characterized by fine, slow-growing scalp and body hair, sparse eyebrows and eyelashes, decreased sweating, hypodontia, and nail anomalies. By genetic linkage analysis of a large ADHED kindred, we have mapped a gene for ADHED (EDA3) to the proximal long arm of chromosome 2 (q11-q13). Obligate recombinations localize EDA3 to an approximately 9-cM interval between D2S1321 and D2S308, with no apparent recombinations with ...

  11. An integrated linkage map reveals candidate genes underlying adaptive variation in Chinook salmon (Oncorhynchus tshawytscha)

    DEFF Research Database (Denmark)

    Mckinney, G. J.; Seeb, L. W.; Larson, W. A.;

    2016-01-01

    improvements in mapping and genotyping methods to create a dense linkage map for Chinook salmon Oncorhynchus tshawytscha by assembling family data from different sources. We successfully mapped 14 620 SNP loci including 2336 paralogs in subtelomeric regions. This improved map was then used as a foundation to...

  12. Amh and Dmrta2 genes map to tilapia (Oreochromis spp.) linkage group 23 within quantitative trait locus regions for sex determination.

    Science.gov (United States)

    Shirak, Andrey; Seroussi, Eyal; Cnaani, Avner; Howe, Aimee E; Domokhovsky, Raisa; Zilberman, Noam; Kocher, Thomas D; Hulata, Gideon; Ron, Micha

    2006-11-01

    Recent studies have revealed that the major genes of the mammalian sex determination pathway are also involved in sex determination of fish. Several studies have reported QTL in various species and strains of tilapia, regions contributing to sex determination have been identified on linkage groups 1, 3, and 23. Genes contributing to sex-specific mortality have been detected on linkage groups 2, 6, and 23. To test whether the same genes might control sex determination in mammals and fishes, we mapped 11 genes that are considered putative master key regulators of sex determination: Amh, Cyp19, Dax1, Dmrt2, Dmrta2, Fhl3l, Foxl2, Ixl, Lhx9, Sf1, and Sox8. We identified polymorphisms in noncoding regions of these genes and genotyped these sites for 90 individuals of an F2 mapping family. Mapping of Dax1 joined LG16 and LG21 into a single linkage group. The Amh and Dmrta2 genes were mapped to two distinct regions of LG23. The Amh gene was mapped 5 cM from UNH879 within a QTL region for sex determination and 2 cM from UNH216 within a QTL region for sex-specific mortality. Dmrta2 was mapped 4 cM from UNH848 within another QTL region for sex determination. Cyp19 was mapped to LG1 far from a previously reported QTL region for sex determination on this chromosome. Seven other candidate genes mapped to LG4, -11, -12, -14, and -17. PMID:16951079

  13. Evolution of Chromosome 6 of Solanum Species Revealed by Comparative Fluorescence in Situ Hybridization Mapping

    Science.gov (United States)

    Comparative genome mapping is an important tool in evolutionary research. Here we demonstrate a comparative fluorescent in situ hybridization (FISH) mapping strategy. A set of 13 bacterial artificial chromosome (BAC) clones derived from potato chromosome 6 was used for FISH mapping in seven differen...

  14. Genome-wide linkage in a highly consanguineous pedigree reveals two novel loci on chromosome 7 for non-syndromic familial Premature Ovarian Failure.

    Directory of Open Access Journals (Sweden)

    Sandrine Caburet

    Full Text Available BACKGROUND: The human condition known as Premature Ovarian Failure (POF is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10-15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients. METHODOLOGY/PRINCIPAL FINDINGS: We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LOD(max of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1 included within the largest region did not reveal any causal mutations. CONCLUSIONS/SIGNIFICANCE: We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function.

  15. Definition of the locus responsible for systemic carnitine deficiency within a 1.6-cM region of mouse chromosome 11 by detailed linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Kohei; Tokino, Takashi; Nishimori, Hiroyuki [Univ. of Tokyo (Japan)] [and others

    1996-04-15

    Carnitine is an essential cofactor for oxidation of mitochondrial fatty acids. Carnitine deficiency results in failure of energy production by mitochondria and leads to metabolic encephalopathy, lipid-storage myopathy, and cardiomyopathy. The juvenile visceral steatosis (JVS) mouse, an animal model of systemic carnitine deficiency, inherits the JVS phenotype in autosomal recessive fashion, through a mutant allele mapped to mouse chromosome 11. As a step toward identifying the gene responsible for JVS by positional cloning, we attempted to refine the jvs locus in the mouse by detailed linkage analysis with 13 microsatellite markers, using 190 backcross progeny. Among the 13 loci tested, 5 (defined by markers D11Mit24, D11Mit111,D11Nds9, D11Mit86, and D11Mit23) showed no recombination, with a maximum lod score of 52.38. Our results implied that the jvs gene can be sought on mouse chromosome 11 within a genetic distance no greater than about 1.6 cM. 21 refs., 2 figs.

  16. Genetic mapping of X-linked ocular albinism: Linkage analysis in a large Newfoundland kindred

    Energy Technology Data Exchange (ETDEWEB)

    Charles, S.J.; Moore, A.T.; Barton, D.E.; Yates, J.R.W. (Addenbrooke' s Hospital, Cambridge (United Kingdom)); Green, J.S. (Memorial Univ. of Newfoundland, St. John' s (Canada))

    1993-04-01

    Genetic linkage studies in a large Newfoundland family affected by X-linked ocular albinism (OA1) showed linkage to markers from Xp22.3. One recombinant mapped the disease proximal to DXS143 (dic56) and two recombinants mapped the disease distal to DXS85 (782). Combining the data with that from 16 British families previously published confirmed close linkage between OA1 and DXS143 (dic56; Z[sub max] = 21.96 at [theta] = 0.01, confidence interval (CI) 0.0005--0.05) and linkage to DXS85 (782; Z[sub max] = 17.60 at [theta] = 0.07, CI = 0.03--0.13) and DXS237 (GMGX9; Z[sub max] = 15.20 at [theta] = 0.08, CI = 0.03--0.15). Multipoint analysis (LINKMAP) gave the most likely order as Xpter-XG-DXS237-DXS143-OA1-DXS85, with odds of 48:1 over the order Xpter-XG-DXS237-OA1-DXS143-DXS85, and odds exceeding 10[sup 10]:1 over other locations for the disease locus. 11 refs., 1 fig., 1 tab.

  17. Affected-sib-pair mapping of a novel susceptibility gene to insulin-dependent diabetes mellitus (IDDM8) on chromosome 6q25-q27

    Energy Technology Data Exchange (ETDEWEB)

    Luo, D.F.; Bui, M.M.; Muir, A. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1995-10-01

    Affected-sib-pair analyses were performed using 104 Caucasian families to map genes that predispose to insulin-dependent diabetes mellitus (IDDM). We have obtained linkage evidence for D6S446 (maximum lod score [MLS] = 2.8) and for D6S264 (MLS = 2.0) on 6q25q27. Together with a previously reported data set, linkage can be firmly established (MLS = 3.4 for D6S264), and the disease locus has been designated IDDM8. With analysis of independent families, we confirmed linkage evidence for the previously identified IDDM3 (15q) and DDM7 (2q). We also typed additional markers in the regions containing IDDM3, IDDM4, IDDM5, and IDDM8. Preliminary linkage evidence for a novel region on chromosome 4q (D4S1566) has been found in 47 Florida families (P < .03). We also found evidence of linkage for two regions previously identified as potential linkages in the Florida subset: D3S1303 on 3q (P < .04) and D7S486 on 7q (P < .03). We could not confirm linkage with eight other regions (D1S191, D1S412, D4S1604, D8S264, D8S556, D1OS193, D13S158, and D18S64) previously identified as potential linkages. 26 refs., 1 fig., 4 tabs.

  18. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation

    Directory of Open Access Journals (Sweden)

    Ward Judson A

    2013-01-01

    Full Text Available Abstract Background Rapid development of highly saturated genetic maps aids molecular breeding, which can accelerate gain per breeding cycle in woody perennial plants such as Rubus idaeus (red raspberry. Recently, robust genotyping methods based on high-throughput sequencing were developed, which provide high marker density, but result in some genotype errors and a large number of missing genotype values. Imputation can reduce the number of missing values and can correct genotyping errors, but current methods of imputation require a reference genome and thus are not an option for most species. Results Genotyping by Sequencing (GBS was used to produce highly saturated maps for a R. idaeus pseudo-testcross progeny. While low coverage and high variance in sequencing resulted in a large number of missing values for some individuals, a novel method of imputation based on maximum likelihood marker ordering from initial marker segregation overcame the challenge of missing values, and made map construction computationally tractable. The two resulting parental maps contained 4521 and 2391 molecular markers spanning 462.7 and 376.6 cM respectively over seven linkage groups. Detection of precise genomic regions with segregation distortion was possible because of map saturation. Microsatellites (SSRs linked these results to published maps for cross-validation and map comparison. Conclusions GBS together with genome-independent imputation provides a rapid method for genetic map construction in any pseudo-testcross progeny. Our method of imputation estimates the correct genotype call of missing values and corrects genotyping errors that lead to inflated map size and reduced precision in marker placement. Comparison of SSRs to published R. idaeus maps showed that the linkage maps constructed with GBS and our method of imputation were robust, and marker positioning reliable. The high marker density allowed identification of genomic regions with segregation

  19. Genetic and physical mapping at the limb-girdle muscular dystrophy locus (LGMD2B) on chromosome 2p

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, R.; Keers, S.; Strachan, T. [Univ. of Newcastle upon Tyne (United Kingdom)] [and others

    1996-04-01

    The limb-girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of disorders, different forms of which have been mapped to at least six distinct genetic loci. We have mapped to at least six distinct genetic loci. We have mapped an autosomal recessive form of LGMD (LGMD2B) to chromosome 2p13. Two other conditions have been shown to map to this region or to the homologous region in mouse: a gene for a form of autosomal recessive distal muscular dystrophy, Miyoshi myopathy, shows linkage to the same markers on chromosome 2p as LGMD2B, and an autosomal recessive mouse mutation mnd2, in which there is rapidly progressive paralysis and muscle atrophy, has been mapped to mouse chromosome 6 to a region showing conserved synteny with human chromosome 2p12-p13. We have assembled a 6-cM YAC contig spanning the LGMD2B locus and have mapped seven genes and 13 anonymous polymorphic microsatellites to it. Using haplotype analysis in the linked families, we have narrowed our region of interest to a 0-cM interval between D2S2113 and D2S145, which does not overlap with the critical region for mnd2 in mouse. Use of these most closely linked markers will help to determine the relationship between LGMD2B and Miyoshi myopathy. YACs selected from our contig will be the starting point for the cloning of the LGMD2B gene and thereby establish the biological basis for this form of muscular dystrophy and its relationship with the other limb-girdle muscular dystrophies. 26 refs., 6 figs.

  20. Evidence for an asthma risk locus on chromosome Xp: a replication linkage study

    DEFF Research Database (Denmark)

    Brasch-Andersen, C; Møller, M U; Haagerup, A;

    2008-01-01

    BACKGROUND: Asthma is a complex genetic disorder characterized by chronic inflammation in the airways. Identification of genetic risk factors for asthma has been complicated due to genetic heterogeneity and influence from environmental risk factors. Despite the fact that multiple genetic linkage...

  1. Linkage of atopic dermatitis to chromosomes 4q22, 3p24 and 3q21

    DEFF Research Database (Denmark)

    Christensen, Ulla; Møller-Larsen, Steffen; Nyegaard, Mette;

    2009-01-01

    Atopic dermatitis (AD) is a common, itchy skin disease of complex inheritance characterized by dermal and epidermal inflammation. The heritability is considerable and well documented. To date, four genome scans have examined the AD phenotype, showing replicated linkage at 3p26-22, 3q13-21 and 18q11...

  2. Two craniosynostotic syndrome loci, Crouzon and Jackson-Weiss, map to chromosome 10q23-q26

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Lewanda, A.F.; Eluma, F. [Johns Hopkins Univ., Baltimore, MD (United States)] [and others

    1994-07-15

    Crouzon syndrome (MIM 123500) is a common autosomal dominant form of craniosynostosis with shallow orbits, ocular proptosis, and maxillary hypoplasia. Jackson-Weiss syndrome (MIM 123150) is another autosomal dominant craniosynostosis with highly variable phenotypic expression. Unlike Crouzon syndrome, Jackson-Weiss syndrome is associated with foot anomalies. The authors performed two point linkage and haplotype analyses using 13 dinucleotide repeat markers on chromosome 10, spanning a genetic distance of 108 cM. The Crouzon syndrome locus (CFD1) maps to the region of chromosome 10q2 with the tightest linkage to locus D10S205 (Z = 3.09, {theta} = 0.00). The Jackson-Weiss syndrome locus in the large Amish pedigree in which the condition was originally described was also linked to the chromosome 10q23-q26 region between loci D10S190 and D10S186. The D10S209 locus was most strongly linked (Z = 11.29, {theta} = 0.00). 29 refs., 2 figs., 2 tabs.

  3. Constructing the Parental Linkage Phase and the Genetic Map Over Distances <1 cM Using Pooled Haploid DNA

    OpenAIRE

    Gasbarra, Dario; Sillanpää, Mikko J.

    2006-01-01

    A new statistical approach for construction of the genetic linkage map and estimation of the parental linkage phase based on allele frequency data from pooled gametic (sperm or egg) samples is introduced. This method can be applied for estimation of recombination fractions (over distances

  4. Development of SSR markers and construction of a linkage map in jute

    Indian Academy of Sciences (India)

    Maumita Das; Sumana Banerjee; Raman Dhariwal; Shailendra Vyas; Reyazul R. Mir; Niladri Topdar; Avijit Kundu; Jitendra P. Khurana; Akhilesh K. Tyagi; Debabrata Sarkar; Mohit K. Sinha; Harindra S. Balyan; Pushpendra K. Gupta

    2011-04-01

    Jute is an important natural fibre crop, which is only second to cotton in its importance at the global level. It is mostly grown in Indian subcontinent and has been recently used for the development of genomics resources.We recently initiated a programme to develop simple sequence repeat markers and reported a set of 2469 SSR that were developed using four SSR-enriched libraries (Mir et al. 2009). In this communication, we report an additional set of 607 novel SSR in 393 SSR containing sequences. However, primers could be designed for only 417 potentially useful SSR. Polymorphism survey was carried out for 374 primer pairs using two parental genotypes (JRO 524 and PPO4) of a mapping population developed for fibre fineness; only 66 SSR were polymorphic. Owing to a low level of polymorphism between the parental genotypes and a high degree of segregation distortion in recombinant inbred lines, genotypic data of only 53 polymorphic SSR on the mapping population consisting of 120 RIL could be used for the construction of a linkage map; 36 SSR loci were mapped on six linkage groups that covered a total genetic distance of 784.3 cM. Hopefully, this map will be enriched with more SSR loci in future and will prove useful for identification of quantitative trait loci/genes for molecular breeding involving improvement of fibre fineness and other related traits in jute.

  5. Genetic and physical mapping of the Chediak-Higashi syndrome on chromosome 1q42-43

    Energy Technology Data Exchange (ETDEWEB)

    Barrat, F.J.; Auloge, L.; Pastural, E. [INSERM, Paris (France)] [and others

    1996-09-01

    The Chediak-Higashi syndrome (CHS) is a severe autosomal recessive condition, features of which are partial oculocutaneous albinism, increased susceptibility to infections, deficient natural killer cell activity, and the presence of large intracytoplasmic granulations in various cell types. Similar genetic disorders have been described in other species, including the beige mouse. On the basis of the hypothesis that the murine chromosome 13 region containing the beige locus was homologous to human chromosome 1, we have mapped the CHS locus to a 5-cM interval in chromosome segment 1q42.1-q42.2. The highest LOD score was obtained with the marker D1S235 (Z{sub max} = 5.38; {theta} = 0). Haplotype analysis enabled us to establish D1S2680 and D1S163, respectively, as the telomeric and the centromeric flanking markers. Multipoint linkage analysis confirms the localization of the CHS locus in this interval. Three YAC clones were found to cover the entire region in a contig established by YAC end-sequence characterization and sequence-tagged site mapping. The YAC contig contains all genetic markers that are nonrecombinant for the disease in the nine CHS families studied. This mapping confirms the previous hypothesis that the same gene defect causes CHS in human and beige phenotype in mice and provides a genetic framework for the identification of candidate genes. 36 refs., 4 figs., 1 tab.

  6. Genetic and physical mapping of the Chediak-Higashi syndrome on chromosome 1q42-43.

    Science.gov (United States)

    Barrat, F J; Auloge, L; Pastural, E; Lagelouse, R D; Vilmer, E; Cant, A J; Weissenbach, J; Le Paslier, D; Fischer, A; de Saint Basile, G

    1996-09-01

    The Chediak-Higashi syndrome (CHS) is a severe autosomal recessive condition, features of which are partial oculocutaneous albinism, increased susceptibility to infections, deficient natural killer cell activity, and the presence of large intracytoplasmic granulations in various cell types. Similar genetic disorders have been described in other species, including the beige mouse. On the basis of the hypothesis that the murine chromosome 13 region containing the beige locus was homologous to human chromosome 1, we have mapped the CHS locus to a 5-cM interval in chromosome segment 1q42.1-q42.2. The highest LOD score was obtained with the marker D1S235 (Zmax = 5.38; theta = 0). Haplo-type analysis enabled us to establish D1S2680 and D1S163, respectively, as the telomeric and the centromeric flanking markers. Multipoint linkage analysis confirms the localization of the CHS locus in this interval. Three YAC clones were found to cover the entire region in a conting established by YAC end-sequence characterization and sequence-tagged site mapping. The YAC contig contains all genetic markers that are nonrecombinant for the disease in the nine CHS families studied. This mapping confirms the previous hypothesis that the same gene defect causes CHS in human and beige pheno-type in mice and provides a genetic framework for the identification of candidate genes.

  7. Utilizing linkage disequilibrium information from Indian Genome Variation Database for mapping mutations: SCA12 case study

    Indian Academy of Sciences (India)

    Samira Bahl; Ikhlak Ahmed; The Indian Genome Variation Consortium; Mitali Mukerji

    2009-04-01

    Stratification in heterogeneous populations poses an enormous challenge in linkage disequilibrium (LD) based identification of causal loci using surrogate markers. In this study, we demonstrate the enormous potential of endogamous Indian populations for mapping mutations in candidate genes using minimal SNPs, mainly due to larger regions of LD. We show this by a case study of the PPP2R2B gene (∼400 kb) that harbours a CAG repeat, expansion of which has been implicated in spinocerebellar ataxia type 12 (SCA12). Using LD information derived from Indian Genome Variation database (IGVdb) on populations which share similar ethnic and linguistic backgrounds as the SCA12 study population, we could map the causal loci using a minimal set of three SNPs, without the generation of additional basal data from the ethnically matched population. We could also demonstrate transferability of tagSNPs from a related HapMap population for mapping the mutation.

  8. Joint QTL linkage mapping for multiple-cross mating design sharing one common parent.

    Directory of Open Access Journals (Sweden)

    Huihui Li

    Full Text Available BACKGROUND: Nested association mapping (NAM is a novel genetic mating design that combines the advantages of linkage analysis and association mapping. This design provides opportunities to study the inheritance of complex traits, but also requires more advanced statistical methods. In this paper, we present the detailed algorithm of a QTL linkage mapping method suitable for genetic populations derived from NAM designs. This method is called joint inclusive composite interval mapping (JICIM. Simulations were designed on the detected QTL in a maize NAM population and an Arabidopsis NAM population so as to evaluate the efficiency of the NAM design and the JICIM method. PRINCIPAL FINDINGS: Fifty-two QTL were identified in the maize population, explaining 89% of the phenotypic variance of days to silking, and nine QTL were identified in the Arabidopsis population, explaining 83% of the phenotypic variance of flowering time. Simulations indicated that the detection power of these identified QTL was consistently high, especially for large-effect QTL. For rare QTL having significant effects in only one family, the power of correct detection within the 5 cM support interval was around 80% for 1-day effect QTL in the maize population, and for 3-day effect QTL in the Arabidopsis population. For smaller-effect QTL, the power diminished, e.g., it was around 50% for maize QTL with an effect of 0.5 day. When QTL were linked at a distance of 5 cM, the likelihood of mapping them as two distinct QTL was about 70% in the maize population. When the linkage distance was 1 cM, they were more likely mapped as one single QTL at an intermediary position. CONCLUSIONS: Because it takes advantage of the large genetic variation among parental lines and the large population size, NAM is a powerful multiple-cross design for complex trait dissection. JICIM is an efficient and specialty method for the joint QTL linkage mapping of genetic populations derived from the NAM design.

  9. Genetic map of the Bacillus stearothermophilus NUB36 chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Vallier, H.; Welker, N.E. (Northwestern Univ., Evanston, IL (USA))

    1990-02-01

    A circular genetic map of Bacillus stearothermophilus NUB36 was constructed by transduction with bacteriophage TP-42C and protoplast fusion. Sixty-four genes were tentatively assigned a cognate Bacillus subtilis gene based on growth response to intermediates or end products of metabolism, cross-feeding, accumulation of intermediates, or their relative order in a linkage group. Although the relative position of many genes on the Bacillus subtilis genetic map appears to be similar, some differences were detected. The tentative order of the genes in the Bacillus stearothermophilus aro region is aspB-aroBAFEC-tyra-hisH-(trp), whereas it is aspB-aroE-tyrA-hisH-(trp)-aroHBF in Bacillus subtilis. The aroA, aroC, and aroG genes in Bacillus subtilis are located in another region. The tentative order of genes in the trp operon of Bacillus stearothermophilus is trpFCDABE, whereas it is trpABFCDE in Bacillus subtilis.

  10. A High-Density SNP-Based Linkage Map of the Chicken Genome Reveals Sequence Features Correlated With Recombination Rate

    Science.gov (United States)

    The resolution of the widely used chicken consensus linkage map was highly enlarged by genotyping a total of 12,945 SNPs on the three existing mapping populations in chicken; the Wageningen (WU), East Lansing (EL) and Uppsala (UPP) mapping populations. A total of 8608 SNPs could be included on the m...

  11. Chromosome mapping by FISH to metaphase and interphase nuclei. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Trask, B.

    1997-08-01

    The overall specific aims of this project were: (1) to determine the large-scale structure of interphase and metaphase chromosomes, in order to establish new capabilities for genome mapping by fluorescence in situ hybridization (FISH); (2) to detect chromosome abnormalities associated with genetic disease and map DNA sequences relative to them in order to facilitate the identification of new genes with disease-causing mutations; (3) to establish medium resolution physical maps of selected chromosomal regions using a combined metaphase and interphase mapping strategy and to corroborate physical and genetic maps and integrate these maps with the cytogenetic map; (4) to analyze the polymorphism and sequence evolution of subtelomeric regions of human chromosomes; (5) to establish a state-of-the-art FISH and image processing facility in the Department of Molecular Biotechnology, University of Washington, in order to map DNA sequences rapidly and accurately to benefit the Human Genome Project.

  12. Linkage mapping and identification of QTL affecting deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena sativa L.).

    Science.gov (United States)

    He, Xinyao; Skinnes, Helge; Oliver, Rebekah E; Jackson, Eric W; Bjørnstad, Asmund

    2013-10-01

    Mycotoxins caused by Fusarium spp. is a major concern on food and feed safety in oats, although Fusarium head blight (FHB) is often less apparent than in other small grain cereals. Breeding resistant cultivars is an economic and environment-friendly way to reduce toxin content, either by the identification of resistance QTL or phenotypic evaluation. Both are little explored in oats. A recombinant-inbred line population, Hurdal × Z595-7 (HZ595, with 184 lines), was used for QTL mapping and was phenotyped for 3 years. Spawn inoculation was applied and deoxynivalenol (DON) content, FHB severity, days to heading and maturity (DH and DM), and plant height (PH) were measured. The population was genotyped with DArTs, AFLPs, SSRs and selected SNPs, and a linkage map of 1,132 cM was constructed, covering all 21 oat chromosomes. A QTL for DON on chromosome 17A/7C, tentatively designated as Qdon.umb-17A/7C, was detected in all experiments using composite interval mapping, with phenotypic effects of 12.2–26.6 %. In addition, QTL for DON were also found on chromosomes 5C, 9D, 13A, 14D and unknown_3, while a QTL for FHB was found on 11A. Several of the DON/FHB QTL coincided with those for DH, DM and/or PH. A half-sib population of HZ595, Hurdal × Z615-4 (HZ615, with 91 lines), was phenotyped in 2011 for validation of QTL found in HZ595, and Qdon.umb-17A/7C was again localized with a phenotypic effect of 12.4 %. Three SNPs closely linked to Qdon.umb-17A/7C were identified in both populations, and one each for QTL on 5C, 11A and 13A were identified in HZ595. These SNPs, together with those yet to be identified, could be useful in marker-assisted selection to pyramiding resistance QTL.

  13. Bipolar affective puerperal psychosis- genome-wide significant evidence for linkage to chromosome 16.

    OpenAIRE

    Corvin, Aiden; Gill, Michael

    2007-01-01

    OBJECTIVE: Vulnerability to the triggering of bipolar episodes by childbirth aggregates in families and may define a genetically relevant subtype of bipolar disorder. The authors conducted a search by systematic whole genome linkage scan for loci influencing vulnerability to bipolar affective puerperal psychosis. METHOD: The authors selected families with bipolar disorder from their previous bipolar disorder genome scan, in which there was at least one family member with a manic or psychotic ...

  14. An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family.

    OpenAIRE

    Liu, Zhanjiang; Karsi, Attila; Li, Ping; Cao, Dongfeng; Dunham, R

    2003-01-01

    Catfish is the major aquaculture species in the United States. The hybrid catfish produced by crossing channel catfish females with blue catfish males exhibit a number of desirable production traits, but their mass production has been difficult. To introduce desirable genes from blue catfish into channel catfish through introgression, a genetic linkage map is helpful. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP). A total of 607 AFL...

  15. LD-Spline: Mapping SNPs on genotyping platforms to genomic regions using patterns of linkage disequilibrium

    Directory of Open Access Journals (Sweden)

    Bush William S

    2009-12-01

    Full Text Available Abstract Background Gene-centric analysis tools for genome-wide association study data are being developed both to annotate single locus statistics and to prioritize or group single nucleotide polymorphisms (SNPs prior to analysis. These approaches require knowledge about the relationships between SNPs on a genotyping platform and genes in the human genome. SNPs in the genome can represent broader genomic regions via linkage disequilibrium (LD, and population-specific patterns of LD can be exploited to generate a data-driven map of SNPs to genes. Methods In this study, we implemented LD-Spline, a database routine that defines the genomic boundaries a particular SNP represents using linkage disequilibrium statistics from the International HapMap Project. We compared the LD-Spline haplotype block partitioning approach to that of the four gamete rule and the Gabriel et al. approach using simulated data; in addition, we processed two commonly used genome-wide association study platforms. Results We illustrate that LD-Spline performs comparably to the four-gamete rule and the Gabriel et al. approach; however as a SNP-centric approach LD-Spline has the added benefit of systematically identifying a genomic boundary for each SNP, where the global block partitioning approaches may falter due to sampling variation in LD statistics. Conclusion LD-Spline is an integrated database routine that quickly and effectively defines the genomic region marked by a SNP using linkage disequilibrium, with a SNP-centric block definition algorithm.

  16. Polymorphism and genetic mapping of the human oxytocin receptor gene on chromosome 3

    Energy Technology Data Exchange (ETDEWEB)

    Michelini, S.; Urbanek, M.; Goldman, D. [National Institute of Health-National Institute of Alcohol Abuse and Alcoholism, Rockville, MD (United States)] [and others

    1995-06-19

    Centrally administered oxytocin has been reported to facilitate affiliative and social behaviors, in functional harmony with its well-known peripheral effects on uterine contraction and milk ejection. The biological effects of oxytocin could be perturbed by mutations occurring in the sequence of the oxytocin receptor gene, and it would be of interest to establish the position of this gene on the human linkage map. Therefore we identified a polymorphism at the human oxytocin receptor gene. A portion of the 3{prime} untranslated region containing a 30 bp CA repeat was amplified by polymerase chain reaction (PCR), revealing a polymorphism with two alleles occurring with frequencies of 0.77 and 0.23 in a sample of Caucasian CEPH parents (n = 70). The CA repeat polymorphism we detected was used to map the human oxytocin receptor to chromosome 3p25-3p26, in a region which contains several important genes, including loci for Von Hippel-Lindau disease (VHL) and renal cell carcinoma. 53 refs., 2 figs., 1 tab.

  17. Construction of a genetic linkage map of black gram, Vigna mungo (L.) Hepper, based on molecular markers and comparative studies.

    Science.gov (United States)

    Gupta, S K; Souframanien, J; Gopalakrishna, T

    2008-08-01

    A genetic linkage map of black gram, Vigna mungo (L.) Hepper, was constructed with 428 molecular markers using an F9 recombinant inbred population of 104 individuals. The population was derived from an inter-subspecific cross between a black gram cultivar, TU94-2, and a wild genotype, V. mungo var. silvestris. The linkage analysis at a LOD score of 5.0 distributed all 428 markers (254 AFLP, 47 SSR, 86 RAPD, and 41 ISSR) into 11 linkage groups. The map spanned a total distance of 865.1 cM with an average marker density of 2 cM. The largest linkage group spanned 115 cM and the smallest linkage group was of 44.9 cM. The number of markers per linkage group ranged from 11 to 86 and the average distance between markers varied from 1.1 to 5.6 cM. Comparison of the map with other published azuki bean and black gram maps showed high colinearity of markers, with some inversions. The current map is the most saturated map for black gram to date and will provide a useful tool for identification of QTLs and for marker-assisted selection of agronomically important characters in black gram.

  18. Genetic Linkage Map Construction and QTL Analysis of Two Interspecific Reproductive Isolation Traits in Sponge Gourd.

    Science.gov (United States)

    Wu, Haibin; He, Xiaoli; Gong, Hao; Luo, Shaobo; Li, Mingzhu; Chen, Junqiu; Zhang, Changyuan; Yu, Ting; Huang, Wangping; Luo, Jianning

    2016-01-01

    The hybrids between Luffa acutangula (L.) Roxb. and L.cylindrica (L.) Roem. have strong heterosis effects. However, some reproductive isolation traits hindered their normal hybridization and fructification, which was mainly caused by the flowering time and hybrid pollen sterility. In order to study the genetic basis of two interspecific reproductive isolation traits, we constructed a genetic linkage map using an F2 population derived from a cross between S1174 [L. acutangula (L.) Roxb.] and 93075 [L. cylindrica (L.) Roem.]. The map spans 1436.12 CentiMorgans (cM), with an average of 8.11 cM among markers, and consists of 177 EST-SSR markers distributed in 14 linkage groups (LG) with an average of 102.58 cM per LG. Meanwhile, we conducted colinearity analysis between the sequences of EST-SSR markers and the genomic sequences of cucumber, melon and watermelon. On the basis of genetic linkage map, we conducted QTL mapping of two reproductive isolation traits in sponge gourd, which were the flowering time and hybrid male sterility. Two putative QTLs associated with flowering time (FT) were both detected on LG 1. The accumulated contribution of these two QTLs explained 38.07% of the total phenotypic variance (PV), and each QTL explained 15.36 and 22.71% of the PV respectively. Four QTLs for pollen fertility (PF) were identified on LG 1 (qPF1.1 and qPF1.2), LG 3 (qPF3) and LG 7 (qPF7), respectively. The percentage of PF explained by these QTLs varied from 2.91 to 16.79%, and all together the four QTLs accounted for 39.98% of the total PV. Our newly developed EST-SSR markers and linkage map are very useful for gene mapping, comparative genomics and molecular marker-assisted breeding. These QTLs for interspecific reproductive isolation will also contribute to the cloning of genes relating to interspecific reproductive isolation and the utilization of interspecific heterosis in sponge gourd in further studies. PMID:27458467

  19. Genetic Linkage Map Construction and QTL Analysis of Two Interspecific Reproductive Isolation Traits in Sponge Gourd

    Science.gov (United States)

    Wu, Haibin; He, Xiaoli; Gong, Hao; Luo, Shaobo; Li, Mingzhu; Chen, Junqiu; Zhang, Changyuan; Yu, Ting; Huang, Wangping; Luo, Jianning

    2016-01-01

    The hybrids between Luffa acutangula (L.) Roxb. and L.cylindrica (L.) Roem. have strong heterosis effects. However, some reproductive isolation traits hindered their normal hybridization and fructification, which was mainly caused by the flowering time and hybrid pollen sterility. In order to study the genetic basis of two interspecific reproductive isolation traits, we constructed a genetic linkage map using an F2 population derived from a cross between S1174 [L. acutangula (L.) Roxb.] and 93075 [L. cylindrica (L.) Roem.]. The map spans 1436.12 CentiMorgans (cM), with an average of 8.11 cM among markers, and consists of 177 EST-SSR markers distributed in 14 linkage groups (LG) with an average of 102.58 cM per LG. Meanwhile, we conducted colinearity analysis between the sequences of EST-SSR markers and the genomic sequences of cucumber, melon and watermelon. On the basis of genetic linkage map, we conducted QTL mapping of two reproductive isolation traits in sponge gourd, which were the flowering time and hybrid male sterility. Two putative QTLs associated with flowering time (FT) were both detected on LG 1. The accumulated contribution of these two QTLs explained 38.07% of the total phenotypic variance (PV), and each QTL explained 15.36 and 22.71% of the PV respectively. Four QTLs for pollen fertility (PF) were identified on LG 1 (qPF1.1 and qPF1.2), LG 3 (qPF3) and LG 7 (qPF7), respectively. The percentage of PF explained by these QTLs varied from 2.91 to 16.79%, and all together the four QTLs accounted for 39.98% of the total PV. Our newly developed EST-SSR markers and linkage map are very useful for gene mapping, comparative genomics and molecular marker-assisted breeding. These QTLs for interspecific reproductive isolation will also contribute to the cloning of genes relating to interspecific reproductive isolation and the utilization of interspecific heterosis in sponge gourd in further studies. PMID:27458467

  20. Linkage disequilibrium mapping of a breast cancer susceptibility locus near RAI/PPPIRI3L/iASPP

    DEFF Research Database (Denmark)

    Nexø, Bjørn A.; Vogel, Ulla Birgitte; Olsen, Anja;

    2008-01-01

    Background: Previous results have suggested an association of the region of 19q13.3 with several forms of cancer. In the present study, we investigated 27 public markers within a previously identified 69 kb stretch of chromosome 19q for association with breast cancer by using linkage disequilibri...

  1. Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant.

    Science.gov (United States)

    Wu, Pingzhi; Zhou, Changpin; Cheng, Shifeng; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Chen, Yanbo; Chen, Yan; Ni, Peixiang; Wang, Ying; Xu, Xun; Huang, Ying; Song, Chi; Wang, Zhiwen; Shi, Nan; Zhang, Xudong; Fang, Xiaohua; Yang, Qing; Jiang, Huawu; Chen, Yaping; Li, Meiru; Wang, Ying; Chen, Fan; Wang, Jun; Wu, Guojiang

    2015-03-01

    The family Euphorbiaceae includes some of the most efficient biomass accumulators. Whole genome sequencing and the development of genetic maps of these species are important components in molecular breeding and genetic improvement. Here we report the draft genome of physic nut (Jatropha curcas L.), a biodiesel plant. The assembled genome has a total length of 320.5 Mbp and contains 27,172 putative protein-coding genes. We established a linkage map containing 1208 markers and anchored the genome assembly (81.7%) to this map to produce 11 pseudochromosomes. After gene family clustering, 15,268 families were identified, of which 13,887 existed in the castor bean genome. Analysis of the genome highlighted specific expansion and contraction of a number of gene families during the evolution of this species, including the ribosome-inactivating proteins and oil biosynthesis pathway enzymes. The genomic sequence and linkage map provide a valuable resource not only for fundamental and applied research on physic nut but also for evolutionary and comparative genomics analysis, particularly in the Euphorbiaceae. PMID:25603894

  2. Influence of genotyping error in linkage mapping for complex traits – an analytic study

    Directory of Open Access Journals (Sweden)

    van Houwelingen Hans C

    2008-08-01

    Full Text Available Abstract Background Despite the current trend towards large epidemiological studies of unrelated individuals, linkage studies in families are still thoroughly being utilized as tools for disease gene mapping. The use of the single-nucleotide-polymorphisms (SNP array technology in genotyping of family data has the potential to provide more informative linkage data. Nevertheless, SNP array data are not immune to genotyping error which, as has been suggested in the past, could dramatically affect the evidence for linkage especially in selective designs such as affected sib pair (ASP designs. The influence of genotyping error on selective designs for continuous traits has not been assessed yet. Results We use the identity-by-descent (IBD regression-based paradigm for linkage testing to analytically quantify the effect of simple genotyping error models under specific selection schemes for sibling pairs. We show, for example, that in extremely concordant (EC designs, genotyping error leads to decreased power whereas it leads to increased type I error in extremely discordant (ED designs. Perhaps surprisingly, the effect of genotyping error on inference is most severe in designs where selection is least extreme. We suggest a genomic control for genotyping errors via a simple modification of the intercept in the regression for linkage. Conclusion This study extends earlier findings: genotyping error can substantially affect type I error and power in selective designs for continuous traits. Designs involving both EC and ED sib pairs are fairly immune to genotyping error. When those designs are not feasible the simple genomic control strategy that we suggest offers the potential to deliver more robust inference, especially if genotyping is carried out by SNP array technology.

  3. Physical Map and Organization of Chromosome 7 in the Rice Blast Fungus, Magnaporthe grisea

    OpenAIRE

    Zhu, Heng; Blackmon, Barbara P.; Sasinowski, Maciek; Dean, Ralph A.

    1999-01-01

    The rice blast fungus Magnaporthe grisea is a highly destructive plant pathogen and one of the most important for studying various aspects of host-plant interactions. It has been widely adopted as a model organism because it is ideally suited for genetic and biological studies. To facilitate map-based cloning, chromosome walking, and genome organization studies of M. grisea, a complete physical map of chromosome 7 was constructed using a large-insert (130 kb) bacterial artificial chromosome (...

  4. Mapping the gene for hereditary hyperparathyroidism and prolactinoma (MENI[sub Burin]) to chromosome 11q: Evidence for a founder effect in patients from Newfoundland

    Energy Technology Data Exchange (ETDEWEB)

    Petty, E.M.; Bale, A.E. (Yale Univ. School of Medicine, New Haven, CT (United States)); Green, J.S. (Memorial Univ. St. John' s, Newfoundland (Canada)); Marx, S.J. (National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD (United States)); Taggart, R.T. (Wayne State Univ., Detroit, MI (United States)); Farid, N. (King Faisal Specialist Hospital, Riyadh (Saudi Arabia))

    1994-06-01

    An autosomal dominant syndrome of prolactinomas, carcinoids, and hyperparathyroidism was described in four Newfoundland kindreds in 1980 and in one kindred from the Pacific Northwest in 1983. Because this syndrome shares many features with multiple endocrine neoplasia type 1, the gene for which maps to proximal chromosome 11q, the authors performed linkage studies with chromosome 11 markers in prolactinoma families to determine whether the two genes map to the same location. All proximal chromosome 11q markers gave positive LOD scores, and no recombinants were seen with PYGM (LOD score 15.25, recombination fraction .0). All affected individuals from Newfoundland shared the same PYGM allele, providing evidence for a founder effect. The disease in the Pacific Northwest kindred cosegregated with a different PYGM allele. 32 refs., 2 figs., 3 tabs.

  5. Identification of quantitative trait locus (QTL) linked to dorsal fin length from preliminary linkage map of molly fish, Poecilia sp.

    Science.gov (United States)

    Keong, Bun Poh; Siraj, Siti Shapor; Daud, Siti Khalijah; Panandam, Jothi Malar; Rahman, Arina Nadia Abdul

    2014-02-15

    A preliminary linkage map was constructed by applying backcross and testcross strategy using microsatellite (SSR) markers developed for Xiphophorus and Poecilia reticulata in ornamental fish, molly Poecilia sp. The linkage map having 18 SSR loci consisted of four linkage groups that spanned a map size of 516.1cM. Association between genotypes and phenotypes was tested in a random fashion and QTL for dorsal fin length was found to be linked to locus Msb069 on linkage group 2. Coincidentally, locus Msb069 was also reported as putative homologue primer pairs containing SSRs repeat motif which encoded hSMP-1, a sex determining locus. Dorsal fin length particularly in males of Poecilia latipinna is an important feature during courtship display. Therefore, we speculate that both dorsal fin length and putative hSMP-1 gene formed a close proximity to male sexual characteristics.

  6. Linkage analyses of chromosome 18 markers do not identify a major susceptibility locus for bipolar affective disorder in the Old Order Amish

    Energy Technology Data Exchange (ETDEWEB)

    Pauls, D.L. [Yale Univ. School of Medicine, New Haven, CT (United States); Paul, S.M. [National Institute of Mental Health, Bethesda, MD (United States)]|[Lilly Research Lab., Indianapolis, IN (United States); Allen, C.R. [Univ. of Miami, FL (United States)] [and others

    1995-09-01

    Previously reported linkage of bipolar affective disorder to DNA markers in the pericentromeric region of chromosome 18 was reexamined in a larger homogeneous sample of Old Order Amish families. Four markers (D18S21, D18S53, D18S44, and D18S40) were examined in three kindreds containing 31 bipolar I (BP I) individuals. Although linkage findings were replicated in the one previously studied Amish pedigree containing four BP I individuals, linkage to this region was excluded in the larger sample. If a susceptibility locus for bipolar disorder is located in this region of chromosome 18, it is of minor significance in this population. 40 refs., 1 fig., 5 tabs.

  7. Conservation of genetic linkage with map expansion in distantly related crosses of Agaricus bisporus.

    Science.gov (United States)

    Callac, P; Desmerger, C; Kerrigan, R W; Imbernon, M

    1997-01-15

    A previous map of the genome of a hybrid strain which had European parents belonging to the secondarily homothallic fungus Agaricus bisporus var. bisporus appeared to be unusually compact, with a particularly recombophobic segment in the central part of chromosome I. A new map of this segment was constructed based on allelic segregations among 103 homokaryotic offspring of an A. bisporus hybrid between a European parent of the var. bisporus and a Californian parent of the heterothallic var. burnettii. Markers completely linked on the previous map were distributed along 28 cM in the new map. These results suggest that the greater recombination rate could be correlated with the outbreeding behaviour of the var. burnettii. PMID:9011044

  8. Construction of a microsatellite-based genetic linkage map for half-smooth tongue sole Cynoglossus semilaevis

    Institute of Scientific and Technical Information of China (English)

    Wentao SONG; Guidong MIAO; Yongwei ZHAO; Yuze NIU; Renyi PANG; Xiaolin LIAO; Changwei SHAO

    2013-01-01

    The half-smooth tongue sole Cynoglossus semilaevis is an important cultured marine fish and a promising model fish for the study of sex determination.Sex-specific genetic linkage maps of half-smooth tongue sole were developed with 567 markers (565 microsatellite markers and two SCAR markers).The parents and F1 progeny (92 individuals) were used as segregating populations.The female map was composed of 480 markers in 21 linkage groups,covering a total of 1388.1 cM,with an average interval 3.06 cM between markers.The male map consisted of 417 markers in 21 linkage groups,spanning 1480.9 cM,with an average interval of 3.75 cM.The female and male maps had 474 and 416 unique positions,respectively.The genome length of half-smooth tongue sole was estimated to be 1522.9 cM for females and 1649.1cM for males.Based on estimations of map length,the female and male maps covered 91.1% and 89.8% of the genome,respectively.Furthermore,two female-specific SCAR markers,f-382 and f-783,were mapped on LG15f (linkage group 15 in female maps).The present study presents a mid-density genetic linkage map for half-smooth tongue sole.These improved genetic linkage maps may facilitate systematic genome searches to identify quantitative trait loci (QTL),such as disease resistance,growth and sex-related traits,and are very useful for marker-assisted selection breeding programs for economically important traits in half-smooth tongue sole [Current Zoology 59 (1):31-52,2013].

  9. A gene for late-onset fundus flavimaculatus with macular dystrophy maps to chromosome 1p13

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, S.; Rozet, J.M.; Bonneau, D.; Souied, E.; Camuzat, A.; Munnich, A.; Kaplan, J. [Hopital des Enfants Malades, Paris (France); Dufier, J.L. [Hopital Laeennec, Paris (France); Amalric, P. [Consultation d`Ophtalmologie, Albi (France); Weissenbach, J. [Genethon, Evry (France)

    1995-02-01

    Fundus flavimaculatus with macular dystrophy is an autosomal recessive disease responsible for a progressive loss of visual acuity in adulthood, with pigmentary changes of the macula, perimacular flecks, and atrophy of the retinal pigmentary epithelium. Since this condition shares several clinical features with Stargardt disease, which has been mapped to chromosome 1p21-p13, we tested the disease for linkage to chromosome 1p. We report the mapping of the disease locus to chromosome 1p13-p21, in the genetic interval defined by loci D1S435 and D1S415, in four multiplex families (maximum lod score 4.79 at recombination fraction 0 for probe AFM217xb2 at locus D1S435). Thus, despite differences in the age at onset, clinical course, and severity, fundus flavimaculatus with macular dystrophy and Stargardt disease are probably allelic disorders. This result supports the view that allelic mutations produce a continuum of macular dystrophies, with onset in early childhood to late adulthood. 16 refs., 3 figs., 1 tab.

  10. Mapping and ordered cloning of the human X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, C.T.; Nelson, D.L.

    1992-12-01

    Progress is reported on gathering X chromosome specific libraries and integrating those with the library produced in this project. Further studies on understanding Fragile X Syndrome and other hereditary diseases related to the X chromosome are described. (DT)

  11. A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome.

    Directory of Open Access Journals (Sweden)

    Patrícia Beldade

    2009-02-01

    Full Text Available Lepidopterans (butterflies and moths are a rich and diverse order of insects, which, despite their economic impact and unusual biological properties, are relatively underrepresented in terms of genomic resources. The genome of the silkworm Bombyx mori has been fully sequenced, but comparative lepidopteran genomics has been hampered by the scarcity of information for other species. This is especially striking for butterflies, even though they have diverse and derived phenotypes (such as color vision and wing color patterns and are considered prime models for the evolutionary and developmental analysis of ecologically relevant, complex traits. We focus on Bicyclus anynana butterflies, a laboratory system for studying the diversification of novelties and serially repeated traits. With a panel of 12 small families and a biphasic mapping approach, we first assigned 508 expressed genes to segregation groups and then ordered 297 of them within individual linkage groups. We also coarsely mapped seven color pattern loci. This is the richest gene-based map available for any butterfly species and allowed for a broad-coverage analysis of synteny with the lepidopteran reference genome. Based on 462 pairs of mapped orthologous markers in Bi. anynana and Bo. mori, we observed strong conservation of gene assignment to chromosomes, but also evidence for numerous large- and small-scale chromosomal rearrangements. With gene collections growing for a variety of target organisms, the ability to place those genes in their proper genomic context is paramount. Methods to map expressed genes and to compare maps with relevant model systems are crucial to extend genomic-level analysis outside classical model species. Maps with gene-based markers are useful for comparative genomics and to resolve mapped genomic regions to a tractable number of candidate genes, especially if there is synteny with related model species. This is discussed in relation to the identification of

  12. A high-resolution interval map of the q21 region of the human X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, C.; Monaco, A.P. [ICRF Laboratories, Oxford (United Kingdom)] [and others; Arnould, C. [Laboratoire de Genetique Humaine, Vandoeuvre-les-Nancy (France)] [and others

    1995-06-10

    In a previous study, we have developed a panel of chromosomal rearrangements for the physical mapping of the q13-q21 region of the human X chromosome. Here, we report the physical localization of 36 additional polymorphic markers by polymerase chain reaction analysis. The high density of chromosomal breakpoints in Xq21 allows us to map 58 DNA loci in 22 intervals. As a result, this segment of the X chromosome is saturated with approximately three sequence tagged sites per megabase of DNA, which will facilitate the construction of a YAC contig of this region. 26 refs., 1 fig., 1 tab.

  13. Fluorescence in situ hybridization mapping of 25 markers on distal human chromosome 2q surrounding the human Waardenburg syndrome, type I (WS1) locus (PAX3 gene)

    Energy Technology Data Exchange (ETDEWEB)

    Lu-Kuo, J.; Ward, D.C. (Yale Univ., New Haven, CT (United States)); Spritz, R.A. (Univ. of Wisconsin, Madison (United States))

    1993-04-01

    A total of 25 DNA markers located on the long arm of human chromosome 2 have been mapped by fluorescence in situ hybridization. This region includes the locus for Waardenburg syndrome, type I (WS1), recently found to result, at least in some cases, from mutations of the PAX3 gene. The authors have established that the chromosomal location of the PAX3 gene is within band 2q36. They also show that three markers in the distal 2q region, including the PAX3 gene, are deleted in a patient with phenotypic features of WS1 associated with a de novo deletion (2)(q35q36.2). The improved physical map of this region should facilitate linkage mapping and positional cloning of loci on distal 2q. 46 refs., 2 figs., 1 tab.

  14. Global similarity with local differences in linkage disequilibrium between the Dutch and HapMap-CEU populations

    NARCIS (Netherlands)

    Pardo, Luba; Bochdanovits, Zoltan; de Geus, Eco; Hottenga, Jouke J.; Sullivan, Patrick; Posthuma, Danielle; Penninx, Brenda W. J. H.; Boomsma, Dorret; Heutink, Peter

    2009-01-01

    The HapMap project has facilitated the selection of tagging single nucleotide polymorphisms (tagSNPs) for genome-wide association studies (GWAS) under the assumption that linkage disequilibrium (LD) in the HapMap populations is similar to the populations under investigation. Earlier reports support

  15. Genetic mapping of the hereditary mixed polyposis syndrome to chromosome 6q

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, H.J.W.; Whitelaw, S.C.; Hodgson, S.V.; Northover, J.M.A.; Talbot, I.C. [and others

    1996-04-01

    Hereditary mixed polyposis syndrome (HMPS) is characterized by atypical juvenile polyps, colonic adenomas, and colorectal carcinomas. HMPS appears to be inherited in an autosomal dominant manner. Genetic linkage analysis has been performed on a large family with HMPS. Data did not support linkage to the APC locus or to any of the loci for hereditary nonpolyposis colorectal cancer. Evidence that the HMPS locus lies on chromosome 6q was, however, provided by significant two-point LOD scores for linkage between HMPS and the D6S283 locus. Analysis of recombinants and multipoint linkage analysis suggested that the HMPS locus lies in a 4-cM interval containing the D6S283 locus and flanked by markers D6S468 and D6S301. 10 refs., 4 figs., 1 tab.

  16. Hereditary motor and autonomic neuronopathy 1 maps to chromosome 20q13.2-13.3

    Directory of Open Access Journals (Sweden)

    W. Marques Jr.

    2004-11-01

    Full Text Available The spinal muscular atrophies (SMA or hereditary motor neuronopathies result from the continuous degeneration and death of spinal cord lower motor neurons, leading to progressive muscular weakness and atrophy. We describe a large Brazilian family exhibiting an extremely rare, late-onset, dominant, proximal, and progressive SMA accompanied by very unusual manifestations, such as an abnormal sweating pattern, and gastrointestinal and sexual dysfunctions, suggesting concomitant involvement of the autonomic nervous system. We propose a new disease category for this disorder, `hereditary motor and autonomic neuronopathy', and attribute the term, `survival of motor and autonomic neurons 1' (SMAN1 to the respective locus that was mapped to a 14.5 cM region on chromosome 20q13.2-13.3 by genetic linkage analysis and haplotype studies using microsatellite polymorphic markers. This locus lies between markers D20S120 and D20S173 showing a maximum LOD score of 4.6 at D20S171, defining a region with 33 known genes, including several potential candidates. Identifying the SMAN1 gene should not only improve our understanding of the molecular mechanisms underlying lower motor neuron diseases but also help to clarify the relationship between motor and autonomic neurons.

  17. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley

    Directory of Open Access Journals (Sweden)

    Bartoš Jan

    2008-06-01

    Full Text Available Abstract Background Flow cytometry facilitates sorting of single chromosomes and chromosome arms which can be used for targeted genome analysis. However, the recovery of microgram amounts of DNA needed for some assays requires sorting of millions of chromosomes which is laborious and time consuming. Yet, many genomic applications such as development of genetic maps or physical mapping do not require large DNA fragments. In such cases time-consuming de novo sorting can be minimized by utilizing whole-genome amplification. Results Here we report a protocol optimized in barley including amplification of DNA from only ten thousand chromosomes, which can be isolated in less than one hour. Flow-sorted chromosomes were treated with proteinase K and amplified using Phi29 multiple displacement amplification (MDA. Overnight amplification in a 20-microlitre reaction produced 3.7 – 5.7 micrograms DNA with a majority of products between 5 and 30 kb. To determine the purity of sorted fractions and potential amplification bias we used quantitative PCR for specific genes on each chromosome. To extend the analysis to a whole genome level we performed an oligonucleotide pool assay (OPA for interrogation of 1524 loci, of which 1153 loci had known genetic map positions. Analysis of unamplified genomic DNA of barley cv. Akcent using this OPA resulted in 1426 markers with present calls. Comparison with three replicates of amplified genomic DNA revealed >99% concordance. DNA samples from amplified chromosome 1H and a fraction containing chromosomes 2H – 7H were examined. In addition to loci with known map positions, 349 loci with unknown map positions were included. Based on this analysis 40 new loci were mapped to 1H. Conclusion The results indicate a significant potential of using this approach for physical mapping. Moreover, the study showed that multiple displacement amplification of flow-sorted chromosomes is highly efficient and representative which

  18. Genetic linkage of familial granulomatous inflammatory arthritis, skin rash, and uveitis to chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, G.; Kuivaniemi, H.; Ala-Kokko, L. [Thomas Jefferson Univ., Philadelphia, PA (United States)] [and others

    1996-11-01

    Blau syndrome (MIM 186580), first described in a large, three-generation kindred, is an autosomal, dominantly inherited disease characterized by multiorgan, tissue-specific inflammation. Its clinical phenotype includes granulomatous arthritis, skin rash, and uveitis and probably represents a subtype of a group of clinical entities referred to as {open_quotes}familial granulomatosis.{close_quotes} It is the sole human model with recognizably Mendelian inheritance for a variety of multisystem inflammatory diseases affecting a significant percentage of the population. A genomewide search for the Blau susceptibility locus was undertaken after karyotypic analysis revealed no abnormalities. Sixty-two of the 74-member pedigree were genotyped with dinucleotide-repeat markers. Linkage analysis was performed under dominant model of inheritance with reduced penetrance. The marker D16S298 gave a maximum LOD score of 3.75 at {theta} = .04, with two-point analysis. LOD scores for flanking markers were consistent and placed the Blau susceptibility locus within the 16p12-q21 interval. 46 refs., 3 figs., 3 tabs.

  19. Construction of a chromosome specific library of human MARs and mapping of matrix attachment regions on human chromosome 19.

    Science.gov (United States)

    Nikolaev, L G; Tsevegiyn, T; Akopov, S B; Ashworth, L K; Sverdlov, E D

    1996-01-01

    Using a novel procedure a representative human chromosome 19-specific library was constructed of short sequences, which bind preferentially to the nuclear matrix (matrix attachment regions, or MARs). Judging by 20 clones sequenced so far, the library contains > 50% of human inserts, about 90% of which are matrix-binding by the in vitro test. Computer analysis of sequences of eight human MARs did not reveal any significant homologies with the EMBL Nucleotide Data Base entries as well as between MARs themselves. Eight MARs were assigned to individual positions on the chromosome 19 physical map. The library constructed can serve as a good source of MAR sequences for comparative analysis and classification and for further chromosome mapping of MARs as well. PMID:8614638

  20. EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.)

    DEFF Research Database (Denmark)

    Studer, Bruno; Kölliker, Roland; Muylle, Hilde;

    2010-01-01

    Background Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage ma...

  1. Development of a SNP resource and a genetic linkage map for Atlantic cod (Gadus morhua

    Directory of Open Access Journals (Sweden)

    Higgins Brent

    2010-03-01

    Full Text Available Abstract Background Atlantic cod (Gadus morhua is a species with increasing economic significance for the aquaculture industry. The genetic improvement of cod will play a critical role in achieving successful large-scale aquaculture. While many microsatellite markers have been developed in cod, the number of single nucleotide polymorphisms (SNPs is currently limited. Here we report the identification of SNPs from sequence data generated by a large-scale expressed sequence tag (EST program, focusing on fish originating from Canadian waters. Results A total of 97976 ESTs were assembled to generate 13448 contigs. We detected 4753 SNPs that met our selection criteria (depth of coverage ≥ 4 reads; minor allele frequency > 25%. 3072 SNPs were selected for testing. The percentage of successful assays was 75%, with 2291 SNPs amplifying correctly. Of these, 607 (26% SNPs were monomorphic for all populations tested. In total, 64 (4% of SNPs are likely to represent duplicated genes or highly similar members of gene families, rather than alternative alleles of the same gene, since they showed a high frequency of heterozygosity. The remaining polymorphic SNPs (1620 were categorised as validated SNPs. The mean minor allele frequency of the validated loci was 0.258 (± 0.141. Of the 1514 contigs from which validated SNPs were selected, 31% have a significant blast hit. For the SNPs predicted to occur in coding regions (141, we determined that 36% (51 are non-synonymous. Many loci (1033 SNPs; 64% are polymorphic in all populations tested. However a small number of SNPs (184 that are polymorphic in the Western Atlantic were monomorphic in fish tested from three European populations. A preliminary linkage map has been constructed with 23 major linkage groups and 924 mapped SNPs. Conclusions These SNPs represent powerful tools to accelerate the genetic improvement of cod aquaculture. They have been used to build a genetic linkage map that can be applied to

  2. Fine mapping QTL for resistance to VNN disease using a high-density linkage map in Asian seabass.

    Science.gov (United States)

    Liu, Peng; Wang, Le; Wong, Sek-Man; Yue, Gen Hua

    2016-01-01

    Asian seabass has suffered from viral nervous necrosis (VNN) disease. Our previous study has mapped quantitative trait loci (QTL) for resistance to VNN disease. To fine map these QTL and identify causative genes, we identified 6425 single nucleotide polymorphisms (SNPs) from 85 dead and 94 surviving individuals. Combined with 155 microsatellites, we constructed a genetic map consisting of 24 linkage groups (LGs) containing 3000 markers, with an average interval of 1.27 cM. We mapped one significant and three suggestive QTL with phenotypic variation explained (PVE) of 8.3 to 11.0%, two significant and two suggestive QTL with PVE of 7.8 to 10.9%, for resistance in three LGs and survival time in four LGs, respectively. Further analysis one QTL with the largest effect identified protocadherin alpha-C 2-like (Pcdhac2) as the possible candidate gene. Association study in 43 families with 1127 individuals revealed a 6 bp insertion-deletion was significantly associated with disease resistance. qRT-PCR showed the expression of Pcdhac2 was significantly induced in the brain, muscle and skin after nervous necrosis virus (NNV) infection. Our results could facilitate marker-assisted selection (MAS) for resistance to NNV in Asian seabass and set up the basis for functional analysis of the potential causative gene for resistance.

  3. Fine Mapping and Evolution of a QTL Region on Cattle Chromosome 3

    Science.gov (United States)

    Donthu, Ravikiran

    2009-01-01

    The goal of my dissertation was to fine map the milk yield and composition quantitative trait loci (QTL) mapped to cattle chromosome 3 (BTA3) by Heyen et al. (1999) and to identify candidate genes affecting these traits. To accomplish this, the region between "BL41" and "TGLA263" was mapped to the cattle genome sequence assembly Btau 3.1 and a…

  4. Reconstruction of linkage maps in the distorted segregation populations of backcross,doubled haploid and recombinant inbred lines

    Institute of Scientific and Technical Information of China (English)

    ZHU ChengSong; WANG FuHua; WANG JianFei; LI GuangJun; ZHANG HongSheng; ZHANG YuanMing

    2007-01-01

    Non-Mendelian segregation of markers,known as distorted segregation,is a common biological phenomenon.Although segregation distortion affects the estimation of map distances and the results of quantitative trait loci(QTL)mapping,the effects of distorted markers are often ignored in the construction of linkage maps and in QTL mapping.Recently,we have developed a multipoint method via a Hidden Markov chain method to reconstruct linkage maps in an F2 population that corrects for bias of map distances between distorted markers.In this article,the method is extended to cover backcross,doubled haploid and recombinant inbred line(RIL)populations.The results from simulated experiments show that:(1)the degree that two linked segregation distortion loci(SDL)affect the estimation of map distances increases as SDL heritability and interval length between adjacent markers increase,whereas sample size has little effect on the bias;(2)two linked SDL result in the underestimation of linkage distances for most cases,overestimation for an additive model with opposite additive effects,and unbiased estimation for an epistatic model with negative additive-by-additive effects;(3)the proposed method can obtain the unbiased estimation of linkage distance.This new method was applied to a rice RIL population with severely distorted segregation to reconstruct the linkage maps,and a bootstrap method was used to Obtain 95% confidence intervals of map distances.The results from real data analysis further demonstrate the utility of our method,which provides a foundation for the inheritance analysis of quantitative and viability traits.

  5. High-resolution mapping of the spatial organization of a bacterial chromosome.

    Science.gov (United States)

    Le, Tung B K; Imakaev, Maxim V; Mirny, Leonid A; Laub, Michael T

    2013-11-01

    Chromosomes must be highly compacted and organized within cells, but how this is achieved in vivo remains poorly understood. We report the use of chromosome conformation capture coupled with deep sequencing (Hi-C) to map the structure of bacterial chromosomes. Analysis of Hi-C data and polymer modeling indicates that the Caulobacter crescentus chromosome consists of multiple, largely independent spatial domains that are probably composed of supercoiled plectonemes arrayed into a bottle brush-like fiber. These domains are stable throughout the cell cycle and are reestablished concomitantly with DNA replication. We provide evidence that domain boundaries are established by highly expressed genes and the formation of plectoneme-free regions, whereas the histone-like protein HU and SMC (structural maintenance of chromosomes) promote short-range compaction and the colinearity of chromosomal arms, respectively. Collectively, our results reveal general principles for the organization and structure of chromosomes in vivo. PMID:24158908

  6. The gamma fibrinogen gene (FGG) maps to chromosome 17 in both cattle and sheep.

    Science.gov (United States)

    Johnson, S E; Barendse, W; Hetzel, D J

    1993-01-01

    The gamma fibrinogen gene (FGG) was localised in both cattle and sheep using in situ hybridisation. The probe employed was a 1-kb bovine cDNA fragment. Based on observations of QFQ-banded chromosome preparations, this locus is on bovine chromosome 17q12-->q13 and on the homologous sheep chromosome 17. This localisation is, to our knowledge, the first assignment to chromosome 17 in either the bovine or ovine genome. In addition to localising FGG to this chromosome, the assignment provisionally maps the previously unassigned syntenic group U23, containing (besides FGG) the genes for mitochondrial aldehyde dehydrogenase 2 (ALDH2), interleukin 2 (IL2), immunoglobulin lambda (IGL), and beta fibrinogen (FGB), to chromosome 17 in cattle and probably to the same chromosome in sheep.

  7. A novel locus for alopecia with mental retardation syndrome (APMR2) maps to chromosome 3q26.2-q26.31.

    Science.gov (United States)

    Wali, A; John, P; Gul, A; Lee, K; Chishti, M S; Ali, G; Hassan, M J; Leal, S M; Ahmad, W

    2006-09-01

    Congenital alopecia may occur either alone or in association with ectodermal and other abnormalities. On the bases of such associations, several different syndromes featuring congenital alopecia can be distinguished. Alopecia with mental retardation syndrome (APMR) is a rare autosomal recessive disorder, clinically characterized by total or partial hair loss and mental retardation. In the present study, a five-generation Pakistani family with multiple affected individuals with APMR was ascertained. Patients in this family exhibited typical features of APMR syndrome. The disease locus was mapped to chromosome 3q26.2-q26.31 by carrying out a genome scan followed by fine mapping. A maximum two-point logarithm of odds (LOD) score of 2.93 at theta=0.0 was obtained at markers D3S3053 and D3S2309. Multipoint linkage analysis resulted in a maximum LOD score of 4.57 with several markers, which supports the linkage. The disease locus was flanked by markers D3S1564 and D3S2427, which corresponds to 9.6-cM region according to the Rutgers combined linkage-physical map of the human genome (build 35) and contains 5.6 Mb. The linkage interval of the APMR locus identified here does not overlap with the one described previously; therefore, this locus has been designated as APMR2.

  8. Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map

    Science.gov (United States)

    Linkage maps of the sweet cherry cultivar ‘Emperor Francis’ (EF) and the wild forest cherry ‘New York 54’ (NY) were constructed using primarily simple sequence repeat (SSR) markers and gene-derived markers with known positions on the Prunus reference map. The success rate for identifying SSR markers...

  9. Report of the Second International Workshop on Human Chromosome 5 Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.A.; Neuman, W.L. [Chicago Univ., IL (United States); McPherson, J.; Wasmuth, J. [California Univ., Irvine, CA (United States). Dept. of Biological Chemistry; Camper, S. [Michigan Univ., Ann Arbor, MI (United States). Medical School; Plaetke, R. [Eceles Inst. of Human Genetics, Salt Lake City, UT (United States). Dept. of Human Genetics; Williamson, R. [St. Mary`s Hospital Medical School, London (United Kingdom). Dept. of Biochemistry and Molecular Genetics

    1993-12-31

    This report describes the accomplishments of the Second International Workshop on Human Chromosome 5 as was held May 11--13,1992 at the University of Chicago. Included in the report are abstract of individual presentations and a consensus map of the chromosome.

  10. Chromosome identification and gene mapping in potato by pachytene, trisomic and half-tetrad analysis.

    NARCIS (Netherlands)

    Wagenvoort, M.

    1993-01-01

    The research described in this thesis deals with chromosome identification and gene mapping. In contrast to results from literature, in this study only three chromosomes (1, 2 and 12) could unambiguously be identified in mitotic cells using conventional staining, and four (1, 2, 3 and 4) in case of

  11. Progress towards construction of a total restriction fragment map of a human chromosome.

    NARCIS (Netherlands)

    H. Vissing; F.G. Grosveld (Frank); E. Solomon; G. Moore; N. Lench; N. Shennan; R. Williamson

    1987-01-01

    textabstractWe present an approach to the construction of an overlapping restriction fragment map of a single human chromosome. A genomic cosmid library genome was constructed from a mouse-human hybrid cell line containing chromosome 17 as its only human genetic component. Cosmids containing human i

  12. A consensus microsatellite-based linkage map for the hermaphroditic bay scallop (Argopecten irradians and its application in size-related QTL analysis.

    Directory of Open Access Journals (Sweden)

    Hongjun Li

    Full Text Available Bay scallop (Argopecten irradians is one of the most economically important aquaculture species in China. In this study, we constructed a consensus microsatellite-based genetic linkage map with a mapping panel containing two hybrid backcross-like families involving two subspecies of bay scallop, A. i. irradians and A. i. concentricus. One hundred sixty-one microsatellite and one phenotypic (shell color markers were mapped to 16 linkage groups (LGs, which corresponds to the haploid chromosome number of bay scallop. The sex-specific map was 779.2 cM and 781.6 cM long in female and male, respectively, whereas the sex-averaged map spanned 849.3 cM. The average resolution of integrated map was 5.9 cM/locus and the estimated coverage was 81.3%. The proportion of distorted markers occurred more in the hybrid parents, suggesting that the segregation distortion was possibly resulted from heterospecific interaction between genomes of two subspecies of bay scallop. The overall female-to-male recombination rate was 1.13:1 across all linked markers in common to both parents, and considerable differences in recombination also existed among different parents in both families. Four size-related traits, including shell length (SL, shell height (SH, shell width (SW and total weight (TW were measured for quantitative trait loci (QTL analysis. Three significant and six suggestive QTL were detected on five LGs. Among the three significant QTL, two (qSW-10 and qTW-10, controlling SW and TW, respectively were mapped on the same region near marker AiAD121 on LG10 and explained 20.5% and 27.7% of the phenotypic variance, while the third (qSH-7, controlling SH was located on LG7 and accounted for 15.8% of the phenotypic variance. Six suggestive QTL were detected on four different LGs. The linkage map and size-related QTL obtained in this study may facilitate marker-assisted selection (MAS in bay scallop.

  13. Selective intestinal malabsorption of vitamin B12 displays recessive Mendelian inheritance: Assignment of a locus to chromosome 10 by linkage

    Energy Technology Data Exchange (ETDEWEB)

    Aminoff, M.; Tahvanainen, E.; Chapelle, A. de la [Univ. of Helsinki (Finland)] [and others

    1995-10-01

    Juvenile megaloblastic anemia caused by selective intestinal malabsorption of vitamin B12 has been considered a distinct condition displaying autosomal recessive inheritance. It appears to have a worldwide distribution, and comparatively high incidences were reported 30 years ago in Finland and Norway. More recently, the Mendelian inheritance of the condition has been questioned because almost no new cases have occurred in these populations. Here we report linkage studies assigning a recessive-gene locus for the disease to chromosome 10 in previously diagnosed multiplex families from Finland and Norway, proving the Mendelian mode of inheritance. The locus is tentatively assigned to the 6-cM interval between markers D10S548 and D10S466, with a multipoint maximum lod score (Z{sub max}) of 5.36 near marker D10S1477. By haplotype analysis, the healthy sibs in these families did not appear to constitute any examples of nonpenetrance. We hypothesize that the paucity of new cases in these populations is due either to a dietary effect on the gene penetrance that has changed with time, or to a drop in the birth rate in subpopulations showing enrichment of the mutation, or to both of these causes. 38 refs., 4 figs., 2 tabs.

  14. Adrenocorticotropin receptor/melanocortin receptor-2 maps within a reported susceptibility region for bipolar illness on chromosome 18

    Energy Technology Data Exchange (ETDEWEB)

    Detera-Wadleigh, S.D.; Yoon, Sung W.; Goldin, L.R. [National Institutes of Health, Bethesda, MD (United States)] [and others

    1995-08-14

    We have examined the possible linkage of adrenocorticotropin receptor/melanocortin receptor-2 (ACTHR/MC-2) to a reported putative susceptibility locus for bipolar illness (BP) in 20 affected pedigrees. Initially, allelic variants of the gene were identified by polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) and the gene was genetically mapped using both the Centre d`Etudes du Polymorphisme Humain (CEPH) pedigrees and the BP pedigrees used in this study. We found that the ACTHR/MC-2 gene maps between D18S53 and D18S66. These loci span a region of chromosome 18 which, in a previous study revealed a putative predisposing locus to BP through nonparametric methods of analyses, although affected sib-pair (ASP) method revealed an increase in allele sharing among ill individuals, P=0.023. Since this receptor is within a potential linkage region, ACTHR/MC-2 could be considered a candidate gene for BP. 22 refs., 4 figs., 2 tabs.

  15. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. (Universita di Bari (Italy)); Antonacci, R. (Instituto Anatomia Umana Normale, Modena (Italy))

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  16. Identification of Pneumocystis carinii chromosomes and mapping of five genes

    DEFF Research Database (Denmark)

    Lundgren, B; Cotton, R; Lundgren, J D;

    1990-01-01

    Pulsed field gel electrophoresis was used to identify the chromosome-size DNA of Pneumocystis carinii, a major pathogen of immunocompromised patients. Thirteen chromosomes of rodent Pneumocystis carinii, ranging in size from 300 to 700 kilobases (kb), were identified. The minimum genome size for ...

  17. Two craniosynostotic syndrome loci, Crouzon and Jackson-Weiss, map to chromosome 10q23-q26

    Energy Technology Data Exchange (ETDEWEB)

    Elumfa, F.; Lewanda, A.; Li, X. [Johns Hopkins Univ., Baltimore, MD (United States)] [and others

    1994-09-01

    Craniosynostosis is a common malformation consisting of premature fusion of skull bones leading to abnormal head shape and, in severe cases, increased intracranial pressure. Crouzon (CFD1) and Jackson-Weiss syndromes (JWS) are two distinct autosomal dominant craniosynostotic conditions with ocular proptosis and maxillary hypoplasia. In the former condition, the proptosis tends to be more severe and is due to shallow orbits. Unlike CFD1, JWS is associated with foot anomalies and highly variable phenotypic expression. We performed two point linkage and haplotype analyses with 15 markers on chromosome 10, spanning a genetic distance of 108 cM. The CFD1 locus maps to the chromosome 10q23-26 region with tightest linkage to D10S205 (Z=3.09, {theta}=0.00, 19 meioses). The JWS locus (originally described in this family) was also linked to this region in an 18 cM interval between D10S190 and D10S186. The D10S209 locus was most strongly linked (Z=11.29, {theta}=0.00, 40 meioses). All of the markers had recombinants with at least one of the conditions. Regional candidate genes implicated in craniofacial and limb development include HOX11, PAX2, ZNF32, and RBP3. These disorders may be allelic, but our data raised the possibility of genetic heterogeneity. As we gather more families, we will find evidence for or against the presence of genetically distinct forms of both syndromes. Isolation of the craniosynostotic gene(s) on chromosome 10 will be important for accurate diagnosis of these disorders and identification of genetic factors involved in craniofacial development.

  18. Molecular mapping of Verticillium wilt resistance QTL clustered on chromosomes D7 and D9 in upland cotton

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Verticillium wilt is a destructive disease with international consequences for cotton production. Breeding broad-spectrum resistant cultivars is considered to be one of the most effective means for reducing crop losses. A resistant cotton cultivar,60182,was crossed with a susceptible cultivar,Jun-mian 1,to identify markers for Verticillium resistance genes and validate the mode of its inheritance. Genetic segregation analysis for Verticillium wilt resistance was evaluated based upon infected leaf percentage in the seedling stage using major gene-polygene mixed inheritance models and joint analysis of P1,P2,F1,B1,B2 and F2 populations obtained from the cultivar cross. We found that resistance of upland cotton cultivar 60182 to isolates BP2,VD8 and T9,and their isoconcentration mixture was controlled by two major genes with additive-dominance-epistatic effects,and the inheritance of the major gene was dominant. Furthermore,a genetic linkage map was constructed using F2 segregating population and resistance phenotypic data were obtained using F2:3 families inoculated with different isolates and detected in different developmental stages. The genetic linkage map with 139 loci was comprised of 31 linkage groups covering 1165 cM,with an average distance of 8.38 cM between two markers,or 25.89% of the cotton genome length. From 60182,we found 4 QTL on chromosome D7 and 4 QTL on D9 for BP2,5 QTL on D7 and 9 QTL on D9 for VD8,4 QTL on D7 and 5 QTL on D9 for T9 and 3 QTL on D7 and 7 QTL on D7 for mixed pathogens. The QTL mapping results revealed that QTL clusters with high contribution rates were screened simultaneously on chromosomes D9 and D7 by multiple interval mapping (CIM),whether from resistance phenotypic data from different developmental stages or for different isolates. The result is consistent with the genetic model of two major genes in 60182 and suggests broad-spectrum resistance to both defoliating isolates of V. dahliae and nondefoliating isolates. The markers

  19. Waardenburg syndrome (WS): the analysis of a single family with a WS1 mutation showing linkage to RFLP markers on human chromosome 2q.

    OpenAIRE

    Asher, J H; Morell, R; Friedman, T B

    1991-01-01

    Waardenburg syndrome type I (WS1; MIM 19350) is caused by a pleiotropic, autosomal dominant mutation with variable penetrance and expressivity. Of individuals with this mutation, 20%-25% are hearing impaired. A multilocus linkage analysis of RFLP data from a single WS1 family with 11 affected individuals indicates that the WS1 mutation in this family is linked to the following four marker loci located on the long arm of chromosome 2: ALPP (alkaline phosphatase, placental), FN1 (fibronectin 1)...

  20. Delimiting the origin of a B chromosome by FISH mapping, chromosome painting and DNA sequence analysis in Astyanax paranae (Teleostei, Characiformes.

    Directory of Open Access Journals (Sweden)

    Duílio M Z de A Silva

    Full Text Available Supernumerary (B chromosomes have been shown to contain a wide variety of repetitive sequences. For this reason, fluorescent in situ hybridisation (FISH is a useful tool for ascertaining the origin of these genomic elements, especially when combined with painting from microdissected B chromosomes. In order to investigate the origin of B chromosomes in the fish species Astyanax paranae, these two approaches were used along with PCR amplification of specific DNA sequences obtained from the B chromosomes and its comparison with those residing in the A chromosomes. Remarkably, chromosome painting with the one-arm metacentric B chromosome probe showed hybridization signals on entire B chromosome, while FISH mapping revealed the presence of H1 histone and 18S rDNA genes symmetrically placed in both arms of the B chromosome. These results support the hypothesis that the B chromosome of A. paranae is an isochromosome. Additionally, the chromosome pairs Nos. 2 or 23 are considered the possible B chromosome ancestors since both contain syntenic H1 and 18S rRNA sequences. The analysis of DNA sequence fragments of the histone and rRNA genes obtained from the microdissected B chromosomes showed high similarity with those obtained from 0B individuals, which supports the intraspecific origin of B chromosomes in A. paranae. Finally, the population hereby analysed showed a female-biased B chromosome presence suggesting that B chromosomes in this species could influence sex determinism.

  1. A genetic linkage map of marine shrimp Penaeus ( Fenneropenaeus) chinensis based on AFLP, SSR, and RAPD markers

    Science.gov (United States)

    Liu, Bo; Wang, Qingyin; Li, Jian; Liu, Ping; He, Yuying

    2010-07-01

    The Chinese shrimp Penaeus ( Fenneropaeneus) chinensis is an important species in marine fishery and aquaculture in China. A female Chinese shrimp Penaeus ( Fenneropaeneus) chinensis was captured from west coast of the Korean peninsula and mated with a “Yellow Sea No. 1” male to produce the first filial generation (F1) 100 F2 full-sib progeny from brother-sister crosses between F1 families was used for the mapping study. A genetic linkage map of the Chinese shrimp was constructed, based on 354 markers, including 300 amplified fragment length polymorphism (AFLP) markers, 42 microsatellite (SSR) markers, and 12 randomly amplified polymorphism (RAPD) markers. Forty-seven linkage groups (LGs) were identified. The total map length was 4 580.5 cM, with an average spacing of 11.3 cM, covering 75.8% of the estimated genome size. The construction of this genetic linkage map was part of a genetic breeding program. This linkage map will contribute to the discovery of genes and quantitative trait loci (QTLs) in Chinese shrimp.

  2. Directed isolation and mapping of microsatellites from swine Chromosome 1q telomeric region through microdissection and RH mapping.

    Science.gov (United States)

    Sarker, N; Hawken, R J; Takahashi, S; Alexander, L J; Awata, T; Schook, L B; Yasue, H

    2001-07-01

    Several quantitative trait loci (QTLs) (vertebrate number, birth weight, age at puberty, growth rate, gestation length, and backfat depth) have been independently mapped to the distal region of swine Chromosome (SSC) 1q in several resource populations. In order to improve the map resolution and refine these QTLs more precisely on SSC1q, we have isolated and mapped additional microsatellites (ms), using chromosome microdissection and radiation hybrid (RH) mapping. Five copies of the telomeric region of SSC1q were microdissected from metaphase spreads and pooled. The chromosomal fragment DNA was randomly amplified by using degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR), enriched for ms, and subcloned into a PCR vector. Screening of subsequent clones with ms probes identified 23 unique ms sequences. Fifteen of these (65%) were subjected to radiation hybrid (RH) mapping by using the INRA-University of Minnesota porcine RH panel (IMpRH); and the remaining eight were not suited for the RH mapping. Twelve microsatellites were assigned to SSC1q telomeric region of IMpRH map (LOD >6), and three remain unlinked (LOD pig. In summary, we have used microdissection and radiation hybrid mapping to clone and map 12 new microsatellites to the swine gene map to increase the resolution of SSC1q in the region of known QTLs.

  3. Linkage mapping of a severe X-linked mental retardation syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Malmgren, H.; Sundvall, M.; Steen-Bondeson, M.L.; Pettersson, U. (Uppsala Univ. (Sweden)); Dahl, N. (Uppsala Univ. (Sweden) University Hospital, Uppsala (Sweden)); Gustavson, K.H.; Anneren, G.; Wadelius, C. (University Hospital, Uppsala (Sweden))

    1993-06-01

    A four-generation Swedish family with a new type of X-linked mental retardation syndrome was recently reported by Gustavson et al. The complex syndrome includes microcephaly, severe mental retardation, optical atrophy with decreased vision or blindness, severe hearing defect, characteristic facial features, spasticity, seizures, and restricted joint motility. The patients die during infancy or early in childhood. Twenty-one family members, including two affected males, were available for study. Linkage analysis was conducted in the family by using 11 RFLP markers and 10 VNTR markers spread along the X chromosome. A hypervariable short tandem repeat of DXS294 at Xq26 showed a peak two-point lod score of 3.35 at zero recombination fraction. Calculations using the same markers revealed a multipoint peak lod score of 3.65 at DXS294. Crossover events with the centromeric marker DXS424 and the telomeric marker DXS297 delimit a probable region for the gene localization. It is noteworthy that the disease loci of two other syndromes with overlapping clinical manifestations recently were shown by Turner et al. and Pettigrew et al. to be linked to markers at Xq26. 29 refs., 2 figs., 1 tab.

  4. A New Locus for Generalized Epilepsy with Febrile Seizures Plus Maps to Chromosome 2

    OpenAIRE

    Lopes-Cendes, I.; Scheffer, I E.; Berkovic, S F; Rousseau, M.; Andermann, E.; Rouleau, G. A.

    2000-01-01

    Generalized epilepsy with febrile seizures plus (GEFS+) is a recently recognized but relatively common form of inherited childhood-onset epilepsy with heterogeneous epilepsy phenotypes. We genotyped 41 family members, including 21 affected individuals, to localize the gene causing epilepsy in a large family segregating an autosomal dominant form of GEFS+. A genomewide search examining 197 markers identified linkage of GEFS+ to chromosome 2, on the basis of an initial positive LOD score for ma...

  5. Identification of QTLs associated with callogenesis and embryogenesis in oil palm using genetic linkage maps improved with SSR markers.

    Directory of Open Access Journals (Sweden)

    Ngoot-Chin Ting

    Full Text Available Clonal reproduction of oil palm by means of tissue culture is a very inefficient process. Tissue culturability is known to be genotype dependent with some genotypes being more amenable to tissue culture than others. In this study, genetic linkage maps enriched with simple sequence repeat (SSR markers were developed for dura (ENL48 and pisifera (ML161, the two fruit forms of oil palm, Elaeis guineensis. The SSR markers were mapped onto earlier reported parental maps based on amplified fragment length polymorphism (AFLP and restriction fragment length polymorphism (RFLP markers. The new linkage map of ENL48 contains 148 markers (33 AFLPs, 38 RFLPs and 77 SSRs in 23 linkage groups (LGs, covering a total map length of 798.0 cM. The ML161 map contains 240 markers (50 AFLPs, 71 RFLPs and 119 SSRs in 24 LGs covering a total of 1,328.1 cM. Using the improved maps, two quantitative trait loci (QTLs associated with tissue culturability were identified each for callusing rate and embryogenesis rate. A QTL for callogenesis was identified in LGD4b of ENL48 and explained 17.5% of the phenotypic variation. For embryogenesis rate, a QTL was detected on LGP16b in ML161 and explained 20.1% of the variation. This study is the first attempt to identify QTL associated with tissue culture amenity in oil palm which is an important step towards understanding the molecular processes underlying clonal regeneration of oil palm.

  6. Linkage and association analyses identify a candidate region for apoB level on chromosome 4q32.3 in FCHL families.

    Science.gov (United States)

    Wijsman, Ellen M; Rothstein, Joseph H; Igo, Robert P; Brunzell, John D; Motulsky, Arno G; Jarvik, Gail P

    2010-06-01

    Familial combined hyperlipidemia (FCHL) is a complex trait leading to cardiovascular disease (CVD) risk. Elevated levels and size of apolipoprotein B (apoB) and low-density lipoprotein (LDL) are associated with FCHL, which is genetically heterogeneous and is likely caused by rare variants. We carried out a linkage-based genome scan of four large FCHL pedigrees for apoB level that is independent of LDL: apoB level that is adjusted for LDL level and size. Follow-up included SNP genotyping in the region with the strongest evidence of linkage. Several regions with the evidence of linkage in individual pedigrees support the rare variant model. Evidence of linkage was strongest on chromosome 4q, with multipoint analysis in one pedigree giving LOD = 3.1 with a parametric model, and a log Bayes Factor = 1.5 from a Bayesian oligogenic approach. Of the 293 SNPs spanning the implicated region on 4q, rs6829588 completely explained the evidence of linkage. This SNP accounted for 39% of the apoB phenotypic variance, with heterozygotes for this SNP having a trait value that was approximately 30% higher than that of the high-frequency homozygote, thus identifying and considerably refining a strong candidate region. These results illustrate the advantage of using large pedigrees in the search for rare variants: reduced genetic heterogeneity within single pedigrees coupled with the large number of individuals segregating otherwise-rare single variants leads to high power to implicate such variants.

  7. Fine mapping of susceptibility genes by Lewontin's linkage disequilibrium measure with application to Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objectives To formulate an equation for fine mapping of disease loci under complex conditions and determine the marker-disease distance in a specific case using this equation. Methods Lewontin's linkage disequilibrium (LD) measure D' was used to formulate an equation for mapping disease genes in the presence of phenocopies, locus heterogeneity, gene-gene and gene-environment interactions, incomplete penetrance, uncertain liability and threshold, incomplete initial LD, natural selection, recurrent mutation, high disease allele frequency and unknown mode of inheritance. This equation was then used to determine the distance between a marker (ε4 within the apolipoprotein E gene, APOE) and Alzheimer's disease (AD) loci using published data.Results An equation was formulated for mapping disease genes under the above conditions. If these conditions are present but ignored, then recombination fraction θ between marker and disease loci will be either overestimated or estimated with little bias. Therefore, an upper limit of θ can be obtained. AD has been found to be associated with the marker allele ε4 in Africans, Asians, and Caucasians. This suggests that the AD-ε4 allelic LD predates the divergence of peoples occurring 100·!000 years ago. With the age of AD-ε4 allelic LD so estimated, the maximal distance was calculated to be 23.2 kb (mean 5.8 kb).Conclusions (1) A method is developed for LD mapping of susceptibility genes. (2) A mutation within the APOE gene itself, among others, is responsible for the susceptibility to AD, which is supported by recent evidence from studies using transgenic mice.

  8. Identification of QTLs Associated with Callogenesis and Embryogenesis in Oil Palm Using Genetic Linkage Maps Improved with SSR Markers.

    NARCIS (Netherlands)

    Ting, N.C.; Jansen, J.; Nagappan, J.; Ishak, Z.; Chin, C.W.; Tan, S.G.; Cheah, S.C.; Singh, R.

    2013-01-01

    Clonal reproduction of oil palm by means of tissue culture is a very inefficient process. Tissue culturability is known to be genotype dependent with some genotypes being more amenable to tissue culture than others. In this study, genetic linkage maps enriched with simple sequence repeat (SSR) marke

  9. Construction of a genetic linkage map for cultivated peanut and development of QTLs/markers for marker-assisted breeding

    Science.gov (United States)

    Several genetic maps based on recombinant inbred line (RIL) and backcross (BC) populations have been developed for tetraploid peanut recently. The marker density, however, is still very low especially in context of large genome size (2,800Mb/1C) and 20 linkage groups (LGs). Therefore, improvement of...

  10. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01

    Science.gov (United States)

    A landmark in soybean research, Glyma1.01, the first whole genome sequence of variety Williams 82 (Glycine max L. Merr.) was completed in 2010 and is widely used. However, because the assembly was primarily built based on the linkage maps constructed with a limited number of markers and recombinant...

  11. Linear chromosomal physical and genetic map of Borrelia burgdorferi, the Lyme disease agent.

    Science.gov (United States)

    Casjens, S; Huang, W M

    1993-05-01

    A physical map of the 952 kbp chromosome of Borrelia burgdorferi Sh-2-82 has been constructed. Eighty-three intervals on the chromosome, defined by the cleavage sites of 15 restriction enzymes, are delineated. The intervals vary in size from 96 kbp to a few hundred bp, with an average size of 11.5 kbp. A striking feature of the map is its linearity; no other bacterial groups are known to have linear chromosomes. The two ends of the chromosome do not hybridize with one another, indicating that there are no large common terminal regions. The chromosome of this strain was found to be stable in culture; passage 6, 165 and 320 cultures have identical chromosomal restriction maps. We have positioned all previously known Borrelia burgdorferi chromosomal genes and several newly identified ones on this map. These include the gyrA/gyrB/dnaA/dnaN gene cluster, the rRNA gene cluster, fla, flgE, groEL (hsp60), recA, the rho/hip cluster, the dnaK (hsp70)/dnaJ/grpE cluster, the pheT/pheS cluster, and the genes which encode the potent immunogen proteins p22A, p39 and p83. Our electrophoretic analysis detects five linear and at least two circular plasmids in B. burgdorferi Sh-2-82. We have constructed a physical map of the 53 kbp linear plasmid and located the operon that encodes the two major outer surface proteins ospA and ospB on this plasmid. Because of the absence of functional genetic tools for this organism, these maps will serve as a basis for future mapping, cloning and sequencing studies of B. burgdorferi.

  12. Rate of decay in admixture linkage disequilibrium and its implication in gene mapping

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Modeling linkage disequilibria (LD) between genes usually observed in admixed natural populations has been shown an effective approach in high-resolution mapping of disease genes in humans. A prerequisite to obtain accurate estimation of recombination fraction between genes at a marker locus and the disease locus using the approach is a reliable prediction of the proportion of the admixture populations. The present study suggested the use of gene frequencies to predict the estimate of the admixture propor-tion based on the observation that the gene frequencies are much more stable quantities than the haplotype frequencies over evolution of the population. In this paper, we advanced the theory and methods by which the decay rate of nonlinear term of LD in admixed population may be used to estimate the recombination fraction between the genes. Theoretical analysis and simulation study indicate that, the larger the difference of gene frequencies between parental populations and the more closely the admixture proportion approaches 0.5, the more important the nonlinear term of the LD in the admixed population, and hence the more informative such admixed populations in the high-resolution gene mapping practice.

  13. An integrated physical map covering 25 cM of human chromosome 8

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.; Hou, J.; Wagner, M.J.; Wells, D.E. [Univ. of Houston, TX (United States)

    1996-02-15

    This article reports on an integrated physical map of human chromosome 8 using STS content analysis of somatic cell hybrids and YAC contigs. Such mapping efforts will help to localize genes linked to hereditary diseases. 17 refs., 1 fig., 1 tab.

  14. Genetic and physical mapping of two centromere-proximal regions of chromosome IV in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Aleksenko, Alexei Y.; Nielsen, Michael Lynge; Clutterbuck, A.J.

    2001-01-01

    revision of the genetic map of the chromosome, including the position of the centromere, Comparison of physical and genetic maps indicates that meiotic recombination is low in subcentromeric DNA, its frequency being reduced from 1 crossover per 0.8 Mb to approximately 1 crossover per 5 Mb per meiosis...

  15. Chromosome

    Science.gov (United States)

    Chromosomes are structures found in the center (nucleus) of cells that carry long pieces of DNA. DNA ... is the building block of the human body. Chromosomes also contain proteins that help DNA exist in ...

  16. The gene for Crouzon craniofacial dysostosis maps to a 7 centiMorgan region on chromosome 10q in three unrelated kindreds

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, G.D.; Preston, R.A.; Aston, C.A. [Univ. of Pittsburgh, PA (United States)] [and others

    1994-09-01

    Crouzon craniofacial dysostosis (CFD, M.I.M. number 123500) is an autosomal dominant disorder of craniofacial development with complete penetrance and variable expressivity that is characterized by premature craniosynostosis, maxilary hypoplasia, and shallow orbits. We recently mapped CFD to a 21 centiMorgan (cM) region of chromosome 10q25-q26 in two unrelated families from North America. We now report the confirmation of this locus using a third large CFD kindred from South America and describe a refinement of the CFD gene map position. A recombination was observed in two members of the Argentinean kindred at marker D10S209, thereby redefining the centromeric limit of the CFD locus. In addition, a newly available Genethon microsatellite marker, D10S587, which maps between D10S216 and D10S209, proved to be informative for the original family and a recombination was observed at this marker in an unaffected family member, redefining the telomeric limit of the Crouzon syndrome locus. The finding of these obligate recombinants reduces the candidate region for the CFD gene locus to 7 cM. Multipoint linkage analysis (LINKAGE (ver 5.1)) carried out on the three pedigrees produced a maximal LOD score of 12.33 at a locus approximately 2 cM telomeric to D10S209. These findings suggest that CFD is a genetically homogeneous disorder caused by mutations in a gene located on chromosome 10q.

  17. Fine-scale linkage mapping reveals a small set of candidate genes influencing honey bee grooming behavior in response to Varroa mites.

    Directory of Open Access Journals (Sweden)

    Miguel E Arechavaleta-Velasco

    Full Text Available Populations of honey bees in North America have been experiencing high annual colony mortality for 15-20 years. Many apicultural researchers believe that introduced parasites called Varroa mites (V. destructor are the most important factor in colony deaths. One important resistance mechanism that limits mite population growth in colonies is the ability of some lines of honey bees to groom mites from their bodies. To search for genes influencing this trait, we used an Illumina Bead Station genotyping array to determine the genotypes of several hundred worker bees at over a thousand single-nucleotide polymorphisms in a family that was apparently segregating for alleles influencing this behavior. Linkage analyses provided a genetic map with 1,313 markers anchored to genome sequence. Genotypes were analyzed for association with grooming behavior, measured as the time that individual bees took to initiate grooming after mites were placed on their thoraces. Quantitative-trait-locus interval mapping identified a single chromosomal region that was significant at the chromosome-wide level (p<0.05 on chromosome 5 with a LOD score of 2.72. The 95% confidence interval for quantitative trait locus location contained only 27 genes (honey bee official gene annotation set 2 including Atlastin, Ataxin and Neurexin-1 (AmNrx1, which have potential neurodevelopmental and behavioral effects. Atlastin and Ataxin homologs are associated with neurological diseases in humans. AmNrx1 codes for a presynaptic protein with many alternatively spliced isoforms. Neurexin-1 influences the growth, maintenance and maturation of synapses in the brain, as well as the type of receptors most prominent within synapses. Neurexin-1 has also been associated with autism spectrum disorder and schizophrenia in humans, and self-grooming behavior in mice.

  18. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species

    Directory of Open Access Journals (Sweden)

    Doležel Jaroslav

    2010-02-01

    Full Text Available Abstract Background The presence of closely related genomes in polyploid species makes the assembly of total genomic sequence from shotgun sequence reads produced by the current sequencing platforms exceedingly difficult, if not impossible. Genomes of polyploid species could be sequenced following the ordered-clone sequencing approach employing contigs of bacterial artificial chromosome (BAC clones and BAC-based physical maps. Although BAC contigs can currently be constructed for virtually any diploid organism with the SNaPshot high-information-content-fingerprinting (HICF technology, it is currently unknown if this is also true for polyploid species. It is possible that BAC clones from orthologous regions of homoeologous chromosomes would share numerous restriction fragments and be therefore included into common contigs. Because of this and other concerns, physical mapping utilizing the SNaPshot HICF of BAC libraries of polyploid species has not been pursued and the possibility of doing so has not been assessed. The sole exception has been in common wheat, an allohexaploid in which it is possible to construct single-chromosome or single-chromosome-arm BAC libraries from DNA of flow-sorted chromosomes and bypass the obstacles created by polyploidy. Results The potential of the SNaPshot HICF technology for physical mapping of polyploid plants utilizing global BAC libraries was evaluated by assembling contigs of fingerprinted clones in an in silico merged BAC library composed of single-chromosome libraries of two wheat homoeologous chromosome arms, 3AS and 3DS, and complete chromosome 3B. Because the chromosome arm origin of each clone was known, it was possible to estimate the fidelity of contig assembly. On average 97.78% or more clones, depending on the library, were from a single chromosome arm. A large portion of the remaining clones was shown to be library contamination from other chromosomes, a feature that is unavoidable during the

  19. Report of the fifth international workshop on human X chromosome mapping

    Energy Technology Data Exchange (ETDEWEB)

    Willard, H.F.; Cremers, F.; Mandel, J.L.; Monaco, A.P.; Nelson, D.L.; Schlessinger, D.

    1994-12-31

    A high-quality integrated genetic and physical map of the X chromosome from telomere to telomere, based primarily on YACs formatted with probes and STSs, is increasingly close to reality. At the Fifth International X Chromosome Workshop, organized by A.M. Poustka and D. Schlessinger in Heidelberg, Germany, April 24--27, 1994, substantial progress was recorded on extension and refinement of the physical map, on the integration of genetic and cytogenetic data, on attempts to use the map to direct gene searches, and on nascent large-scale sequencing efforts. This report summarizes physical and genetic mapping information presented at the workshop and/or published since the reports of the fourth International X Chromosome Workshop. The principle aim of the workshop was to derive a consensus map of the chromosome, in terms of physical contigs emphasizing the location of genes and microsatellite markers. The resulting map is presented and updates previous versions. This report also updates the list of highly informative microsatellites. The text highlights the working state of the map, the genes known to reside on the X, and the progress toward integration of various types of data.

  20. Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; PAN Junsong; LI Xiaozun; HE Huanle; WU Aizhong; CAI Run

    2005-01-01

    Using SRAP (sequence-related amplified polymorphism) markers a genetic linkage map of cucumber was constructed with a population consisting of 138 F2 individuals derived from a cross of the two cucumber lines, SO6 and S52. In the survey of parental polymorphisms with 182 primer combinations, 64 polymorphism-revealing primer pairs were screened out, which generated totally 108 polymorphic bands with an average of 1.7 bands per primer pair and at most 6 bands from one primer pair. The constructed molecular linkage map included 92 loci,distributed in seven linkage groups and spanning 1164.2 cM in length with an average genetic distance of 12.6 cM between two neighboring loci. Based on this linkage map, the quantitative trait loci (QTL) for the lateral branch number (Ibn) and the lateral branch average length (Ibl) in cucumber were identified by QTLMapper1.6. A major QTL Ibnl located between ME11SA4B and ME5EM5 in LG2 could explain 10.63% of the total variation with its positively effecting allele from SO6. A major QTL Ibll located between DC1OD3 and DC1EM14 in LG2 could account for 10.38% of the total variation with its positively effecting allele from S06.

  1. High-Resolution Radiation Hybrid Map of Wheat Chromosome 1D

    OpenAIRE

    Kalavacharla, Venu; Hossain, Khwaja; Gu, Yong; Riera-Lizarazu, Oscar; Vales, M. Isabel; Bhamidimarri, Suresh; Gonzalez-Hernandez, Jose L.; Maan, Shivcharan S; Kianian, Shahryar F

    2006-01-01

    Physical mapping methods that do not rely on meiotic recombination are necessary for complex polyploid genomes such as wheat (Triticum aestivum L.). This need is due to the uneven distribution of recombination and significant variation in genetic to physical distance ratios. One method that has proven valuable in a number of nonplant and plant systems is radiation hybrid (RH) mapping. This work presents, for the first time, a high-resolution radiation hybrid map of wheat chromosome 1D (D geno...

  2. Genome-wide scan for serum ghrelin detects linkage on chromosome 1p36 in Hispanic children: results from the Viva La Familia study.

    Science.gov (United States)

    Voruganti, V Saroja; Göring, Harald H H; Diego, Vincent P; Cai, Guowen; Mehta, Nitesh R; Haack, Karin; Cole, Shelley A; Butte, Nancy F; Comuzzie, Anthony G

    2007-10-01

    This study was conducted to investigate genetic influence on serum ghrelin and its relationship with adiposity-related phenotypes in Hispanic children (n=1030) from the Viva La Familia study (VFS). Anthropometric measurements and levels of serum ghrelin were estimated and genetic analyses conducted according to standard procedures. Mean age, body mass index (BMI), and serum ghrelin were 11+/-0.13 y, 25+/-0.24 kg/m2 and 38+/-0.5 ng/mL, respectively. Significant heritabilities (p<0.001) were obtained for BMI, weight, fat mass, percent fat, waist circumference, waist-to-height ratio, and ghrelin. Bivariate analyses of ghrelin with adiposity traits showed significant negative genetic correlations (p<0.0001) with weight, BMI, fat mass, percent fat, waist circumference, and waist-to-height ratio. A genome-wide scan for ghrelin detected significant linkage on chromosome 1p36.2 between STR markers D1S2697 and D1S199 (LOD=3.2). The same region on chromosome 1 was the site of linkage for insulin (LOD=3.3), insulinlike growth factor binding protein 1 (IGFBP1) (LOD=3.4), homeostatic model assessment method (HOMA) (LOD=2.9), and C-peptide (LOD=2.0). Several family-based studies have reported linkages for obesity-related phenotypes in the region of 1p36. These results indicate the importance of this region in relation to adiposity in children from the VFS.

  3. Chromosome assortment in Saccharum.

    Science.gov (United States)

    Al-Janabi, S M; Honeycutt, R J; Sobral, B W

    1994-12-01

    Recent work has revealed random chromosome pairing and assortment in Saccharum spontaneum L., the most widely distributed, and morphologically and cytologically variable of the species of Saccharum. This conclusion was based on the analysis of a segregating population from across between S. spontaneum 'SES 208' and a spontaneously-doubled haploid of itself, derived from anther culture. To determine whether polysomic inheritance is common in Saccharum and whether it is observed in a typical biparental cross, we studied chromosome pairing and assortment in 44 progeny of a cross between euploid, meiotically regular, 2n=80 forms of Saccharum officinarum 'LA Purple' and Saccharum robustum ' Mol 5829'. Papuan 2n=80 forms of S. robustum have been suggested as the immediate progenitor species for cultivated sugarcane (S. officinarum). A total of 738 loci in LA Purple and 720 loci in Mol 5829 were amplified and typed in the progeny by arbitrarily primed PCR using 45 primers. Fifty and 33 single-dose polymorphisms were identified in the S. officinarum and S. robustum genomes, respectively (χ 2 at 98%). Linkage analysis of single-dose polymorphisms in both genomes revealed linkages in repulsion and coupling phases. In the S. officinarum genome, a map hypothesis gave 7 linkage groups with 17 linked and 33 unlinked markers. Four of 13 pairwise linkages were in repulsion phase and 9 were in coupling phase. In the S. robustum genome, a map hypothesis gave 5 linkage groups, defined by 12 markers, with 21 markers unlinked, and 2 of 9 pairwise linkages were in repulsion phase. Therefore, complete polysomic inheritance was not observed in either species, suggesting that chromosomal behavior is different from that observed by linkage analysis of over 500 markers in the S. spontaneum map. Implications of this finding for evolution and breeding are discussed.

  4. Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus roseus

    Science.gov (United States)

    Shokeen, Bhumika; Choudhary, Shalu; Sethy, Niroj Kumar; Bhatia, Sabhyata

    2011-01-01

    Background and Aims Catharanthus roseus is a plant of great medicinal importance, yet inadequate knowledge of its genome structure and the unavailability of genomic resources have been major impediments in the development of improved varieties. The aims of this study were to develop co-dominant sequence-tagged microsatellite sites (STMS) and gene-targeted markers (GTMs) and utilize them for the construction of a framework intraspecific linkage map of C. roseus. Methods For simple sequence repeat (SSR) isolation, a genomic library enriched for (GA)n repeats was constructed from C. roseus ‘Nirmal’ (CrN1). In addition, GTMs were also designed from 12 genes of the TIA (terpenoid indole alkaloid) pathway – the medicinally most significant pathway in C. roseus. An F2 mapping population was also generated by crossing two diverse accessions of C. roseus CrN1 (Nirmal)×CrN82 (Kew). Key Results A new set of 314 STMS markers and 64 GTMs were developed in this study. A segregating F2 mapping population consisting of 111 F2 individuals was generated. For generating the linkage map, a set of 423 co-dominant markers (378 newly developed and 45 published earlier) were screened for polymorphism between the parental genotypes, of which 134 were identified to be polymorphic. A total of 114 markers were mapped on eight linkage groups that spanned a 632·7 cM region of the genome with an average marker distance of 5·55 cM. Further, the mechanism of hypervariability at the gene-targeted loci was investigated at the sequence level. Conclusions For the first time, a large array of STMS markers and GTMs was generated in the model medicinal plant C. roseus. Moreover, the first microsatellite marker-based linkage map was described in this study. Together, these will serve as a foundation for future genomics studies related to quantitative trait loci analysis and molecular breeding in C. roseus. PMID:21788377

  5. Development of the BAC Physical Maps of Wheat Chromosome 6B for Its Genomic Sequencing

    OpenAIRE

    Kobayashi, A.; Katagiri, S.; Karasawa, W.; Takumi, S.; Doležel, J. (Jaroslav); Ogihara, Y.; Handa, H.

    2015-01-01

    For a purpose of better understanding the genome structure of wheat and accelerating the development of DNA markers for gene isolations and breeding, the Japanese research group, as a member of The International Wheat Genome Sequencing Consortium, is now conducting the physical mapping and genomic sequencing of wheat chromosome 6B of ‘Chinese Spring’ (CS). BAC libraries were constructed respectively using the short and long arm-specific DNAs extracted from the flow-sorted chromosome 6BS and 6...

  6. Assignment of Atlantic salmon (Salmo salar) Linkage Groups to Specific Chromosomes: Conservation of Large Syntenic Blocks Corresponding to Whole Chromosome Arms in Rainbow Trout (Oncorhynchus mykiss)

    OpenAIRE

    Phillips, Ruth; Keatley, Kimberly; Morasch, Matthew; Ventura, Abigail; Lubieniecki, Krzysztof; Koop, Ben; Danzmann, Roy; Davidson, William

    2009-01-01

    Background: Most teleost species, especially freshwater groups such as the Esocidae which are theclosest relatives of salmonids, have a karyotype comprising 25 pairs of acrocentric chromosomes and 48–52 chromosome arms. After the common ancestor of salmonids underwent a whole genome duplication,its karyotype would have 100 chromosome arms, and this is reflected in the modal range of 96–104 seenin extant salmonids (e.g., rainbow trout). The Atlantic salmon is an exception among the salmonids a...

  7. Chromosomal mapping of specific DNA gains and losses in solid tumors using comparative genomic hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, E.; Manoir, S. du; Speicher, M. [National Center for Human Genome Research, Bethesda, MD (United States)] [and others

    1994-09-01

    Comparative genomic hybridization (CGH) is a new molecular cytogenetic technique that is based on two color FISH and quantitative digital imaging microscopy. CGH is used to comprehensively survey tumor genomes for copy number changes and to determine the map position of amplification sites on normal reference chromosomes. CGH was used to analyze 107 different solid tumors, including 16 low grade astrocytomas, 15 recurrent astrocytic tumors, 13 high grade astrocytomas, 13 small cell lung cancers (SCLC), 14 breast cancer samples (7 diploid and 7 aneupoid tumors), 18 chromophobe renal cell carcinomas and 5 seminomas. Tumor DNA was extracted from frozen tissue, autopic material and formalin fixed, paraffin-embedded tissue samples. Our results revealed tumor specific gains and losses of certain chromosomes or chromosomal subregions (e.g., chromosomes 7 and 10 in glioblastomas, chromosomes 3 and 5 in SCLC). Numerous DNA-amplifications were mapped on reference metaphase and prometaphase chromosomes. The frequent amplification of the EGFR gene (malignant gliomas), protooncogenes of the myc family (SCLC) and of c-myc, int-2 and c-erbB2 (breast cancer) was confirmed. Many additional amplification sites, however, were mapped that were not described before. The results of CGH analysis were independently confirmed by means of cytogenetic banding analysis, interphase cytogenetics with region specific DNA-clones, Southern-Blot analysis, DNA-cytometry and studies of loss of heterozygosity.

  8. Fluorescence in situ hybridization (FISH) mapping of single copy genes on Trichomonas vaginalis chromosomes.

    Science.gov (United States)

    Zubáčová, Zuzana; Krylov, Vladimír; Tachezy, Jan

    2011-04-01

    The highly repetitive nature of the Trichomonas vaginalis genome and massive expansion of various gene families has caused difficulties in genome assembly and has hampered genome mapping. Here, we adapted fluorescence in situ hybridization (FISH) for T. vaginalis, which is sensitive enough to detect single copy genes on metaphase chromosomes. Sensitivity of conventional FISH, which did not allow single copy gene detection in T. vaginalis, was increased by means of tyramide signal amplification. Two selected single copy genes, coding for serine palmitoyltransferase and tryptophanase, were mapped to chromosome I and II, respectively, and thus could be used as chromosome markers. This established protocol provides an amenable tool for the physical mapping of the T. vaginalis genome and other essential applications, such as development of genetic markers for T. vaginalis genotyping. PMID:21195113

  9. Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars.

    Directory of Open Access Journals (Sweden)

    Carolina Klagges

    Full Text Available Despite the agronomical importance and high synteny with other Prunus species, breeding improvements for cherry have been slow compared to other temperate fruits, such as apple or peach. However, the recent release of the peach genome v1.0 by the International Peach Genome Initiative and the sequencing of cherry accessions to identify Single Nucleotide Polymorphisms (SNPs provide an excellent basis for the advancement of cherry genetic and genomic studies. The availability of dense genetic linkage maps in phenotyped segregating progenies would be a valuable tool for breeders and geneticists. Using two sweet cherry (Prunus avium L. intra-specific progenies derived from crosses between 'Black Tartarian' × 'Kordia' (BT×K and 'Regina' × 'Lapins'(R×L, high-density genetic maps of the four parental lines and the two segregating populations were constructed. For BT×K and R×L, 89 and 121 F(1 plants were used for linkage mapping, respectively. A total of 5,696 SNP markers were tested in each progeny. As a result of these analyses, 723 and 687 markers were mapped into eight linkage groups (LGs in BT×K and R×L, respectively. The resulting maps spanned 752.9 and 639.9 cM with an average distance of 1.1 and 0.9 cM between adjacent markers in BT×K and R×L, respectively. The maps displayed high synteny and co-linearity between each other, with the Prunus bin map, and with the peach genome v1.0 for all eight LGs (LG1-LG8. These maps provide a useful tool for investigating traits of interest in sweet cherry and represent a qualitative advance in the understanding of the cherry genome and its synteny with other members of the Rosaceae family.

  10. Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars.

    Science.gov (United States)

    Klagges, Carolina; Campoy, José Antonio; Quero-García, José; Guzmán, Alejandra; Mansur, Levi; Gratacós, Eduardo; Silva, Herman; Rosyara, Umesh R; Iezzoni, Amy; Meisel, Lee A; Dirlewanger, Elisabeth

    2013-01-01

    Despite the agronomical importance and high synteny with other Prunus species, breeding improvements for cherry have been slow compared to other temperate fruits, such as apple or peach. However, the recent release of the peach genome v1.0 by the International Peach Genome Initiative and the sequencing of cherry accessions to identify Single Nucleotide Polymorphisms (SNPs) provide an excellent basis for the advancement of cherry genetic and genomic studies. The availability of dense genetic linkage maps in phenotyped segregating progenies would be a valuable tool for breeders and geneticists. Using two sweet cherry (Prunus avium L.) intra-specific progenies derived from crosses between 'Black Tartarian' × 'Kordia' (BT×K) and 'Regina' × 'Lapins'(R×L), high-density genetic maps of the four parental lines and the two segregating populations were constructed. For BT×K and R×L, 89 and 121 F(1) plants were used for linkage mapping, respectively. A total of 5,696 SNP markers were tested in each progeny. As a result of these analyses, 723 and 687 markers were mapped into eight linkage groups (LGs) in BT×K and R×L, respectively. The resulting maps spanned 752.9 and 639.9 cM with an average distance of 1.1 and 0.9 cM between adjacent markers in BT×K and R×L, respectively. The maps displayed high synteny and co-linearity between each other, with the Prunus bin map, and with the peach genome v1.0 for all eight LGs (LG1-LG8). These maps provide a useful tool for investigating traits of interest in sweet cherry and represent a qualitative advance in the understanding of the cherry genome and its synteny with other members of the Rosaceae family. PMID:23382953

  11. FISH-mapped CEPH YACs spanning 0 to 46 cM on human chromosome 6

    Energy Technology Data Exchange (ETDEWEB)

    Bray-Ward, P.; Bowlus, C.; Choi, J. [Yale Univ. School of Medicine, New Haven, CT (United States)] [and others

    1996-08-15

    Seventy-six CEPH YACs were mapped by fluorescence in situ hybridization (FISH) to human metaphase chromosomes. These clones have been ordered from pter to 46 cM by combining the results of FISH with sequence-tagged site content mapping using data from the public databases. This created a minimal tiling path containing at least 37 Mb of human genomic DNA from 0 to 46 cM on chromosome 6 that contains up to four gaps not greater than 200 kb. These data provide an integration of the FLpter physical map values with cytogenetic band localization and markers on the genetic and radiation hybrid maps. We also assessed YAC chimerism and placed three additional Whitehead contigs within the integrated map. 27 refs., 1 fig., 1 tab.

  12. A second generation genetic map of the bumblebee Bombus terrestris (Linnaeus, 1758 reveals slow genome and chromosome evolution in the Apidae

    Directory of Open Access Journals (Sweden)

    Kube Michael

    2011-01-01

    Full Text Available Abstract Background The bumblebee Bombus terrestris is an ecologically and economically important pollinator and has become an important biological model system. To study fundamental evolutionary questions at the genomic level, a high resolution genetic linkage map is an essential tool for analyses ranging from quantitative trait loci (QTL mapping to genome assembly and comparative genomics. We here present a saturated linkage map and match it with the Apis mellifera genome using homologous markers. This genome-wide comparison allows insights into structural conservations and rearrangements and thus the evolution on a chromosomal level. Results The high density linkage map covers ~ 93% of the B. terrestris genome on 18 linkage groups (LGs and has a length of 2'047 cM with an average marker distance of 4.02 cM. Based on a genome size of ~ 430 Mb, the recombination rate estimate is 4.76 cM/Mb. Sequence homologies of 242 homologous markers allowed to match 15 B. terrestris with A. mellifera LGs, five of them as composites. Comparing marker orders between both genomes we detect over 14% of the genome to be organized in synteny and 21% in rearranged blocks on the same homologous LG. Conclusions This study demonstrates that, despite the very high recombination rates of both A. mellifera and B. terrestris and a long divergence time of about 100 million years, the genomes' genetic architecture is highly conserved. This reflects a slow genome evolution in these bees. We show that data on genome organization and conserved molecular markers can be used as a powerful tool for comparative genomics and evolutionary studies, opening up new avenues of research in the Apidae.

  13. The paralysé (par mouse neurological mutation maps to a 9 Mbp (4 cM interval of mouse chromosome 18

    Directory of Open Access Journals (Sweden)

    Lino Silva Neto

    2005-01-01

    Full Text Available The Paralysé mutation is a spontaneous neuromuscular mutation, first observed in 1980 at the Pasteur Institute, which is transmitted by the autosomal recessive par allele. Affected homozygote par/par mice rarely survive beyond 16 days of age and at the end of their life they are emaciated and completely paralyzed. Several concordant histological and physiological observations indicate that mutant mice might be good models for studying early-onset human motor neuron diseases such as spinal muscular atrophy. Linkage analysis using a set of molecular markers and two F2 crosses indicate that the mutation maps to mouse chromosome 18 in a region spanning 4 cM (or 9 megabase pairs, Mbp between the microsatellites D18Mit140 and D18Mit33. These results positioned the par locus in a region homologous to human chromosome 18p11.22 to 18q21.32.

  14. Fine genetic mapping of the Batten disease locus (CLN3) by haplotype analysis and demonstration of allelic association with chromosome 16p microsatellite loci

    Energy Technology Data Exchange (ETDEWEB)

    Mitchison, H.M.; McKay, T.R. [Univ. College London Medical School (United Kingdom); Thompson, A.D.; Mulley, J.C.; Kozman, H.M.; Richards, R.I.; Callen, D.F. [Women and Children`s Hospital, Adelaide (Australia); Stallings, R.L.; Doggett, N.A. [Los Alamos National Lab., NM (United States); Attwood, J. [Galton Lab., London (United Kingdom)] [and others

    1993-05-01

    Batten disease, juvenile onset neuronal ceroid lipofuscinosis, is an autosomal recessive neurodegenerative disorder characterized by accumulation of autofluorescent lipopigment in neurons and other cell types. The disease locus (CLN3) has previously been assigned to chromosome 16p. The genetic localization of CLN3 has been refined by analyzing 70 families using a high-resolution map of 15 marker loci encompassing the CLN3 region on 16p. Crossovers in three maternal meioses allowed localization of CLN3 to the interval between D16S297 and D16S57. Within that interval alleles at three highly polymorphic dinucleotide repeat loci (D16S288, D16S298, D16S299) were found to be in strong linkage disequilibrium with CLN3. Analysis of haplotypes suggests that a majority of CLN3 chromosomes have arisen from a single founder mutation. 15 refs., 2 figs., 5 tabs.

  15. Lamellar ichthyosis maps to chromosome 14q11

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L.J.; Compton, J.G.; Bale, S.J. [and others

    1994-09-01

    Lamellar ichthyosis (LI) is a serious skin disorder inherited as an autosomal recessive trait and characterized by large, brown plate-like scales covering the body. Skin involvement is apparent at birth, often as a collodion membrane. Scarring alopecia, ectropion, and secondary hypohidrosis are frequent. We used a panel of candidates genes that are expressed in the epidermis to study seven multiplex Caucasian families in the U.S. and six inbred (multiplex and simplex) families in Egypt. We find no recombination (Z=9.11 at {theta}=0) in either set of families with transglutaminse 1 (TGM1), the gene encoding the enzyme responsible for cross-linking proteins to the cell envelope in the upper-most layer of the epidermis. In addition, striking homozygosity is observed in the inbred families for markers neighboring TGM1, defining a 9.3 cM candidate region which is bounded by MYH7 and D14S275. This is the first report of linkage in LI and suggests that further study of the TGM1 gene may identify the underlying pathogenesis of this severe, disfiguring disorder. Linkage-based genetic counseling and prenatal diagnosis is now available for informative at-risk families.

  16. Towards developing a genetic linkage map of isabgol (Plantago ovata Forsk., a medicinal plant with potent laxative properties

    Directory of Open Access Journals (Sweden)

    Ponnuchamy, Manivel

    2016-07-01

    Full Text Available Genetic linkage maps facilitate the genetic dissection of complex traits and comparative analyses of genome structure, as well as molecular breeding in species of economic importance. Isabgol [Plantago ovata (Forsk.], a medicinal plant with potent laxative properties is used in several traditional systems of Medicines and cultivated in India. We explored the DNA sequences of Isabgol in the Genbank (NCBI and developed over 1500 simple sequence repeats (SSR markers. Some of them were validated through DNA amplification. Transferability of SSRs from wild Plantago species viz., P. major, P. coronopus, P. lancelolata, P. maritina and P. intermida into Plantago ovata was studied. We developed a genetic linkage map using recombinant inbred lines (RILs population which comprises of 30 random amplified polymorphic DNA (RAPD markers spreading across 11 linkage groups (PO-1 to PO-11 with a total map distance of 75.6 cM. The SSR markers developed will have applications in assessing the functional diversity, comparative mapping and other applications in isabgol.

  17. A gene for pili annulati maps to the telomeric region of chromosome 12q.

    Science.gov (United States)

    Green, Jack; Fitzpatrick, Elizabeth; de Berker, David; Forrest, Susan M; Sinclair, Rodney D

    2004-12-01

    Pili annulati (PA) is a rare hair shaft disorder characterized by discrete banding of hairs. We studied two families with PA in which the disorder segregated in an autosomal dominant fashion. All family members were clinically examined and hair samples were examined under the light microscope. In family G, of 19 individuals examined, ten were affected, over three generations. In family B, there were three affected individuals of seven examined over three generations. A genome-wide scan of family G revealed a maximum logarithm of odds (LOD) of linkage score of 3.89 at marker D12S1723 at the telomeric region of chromosome 12q. From one critical recombinant in family G, the locus was narrowed down to a 9.2 cM region between D12S367 and the end of chromosome 12q. In family B linkage at the telomeric region of chromosome 12q also revealed a maximum LOD score of 0.89 at marker D12S1723. A combined LOD score, assuming no locus heterogeneity between the families was 4.78. Frizzled 10, which is located within the region, was sequenced but we were unable to detect a mutation causing PA. This study, for the first time, identifies a genetic locus for PA. PMID:15610516

  18. Linkage studies of bipolar disorder in the region of the Darier`s disease gene on chromosome 12q23-24.1

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, E.; Lim, L.; Sham, P.; Gill, M. [Institute of Psychiatry, London (United Kingdom)] [and others

    1995-04-24

    We have recently described a family in which there is cosegregation of major affective disorder with Darier`s disease and have mapped this autosomal dominant skin disorder to 12q23-q24.1. This has provided an interesting candidate region for genetic studies of bipolar disorder. We have studied the segregation of seven markers spanning the Darier`s disease locus in 45 bipolar disorder pedigrees and found modest evidence in support of linkage under heterogeneity for 5 of these markers. Nonparametric analyses were suggestive of linkage with a marker at the gene encoding a secretory form of phospholipase A2. Our sample has relatively low power to detect linkage under heterogeneity and independent researchers should examine markers from this region in further samples of bipolar pedigrees. 41 refs., 1 fig., 7 tabs.

  19. Quantitative linkage analysis to the autism endophenotype social responsiveness identifies genome-wide significant linkage to two regions on chromosome 8

    Science.gov (United States)

    Lowe, Jennifer K.; Werling, Donna M.; Constantino, John N.; Cantor, Rita M.; Geschwind, Daniel H.

    2015-01-01

    Objective Autism Spectrum Disorder (ASD) is characterized by deficits in social function and the presence of repetitive and restrictive behaviors. Following a previous test of principle, we adopted a quantitative approach to discovering genes contributing to the broader autism phenotype by using social responsiveness as an endophenotype for ASD. Method Linkage analyses using scores from the Social Responsiveness Scale (SRS) were performed in 590 families from AGRE, a largely multiplex ASD cohort. Regional and genome-wide association analyses were performed to search for common variants contributing to social responsiveness. Results SRS is unimodally distributed in male offspring from multiplex autism families, in contrast with a bimodal distribution observed in females. In correlated analyses differing by SRS respondent, genome-wide significant linkage for social responsiveness was identified at chr8p21.3 (multi-point LOD=4.11; teacher/parent scores) and chr8q24.22 (multi-point LOD=4.54; parent-only scores), respectively. Genome-wide or linkage-directed association analyses did not detect common variants contributing to social responsiveness. Conclusions The sex-differential distributions of SRS in multiplex autism families likely reflect mechanisms contributing to the sex ratio for autism observed in the general population and form a quantitative signature of reduced penetrance of inherited liability to ASD among females. The identification of two strong loci for social responsiveness validates the endophenotype approach for the identification of genetic variants contributing to complex traits such as ASD. While causal mutations have yet to be identified, these findings are consistent with segregation of rare genetic variants influencing social responsiveness and underscore the increasingly recognized role of rare inherited variants in the genetic architecture of ASD. PMID:25727539

  20. SSR based linkage and mapping analysis of C, a yellow cocoon gene in the silkworm, Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    Yun-Po Zhao; Mu-Wang Li; An-Ying Xu; Cheng-Xiang Hou; Ming-Hui Li; Qiu-Hong Guo; Yong-Ping Huang; Xi-Jie Guo

    2008-01-01

    The yellow color of the cocoon of the silkworm Bombyx mori is controlled by three genes, Y ( Yellow haemolymph ), I (Yellow inhibitor) and C (Outer-layer yellow cocoon),which are located on linkage groups 2, 9 and 12, respectively. Taking advantage of a lack of crossing over in females, reciprocal backcrossed F1 (BC1) progeny were used for linkage analysis and mapping of the C gene using silkworm strains C108 and KY, which spin white and yellow cocoons, respectively. DNA was extracted from individual pupae and analyzed for simple sequence repeat (SSR) markers. The C gene was found to be linked to seven SSR markers. All the yellow cocoon individuals from a female heterozygous backcross (BC1F) showed a heterozygous profile for SSR markers on linkage group 12,whereas individuals with light yellow cocoons showed the homozygous profile of the strain C 108. Using a reciprocal heterozygous male backcross (BC1M), we constructed a linkage map of 36.4 cM with the C gene located at the distal end, and the closest SSR marker at a distance of 13.9 cM.

  1. A Narrow and Highly Significant Linkage Signal for Severe Bipolar Disorder in the Chromosome 5q33 Region in Latin American Pedigrees

    Science.gov (United States)

    Jasinska, A.J.; Service, S.; Jawaheer, D.; DeYoung, J.; Levinson, M.; Zhang, Z.; Kremeyer, B.; Muller, H.; Aldana, I.; Garcia, J.; Restrepo, G.; Lopez, C.; Palacio, C.; Duque, C.; Parra, M.; Vega, J.; Ortiz, D.; Bedoya, G.; Mathews, C.; Davanzo, P.; Fournier, E.; Bejarano, J.; Ramirez, M.; Ortiz, C. Araya; Araya, X.; Molina, J.; Sabatti, C.; Reus, V.; Ospina, J.; Macaya, G.; Ruiz-Linares, A.; Freimer, N.B.

    2016-01-01

    We previously reported linkage of bipolar disorder to 5q33-q34 in families from two closely related population isolates, the Central Valley of Costa Rica (CVCR) and Antioquia, Colombia (CO). Here we present follow up results from fine-scale mapping in large CVCR and CO families segregating severe bipolar disorder, BP-I, and in 343 population trios/duos from CVCR and CO. Employing densely spaced SNPs to fine map the prior linkage peak region increases linkage evidence and clarifies the position of the putative BP-I locus. We performed two-point linkage analysis with 1134 SNPs in an approximately 9 Mb region between markers D5S410 and D5S422. Combining pedigrees from CVCR and CO yields a LOD score of 4.9 at SNP rs10035961. Two other SNPs (rs7721142 and rs1422795) within the same 94 kb region also displayed LOD scores greater than 4. This linkage peak coincides with our prior microsatellite results and suggests a narrowed BP-I susceptibility regions in these families. To investigate if the locus implicated in the familial form of BP-I also contributes to disease risk in the population, we followed up the family results with association analysis in duo and trio samples, obtaining signals within 2 Mb of the peak linkage signal in the pedigrees; rs12523547 and rs267015 (P = 0.00004 and 0.00016, respectively) in the CO sample and rs244960 in the CVCR sample and the combined sample, with P = 0.00032 and 0.00016, respectively. It remains unclear whether these association results reflect the same locus contributing to BP susceptibility within the extended pedigrees. PMID:19319892

  2. Narrowing the genetic interval and yeast artificial chromosome map in the branchio-oto-renal region on chromosome 8q

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Shrawan; Kimberling, W.J.; Pinnt, J. [Boys Town National Research Hospital, Omaha, NE (United States)] [and others

    1996-01-01

    Branchio-oto-renal (BOR) syndrome is an autosomal dominant disorder characterized by branchial abnormality, hearing loss, and renal anomalies. Recently, the disease gene has been localized to chromosome 8q. Here, we report genetic studies that further refine the disease gene region to a smaller interval and identify several YACs from the critical region. We studied two large, clinically well-characterized BOR families with a set of 13 polymorphic markers spanning the D8S165-D8S275 interval from the chromosome 8q region. Based on multipoint analysis, the highest likelihood for the location of the BOR gene is between markers D8S543 and D8S530, a distance of about 2 cM. YACs that map in the BOR critical region have been identified and characterized by fluorescence in situ hybridization and pulsed-field gel electrophoresis. A YAC contig, based on the STS content map, that covers a minimum of 4 Mb of human DNA in the critical region of BOR is assembled. This lays the groundwork for the construction of a transcriptional map of this region and the eventual identification of genes involved in BOR syndrome. 40 refs., 4 figs., 1 tab.

  3. Development of a Set of Chromosome-Specific Cytogenetic DNA Markers in Sunflower Using BAC-FISH

    Science.gov (United States)

    In diploid sunflower (2n=34), conventional karyotypes and various genetic linkage maps have been established. However, the relationship between genetic linkage groups and individual chromosomes of sunflower remains unknown. Recently, a set of linkage group-specific BAC and BIBAC clones were identifi...

  4. Genetic recombination in Escherichia coli : I. Relation between linkage of unselected markers and map distance

    NARCIS (Netherlands)

    Verhoef, C.; Haan, P.G. de

    1966-01-01

    A relation between linkage frequency of an unselected marker and transfer time based on a physical exchange of genetic material was developed for Escherichia coli crosses. Crosses performed under standardised conditions have shown that the relation was valid. The linkage frequency is determined by t

  5. Genetic linkage map construction and QTL mapping of seedling height, basal diameter and crown width of Taxodium 'Zhongshanshan 302' × T. mucronatum.

    Science.gov (United States)

    Wang, Ziyang; Cheng, Yanli; Yin, Yunlong; Yu, Chaoguang; Yang, Ying; Shi, Qin; Hao, Ziyuan; Li, Huogen

    2016-01-01

    Taxodium is a genus renowned for its fast growth, good form and tolerance of flooding, salt, alkalinity, disease and strong winds. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism (SRAP) and simple sequence repeat (SSR) markers based on an F1 population containing 148 individuals generated from a cross between T. 'Zhongshanshan 302' and T. mucronatum. The map has a total length of 976.5 cM, with a mean distance of 7.0 cM between markers, and contains 34 linkage groups with 179 markers (171 SRAPs and 8 SSRs). Quantitative trait loci (QTLs) affecting growth traits, such as seedling height, basal diameter and crown width, were detected based on the constructed linkage map. Four significant QTLs were identified, three of which, namely qtSH-1 for seedling height, qtBD-1 for basal diameter and qtCW-1 for crown width, were located at 2.659 cM of LG7 with logarithm odds values of 3.72, 3.49 and 3.93, respectively, and explained 24.9, 27.0 and 21.7 % of the total variation of the three grown traits, respectively. Another QTL for crown width (qtCW-2) was detected at 1.0 cM on LG13, with a logarithm of odds value of 3.15, and explained 31.7 % of the total variation of crown width. This is the first report on the construction of a genetic linkage map and QTL analysis in Taxodium, laying the groundwork for the construction of a high-density genetic map and QTL mapping in the genus Taxodium.

  6. Construction of a genetic linkage map and QTL analysis for some leaf traits in pear (Pyrus L .)

    Institute of Scientific and Technical Information of China (English)

    Wenying SUN; Yuxing ZHANG; Wenquan LE; Hai'e ZHANG

    2009-01-01

    The major incompatibility barriers to specific inbred lines and the long generation duration in Pyrus L. May hinder the Pyrus breeding process. A genetic linkage map provides the foundation for quantitative trait loci (QTL) mapping and molecular marker-assisted breeding. In this study, we constructed a genetic map with 145 F1 populations from a cross of two cultivars, Yali and Jingbaili, using AFLP and SSR markers. The map consisted of 18 linkage groups which included 402 genetic markers and covered 1395.9 cM, with an average genetic distance of 3.8 cM. The interval mapping was used to identify quantitative trait loci associated with four leaf agronomic traits in the F1 population. The results indicated that four QTLs were associated with leaf length, two QTLs with leaf width, two with leaf length/leaf width, and three with petiole length. The eleven QTLs were associated with 9.9%-48.5% of the phenotypic variation in different traits. It is considered that the map covers almost the whole genome, and molecular markers will be greatly helpful to the related breeding.

  7. A genetic linkage map of the Durum x Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits.

    Science.gov (United States)

    Elouafi, I; Nachit, M M

    2004-02-01

    Durum wheat ( Triticum turgidum L. var durum) is mainly produced and consumed in the Mediterranean region; it is used to produce several specific end-products; such as local pasta, couscous and burghul. To study the genetics of grain-milling quality traits, chromosomal locations, and interaction with the environment, a genetic linkage map of durum was constructed and the quantitative trait loci QTLs for the milling-related traits, test weight (TW) and thousand-kernel weight (TKW), were identified. The population constituted 114 recombinant inbred lines derived from the cross: Omrabi 5 /Triticum dicoccoides 600545// Omrabi 5. TW and TKW were analyzed over 18 environments (sites x years). Single-sequence-repeat markers (SSRs), Amplified-fragment-length-polymorphism markers (AFLPs), and seed storage proteins (SSPs) showed a high level of polymorphism (>60%). The map was constructed with 124 SSRs, 149 AFLPs and 6 SSPs; its length covered 2,288.8 cM (8.2 cM/marker). The map showed high synteny with previous wheat maps, and both SSRs and AFLPs mapped evenly across the genome, with more markers in the B genome. However, some rearrangements were observed. For TW, a high genotypic effect was detected and two QTLs with epistasic effect were identified on 7AS and 6BS, explaining 30% of the total variation. The TKW showed a significant transgressive inheritance and five QTLs were identified, explaining 32% of the total variation, out of which 25% was of a genetic nature, and showing QTLxE interaction. The major TKW-QTLs were around the centromere region of 6B. For both traits, Omrabi 5 alleles had a significant positive effect. This population will be used to determine other QTLs of interest, as its parents are likely to harbor different genes for diseases and drought tolerance. PMID:14676946

  8. Fine mapping of quantitative trait loci for mastitis resistance on bovine chromosome 11

    DEFF Research Database (Denmark)

    Schulman, N F; Sahana, G; Iso-Touru, T;

    2009-01-01

    Quantitative trait loci (QTL) affecting clinical mastitis (CM) and somatic cell score (SCS) were mapped on bovine chromosome 11. The mapping population consisted of 14 grandsire families belonging to three Nordic red cattle breeds: Finnish Ayrshire (FA), Swedish Red and White (SRB) and Danish Red......, each affecting one trait; or one QTL affecting a single trait. A QTL affecting CM was fine-mapped. In FA, a haplotype having a strong association with a high negative effect on mastitis resistance was identified. The mapping precision of an earlier detected SCS-QTL was not improved by the LDLA analysis...

  9. Genetic locus (stmF) associated with cyclic GMP phosphodiesterase activity in Dictyostelium discoideum maps in linkage group II.

    OpenAIRE

    Coukell, M. B.; Cameron, A M

    1985-01-01

    Previous attempts to map the stmF locus in Dictyostelium discoideum, by using only clone morphology as a marker, have led to equivocal results. Since strains carrying mutations at the stmF locus possess very low cyclic GMP phosphodiesterase activity, we have remapped this locus using both morphological and biochemical markers. Our results indicate that mutations producing a stable "streamer" phenotype and reduced cyclic GMP phosphodiesterase activity are located in linkage group II, probably ...

  10. The Genetic Linkage Map of the Medicinal Mushroom Agaricus subrufescens Reveals Highly Conserved Macrosynteny with the Congeneric Species Agaricus bisporus

    OpenAIRE

    Marie Foulongne-Oriol; Manuela Rocha de Brito; Delphine Cabannes; Aurélien Clément; Cathy Spataro; Magalie Moinard; Eustáquio Souza Dias; Philippe Callac; Jean-Michel Savoie

    2016-01-01

    Comparative linkage mapping can rapidly facilitate the transfer of genetic information from model species to orphan species. This macrosynteny analysis approach has been extensively used in plant species, but few example are available in fungi, and even fewer in mushroom crop species. Among the latter, the Agaricus genus comprises the most cultivable or potentially cultivable species. Agaricus bisporus, the button mushroom, is the model for edible and cultivable mushrooms. We have developed t...

  11. Positional and functional mapping of a neuroblastoma differentiation gene on chromosome 11

    Directory of Open Access Journals (Sweden)

    Bader Scott

    2005-07-01

    Full Text Available Abstract Background Loss of chromosome 11q defines a subset of high-stage aggressive neuroblastomas. Deletions are typically large and mapping efforts have thus far not lead to a well defined consensus region, which hampers the identification of positional candidate tumour suppressor genes. In a previous study, functional evidence for a neuroblastoma suppressor gene on chromosome 11 was obtained through microcell mediated chromosome transfer, indicated by differentiation of neuroblastoma cells with loss of distal 11q upon introduction of chromosome 11. Interestingly, some of these microcell hybrid clones were shown to harbour deletions in the transferred chromosome 11. We decided to further exploit this model system as a means to identify candidate tumour suppressor or differentiation genes located on chromosome 11. Results In a first step, we performed high-resolution arrayCGH DNA copy-number analysis in order to evaluate the chromosome 11 status in the hybrids. Several deletions in both parental and transferred chromosomes in the investigated microcell hybrids were observed. Subsequent correlation of these deletion events with the observed morphological changes lead to the delineation of three putative regions on chromosome 11: 11q25, 11p13->11p15.1 and 11p15.3, that may harbour the responsible differentiation gene. Conclusion Using an available model system, we were able to put forward some candidate regions that may be involved in neuroblastoma. Additional studies will be required to clarify the putative role of the genes located in these chromosomal segments in the observed differentiation phenotype specifically or in neuroblastoma pathogenesis in general.

  12. Lysinuric protein intolerance (LPI) gene maps to the long arm of chromosome 14.

    OpenAIRE

    Lauteala, T; Sistonen, P; Savontaus, M L; Mykkänen, J; Simell, J; Lukkarinen, M; Simell, O.; Aula, P

    1997-01-01

    Lysinuric protein intolerance (LPI) is an autosomal recessive disease characterized by defective transport of cationic amino acids and by hyperammonemia. Linkage analysis in 20 Finnish LPI families assigned the LPI gene locus to the proximal long arm of chromosome 14. Recombinations placed the locus between framework markers D14S72 and MYH7, a 10-cM interval in which the markers D14S742, D14S50, D14S283, and TCRA showed no recombinations with the phenotype. The phenotype was in highly signifi...

  13. Construction of the first high-density genetic linkage map of Salvia miltiorrhiza using specific length amplified fragment (SLAF) sequencing.

    Science.gov (United States)

    Liu, Tian; Guo, Linlin; Pan, Yuling; Zhao, Qi; Wang, Jianhua; Song, Zhenqiao

    2016-01-01

    Salvia miltiorrhiza is an important medicinal crop in traditional Chinese medicine (TCM). Knowledge of its genetic foundation is limited because sufficient molecular markers have not been developed, and therefore a high-density genetic linkage map is incomplete. Specific length amplified fragment sequencing (SLAF-seq) is a recently developed high-throughput strategy for large-scale SNP (Single Nucleotide Polymorphisms) discovery and genotyping based on next generation sequencing (NGS). In this study, genomic DNA extracted from two parents and their 96 F1 individuals was subjected to high-throughput sequencing and SLAF library construction. A total of 155.96 Mb of data containing 155,958,181 pair-end reads were obtained after preprocessing. The average coverage of each SLAF marker was 83.43-fold for the parents compared with 10.36-fold for the F1 offspring. The final linkage map consists of 5,164 SLAFs in 8 linkage groups (LGs) and spans 1,516.43 cM, with an average distance of 0.29 cM between adjacent markers. The results will not only provide a platform for mapping quantitative trait loci but also offer a critical new tool for S. miltiorrhiza biotechnology and comparative genomics as well as a valuable reference for TCM studies. PMID:27040179

  14. Construction of High Density Sweet Cherry (Prunus avium L.) Linkage Maps Using Microsatellite Markers and SNPs Detected by Genotyping-by-Sequencing (GBS).

    Science.gov (United States)

    Guajardo, Verónica; Solís, Simón; Sagredo, Boris; Gainza, Felipe; Muñoz, Carlos; Gasic, Ksenija; Hinrichsen, Patricio

    2015-01-01

    Linkage maps are valuable tools in genetic and genomic studies. For sweet cherry, linkage maps have been constructed using mainly microsatellite markers (SSRs) and, recently, using single nucleotide polymorphism markers (SNPs) from a cherry 6K SNP array. Genotyping-by-sequencing (GBS), a new methodology based on high-throughput sequencing, holds great promise for identification of high number of SNPs and construction of high density linkage maps. In this study, GBS was used to identify SNPs from an intra-specific sweet cherry cross. A total of 8,476 high quality SNPs were selected for mapping. The physical position for each SNP was determined using the peach genome, Peach v1.0, as reference, and a homogeneous distribution of markers along the eight peach scaffolds was obtained. On average, 65.6% of the SNPs were present in genic regions and 49.8% were located in exonic regions. In addition to the SNPs, a group of SSRs was also used for construction of linkage maps. Parental and consensus high density maps were constructed by genotyping 166 siblings from a 'Rainier' x 'Rivedel' (Ra x Ri) cross. Using Ra x Ri population, 462, 489 and 985 markers were mapped into eight linkage groups in 'Rainier', 'Rivedel' and the Ra x Ri map, respectively, with 80% of mapped SNPs located in genic regions. Obtained maps spanned 549.5, 582.6 and 731.3 cM for 'Rainier', 'Rivedel' and consensus maps, respectively, with an average distance of 1.2 cM between adjacent markers for both 'Rainier' and 'Rivedel' maps and of 0.7 cM for Ra x Ri map. High synteny and co-linearity was observed between obtained maps and with Peach v1.0. These new high density linkage maps provide valuable information on the sweet cherry genome, and serve as the basis for identification of QTLs and genes relevant for the breeding of the species. PMID:26011256

  15. A novel autosomal recessive non-syndromic hearing impairment locus (DFNB47) maps to chromosome 2p25.1-p24.3.

    Science.gov (United States)

    Hassan, Muhammad Jawad; Santos, Regie Lyn P; Rafiq, Muhammad Arshad; Chahrour, Maria H; Pham, Thanh L; Wajid, Muhammad; Hijab, Nadine; Wambangco, Michael; Lee, Kwanghyuk; Ansar, Muhammad; Yan, Kai; Ahmad, Wasim; Leal, Suzanne M

    2006-01-01

    Hereditary hearing impairment (HI) displays extensive genetic heterogeneity. Autosomal recessive (AR) forms of prelingual HI account for approximately 75% of cases with a genetic etiology. A novel AR non-syndromic HI locus (DFNB47) was mapped to chromosome 2p25.1-p24.3, in two distantly related Pakistani kindreds. Genome scan and fine mapping were carried out using microsatellite markers. Multipoint linkage analysis resulted in a maximum LOD score of 4.7 at markers D2S1400 and D2S262. The three-unit support interval was bounded by D2S330 and D2S131. The region of homozygosity was found within the three-unit support interval and flanked by markers D2S2952 and D2S131, which corresponds to 13.2 cM according to the Rutgers combined linkage-physical map. This region contains 5.3 Mb according to the sequence-based physical map. Three candidate genes, KCNF1, ID2 and ATP6V1C2 were sequenced, and were found to be negative for functional sequence variants. PMID:16261342

  16. Comparative Chromosome Map and Heterochromatin Features of the Gray Whale Karyotype (Cetacea).

    Science.gov (United States)

    Kulemzina, Anastasia I; Proskuryakova, Anastasia A; Beklemisheva, Violetta R; Lemskaya, Natalia A; Perelman, Polina L; Graphodatsky, Alexander S

    2016-01-01

    Cetacean karyotypes possess exceptionally stable diploid numbers and highly conserved chromosomes. To date, only toothed whales (Odontoceti) have been analyzed by comparative chromosome painting. Here, we studied the karyotype of a representative of baleen whales, the gray whale (Eschrichtius robustus, Mysticeti), by Zoo-FISH with dromedary camel and human chromosome-specific probes. We confirmed a high degree of karyotype conservation and found an identical order of syntenic segments in both branches of cetaceans. Yet, whale chromosomes harbor variable heterochromatic regions constituting up to a third of the genome due to the presence of several types of repeats. To investigate the cause of this variability, several classes of repeated DNA sequences were mapped onto chromosomes of whale species from both Mysticeti and Odontoceti. We uncovered extensive intrapopulation variability in the size of heterochromatic blocks present in homologous chromosomes among 3 individuals of the gray whale by 2-step differential chromosome staining. We show that some of the heteromorphisms observed in the gray whale karyotype are due to distinct amplification of a complex of common cetacean repeat and heavy satellite repeat on homologous autosomes. Furthermore, we demonstrate localization of the telomeric repeat in the heterochromatin of both gray and pilot whale (Globicephala melas, Odontoceti). Heterochromatic blocks in the pilot whale represent a composite of telomeric and common repeats, while heavy satellite repeat is lacking in the toothed whale consistent with previous studies.

  17. Comparative Chromosome Map and Heterochromatin Features of the Gray Whale Karyotype (Cetacea).

    Science.gov (United States)

    Kulemzina, Anastasia I; Proskuryakova, Anastasia A; Beklemisheva, Violetta R; Lemskaya, Natalia A; Perelman, Polina L; Graphodatsky, Alexander S

    2016-01-01

    Cetacean karyotypes possess exceptionally stable diploid numbers and highly conserved chromosomes. To date, only toothed whales (Odontoceti) have been analyzed by comparative chromosome painting. Here, we studied the karyotype of a representative of baleen whales, the gray whale (Eschrichtius robustus, Mysticeti), by Zoo-FISH with dromedary camel and human chromosome-specific probes. We confirmed a high degree of karyotype conservation and found an identical order of syntenic segments in both branches of cetaceans. Yet, whale chromosomes harbor variable heterochromatic regions constituting up to a third of the genome due to the presence of several types of repeats. To investigate the cause of this variability, several classes of repeated DNA sequences were mapped onto chromosomes of whale species from both Mysticeti and Odontoceti. We uncovered extensive intrapopulation variability in the size of heterochromatic blocks present in homologous chromosomes among 3 individuals of the gray whale by 2-step differential chromosome staining. We show that some of the heteromorphisms observed in the gray whale karyotype are due to distinct amplification of a complex of common cetacean repeat and heavy satellite repeat on homologous autosomes. Furthermore, we demonstrate localization of the telomeric repeat in the heterochromatin of both gray and pilot whale (Globicephala melas, Odontoceti). Heterochromatic blocks in the pilot whale represent a composite of telomeric and common repeats, while heavy satellite repeat is lacking in the toothed whale consistent with previous studies. PMID:27088853

  18. Assembly of the genome of the disease vector Aedes aegypti onto a genetic linkage map allows mapping of genes affecting disease transmission.

    Directory of Open Access Journals (Sweden)

    Punita Juneja

    Full Text Available The mosquito Aedes aegypti transmits some of the most important human arboviruses, including dengue, yellow fever and chikungunya viruses. It has a large genome containing many repetitive sequences, which has resulted in the genome being poorly assembled - there are 4,758 scaffolds, few of which have been assigned to a chromosome. To allow the mapping of genes affecting disease transmission, we have improved the genome assembly by scoring a large number of SNPs in recombinant progeny from a cross between two strains of Ae. aegypti, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were corrected, we were able to assign 60% of the genome sequence to chromosomes and approximately order the scaffolds along the chromosome. We found that there are very large regions of suppressed recombination around the centromeres, which can extend to as much as 47% of the chromosome. To illustrate the utility of this new genome assembly, we mapped a gene that makes Ae. aegypti resistant to the human parasite Brugia malayi, and generated a list of candidate genes that could be affecting the trait.

  19. Assembly of the Genome of the Disease Vector Aedes aegypti onto a Genetic Linkage Map Allows Mapping of Genes Affecting Disease Transmission

    KAUST Repository

    Juneja, Punita

    2014-01-30

    The mosquito Aedes aegypti transmits some of the most important human arboviruses, including dengue, yellow fever and chikungunya viruses. It has a large genome containing many repetitive sequences, which has resulted in the genome being poorly assembled - there are 4,758 scaffolds, few of which have been assigned to a chromosome. To allow the mapping of genes affecting disease transmission, we have improved the genome assembly by scoring a large number of SNPs in recombinant progeny from a cross between two strains of Ae. aegypti, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were corrected, we were able to assign 60% of the genome sequence to chromosomes and approximately order the scaffolds along the chromosome. We found that there are very large regions of suppressed recombination around the centromeres, which can extend to as much as 47% of the chromosome. To illustrate the utility of this new genome assembly, we mapped a gene that makes Ae. aegypti resistant to the human parasite Brugia malayi, and generated a list of candidate genes that could be affecting the trait. © 2014 Juneja et al.

  20. Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa

    Directory of Open Access Journals (Sweden)

    King Graham J

    2010-10-01

    Full Text Available Abstract Background The Multinational Brassica rapa Genome Sequencing Project (BrGSP has developed valuable genomic resources, including BAC libraries, BAC-end sequences, genetic and physical maps, and seed BAC sequences for Brassica rapa. An integrated linkage map between the amphidiploid B. napus and diploid B. rapa will facilitate the rapid transfer of these valuable resources from B. rapa to B. napus (Oilseed rape, Canola. Results In this study, we identified over 23,000 simple sequence repeats (SSRs from 536 sequenced BACs. 890 SSR markers (designated as BrGMS were developed and used for the construction of an integrated linkage map for the A genome in B. rapa and B. napus. Two hundred and nineteen BrGMS markers were integrated to an existing B. napus linkage map (BnaNZDH. Among these mapped BrGMS markers, 168 were only distributed on the A genome linkage groups (LGs, 18 distrubuted both on the A and C genome LGs, and 33 only distributed on the C genome LGs. Most of the A genome LGs in B. napus were collinear with the homoeologous LGs in B. rapa, although minor inversions or rearrangements occurred on A2 and A9. The mapping of these BAC-specific SSR markers enabled assignment of 161 sequenced B. rapa BACs, as well as the associated BAC contigs to the A genome LGs of B. napus. Conclusion The genetic mapping of SSR markers derived from sequenced BACs in B. rapa enabled direct links to be established between the B. napus linkage map and a B. rapa physical map, and thus the assignment of B. rapa BACs and the associated BAC contigs to the B. napus linkage map. This integrated genetic linkage map will facilitate exploitation of the B. rapa annotated genomic resources for gene tagging and map-based cloning in B. napus, and for comparative analysis of the A genome within Brassica species.

  1. Mouse Elk oncogene maps to chromosome X and a novel Elk oncogene (Elk3) maps to chromosome 10

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, Yoshitaka; Taketo, Makoto [Banyu Tsukuba Research Institute, Tsukuba (Japan); Nozaki, Masami [Osaka Univ. (Japan)] [and others

    1995-03-20

    The Elk protein is a member of the Ets family found in both vertebrates and invertebrates. Human ELK1 encoded by ELK1 binds alone or together with serum response factor to DNA and regulates gene expression in a variety of biological processes. Using a panel of interspecific backcross mice, we have mapped the Elk oncogene (Elk) and a novel type Elk oncogene (Elk3), closely related to ELK1. Elk maps to Chr X, and Elk3 maps to the proximal region of Chr 10. 18 refs., 1 fig., 1 tab.

  2. Mouse Elk oncogene maps to chromosome X and a novel Elk oncogene (Elk3) maps to chromosome 10.

    Science.gov (United States)

    Tamai, Y; Taketo, M; Nozaki, M; Seldin, M F

    1995-03-20

    The Elk protein is a member of the Ets family found in both vertebrates and invertebrates. Human ELK1 encoded by ELK1 binds alone or together with serum response factor to DNA and regulates gene expression in a variety of biological processes. Using a panel of interspecific backcross mice, we have mapped the Elk oncogene (Elk) and a novel type Elk oncogene (Elk3), closely related to ELK1. Elk maps to Chr X, and Elk3 maps to the proximal region of Chr 10. PMID:7601474

  3. Inheritance and Linkage Map Positions of Genes Conferring Agromorphological Traits in Lens culinaris Medik.

    Directory of Open Access Journals (Sweden)

    Gopesh C. Saha

    2013-01-01

    Full Text Available Agromorphological traits have immense importance in breeding lentils for higher yield and stability. We studied the genetics and identified map positions of some important agro-morphological traits including days to 50% flowering, plant height, seed diameter, 100 seed weight, cotyledon color, and growth habit in Lens culinaris. Earlier developed RILs for stemphylium blight resistance (ILL-5888 × ILL-6002, contrasted for those agro-morphological traits, were used in our study. Three QTLs for days to 50% flowering were detected with additive and epistatic effects. One QTL for days to 50% flowering, QLG483 (QTL at linkage group 4 at 83 cM position, accounted for an estimated 20.2% of the variation, while QLG124 × QLG1352 and QLG484 × QLG138 accounted for 15.6% and 24.2% of the variation, respectively. Epistatic effects accounted for most of the variation in plant height, but the main effect of one QTL, QLG84, accounted for 15.3%. For seed diameter, three QTLs were detected, and one QTL, QLG482, accounted for 32.6% of the variation. For 100 seed weight, five QTLs were identified with significant additive effects and four with significant interaction effects. The main effect of one QTL, QLG482, also accounted for 17.5% of the variation in seed diameter. QLG482-83 which appears to affect days to 50% flowering, seed diameter, and 100 seed weight is flanked by RAPD markers, UBC 34 and UBC1. Growth habit and cotyledon color are controlled by single genes with prostrate dominant to erect and red cotyledon dominant to yellow. The QTL information presented here will assist in the selection of breeding lines for early maturity, upright growth habit, and improved seed quality.

  4. Constructing a Linkage Map of Upland Cotton(Gossypium hirsutum L.) Using RFLP, RAPD and SSR Markers%利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图

    Institute of Scientific and Technical Information of China (English)

    左开井; 孙济中; 张献龙; 聂以春; 刘金兰; 冯纯大

    2000-01-01

    @@ Molecular marker linkage map is important for gene mapping, map-based cloni ng and molecular marker-assisted selection. In rice[1], oilseed rape[2] and corn[3], seve ral high-den sity molecular marker linkage maps were constructed and employed in mapping dise ase-resistant genes, insect-resistant genes and agronomic traits' QTLs.

  5. Marker-based linkage map of Andean common bean (Phaseolus vulgaris L. and mapping of QTLs underlying popping ability traits

    Directory of Open Access Journals (Sweden)

    Yuste-Lisbona Fernando J

    2012-08-01

    Full Text Available Abstract Background Nuña bean is a type of ancient common bean (Phaseolus vulgaris L. native to the Andean region of South America, whose seeds possess the unusual property of popping. The nutritional features of popped seeds make them a healthy low fat and high protein snack. However, flowering of nuña bean only takes place under short-day photoperiod conditions, which means a difficulty to extend production to areas where such conditions do not prevail. Therefore, breeding programs of adaptation traits will facilitate the diversification of the bean crops and the development of new varieties with enhanced healthy properties. Although the popping trait has been profusely studied in maize (popcorn, little is known about the biology and genetic basis of the popping ability in common bean. To obtain insights into the genetics of popping ability related traits of nuña bean, a comprehensive quantitative trait loci (QTL analysis was performed to detect single-locus and epistatic QTLs responsible for the phenotypic variance observed in these traits. Results A mapping population of 185 recombinant inbred lines (RILs derived from a cross between two Andean common bean genotypes was evaluated for three popping related traits, popping dimension index (PDI, expansion coefficient (EC, and percentage of unpopped seeds (PUS, in five different environmental conditions. The genetic map constructed included 193 loci across 12 linkage groups (LGs, covering a genetic distance of 822.1 cM, with an average of 4.3 cM per marker. Individual and multi-environment QTL analyses detected a total of nineteen single-locus QTLs, highlighting among them the co-localized QTLs for the three popping ability traits placed on LGs 3, 5, 6, and 7, which together explained 24.9, 14.5, and 25.3% of the phenotypic variance for PDI, EC, and PUS, respectively. Interestingly, epistatic interactions among QTLs have been detected, which could have a key role in the genetic control of

  6. Mapping Aboveground Biomass in the Amazon Basin: Exploring Sensors, Scales, and Strategies for Optimal Data Linkage

    Science.gov (United States)

    Walker, W. S.; Baccini, A.

    2013-05-01

    Information on the distribution and density of carbon in tropical forests is critical to decision-making on a host of globally significant issues ranging from climate stabilization and biodiversity conservation to poverty reduction and human health. Encouraged by recent progress at both the international and jurisdictional levels on the design of incentive-based policy mechanisms to compensate tropical nations for maintaining their forests intact, governments throughout the tropics are moving with urgency to implement robust national and sub-national forest monitoring systems for operationally tracking and reporting on changes in forest cover and associated carbon stocks. Monitoring systems will be required to produce results that are accurate, consistent, complete, transparent, and comparable at sub-national to pantropical scales, and satellite-based remote sensing supported by field observations is widely-accepted as the most objective and cost-effective solution. The effectiveness of any system for large-area forest monitoring will necessarily depend on the capacity of current and near-future Earth observation satellites to provide information that meets the requirements of developing monitoring protocols. However, important questions remain regarding the role that spatially explicit maps of aboveground biomass and carbon can play in IPCC-compliant forest monitoring systems, with the majority of these questions stemming from doubts about the inherit sensitivity of satellite data to aboveground forest biomass, confusion about the relationship between accuracy and resolution, and a general lack of guidance on optimal strategies for linking field reference and remote sensing data sources. Here we demonstrate the ability of a state-of-the-art satellite radar sensor, the Japanese ALOS/PALSAR, and a venerable optical platform, Landsat 5, to support large-area mapping of aboveground tropical woody biomass across a 153,000-km2 region in the southwestern Amazon

  7. A microsatellite linkage map for the cultivated strawberry (Fragaria × ananassa) suggests extensive regions of homozygosity in the genome that may have resulted from breeding and selection.

    Science.gov (United States)

    Sargent, D J; Passey, T; Surbanovski, N; Lopez Girona, E; Kuchta, P; Davik, J; Harrison, R; Passey, A; Whitehouse, A B; Simpson, D W

    2012-05-01

    The linkage maps of the cultivated strawberry, Fragaria × ananassa (2n = 8x = 56) that have been reported to date have been developed predominantly from AFLPs, along with supplementation with transferrable microsatellite (SSR) markers. For the investigation of the inheritance of morphological characters in the cultivated strawberry and for the development of tools for marker-assisted breeding and selection, it is desirable to populate maps of the genome with an abundance of transferrable molecular markers such as microsatellites (SSRs) and gene-specific markers. Exploiting the recent release of the genome sequence of the diploid F. vesca, and the publication of an extensive number of polymorphic SSR markers for the genus Fragaria, we have extended the linkage map of the 'Redgauntlet' × 'Hapil' (RG × H) mapping population to include a further 330 loci, generated from 160 primer pairs, to create a linkage map for F. × ananassa containing 549 loci, 490 of which are transferrable SSR or gene-specific markers. The map covers 2140.3 cM in the expected 28 linkage groups for an integrated map (where one group is composed of two separate male and female maps), which represents an estimated 91% of the cultivated strawberry genome. Despite the relative saturation of the linkage map on the majority of linkage groups, regions of apparent extensive homozygosity were identified in the genomes of 'Redgauntlet' and 'Hapil' which may be indicative of allele fixation during the breeding and selection of modern F. × ananassa cultivars. The genomes of the octoploid and diploid Fragaria are largely collinear, but through comparison of mapped markers on the RG × H linkage map to their positions on the genome sequence of F. vesca, a number of inversions were identified that may have occurred before the polyploidisation event that led to the evolution of the modern octoploid strawberry species.

  8. Further evidence for clustering of human GABA[sub A] receptor subunit genes: Localization of the [alpha][sub 6]-subunit gene (GABRA6) to distal chromosome 5q by linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, A.A.; Kamphuis, W.; Darlison, M.G. (MRC Molecular Neurobiology Unit, Cambride (United Kingdom)); Bailey, M.E.S.; Johnson, K.J. (Charing Cross and Westminster Medical School, London (United Kingdom)); Riley, B.P. (St. Mary' s Hospital Medical School, London (United Kingdom)); Siciliano, M.J. (Univ. of Texas M.D. Anderson Cancer Center, Houston, TX (United States))

    1994-03-15

    GABA[sub A] receptors are hetero-oligomeric ion-channel complexes that are composed of combinations of [alpha], [beta], [gamma], and [delta] subunits and play a major role in inhibitory neurotransmission in the mammalian brain. The authors report here a microsatellite polymorphism within the human [alpha][sub 6]-subunit gene (GABRA6). Mapping of this marker in a human-hamster hybrid cell-line panel and typing of the repeat in the Centre d'Etude du Polymorphisme Humain (CEPH) reference families enabled the localization of this gene to chromosome 5q and established its linkage to the GABA[sub A] receptor [alpha][sub 1]-subunit gene (GA-BRA1) with a maximum lod score (Z[sub max]) of 39.87 at a [theta] of 0.069 (males) and 0.100 (females). These results reveal the clustering of GABRA6, GABRA1, and the GABA[sub A] receptor [gamma][sub 2]-subunit gene (GABRG2) on distal chromosome 5q. 17 refs., 1 fig., 1 tab.

  9. A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation

    Science.gov (United States)

    Background: Purple carrots accumulate large quantities of anthocyanins in their roots and leaves. These flavonoid pigments possess antioxidant activity and are implicated in providing health benefits. The lack of informative and saturated linkage maps associated with well characterized populations s...

  10. Mapping of the bovine spinal muscular atrophy locus to Chromosome 24.

    Science.gov (United States)

    Medugorac, Ivica; Kemter, Juliane; Russ, Ingolf; Pietrowski, Detlef; Nüske, Stefan; Reichenbach, Horst-Dieter; Schmahl, Wolfgang; Förster, Martin

    2003-06-01

    A hereditary form of spinal muscular atrophy (SMA) caused by an autosomal recessive gene has been reported for American Brown-Swiss cattle and in advanced backcrosses between American Brown-Swiss and many European brown cattle breeds. Bovine SMA (bovSMA) bears remarkable resemblance to the human SMA (SMA1). Affected homozygous calves also show progressive symmetric weakness and neurogenic atrophy of proximal muscles. The condition is characterized by severe muscle atrophy, quadriparesis, and sternal recumbency as result of neurogenic atrophy. We report on the localization of the gene causing bovSMA within a genomic interval between the microsatellite marker URB031 and the telomeric end of bovine Chromosome (Chr) 24 (BTA24). Linkage analysis of a complex pedigree of German Braunvieh cattle revealed a recombination fraction of 0.06 and a three-point lod score of 11.82. The results of linkage and haplotyping analysis enable a marker-assisted selection against bovSMA based on four microsatellite markers most telomeric on BTA24 to a moderate accuracy of 89-94%. So far, this region is not orthologous to any human chromosome segments responsible for twelve distinct disease phenotypes of autosomal neuropathies. Our results indicate the apoptosis-inhibiting protein BCL2 as the most promising positional candidate gene causing bovSMA. Our findings offer an attractive animal model for a better understanding of human forms of SMA and for a probable anti-apoptotic synergy of SMN-BCL2 aggregates in mammals.

  11. Detailed comparative map of human chromosome 19q and related regions of the mouse genome

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, L.; Shannon, M.E.; Kim, Joomyeong [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    One of the larger contiguous blocks of mouse-human genomic homology includes the proximal portion of mouse chromosome 7 and the long arm of human chromosome 19. Previous studies have demonstrated the close relationship between the two regions, but have also indicated significant rearrangements in the relative orders of homologous mouse and human genes. Here we present the genetic locations of the homologs of 42 human chromosome 19q markers in the mouse, with an emphasis on genes also included in the human chromosome 19 physical map. Our results demonstrate that despite an overall inversion of sequences relative to the centromere, apparent {open_quotes}transpositions{close_quotes} of three gene-rich segments, and a local inversion of markers mapping near the 19q telomere, gene content, order, and spacing are remarkably well conserved throughout the lengths of these related mouse and humans regions. Although most human 19q markers have remained genetically linked in mouse, one small human segment forms a separate region of homology between human chromosome 19q and mouse chromosome 17. Three of the four rearrangements of mouse versus human 19q sequences involve segments that are located directly adjacent to each other in 19q13.3-q13.4, suggesting either the coincident occurrence of these events or their common association with unstable DNA sequences. These data permit an unusually in-depth examination of this large region of mouse-human genomic homology and provide an important new tool to aid in the mapping of genes and associated phenotypes in both species. 66 refs., 3 figs., 1 tab.

  12. A comparative physical map reveals the pattern of chromosomal evolution between the turkey (Meleagris gallopavo and chicken (Gallus gallus genomes

    Directory of Open Access Journals (Sweden)

    Delany Mary E

    2011-09-01

    Full Text Available Abstract Background A robust bacterial artificial chromosome (BAC-based physical map is essential for many aspects of genomics research, including an understanding of chromosome evolution, high-resolution genome mapping, marker-assisted breeding, positional cloning of genes, and quantitative trait analysis. To facilitate turkey genetics research and better understand avian genome evolution, a BAC-based integrated physical, genetic, and comparative map was developed for this important agricultural species. Results The turkey genome physical map was constructed based on 74,013 BAC fingerprints (11.9 × coverage from two independent libraries, and it was integrated with the turkey genetic map and chicken genome sequence using over 41,400 BAC assignments identified by 3,499 overgo hybridization probes along with > 43,000 BAC end sequences. The physical-comparative map consists of 74 BAC contigs, with an average contig size of 13.6 Mb. All but four of the turkey chromosomes were spanned on this map by three or fewer contigs, with 14 chromosomes spanned by a single contig and nine chromosomes spanned by two contigs. This map predicts 20 to 27 major rearrangements distinguishing turkey and chicken chromosomes, despite up to 40 million years of separate evolution between the two species. These data elucidate the chromosomal evolutionary pattern within the Phasianidae that led to the modern turkey and chicken karyotypes. The predominant rearrangement mode involves intra-chromosomal inversions, and there is a clear bias for these to result in centromere locations at or near telomeres in turkey chromosomes, in comparison to interstitial centromeres in the orthologous chicken chromosomes. Conclusion The BAC-based turkey-chicken comparative map provides novel insights into the evolution of avian genomes, a framework for assembly of turkey whole genome shotgun sequencing data, and tools for enhanced genetic improvement of these important agricultural and

  13. A BAC-based physical map of the Hessian fly genome anchored to polytene chromosomes

    Directory of Open Access Journals (Sweden)

    Fellers John P

    2009-07-01

    Full Text Available Abstract Background The Hessian fly (Mayetiola destructor is an important insect pest of wheat. It has tractable genetics, polytene chromosomes, and a small genome (158 Mb. Investigation of the Hessian fly presents excellent opportunities to study plant-insect interactions and the molecular mechanisms underlying genome imprinting and chromosome elimination. A physical map is needed to improve the ability to perform both positional cloning and comparative genomic analyses with the fully sequenced genomes of other dipteran species. Results An FPC-based genome wide physical map of the Hessian fly was constructed and anchored to the insect's polytene chromosomes. Bacterial artificial chromosome (BAC clones corresponding to 12-fold coverage of the Hessian fly genome were fingerprinted, using high information content fingerprinting (HIFC methodology, and end-sequenced. Fluorescence in situ hybridization (FISH co-localized two BAC clones from each of the 196 longest contigs on the polytene chromosomes. An additional 70 contigs were positioned using a single FISH probe. The 266 FISH mapped contigs were evenly distributed and covered 60% of the genome (95,668 kb. The ends of the fingerprinted BACs were then sequenced to develop the capacity to create sequenced tagged site (STS markers on the BACs in the map. Only 3.64% of the BAC-end sequence was composed of transposable elements, helicases, ribosomal repeats, simple sequence repeats, and sequences of low complexity. A relatively large fraction (14.27% of the BES was comprised of multi-copy gene sequences. Nearly 1% of the end sequence was composed of simple sequence repeats (SSRs. Conclusion This physical map provides the foundation for high-resolution genetic mapping, map-based cloning, and assembly of complete genome sequencing data. The results indicate that restriction fragment length heterogeneity in BAC libraries used to construct physical maps lower the length and the depth of the contigs, but is

  14. Molecular linkage mapping and marker-trait associations with NlRPT, a downy mildew resistance gene in Nicotiana langsdorffii

    Directory of Open Access Journals (Sweden)

    Shouan eZhang

    2012-08-01

    Full Text Available Nicotiana langsdorffii is one of two species of Nicotiana known to express an incompatible interaction with the oomycete Peronospora tabacina, the causal agent of tobacco blue mold disease. We previously showed that incompatibility is due to the hypersensitive response (HR, and plants expressing the HR are resistant to P. tabacina at all stages of growth. Resistance is due to a single dominant gene in N. langsdorffii accession S-4-4 that we have named NlRPT. In further characterizing this unique host-pathogen interaction, NlRPT has been placed on a preliminary genetic map of the N. langsdorffii genome. Allelic scores for five classes of DNA markers were determined for 90 progeny of a modified backcross involving two N. langsdorffii inbred lines and the related species N. forgetiana. All markers had an expected segregation ratio of 1:1, and were scored in a common format. The map was constructed with JoinMap 3.0, and loci showing excessive transmission distortion were removed. The linkage map consists of 266 molecular marker loci defined by 217 amplified fragment length polymorphisms (AFLPs, 26 simple-sequence repeats (SSR, 10 conserved orthologous sequence (COS markers, nine inter-simple sequence repeat (ISSR markers, and four target region amplification polymorphism (TRAP markers arranged in 12 linkage groups with a combined length of 1062 cM. NlRPT is located on linkage group 3, flanked by four AFLP markers and one SSR. Regions of skewed segregation were detected on LGs 1, 5 and 9. Markers developed for N. langsdorffii are potentially useful genetic tools for other species in Nicotiana section Alatae, as well as in N. benthamiana. We also investigated whether AFLPs could be used to infer genetic relationships within N. langsdorffii and related species from section Alatae. A phenetic analysis of the AFLP data showed that there are two main lineages within N. langsdorffii, and that both contain populations expressing dominant resistance to P

  15. Linkage Map Construction and Quantitative Trait Loci Analysis for Bolting Based on a Double Haploid Population of Brassica rapa

    Institute of Scientific and Technical Information of China (English)

    Xu Yang; Yang-Jun Yu; Feng-Lan Zhang; Zhi-Rong Zou; Xiu-Yun Zhao; De-Shuang Zhang; Jia-Bing Xu

    2007-01-01

    Early bolting of Chinese cabbage (Brassica rapa L.) during spring cultivation often has detrimental effects on the yield and quality of the harvested products. Breeding late bolting varieties is a major objective of Chinese cabbage breeding programs. in order to analyze the genetic basis of bolting traits, a genetic map of B. rapa was constructed based on amplified fragment-length polymorphism (AFLP), sequence-related amplified polymorphism (SRAP), simple sequence repeat (SSR), random amplification of polymorphic DNA (RAPD), and isozyme markers. Marker analysis was carried out on 81 double haploid (DH) lines obtained by mlcrospore culture from F1 progeny of two homozygous parents: B. rapa L. ssp. pekinensis (BY) (an extra-early bolting Chinese cabbage line) and B. rapa L. ssp. rapifera (MM) (an extra-late bolting European turnip line). A total of 326 markers including 130 AFLPs, 123 SRAPs, 16 SSRs, 43RAPDs and 14 isozymes were used to construct a linkage map with 10 linkage groups covering 882 cM with an average distance of 2.71 cM between loci. The bolting trait of each DH line was evaluated by the bolting index under controlled conditions. Quantitative trait loci (QTL) analysis was conducted using multiple QTL model mapping with MapQTL5.0 software. Eight QTLs controlling bolting resistance were identified. These QTLs, accounting for 14.1% to 25.2% of the phenotyplc variation with positive additive effects, were distributed into three linkage groups. These results provide useful information for molecular marker-assisted selection of late bolting traits in Chinese cabbage breeding programs.

  16. Quantitative Linkage for Autism Spectrum Disorders Symptoms in Attention-Deficit/Hyperactivity Disorder : Significant Locus on Chromosome 7q11

    NARCIS (Netherlands)

    Nijmeijer, Judith; Arias-Vasquez, Alejandro; Rommelse, Nanda N. J.; Altink, Marieke E.; Buschgens, Cathelijne J. M.; Fliers, Ellen A.; Franke, Barbara; Minderaa, Rudolf; Sergeant, Joseph A.; Buitelaar, Jan K.; Hoekstra, Pieter J.; Hartman, Catharina A.

    2014-01-01

    We studied 261 ADHD probands and 354 of their siblings to assess quantitative trait loci associated with autism spectrum disorder symptoms (as measured by the Children's Social Behavior Questionnaire (CSBQ)) using a genome-wide linkage approach, followed by locus-wide association analysis. A genome-

  17. Quantitative Linkage for Autism Spectrum Disorders Symptoms in Attention-Deficit/Hyperactivity Disorder: Significant Locus on Chromosome 7q11

    Science.gov (United States)

    Nijmeijer, Judith S.; Arias-Vásquez, Alejandro; Rommelse, Nanda N.; Altink, Marieke E.; Buschgens, Cathelijne J.; Fliers, Ellen A.; Franke, Barbara; Minderaa, Ruud B.; Sergeant, Joseph A.; Buitelaar, Jan K.; Hoekstra, Pieter J.; Hartman, Catharina A.

    2014-01-01

    We studied 261 ADHD probands and 354 of their siblings to assess quantitative trait loci associated with autism spectrum disorder symptoms (as measured by the Children's Social Behavior Questionnaire (CSBQ) using a genome-wide linkage approach, followed by locus-wide association analysis. A genome-wide significant locus for the CSBQ subscale…

  18. Chromosomal mapping of the human M6 genes

    Energy Technology Data Exchange (ETDEWEB)

    Olinsky, S.; Loop, B.T.; DeKosky, A. [Univ. of Pittsburgh, PA (United States)] [and others

    1996-05-01

    M6 is a neuronal membrane glycoprotein that may have an important role in neural development. This molecule was initially defined by a monoclonal antibody that affected the survival of cultured cerebellar neurons and the outgrowth of neurites. The nature of the antigen was discovered by expression cDNA cloning using this monoclonal antibody. Two distinct murine M6 cDNAs (designated M6a and M6b) whose deduced amino acid sequences were remarkably similar to that of the myelin proteolipid protein human cDNA and genomic clones encoding M6a and M6b and have characterized them by restriction mapping, Southern hybridization with cDNA probes, and sequence analysis. We have localized these genes within the human genome by FISH (fluorescence in situ hybridization). The human M6a gene is located at 4q34, and the M6b gene is located at Xp22.2 A number of human neurological disorders have been mapped to the Xp22 region, including Aicardi syndrome (MIM 304050), Rett syndrome (MIM 312750), X-linked Charcot-Marie-Tooth neuropathy (MIM 302801), and X-linked mental retardation syndromes (MRX1, MIM 309530). This raises the possibility that a defect in the M6b gene is responsible for one of these neurological disorders. 8 refs., 3 figs.

  19. Fine Mapping of a Deafness Mutation hml on Mouse Chromosome 10

    Institute of Scientific and Technical Information of China (English)

    Qing Yin Zheng; Belinda S Harris; Patricia F Ward-Bailey; Heping Yu; Roderick T Bronson; Muriel T Davisson; Kenneth R Johnson

    2004-01-01

    Objective To map a mouse deafness gene, identify the underlying mutation and develop a mouse model for human deafness. Methods Genetic linkage cross and genome scan were used to map a novel mutation named hypoplasia of the membranous labyrinth (hml), which causes hearing loss in mutant mice. Results ① hml was mapped on mouse Chr 10 (~43 cM from the centromere) suggests that the homologous human gene is on 12q22-q24, which was defined on the basis of known mouse-human homologies (OMIM, 2004). ② This study has generated 25 polymorphic microsatellite markers, placed 3 known human genes in the correct order in a high-resolution mouse map and narrowed the hml candidate gene region to a 500 kb area.

  20. Mutants resistant to anti-microtubule herbicides map to a locus on the uni linkage group in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    The authors have used genetic analysis to study the mode of action of two anti-microtubule herbicides, amiprophos-methyl (APM) and oryzaline (ORY). Over 200 resistant mutants were selected by growth on APM- or ORY-containing plates. The 21 independently isolated mutants examined in this study are 3- to 8-fold resistant to APM and are strongly cross-resistant to ORY and butamiphos, a close analog of APM. Two Mendelian genes, apm1 and apm2, are defined by linkage and complementation analysis. There are 20 alleles of apm1 and one temperature-sensitive lethal (330) allele of apm2. Mapping by two-factor crosses places apm1 6.5 cM centromere proximal to uni1 and within 4 cM of pf7 on the uni linkage group, a genetically circular linkage group comprising genes which affect flagellar assembly or function; apm2 maps near the centromere of linkage group VIII. Allele-specific synthetic lethality is observed in crosses between amp2 and alleles of apm1. Also, self crosses of apm2 are zygotic lethal, whereas crosses of nine apm1 alleles inter se result in normal germination and tetrad viability. The mutants are recessive to their wild-type alleles but doubly heterozygous diploids (apm1 +/+ apm2) made with apm2 and any of 15 apm1 alleles display partial intergenic noncomplementation, expressed as intermediate resistance. Diploids homozygous for mutant alleles of apm1 are 4-6-fold resistant to APM and ORY; diploids homozygous for apm2 are ts- and 2-fold resistant to the herbicides. From the results described the authors suggest that the gene products of apm1 and apm2 may interact directly or function in the same structure or process

  1. Mapping carcass and meat quality QTL on Sus Scrofa chromosome 2 in commercial finishing pigs

    Directory of Open Access Journals (Sweden)

    van Kampen Tony A

    2009-01-01

    Full Text Available Abstract Quantitative trait loci (QTL affecting carcass and meat quality located on SSC2 were identified using variance component methods. A large number of traits involved in meat and carcass quality was detected in a commercial crossbred population: 1855 pigs sired by 17 boars from a synthetic line, which where homozygous (A/A for IGF2. Using combined linkage and linkage disequilibrium mapping (LDLA, several QTL significantly affecting loin muscle mass, ham weight and ham muscles (outer ham and knuckle ham and meat quality traits, such as Minolta-L* and -b*, ultimate pH and Japanese colour score were detected. These results agreed well with previous QTL-studies involving SSC2. Since our study is carried out on crossbreds, different QTL may be segregating in the parental lines. To address this question, we compared models with a single QTL-variance component with models allowing for separate sire and dam QTL-variance components. The same QTL were identified using a single QTL variance component model compared to a model allowing for separate variances with minor differences with respect to QTL location. However, the variance component method made it possible to detect QTL segregating in the paternal line (e.g. HAMB, the maternal lines (e.g. Ham or in both (e.g. pHu. Combining association and linkage information among haplotypes improved slightly the significance of the QTL compared to an analysis using linkage information only.

  2. Mapping of the serotonin 5-HT{sub 1D{alpha}} autoreceptor gene (HTR1D) on chromosome 1 using a silent polymorphism in the coding region

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, N.; Lappalainen, J.; Linnoila, M. [National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (United States)] [and others

    1995-04-24

    Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP) analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.

  3. A gene for familial psoriasis susceptibility maps to the distal end of human chromosome 17q

    Energy Technology Data Exchange (ETDEWEB)

    Bowcock, A.; Tomfohrde, J.; Barnes, R. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States)] [and others

    1994-09-01

    Psoriasis is a chronic inflammatory dermatosis that affects approximately 2% of the population. A gene for psoriasis susceptibility was localized to the distal region of human chromosome 17q as a result of a genome wide linkage-analysis with polymorphic microsatellites and eight multiply affected psoriasis kindreds. With one large kindred a maximum two-point lod score with D17S784 was 5.70 at 15% recombination. Heterogeneity testing indicated that psoriasis susceptibility in 50% of the families was linked to distal 17q. Susceptibility to psoriasis has repeatedly been found to be associated with HLA-Cw6 and associated HLA alleles. We therefore genotyped the families for loci within and flanking HLA; these included PCR assays for susceptibility alleles. By lod score analysis no evidence of linkage of psoriasis susceptibility to HLA was detected. The distribution of HLA-Cw6 and HLA-Class II alleles showed that HLA-Cw6 was frequent among patients, particularly in 4 of the 5 unlinked families. All affected members of two of these unlinked families carried HLA-Cw6 (empirical P values of 0.027 and 0.004). In 2 other families 4 of 6 and 6 of 7 had HLA-Cw6. In some of these families, an inability to detect linkage to HLA may have been due to the occurrence of multiple haplotypes carrying the psoriasis associated allele, HLA-Cw6. Contrasting with these findings, we observed a lack of association between HLA-Cw6 and psoriasis in the 3 families in which 17q markers were linked to susceptibility. The ability to detect linkage to 17q confirms that some forms of familial psoriasis are due to molecular defects at a single major genetic locus other than HLA.

  4. FLOSS: flexible ordered subset analysis for linkage mapping of complex traits.

    Science.gov (United States)

    Browning, B L

    2006-02-15

    The FLOSS software package is a flexible framework for ordered subset analysis. FLOSS is specifically designed for use with the Merlin linkage analysis package, but FLOSS can be used with any linkage analysis software package that reports NPL Z-scores for each locus and family. When FLOSS is used with the Merlin linkage analysis package, one can use either non-parametric Z-scores or Kong and Cox linear allele sharing model LOD scores. Monte Carlo P-values are calculated using a permutation test with an efficient Besag-Clifford sequential stopping rule. FLOSS also has a flexible tool for assigning family covariate scores from Merlin input files. FLOSS includes user documentation and is written in Java for easy portability. The FLOSS source code is documented and designed to be extensible.

  5. Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis.

    Directory of Open Access Journals (Sweden)

    Li-Qiang Tan

    Full Text Available Despite the worldwide consumption and high economic importance of tea, the plant (Camellia sinensis is not well studied in molecular biology. Under the few circumstances in which the plant is studied, C. sinensis flowers, which are important for reproduction and cross-breeding, receive less emphasis than investigation of its leaves or roots. Using high-throughput Illumina RNA sequencing, we analyzed a C. sinensis floral transcriptome, and 26.9 million clean reads were assembled into 75,531 unigenes averaging 402 bp. Among them, 50,792 (67.2% unigenes were annotated with a BLAST search against the NCBI Non-Redundant (NR database and 10,290 (16.67% were detected that contained one or more simple sequence repeats (SSRs. From these SSR-containing sequences, 2,439 candidate SSR markers were developed and 720 were experimentally tested, validating 431 (59.9% novel polymorphic SSR markers for C. sinensis. Then, a consensus SSR-based linkage map was constructed that covered 1,156.9 cM with 237 SSR markers distributed in 15 linkage groups. Both transcriptome information and the genetic map of C. sinensis presented here offer a valuable foundation for molecular biology investigations such as functional gene isolation, quantitative trait loci mapping, and marker-assisted selection breeding in this important species.

  6. Constructing chromosome- and region-specific cosmid maps of the human genome.

    Science.gov (United States)

    Carrano, A V; de Jong, P J; Branscomb, E; Slezak, T; Watkins, B W

    1989-01-01

    A chromosome-specific ordered set of cosmids would be a significant contribution toward understanding human chromosome structure and function. We are developing two parallel approaches for creating an ordered cosmid library of human chromosome 19 and other selected subregions of the human genome. The "bottom up" approach is used to establish sets of overlapping cosmids as islands or "contigs" along the chromosome, while the "top down" approach, using pulsed-field gel electrophoresis and yeast cloning, will establish a large-fragment map and close the inevitable gaps remaining from the "bottom up" approach. Source DNA consists of a single homolog of chromosome 19 from a hamster--human hybrid cell and human fragments cloned in yeast artificial chromosomes. We have constructed cosmid libraries in a vector that facilitates cloning small amounts of DNA, allows transcription of the insert termini, and contains unique sites for partial-digest mapping. Computer simulations of cosmid contig building suggest that near-optimal efficiency can be achieved with high-density restriction fragment digest schemes that can detect 20-30% overlap between cosmids. We developed the chemistry and data analysis tools to compare the ordering efficiencies of several cosmid restriction digest fingerprinting strategies. Restriction fragments from a four-cutter digest are labeled with a fluorochrome, separated by polyacrylamide gel electrophoresis, and detected after laser excitation as they traverse a fixed point in the gel. We have also developed the software to rapidly process the output signal to define and analyze the fragment peaks. Up to three cosmids (or three different digests of the same cosmid) plus a size standard are analyzed simultaneously in a single gel lane.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2698823

  7. High-density interspecific genetic linkage mapping provides insights into genomic incompatibility between channel catfish and blue catfish.

    Science.gov (United States)

    Liu, S; Li, Y; Qin, Z; Geng, X; Bao, L; Kaltenboeck, L; Kucuktas, H; Dunham, R; Liu, Z

    2016-02-01

    Catfish is the leading aquaculture species in the United States. The interspecific hybrid catfish produced by mating female channel catfish with male blue catfish outperform both of their parent species in a number of traits. However, mass production of the hybrids has been difficult because of reproductive isolation. Investigations of genome structure and organization of the hybrids provide insights into the genetic basis for maintenance of species divergence in the face of gene flow, thereby helping develop strategies for introgression and efficient production of the hybrids for aquaculture. In this study, we constructed a high-density genetic linkage map using the hybrid catfish system with the catfish 250K SNP array. A total of 26,238 SNPs were mapped to 29 linkage groups, with 12,776 unique marker positions. The linkage map spans approximately 3240 cM with an average intermarker distance of 0.25 cM. A fraction of markers (986 of 12,776) exhibited significant deviation from the expected Mendelian ratio of segregation, and they were clustered in major genomic blocks across 15 LGs, most notably LG9 and LG15. The distorted markers exhibited significant bias for maternal alleles among the backcross progenies, suggesting strong selection against the blue catfish alleles. The clustering of distorted markers within genomic blocks should lend insights into speciation as marked by incompatibilities between the two species. Such findings should also have profound implications for understanding the genomic evolution of closely related species as well as the introgression of hybrid production programs in aquaculture.

  8. Chromhome: A rich internet application for accessing comparative chromosome homology maps

    Directory of Open Access Journals (Sweden)

    Cox Tony

    2008-03-01

    Full Text Available Abstract Background Comparative genomics has become a significant research area in recent years, following the availability of a number of sequenced genomes. The comparison of genomes is of great importance in the analysis of functionally important genome regions. It can also be used to understand the phylogenetic relationships of species and the mechanisms leading to rearrangement of karyotypes during evolution. Many species have been studied at the cytogenetic level by cross species chromosome painting. With the large amount of such information, it has become vital to computerize the data and make them accessible worldwide. Chromhome http://www.chromhome.org is a comprehensive web application that is designed to provide cytogenetic comparisons among species and to fulfil this need. Results The Chromhome application architecture is multi-tiered with an interactive client layer, business logic and database layers. Enterprise java platform with open source framework OpenLaszlo is used to implement the Rich Internet Chromhome Application. Cross species comparative mapping raw data are collected and the processed information is stored into MySQL Chromhome database. Chromhome Release 1.0 contains 109 homology maps from 51 species. The data cover species from 14 orders and 30 families. The homology map displays all the chromosomes of the compared species as one image, making comparisons among species easier. Inferred data also provides maps of homologous regions that could serve as a guideline for researchers involved in phylogenetic or evolution based studies. Conclusion Chromhome provides a useful resource for comparative genomics, holding graphical homology maps of a wide range of species. It brings together cytogenetic data of many genomes under one roof. Inferred painting can often determine the chromosomal homologous regions between two species, if each has been compared with a common third species. Inferred painting greatly reduces the need to

  9. Cytogenetic Mapping of Disease Resistance Genes and Analysis of Their Distribution Features on Chromosomes in Maize

    Institute of Scientific and Technical Information of China (English)

    LiLi-jia; SongYun-chun

    2003-01-01

    Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plant species onto maize chromosomes, combining with data published before. These genes include Helminthosporium turcium Pass resistance genes Htl, Htnl and Ht2, Helminthosporium maydis Nisik resistance genes Rhml and Rhm2,maize dwarf mosaic virus resistance gene Mdml, wheat streak mosaic virus resistance gene Wsml, Helminthosporium carbonum ULLstrup resistance gene Hml and the cloned Xanthomonas oryzae pv. Oryzae resistance gene Xa21 of rice, Cladosporium fulvum resistance genes Cf-9 and Cf-2. 1 of tomato, and Pseudomonas syringae resistance gene RPS2 of Arabidopsis. Most of the tested disease resistance genes located on the four chromosomes, i. e. , chromosomesl, 3, 6 and 8, and they closely distributed at the interstitial regions of these chromosomal long arms with percentage distances ranging 31.44(±3.72)-72.40(±3. 25) except for genes Rhml, Rhm2, Mdml and Wsml which mapped on the satellites of the short arms of chromosome6. It showed that the tested RFLP markers and genes were duplicated or triplicated in maize genome. Homology and conservation of disease resistance genes among species, and relationship between distribution features and functions of the genes were discussed. The results provide important scientific basis for deeply understanding structure and function of disease resistance genes and breeding in maize.

  10. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions.

    Science.gov (United States)

    Guelen, Lars; Pagie, Ludo; Brasset, Emilie; Meuleman, Wouter; Faza, Marius B; Talhout, Wendy; Eussen, Bert H; de Klein, Annelies; Wessels, Lodewyk; de Laat, Wouter; van Steensel, Bas

    2008-06-12

    The architecture of human chromosomes in interphase nuclei is still largely unknown. Microscopy studies have indicated that specific regions of chromosomes are located in close proximity to the nuclear lamina (NL). This has led to the idea that certain genomic elements may be attached to the NL, which may contribute to the spatial organization of chromosomes inside the nucleus. However, sequences in the human genome that interact with the NL in vivo have not been identified. Here we construct a high-resolution map of the interaction sites of the entire genome with NL components in human fibroblasts. This map shows that genome-lamina interactions occur through more than 1,300 sharply defined large domains 0.1-10 megabases in size. These lamina-associated domains (LADs) are typified by low gene-expression levels, indicating that LADs represent a repressive chromatin environment. The borders of LADs are demarcated by the insulator protein CTCF, by promoters that are oriented away from LADs, or by CpG islands, suggesting possible mechanisms of LAD confinement. Taken together, these results demonstrate that the human genome is divided into large, discrete domains that are units of chromosome organization within the nucleus. PMID:18463634

  11. A locus for Waardenburg syndrome type II maps to chromosome 1p13.3-2.1

    Energy Technology Data Exchange (ETDEWEB)

    Lalwani, A.K.; San Agustin, T.B.; Wilcox, E.R. [LMG, Bethesda, MD (United States)] [and others

    1994-09-01

    Waardenburg syndrome (WS) is a dominantly inherited and clinically variable syndrome of deafness, pigmentary changes and distinctive facial features. WS type I (WS1) is characterized by a high frequency of dystopia canthorum whereas WS type II (WS2) individuals have normal inter canthal distances. Previous studies have shown that WS1 is caused by mutations in the PAX3 gene on chromosome 2q whereas WS2 is unlinked to PAX3. However, analyses of WS2 families have been complicated by the possibility of misdiagnosis of secondary cases with mild features of WS2. We initiated a genome search in 8 WS2 families. Suggestive evidence for linkage to D1S248 and AMY2B was found in one family (both markers: Z-max=2.4 at {Theta}=0), to D1S485 and D1S495 in a second family (both markers: Z-max=2.2 at {Theta}=0), and to D1S248 in a third family (Z-max=1.1 at {Theta}=.11). WS2 was not linked to any of these markers in the total group of families. Location scores for each family were calculated by a six-locus analysis using the marker map AMY2B/D1S486 - .03 - D1S495 - .02 - D1S248 - .05 - D1S457 - .04 - D1S250. Assessment of these scores for linkage and heterogeneity using the admixture test revealed significant evidence for linkage (P<.0001) under the assumption of heterogeneity ({alpha}=.40). The most likely location for WS2 is at D1S495, although either of the intervals flanking this marker may contain the mutant gene. All other locations were ruled out with odds of greater than l00 to 1. Our findings suggest that there are at least two loci for WS type II. Complementary crossovers in the linked families make feasible attempts to narrow the location of the WS2 gene by positional cloning. Analyses of additional families will be needed to estimate more precisely the proportion of linked families and identify the gene.

  12. Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, M.K.; Samples, J.R.; Kramer, P.L. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1997-02-01

    Glaucoma is the third-leading cause of blindness in the world, affecting >13.5 million people. Adult-on-set primary open-angle glaucoma (POAG) is the most common form of glaucoma in the United States. We present a family in which adult-onset POAG is inherited as an autosomal dominant trait. Twelve affected family members were identified from 44 at-risk individuals. The disease-causing gene was mapped to chromosome 3q21-24, with analysis of recombinant haplotypes suggesting a total inclusion region of 11.1 cM between markers D3S3637 and D3S1744. This is the first report of mapping of an adult-onset POAG gene to chromosome 3q, gene symbol GLC1C. 57 refs., 3 figs., 3 tabs.

  13. Development, chromosome location and genetic mapping of EST-SSR markers in wheat

    Institute of Scientific and Technical Information of China (English)

    CHEN Haimei; LI Linzhi; WEI Xianyun; LI Sishen; LEI Tiandong; HU Haizhou; WANG Honggang; ZHANG Xiansheng

    2005-01-01

    A number of 151695 wheat expression sequence tags (ESTs) that originated from GenBank/dbEST from July 14, 2003 to August 24, 2004 were used to search for simple sequence repeats (SSRs) with motif 2―5 bp, and 2038 simple sequence repeats (EST-SSRs), which accounted for 1.34% of EST database, were identified. Based on these SSR sequences, 249 EST-SSR primer pairs and 166 amplified clear bands in various wheat cultivars were designed. These EST-SSR markers can be used as new molecular markers in wheat and related species. Using Chinese Spring nulli-tetrasomic lines, 93 EST-SSR primer pairs and 193 EST-SSR loci were located on 19 wheat chromosomes except for 4A and 4B. Forty-three loci were mapped on 11 chromosomes of the genetic framework map previously constructed using recombinant inbred lines.

  14. Colorectal cancer linkage on chromosomes 4q21, 8q13, 12q24, and 15q22.

    Directory of Open Access Journals (Sweden)

    Mine S Cicek

    Full Text Available A substantial proportion of familial colorectal cancer (CRC is not a consequence of known susceptibility loci, such as mismatch repair (MMR genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI-high tumors, or no evidence of linkage to MMR genes. Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR, the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD = 4.51, α = 0.84, 145.40 cM, rs10518142 and among all families at 12q24.32 (dominant HLOD = 3.60, α = 0.48, 285.15 cM, rs952093. Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD = 3.07, α = 0.29; dominant HLOD = 3.03, α = 0.32, respectively. Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD = 3.02, α = 0.51, 132.52 cM, rs1319036. These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated.

  15. Genome-wide characterization and linkage mapping of simple sequence repeats in mei (Prunus mume Sieb. et Zucc..

    Directory of Open Access Journals (Sweden)

    Lidan Sun

    Full Text Available Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc. has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca, and apple (Malus×domestica genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb and almost twice as high as that of apple (398 SSR/Mb. Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs, with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species.

  16. The development of a high density linkage map for black tiger shrimp (Penaeus monodon based on cSNPs.

    Directory of Open Access Journals (Sweden)

    Matthew Baranski

    Full Text Available Transcriptome sequencing using Illumina RNA-seq was performed on populations of black tiger shrimp from India. Samples were collected from (i four landing centres around the east coastline (EC of India, (ii survivors of a severe WSSV infection during pond culture (SUR and (iii the Andaman Islands (AI in the Bay of Bengal. Equal quantities of purified total RNA from homogenates of hepatopancreas, muscle, nervous tissue, intestinal tract, heart, gonad, gills, pleopod and lymphoid organs were combined to create AI, EC and SUR pools for RNA sequencing. De novo transcriptome assembly resulted in 136,223 contigs (minimum size 100 base pairs, bp with a total length 61 Mb, an average length of 446 bp and an average coverage of 163× across all pools. Approximately 16% of contigs were annotated with BLAST hit information and gene ontology annotations. A total of 473,620 putative SNPs/indels were identified. An Illumina iSelect genotyping array containing 6,000 SNPs was developed and used to genotype 1024 offspring belonging to seven full-sibling families. A total of 3959 SNPs were mapped to 44 linkage groups. The linkage groups consisted of between 16-129 and 13-130 markers, of length between 139-10.8 and 109.1-10.5 cM and with intervals averaging between 1.2 and 0.9 cM for the female and male maps respectively. The female map was 28% longer than the male map (4060 and 2917 cM respectively with a 1.6 higher recombination rate observed for female compared to male meioses. This approach has substantially increased expressed sequence and DNA marker resources for tiger shrimp and is a useful resource for QTL mapping and association studies for evolutionarily and commercially important traits.

  17. Fine mapping of fatness QTL on porcine chromosome X and analyses of three positional candidate genes

    OpenAIRE

    Ma, Junwu; Gilbert, Hélène; Iannuccelli, Nathalie; Duan, Yanyu; Guo, Beili; Huang, Weibing; Ma, Huanban; Riquet, Juliette; Bidanel, Jean Pierre

    2013-01-01

    Background: Porcine chromosome X harbors four QTL strongly affecting backfat thickness (BFT), ham weight (HW), intramuscular fat content (IMF) and loin eye area (LEA). The confidence intervals (CI) of these QTL overlap and span more than 30 cM, or approximately 80 Mb. This study therefore attempts to fine map these QTL by joint analysis of two large-scale F2 populations (Large White × Meishan and White Duroc × Erhualian constructed by INRA and JXAU respectively) and furthermore, to determine ...

  18. Generalized Gap Model for Bacterial Artificial Chromosome Clone Fingerprint Mapping and Shotgun Sequencing

    OpenAIRE

    Wendl, Michael C; Robert H Waterston

    2002-01-01

    We develop an extension to the Lander-Waterman theory for characterizing gaps in bacterial artificial chromosome fingerprint mapping and shotgun sequencing projects. It supports a larger set of descriptive statistics and is applicable to a wider range of project parameters. We show that previous assertions regarding inconsistency of the Lander-Waterman theory at higher coverages are incorrect and that another well-known but ostensibly different model is in fact the same. The apparent paradox ...

  19. Delineating Rearrangements in Single Yeast Artificial Chromosomes by Quantitative DNA Fiber Mapping

    OpenAIRE

    Weier, Heinz-Ulrich G.; Greulich-Bode, Karin M.; Wu, Jenny; Duell, Thomas

    2009-01-01

    Cloning of large chunks of human genomic DNA in recombinant systems such as yeast or bacterial artificial chromosomes has greatly facilitated the construction of physical maps, the positional cloning of disease genes or the preparation of patient-specific DNA probes for diagnostic purposes. For this process to work efficiently, the DNA cloning process and subsequent clone propagation need to maintain stable inserts that are neither deleted nor otherwise rearranged. Some regions of the human g...

  20. Microsatellite isolation and marker development in carrot - genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae

    Directory of Open Access Journals (Sweden)

    Yildiz Mehtap

    2011-08-01

    Full Text Available Abstract Background The Apiaceae family includes several vegetable and spice crop species among which carrot is the most economically important member, with ~21 million tons produced yearly worldwide. Despite its importance, molecular resources in this species are relatively underdeveloped. The availability of informative, polymorphic, and robust PCR-based markers, such as microsatellites (or SSRs, will facilitate genetics and breeding of carrot and other Apiaceae, including integration of linkage maps, tagging of phenotypic traits and assisting positional gene cloning. Thus, with the purpose of isolating carrot microsatellites, two different strategies were used; a hybridization-based library enrichment for SSRs, and bioinformatic mining of SSRs in BAC-end sequence and EST sequence databases. This work reports on the development of 300 carrot SSR markers and their characterization at various levels. Results Evaluation of microsatellites isolated from both DNA sources in subsets of 7 carrot F2 mapping populations revealed that SSRs from the hybridization-based method were longer, had more repeat units and were more polymorphic than SSRs isolated by sequence search. Overall, 196 SSRs (65.1% were polymorphic in at least one mapping population, and the percentage of polymophic SSRs across F2 populations ranged from 17.8 to 24.7. Polymorphic markers in one family were evaluated in the entire F2, allowing the genetic mapping of 55 SSRs (38 codominant onto the carrot reference map. The SSR loci were distributed throughout all 9 carrot linkage groups (LGs, with 2 to 9 SSRs/LG. In addition, SSR evaluations in carrot-related taxa indicated that a significant fraction of the carrot SSRs transfer successfully across Apiaceae, with heterologous amplification success rate decreasing with the target-species evolutionary distance from carrot. SSR diversity evaluated in a collection of 65 D. carota accessions revealed a high level of polymorphism for these

  1. Mapping of multiple intestinal neoplasia (Min) to proximal chromosome 18 of the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Luongo, C.; Gould, K.A.; Moser, A.R. (Univ. of Wisconsin, Madison (United States)); Su, Likuo; Kinzler, K.W.; Vogelstein, B. (Johns Hopkins Oncology Center, Baltimore, MD (United States)); Dietrich, W.; Lander, E.S. (MIT, Cambridge (United States))

    1993-01-01

    The Min (multiple intestinal neoplasia) mutation of the mouse has been mapped by analyzing the inheritance of restriction fragment length polymorphisms and simple sequence length polymorphisms in progeny from two intraspecific crosses segregating for the Min mutation. Min, a mutant allele of Apc, the mouse homo- log of the human APC (adenomatous polyposis coli) gene, maps to proximal chromosome 18. The synteny between Apc and Mcc, the mouse homolog of the human MCC (mutated in colorectal cancer) gene, is conserved between mouse and human, although the gene order in the Apc to Mcc interval is different from that in the APC to MCC interval. 29 refs., 3 figs.

  2. The genetic locus for free sialic acid storage disease maps to the long arm of chromosome 6.

    OpenAIRE

    Haataja, L.; Schleutker, J; Laine, A. P.; Renlund, M; Savontaus, M L; Dib, C.; Weissenbach, J.; Peltonen, L; Aula, P

    1994-01-01

    Salla disease (SD), or adult-type free sialic acid storage disease, is an autosomal recessive lysosomal storage disorder characterized by impaired transport of free sialic acid across the lysosomal membrane and severe psychomotor retardation. Random linkage analysis of a sample of 27 Finnish families allowed us to localize the SD locus to the long arm of chromosome 6. The highest lod score of 8.95 was obtained with a microsatellite marker of locus D6S286 at theta = .00. Evidence for linkage d...

  3. Evidence for the absence of intron H of the histidine-rich glycoprotein (HRG) gene: Genetic mapping and in situ localization of HRG to chromosome 3q28-q29

    Energy Technology Data Exchange (ETDEWEB)

    Hennis, B.C.; Poort, E.W. van der; Kluft, C.; Frants, R.R.; Bakker, E.; Vossen, R.H.A.M.; Blonden, L.A.; Khan, P.M. (Leiden Univ. (Netherlands)); Cox, S.; Spurr, N.K. (Imperial Cancer Research Fund, London (United Kingdom))

    1994-01-01

    Histidine-rich glycoprotein (HRG) belongs to the cystatin superfamily and appears to be a potential risk factor for thrombosis. An increased prevalence of elevated HRG plasma levels in patients with venous thrombosis and families with thrombophilia has been reported. It is interesting to note that the genes of four different members of the cystatin superfamily are located on the distal section of the long arm of chromosome 3: Stefin A (STF1) on 3q21, Kininogen (KNG) on 3q26-qter, [alpha]-2-HS-glycoprotein (AHSG) on 3q27-q28, and HRG on 3q21-qter. To further investigate the evolutionary relationship between HRG and members of the cystatin superfamily, the authors isolated a cosmid that was used to refine the chromosomal localization of HRG by in situ hybridization. In addition, they used a dinucleotide repeat polymorphism to localize HRG on the linkage map of chromosome 3q. 10 refs., 2 figs.

  4. Construction of a high-density integrated genetic linkage map of rubber tree (Hevea brasiliensis using genotyping-by-sequencing (GBS

    Directory of Open Access Journals (Sweden)

    Wirulda ePootakham

    2015-05-01

    Full Text Available Construction of linkage maps is crucial for genetic studies and marker-assisted breeding programs. Recent advances in next generation sequencing technologies allow for the generation of high-density linkage maps, especially in non-model species lacking extensive genomic resources. Here, we constructed a high-density integrated genetic linkage map of rubber tree (Hevea brasiliensis, the sole commercial producer of high-quality natural rubber. We applied a genotyping-by-sequencing (GBS technique to simultaneously discover and genotype single nucleotide polymorphism (SNP markers in two rubber tree populations. A total of 21,353 single nucleotide substitutions were identified, 55% of which represented transition events. GBS-based genetic maps of populations P and C comprised 1,704 and 1,719 markers and encompassed 2,041 cM and 1,874 cM, respectively. The average marker densities of these two maps were one SNP in 1.23 - 1.25 cM. A total of 1,114 shared SNP markers were used to merge the two component maps. An integrated linkage map consisted of 2,321 markers and spanned the cumulative length of 2,052 cM. The composite map showed a substantial improvement in marker density, with one SNP marker in every 0.89 cM. To our knowledge, this is the most saturated genetic map in rubber tree to date. This integrated map allowed us to anchor 28,965 contigs, covering 135 Mb or 12% of the published rubber tree genome. We demonstrated that GBS is a robust and cost-effective approach for generating a common set of genome-wide SNP data suitable for constructing integrated linkage maps from multiple populations in a highly heterozygous agricultural species.

  5. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    Science.gov (United States)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  6. Multipoint linkage-disequilibrium mapping narrows location interval and identifies mutation heterogeneity

    OpenAIRE

    Morris, Andrew P.; Whittaker, John C; Xu, Chun-Fang; Hosking, Louise K.; Balding, David J.

    2003-01-01

    Single-nucleotide polymorphism (SNP) genotypes were recently examined in an 890-kb region flanking the human gene CYP2D6. Single-marker and haplotype-based analyses identified, with genomewide significance (P < 10-7), a 403-kb interval displaying strong linkage disequilibrium (LD) with predicted poor-metabolizer phenotype. However, the width of this interval makes the location of causal variants difficult: for example, the interval contains seven known or predicted genes in addition to CYP2D6...

  7. Cytogenetic Mapping of Disease Resistance Genes and Analysis of Their Distribution Features on Chromosomes in Maize

    Institute of Scientific and Technical Information of China (English)

    Li Li-jia; Song Yun-chun

    2003-01-01

    Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plant species onto maize chromosomes, combining with data published before. These genes include Helminthosporium turcium Pass resistance genes Ht1, Htn1 and Ht2, Helminthosporium maydis Nisik resistance genes Rhm1 and Rhm2, maize dwarf mosaic virus resistance gene Mdm1, wheat streak mosaic virus resistance gene Wsm1, Helminthosporium carbonum ULLstrup resistance gene Hml and the cloned Xanthomonas oryzae pv. Oryzae resistance gene Xa21 of rice, Cladosporium fulvum resistance genes Cf-9 and Cf-2.1 of tomato,and Pseudomonas syringae resistance gene RPS2 of Arabidopsis. Most of the tested disease resistance genes located on the four chromosomes, i.e., chromosomes1, 3, 6 and 8, and they closely distributed at the interstitial regions of these chromosomal long arms with percentage distances ranging 31.44(±3.72)-72.40(±3.25) except for genes Rhm1, Rhm2, Mdm1 and Wsm1 which mapped on the satellites of the short arms of chromosome6. It showed that the tested RFLP markers and genes were duplicated or triplicated in maize genome. Homology and conservation of disease resistance genes among species, and relationship between distribution features and functions of the genes were discussed. The results provide important scientific basis for deeply understanding structure and function of disease resistance genes and breeding in maize.

  8. A high-density, integrated genetic linkage map of lettuce (Lactuca spp.)

    NARCIS (Netherlands)

    Truco, M.J.; Antonise, R.; Lavelle, D.; Ochoa, O.; Kozik, A.; Witsenboer, H.; Fort, S.B.; Jeuken, M.J.W.; Kesseli, R.V.; Lindhout, P.; Michelmore, R.; Peleman, J.

    2007-01-01

    An integrated map for lettuce comprising of 2,744 markers was developed from seven intra- and inter-specific mapping populations. A total of 560 markers that segregated in two or more populations were used to align the individual maps. 2,073 AFLP, 152 RFLP, 130 SSR, and 360 RAPD as well as 29 other

  9. Reevaluation of the linkage of an optic atrophy susceptibility gene to X-chromosomal markers in Finnish families with Leber hereditary optic neuroretinopathy (LHON)

    Energy Technology Data Exchange (ETDEWEB)

    Juvonen, V.; Aula, P.; Vilkki, J.; Nikoskelainen, E.; Savontaus, M.-L.

    1993-07-01

    One of the commonest reasons for sudden-onset optic nerve degeneration in young men can be attributed to maternally inherited Leber hereditary optic neuroretinopathy (LHON) (Nikoskelainen et al. 1987). Specific point mutations at either np 11778 (Wallace et al. 1988) or np 3460 (Howell et al. 1991; Huoponen et al. 1991) in mitochondrial DNA (mtDNA) encoding for respiratory enzyme complex I subunits (i.e., ND4 or ND1) can be found in 70% of families. These mutations exist as being either homoplasmic or heteroplasmic, but the correlation between the degree of heteroplasmy and the risk of developing optic atrophy is far from clear (Holt et al. 1989; Vilkki et al. 1990). Neither does heteroplasmy explain the strong male bias seen in LHON families, when the sex ratio of patients with visual impairment is observed. Earlier results indicated that susceptibility to optic atrophy in Finnish families with LHON was probably determined by an X-chromosomal gene closely linked to DXS7. Contradictory results prompted reevaluation of the existence of an X-chromosomal visual loss susceptibility gene in Finnish LHON families. The results of this present study clearly demonstrate that the earlier close linkage to DXS7 is implausible. The altered Z is due to revised pedigrees, the use of liability classes, and separation of the families according to the associated mtDNA mutation. 16 refs., 1 fig., 1 tab.

  10. GLIDERS - A web-based search engine for genome-wide linkage disequilibrium between HapMap SNPs

    Directory of Open Access Journals (Sweden)

    Broxholme John

    2009-10-01

    Full Text Available Abstract Background A number of tools for the examination of linkage disequilibrium (LD patterns between nearby alleles exist, but none are available for quickly and easily investigating LD at longer ranges (>500 kb. We have developed a web-based query tool (GLIDERS: Genome-wide LInkage DisEquilibrium Repository and Search engine that enables the retrieval of pairwise associations with r2 ≥ 0.3 across the human genome for any SNP genotyped within HapMap phase 2 and 3, regardless of distance between the markers. Description GLIDERS is an easy to use web tool that only requires the user to enter rs numbers of SNPs they want to retrieve genome-wide LD for (both nearby and long-range. The intuitive web interface handles both manual entry of SNP IDs as well as allowing users to upload files of SNP IDs. The user can limit the resulting inter SNP associations with easy to use menu options. These include MAF limit (5-45%, distance limits between SNPs (minimum and maximum, r2 (0.3 to 1, HapMap population sample (CEU, YRI and JPT+CHB combined and HapMap build/release. All resulting genome-wide inter-SNP associations are displayed on a single output page, which has a link to a downloadable tab delimited text file. Conclusion GLIDERS is a quick and easy way to retrieve genome-wide inter-SNP associations and to explore LD patterns for any number of SNPs of interest. GLIDERS can be useful in identifying SNPs with long-range LD. This can highlight mis-mapping or other potential association signal localisation problems.

  11. Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies.

    Science.gov (United States)

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N; Raznahan, Armin

    2015-01-01

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry.

  12. Karyotypic diversification in Mytilus mussels (Bivalvia: Mytilidae) inferred from chromosomal mapping of rRNA and histone gene clusters

    OpenAIRE

    Pérez-García, Concepción; Morán, Paloma; Pasantes, Juan J

    2014-01-01

    Background: Mussels of the genus Mytilus present morphologically similar karyotypes that are presumably conserved. The absence of chromosome painting probes in bivalves makes difficult verifying this hypothesis. In this context, we comparatively mapped ribosomal RNA and histone gene families on the chromosomes of Mytilus edulis, M. galloprovincialis, M. trossulus and M. californianus by fluorescent in situ hybridization (FISH). Results: Major rRNA, core and linker histone gene clusters mapped...

  13. High-density linkage map information - RGP gmap2000 | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Number of data entries 3,267 entries Data item Description Chrom. No. Chromosome number Floating marker Floating...enetic distance of the locus from the short arm end. If F is indicated in Floating marker column, the minimu...m position is shown in this column. Max If F is indicated in Floating marker column, the maximum position is

  14. Genome-Wide SNP Linkage Mapping and QTL Analysis for Fiber Quality and Yield Traits in the Upland Cotton Recombinant Inbred Lines Population.

    Science.gov (United States)

    Li, Cong; Dong, Yating; Zhao, Tianlun; Li, Ling; Li, Cheng; Yu, En; Mei, Lei; Daud, M K; He, Qiuling; Chen, Jinhong; Zhu, Shuijin

    2016-01-01

    It is of significance to discover genes related to fiber quality and yield traits and tightly linked markers for marker-assisted selection (MAS) in cotton breeding. In this study, 188 F8 recombinant inbred lines (RILs), derived from a intraspecific cross between HS46 and MARCABUCAG8US-1-88 were genotyped by the cotton 63K single nucleotide polymorphism (SNP) assay. Field trials were conducted in Sanya, Hainan Province, during the 2014-2015 cropping seasons under standard conditions. Results revealed significant differences (P < 0.05) among RILs, environments and replications for fiber quality and yield traits. Broad-sense heritabilities of all traits including fiber length, fiber uniformity, micronaire, fiber elongation, fiber strength, boll weight, and lint percentage ranged from 0.26 to 0.66. A 1784.28 cM (centimorgans) linkage map, harboring 2618 polymorphic SNP markers, was constructed, which had 0.68 cM per marker density. Seventy-one quantitative trait locus (QTLs) for fiber quality and yield traits were detected on 21 chromosomes, explaining 4.70∼32.28% phenotypic variance, in which 16 were identified as stable QTLs across two environments. Meanwhile, 12 certain regions were investigated to be involved in the control of one (hotspot) or more (cluster) traits, mainly focused on Chr05, Chr09, Chr10, Chr14, Chr19, and Chr20. Nineteen pairs of epistatic QTLs (e-QTLs) were identified, of which two pairs involved in two additive QTLs. These additive QTLs, e-QTLs, and QTL clusters were tightly linked to SNP markers, which may serve as target regions for map-based cloning, gene discovery, and MAS in cotton breeding. PMID:27660632

  15. Genome-Wide SNP Linkage Mapping and QTL Analysis for Fiber Quality and Yield Traits in the Upland Cotton Recombinant Inbred Lines Population

    Science.gov (United States)

    Li, Cong; Dong, Yating; Zhao, Tianlun; Li, Ling; Li, Cheng; Yu, En; Mei, Lei; Daud, M. K.; He, Qiuling; Chen, Jinhong; Zhu, Shuijin

    2016-01-01

    It is of significance to discover genes related to fiber quality and yield traits and tightly linked markers for marker-assisted selection (MAS) in cotton breeding. In this study, 188 F8 recombinant inbred lines (RILs), derived from a intraspecific cross between HS46 and MARCABUCAG8US-1-88 were genotyped by the cotton 63K single nucleotide polymorphism (SNP) assay. Field trials were conducted in Sanya, Hainan Province, during the 2014–2015 cropping seasons under standard conditions. Results revealed significant differences (P < 0.05) among RILs, environments and replications for fiber quality and yield traits. Broad-sense heritabilities of all traits including fiber length, fiber uniformity, micronaire, fiber elongation, fiber strength, boll weight, and lint percentage ranged from 0.26 to 0.66. A 1784.28 cM (centimorgans) linkage map, harboring 2618 polymorphic SNP markers, was constructed, which had 0.68 cM per marker density. Seventy-one quantitative trait locus (QTLs) for fiber quality and yield traits were detected on 21 chromosomes, explaining 4.70∼32.28% phenotypic variance, in which 16 were identified as stable QTLs across two environments. Meanwhile, 12 certain regions were investigated to be involved in the control of one (hotspot) or more (cluster) traits, mainly focused on Chr05, Chr09, Chr10, Chr14, Chr19, and Chr20. Nineteen pairs of epistatic QTLs (e-QTLs) were identified, of which two pairs involved in two additive QTLs. These additive QTLs, e-QTLs, and QTL clusters were tightly linked to SNP markers, which may serve as target regions for map-based cloning, gene discovery, and MAS in cotton breeding. PMID:27660632

  16. Sex-determining chromosomes and sexual dimorphism: insights from genetic mapping of sex expression in a natural hybrid Fragaria × ananassa subsp. cuneifolia.

    Science.gov (United States)

    Govindarajulu, R; Liston, A; Ashman, T-L

    2013-05-01

    We studied the natural hybrid (Fragaria × ananassa subsp. cuneifolia) between two sexually dimorphic octoploid strawberry species (Fragaria virginiana and Fragaria chiloensis) to gain insight into the dynamics of sex chromosomes and the genesis of sexual dimorphism. Male sterility is dominant in both the parental species and thus will be inherited maternally, but the chromosome that houses the sex-determining region differs. Thus, we asked whether (1) the cytotypic composition of hybrid populations represents one or both maternal species, (2) the sex-determining chromosome of the hybrid reflects the location of male sterility within the maternal donor species and (3) crosses from the hybrid species show less sexual dimorphism than the parental species. We found that F. × ananassa subsp. cuneifolia populations consisted of both parental cytotypes but one predominated within each population. Genetic linkage mapping of two crosses showed dominance of male sterility similar to the parental species, however, the map location of male sterility reflected the maternal donor in one cross, but not the other. Moreover, female function mapped to a single region in the first cross, but to two regions in the second cross. Aside from components of female function (fruit set and seed set), other traits that have been found to be significantly sexually dimorphic in the pure species were either not dimorphic or were dimorphic in the opposite direction to the parental species. These results suggest that hybrids experience some disruption of dimorphism in secondary sexual traits, as well as novel location and number of quantitative trait locus (QTL) affecting sex function.

  17. A branch-and-cut approach to physical mapping of chromosomes by unique end-probes.

    Science.gov (United States)

    Christof, T; Jünger, M; Kececioglu, J; Mutzel, P; Reinelt, G

    1997-01-01

    A fundamental problem in computational biology is the construction of physical maps of chromosomes from hybridization experiments between unique probes and clones of chromosome fragments in the presence of error. Alizadeh, Karp, Weisser and Zweig (Algorithmica 13:1/2, 52-76, 1995) first considered a maximum-likelihood model of the problem that is equivalent to finding an ordering of the probes that minimizes a weighted sum of errors and developed several effective heuristics. We show that by exploiting information about the end-probes of clones, this model can be formulated as a Weighted Betweenness Problem. This affords the significant advantage of allowing the well-developed tools of integer linear-programming and branch-and-cut algorithms to be brought to bear on physical mapping, enabling us for the first time to solve small mapping instances to optimality even in the presence of high error. We also show that by combining the optimal solution of many small overlapping Betweenness Problems, one can effectively screen errors from larger instances and solve the edited instance to optimality as a Hamming-Distance Traveling Salesman Problem. This suggests a new approach, a Betweenness-Traveling Salesman hybrid, for constructing physical maps.

  18. Genetic and physical mapping of the Treacher Collins syndrome locus with respect to loci in the chromosome 5q3 region

    Energy Technology Data Exchange (ETDEWEB)

    Jabs, E.W.; Li, Xiang; Coss, C.; Taylor, E. (Johns Hopkins School of Medicine, Baltimore, MD (United States)); Lovett, M. (Univ. of Texas Southwestern Medical Center, San Antonio, TX (United States)); Yamaoka, L.H.; Speer, M.C. (Duke Univ. Medical Center, Durham, NC (United States)); Cadle, R.; Hall, B. (Univ. of Kentucky, Lexington, KY (United States)); Brown, K. (Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY (United States)) (and others)

    1993-10-01

    Treacher Collins syndrome is an autosomal dominant, craniofacial developmental disorder, and its locus (TCOF1) has been mapped to chromosome 5q3. To refine the location of the gene within this region, linkage analysis was performed among the TCOF1 locus and 12 loci (IL9, FGFA, GRL, D5S207, D5S210, D5S376, CSF1R, SPARC, D5S119, D5S209, D5S527, FGFR4) in 13 Treacher Collins syndrome families. The highest maximum lod score was obtained between loci TCOF1 and D5S210 (Z = 10.52; [theta] = 0.02 [+-] 0.07). The best order, IL9-GRL-D5S207/D5S210-CSF1R-SPARC-D5S119, and genetic distances among these loci were determined in the 40 CEPH families by multipoint linkage analysis. YAC clones were used to establish the order of loci, centromere-5[prime]GRL3[prime]-D5S207-D5S210-D5S376-CSF1R-SPARC-D5S119-telomere. By combining known physical mapping data with ours, the order of chromosome 5q3 markers is centomere-IL9-FGFA-5[prime]GRL3[prime]-D5s207-D5S210-D5S376-CSF1R-SPARC-D5S119-D5S209-FGFR4-telomere. Based on this order, haplotype analysis suggests that the TCOF1 locus resides distal CSF1R and proximal to SPARC within a region less than 1 Mb in size. 29 refs., 2 figs., 2 tabs.

  19. Physical and genetic mapping of amplified fragment length polymorphisms and the leaf rust resistance Lr3 gene on chromosome 6BL of wheat.

    Science.gov (United States)

    Diéguez, M J; Altieri, E; Ingala, L R; Perera, E; Sacco, F; Naranjo, T

    2006-01-01

    The Argentinian wheat cultivar Sinvalocho MA carries the Lr3 gene for leaf rust resistance on distal chromosome 6BL. In this cultivar, 33 spontaneous susceptible lines were isolated and cytogenetically characterized by C-banding. The analysis revealed deletions on chromosome 6BL in most lines. One line was nulli-6B, two lines were ditelo 6BS, two, three, and ten lines had long terminal deletions of 40, 30, and 20%, respectively, three lines showed very small terminal deletions, and one line had an intercalary deletion of 11%. Physical mapping of 55 amplified fragment length polymorphism (AFLP) markers detected differences between deletions and led to the division of 6BL into seven bins delimited by deletion breakpoints. The most distal bin, with a length smaller than 5% of 6BL, contained 22 AFLP markers and the Lr3 gene. Polymorphism for nine AFLPs between Sinvalocho MA and the rust leaf susceptible cultivar Gamma 6 was used to construct a linkage map of Lr3. This gene is at a genetic distance of 0.9 cM from a group of seven closely linked AFLPs. The location of the gene in a high recombinogenic region indicated a physical distance of approximately 1 Mb to the markers. PMID:16215730

  20. Fructose-1,6-bisphosphatase: Genetic and physical mapping to human chromosome 9q22.3 and evaluation in non-insulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Rothschild, C.B.; Akots, G.; Roh, B. [Wake Forest Univ., Winston-Salem, NC (United States)] [and others

    1995-09-01

    PCR primers specific to the human liver fructose-1,6-bisphosphatase (FBP) gene were designed and used to isolate a cosmid clone. Physical mapping of the FBP cosmid by FISH, and genetic mapping of an associated GA repeat polymorphism (PIC = 0.35), located the liver FBP gene to chromosome 9q22.3 with no recombination between FBP and the index markers D9S196 (Z{sub max} = 13.2), D9S280 (Z{sub max} = 11.7), D9S287 (Z{sub max} = 15.6), and D9S176 (Z{sub max} = 14.4). Amplification using FBP exon-specific primers with a YAC contig from this region of chromosome 9 further refined the placement of FBP genomic sequences to an approximately 1.7-cM region flanked by D9S280 and D9S287, near the gene for Fanconi anemia group C. Precise localization of the FBP gene enabled evaluation of FBP as a candidate gene for maturity-onset diabetes of the young (MODY) and non-insulin-dependent diabetes (NIDDM) in both Caucasian and African-American families, using the highly informative markers D9S287 and D9S176. Although FBP is a rate-limiting enzyme in gluconeogenesis, using both parametric and nonparametric analysis there was no evidence for linkage of FBP to diabetes in these families. 30 refs., 4 figs., 2 tabs.

  1. Molecular cytogenetic mapping of chromosomal fragments and immunostaining of kinetochore proteins in Beta.

    Science.gov (United States)

    Dechyeva, Daryna; Schmidt, Thomas

    2009-01-01

    By comparative multicolor FISH, we have physically mapped small chromosome fragments in the sugar beet addition lines PRO1 and PAT2 and analyzed the distribution of repetitive DNA families in species of the section Procumbentes of the genus Beta. Six repetitive probes were applied, including genotype-specific probes-satellites pTS4.1, pTS5, and pRp34 and a dispersed repeat pAp4, the telomere (TTTAGGG)(n), and the conserved 18S-5.8S-25S rRNA genes. Pachytene-FISH analysis of the native centromere organization allowed proposing the origin of PRO1 and PAT2 fragments. Comparative analysis of the repetitive DNA distribution and organization in the wild beet and in the addition lines allowed the development of a physical model of the chromosomal fragments. Immunostaining revealed that the PRO1 chromosome fragment binds alpha-tubulin and the serine 10-phosphorylated histone H3 specific for the active centromere. This is the first experimental detection of the kinetochore proteins in Beta showing their active involvement in chromosome segregation in mitosis. PMID:19911065

  2. Construction of High Density Sweet Cherry (Prunus avium L. Linkage Maps Using Microsatellite Markers and SNPs Detected by Genotyping-by-Sequencing (GBS.

    Directory of Open Access Journals (Sweden)

    Verónica Guajardo

    Full Text Available Linkage maps are valuable tools in genetic and genomic studies. For sweet cherry, linkage maps have been constructed using mainly microsatellite markers (SSRs and, recently, using single nucleotide polymorphism markers (SNPs from a cherry 6K SNP array. Genotyping-by-sequencing (GBS, a new methodology based on high-throughput sequencing, holds great promise for identification of high number of SNPs and construction of high density linkage maps. In this study, GBS was used to identify SNPs from an intra-specific sweet cherry cross. A total of 8,476 high quality SNPs were selected for mapping. The physical position for each SNP was determined using the peach genome, Peach v1.0, as reference, and a homogeneous distribution of markers along the eight peach scaffolds was obtained. On average, 65.6% of the SNPs were present in genic regions and 49.8% were located in exonic regions. In addition to the SNPs, a group of SSRs was also used for construction of linkage maps. Parental and consensus high density maps were constructed by genotyping 166 siblings from a 'Rainier' x 'Rivedel' (Ra x Ri cross. Using Ra x Ri population, 462, 489 and 985 markers were mapped into eight linkage groups in 'Rainier', 'Rivedel' and the Ra x Ri map, respectively, with 80% of mapped SNPs located in genic regions. Obtained maps spanned 549.5, 582.6 and 731.3 cM for 'Rainier', 'Rivedel' and consensus maps, respectively, with an average distance of 1.2 cM between adjacent markers for both 'Rainier' and 'Rivedel' maps and of 0.7 cM for Ra x Ri map. High synteny and co-linearity was observed between obtained maps and with Peach v1.0. These new high density linkage maps provide valuable information on the sweet cherry genome, and serve as the basis for identification of QTLs and genes relevant for the breeding of the species.

  3. Software for analysis and manipulation of genetic linkage data.

    Science.gov (United States)

    Weaver, R; Helms, C; Mishra, S K; Donis-Keller, H

    1992-06-01

    We present eight computer programs written in the C programming language that are designed to analyze genotypic data and to support existing software used to construct genetic linkage maps. Although each program has a unique purpose, they all share the common goals of affording a greater understanding of genetic linkage data and of automating tasks to make computers more effective tools for map building. The PIC/HET and FAMINFO programs automate calculation of relevant quantities such as heterozygosity, PIC, allele frequencies, and informativeness of markers and pedigrees. PREINPUT simplifies data submissions to the Centre d'Etude du Polymorphisme Humain (CEPH) data base by creating a file with genotype assignments that CEPH's INPUT program would otherwise require to be input manually. INHERIT is a program written specifically for mapping the X chromosome: by assigning a dummy allele to males, in the nonpseudoautosomal region, it eliminates falsely perceived noninheritances in the data set. The remaining four programs complement the previously published genetic linkage mapping software CRI-MAP and LINKAGE. TWOTABLE produces a more readable format for the output of CRI-MAP two-point calculations; UNMERGE is the converse to CRI-MAP's merge option; and GENLINK and LINKGEN automatically convert between the genotypic data file formats required by these packages. All eight applications read input from the same types of data files that are used by CRI-MAP and LINKAGE. Their use has simplified the management of data, has increased knowledge of the content of information in pedigrees, and has reduced the amount of time needed to construct genetic linkage maps of chromosomes. PMID:1598906

  4. Software for analysis and manipulation of genetic linkage data.

    Science.gov (United States)

    Weaver, R; Helms, C; Mishra, S K; Donis-Keller, H

    1992-06-01

    We present eight computer programs written in the C programming language that are designed to analyze genotypic data and to support existing software used to construct genetic linkage maps. Although each program has a unique purpose, they all share the common goals of affording a greater understanding of genetic linkage data and of automating tasks to make computers more effective tools for map building. The PIC/HET and FAMINFO programs automate calculation of relevant quantities such as heterozygosity, PIC, allele frequencies, and informativeness of markers and pedigrees. PREINPUT simplifies data submissions to the Centre d'Etude du Polymorphisme Humain (CEPH) data base by creating a file with genotype assignments that CEPH's INPUT program would otherwise require to be input manually. INHERIT is a program written specifically for mapping the X chromosome: by assigning a dummy allele to males, in the nonpseudoautosomal region, it eliminates falsely perceived noninheritances in the data set. The remaining four programs complement the previously published genetic linkage mapping software CRI-MAP and LINKAGE. TWOTABLE produces a more readable format for the output of CRI-MAP two-point calculations; UNMERGE is the converse to CRI-MAP's merge option; and GENLINK and LINKGEN automatically convert between the genotypic data file formats required by these packages. All eight applications read input from the same types of data files that are used by CRI-MAP and LINKAGE. Their use has simplified the management of data, has increased knowledge of the content of information in pedigrees, and has reduced the amount of time needed to construct genetic linkage maps of chromosomes.

  5. Comparative genetic mapping revealed powdery mildew resistance gene MlWE4 derived from wild emmer is located in same genomic region of Pm36 and Ml3D232 on chromosome 5BL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dong; WANG Yong; CHEN Yong-xing; LIU Zhi-yong; OUYANG Shu-hong; WANG Li-li; CUI Yu; WU Qiu-hong; LIANG Yong; WANG Zhen-zhong; XIE Jing-zhong; ZHANG De-yun

    2015-01-01

    Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most devastating wheat diseases. Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is a promising source of disease resistance for wheat. A powdery mildew resistance gene conferring resistance to B. graminis f. sp. tritici isolate E09, originating from wild emmer wheat, has been transferred into the hexaploid wheat line WE4 through crossing and backcrossing. Genetic analyses indicated that the powdery mildew resistance was control ed by a single dominant gene, temporarily designated MlWE4. By mean of comparative genomics and bulked segregant analysis, a genetic linkage map of MlWE4 was constructed, and MlWE4 was mapped on the distal region of chromosome arm 5BL. Comparative genetic linkage maps showed that genes MlWE4, Pm36 and Ml3D232 were co-segregated with markers XBD37670 and XBD37680, indicating they are likely the same gene or al eles in the same locus. The co-segregated markers provide a starting point for chromosome landing and map-based cloning of MlWE4, Pm36 and Ml3D232.

  6. Physical and genetic map of the Clostridium saccharobutylicum (formerly Clostridium acetobutylicum) NCP 262 chromosome.

    Science.gov (United States)

    Keis, S; Sullivan, J T; Jones, D T

    2001-07-01

    A physical and genetic map of the Clostridium saccharobutylicum NCP 262 chromosome was constructed. The order of macrorestriction fragments was determined by analysing fragments generated after single and double digestion with the restriction enzymes BssHII, I-CeuI, Sse8387I, RsrII and SfiI and separation by PFGE. The I-CeuI backbone of C. saccharobutylicum was constructed by indirect end-labelling with rrs- and 3' rrl-specific probes located on either side of the I-CeuI site in the rrn operon, and reciprocal separation of BssHII and I-CeuI digestion products by two-dimensional PFGE. The positions of BssHII fragments on the physical map were determined using a library of linking clones containing BssHII cleavage sites. The size of the circular genome was estimated to be 5.3 Mb with a mean resolution of approximately 140 kb. The chromosome of C. saccharobutylicum contains 12 rrn operons, located on 46% of the chromosome, which are transcribed divergently from the deduced origin of replication. The genetic map was constructed by determining the location of 28 genes involved in house-keeping, heat-shock response, sporulation, electron transfer and acid- and solvent-formation. Comparison of the C. saccharobutylicum genetic map with those of the spore-forming bacteria Bacillus subtilis, Clostridium acetobutylicum, Clostridium perfringens and Clostridium beijerinckii indicated C. saccharobutylicum to be most similar to the latter two Clostridium species, with the order of the genes within the gyrAB and recA loci being conserved. PMID:11429467

  7. Physical and genetic map of the Clostridium saccharobutylicum (formerly Clostridium acetobutylicum) NCP 262 chromosome.

    Science.gov (United States)

    Keis, S; Sullivan, J T; Jones, D T

    2001-07-01

    A physical and genetic map of the Clostridium saccharobutylicum NCP 262 chromosome was constructed. The order of macrorestriction fragments was determined by analysing fragments generated after single and double digestion with the restriction enzymes BssHII, I-CeuI, Sse8387I, RsrII and SfiI and separation by PFGE. The I-CeuI backbone of C. saccharobutylicum was constructed by indirect end-labelling with rrs- and 3' rrl-specific probes located on either side of the I-CeuI site in the rrn operon, and reciprocal separation of BssHII and I-CeuI digestion products by two-dimensional PFGE. The positions of BssHII fragments on the physical map were determined using a library of linking clones containing BssHII cleavage sites. The size of the circular genome was estimated to be 5.3 Mb with a mean resolution of approximately 140 kb. The chromosome of C. saccharobutylicum contains 12 rrn operons, located on 46% of the chromosome, which are transcribed divergently from the deduced origin of replication. The genetic map was constructed by determining the location of 28 genes involved in house-keeping, heat-shock response, sporulation, electron transfer and acid- and solvent-formation. Comparison of the C. saccharobutylicum genetic map with those of the spore-forming bacteria Bacillus subtilis, Clostridium acetobutylicum, Clostridium perfringens and Clostridium beijerinckii indicated C. saccharobutylicum to be most similar to the latter two Clostridium species, with the order of the genes within the gyrAB and recA loci being conserved.

  8. Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L.

    Science.gov (United States)

    Gong, L; Stift, G; Kofler, R; Pachner, M; Lelley, T

    2008-06-01

    Until recently, only a few microsatellites have been available for Cucurbita, thus their development is highly desirable. The Austrian oil-pumpkin variety Gleisdorfer Olkürbis (C. pepo subsp. pepo) and the C. moschata cultivar Soler (Puerto Rico) were used for SSR development. SSR-enriched partial genomic libraries were established and 2,400 clones were sequenced. Of these 1,058 (44%) contained an SSR at least four repeats long. Primers were designed for 532 SSRs; 500 primer pairs produced fragments of expected size. Of these, 405 (81%) amplified polymorphic fragments in a set of 12 genotypes: three C. moschata, one C. ecuadorensis, and eight C. pepo representing all eight cultivar groups. On an average, C. pepo and C. moschata produced 3.3 alleles per primer pair, showing high inter-species transferability. There were 187 SSR markers detecting polymorphism between the USA oil-pumpkin variety "Lady Godiva" (O5) and the Italian crookneck variety "Bianco Friulano" (CN), which are the parents of our previous F(2) mapping population. It has been used to construct the first published C. pepo map, containing mainly RAPD and AFLP markers. Now the updated map comprises 178 SSRs, 244 AFLPs, 230 RAPDs, five SCARs, and two morphological traits (h and B). It contains 20 linkage groups with a map density of 2.9 cM. The observed genome coverage (Co) is 86.8%.

  9. Report of the first international workshop on human chromosome 8 mapping. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, S.; Ben Othmane, K.; Bergerheim, U.S.R. [and others

    1993-12-31

    The first international chromosome 8 workshop was held in Vancouver, Canada May 2--4, 1993. The conference was attended by 23 participants from Australia, Canada, Germany, the Netherlands, Sweden, the United Kingdom and the US. Twenty three abstracts are included from this workshop. The workshop was supported by CGAT/CTAG (Canadian Genome Analysis & Technology Program/Programme Canadien de Technologie & D`Analyse du Genome) as well as by travel funds allocated by the National Institutes of Health and the Department of Energy of the United States and by agencies within the countries of overseas participants. The goals of the workshop were to evaluate new locus assignments, review new data obtained for previously assigned loci, develop a consensus marker order for chromosome 8, assess and integrate physical mapping information, identify resources and foster collaboration.

  10. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa

    OpenAIRE

    Park Beom-Seok; Jin Mina; Van Nguyen Dan; Hossain Md; Lee Seo; Hong Chang; Bae Jina; Choi Su; Kim HyeRan; Bang Jea-Wook; Bancroft Ian; Lim Yong

    2009-01-01

    Abstract Background In view of the immense value of Brassica rapa in the fields of agriculture and molecular biology, the multinational Brassica rapa Genome Sequencing Project (BrGSP) was launched in 2003 by five countries. The developing BrGSP has valuable resources for the community, including a reference genetic map and seed BAC sequences. Although the initial B. rapa linkage map served as a reference for the BrGSP, there was ambiguity in reconciling the linkage groups with the ten chromos...

  11. An EST-SSR based linkage map for Persea americana Mill. (avocado)

    Science.gov (United States)

    Recent enhancement of the pool of known molecular markers for avocado has allowed the construction of the first moderate density genetic map for this species. Over 300 microsatellite markers have been characterized and 163 of these were used to construct a map from the cross of two Florida cultivar...

  12. Strategies for sequencing human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.R.

    1996-06-01

    This project funded for four years (02.92 to 01.96) was a renewal of a project funded for 2.5 years (07.89 to 01.92). This report covers the period 07.89 to 07.94. The original project was entitled {open_quotes}Correlation of physical and genetic maps of Human Chromosome 16{close_quotes}. The aim over this period was to construct a cytogenetic-based physical map of chromosome 16, to enable integration of its physical and genetic maps. This was achieved by collaboration and isolation of new markers until each bin on the physical map contained a polymorphic marker on the linkage map. A further aim was to integrate all mapping data for this chromosome and to achieve contig closure over band q24.

  13. The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes

    Directory of Open Access Journals (Sweden)

    Ané Jean-Michel

    2002-01-01

    Full Text Available Abstract Background The legume Medicago truncatula has emerged as a model plant for the molecular and genetic dissection of various plant processes involved in rhizobial, mycorrhizal and pathogenic plant-microbe interactions. Aiming to develop essential tools for such genetic approaches, we have established the first genetic map of this species. Two parental homozygous lines were selected from the cultivar Jemalong and from the Algerian natural population (DZA315 on the basis of their molecular and phenotypic polymorphism. Results An F2 segregating population of 124 individuals between these two lines was obtained using an efficient manual crossing technique established for M. truncatula and was used to construct a genetic map. This map spans 1225 cM (average 470 kb/cM and comprises 289 markers including RAPD, AFLP, known genes and isoenzymes arranged in 8 linkage groups (2n = 16. Markers are uniformly distributed throughout the map and segregation distortion is limited to only 3 linkage groups. By mapping a number of common markers, the eight linkage groups are shown to be homologous to those of diploid alfalfa (M. sativa, implying a good level of macrosynteny between the two genomes. Using this M. truncatula map and the derived F3 populations, we were able to map the Mtsym6 symbiotic gene on linkage group 8 and the SPC gene, responsible for the direction of pod coiling, on linkage group 7. Conclusions These results demonstrate that Medicago truncatula is amenable to diploid genetic analysis and they open the way to map-based cloning of symbiotic or other agronomically-important genes using this model plant.

  14. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus

    Directory of Open Access Journals (Sweden)

    Williams Emlyn R

    2006-09-01

    Full Text Available Abstract Background Eucalypts are the most widely planted hardwood trees in the world occupying globally more than 18 million hectares as an important source of carbon neutral renewable energy and raw material for pulp, paper and solid wood. Quantitative Trait Loci (QTLs in Eucalyptus have been localized on pedigree-specific RAPD or AFLP maps seriously limiting the value of such QTL mapping efforts for molecular breeding. The availability of a genus-wide genetic map with transferable microsatellite markers has become a must for the effective advancement of genomic undertakings. This report describes the development of a novel set of 230 EMBRA microsatellites, the construction of the first comprehensive microsatellite-based consensus linkage map for Eucalyptus and the consolidation of existing linkage information for other microsatellites and candidate genes mapped in other species of the genus. Results The consensus map covers ~90% of the recombining genome of Eucalyptus, involves 234 mapped EMBRA loci on 11 linkage groups, an observed length of 1,568 cM and a mean distance between markers of 8.4 cM. A compilation of all microsatellite linkage information published in Eucalyptus allowed us to establish the homology among linkage groups between this consensus map and other maps published for E. globulus. Comparative mapping analyses also resulted in the linkage group assignment of other 41 microsatellites derived from other Eucalyptus species as well as candidate genes and QTLs for wood and flowering traits published in the literature. This report significantly increases the availability of microsatellite markers and mapping information for species of Eucalyptus and corroborates the high conservation of microsatellite flanking sequences and locus ordering between species of the genus. Conclusion This work represents an important step forward for Eucalyptus comparative genomics, opening stimulating perspectives for evolutionary studies and

  15. Comparative Genome Mapping of Sorghum and Maize

    OpenAIRE

    Whitkus, R; Doebley, J; Lee, M.

    1992-01-01

    Linkage relationships were determined among 85 maize low copy number nuclear DNA probes and seven isozyme loci in an F(2) population derived from a cross of Sorghum bicolor ssp. bicolor X S. bicolor ssp. arundinaceum. Thirteen linkage groups were defined, three more than the 10 chromosomes of sorghum. Use of maize DNA probes to produce the sorghum linkage map allowed us to make several inferences concerning processes involved in the evolutionary divergence of the maize and sorghum genomes. Th...

  16. An initial map of chromosomal segmental copy number variations in the chicken

    Directory of Open Access Journals (Sweden)

    Bohannon-Stewart Ann

    2010-06-01

    Full Text Available Abstract Background Chromosomal segmental copy number variation (CNV has been recently recognized as a very important source of genetic variability. Some CNV loci involve genes or conserved regulatory elements. Compelling evidence indicates that CNVs impact genome functions. The chicken is a very important farm animal species which has also served as a model for biological and biomedical research for hundreds of years. A map of CNVs in chickens could facilitate the identification of chromosomal regions that segregate for important agricultural and disease phenotypes. Results Ninety six CNVs were identified in three lines of chickens (Cornish Rock broiler, Leghorn and Rhode Island Red using whole genome tiling array. These CNVs encompass 16 Mb (1.3% of the chicken genome. Twenty six CNVs were found in two or more animals. Whereas most small sized CNVs reside in none coding sequences, larger CNV regions involve genes (for example prolactin receptor, aldose reductase and zinc finger proteins. These results suggest that chicken CNVs potentially affect agricultural or disease related traits. Conclusion An initial map of CNVs for the chicken has been described. Although chicken genome is approximately one third the size of a typical mammalian genome, the pattern of chicken CNVs is similar to that of mammals. The number of CNVs detected per individual was also similar to that found in dogs, mice, rats and macaques. A map of chicken CNVs provides new information on genetic variations for the understanding of important agricultural traits and disease.

  17. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.

    Directory of Open Access Journals (Sweden)

    Yash Paul Khajuria

    Full Text Available The identification of informative in silico polymorphic genomic and genic microsatellite markers by comparing the genome and transcriptome sequences of crop genotypes is a rapid, cost-effective and non-laborious approach for large-scale marker validation and genotyping applications, including construction of high-density genetic maps. We designed 1494 markers, including 1016 genomic and 478 transcript-derived microsatellite markers showing in-silico fragment length polymorphism between two parental genotypes (Cicer arietinum ICC4958 and C. reticulatum PI489777 of an inter-specific reference mapping population. High amplification efficiency (87%, experimental validation success rate (81% and polymorphic potential (55% of these microsatellite markers suggest their effective use in various applications of chickpea genetics and breeding. Intra-specific polymorphic potential (48% detected by microsatellite markers in 22 desi and kabuli chickpea genotypes was lower than inter-specific polymorphic potential (59%. An advanced, high-density, integrated and inter-specific chickpea genetic map (ICC4958 x PI489777 having 1697 map positions spanning 1061.16 cM with an average inter-marker distance of 0.625 cM was constructed by assigning 634 novel informative transcript-derived and genomic microsatellite markers on eight linkage groups (LGs of our prior documented, 1063 marker-based genetic map. The constructed genome map identified 88, including four major (7-23 cM longest high-resolution genomic regions on LGs 3, 5 and 8, where the maximum number of novel genomic and genic microsatellite markers were specifically clustered within 1 cM genetic distance. It was for the first time in chickpea that in silico FLP analysis at genome-wide level was carried out and such a large number of microsatellite markers were identified, experimentally validated and further used in genetic mapping. To best of our knowledge, in the presently constructed genetic map, we mapped

  18. A database system for constructing, integrating, and displaying physical maps of chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T.; Wagner, M.; Yeh, Mimi; Ashworth, L.; Nelson, D.; Ow, D.; Branscomb, E.; Carrano, A.

    1994-06-01

    Efforts are underway at numerous sites around the world to construct physical maps of all human chromosomes. These maps will enable researchers to locate, characterize, and eventually understand the genes that control human structure and function. Accomplishing this goal will require a staggering amount of innovation and advancement of biological technology. The volume and complexity of the data already generated requires a sophisticated array of computational support to collect, store, analyze, integrate, and display it in biologically meaningful ways. The Human Genome Center at Livermore has spent the last 6 years constructing a database system to support its physical mapping efforts on human chromosome 19. Our computational support team is composed of experienced computer professionals who share a common pragmatic primary goal of rapidly supplying tools that meet the ever-changing needs of the biologists. Most papers describing computational support of genome research concentrate on mathematical details of key algorithms. However, in this paper we would like to concentrate on the design issues, tradeoffs, and consequences from the point of view of building a complex database system to support leading-edge genomic research. We introduce the topic of physical mapping, discuss the key design issues involved in our databases, and discuss the use of this data by our major tools (DNA fingerprint analysis and overlap computation, contig assembly, map integration, and database browsing.) Given the advantage of hindsight, we discuss what worked, what didn`t, and how we will evolve from here. As early pioneers in this field we hope that our experience may prove useful to others who are now beginning to design and construct similar systems.

  19. Estimating Interference and Linkage Map Distance from Two-Factor Tetrad Data

    OpenAIRE

    Stahl, F. W.; Lande, R

    1995-01-01

    We present methods for using the model of FOSS, LANDE, STAHL and STEINBERG to estimate interference and map distances from two-factor tetrad data. We illustrate the application of the methods with data from Neurospora and from Saccharomyces.

  20. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Directory of Open Access Journals (Sweden)

    McGuire Patrick E

    2010-12-01

    Full Text Available Abstract Background A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. Results Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides