WorldWideScience

Sample records for chromosome 4p syndrome

  1. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    Science.gov (United States)

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-11-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype.

  2. Recombinant 4 syndrome due to an unbalanced pericentric inversion of chromosome 4.

    Science.gov (United States)

    Battaglia, A; Brothman, A R; Carey, J C

    2002-09-15

    An informative patient with a MCA/MR syndrome consisting of developmental delay, prenatal onset growth delay, microcephaly, distinctive face, iris coloboma, and a congenital heart defect was found, on chromosome analysis, to have the following complement: 46,XY,rec(4) dup(4p) inv(4)(p14q35.1) mat. He has a partial 4p trisomy/distal 4q deletion due to an unbalanced pericentric inversion inherited from his mother. Dup (4p) trisomy was originally described by Wilson et al. [1970: Am J Hum Genet 22:679-690] in a similar case with the same chromosome 4 inversion. To date, at least 85 cases of dup (4p) syndrome have been published, mostly due to unbalanced translocations. Recent articles suggest that the phenotype is hard to recognize clinically due to the lack of specificity of findings. In contrast, 4p trisomy due to an unbalanced pericentric inversion of chromosome 4(p14q35), i.e., the recombinant 4 syndrome observed in our patient, appears to be a discrete entity with relatively consistent features. In total there are four other kindreds described in the literature with this inversion, and the phenotype seems recognizable. Thus, we suggest that recombinant 4 syndrome is a discrete entity among 4p trisomy patients. Copyright 2002 Wiley-Liss, Inc.

  3. [A case of mosaic ring chromosome 4 with subtelomeric 4p deletion].

    Science.gov (United States)

    Kim, Jeong Hyun; Oh, Phil Soo; Na, Hye Yeon; Kim, Sun-Hee; Cho, Hyoun Chan

    2009-02-01

    Ring chromosome is a structural abnormality that is thought to be the result of fusion and breakage in the short and long arms of chromosome. Wolf-Hirschhorn syndrome (WHS) is a well-known congenital anomaly in the ring chromosome 4 with a partial deletion of the distal short arm. Here we report a 10-month-old male of mosaic ring chromosome 4 with the chief complaint of severe short stature. He showed the height of -4 standard deviation, subtle hypothyroidism and mild atrial septal defect/ventricular septal defect, and also a mild language developmental delay was suspected. Brain magnetic resonance imaging showed multifocal leukomalacia. Chromosomal analysis of the peripheral blood showed the mosaic karyotype with [46,XY,r(4)(p16q35)[84]/45,XY,-4[9]/91,XXYY, dic r(4;4)(p16q35;p16q35)[5]/46,XY,dic r(4;4)(p16q35;p16q35)[2

  4. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf–Hirschhorn syndrome

    Science.gov (United States)

    South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-01-01

    Background Wolf–Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Methods Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. Results We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. Conclusions We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. PMID:26747863

  5. Impact of Chromosome 4p- Syndrome on Communication and Expressive Language Skills: A Preliminary Investigation

    Science.gov (United States)

    Marshall, Althea T.

    2010-01-01

    Purpose: The purpose of this investigation was to examine the impact of Chromosome 4p- syndrome on the communication and expressive language phenotype of a large cross-cultural population of children, adolescents, and adults. Method: A large-scale survey study was conducted and a descriptive research design was used to analyze quantitative and…

  6. Three patients with Wolf-Hirschhorn syndrome carrying a satellited chromosome 4p.

    Science.gov (United States)

    Liang, Desheng; Zhou, Zhongmin; Meng, Dahua; Du, Juan; Wen, Juan; Niikawa, Norio; Wu, Lingqian

    2012-07-01

    Wolf-Hirschhorn syndrome (WHS) is caused by a deletion involving the 4p16.3 region. Approximately 70% of WHS patients have a de novo isolated deletion and 22% involve unbalanced translocations. However, WHS with unbalanced rearrangements involving the short arm of an acrocentric chromosome are infrequently reported. Cytogenetic and molecular analyses by using standard G-banding, argyrophilic nucleolar organiser region (Ag-NOR) staining, fluorescence in situ hybridization, and single nucleotide polymorphism array for copy number detection were performed in three patients with WHS phenotype from two Chinese families. A heterozygous 2,767,380-bp terminal 4p deletion was detected in patients 1 and 2 and a heterozygous 5,047,291-bp terminal 4p deletion was detected in patient3. Clinical comparisons among our patients and previously reported cases have been reviewed. Two terminal 4p deletions were identified in three WHS patients with a satellited 4p and an attempt was made to refine the genotypic-phenotypic correlations of the deleted regions. Copyright © 2012 Wiley Periodicals, Inc.

  7. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Ho, Karen S; South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-04-01

    Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Genotype-phenotype analysis of recombinant chromosome 4 syndrome: an array-CGH study and literature review.

    Science.gov (United States)

    Hemmat, Morteza; Hemmat, Omid; Anguiano, Arturo; Boyar, Fatih Z; El Naggar, Mohammed; Wang, Jia-Chi; Wang, Borris T; Sahoo, Trilochan; Owen, Renius; Haddadin, Mary

    2013-05-02

    Recombinant chromosome 4, a rare constitutional rearrangement arising from pericentric inversion, comprises a duplicated segment of 4p13~p15→4pter and a deleted segment of 4q35→4qter. To date, 10 cases of recombinant chromosome 4 have been reported. We describe the second case in which array-CGH was used to characterize recombinant chromosome 4 syndrome. The patient was a one-year old boy with consistent clinical features. Conventional cytogenetics and FISH documented a recombinant chromosome 4, derived from a paternal pericentric inversion, leading to partial trisomy 4p and partial monosomy of 4q. Array-CGH, performed to further characterize the rearranged chromosome 4 and delineate the breakpoints, documented a small (4.36 Mb) 4q35.1 terminal deletion and a large (23.81 Mb) 4p15.1 terminal duplication. Genotype-phenotype analysis of 10 previously reported cases and the present case indicated relatively consistent clinical features and breakpoints. This consistency was more evident in our case and another characterized by array-CGH, where both showed the common breakpoints of p15.1 and q35.1. A genotype-phenotype correlation study between rec(4), dup(4p), and del(4q) syndromes revealed that urogenital and cardiac defects are probably due to the deletion of 4q whereas the other clinical features are likely due to 4p duplication. Our findings support that the clinical features of patients with rec(4) are relatively consistent and specific to the regions of duplication or deletion. Recombinant chromosome 4 syndrome thus appears to be a discrete entity that can be suspected on the basis of clinical features or specific deleted and duplicated chromosomal regions.

  9. Wolf-Hirschhorn (4p-) syndrome with West syndrome.

    Science.gov (United States)

    Motoi, Hirotaka; Okanishi, Tohru; Kanai, Sotaro; Yokota, Takuya; Yamazoe, Tomohiro; Nishimura, Mitsuyo; Fujimoto, Ayataka; Yamamoto, Takamichi; Enoki, Hideo

    2016-01-01

    Wolf-Hirschhorn syndrome (WHS) is a chromosome disorder (4p-syndrome) which is characterized by craniofacial features and epileptic seizures. Here, we report a case of WHS with West syndrome, in whom the seizures were refractory to several antiepileptic drugs but were responsive to the addition of lamotrigine. The patient had epileptic spasms at age seven months. The interictal electroencephalogram was hypsarrhythmic. After adding lamotrigine, seizures decreased remarkably, and spasms disappeared. We have identified and described the very rare case of a girl with WHS who also developed West syndrome. In this case, adding lamotrigine to her medications effectively treated the spasms.

  10. Mutational analysis of the Wolfram syndrome gene in two families with chromosome 4p-linked bipolar affective disorder.

    Science.gov (United States)

    Evans, K L; Lawson, D; Meitinger, T; Blackwood, D H; Porteous, D J

    2000-04-03

    Bipolar affective disorder (BPAD) is a complex disease with a significant genetic component. Heterozygous carriers of Wolfram syndrome (WFS) are at increased risk of psychiatric illness. A gene for WFS (WFS1) has recently been cloned and mapped to chromosome 4p, in the general region we previously reported as showing linkage to BPAD. Here we present sequence analysis of the WFS1 coding sequence in five affected individuals from two chromosome 4p-linked families. This resulted in the identification of six polymorphisms, two of which are predicted to change the amino acid sequence of the WFS1 protein, however none of the changes segregated with disease status. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:158-160, 2000. Copyright 2000 Wiley-Liss, Inc.

  11. Periventricular heterotopia in a boy with interstitial deletion of chromosome 4p.

    Science.gov (United States)

    Gawlik-Kuklinska, Katarzyna; Wierzba, Jolanta; Wozniak, Agnieszka; Iliszko, Mariola; Debiec-Rychter, Maria; Dubaniewicz-Wybieralska, Miroslawa; Limon, Janusz

    2008-01-01

    We report on a 4-year-old boy with a proximal interstitial deletion in the short arm of chromosome 4p with the karyotype 46,XY,del(4)(p14p15.32),inv(9)(p13q13). For a precise delineation of the deleted region, an array-based comparative genomic hybridization (a-CGH) analysis was performed. The proband's phenotype and cytogenetic findings are compared with previously reported cases with proximal 4p deletion syndrome. The syndrome is associated with normal growth, varying degrees of mental retardation, characteristic facial appearance and minor dysmorphic features. Additionally, our patient developed a seizure disorder due to abnormal neuronal migration, i.e., periventricular heterotopia.

  12. Contiguous gene deletion of chromosome 2p16.3-p21 as a cause of Lynch syndrome.

    Science.gov (United States)

    Salo-Mullen, Erin E; Lynn, Patricio B; Wang, Lu; Walsh, Michael; Gopalan, Anuradha; Shia, Jinru; Tran, Christina; Man, Fung Ying; McBride, Sean; Schattner, Mark; Zhang, Liying; Weiser, Martin R; Stadler, Zsofia K

    2018-01-01

    Lynch syndrome is an autosomal dominant condition caused by pathogenic mutations in the DNA mismatch repair (MMR) genes. Although commonly associated with clinical features such as intellectual disability and congenital anomalies, contiguous gene deletions may also result in cancer predisposition syndromes. We report on a 52-year-old male with Lynch syndrome caused by deletion of chromosome 2p16.3-p21. The patient had intellectual disability and presented with a prostatic adenocarcinoma with an incidentally identified synchronous sigmoid adenocarcinoma that exhibited deficient MMR with an absence of MSH2 and MSH6 protein expression. Family history was unrevealing. Physical exam revealed short stature, brachycephaly with a narrow forehead and short philtrum, brachydactyly of the hands, palmar transverse crease, broad and small feet with hyperpigmentation of the soles. The patient underwent total colectomy with ileorectal anastomosis for a pT3N1 sigmoid adenocarcinoma. Germline genetic testing of the MSH2, MSH6, and EPCAM genes revealed full gene deletions. SNP-array based DNA copy number analysis identified a deletion of 4.8 Mb at 2p16.3-p21. In addition to the three Lynch syndrome associated genes, the deleted chromosomal section encompassed genes including NRXN1, CRIPT, CALM2, FBXO11, LHCGR, MCFD2, TTC7A, EPAS1, PRKCE, and 15 others. Contiguous gene deletions have been described in other inherited cancer predisposition syndromes, such as Familial Adenomatous Polyposis. Our report and review of the literature suggests that contiguous gene deletion within the 2p16-p21 chromosomal region is a rare cause of Lynch syndrome, but presents with distinct phenotypic features, highlighting the need for recognition and awareness of this syndromic entity.

  13. Seizure and EEG patterns in Wolf-Hirschhorn (4p-) syndrome.

    Science.gov (United States)

    Battaglia, Agatino; Carey, John C

    2005-08-01

    Wolf-Hirschhorn syndrome (WHS) is a well-characterized chromosomal disorder that occurs due to partial deletion of the short arm of chromosome 4 (4p-). Although, about 300 cases have been reported to date, limited data are available on electroclinical findings. Information given to parents at the time of diagnosis tends to be skewed to the extreme negative. To delineate the natural history of seizures and EEG patterns in WHS, and obtain better information on diagnosis or outcome in a clinical setting, we reviewed the available literature on electroclinical findings of WHS. 4p- syndrome is characterized by distinctive seizure and EEG patterns that facilitate the early diagnosis and management of such patients.

  14. Ring chromosome 4 and Wolf-Hirschhorn syndrome (WHS) in a child with multiple anomalies.

    Science.gov (United States)

    Balci, Sevim; Engiz, Ozlem; Aktaş, Dilek; Vargel, Ibrahim; Beksaç, M S; Mrasek, Kristin; Vermeesch, Joris; Liehr, Thomas

    2006-03-15

    We report on a 16-month-old male patient with ring chromosome 4 and deletion of Wolf-Hirschhorn syndrome (WHS) region with multiple congenital anomalies including unilateral cleft lip and palate, iris coloboma, microcephaly, midgut malrotation, hypospadias, and double urethral orifices. Peripheral chromosome analysis of the patient showed 46,XY,r(4)(p16.3q35) de novo. Multicolor fluorescence in situ hybridization (FISH) study was also performed and according to multicolor banding (MCB) a r(4)(::p16.3 --> q34.3 approximately 35.1::) was found in all metaphases. Subtelomeric 4p region, subtelomeric 4q region, as well as, Wolf-Hirschhorn critical region were deleted in ring chromosome 4. Genomic microarray analysis was also performed to delineate the size of deletion. Cranial magnetic resonance imaging (MRI) showed hypoplastic corpus callosum, delayed myelinization, and frontal and occipital lobe atrophies. Both maternal and paternal chromosomal analyses were normal. We compare the phenotypic appearance of our patient with the previously reported 16 cases of ring chromosome 4 in the medical literature. 2006 Wiley-Liss, Inc.

  15. Unmasking of a hemizygous WFS1 gene mutation by a chromosome 4p deletion of 8.3 Mb in a patient with Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Flipsen-ten Berg, Klara; van Hasselt, Peter M; Eleveld, Marc J; van der Wijst, Suzanne E; Hol, Frans A; de Vroede, Monique A M; Beemer, Frits A; Hochstenbach, P F Ron; Poot, Martin

    2007-11-01

    The Wolf-Hirschhorn syndrome (WHS (MIM 194190)), which is characterized by growth delay, mental retardation, epilepsy, facial dysmorphisms, and midline fusion defects, shows extensive phenotypic variability. Several of the proposed mutational and epigenetic mechanisms in this and other chromosomal deletion syndromes fail to explain the observed phenotypic variability. To explain the complex phenotype of a patient with WHS and features reminiscent of Wolfram syndrome (WFS (MIM 222300)), we performed extensive clinical evaluation and classical and molecular cytogenetic (GTG banding, FISH and array-CGH) and WFS1 gene mutation analyses. We detected an 8.3 Mb terminal deletion and an adjacent 2.6 Mb inverted duplication in the short arm of chromosome 4, which encompasses a gene associated with WFS (WFS1). In addition, a nonsense mutation in exon 8 of the WFS1 gene was found on the structurally normal chromosome 4. The combination of the 4p deletion with the WFS1 point mutation explains the complex phenotype presented by our patient. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletions represents an additional explanation for the phenotypic variability observed in chromosomal deletion disorders.

  16. A familial Cri-du-Chat/5p deletion syndrome resulted from rare maternal complex chromosomal rearrangements (CCRs and/or possible chromosome 5p chromothripsis.

    Directory of Open Access Journals (Sweden)

    Heng Gu

    Full Text Available Cri-du-Chat syndrome (MIM 123450 is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs, diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5(p13.3p15.33 spanning ≈ 26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5 (q23;p14.1p15.31,ins(21;5(q21;p13.3p14.1,ins(21;5(q21;p15.31p15.33,inv(7(p22q32dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5 identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5. Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.

  17. The Wolf-Hirschhorn syndrome in adulthood: Evaluation of a 24-year-old man with a rec(4) chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Ogle, R.; Sillence, D.O.; Merrick, A. [Children`s Hospital, Summer Hill, NSW (Australia)] [and others

    1996-10-16

    We describe a profoundly intellectually disabled 24-year-old man with Wolf-Hirschhorn syndrome, left hemiplegia, epilepsy, atrophy of the right cerebral hemisphere, and dilatation of the right ventricle. The patient had a small ventricular septal defect, was wheelchair bound, and totally dependent. He had no speech, but vocalized to show his feelings. In this patient, the del(4)(p15) was subtle and arose due to the inheritance of a recombinant chromosome (4) from a maternal pericentric inversion - 46,XX,inv(4)(p15.32q35). Fluorescence in situ hybridization with probe D4S96 confirmed the deletion. This is the second case of Wolf-Hirschhorn syndrome resulting from a large pericentric inversion of chromosome 4. 14 refs., 3 figs.

  18. Prenatal diagnosis of a fetus with a cryptic translocation 4p;18p and Wolf-Hirschhorn syndrome (WHS).

    Science.gov (United States)

    Kohlschmidt, N; Zielinski, J; Brude, E; Schäfer, D; Olert, J; Hallermann, C; Coerdt, W; Arnemann, J

    2000-02-01

    Wolf-Hirschhorn Syndrome (WHS) is caused by distal deletion of the short arm of chromosome 4 and is characterized by growth deficiency, mental retardation, a distinctive, 'greek-helmet' facial appearance, microcephaly, ear lobe anomalies, and sacral dimples. We report a family with a balanced chromosomal translocation 4;18(p15.32;p11.21) in the father and an unbalanced translocation resulting in partial monosomy 4 and partial trisomy 18 in one living boy and a prenatally diagnosed male fetus. Both showed abnormalities consistent with WHS and had in addition aplasia of one umbilical artery. Karyotyping of another stillborn fetus revealed a supernumerary derivative chromosome der(18)t(4;18)(p15.32;p11.21) of paternal origin and two normal chromosomes 4. The umbilical cord had three normal vessels. A third stillborn fetus with the same balanced translocation as the father had a single umbilical artery and hygroma colli. Copyright 2000 John Wiley & Sons, Ltd.

  19. De novo unbalanced translocation (4p duplication/8p deletion) in a patient with autism, OCD, and overgrowth syndrome.

    Science.gov (United States)

    Sagar, Angela; Pinto, Dalila; Najjar, Fedra; Guter, Stephen J; Macmillan, Carol; Cook, Edwin H

    2017-06-01

    Chromosomal abnormalities, such as unbalanced translocations and copy number variants (CNVs), are found in autism spectrum disorders (ASDs) [Sanders et al. (2011) Neuron 70: 863-885]. Many chromosomal abnormalities, including sub microscopic genomic deletions and duplications, are missed by G-banded karyotyping or Fragile X screening alone and are picked up by chromosomal microarrays [Shen et al. (2010) Pediatrics 125: e727-735]. Translocations involving chromosomes 4 and 8 are possibly the second most frequent translocation in humans and are often undetected in routine cytogenetics [Giglio et al. (2002) Circulation 102: 432-437]. Deletions of 4p16 have been associated with Wolf-Hirschhorn syndrome while 4p16 duplications have been associated with an overgrowth syndrome and mild to moderate mental retardation [Partington et al. (1997) Journal of Medical Genetics 34: 719-728]. The 8p23.3 region contains the autism candidate gene DLGAP2, which can contribute to autism when disrupted [Marshall et al. (2008) The American Journal of Human Genetics 82: 477-488] . There has been a case report of a family with autism spectrum disorder (ASD), prominent obsessional behavior, and overgrowth in patients with der (8) t (4;8) p (16;23) [Partington et al. (1997)]. This is an independent report of a male patient with autism, obsessive compulsive disorder (OCD), attention-deficit hyperactivity disorder (ADHD), and an overgrowth syndrome, whose de novo unbalanced translocation der (8) t (4;8) p (16.1→ter; 23.1→ter) was initially missed by routine cytogenetics but detected with SNP microarray, allowing higher resolution of translocation breakpoints. © 2017 Wiley Periodicals, Inc.

  20. The gene for the Ellis-van Creveld syndrome is located on chromosome 4p16

    Energy Technology Data Exchange (ETDEWEB)

    Polymeropoulos, M.H.; Ide, S.E. [National Institute of Health, Bethesda, MD (United States); Wright, M. [Univ. of Newcastle Upon Tyne (United Kingdom)] [and others

    1996-07-01

    Ellis-van Creveld syndrome (EVC) is an autosomal recessive disorder characterized by disproportionate dwarfism, polydactyly, and congenital heart disease. This rare disorder is found with increased frequency among the Old Order Amish community in Lancaster County, Pennsylvania. We have used linkage analysis to localize the gene responsible for the EVC phenotype in nine interrelated Amish pedigrees and three unrelated families from Mexico, Ecuador, and Brazil. We now report the linkage for the Ellisvan Creveld syndrome gene to markers on the distal short arm of human chromosome 4, with Z{sub max} = 6.91 at {theta} = 0.02 for marker HOX7, in a region proximal to the FGFR3 gene responsible for the achondroplasia phenotype. 17 refs., 2 figs., 1 tab.

  1. [Recombinant chromosome 4 with partial 4p deletion and 4q duplication inherited from paternal pericentric inversion].

    Science.gov (United States)

    Mun, Se Jin; Cho, Eun Hae; Chey, Myoung-Jae; Shim, Gyu-Hong; Shin, Bo-Moon; Lee, Rae-Kyung; Ko, Ji-Kyung; Yoo, Soo Jin

    2010-02-01

    Pericentric inversion of chromosome 4 can give rise to 2 alternate recombinant (rec) chromosomesby duplication or deletion of 4p. The deletion of distal 4p manifests as Wolf-Hirschhorn syndrome (WHS). Here, we report the molecular cytogenetic findings and clinical manifestations observed in an infant with 46,XX,rec(4)dup(4q)inv(4)(p16q31.3)pat. The infant was delivered by Cesarean section at the 33rd week of gestation because pleural effusion and polyhydramnios were detected on ultrasonography. At birth, the infant showed no malformation or dysfunction, except for a preauricular skin tag. Array comparative genomic hybridization analysis of neonatal peripheral blood samples showed a gain of 38 Mb on 4q31.3-qter and a loss of 3 Mb on 4p16.3, and these results were consistent with WHS. At the last follow-up at 8 months of age (corrected age, 6 months), the infant had not achieved complete head control.

  2. Syndrome of proximal interstitial deletion 4p15

    Energy Technology Data Exchange (ETDEWEB)

    Fryns, J.P. [Univ. of Leuven (Belgium)

    1995-09-11

    In this journal, Chitayat et al. reported on 2 boys and a girl with interstitial deletion in the short arm of chromosome 4, including p15.2p15.33. All 3 patients had a characteristic face distinct from that of Wolf-Hirschhorn syndrome and multiple minor congenital anomalies. One patient had a congenitally enlarged penis. The authors noted that all had normal growth, and all had moderate psychomotor retardation (patient 1, developmental age of 4-6 years at age 9 years; patient 2, mental age 6 years at age 25 years; and patient 3, global delay with hypotonia, difficulties in both gross and fine motor development, and persistent delay in language skills). 5 refs., 1 fig.

  3. Multiple hemangiomas in a patient with a t(3q;4p) translocation: an infrequent association with Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Pardo, Sherly; Blitman, Netta; Han, Bokyung; Cohen, Ninette; Edelmann, Lisa; Hirschhorn, Kurt

    2008-01-15

    We report on the clinical phenotype of an infant with a duplication of the terminal portion of the long arm of chromosome 3(q26.3-qter) and a deletion of the terminal portion of the short arm of chromosome 4(p16.3) with multiple hemangiomas and a hamartoma. Patients with deletions of distal 4p have the characteristic features of Wolf-Hirschhorn syndrome (WHS); whereas those with the distal duplication of 3q have a well recognized syndrome with some features resembling Cornelia-de Lange syndrome (CdLS). Neither of these recognized chromosomal anomalies has been reported previously to be associated with multiple hemangiomas or other vascular malformations. (c) 2007 Wiley-Liss, Inc.

  4. 4p16.3 microdeletions and microduplications detected by chromosomal microarray analysis: New insights into mechanisms and critical regions.

    Science.gov (United States)

    Bi, Weimin; Cheung, Sau-Wai; Breman, Amy M; Bacino, Carlos A

    2016-10-01

    Deletions in the 4p16.3 region cause Wolf-Hirschhorn syndrome, a well known contiguous microdeletion syndrome with the critical region for common phenotype mapped in WHSCR2. Recently, duplications in 4p16.3 were reported in three patients with developmental delay and dysmorphic features. Through chromosomal microarray analysis, we identified 156 patients with a deletion (n = 109) or duplication (n = 47) in 4p16.3 out of approximately 60,000 patients analyzed by Baylor Miraca Genetics Laboratories. Seventy-five of the postnatally detected deletions encompassed the entire critical region, 32 (43%) of which were associated with other chromosome rearrangements, including six patients (8%) that had a duplication adjacent to the terminal deletion. Our data indicate that Wolf-Hirschhorn syndrome deletions with an adjacent duplication occur at a higher frequency than previously appreciated. Pure deletions (n = 14) or duplications (n = 15) without other copy number changes distal to or inside the WHSCR2 were identified for mapping of critical regions. Our data suggest that deletion of the segment from 0.6 to 0.9 Mb from the terminus of 4p causes a seizure phenotype and duplications of a region distal to the previously defined smallest region of overlap for 4p16.3 microduplication syndrome are associated with neurodevelopmental problems. We detected seven Wolf-Hirschhorn syndrome deletions and one 4p16.3 duplication prenatally; all of the seven are either >8 Mb in size and/or associated with large duplications. In conclusion, our study provides deeper insight into the molecular mechanisms, the critical regions and effective prenatal diagnosis for 4p16.3 deletions/ duplications. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Fibroadenoma in Beckwith-Wiedemann syndrome with paternal uniparental disomy of chromosome 11p15.5.

    Science.gov (United States)

    Takama, Yuichi; Kubota, Akio; Nakayama, Masahiro; Higashimoto, Ken; Jozaki, Kosuke; Soejima, Hidenobu

    2014-12-01

    Herein is described a case of breast fibroadenomas in a 16-year-old girl with Beckwith-Wiedemann syndrome (BWS) and uniparental disomy (UPD) of chromosome 11p15.5. She was clinically diagnosed with BWS and direct closure was performed for an omphalocele at birth. Subtotal and 90% pancreatectomy were performed for nesidioblastosis at the ages 2 months and 8 years, respectively. Bilateral multiple breast fibroadenomas were noted at the age of 16 and 17 years. In this case, paternal UPD of chromosome 11p15.5 was identified on microsatellite marker analysis. The relevant imprinted chromosomal region in BWS is 11p15.5, and UPD of chromosome 11p15 is a risk factor for BWS-associated tumorigenicity. Chromosome 11p15.5 consists of imprinting domains of IGF2, the expression of which is associated with the tumorigenesis of various breast cancers. This case suggests that fibroadenomas occurred in association with BWS. © 2014 Japan Pediatric Society.

  6. Prenatal diagnosis of Wolf-Hirschhorn syndrome (4p- in association with congenital hypospadias and foot deformity

    Directory of Open Access Journals (Sweden)

    Ermis Hayri

    2003-01-01

    Full Text Available Abstract Background Wolf-Hirschhorn syndrome is caused by distal deletion of the short arm of chromosome 4 (4p-. We report a case in which intrauterine growth restriction, hypospadias and foot deformity were detected by prenatal ultrasound examination at 29 weeks of gestation. Case Presentation A 31-year-old gravida 2 partus 1 woman was referred at 29 weeks' gestation with suspicion of intrauterine growth restriction. Sonographic examination revealed deformity of the right lower limb and undescended testes with an irregular distal penis. A cordocentesis was performed and chromosome analysis revealed a 46,XY,del(4(p14 karyotype. Conclusion The prenatal detection of intrauterine growth restriction, hypospadias and foot deformity should lead doctors to suspect the presence of Wolf-Hirschhorn syndrome.

  7. Prenatal diagnosis of Wolf-Hirschhorn syndrome (4p-) in association with congenital hypospadias and foot deformity

    Science.gov (United States)

    Aslan, Halil; Karaca, Nilay; Basaran, Seher; Ermis, Hayri; Ceylan, Yavuz

    2003-01-01

    Background Wolf-Hirschhorn syndrome is caused by distal deletion of the short arm of chromosome 4 (4p-). We report a case in which intrauterine growth restriction, hypospadias and foot deformity were detected by prenatal ultrasound examination at 29 weeks of gestation. Case Presentation A 31-year-old gravida 2 partus 1 woman was referred at 29 weeks' gestation with suspicion of intrauterine growth restriction. Sonographic examination revealed deformity of the right lower limb and undescended testes with an irregular distal penis. A cordocentesis was performed and chromosome analysis revealed a 46,XY,del(4)(p14) karyotype. Conclusion The prenatal detection of intrauterine growth restriction, hypospadias and foot deformity should lead doctors to suspect the presence of Wolf-Hirschhorn syndrome. PMID:12546710

  8. Syndrome of proximal interstitial deletion 4p15: Report of three cases and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Chitayat, D.; Babul, R.; Teshima, I.E. [Univ. of Toronto, Ontario (Canada)] [and others

    1995-01-16

    We report on two boys and a girl with interstitial deletion in the short arm of chromosome 4 including the segment p15.2p15.33. All had normal growth with psychomotor retardation, multiple minor congenital anomalies, and a characteristic face distinct from that of the Wolf-Hirschhorn syndrome. One of the patients had congenitally enlarged penis. These patients resemble some of the previously reported patients with similar cytogenetic abnormalities and suggests the recognition of a specific clinical chromosome deletion syndrome. 12 refs., 6 figs., 1 tab.

  9. Prenatal Diagnosis of 4p and 4q Subtelomeric Microdeletion in De Novo Ring Chromosome 4

    Directory of Open Access Journals (Sweden)

    Halit Akbas

    2013-01-01

    Full Text Available Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0 referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH. However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb and 4q35.2 (2.449 Mb. In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis.

  10. Prenatal diagnosis of 4p and 4q subtelomeric microdeletion in de novo ring chromosome 4.

    Science.gov (United States)

    Akbas, Halit; Cine, Naci; Erdemoglu, Mahmut; Atay, Ahmet Engin; Simsek, Selda; Turkyilmaz, Aysegul; Fidanboy, Mehmet

    2013-01-01

    Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0) referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH). However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb) and 4q35.2 (2.449 Mb). In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis.

  11. Telomere healing following DNA polymerase arrest-induced breakages is likely the main mechanism generating chromosome 4p terminal deletions.

    Science.gov (United States)

    Hannes, Femke; Van Houdt, Jeroen; Quarrell, Oliver W; Poot, Martin; Hochstenbach, Ron; Fryns, Jean-Pierre; Vermeesch, Joris R

    2010-12-01

    Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes. © 2010 Wiley-Liss, Inc.

  12. Trisomy 12p and monosomy 4p: phenotype-genotype correlation.

    Science.gov (United States)

    Benussi, Daniela Gambel; Costa, Paola; Zollino, Marcella; Murdolo, Marina; Petix, Vincenzo; Carrozzi, Marco; Pecile, Vanna

    2009-04-01

    4p Monosomy and 12p trisomy have been discussed and redefined along with recently reviewed chromosomal syndromes. 12p Trisomy syndrome is characterized by normal or increased birth weight, developmental delay with early hypotonia, psychomotor delay, and typical facial appearance. Most likely, the observed phenotypic variability depends on the type and extent of the associated partial monosomy. Partial deletions of the short arm of one chromosome 4 cause the Wolf-Hirschhorn syndrome (WHS). Affected patients present Greek helmet face, growth and mental retardation, hypotonia, and seizures. The combination of these characteristics constitutes the phenotypic core of WHS. We present a clinical and molecular cytogenetic characterization of a 4-year old mentally retarded girl with macrosomy, facial dysmorphisms, and epilepsy, in whom an unbalanced t(4;12)(p16.3;p13.3) translocation was detected, giving rise to partial 4p monosomy and partial 12p trisomy. Because the patient shows most of the phenotypic characteristics of 12p trisomy, this case could contribute to a better definition of the duplicate critical region that determines the phenotype of the 12p trisomy syndrome.

  13. Chromosome 22 microdeletion in children with syndromic ...

    African Journals Online (AJOL)

    Cytogenetic study and fluorescence in situ hybridization (FISH) were performed in the patients. The study revealed that 2 patients were with chromosomal aberrations [one with 46,XY, add (13)(p13) & the other with 47,XX,+13]. In addition, FISH revealed 4 patients (20%) with 22q11.2 microdeletion syndrome. The congenital ...

  14. Recombinant Chromosome 4 from a Familial Pericentric Inversion: Prenatal and Adulthood Wolf-Hirschhorn Phenotypes

    Directory of Open Access Journals (Sweden)

    Francesca Malvestiti

    2013-01-01

    Full Text Available Pericentric inversion of chromosome 4 can give rise to recombinant chromosomes by duplication or deletion of 4p. We report on a familial case of Wolf-Hirschhorn Syndrome characterized by GTG-banding karyotypes, FISH, and array CGH analysis, caused by a recombinant chromosome 4 with terminal 4p16.3 deletion and terminal 4q35.2 duplication. This is an aneusomy due to a recombination which occurred during the meiosis of heterozygote carrier of cryptic pericentric inversion. We also describe the adulthood and prenatal phenotypes associated with the recombinant chromosome 4.

  15. USH1K, a novel locus for type I Usher syndrome, maps to chromosome 10p11.21-q21.1.

    Science.gov (United States)

    Jaworek, Thomas J; Bhatti, Rashid; Latief, Noreen; Khan, Shaheen N; Riazuddin, Saima; Ahmed, Zubair M

    2012-10-01

    We ascertained two large Pakistani consanguineous families (PKDF231 and PKDF608) segregating profound hearing loss, vestibular dysfunction, and retinitis pigmentosa; the defining features of Usher syndrome type 1 (USH1). To date, seven USH1 loci have been reported. Here, we map a novel locus, USH1K, on chromosome 10p11.21-q21.1. In family PKDF231, we performed a genome-wide linkage screen and found a region of homozygosity shared among the affected individuals at chromosome 10p11.21-q21.1. Meiotic recombination events in family PKDF231 define a critical interval of 11.74 cM (20.20 Mb) bounded by markers D10S1780 (63.83 cM) and D10S546 (75.57 cM). Affected individuals of family PKDF608 were also homozygous for chromosome 10p11.21-q21.1-linked STR markers. Of the 85 genes within the linkage interval, PCDH15, GJD4, FZD4, RET and LRRC18 were sequenced in both families, but no potential pathogenic mutation was identified. The USH1K locus overlaps the non-syndromic deafness locus DFNB33 raising the possibility that the two disorders may be caused by allelic mutations.

  16. Clinical characterization and proposed mechanism of juvenile glaucoma--a patient with a chromosome 4p deletion, Wolf-Hirschhorn Syndrome.

    Science.gov (United States)

    Curtin, Jeremy; Moloney, Greg; Grigg, John; Sharota Franzco, Dorian

    2010-09-01

    The case presented is that of a 22-year-old male with Wolf-Hirschhorn syndrome who was referred with glaucoma refractory to medical treatment. Six other patients have been described with Wolf-Hirschhorn syndrome (WHS) and glaucoma, most being congenital glaucoma with diagnosis in infancy. We describe the first case of juvenile onset glaucoma in this syndrome. Our patient had narrow angles on gonioscopy, with ultrasound biomicroscopy revealing ciliary body cysts. We alert others to the possibility of this mechanism of secondary narrow angle glaucoma associated with this chromosomal deletion syndrome.

  17. Prenatal detection of a de novo terminal inverted duplication 4p in a fetus with the Wolf-Hirschhorn syndrome phenotype.

    Science.gov (United States)

    Beaujard, M-P; Jouannic, J-M; Bessières, B; Borie, C; Martin-Luis, I; Fallet-Bianco, C; Portnoï, M-F

    2005-06-01

    To present the prenatal diagnosis of a de novo terminal inversion duplication of the short arm of chromosome 4 and a review of the literature. An amniocentesis for chromosome analysis was performed at 33 weeks' gestation because ultrasound examination showed a female fetus with multiple abnormalities consisting of severe intrauterine growth retardation, microcephaly, a cleft lip and renal hypoplasia. Cytogenetic analysis and FISH studies of the cultured amniocytes revealed a de novo terminal inversion duplication of the short arm of chromosome 4 characterized by a duplication of 4p14-p16.1 chromosome region concomitant with a terminal deletion 4p16.1-pter. The karyotype was thus: 46,XX, inv dup del (4)(:p14-->p16.1::p16.1-->qter). The parents opted to terminate the pregnancy. Fetopathological examination showed dysmorphic features and abnormalities consistent with a Wolf-Hirschhorn syndrome (WHS) diagnosis, clinical manifestations of partial 4p trisomy being mild. Although relatively rare, inverted duplications have been reported repeatedly in an increasing number of chromosomes. Only two previous cases with de novo inv dup del (4p) and one with tandem dup 4p have been reported, all of them associated with a 4pter deletion. We report the first case diagnosed prenatally. Breakpoints are variable, resulting in different abnormal phenotype. In our case, clinical manifestations resulted in a WHS phenotype.

  18. Genetic, chromosomal, and syndromic causes of neural tube defects.

    Science.gov (United States)

    Seidahmed, Mohammed Z; Abdelbasit, Omer B; Shaheed, Meeralebbae M; Alhussein, Khalid A; Miqdad, Abeer M; Samadi, Abdulmohsen S; Khalil, Mohammed I; Al-Mardawi, Elham; Salih, Mustafa A

    2014-12-01

    To ascertain the incidence, and describe the various forms of neural tube defects (NTDs) due to genetic, chromosomal, and syndromic causes. We carried out a retrospective analysis of data retrieved from the medical records of newborn infants admitted to the Neonatal Intensive Care Unit with NTDs and their mothers spanning 14 years (1996-2009) at the Security Forces Hospital, Riyadh, Saudi Arabia. The cases were ascertained by a perinatologist, neonatologist, geneticist, radiologist, and neurologist. The literature was reviewed via a MEDLINE search. Only liveborn babies were included. Permission from the Educational Committee at the Security Forces Hospital was obtained prior to the collection of data. Out of 103 infants with NTDs admitted during this period, 20 (19.4%) were found to have an underlying genetic syndromic, chromosomal and/or other anomalies. There were 5 cases of Meckel-Gruber syndrome, 2 Joubert syndrome, one Waardenburg syndrome, one Walker-Warburg syndrome, 2 chromosomal disorders, 2 caudal regression, one amniotic band disruption sequence, one associated with omphalocele, one with diaphragmatic hernia, and 4 with multiple congenital anomalies. There is a high rate of underlying genetic syndromic and/or chromosomal causes of NTDs in the Saudi Arabian population due to the high consanguinity rate. Identification of such association can lead to more accurate provisions of genetic counseling to the family including preimplantation genetic diagnosis or early termination of pregnancies associated with lethal conditions.

  19. Partial Duplication of Chromosome 8p

    African Journals Online (AJOL)

    rme

    The partial chromosome 8p duplication is a rare syndrome and is ... abnormality of maternal origin that ... second trimester by vaginal bleeding and ... echocardiography, brain CT scan and. MRI. Fig. 1:Conventional karyotype of case 3 showing.

  20. Genetic, chromosomal, and syndromic causes of neural tube defects

    Science.gov (United States)

    Seidahmed, Mohammed Z.; Abdelbasit, Omer B.; Shaheed, Meeralebbae M.; Alhussein, Khalid A.; Miqdad, Abeer M.; Samadi, Abdulmohsen S.; Khalil, Mohammed I.; Al-Mardawi, Elham; Salih, Mustafa A.

    2014-01-01

    Objective: To ascertain the incidence, and describe the various forms of neural tube defects (NTDs) due to genetic, chromosomal, and syndromic causes. Methods: We carried out a retrospective analysis of data retrieved from the medical records of newborn infants admitted to the Neonatal Intensive Care Unit with NTDs and their mothers spanning 14 years (1996-2009) at the Security Forces Hospital, Riyadh, Saudi Arabia. The cases were ascertained by a perinatologist, neonatologist, geneticist, radiologist, and neurologist. The literature was reviewed via a MEDLINE search. Only liveborn babies were included. Permission from the Educational Committee at the Security Forces Hospital was obtained prior to the collection of data. Results: Out of 103 infants with NTDs admitted during this period, 20 (19.4%) were found to have an underlying genetic syndromic, chromosomal and/or other anomalies. There were 5 cases of Meckel-Gruber syndrome, 2 Joubert syndrome, one Waardenburg syndrome, one Walker-Warburg syndrome, 2 chromosomal disorders, 2 caudal regression, one amniotic band disruption sequence, one associated with omphalocele, one with diaphragmatic hernia, and 4 with multiple congenital anomalies. Conclusions: There is a high rate of underlying genetic syndromic and/or chromosomal causes of NTDs in the Saudi Arabian population due to the high consanguinity rate. Identification of such association can lead to more accurate provisions of genetic counseling to the family including preimplantation genetic diagnosis or early termination of pregnancies associated with lethal conditions. PMID:25551112

  1. Instability of isochromosome 4p in a child with pure trisomy 4p syndrome features and entire 4q-arm translocation.

    Science.gov (United States)

    Pota, Pruthvi; Grammatopoulou, Vasiliki; Torti, Erin; Braddock, Stephen; Batanian, Jacqueline R

    2014-01-01

    Constitutional chromosome instability so far has mainly been associated with ring formation. In addition, isochromosome formation involving the short arm with translocation of the entire long arm is rarely observed. This type of rearrangement has been reported for chromosomes 4, 5, 7, 9, 10, 12, and 20. Here, we present the third patient having an isochromosome 4p with 4q translocation, but showing for the first time chromosome instability detected by FISH following chromosome microarray analysis.

  2. Wolf-Hirschhorn Syndrome with Epibulbar Dermoid: An Unusual Association in a Patient with 4p Deletion and Functional Xp Disomy.

    Science.gov (United States)

    Bragagnolo, Silvia; Colovati, Mileny E S; Guilherme, Roberta S; Dantas, Anelisa G; de Souza, Malú Zamariolli; de Soares, Maria F; Melaragno, Maria I; Perez, Ana B

    2016-01-01

    Wolf-Hirschhorn syndrome (WHS) is a contiguous gene and multiple malformation syndrome that results from a deletion in the 4p16.3 region. We describe here a 6-month-old girl that presented with WHS features but also displayed unusual findings, such as epibulbar dermoid in the left eye, ear tags, and left microtia. Although on G-banding her karyotype appeared to be normal, chromosomal microarray analysis revealed an ∼13-Mb 4p16.3p15.33 deletion and an ∼9-Mb Xp22.33p22.31 duplication, resulting from a balanced maternal t(X;4)(p22.31;p15.33) translocation. The patient presented with functional Xp disomy due to an unbalanced X-autosome translocation, a rare cytogenetic finding in females with unbalanced rearrangements. Sequencing of both chromosome breakpoints detected no gene disruption. To the best of our knowledge, this is the first patient described in the literature with WHS and epibulbar dermoid, a typical characteristic of the oculoauriculovertebral spectrum (OAVS). Our data suggest that possible candidate genes for OAVS may have been deleted along with the WHS critical region. © 2016 S. Karger AG, Basel.

  3. Not all hypochondroplasia families are linked to chromosome 4p16.3

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, F.; Munnich, A.; Merrer, M.Le. [INSERM, Paris (France)] [and others

    1994-09-01

    Achondroplasia (ACH, MIM 100800) and hypochondroplasia (HCH, MIM 146000) are short limb dwarfism with enlarged head sharing some specific radiological features. Inter- and intrafamilial clinical variability and histolopathological aspects of the growth cartilage suggested that ACH and HCH are allelic disorders. Recently, the gene for achondroplasia was mapped to chromosome 4p and no recombinants were found in 9 families with hypochondroplasia between D4S111 and the telomere (Zmax=1.70, {theta}=0). By using an additional polymorphic DNA marker which detects VNTR-like polymorphism at the D4S227 locus and a new microsatellite at locus D4S? (AFM163yc1), we observed recombinant events with markers of the chromosome 4p16.3 in 3/10 hypochondroplasia families, indicating that not all hypochondroplasia families are linked to chromosome 4p. A fibroblast growth factor receptor (FGFR3) expressed in chondrocytes during endochondral ossification which is located in the 2.5 Mb candidate region for achondroplasia was regarded as a good candidate gene. No major rearrangement of the FGFR3 gene was detected by Southern blot analysis using an FGFR3 cDNA probe. Further investigations will be required to conclude as to the possible involvement of this gene in ACH.

  4. Deletion of short arm of chromosome 18, Del(18p syndrome

    Directory of Open Access Journals (Sweden)

    Prashant Babaji

    2014-01-01

    Full Text Available Deletion of the short arm of chromosome 18 is a rare syndrome clinically presenting with variable mental retardation, growth retardation, low height, pectus excavatum, craniofacial malformations including long ear, ptosis, microcephaly and short neck. This case report presents with characteristic features along with rare feature of single nostril.

  5. Parental imprinting of human chromosome region 11p15.3-pter involved in the Beckwith-Wiedemann syndrome and various human neoplasia

    NARCIS (Netherlands)

    Mannens, M.; Hoovers, J. M.; Redeker, E.; Verjaal, M.; Feinberg, A. P.; Little, P.; Boavida, M.; Coad, N.; Steenman, M.; Bliek, J.

    1994-01-01

    Cytogenetic and DNA analyses of patients with the Beckwith-Wiedemann syndrome (BWS) enabled us to refine the localization of the syndrome at 11p15.3-pter to two distinct regions. One chromosome region (BWSCR1) is near the insulin (INS) and insulin-like growth factor 2 (IGF2) genes. The other region

  6. Small supernumerary marker chromosome derived from proximal p-arm of chromosome 2: identification by fluorescent in situ hybridization.

    Science.gov (United States)

    Lasan Trcić, Ruzica; Hitrec, Vlasta; Letica, Ljiljana; Cuk, Mario; Begović, Davor

    2003-08-01

    Conventional cytogenetics detected an interstitial deletion of proximal region of p-arm of chromosome 2 in a 6-month-old boy with a phenotype slightly resembling Down's syndrome. The deletion was inherited from the father, whose karyotype revealed a small ring-shaped marker chromosome, in addition to interstitial deletion. Fluorescence in situ hybridization identified the marker, which consisted of the proximal region of the p-arm of chromosome 2, including a part of its centromere. This case shows that molecular cytogenetic analysis can reveal the mechanism of the formation of the marker chromosome.

  7. Submicroscopic duplication of the Wolf-Hirschhorn critical region with a 4p terminal deletion.

    Science.gov (United States)

    Roselló, M; Monfort, S; Orellana, C; Ferrer-Bolufer, I; Quiroga, R; Oltra, S; Martínez, F

    2009-01-01

    Chromosomal rearrangements in the short arm of chromosome 4 can result in 2 different clinical entities: Wolf-Hirschhorn syndrome (WHS), characterized by severe growth delay, mental retardation, microcephaly, 'Greek helmet' facies, and closure defects, or partial 4p trisomy, associated with multiple congenital anomalies, mental retardation, and facial dysmorphisms. We present clinical and laboratory findings in a patient who showed a small duplication in 4p16.3 associated with a subtle terminal deletion in the same chromosomal region. GTG-banding analyses, multiplex ligation-dependent probe amplification analyses, and studies by array-based comparative genomic hybridization were performed. The results of the analyses revealed a de novo 1.3 Mb deletion of the terminal 4p and a 1.1 Mb duplication in our patient, encompassing the WHS critical region. Interestingly, this unusual duplication/deletion rearrangement results in an intermediate phenotype that shares characteristics of the WHS and the 4p trisomy syndrome. The use of novel technologies in the genetic diagnosis leads to the description of new clinical syndromes; there is a growing list of microduplication syndromes. Therefore, we propose that overexpression of candidate genes in WHS (WHSC1, WHSC2 and LETM1) due to a duplication causes a clinical entity different to both the WHS and 4p trisomy syndrome. (c) 2009 S. Karger AG, Basel.

  8. Risk of Gonadoblastoma Development in Patients with Turner Syndrome with Cryptic Y Chromosome Material.

    Science.gov (United States)

    Kwon, Ahreum; Hyun, Sei Eun; Jung, Mo Kyung; Chae, Hyun Wook; Lee, Woo Jung; Kim, Tae Hyuk; Kim, Duk Hee; Kim, Ho-Seong

    2017-06-01

    Current guidelines recommend that testing for Y chromosome material should be performed only in patients with Turner syndrome harboring a marker chromosome and exhibiting virilization in order to detect individuals who are at high risk of gonadoblastoma. However, cryptic Y chromosome material is suggested to be a risk factor for gonadoblastoma in patients with Turner syndrome. Here, we aimed to estimate the frequency of cryptic Y chromosome material in patients with Turner syndrome and determine whether Y chromosome material increased the risk for development of gonadoblastoma. A total of 124 patients who were diagnosed with Turner syndrome by conventional cytogenetic techniques underwent additional molecular analysis to detect cryptic Y chromosome material. In addition, patients with Turner syndrome harboring Y chromosome cell lines had their ovaries removed prophylactically. Finally, we assessed the occurrence of gonadoblastoma in patients with Turner syndrome. Molecular analysis demonstrated that 10 patients had Y chromosome material among 118 patients without overt Y chromosome (8.5%). Six patients with overt Y chromosome and four patients with cryptic Y chromosome material underwent oophorectomy. Histopathological analysis revealed that the occurrence of gonadoblastoma in the total group was 2.4%, and gonadoblastoma occurred in one of six patients with an overt Y chromosome (16.7%) and 2 of 10 patients with cryptic Y chromosome material (20.0%). The risk of developing gonadoblastoma in patients with cryptic Y chromosome material was similar to that in patients with overt Y chromosome. Therefore, molecular screening for Y chromosome material should be recommended for all patients with Turner syndrome to detect individuals at a high risk of gonadoblastoma and to facilitate proper management of the disease.

  9. Wolf-Hirschhorn (4p-) syndrome: prenatal diagnosis, molecular cytogenetic characterization and association with a 1.2-Mb microduplication at 8p22-p21.3 and a 1.1-Mb microduplication at 10p15.3 in a fetus with an apparently pure 4p deletion.

    Science.gov (United States)

    Chen, Chih-Ping; Su, Yi-Ning; Chen, Yi-Yung; Su, Jun-Wei; Chern, Schu-Rern; Chen, Yu-Ting; Chen, Wen-Lin; Chen, Li-Feng; Wang, Wayseen

    2011-12-01

    To present prenatal diagnosis and molecular cytogenetic characterization of Wolf-Hirschhorn syndrome (WHS) associated with microduplications at 8p and 10p in a fetus with an apparently pure 4p deletion. A 35-year-old gravida 2, para 1 woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. Her husband was 38 years of age. There was no family history of congenital malformations. Amniocentesis revealed a karyotype of 46,XY,del(4p16.1). The parental karyotypes were normal. Array comparative genomic hybridization (aCGH) analysis revealed a 6.5-Mb deletion at 4p16.3-p16.1, a 1.2-Mb microduplication at 8p22-p21.3, and a 1.1-Mb microduplication at 10p15.3, or arr cgh 4p16.3p16.1 (0-6,531,998 bp)×1, 8p22p21.3 (18,705,388-19,940,445 bp)×3, 10p15.3 (0-1,105,065 bp)×3. Polymorphic DNA marker analysis confirmed a paternal origin of 4p deletion. Prenatal ultrasound revealed facial dysmorphism and hypospadias. The aCGH analysis of the parents revealed no genomic imbalance. Fluorescence in situ hybridization study showed an unbalanced reciprocal translocation between chromosomes 4 and 10 at bands 4p16.1 and 10p15.3. The cytogenetic result, thus, was 46,XY,der(4)t(4;10)(p16.1;p15.3),dup(8)(p21.3p22). The parents elected to terminate the pregnancy, and a 470-g malformed fetus was delivered. The present case provides evidence that an apparently pure 4p deletion can be associated with subtle chromosome imbalances in other chromosomes. Copyright © 2011. Published by Elsevier B.V.

  10. Ring Chromosome 4 in a Child with Multiple Congenital Abnormalities: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    C. S. Paththinige

    2016-01-01

    Full Text Available A female child born preterm with intrauterine growth retardation and presenting with facial dysmorphism with clefts, microcephaly, limb deformities, and congenital abnormalities involving cardiovascular and urinary systems is described. Chromosomal analysis showed a de novo 46,XX,r(4(p15.3q35 karyotype. The clinical features of the patient were compared with the phenotypic characteristics of 17 previously reported cases with ring chromosome 4 and those with Wolf-Hirschhorn syndrome (4p-. Clinical features observed in this case are consistent with the consensus phenotype in ring chromosome 4. Patent ductus arteriosus and bilateral talipes equinovarus observed in this baby widen the phenotypic spectrum associated with ring chromosome 4.

  11. Reproductive history of a healthy woman with mosaic duplication of chromosome 4p.

    Science.gov (United States)

    Bernardini, Laura; Sinibaldi, Lorenzo; Ceccarini, Caterina; Novelli, Antonio; Dallapiccola, Bruno

    2005-04-01

    Mosaic autosomal duplications are rare and often result in mental retardation and congenital anomalies. Phenotype is not predictable depending on the chromosomal imbalance involved and the percentage and tissues distribution of unbalanced cells. We report on a young woman carrying a mosaic duplication of chromosome 4p, evaluated because of three abortions due to IUGR and fetal malformation. Mosaic dup(4p) was detected by standard and molecular cytogenetics. Unbalanced cells accounted for about 20 to 30% of nuclei in four examined tissues and did not cause any obvious phenotypic effect. It is likely that mosaic duplications are underascertained because they are not associated with obvious clinical effects in some individuals. Prenatal diagnosis is the method of choice to predict the karyotype in the offspring of subjects carrying mosaic chromosome imbalances.

  12. Prenatal diagnosis and molecular cytogenetic characterization of a de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14).

    Science.gov (United States)

    Chen, Chih-Ping; Lee, Meng-Ju; Chern, Schu-Rern; Wu, Peih-Shan; Su, Jun-Wei; Chen, Yu-Ting; Lee, Meng-Shan; Wang, Wayseen

    2013-10-25

    We present prenatal diagnosis of de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14) and molecular cytogenetic characterization of the deletion using uncultured amniocytes. We review the phenotypic abnormalities of previously reported patients with similar proximal interstitial 4p deletions, and we discuss the functions of the genes of RBPJ, CCKAR, STIM2, PCDH7 and ARAP2 that are deleted within this region. © 2013.

  13. Localization of Usher syndrome type II to chromosome 1q.

    Science.gov (United States)

    Kimberling, W J; Weston, M D; Möller, C; Davenport, S L; Shugart, Y Y; Priluck, I A; Martini, A; Milani, M; Smith, R J

    1990-06-01

    Usher syndrome is characterized by congenital hearing loss, progressive visual impairment due to retinitis pigmentosa, and variable vestibular problems. The two subtypes of Usher syndrome, types I and II, can be distinguished by the degree of hearing loss and by the presence or absence of vestibular dysfunction. Type I is characterized by a profound hearing loss and totally absent vestibular responses, while type II has a milder hearing loss and normal vestibular function. Fifty-five members of eight type II Usher syndrome families were typed for three DNA markers in the distal region of chromosome 1q: D1S65 (pEKH7.4), REN (pHRnES1.9), and D1S81 (pTHH33). Statistically significant linkage was observed for Usher syndrome type II with a maximum multipoint lod score of 6.37 at the position of the marker THH33, thus localizing the Usher type II (USH2) gene to 1q. Nine families with type I Usher syndrome failed to show linkage to the same three markers. The statistical test for heterogeneity of linkage between Usher syndrome types I and II was highly significant, thus demonstrating that they are due to mutations at different genetic loci.

  14. Diagnosis of Familial Wolf-Hirschhorn Syndrome due to a Paternal Cryptic Chromosomal Rearrangement by Conventional and Molecular Cytogenetic Techniques

    Science.gov (United States)

    Venegas-Vega, Carlos A.; Zepeda, Luis M.; Garduño-Zarazúa, Luz M.; Berumen, Jaime; Kofman, Susana; Cervantes, Alicia

    2013-01-01

    The use of conventional cytogenetic techniques in combination with fluorescent in situ hybridization (FISH) and single-nucleotide polymorphism (SNP) microarrays is necessary for the identification of cryptic rearrangements in the diagnosis of chromosomal syndromes. We report two siblings, a boy of 9 years and 9 months of age and his 7-years- and 5-month-old sister, with the classic Wolf-Hirschhorn syndrome (WHS) phenotype. Using high-resolution GTG- and NOR-banding karyotypes, as well as FISH analysis, we characterized a pure 4p deletion in both sibs and a balanced rearrangement in their father, consisting in an insertion of 4p material within a nucleolar organizing region of chromosome 15. Copy number variant (CNV) analysis using SNP arrays showed that both siblings have a similar size of 4p deletion (~6.5 Mb). Our results strongly support the need for conventional cytogenetic and FISH analysis, as well as high-density microarray mapping for the optimal characterization of the genetic imbalance in patients with WHS; parents must always be studied for recognizing cryptic balanced chromosomal rearrangements for an adequate genetic counseling. PMID:23484094

  15. Are there tumor suppressor genes on chromosome 4p in sporadic colorectal carcinoma?

    Science.gov (United States)

    Zheng, Hai-Tao; Jiang, Li-Xin; Lv, Zhong-Chuan; Li, Da-Peng; Zhou, Chong-Zhi; Gao, Jian-Jun; He, Lin; Peng, Zhi-Hai

    2008-01-07

    To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients. Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were electrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by c2 test. Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm).

  16. Anterior Pituitary Aplasia in an Infant with Ring Chromosome 18p Deletion

    Directory of Open Access Journals (Sweden)

    Edward J. Bellfield

    2016-01-01

    Full Text Available We present the first reported case of an infant with 18p deletion syndrome with anterior pituitary aplasia secondary to a ring chromosome. Endocrine workup soon after birth was reassuring; however, repeat testing months later confirmed central hypopituitarism. While MRI reading initially indicated no midline defects, subsequent review of the images confirmed anterior pituitary aplasia with ectopic posterior pituitary. This case demonstrates how deletion of genetic material, even if resulting in a chromosomal ring, still results in a severe syndromic phenotype. Furthermore, it demonstrates the necessity of close follow-up in the first year of life for children with 18p deletion syndrome and emphasizes the need to verify radiology impressions if there is any doubt as to the radiologic findings.

  17. X-derived marker chromosome in patient with mosaic Turner syndrome and Dandy-Walker syndrome: a case report

    OpenAIRE

    Telepova, Alena S.; Romanenko, Svetlana A.; Lemskaya, Natalya A.; Maksimova, Yulia V.; Shorina, Asia R.; Yudkin, Dmitry V.

    2017-01-01

    Background Small supernumerary marker chromosomes can be derived from autosomes and sex chromosomes and can accompany chromosome pathologies, such as Turner syndrome. Case presentation Here, we present a case report of a patient with mosaic Turner syndrome and Dandy-Walker syndrome carrying a marker chromosome. We showed the presence of the marker chromosome in 33.8% of blood cells. FISH of the probe derived from the marker chromosome by microdissection revealed that it originated from the ce...

  18. [Prevalence of Y-chromosome sequences and gonadoblastoma in Turner syndrome].

    Science.gov (United States)

    de Marqui, Alessandra Bernadete Trovó; da Silva-Grecco, Roseane Lopes; Balarin, Marly Aparecida Spadotto

    2016-01-01

    To assess the prevalence of Y-chromosome sequences and gonadoblastoma in patients with Turner syndrome using molecular techniques. A literature search was performed in Pubmed, limiting the period of time to the years 2005 to 2014 and using the descriptors: Turner syndrome and Y sequences (n=26), and Turner syndrome and Y-chromosome material (n=27). The inclusion criteria were: articles directly related to the subject and published in English or Portuguese. Articles which did not meet these criteria and review articles were excluded. After applying these criteria, 14 papers were left. the main results regarding the prevalence of Y-chromosome sequences in Turner syndrome were: 1-about 60% of the studies were conducted by Brazilian researchers; 2-the prevalence varied from 4.6 to 60%; 3-the most frequently investigated genes were SRY, DYZ3 and TSPY; 4-seven studies used only PCR, while in the remaining seven it was associated with FISH. Nine of the 14 studies reported gonadectomy and gonadoblastoma. The highest prevalence of gonadoblastoma (33%) was found in two studies. In five out of the nine papers evaluated the prevalence of gonadoblastoma was 10 to 25%; in two of them it was zero. according to these data, molecular analysis to detect Y-chromosome sequences in TS patients is indicated, regardless of their karyotype. In patients who test positive for these sequences, gonadoblastoma needs to be investigated. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  19. Diagnosis of Familial Wolf-Hirschhorn Syndrome due to a Paternal Cryptic Chromosomal Rearrangement by Conventional and Molecular Cytogenetic Techniques

    Directory of Open Access Journals (Sweden)

    Carlos A. Venegas-Vega

    2013-01-01

    Full Text Available The use of conventional cytogenetic techniques in combination with fluorescent in situ hybridization (FISH and single-nucleotide polymorphism (SNP microarrays is necessary for the identification of cryptic rearrangements in the diagnosis of chromosomal syndromes. We report two siblings, a boy of 9 years and 9 months of age and his 7-years- and 5-month-old sister, with the classic Wolf-Hirschhorn syndrome (WHS phenotype. Using high-resolution GTG- and NOR-banding karyotypes, as well as FISH analysis, we characterized a pure 4p deletion in both sibs and a balanced rearrangement in their father, consisting in an insertion of 4p material within a nucleolar organizing region of chromosome 15. Copy number variant (CNV analysis using SNP arrays showed that both siblings have a similar size of 4p deletion (~6.5 Mb. Our results strongly support the need for conventional cytogenetic and FISH analysis, as well as high-density microarray mapping for the optimal characterization of the genetic imbalance in patients with WHS; parents must always be studied for recognizing cryptic balanced chromosomal rearrangements for an adequate genetic counseling.

  20. 5p13 microduplication syndrome: a new case and better clinical definition of the syndrome.

    Science.gov (United States)

    Novara, Francesca; Alfei, Enrico; D'Arrigo, Stefano; Pantaleoni, Chiara; Beri, Silvana; Achille, Valentina; Sciacca, Francesca L; Giorda, Roberto; Zuffardi, Orsetta; Ciccone, Roberto

    2013-01-01

    Chromosome 5p13 duplication syndrome (OMIM #613174), a contiguous gene syndrome involving duplication of several genes on chromosome 5p13 including NIPBL (OMIM 608667), has been described in rare patients with developmental delay and learning disability, behavioral problems and peculiar facial dysmorphisms. 5p13 duplications described so far present with variable sizes, from 0.25 to 13.6 Mb, and contain a variable number of genes. Here we report another patient with 5p13 duplication syndrome including NIPBL gene only. Proband's phenotype overlapped that reported in patients with 5p13 microduplication syndrome and especially that of subjects with smaller duplications. Moreover, we better define genotype-phenotype relationship associated with this duplication and confirmed that NIPBL was likely the major dosage sensitive gene for the 5p13 microduplication phenotype. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. Molecular cytogenetic analysis of Inv Dup(15) chromosomes, using probes specific for the Pradar-Willi/Angelman syndrome region: Clinical implications

    Energy Technology Data Exchange (ETDEWEB)

    Leana-Cox, J. (Univ. of Maryland School of Medicine, Baltimore, MD (United States)); Jenkins, L. (Kaiser Permanente Medical Group, San Jose, CA (United States)); Palmer, C.G.; Plattner, R. (Indiana School of Medicine, Indianapolis, IN (United States)); Sheppard, L. (Palo Verde Laboratory, Inc., Chandler, AZ (United States)); Flejter, W.L. (Univ. of Michigan, Ann Arbor, MI (United States)); Zackowski, J. (Univ. of Florida Health Science Center, Gainsville, FL (United States)); Tsien, F. (Tulane Univ. School of Medicine, New Orleans, LA (United States)); Schwartz, S. (Case Western Reserve Univ., Cleveland, OH (United States))

    1994-05-01

    Twenty-seven cases of inverted duplications of chromosome 15 (inv dup[15]) were investigated by FISH with two DNA probes specific for the Prader-Willi syndrome/Angelman syndrome (PWS/AS) region on proximal 15q. Sixteen of the marker chromosomes displayed two copies of each probe, while in the remaining 11 markers no hybridization was observed. A significant association was found between the presence of this region and an abnormal phenotype (P<.01). This is the largest study to date of inv dup(15) chromosomes, that uses molecular cytogenetic methods and is the first to report a significant association between the presence of a specific chromosomal region in such markers and an abnormal phenotype. 30 refs., 1 fig., 4 tabs.

  2. Long-term EEG in patients with the ring chromosome 20 epilepsy syndrome.

    Science.gov (United States)

    Freire de Moura, Maria; Flores-Guevara, Roberto; Gueguen, Bernard; Biraben, Arnaud; Renault, Francis

    2016-05-01

    The recognizable electroencephalography (EEG) pattern of ring chromosome 20 epilepsy syndrome can be missing in patients with r(20) chromosomal anomaly, and may be found in patients with frontal lobe epilepsy of other origin. This study aims to search for more specific EEG signs by using long-term recordings and measuring the duration of paroxysmal anomalies. The series included 12 adult patients with r(20) anomaly, and 12 controls without any chromosomal aberration. We measured the duration of every paroxysmal burst and calculated the sum of their durations for each long-term EEG recording. We compared patients to controls using the Mann-Whitney U-test. Every patient showed long-lasting paroxysmal EEG bursts, up to 60 min; controls did not show any bursts longer than 60 s (p < 0.0001). The total duration of paroxysmal anomalies was significantly longer in patients (31-692 min) compared to controls (0-48 min) (p < 0.0001). Thus, long-term recordings enhance the contribution of EEG methods for characterizing the ring 20 chromosome epilepsy syndrome. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  3. Ehlers-Danlos Syndrome, Hypermobility Type, Is Linked to Chromosome 8p22-8p21.1 in an Extended Belgian Family

    Directory of Open Access Journals (Sweden)

    Delfien Syx

    2015-01-01

    Full Text Available Joint hypermobility is a common, mostly benign, finding in the general population. In a subset of individuals, however, it causes a range of clinical problems, mainly affecting the musculoskeletal system. Joint hypermobility often appears as a familial trait and is shared by several heritable connective tissue disorders, including the hypermobility subtype of the Ehlers-Danlos syndrome (EDS-HT or benign joint hypermobility syndrome (BJHS. These hereditary conditions provide unique models for the study of the genetic basis of joint hypermobility. Nevertheless, these studies are largely hampered by the great variability in clinical presentation and the often vague mode of inheritance in many families. Here, we performed a genome-wide linkage scan in a unique three-generation family with an autosomal dominant EDS-HT phenotype and identified a linkage interval on chromosome 8p22-8p21.1, with a maximum two-point LOD score of 4.73. Subsequent whole exome sequencing revealed the presence of a unique missense variant in the LZTS1 gene, located within the candidate region. Subsequent analysis of 230 EDS-HT/BJHS patients resulted in the identification of three additional rare variants. This is the first reported genome-wide linkage analysis in an EDS-HT family, thereby providing an opportunity to identify a new disease gene for this condition.

  4. Identification of Y-Chromosome Sequences in Turner Syndrome.

    Science.gov (United States)

    Silva-Grecco, Roseane Lopes da; Trovó-Marqui, Alessandra Bernadete; Sousa, Tiago Alves de; Croce, Lilian Da; Balarin, Marly Aparecida Spadotto

    2016-05-01

    To investigate the presence of Y-chromosome sequences and determine their frequency in patients with Turner syndrome. The study included 23 patients with Turner syndrome from Brazil, who gave written informed consent for participating in the study. Cytogenetic analyses were performed in peripheral blood lymphocytes, with 100 metaphases per patient. Genomic DNA was also extracted from peripheral blood lymphocytes, and gene sequences DYZ1, DYZ3, ZFY and SRY were amplified by Polymerase Chain Reaction. The cytogenetic analysis showed a 45,X karyotype in 9 patients (39.2 %) and a mosaic pattern in 14 (60.8 %). In 8.7 % (2 out of 23) of the patients, Y-chromosome sequences were found. This prevalence is very similar to those reported previously. The initial karyotype analysis of these patients did not reveal Y-chromosome material, but they were found positive for Y-specific sequences in the lymphocyte DNA analysis. The PCR technique showed that 2 (8.7 %) of the patients with Turner syndrome had Y-chromosome sequences, both presenting marker chromosomes on cytogenetic analysis.

  5. Genetics Home Reference: ring chromosome 20 syndrome

    Science.gov (United States)

    ... drugs. Prolonged seizure episodes known as non-convulsive status epilepticus also appear to be characteristic of ring chromosome ... K, Takahashi Y. Ring chromosome 20 and nonconvulsive status epilepticus. A new epileptic syndrome. Brain. 1997 Jun;120 ( ...

  6. Trisomy 10p and translocation of 10q to 4p associated with selective dysgenesis of IgA-producing cells in lymphoid tissue.

    Science.gov (United States)

    Saiga, Tatsuyoshi; Hashimoto, Kazuhiro; Kimura, Nobusuke; Ono, Hisako; Hiai, Hiroshi

    2007-01-01

    A combined chromosomal abberation trisomy of the short arm of chromosome 10 associated with translocation of 10q to chromosome 4p was found in a 14-month-old boy, who died after repeated bouts of pneumonia. The translocation involved the target region 4p16.3 of Wolf-Hirschhorn syndrome and/or Pitt-Rogers-Danks syndrome. The karyotype was 46,XY,der(4)t(4;10)(p16;q11.2),i(10)(p10),ish der(4)t(4;10)(p16.3;q11.2) (D4S96+,D4Z1+),i(10) (pter ++). In addition to growth retardation and external as well as internal dysmorphism, the patient had abnormalities of the immune system, such as thymic involution, generalized lymph node enlargement, unusual distribution of T cells in lymphoid follicles, and selective IgA deficiency. The IgA-producing cells were rarely found in lymph nodes but normally in intestinal mucosa. In contrast, in the lymph nodes, the paracortical T-lymphocytes were hyperplastic, but they rarely entered the primary follicles. It is assumed that the chromosomal abnormality may lead to the dysfunction of T lymphocytes and, further, to the dysgenesis of IgA-producing cells in lymph nodes but not in intestinal mucosa. This suggests that the thymus may differentially control the subsets of IgA-producing cells in lymph nodes and intestinal mucosa.

  7. Aberrations of chromosome 8 in myelodysplastic syndromes: Clinical and biological significance

    Directory of Open Access Journals (Sweden)

    Marisavljević Dragomir

    2006-01-01

    Full Text Available Introduction: Rearrangements of any single chromosome in human karyotype have been reported in patients with pMDS. Objective: To examine the role of aberrations of chromosome 8 in pathogenesis, clinical presentation and progression of myelodysplastic syndromes. Method: Cytogenetic analysis of bone marrow cells was carried out by direct method and by means of 24- and/or 48-hour unstimulated cell culture. Chromosomes were obtained by modified method of HG-bands. Results: On presentation, 109 out of 271 successfully karyotyped patients (40,2% had abnormal karyotypes. Among them, 22 patients (10.9% had aberrations of chromosome 8. Ten patients had trisomy 8 as "simple" aberration whilst additional three cases had trisomy 8 included in "complex" karyotypes (≥3 chromosomes. Cases with constitutional trisomy 8 mosaicism (CT8M were excluded using the chromosome analyses of PHA-stimulated blood cultures. On the contrary, monosomy (seven patients or deletion of chromosome 8 (two patients were exclusively found in "complex" karyotypes. During prolonged cytogenetic follow-up, trisomy 8 was not recorded in evolving karyotypes. In contrast, trisomy 8 disappeared in two cases during subsequent cytogenetic studies, i.e. 23 and 72 months from diagnosis, accompanied in one patient with complete hematological remission. No difference regarding age, sex, cytopenia, blood and marrow blast count or response to treatment was found between patients with trisomy 8 as the sole aberration compared to those with normal cytogenetics. Median survival of patients with trisomy 8 as the sole aberration was 27 months, as compared to 32 months in patients with normal cytogenetics (p=0.468, whilst median survival of patients with aberrations of chromosome 8 included in "complex" karyotypes was only 4 months. Conclusion: Aberrations of chromosome 8 are common in patients with pMDS. The presence of a clone with trisomy 8 is not always the sign of disease progression or poor

  8. Clinical, cytogenetic and molecular investigation in a fetus with Wolf-Hirschhorn syndrome with paternally derived 4p deletion. Case report and review of the literature.

    Science.gov (United States)

    Dietze, Ilona; Fritz, Barbara; Huhle, Dagmar; Simoens, Wouter; Piecha, Ernestine; Rehder, Helga

    2004-01-01

    Wolf-Hirschhorn (4p-) syndrome (WHS), caused by partial deletion of the short arm of chromosome 4, has been extensively described in children and young adults. Knowledge on fetuses with WHS is still limited due to the small number of published cases. We report on a fetus with prenatally diagnosed severe intrauterine growth retardation, reduced thoracal diameter, clubfeet deformity and midface hypoplasia including slight microretrognathia indicative for fetal karyotyping. Chromosome analysis after amniocentesis revealed a de novo terminal deletion of chromosome 4p [karyotype: 46,XX,del(4) (p16)] which was confirmed by FISH. Analyses of a set of polymorphic markers mapping in 4pter->4p15.3 showed absence of paternal haplotypes. These observations corroborate the preferential paternal origin of the de novo 4p deletion in WHS patients. Furthermore, the distal breakpoint could be narrowed to band 4p16.1. At autopsy, the fetus showed typical craniofacial dysmorphic signs of WHS, severe IUGR and delayed bone age. This report suggests the possibility of recognising the particular phenotype of WHS in utero by prenatal ultrasound and emphasises the importance of karyotyping fetuses with severe IUGR, especially when the amount of amniotic fluid is normal. Copyright 2004 S. Karger AG, Basel

  9. Distal 4p microdeletion in a case of Wolf-Hirschhorn syndrome with congenital diaphragmatic hernia.

    Science.gov (United States)

    Casaccia, Germana; Mobili, Luisa; Braguglia, Annabella; Santoro, Francesco; Bagolan, Pietro

    2006-03-01

    Wolf-Hirschhorn syndrome (WHS) is a well-known genetic condition characterized by typical facial anomalies, midline defects, skeletal anomalies, prenatal and postnatal growth retardation, hypotonia, mental retardation, and seizures. Affected patients with a microdeletion on distal 4p present a milder phenotype that lacks congenital malformations. WHS is rarely associated with congenital diaphragmatic hernia (CDH), and only 8 cases are reported in the literature. In almost all cases of CDH and WHS a large deletion of the short arm of chromosome 4 is present. A microdeletion of 2.6 Mb on distal 4p associated with CDH and multiple congenital malformations (i.e., cleft palate) is reported for the first time. Such a microdeletion should prompt a molecular study for WHS when in a fetus/newborn with CDH the association with cleft lip/palate and typical facial appearance (flat facial profile, hypertelorism) is found. Copyright 2006 Wiley-Liss, Inc.

  10. [Origin and morphological features of small supernumerary marker chromosomes in Turner syndrome].

    Science.gov (United States)

    Liu, Nan; Tong, Tong; Chen, Yue; Chen, Yanling; Cai, Chunquan

    2018-02-10

    OBJECTIVE To explore the origin and morphological features of small supernumerary marker chromosomes (sSMCs) in Turner syndrome. METHODS For 5 cases of Turner syndrome with a sSMC identified by conventional G-banding, dual-color fluorescence in situ hybridization (FISH) was applied to explore their origin and morphological features. RESULTS Among the 5 cases, 3 have derived from the X chromosome, which included 2 ring chromosomes and 1 centric minute. For the 2 sSMCs derived from the Y chromosome, 1 was ring or isodicentric chromosome, while the other was an isodicentric chromosome. CONCLUSION The sSMCs found in Turner syndrome have almost all derived from sex chromosomes. The majority of sSMCs derived from the X chromosome will form ring chromosomes, while a minority will form centric minute. While most sSMC derived from Y chromosome may exist as isodicentric chromosomes, and a small number may exist as rings. For Turner syndrome patients with sSMCs, dual-color FISH may be used to delineate their origins to facilitate genetic counseling and selection of clinical regime.

  11. Quantitative trait loci on chromosomes 2p, 4p, and 13q influence bone mineral density of the forearm and hip in Mexican Americans.

    Science.gov (United States)

    Kammerer, Candace M; Schneider, Jennifer L; Cole, Shelley A; Hixson, James E; Samollow, Paul B; O'Connell, Jeffrey R; Perez, Reina; Dyer, Thomas D; Almasy, Laura; Blangero, John; Bauer, Richard L; Mitchell, Braxton D

    2003-12-01

    We performed a genome scan using BMD data of the forearm and hip on 664 individuals in 29 Mexican-American families. We obtained evidence for QTL on chromosome 4p, affecting forearm BMD overall, and on chromosomes 2p and 13q, affecting hip BMD in men. The San Antonio Family Osteoporosis Study (SAFOS) was designed to identify genes and environmental factors that influence bone mineral density (BMD) using data from large Mexican-American families. We performed a genome-wide linkage analysis using 416 highly polymorphic microsatellite markers spaced approximately 9.5 cM apart to locate and identify quantitative trait loci (QTL) that affect BMD of the forearm and hip. Multipoint variance components linkage analyses were done using data on all 664 subjects, as well as two subgroups of 259 men and 261 premenopausal women, from 29 families for which genotypic and phenotypic data were available. We obtained significant evidence for a QTL affecting forearm (radius midpoint) BMD in men and women combined on chromosome 4p near D4S2639 (maximum LOD = 4.33, genomic p = 0.006) and suggestive evidence for a QTL on chromosome 12q near locus D12S2070 (maximum conditional LOD = 2.35). We found suggestive evidence for a QTL influencing trochanter BMD on chromosome 6 (maximum LOD = 2.27), but no evidence for QTL affecting the femoral neck in men and women combined. In men, we obtained evidence for QTL affecting neck and trochanter BMD on chromosomes 2p near D2S1780 (maximum LOD = 3.98, genomic p = 0.013) and 13q near D13S788 (maximum LOD = 3.46, genomic p = 0.039), respectively. We found no evidence for QTL affecting forearm or hip BMD in premenopausal women. These results provide strong evidence that a QTL on chromosome 4p affects radius BMD in Mexican-American men and women, as well as evidence that QTL on chromosomes 2p and 13q affect hip BMD in men. Our results are consistent with some reports in humans and mice. J Bone Miner Res 2003;18:2245-2252

  12. Prenatal diagnosis of trisomy 4p: a new locus for holoprosencephaly?

    Science.gov (United States)

    Karmous-Benailly, Houda; Tabet, Anne-Claude; Thaly, Adeline; Dupuy, Olivier; Huten, Yolène; Luton, Dominique; Baumann, Clarisse; Delezoide, Anne-Lise

    2005-03-01

    Trisomy of the short arm of chromosome 4 is a well-known syndrome, and several observations have been made in the last 30 years. Herein, we report a new observation of trisomy 4p in a fetus with a semi-lobar holoprosencephaly (HPE), dysmorphic features and multiple malformations. The diagnosis of HPE was made, at 33 weeks' gestation, on the fetus of a healthy G1P0 woman. Amniocentesis was performed for chromosome analysis and additional material was found on a chromosome 22. The couple elected to terminate the pregnancy and fetal examination was realized. Conventional and molecular cytogenetic studies were performed on the fetus and the parents, which showed that the additional material found on one chromosome 22 corresponded to the short arm of chromosome 4 and therefore led us to establish a diagnosis of trisomy 4p inherited from the malsegregation of a paternal translocation t(4;22)(q12;q11.1). The etiology of HPE is very heterogeneous; it includes non-genetic factors such as maternal diabetes and genetic causes. HPE cases have been described in association with many chromosomal anomalies, trisomy 13 being the most frequent. However, to our knowledge, HPE has never been previously reported in association with a trisomy involving solely the short arm of chromosome 4. Copyright 2005 John Wiley & Sons, Ltd.

  13. Diagnosis of a terminal deletion of 4p with duplication of Xp22.31 in a patient with findings of Opitz G/BBB syndrome and Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    So, Joyce; Müller, Ines; Kunath, Melanie; Herrmann, Susanne; Ullmann, Reinhard; Schweiger, Susann

    2008-01-01

    Opitz G/BBB syndrome (OS) is a congenital midline malformation syndrome characterized by hypertelorism, hypospadias, cleft lip/palate, laryngotracheoesophageal abnormalities, imperforate anus, developmental delay and cardiac defects. The X-linked form is caused by mutations in the MID1 gene, while no gene has yet been identified for the autosomal dominant form. Here, we report on a 15-year-old boy who was referred for MID1 mutation analysis with findings typical of OS, including apparent hypertelorism, hypospadias, a history of feeding difficulties, dysphagia secondary to esophageal arteria lusoria, growth retardation and developmental delay. No MID1 mutation was found, but subsequent sub-megabase resolution array CGH unexpectedly documented a 2.34 Mb terminal 4p deletion, suggesting a diagnosis of WHS, and a duplication in Xp22.31. Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving terminal chromosome 4p deletions, in particular 4p16.3. WHS is characterized by typical facial appearance ("Greek helmet facies"), mental retardation, congenital hypotonia, and growth retardation. While the severity of developmental delay in this patient supports the diagnosis of WHS rather than OS, this case illustrates the striking similarities of clinical findings in seemingly unrelated syndromes, suggesting common or interacting pathways at the molecular and pathogenetic level. This is the first report of arteria lusoria (esophageal vascular ring) in a patient with WHS. (c) 2007 Wiley-Liss, Inc.

  14. Chromosomal Abnormalities Associated With Omphalocele

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-03-01

    Full Text Available Fetuses with omphalocele have an increased risk for chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with umbilical cord cysts, complexity of associated anomalies, and the contents of omphalocele. There is considerable evidence that genetics contributes to the etiology of omphalocele. This article provides an overview of chromosomal abnormalities associated with omphalocele and a comprehensive review of associated full aneuploidy such as trisomy 18, trisomy 13, triploidy, trisomy 21, 45,X, 47,XXY, and 47,XXX, partial aneuploidy such as dup(3q, dup(11p, inv(11, dup(1q, del(1q, dup(4q, dup(5p, dup(6q, del(9p, dup(15q, dup(17q, Pallister-Killian syndrome with mosaic tetrasomy 12p and Miller-Dieker lissencephaly syndrome with deletion of 17p13.3, and uniparental disomy (UPD such as UPD 11 and UPD 14. Omphalocele is a prominent marker for chromosomal abnormalities. Perinatal identification of omphalocele should alert chromosomal abnormalities and familial unbalanced translocations, and prompt thorough cytogenetic investigations and genetic counseling.

  15. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  16. Chromosomal sensitivity to X-rays in lymphocytes from patients with Turner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Heras, J G; Coco, R

    1986-03-01

    Lymphocytes from patients with Turner syndrome were irradiated with X-rays to determine the chromosomal aberration frequency in first-division metaphases. Five patients with 45,X karyotype; three 45,X/46,Xi(X)q mosaics; one 45,X/47,XXX mosaic and 9 female controls were studied. Patients with a 45,X karyotype exhibited a radioinduced chromosomal aberration frequency similar to controls. In the mosaics, 45,X cells has a mean frequency of 38.75 +- 2.16; 46,Xi(X)q cells a mean of 38 +- 2.16 and the control group a rate of 36.25 +- 4.32. No differences were observed between 45,X and 46,Xi(X)q cells, 45,X and normal cells or 46,Xi(X)q and normal cells. Apparently neither the X monosomy nor the Xq isochromosome influences the in vitro X-ray-induced chromosomal damage in Turner syndrome lymphocytes. (Auth.). 29 references, 4 tables.

  17. A case of Wolf-Hirschhorn syndrome and hypoplastic left heart syndrome.

    Science.gov (United States)

    von Elten, Kelley; Sawyer, Taylor; Lentz-Kapua, Sarah; Kanis, Adam; Studer, Matthew

    2013-06-01

    Wolf-Hirschhorn Syndrome (WHS) is a genetic syndrome that includes a typical facial appearance, mental retardation, growth delay, seizures, and congenital cardiac defects. A deletion of the terminal band of the short arm of chromosome 4, with a breakpoint at the 4p15 to 4p16 region, is the most common genetic mutation causing WHS. Congenital heart disease associated with WHS typically includes atrial and ventricular septal defects, though there are a few case reports of associated complex congenital heart disease. Here we report a case of an infant with a large 4p deletion, with a breakpoint at the 4p12 region, and hypoplasic left heart syndrome. We discuss a possible link between the size of the chromosomal deletion in WHS and the severity of the cardiac defect.

  18. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  19. Gain of chromosomal region 20q and loss of 18 discriminates between Lynch syndrome and familial colorectal cancer

    DEFF Research Database (Denmark)

    Therkildsen, Christina; Jönsson, Göran; Dominguez-Valentin, Mev

    2013-01-01

    Lynch syndrome and familial colorectal cancer type X, FCCTX, represent the two predominant colorectal cancer syndromes. Whereas Lynch syndrome is clinically and genetically well defined, the genetic cause of FCCTX is unknown and genomic differences between Lynch syndrome and FCCTX tumours...... are largely unknown. We applied array-based comparative genomic hybridisation to 23 colorectal cancers from FCCTX with comparison to 23 Lynch syndrome tumours and to 45 sporadic colorectal cancers. FCCTX tumours showed genomic complexity with frequent gains on chromosomes 20q, 19 and 17 and losses of 18, 8p...... and 15. Gain of genetic material in two separate regions encompassing, 20q12-13.12 and 20q13.2-13.32, was identified in 65% of the FCCTX tumours. Gain of material on chromosome 20q and loss on chromosome 18 significantly discriminated colorectal cancers associated with FCCTX from Lynch syndrome, which...

  20. Duplication 4p and deletion 4p (Wolf-Hirschhorn syndrome) due to complementary gametes from a 3:1 segregation of a maternal balanced t(4;13)(p16;q11) translocation.

    Science.gov (United States)

    Takeno, S S; Corbani, M; Andrade, J A D; Smith, M de A C; Brunoni, D; Melaragno, M I

    2004-08-30

    We present clinical and cytogenetic data on a family with a t(4;13)(p16;q11) translocation present in four generations. The balanced translocation resulted in one individual with monosomy 4p and one individual with trisomy 4p, due to 3:1 segregation. The male patient with trisomy 4p was fertile and transmitted the extra chromosome to his daughter. Copyright 2004 Wiley-Liss, Inc.

  1. Chromosome 15q24 microdeletion syndrome

    Directory of Open Access Journals (Sweden)

    Magoulas Pilar L

    2012-01-01

    Full Text Available Abstract Chromosome 15q24 microdeletion syndrome is a recently described rare microdeletion syndrome that has been reported in 19 individuals. It is characterized by growth retardation, intellectual disability, and distinct facial features including long face with high anterior hairline, hypertelorism, epicanthal folds, downslanting palpebral fissures, sparse and broad medial eyebrows, broad and/or depressed nasal bridge, small mouth, long smooth philtrum, and full lower lip. Other common findings include skeletal and digital abnormalities, genital abnormalities in males, hypotonia, behavior problems, recurrent infections, and eye problems. Other less frequent findings include hearing loss, growth hormone deficiency, hernias, and obesity. Congenital malformations, while rare, can be severe and include structural brain anomalies, cardiovascular malformations, congenital diaphragmatic hernia, intestinal atresia, imperforate anus, and myelomeningocele. Karyotypes are typically normal, and the deletions were detected in these individuals by array comparative genomic hybridization (aCGH. The deletions range in size from 1.7-6.1 Mb and usually result from nonallelic homologous recombination (NAHR between paralogous low-copy repeats (LCRs. The majority of 15q24 deletions have breakpoints that localize to one of five LCR clusters labeled LCR15q24A, -B, -C, -D, and -E. The smallest region of overlap (SRO spans a 1.2 Mb region between LCR15q24B to LCR15q24C. There are several candidate genes within the SRO, including CYP11A1, SEMA7A, CPLX3, ARID3B, STRA6, SIN3A and CSK, that may predispose to many of the clinical features observed in individuals with 15q24 deletion syndrome. The deletion occurred as a de novo event in all of the individuals when parents were available for testing. Parental aCGH and/or FISH studies are recommended to provide accurate genetic counseling and guidance regarding prognosis, recurrence risk, and reproductive options. Management

  2. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. (Universita di Bari (Italy)); Antonacci, R. (Instituto Anatomia Umana Normale, Modena (Italy))

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  3. Chromosomal sensitivity to X-rays in lymphocytes from patients with Turner syndrome

    International Nuclear Information System (INIS)

    Heras, J.G.; Coco, R.

    1986-01-01

    Lymphocytes from patients with Turner syndrome were irradiated with X-rays to determine the chromosomal aberration frequency in first-division metaphases. Five patients with 45,X karyotype; three 45,X/46,Xi(X)q mosaics; one 45,X/47,XXX mosaic and 9 female controls were studied. Patients with a 45,X karyotype exhibited a radioinduced chromosomal aberration frequency similar to controls. In the mosaics, 45,X cells has a mean frequency of 38.75 +- 2.16; 46,Xi(X)q cells a mean of 38 +- 2.16 and the control group a rate of 36.25 +- 4.32. No differences were observed between 45,X and 46,Xi(X)q cells, 45,X and normal cells or 46,Xi(X)q and normal cells. Apparently neither the X monosomy nor the Xq isochromosome influences the 'in vitro' X-ray-induced chromosomal damage in Turner syndrome lymphocytes. (Auth.)

  4. 1.5Mb deletion of chromosome 4p16.3 associated with postnatal growth delay, psychomotor impairment, epilepsy, impulsive behavior and asynchronous skeletal development.

    Science.gov (United States)

    Misceo, D; Barøy, T; Helle, J R; Braaten, O; Fannemel, M; Frengen, E

    2012-10-01

    Several Wolf-Hirschhorn syndrome patients have been studied, mouse models for a few candidate genes have been constructed and two WHS critical regions have been postulated, but the molecular basis of the syndrome remains poorly understood. Single gene contributions to phenotypes of microdeletion syndromes have often been based on the study of patients carrying small, atypical deletions. We report a 5-year-old girl harboring an atypical 1.5Mb del4p16.3 and review seven previously published patients carrying a similar deletion. They show a variable clinical presentation and the only consistent feature is post-natal growth delay. However, four of eight patients carry a ring (4), and ring chromosomes in general are associated with growth deficiency. The Greek helmet profile is absent, although a trend towards common dysmorphic features exists. Variable expressivity and incomplete penetrance might play a role in WHS, resulting in difficult clinical diagnosis and challenge in understanding of the genotype/phenotype correlation. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Molecular cytogenetic characterization of the first reported case of an inv dup (4p)(p15.1-pter) with a concomitant 4q35.1-qter deletion and normal parents.

    Science.gov (United States)

    Tassano, E; Alpigiani, M G; Salvati, P; Gimelli, S; Lorini, R; Gimelli, G

    2012-12-15

    Inverted duplications associated with terminal deletions are complex anomalies described in an increasing of chromosome ends. We report on the cytogenetic characterization of the first de novo inv dup del(4) with partial 4p duplication and 4q deletion in a girl with clinical signs consistent with "recombinant 4 syndrome". This abnormality was suspected by banding, but high-resolution molecular cytogenetic investigations allowed us to define the breakpoints of the rearrangement. The terminal duplicated region extending from 4p15.1 to the telomere was estimated to be 29.27 Mb, while the size of the terminal deletion was 3.114 Mb in the 4q35.1 region. Until now, 10 patients with duplicated 4p14-p15 and deleted 4q35 chromosome 4 have been described. In all cases the abnormal chromosome 4 was derived from a pericentric inversion inherited from one of the parents. In conclusion, we have identified the first case of inv dup del(4) with normal parents suggesting that, often, terminal duplications or terminal deletions mask complex rearrangements. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Neocentric X-chromosome in a girl with Turner-like syndrome

    Directory of Open Access Journals (Sweden)

    Hemmat Morteza

    2012-06-01

    Full Text Available Abstract Background Neocentromeres are rare human chromosomal aberrations in which a new centromere has formed in a previously non-centromeric location. We report the finding of a structurally abnormal X chromosome with a neocentromere in a 15-year-old girl with clinical features suggestive of Turner syndrome, including short stature and primary amenorrhea. Result G-banded chromosome analysis revealed a mosaic female karyotype involving two abnormal cell lines. One cell line (84% of analyzed metaphases had a structurally abnormal X chromosome (duplication of the long arm and deletion of the short arm and a normal X chromosome. The other cell line (16% of cells exhibited monosomy X. C-banding studies were negative for the abnormal X chromosome. FISH analysis revealed lack of hybridization of the abnormal X chromosome with both the X centromere-specific probe and the “all human centromeres” probe, a pattern consistent with lack of the X chromosome endogenous centromere. A FISH study using an XIST gene probe revealed the presence of two XIST genes, one on each long arm of the iso(Xq, required for inactivation of the abnormal X chromosome. R-banding also demonstrated inactivation of the abnormal X chromosome. An assay for centromeric protein C (CENP-C was positive on both the normal and the abnormal X chromosomes. The position of CENP-C in the abnormal X chromosome defined a neocentromere, which explains its mitotic stability. The karyotype is thus designated as 46,X,neo(X(qter- > q12::q12- > q21.2- > neo- > q21.2- > qter[42]/45,X[8], which is consistent with stigmata of Turner syndrome. The mother of this patient has a normal karyotype; however, the father was not available for study. Conclusion To our knowledge, this is the first case of mosaic Turner syndrome involving an analphoid iso(Xq chromosome with a proven neocentromere among 90 previously described cases with a proven neocentromere.

  7. RBPJ is disrupted in a case of proximal 4p deletion syndrome with epilepsy.

    Science.gov (United States)

    Nakayama, Tojo; Saitsu, Hirotomo; Endo, Wakaba; Kikuchi, Atsuo; Uematsu, Mitsugu; Haginoya, Kazuhiro; Hino-fukuyo, Naomi; Kobayashi, Tomoko; Iwasaki, Masaki; Tominaga, Teiji; Kure, Shigeo; Matsumoto, Naomichi

    2014-06-01

    Proximal 4p deletion syndrome is characterized clinically by mental retardation, minor dysmorphic facial features, and is occasionally complicated with epilepsy. More than 20 cases of proximal 4p deletion syndrome have been reported, but the causative gene(s) remain elusive. We describe here a 2-year-old female patient with a common manifestation of proximal 4p deletion syndrome and infantile epileptic encephalopathy possessing a de novo balanced translocation t(4;13)(p15.2;q12.13). The patient was diagnosed as infantile spasms at 9 months of age. She presented with dysmorphic facial features and global developmental delay, compatible with proximal 4p deletion syndrome. Using fluorescence in situ hybridization, we determined the translocation breakpoint at 4p15.2 to be within RBPJ. RBPJ is a transcription factor in the Notch/RBPJ signaling pathway, playing a crucial role in the developing human brain, and particularly telencephalon development. Our findings, combined with those of previous studies, strongly suggest that RBPJ is causative for proximal 4p deletion syndrome and epilepsy in this case. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  8. Rare human diseases: 9p deletion syndrome

    Directory of Open Access Journals (Sweden)

    Galagan V.O.

    2014-09-01

    Full Text Available Objective of the study was to review the anamnesis, pheno - and genotype in patients with rare chromosome disorders such as 9p deletion syndrome. Genetic methods of investigation (clinical and genealogical, cytogenetic, FISH- method, paraclinical and instrumental methods of examination were used. Karyotyping was performed by the G-method of differential staining of chromosomes. Only three cases of pathology were diagnosed in the Medical Genetics Center over the last 10 years. By anamnesis data nobody in the probands’ families had bad habits, was exposed to occupational hazards, took part in the elimination of the Chernobyl accident or lived in contaminated areas. Clinical signs of diseases have not been identified in probands’ parents. All probands had trigonocephaly, bilateral epicanthal folds, ocular hypertelorism, downslanting palpebral fissures, long philtrum, flat face and nasal bridge, low set ears with malformed auricles. Two patients of three ones had exophthalmos, contracture of the second and third fingers, abnormal external genitalia. In all three cases there was monosomy of chromosome 9 of critical segment p 24. Normal karyotypes were seen in all parents, so there were three cases of new mutations of 9p deletion syndrome. Retardation of physical, psycho-spech, mental development in proband with or without congenital anomalies requires medical genetic counseling in a specialized institution. Cases of reproductive loss in anamnesis require cytogenetic investigation of fetal membranes and amniotic fluid.

  9. Bloom syndrome and maternal uniparental disomy for chromosome 15

    Energy Technology Data Exchange (ETDEWEB)

    Woodage, T.; Prasad, M.; Trent, R.J.; Smith, A. (Children' s Hospital, Camperdown, New South Wales (New Zealand)); Dixon, J.W.; Romain, D.R.; Columbano-Green, L.M.; Selby, R.E. (Wellington Hospital (New Zealand)); Graham, D. (Waikato Hospital, Hamilton (New Zealand)); Rogan, P.K. (Pennsylvania State Univ., Hershey, PA (United States)) (and others)

    1994-07-01

    Bloom syndrome (BS) is an autosomal recessive disorder characterized by increases in the frequency of sister-chromatid exchange and in the incidence of malignancy. Chromosome-transfer studies have shown the BS locus to map to chromosome 15q. This report describes a subject with features of both BS and Prader-Willi syndrome (PWS). Molecular analysis showed maternal uniparental disomy for chromosome 15. Meiotic recombination between the two disomic chromosomes 15 has resulted in heterodisomy for proximal 15q and isodisomy for distal 15q. In this individual BS is probably due to homozygosity for a gene that is telomeric to D15S95 (15q25), rather than to genetic imprinting, the mechanism responsible for the development of PWS. This report represents the first application of disomy analysis to the regional localization of a disease gene. This strategy promises to be useful in the genetic mapping of other uncommon autosomal recessive conditions. 37 refs., 3 figs., 2 tabs.

  10. Down-Turner Syndrome: A Case with Double Monoclonal Chromosomal Abnormality

    Directory of Open Access Journals (Sweden)

    Gioconda Manassero-Morales

    2016-01-01

    Full Text Available Introduction. The coexistence of Down and Turner syndromes due to double chromosome aneuploidy is very rare; it is even more rare to find the presence of a double monoclonal chromosomal abnormality. Objective. To report a unique case of double monoclonal chromosomal abnormality with trisomy of chromosome 21 and an X ring chromosome in all cells studied; no previous report has been found. Case Report. Female, 28 months old, with pathological short stature from birth, with the following dysmorphic features: tilted upward palpebral fissures, short neck, brachycephaly, and low-set ears. During the neonatal period, the infant presented generalized hypotonia and lymphedema of hands and feet. Karyotype showed 47,X,r(X,+21 [30]. Conclusion. Clinical features of both Down and Turner syndromes were found, highlighting short stature that has remained below 3 z score from birth to the present, associated with delayed psychomotor development. G-banded karyotype analysis in peripheral blood is essential for a definitive diagnosis.

  11. Introduction of a normal human chromosome 8 corrects abnormal phenotypes of Werner syndrome cells immortalized by expressing an hTERT gene

    International Nuclear Information System (INIS)

    Ariyoshi, Kentaro; Kodama, Seiji; Suzuki, Keiji; Goto, Makoto; Oshimura, Mitsuo; Ishizaki, Kanji; Watanabe, Masami

    2009-01-01

    Werner syndrome (WS) is an autosomal recessive disease characterized by premature aging and caused by mutations of the WRN gene mapped at 8p12. To examine functional complementation of WS phenotypes, we introduced a normal human chromosome 8 into a strain of WS fibroblasts (WS3RGB) immortalized by expressing a human telomerase reverse transcriptase subunit (hTERT) gene. Here, we demonstrate that the abnormal WS phenotypes including cellular sensitivities to 4-nitroquinoline-1-oxide (4NQO) and hydroxy urea (HU), and chromosomal radiosensitivity at G 2 phase are corrected by expression of the WRN gene mediated by introducing a chromosome 8. This indicates that those multiple abnormal WS phenotypes are derived from a primary, but not secondary, defect in the WRN gene. (author)

  12. Distribution of X-ray-induced chromosome breakpoints in Down syndrome lymphocytes

    International Nuclear Information System (INIS)

    Shafik, H.M.; Au, W.W.; Whorton, E.B. Jr.; Legator, M.S.

    1990-01-01

    Down syndrome (DS) individuals are known to be predisposed to develop leukemia and their lymphocytes are highly sensitive to the induction of chromosome aberrations by X-rays. A study was conducted to identify the chromosome breakpoints and to evaluate whether site specificity for chromosome breakage and rearrangement may exist which may explain the predisposition phenomenon. DS lymphocytes at the G1 phase of the cell cycle were irradiated with 300, 450, and 600 rad of X-rays. Cells were harvested after 3 days in culture and 193 G-banded karyotypes were analyzed to identify the induced chromosome abnormalities. Out of 273 breakpoints identified, 122 were involved in the formation of stable chromosome rearrangements and 151 in the formation of unstable abnormalities. The Poisson analysis of these breakpoints demonstrated that 16 chromosome bands located in chromosomes 1, 3, 7, 12, 17, 19 and X were preferentially involved in breakage and rearrangement (P less than 0.05). These 16 bands are also found to be locations of cancer breakpoints, oncogenes, or fragile sites. Many abnormal cells were observed to carry stable chromosome rearrangements only. Therefore, these cells are presumed to be compatible with survival and to be initiated in the transformation process. We propose that similar stable and site-specific chromosome rearrangements may exist in proliferating cells in DS individuals after exposure to clastogens and that this abnormality predisposes them to develop leukemia

  13. A ring D chromosome in association with Down's syndrome-like phenotype

    Directory of Open Access Journals (Sweden)

    A. Wajntal

    1973-03-01

    Full Text Available The case of a ten-years-old mentally retarded girl with Down's syndrome-like features whose chromosome analysis revealed an unusual mosaicism including 10% mitosis with a ring chromosome replacing a D chromosome is reported. The clinical features of the patient were considered similar to those described by Jacobsen (1966 and Emberger et al. (1971 who interpreted the ring chromosome present in their patients as being chromosome 15.

  14. Pendred syndrome (goitre and sensorineural hearing loss) maps to chromosome 7 in the region containing the nonsyndromic deafness gene DFNB4.

    Science.gov (United States)

    Coyle, B; Coffey, R; Armour, J A; Gausden, E; Hochberg, Z; Grossman, A; Britton, K; Pembrey, M; Reardon, W; Trembath, R

    1996-04-01

    Inherited causes account for about 50% of individuals presenting with childhood (prelingual) hearing loss, of which 70% are due to mutation in numerous single genes which impair auditory function alone (non-syndromic). The remainder are associated with other developmental anomalies termed syndromic deafness. Genes responsible for syndromic forms of hearing loss include the COL4A5 gene in Alport syndrome and the PAX3 and MITF genes in Waardenburg syndrome. Pendred syndrome is an autosomal recessive disorder associated with developmental abnormalities of the cochlea, sensorineural hearing loss and diffuse thyroid enlargement (goitre). Pendred syndrome is the most common syndromal form of deafness, yet the primary defect remains unknown. We have established a panel of 12 families with two or more affected individuals and used them to search for the location of the Pendred gene by linkage analysis. We excluded localization to four previously mapped nonsyndromic deafness loci but obtained conclusive evidence for linkage of the Pendred syndrome gene to microsatellite markers on chromosome 7q31 (D7S495 Zmax 7.32, Qmax = 0). This region contains a gene, DFNBL, for autosomal recessive non-syndromic sensorineural hearing loss. Multipoint analysis indicates that DFNB4 and Pendred syndrome co-localize to the same 5.5 centiMorgan (cM) interval flanked by D7S501 and D7S523. These data raise the possibility that Pendred syndrome is either allelic with DFNB4 or may represent an inherited contiguous gene disorder, not clinically manifest in the heterozygote.

  15. A recurrent deletion syndrome at chromosome bands 2p11.2-2p12 flanked by segmental duplications at the breakpoints and including REEP1.

    Science.gov (United States)

    Stevens, Servi J C; Blom, Eveline W; Siegelaer, Ingrid T J; Smeets, Eric E J G L

    2015-04-01

    We identified an identical and recurrent 9.4-Mbp deletion at chromosome bands 2p11.2-2p12, which occurred de novo in two unrelated patients. It is flanked at the distal and proximal breakpoints by two homologous segmental duplications consisting of low copy repeat (LCR) blocks in direct orientation, which have >99% sequence identity. Despite the fact that the deletion was almost 10 Mbp in size, the patients showed a relatively mild clinical phenotype, that is, mild-to-moderate intellectual disability, a happy disposition, speech delay and delayed motor development. Their phenotype matches with that of previously described patients. The 2p11.2-2p12 deletion includes the REEP1 gene that is associated with spastic paraplegia and phenotypic features related to this are apparent in most 2p11.2-2p12 deletion patients, but not in all. Other hemizygous genes that may contribute to the clinical phenotype include LRRTM1 and CTNNA2. We propose a recurrent but rare 2p11.2-2p12 deletion syndrome based on (1) the identical, non-random localisation of the de novo deletion breakpoints in two unrelated patients and a patient from literature, (2) the patients' phenotypic similarity and their phenotypic overlap with other 2p deletions and (3) the presence of highly identical LCR blocks flanking both breakpoints, consistent with a non-allelic homologous recombination (NAHR)-mediated rearrangement.

  16. Analysis of autism susceptibility gene loci on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q in Finnish multiplex families.

    Science.gov (United States)

    Auranen, M; Nieminen, T; Majuri, S; Vanhala, R; Peltonen, L; Järvelä, I

    2000-05-01

    The role of genetic factors in the etiology of the autistic spectrum of disorders has clearly been demonstrated. Ten chromosomal regions, on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q have potentially been linked to autism.1-8 We have analyzed these chromosomal regions in a total of 17 multiplex families with autism originating from the isolated Finnish population by pairwise linkage analysis and sib-pair analysis. Mild evidence for putative contribution was found only with the 1p chromosomal region in the susceptibility to autism. Our data suggest that additional gene loci exist for autism which will be detectable in and even restricted to the isolated Finnish population.

  17. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease

    Science.gov (United States)

    van der Crabben, Saskia N.; Hennus, Marije P.; McGregor, Grant A.; Ritter, Deborah I.; Nagamani, Sandesh C.S.; Wells, Owen S.; Harakalova, Magdalena; Chinn, Ivan K.; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M.; Terheggen-Lagro, Suzanne W.; van Lieshout, Stef; van Roosmalen, Markus J.; Renkens, Ivo; Duran, Karen; Nijman, Isaac J.; Kloosterman, Wigard P.; Hennekam, Eric; van Hasselt, Peter M.; Wheeler, David A.; Palecek, Jan J.; Lehmann, Alan R.; Oliver, Antony W.; Pearl, Laurence H.; Plon, Sharon E.; Murray, Johanne M.

    2016-01-01

    The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood. PMID:27427983

  18. Multivariate analysis of anxiety disorders yields further evidence of linkage to chromosomes 4q21 and 7p in panic disorder families.

    Science.gov (United States)

    Logue, Mark W; Bauver, Sarah R; Knowles, James A; Gameroff, Marc J; Weissman, Myrna M; Crowe, Raymond R; Fyer, Abby J; Hamilton, Steven P

    2012-04-01

    Replication has been difficult to achieve in linkage studies of psychiatric disease. Linkage studies of panic disorder have indicated regions of interest on chromosomes 1q, 2p, 2q, 3, 7, 9, 11, 12q13, 12q23, and 15. Few regions have been implicated in more than one study. We examine two samples, the Iowa (IA) and the Columba panic disorder families. We use the fuzzy-clustering method presented by Kaabi et al. [Kaabi et al. (2006); Am J Hum Genet 78: 543-553] to summarize liability to panic disorder, agoraphobia, simple phobia, and social phobia. Kaabi et al. applied this method to the Yale panic disorder linkage families and found evidence of linkage to chromosomes 4q21, 4q32, 7p, and 8. When we apply the same method to the IA families, we obtain overlapping evidence of linkage to chromosomes 4q21 and 7p. Additionally, we find evidence of linkage on chromosomes 1, 5, 6, 16, and 22. The Columbia (CO) data does not indicate linkage to any of the Kaabi et al. peaks, instead implicating chromosomes 2 and 22q11 (2 Mb from COMT). There is some evidence of overlapping linkage between the IA and CO datasets on chromosomes 1 and 14. While use of fuzzy clustering has not produced complete concordance across datasets, it has produced more than previously seen in analyses of panic disorder proper. We conclude that chromosomes 4q21 and 7p should be considered strong candidate regions for panic and fear-associated anxiety disorder loci. More generally, this suggests that analyses including multiple aspects of psychopathology may lead to greater consistency across datasets. Copyright © 2012 Wiley Periodicals, Inc.

  19. On two patients with and without the classical Wolf-Hirschhorn syndrome (WHS) sharing the same chromosome 4p16.3 specific probe deletion: evidence of a contiguous gene deletion syndrome.

    Science.gov (United States)

    Petit, P; Schmit, J; Van den Berghe, H; Fryns, J P

    1996-07-01

    We report here on phenotype-karyotype correlations in two patients with and without complete features of the WHS but sharing the lack of a specific cosmic probe (D4S96/D4Z1) from 4p16.3. These findings indicate that WHS is true a contiguous gene deletion syndrome in nature and expression.

  20. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease

    NARCIS (Netherlands)

    van der Crabben, Saskia N; Hennus, Marije P; McGregor, Grant A; Ritter, Deborah I; Nagamani, Sandesh C S; Wells, Owen S; Harakalova, Magdalena; Chinn, Ivan K; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M; Terheggen-Lagro, Suzanne W; van Lieshout, Stef; van Roosmalen, Markus J; Renkens, Ivo; Duran, Karen; Nijman, Isaäc J.; Kloosterman, Wigard P; Hennekam, Eric; Orange, Jordan S; van Hasselt, Peter M; Wheeler, David A; Palecek, Jan J; Lehmann, Alan R; Oliver, Antony W; Pearl, Laurence H; Plon, Sharon E; Murray, Johanne M; van Haaften, Gijs

    The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome

  1. Genetic association signal near NTN4 in Tourette Syndrome

    Science.gov (United States)

    Paschou, Peristera; Yu, Dongmei; Gerber, Gloria; Evans, Patrick; Tsetsos, Fotis; Davis, Lea K.; Karagiannidis, Iordanis; Chaponis, Jonathan; Gamazon, Eric; Mueller-Vahl, Kirsten; Stuhrmann, Manfred; Schloegelhofer, Monika; Stamenkovic, Mara; Hebebrand, Johannes; Noethen, Markus; Nagy, Peter; Barta, Csaba; Tarnok, Zsanett; Rizzo, Renata; Depienne, Christel; Worbe, Yulia; Hartmann, Andreas; Cath, Danielle C.; Budman, Cathy L.; Sandor, Paul; Barr, Cathy; Wolanczyk, Thomas; Singer, Harvey; Chou, I-Ching; Grados, Marco; Posthuma, Danielle; Rouleau, Guy A.; Aschauer, Harald; Freimer, Nelson B.; Pauls, David L.; Cox, Nancy J.; Mathews, Carol A.; Scharf, Jeremiah M.

    2014-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder with a complex genetic etiology. Through an international collaboration, we genotyped 42 single nucleotide polymorphisms (SNPs)(p<10−3) from the recent TS genome-wide association study (GWAS) in 609 independent cases and 610 ancestry-matched controls. Only rs2060546 on chromosome 12q22 (p=3.3×10−4) remained significant after Bonferroni correction. Meta-analysis with the original GWAS yielded the strongest association to date (p=5.8×10−7). Although its functional significance is unclear, rs2060546 lies closest to NTN4, an axon guidance molecule expressed in developing striatum. Risk score analysis significantly predicted case/control status (p=0.042), suggesting that many of these variants are true TS risk alleles. PMID:25042818

  2. Genetics Home Reference: ring chromosome 14 syndrome

    Science.gov (United States)

    ... be something about the ring structure itself that causes epilepsy. Seizures may occur because certain genes on the ... mapping of telomeric 14q32 deletions: search for the cause of seizures. Am J Med Genet A. ... L, Elia M, Vigevano F. Epilepsy in ring 14 chromosome syndrome. Epilepsy Behav. 2012 ...

  3. Molecular diagnostic testing for Klinefelter syndrome and other male sex chromosome aneuploidies

    Directory of Open Access Journals (Sweden)

    Hager Karl

    2012-04-01

    Full Text Available Abstract Background Male sex chromosome aneuploidies are underdiagnosed despite concomitant physical and behavioral manifestations. Objective To develop a non-invasive, rapid and high-throughput molecular diagnostic assay for detection of male sex chromosome aneuploidies, including 47,XXY (Klinefelter, 47,XYY, 48,XXYY and 48,XXXY syndromes. Methods The assay utilizes three XYM and four XA markers to interrogate Y:X and X:autosome ratios, respectively. The seven markers were PCR amplified using genomic DNA isolated from a cohort of 323 males with aneuploid (n = 117 and 46,XY (n = 206 karyotypes. The resulting PCR products were subjected to Pyrosequencing, a quantitative DNA sequencing method. Results Receiver operator characteristic (ROC curves were used to establish thresholds for the discrimination of aneuploid from normal samples. The XYM markers permitted the identification of 47,XXY, 48,XXXY and 47,XYY syndromes with 100% sensitivity and specificity in both purified DNA and buccal swab samples. The 48,XXYY karyotype was delineated by XA marker data from 46,XY; an X allele threshold of 43% also permitted detection of 48,XXYY with 100% sensitivity and specificity. Analysis of X chromosome-specific biallelic SNPs demonstrated that 43 of 45 individuals (96% with 48,XXYY karyotype had two distinct X chromosomes, while 2 (4% had a duplicate X, providing evidence that 48,XXYY may result from nondisjunction during early mitotic divisions of a 46,XY embryo. Conclusions Quantitative Pyrosequencing, with high-throughput potential, can detect male sex chromosome aneuploidies with 100% sensitivity.

  4. Early onset intellectual disability in chromosome 22q11.2 deletion syndrome.

    Science.gov (United States)

    Cascella, Marco; Muzio, Maria Rosaria

    2015-01-01

    Chromosome 22q11.2 deletion syndrome, or DiGeorge syndrome, or velocardiofacial syndrome, is one of the most common multiple anomaly syndromes in humans. This syndrome is commonly caused by a microdelection from chromosome 22 at band q11.2. Although this genetic disorder may reflect several clinical abnormalities and different degrees of organ commitment, the clinical features that have driven the greatest amount of attention are behavioral and developmental features, because individuals with 22q11.2 deletion syndrome have a 30-fold risk of developing schizophrenia. There are differing opinions about the cognitive development, and commonly a cognitive decline rather than an early onset intellectual disability has been observed. We report a case of 22q11.2 deletion syndrome with both early assessment of mild intellectual disabilities and tetralogy of Fallot as the only physic manifestation. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Prenatal diagnosis of a 1.6-Mb 4p16.3 interstitial microdeletion encompassing FGFRL1 and TACC3 associated with bilateral cleft lip and palate of Wolf-Hirschhorn syndrome facial dysmorphism and short long bones

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2017-12-01

    Conclusion: Haploinsufficiency of FGFRL1 and TACC3 at 4p16.3 can be associated with bilateral cleft lip and palate of WHS facial dysmorphism and short long bones. Prenatal diagnosis of facial cleft with short long bones should raise a suspicion of chromosome microdeletion syndromes.

  6. Non-random X chromosome inactivation in an affected twin in a monozygotic twin pair discordant for Wiedemann-Beckwith syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Oestavik, R.E.; Eiklid, K.; Oerstavik, K.H. [Ulleval Univ. Hospital, Oslo (Norway)] [and others

    1995-03-27

    Wiedemann-Beckwith syndrome (WBS) is a syndrome including exomphalos, macroglossia, and generalized overgrowth. The locus has been assigned to 11p15, and genomic imprinting may play a part in the expression of one or more genes involved. Most cases are sporadic. An excess of female monozygotic twins discordant for WBS have been reported, and it has been proposed that this excess could be related to the process of X chromosome inactivation. We have therefore studied X chromosome inactivation in 13-year-old monozygotic twin girls who were discordant for WBS. In addition, both twins had Tourette syndrome. The twins were monochorionic and therefore the result of a late twinning process. This has also been the case in previously reported discordant twin pairs with information on placentation. X chromosome inactivation was determined in DNA from peripheral blood cells by PCR analysis at the androgen receptor locus. The affected twin had a completely skewed X inactivation, where the paternal allele was on the active X chromosome in all cells. The unaffected twin had a moderately skewed X inactivation in the same direction, whereas the mother had a random pattern. Further studies are necessary to establish a possible association between the expression of WBS and X chromosome inactivation. 18 refs., 2 figs., 1 tab.

  7. Cytogenetic evaluation of chromosomal disorders in Down Syndrome

    International Nuclear Information System (INIS)

    Shafik, H.M.

    1987-01-01

    Down Syndrome (DS) patients are at high risk to develop leukemia. They are also highly sensitive to the induction of chromosomal aberrations when their GO lymphocytes are irradiated in vitro. The objective of this study was to further investigate the differential radiosensitivity of DS lymphocytes at the different stages of the cell cycle, as damage to proliferating cells is more relevant to health problems than damage to non-dividing cells. In addition, the proliferation kinetics and stage of differentiation of circulating DS lymphocytes was studied in an attempt to understand the mechanism for the enhanced chromosomal radiosensitivity. Moreover, the x-ray induced specific chromosomal breakpoints were identified and correlated with the locations of oncogene and fragile sites in order to investigate cytogenetically the early stages of leukemogenesis

  8. Clinical, Cytogenetic, and Biochemical Analyses of a Family with a t(3;13(q26.2;p11.2: Further Delineation of 3q Duplication Syndrome

    Directory of Open Access Journals (Sweden)

    M. Abreu-González

    2013-01-01

    Full Text Available Chromosomal abnormalities that result in genomic imbalances are a major cause of congenital and developmental anomalies. Partial duplication of chromosome 3q syndrome is a well-described condition, and the phenotypic manifestations include a characteristic facies, microcephaly, hirsutism, synophrys, broad nasal bridge, congenital heart disease, genitourinary disorders, and mental retardation. Approximately 60%–75% of cases are derived from a balanced translocation. We describe a family with a pure typical partial trisomy 3q syndrome derived from a maternal balanced translocation t(3;13(q26.2;p11.2. As the chromosomal rearrangement involves the short arm of an acrocentric chromosome, the phenotype corresponds to a pure trisomy 3q26.2-qter syndrome. There are 4 affected individuals and several carriers among three generations. The report of this family is relevant because there are few cases of pure duplication 3q syndrome reported, and the cases described here contribute to define the phenotype associated with the syndrome. Furthermore, we confirmed that the survival until adulthood is possible. This report also identified the presence of glycosaminoglycans in urine in this family, not related to the chromosomal abnormality or the phenotype.

  9. Copy number neutral loss of heterozygosity at 17p and homozygous mutations of TP53 are associated with complex chromosomal aberrations in patients newly diagnosed with myelodysplastic syndromes.

    Science.gov (United States)

    Svobodova, Karla; Zemanova, Zuzana; Lhotska, Halka; Novakova, Milena; Podskalska, Lucie; Belickova, Monika; Brezinova, Jana; Sarova, Iveta; Izakova, Silvia; Lizcova, Libuse; Berkova, Adela; Siskova, Magda; Jonasova, Anna; Cermak, Jaroslav; Michalova, Kyra

    2016-03-01

    Complex karyotypes are seen in approximately 20% of patients with myelodysplastic syndromes (MDS) and are associated with a high risk of transformation to acute myeloid leukemia and poor outcomes in patients. Copy number neutral loss of heterozygosity (CN-LOH, i.e., both copies of a chromosomal pair or their parts originate from one parent) might contribute to increased genomic instability in the bone-marrow cells of patients with MDS. The pathological potential of CN-LOH, which arises as a clonal aberration in a proportion of somatic cells, consists of tumor suppressor gene and oncogene homozygous mutations. The aim of our study was to evaluate the frequency of CN-LOH at 17p in bone-marrow cells of newly diagnosed MDS patients with complex chromosomal aberrations and to assess its correlation with mutations in the TP53 gene (17p13.1). CN-LOH was detected in 40 chromosomal regions in 21 (29%) of 72 patients analyzed. The changes in 27 of the 40 regions identified were sporadic. The most common finding was CN-LOH of the short arm of chromosome 17, which was detected in 13 (18%) of 72 patients. A mutational analysis confirmed the homozygous mutation of TP53 in all CN-LOH 17p patients, among which two frameshift mutations are not registered in the International Agency for Research on Cancer TP53 Database. CN-LOH 17p correlated with aggressive disease (median overall survival 4 months) and was strongly associated with a complex karyotype in the cohort studied, which might cause rapid disease progression in high-risk MDS. No other CN-LOH region previously recorded in MDS or AML patients (1p, 4q, 7q, 11q, 13q, 19q, 21q) was detected in our cohort of patients with complex karyotype examined at the diagnosis of MDS. The LOH region appeared to be balanced (i.e., with no DNA copy number change) when examined with conventional and molecular cytogenetic methods. Therefore, a microarray that detects single-nucleotide polymorphisms is an ideal method with which to identify and

  10. Delineation of the 3p14.1p13 microdeletion associated with syndromic distal limb contractures.

    Science.gov (United States)

    Thevenon, Julien; Monnier, Nicole; Callier, Patrick; Dieterich, Klaus; Francoise, Michel; Montgomery, Tara; Kjaergaard, Susanne; Neas, Katherine; Dixon, Joanne; Dahm, Thomas Lee; Huet, Frédéric; Ragon, Clémence; Mosca-Boidron, Anne-Laure; Marle, Nathalie; Duplomb, Laurence; Aubriot-Lorton, Marie-Hélène; Mugneret, Francine; Vokes, Steve A; Tucker, Haley W; Lunardi, Joël; Faivre, Laurence; Jouk, Pierre Simon; Thauvin-Robinet, Christel

    2014-12-01

    Distal limb contractures (DLC) represent a heterogeneous clinical and genetic condition. Overall, 20-25% of the DLC are caused by mutations in genes encoding the muscle contractile apparatus. Large interstitial deletions of the 3p have already been diagnosed by standard chromosomal analysis, but not associated with a specific phenotype. We report on four patients with syndromic DLC presenting with a de novo 3p14.1p13 microdeletion. The clinical features associated multiple contractures, feeding problems, developmental delay, and intellectual disability. Facial dysmorphism was constant with low-set posteriorly rotated ears and blepharophimosis. Review of previously reported cases with a precise mapping of the deletions, documented a 250 kb smallest region of overlap (SRO) necessary for DLC. This region contained one gene, EIF4E3, the first three exons of the FOXP1 gene, and an intronic enhancer of FOXP1 named hs1149. Sanger sequencing and locus quantification of hs1149, EIF4E3, and FOXP1 in a cohort of 11 French patients affected by DLC appeared normal. In conclusion, we delineate a new microdeletion syndrome involving the 3p14.1p13 locus and associated with DLC and severe developmental delay. © 2014 Wiley Periodicals, Inc.

  11. A case of 18p deletion syndrome after blepharoplasty

    Directory of Open Access Journals (Sweden)

    Xu LJ

    2017-01-01

    Full Text Available Li-juan Xu,1 Lv-xian Wu,2 Qing Yuan,3 Zhi-gang Lv,1 Xue-yan Jiang2 1Department of Opthalmology, 2Department of Pediatrics, 3Department of Clinical Laboratory, Jinhua Central Hospital, Jinhua, Zhejiang, People’s Republic of China Objective: The deletion of the short arm of chromosome 18 is thought to be one of the rare chromosomal aberrations. Here, we report a case to review this disease.Case report: The proband is a five-and-a-half-year-old girl who has had phenotypes manifested mainly by ptosis, broad face, broad neck with low posterior hairline, mental retardation, short stature, and other malformations. Chromosomal analysis for her mother showed a normal karyotype. Her father and younger brother were phenotypically normal.Result: Phenotypical features were quite similar throughout other cases and in accordance with the usual phenotype of del(18p suggested within the same cases and among the del(18p cases described. She underwent blepharoplasty, which improved her appearance.Conclusion: 18p deletion syndrome is diagnosed by gene analysis. Plastic surgeries for improving the appearance might be an option for these patients. Keywords: chromosome, deletion, blepharoplasty

  12. Primary myelodysplastic syndrome with complex chromosomal rearrangements in a patient with Klinefelter's syndrome.

    OpenAIRE

    Abidi, S M; Griffiths, M; Oscier, D G; Mufti, G J; Hamblin, T J

    1986-01-01

    A patient with Klinefelter's syndrome and diabetes mellitus was diagnosed as having myelodysplasia. Cytogenetic analysis of the peripheral blood and the bone marrow cells confirmed the presence of a constitutional 47,XXY chromosome complement. In addition, complex karyotypic abnormalities were present.

  13. Constitutional chromosome anomalies in patients with cerebral gigantism (Sotos syndrome).

    Science.gov (United States)

    Haeusler, G; Guchev, Z; Köhler, I; Schober, E; Haas, O; Frisch, H

    1993-01-01

    Two boys are presented with the clinical features of cerebral gigantism and chromosomal variants which have not been described so far in this syndrome. In the first boy a de novo pericentric inversion of chromosome Y was found, the karyotypes of all other investigated family members were normal. The patient had an obstructive hypertrophic cardiomyopathy and atrial septal defect type II. The second boy had inherited pericentric inversion of the heterochromatic region of chromosome 9 from his mother. This chromosome 9 variant was also found in his sister who had a similar phenotype but without gigantism. Endocrine evaluation demonstrated normal results in both boys. The intellectual achievement in both cases was average.

  14. Localisation of the gene for achondroplasia to the telomeric region of chromosome 4p

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, I.; Velinov, M.; Kilpatrick, M.W. [and others

    1994-09-01

    Achondroplasia (ACH), the most common type of genetic dwarfism, is characterized by a variety of skeletal anomalies including disproportionate short stature and rhizomelic shortening of the extremities. The disorder is inherited as an autosomal dominant trait, with a prevalence of 1-15 per 100,000 live births. The etiology of ACH remains unknown, although evidence points to a defect in the maturation of the chondrocytes in the growth plate of the cartilage. To determine the location of the gene responsible for ACH, a panel of 14 families with a total of 43 meioses was genotyped for 40 polymorphic markers for loci randomly distributed throughout the genome. The first significant positive Lod score was obtained for the locus D4S127 (Zmax=3.65 at {theta}=0.03). A series of 20 markers for chromosome 4p16.3 loci were then used to determine the most likely position of the ACH gene. Two additional loci, D4S412 and IDUA, showed strong linkage to the disease (Zmax=3.34 at {theta}=0.03 and Zmax=3.35 at {theta}=0.0, respectively). Multipoint analysis and direct counting of recombinants places the ACH gene in a 2.5 cM region between the marker D4S43 and the chromosome 4p telomere. No evidence was found for genetic heterogeneity. The ACH region contains a number of genes, including that for the fibroblast growth factor receptor FGFR3, which are being evaluated as candidates for the ACH gene. This identification of tightly linked polymorphic markers, as well as being the first step in the characterization of the ACH gene, offers the possibility of DNA based prenatal diagnosis of this disorder.

  15. High-resolution physical map for chromosome 16q12.1-q13, the Blau syndrome locus

    Directory of Open Access Journals (Sweden)

    Bonavita Gina

    2002-08-01

    Full Text Available Abstract Background The Blau syndrome (MIM 186580, an autosomal dominant granulomatous disease, was previously mapped to chromosome 16p12-q21. However, inconsistent physical maps of the region and consequently an unknown order of microsatellite markers, hampered us from further refining the genetic locus for the Blau syndrome. To address this problem, we constructed our own high-resolution physical map for the Blau susceptibility region. Results We generated a high-resolution physical map that provides more than 90% coverage of a refined Blau susceptibility region. The map consists of four contigs of sequence tagged site-based bacterial artificial chromosomes with a total of 124 bacterial artificial chromosomes, and spans approximately 7.5 Mbp; however, three gaps still exist in this map with sizes of 425, 530 and 375 kbp, respectively, estimated from radiation hybrid mapping. Conclusions Our high-resolution map will assist genetic studies of loci in the interval from D16S3080, near D16S409, and D16S408 (16q12.1 to 16q13.

  16. Inactivation of the P16INK4/MTS1 gene by a chromosome translocation t(9;14)(p21-22;q11) in an acute lymphoblastic leukemia of B-cell type.

    Science.gov (United States)

    Duro, D; Bernard, O; Della Valle, V; Leblanc, T; Berger, R; Larsen, C J

    1996-02-15

    We have reported previously a preliminary study of a t(9;14)(p21-22; q11) in B-cell acute lymphoblastic leukemia. This translocation had rearranged the TCRA/D locus on chromosome band 14q11 and the locus encoding the tumor suppressor gene P16INK4/MTS1 (P16) on band 9p21 (D. Duro et al., Oncogene, 11: 21-29, 1995). In the present report, the breakpoints were precisely localized on each chromosome partner. On the 14q- derivative, the sequence derived from chromosome 9 was interrupted at 1.0 kb upstream of the first exon of P16, close to a consensus recombination heptamer, CACTGTG. In addition, the chromosome 14 breakpoint was localized at the end of the TCRD2 (delta 2) segment, and 22 residues with unknown origin were present at the translocation junction. On the 9p+ derivative, chromosome 9 sequences were in continuity with those displaced onto chromosome 14, and the 14q11 breakpoint was located within TCRJA29 segment. These features are consistent with aberrant activity of the TCR gene recombinase complex. Although all three coding exons of P16 were displaced onto the chromosome 14q-derivative, no P16 transcript was detected in the leukemic cells. Because the region spanning the P16 exon 1 was not inactivated by methylation and because the other P16 allele was deleted, the implication is that the chromosome breakpoint was likely to disrupt regulatory elements involved in the normal expression of the gene. As a whole, then, our results show that translocations affecting band 9p21 can participate to the inactivation of P16, thus justifying a systematic survey of translocations of the 9p21 band in acute lymphoblastic leukemia.

  17. Coexistence of 9p Deletion Syndrome and Autism Spectrum Disorder

    Science.gov (United States)

    Günes, Serkan; Ekinci, Özalp; Ekinci, Nuran; Toros, Fevziye

    2017-01-01

    Deletion or duplication of the short arm of chromosome 9 may lead to a variety of clinical conditions including craniofacial and limb abnormalities, skeletal malformations, mental retardation, and autism spectrum disorder. Here, we present a case report of 5-year-old boy with 9p deletion syndrome and autism spectrum disorder.

  18. Molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome derived from chromosome 8 or r(8(::p12→q13.1:: associated with phenotypic abnormalities

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2016-12-01

    Conclusion: Mosaic sSMC(8 derived from r(8(::p12→q13.1:: can present phenotypic abnormalities. Chromosome 8q12 duplication syndrome should be included in differential diagnosis when an sSMC(8 contains 8q12.2 and CHD7.

  19. Is there a yet unreported unbalanced chromosomal abnormality without phenotypic consequences in proximal 4p?

    Science.gov (United States)

    Liehr, T; Bartels, I; Zoll, B; Ewers, E; Mrasek, K; Kosyakova, N; Merkas, M; Hamid, A B; von Eggeling, F; Posorski, N; Weise, A

    2011-01-01

    Unbalanced chromosomal abnormalities (UBCA) are reported for >50 euchromatic regions of almost all human autosomes. UBCA are comprised of a few megabases of DNA, and carriers are in many cases clinically healthy. Here we report on a partial trisomy of chromosome 4 of the centromere-near region of the short arm of chromosome 4 present as a small supernumerary marker chromosome (sSMC). The sSMC was present in >70% of amnion cells and in 60% of placenta. Further delineation of the size of the duplicated region was done by molecular cytogenetics and array comparative genomic hybridization. Even though the sSMC lead to a partial trisomy of ~9 megabase pairs, a healthy child was born, developing normally at 1 year of age. No comparable cases are available in the literature. Thus, we discuss here the possibility of having found a yet unrecognized chromosomal region subject to UBCA. Copyright © 2010 S. Karger AG, Basel.

  20. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P.

    Science.gov (United States)

    Li, Huanhuan; Jiang, Bo; Wang, Jingchang; Lu, Yuqing; Zhang, Jinpeng; Pan, Cuili; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-01-01

    A physical map of Agropyron cristatum 2P chromosome was constructed for the first time and the novel powdery mildew resistance gene(s) from chromosome 2P was(were) also mapped. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies showed that wheat-A. cristatum 2P disomic addition line II-9-3 displayed high resistance to powdery mildew, and the resistance was attributable to A. cristatum chromosome 2P. To utilize and physically map the powdery mildew resistance gene(s), 15 wheat-A. cristatum 2P translocation lines and three A. cristatum 2P deletion lines with different chromosomal segment sizes, obtained from II-9-3 using 60 Co-γ ray irradiation, were characterized using cytogenetic and molecular marker analysis. A. cristatum 2P chromosomal segments in the translocations were translocated to different wheat chromosomes, including 1A, 4A, 5A, 6A, 7A, 1B, 2B, 3B, 7B, 3D, 4D, and 6D. A physical map of the 2P chromosome was constructed with 82 STS markers, consisting of nine bins with 34 markers on 2PS and eight bins with 48 markers on 2PL. The BC 1 F 2 populations of seven wheat-A. cristatum 2P translocation lines (2PT-3, 2PT-4, 2PT-5, 2PT-6, 2PT-8, 2PT-9, and 2PT-10) were developed by self-pollination, tested with powdery mildew and genotyped with 2P-specific STS markers. From these results, the gene(s) conferring powdery mildew resistance was(were) located on 2PL bin FL 0.66-0.86 and 19 2P-specific markers were identified in this bin. Moreover, two new powdery mildew-resistant translocation lines (2PT-4 and 2PT-5) with small 2PL chromosome segments were obtained. The newly developed wheat lines with powdery mildew resistance and the closely linked molecular markers will be valuable for wheat disease breeding in the future.

  1. A unique mosaic Turner syndrome patient with androgen receptor gene derived marker chromosome.

    Science.gov (United States)

    Kalkan, Rasime; Özdağ, Nermin; Bundak, Rüveyde; Çirakoğlu, Ayşe; Serakinci, Nedime

    2016-01-01

    Patients with Turner syndrome are generally characterized by having short stature with no secondary sexual characteristics. Some abnormalities, such as webbed neck, renal malformations (>50%) and cardiac defects (10%) are less common. The intelligence of these patients is considered normal. Non-mosaic monosomy X is observed in approximately 45% of postnatal patients with Turner syndrome and the rest of the patients have structural abnormalities or mosaicism involving 46,X,i(Xq), 45,X/46,XX, 45,X and other variants. The phenotype of 45,X/46,X,+mar individuals varies by the genetic continent and degree of the mosaicism. The gene content of the marker chromosome is the most important when correlating the phenotype with the genotype. Here we present an 11-year-old female who was referred for evaluation of her short stature and learning disabilities. Conventional cytogenetic investigation showed a mosaic 45,X/46,X,+mar karyotype. Fluorescence in situ hybridization showed that the marker chromosome originated from the X chromosome within the androgen receptor (AR) and X-inactive specific transcript (XIST) genes. Therefore, it is possible that aberrant activation of the marker chromosome, compromising the AR and XIST genes, may modify the Turner syndrome phenotype.

  2. Unique mosaicism of structural chromosomal rearrangement: is chromosome 18 preferentially involved?

    NARCIS (Netherlands)

    Pater, J.M. de; Smeets, D.F.C.M.; Scheres, J.M.J.C.

    2003-01-01

    The mentally normal mother of a 4-year-old boy with del(18)(q21.3) syndrome was tested cytogenetically to study the possibility of an inherited structural rearrangement of chromosome 18. She was found to carry an unusual mosaicism involving chromosomes 18 and 21. Two unbalanced cell lines were seen

  3. Oral, physical, and behavioral aspects of patient with chromosome 47, XYY syndrome.

    Science.gov (United States)

    Scheidt, Lisa; Sanabe, Mariane Emi; Diniz, Michele Baffi

    2015-01-01

    Chromosome 47, XYY syndrome is usually diagnosed late. Some of the clinical characteristics of XYY syndrome may be perceptible in dental care. The slow development of cognitive and motor activities and tall stature is common in XYY patients. The aim of this article was to relate the oral, physical, and behavioral aspects of a 6-year-old patient with the chromosome 47, XYY syndrome, diagnosed by means of karyotyping. The patient presented motor difficulty, which led to a fall and traumatism in the anterior region. In the radiography, agenesia of the permanent maxillary lateral incisors, presence of taurodontism in the primary molars, and macrodontia of the maxillary central incisors and permanent molars could be observed. Once the diagnosis was made, it was possible to understand his difficulty at school, and make available appropriate monitoring by a suitable multidisciplinary team to stimulate, control, and minimize the day-to-day difficulties found by patients with this syndrome.

  4. Oral, physical, and behavioral aspects of patient with chromosome 47, XYY syndrome

    Directory of Open Access Journals (Sweden)

    Lisa Scheidt

    2015-01-01

    Full Text Available Chromosome 47, XYY syndrome is usually diagnosed late. Some of the clinical characteristics of XYY syndrome may be perceptible in dental care. The slow development of cognitive and motor activities and tall stature is common in XYY patients. The aim of this article was to relate the oral, physical, and behavioral aspects of a 6-year-old patient with the chromosome 47, XYY syndrome, diagnosed by means of karyotyping. The patient presented motor difficulty, which led to a fall and traumatism in the anterior region. In the radiography, agenesia of the permanent maxillary lateral incisors, presence of taurodontism in the primary molars, and macrodontia of the maxillary central incisors and permanent molars could be observed. Once the diagnosis was made, it was possible to understand his difficulty at school, and make available appropriate monitoring by a suitable multidisciplinary team to stimulate, control, and minimize the day-to-day difficulties found by patients with this syndrome.

  5. Prenatal forehead edema in 4p- deletion: the 'Greek warrior helmet' profile revisited.

    Science.gov (United States)

    Levaillant, J M; Touboul, C; Sinico, M; Vergnaud, A; Serero, S; Druart, L; Blondeau, J R; Abd Alsamad, I; Haddad, B; Gérard-Blanluet, M

    2005-12-01

    Deletion of short arm of chromosome 4 is difficult to ascertain prenatally, and can be missed. A prenatal suspicion of 4p- syndrome was thoroughly investigated by using two-dimensional and three-dimensional sonography, with a description of the fetal face dysmorphological pattern. The cytogenetic confirmation, obtained by karyotype and FISH technique, allowed a precise description of the prenatal abnormalities. Post-termination tridimensional helicoidal scanner of the fetal face was performed. The main anomaly discovered using two-dimensional sonography was the presence of a strikingly thick prefrontal edema (8 mm, twice the normal values, at 22 weeks: 3.81 +/- 0.62 mm). Three-dimensional sonography showed the classical postnatal profile, with the phenotypic aspect of a 'Greek warrior helmet'. Nasal bones were normal in size and placement, confirmed by helicoidal scanner. Prenatal diagnosis of 4p deletion syndrome can be difficult, and it is the presence of prefrontal edema, associated with more subtle facial anomalies (short philtrum, microretrognathia) which should trigger cytogenetic investigation for 4p- deletion, even with only borderline growth retardation. Copyright 2005 John Wiley & Sons, Ltd

  6. Update on the clinical features and natural history of Wolf-Hirschhorn (4p-) syndrome: experience with 87 patients and recommendations for routine health supervision.

    Science.gov (United States)

    Battaglia, Agatino; Filippi, Tiziana; Carey, John C

    2008-11-15

    Wolf-Hirschhorn syndrome (WHS) is a well-known multiple congenital anomalies/mental retardation syndrome, firstly described in 1961 by Cooper and Hirschhorn. Its frequency is estimated as 1/50,000-1/20,000 births, with a female predilection of 2:1. The disorder is caused by partial loss of material from the distal portion of the short arm of chromosome 4 (4p16.3), and is considered a contiguous gene syndrome. No single gene deletions or intragenic mutations have been shown to confer the full WHS phenotype. Since the disorder was brought to the attention of geneticists, many additional cases have been published. Only in 1999, however, were the first data on the natural history brought to the attention of the medical community. The purpose of the present study is to help delineate in more detail and over a longer period of time, the natural history of WHS, in order to establish appropriate health supervision and anticipatory guidance for individuals with this disorder. We have collected information on 87 patients diagnosed with WHS (54 females and 33 males) both in USA and Italy. Age at first observation ranged between newborn and 17 years. Twenty patients have been followed from 4 months to 23 years. The deletion proximal breakpoint varied from 4p15.32 to 4p16.3, and, by FISH, was terminal and included both WHSCR. Deletion was detected by standard cytogenetics in 44/87 (50.5%) patients, whereas FISH was necessary in the other 43 (49.5%). Array-CGH analysis at 1 Mb resolution was performed in 34/87 patients, and, in 15/34 (44%), showed an unbalanced translocation leading to both a 4p monosomy and a partial trisomy for another chromosome arm. Six more patients had been previously shown to have an unbalanced translocation by karyotype analysis or FISH with a WHS-specific probe. Sixty-five of 87 patients had an apparent pure, de novo, terminal deletion; and 1/87 a tandem duplication of 4p16.1p16.3 associated with 4p16.3pter deletion. Age at diagnosis varied between 7

  7. Hypertensive Cerebral Hemorrhage in a Patient with Turner Syndrome Caused by Deletion in the Short Arm of the X Chromosome.

    Science.gov (United States)

    Hori, Yusuke S; Ohkura, Takahiro; Ebisudani, Yuki; Umakoshi, Michiari; Ishi, Masato; Oda, Kazunori; Aoi, Mizuho; Inoue, Takushi; Furujo, Mahoko; Tanaka, Hiroyuki; Fukuhara, Toru

    2018-01-01

    Turner syndrome is a chromosomal disorder usually caused by complete deletion of an X chromosome, with deletion in the short arm of the X chromosome being a rare cause of the condition. Patients with Turner syndrome commonly develop hypertension, and associated vascular complications such as aortic dissection or cerebral hemorrhage have been reported. Cerebral hemorrhage in Turner syndrome is a rare complication, and only a few reports have been published. In these reports, all patients have XO karyotypes or a mosaic type as the cause of Turner syndrome, while no other Turner syndrome types have been documented. In this report, we present for the first time a patient with Turner syndrome caused by deletion in the short arm of the X chromosome who experienced hypertensive hemorrhage as a late complication. © 2017 S. Karger AG, Basel.

  8. Rapidly progressive renal disease as part of Wolfram syndrome in a large inbred Turkish family due to a novel WFS1 mutation (p.Leu511Pro)

    DEFF Research Database (Denmark)

    Yuca, Sevil Ari; Rendtorff, Nanna Dahl; Boulahbel, Houda

    2012-01-01

    Wolfram syndrome, also named "DIDMOAD" (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness), is an inherited association of juvenile-onset diabetes mellitus and optic atrophy as key diagnostic criteria. Renal tract abnormalities and neurodegenerative disorder may occur in the third...... and fourth decade. The wolframin gene, WFS1, associated with this syndrome, is located on chromosome 4p16.1. Many mutations have been described since the identification of WFS1 as the cause of Wolfram syndrome. We identified a new homozygous WFS1 mutation (c.1532T>C; p.Leu511Pro) causing Wolfram syndrome...

  9. Genotype-Phenotype Analysis, Neuropsychological Assessment, and Growth Hormone Response in a Patient with 18p Deletion Syndrome.

    Science.gov (United States)

    Sun, Huihui; Wan, Naijun; Wang, Xinli; Chang, Liang; Cheng, Dazhi

    2018-01-01

    18p deletion syndrome is a rare chromosomal disease caused by deletion of the short arm of chromosome 18. By using cytogenetic and SNP array analysis, we identified a girl with 18p deletion syndrome exhibiting craniofacial anomalies, intellectual disability, and short stature. G-banding analysis of metaphase cells revealed an abnormal karyotype 46,XX,del(18)(p10). Further, SNP array detected a 15.3-Mb deletion at 18p11.21p11.32 (chr18:12842-15375878) including 61 OMIM genes. Genotype-phenotype correlation analysis showed that clinical manifestations of the patient were correlated with LAMA1, TWSG1, and GNAL deletions. Her neuropsychological assessment test demonstrated delay in most cognitive functions including impaired mathematics, linguistic skills, visual motor perception, respond speed, and executive function. Meanwhile, her integrated visual and auditory continuous performance test (IVA-CPT) indicated a severe comprehensive attention deficit. At age 7 and 1/12 years, her height was 110.8 cm (-2.5 SD height for age). Growth hormone (GH) treatment was initiated. After 27 months treatment, her height was increased to 129.6 cm (-1.0 SD height for age) at 9 and 4/12 years, indicating an effective response to GH treatment. © 2018 S. Karger AG, Basel.

  10. Detection of Turner syndrome using X-chromosome inactivation specific differentially methylated CpG sites: A pilot study.

    Science.gov (United States)

    Zhang, Qiang; Guo, Xiaohong; Tian, Tian; Wang, Teng; Li, Qiaoli; Wang, Lei; Liu, Yun; Xing, Qinghe; He, Lin; Zhao, Xinzhi

    2017-05-01

    Early diagnosis of Turner syndrome (TS) may improve preventive measures and treatment. X-chromosome inactivation specific differentially methylated CpG sites (XIDMSs) that are high methylated in inactive X chromosomes (Xi) and unmethylated in active X chromosomes (Xa) may be potential makers for TS detection. The candidate XIDMSs were screened from 9 male and 12 female DNA samples with normal karyotypes using the Illumina 450k array and validated by bisulfite sequencing PCR and pyrosequencing assay. X chromosome dosage was calculated according to the methylation level of multiple XIDMSs. Overall, 108 candidate XIDMSs were screened by the 450k array. Validations indicated that XIDMSs gathered and formed the X-chromosome inactivation specific differentially methylated regions (XIDMRs). Using 3 XIDMRs at SAT1, UXT and UTP14A loci, 36 TS, 22 normal female and 6 male samples were analyzed. Methylation levels of the 20 XIDMSs in the XIDMRs could distinguish between TS and normal female DNA samples, the X chromosome dosage was consistent with karyotyping data. Analyzing samples of 2 triple X syndrome and 3 Klinefelter syndrome patients suggested that this method could be used to detect X chromosome aneuploids other than TS. XIDMSs are widely spread along the X chromosome and might be effective markers for detection of TS and other X chromosome aneuploids. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Orphan Hereditary Syndromes in the Practice of Pediatric Endocrinologist

    Directory of Open Access Journals (Sweden)

    M.O. Ryznychuk

    2015-05-01

    Above-mentioned syndromes are caused by different gene mutations, namely Perlman syndrome — by homozygous or heterozygous mutation in DIS3L2 gene on the chromosome 2q37, Proteus syndrome — mutation in AKT1 gene on chromosome 14q32.3, Sotos syndrome 1 is caused by heterozygous mutation in NSD1 gene in the 5q35 region, Sotos syndrome 2 — by heterozygous mutation in NFIX gene on chromosome 19p13.3. Berardinelli syndrome, which is divided into four types, has four different mutations, namely: type 1 is caused by mutations in AGPAT2 gene in locus 9q34, type 2 — in BSCα2gene in locus 11q13, type 3 — by mutations in CAV1 gene (locus 7q31, type 4 — by mutation in PTRF gene located on the chromosome 17.

  12. A Turner Syndrome Patient Carrying a Mosaic Distal X Chromosome Marker

    Directory of Open Access Journals (Sweden)

    Roberto L. P. Mazzaschi

    2014-01-01

    Full Text Available A skin sample from a 17-year-old female was received for routine karyotyping with a set of clinical features including clonic seizures, cardiomyopathy, hepatic adenomas, and skeletal dysplasia. Conventional karyotyping revealed a mosaic Turner syndrome karyotype with a cell line containing a small marker of X chromosome origin. This was later confirmed on peripheral blood cultures by conventional G-banding, fluorescence in situ hybridisation and microarray analysis. Similar Turner mosaic marker chromosome cases have been previously reported in the literature, with a variable phenotype ranging from the mild “classic” Turner syndrome to anencephaly, agenesis of the corpus callosum, complex heart malformation, and syndactyly of the fingers and toes. This case report has a phenotype that is largely discordant with previously published cases as it lies at the severe end of the Turner variant phenotype scale. The observed cytogenetic abnormalities in this study may represent a coincidental finding, but we cannot exclude the possibility that the marker has a nonfunctioning X chromosome inactivation locus, leading to functional disomy of those genes carried by the marker.

  13. Rheumatoid arthritis in an adult patient with mosaic distal 18q-, 18p- and ring chromosome 18 [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Alanna Chau

    2018-02-01

    Full Text Available Ring chromosome 18 has a highly variable phenotype, depending on the extent of distal arm deletions. It is most commonly presented as a combination of 18p- and distal 18q- syndrome. IgA deficiency and autoimmune diseases have been previously described in these patients. Seven cases of juvenile rheumatoid arthritis (JRA have been reported. Here we report the first case of late onset rheumatoid arthritis (RA in a 32 year old Dominican woman with hypothyroidism, vitiligo, IgA deficiency, interstitial lung disease (ILD, cystic bronchiectasis, and features consistent with ringed 18, 18p- and distal 18q syndrome.  The multiple autoimmune findings in our patient lends further support to the idea of loci on chromosome 18 playing a role in autoimmune disease expression. Late onset RA and ILD in a patient with chromosome 18 abnormalities are novel findings and are additional conditions to be aware of in this population.

  14. Klinefelter syndrome and other sex chromosomal aneuploidies

    Directory of Open Access Journals (Sweden)

    Graham John M

    2006-10-01

    Full Text Available Abstract The term Klinefelter syndrome (KS describes a group of chromosomal disorder in which there is at least one extra X chromosome to a normal male karyotype, 46,XY. XXY aneuploidy is the most common disorder of sex chromosomes in humans, with prevalence of one in 500 males. Other sex chromosomal aneuploidies have also been described, although they are much less frequent, with 48,XXYY and 48,XXXY being present in 1 per 17,000 to 1 per 50,000 male births. The incidence of 49,XXXXY is 1 per 85,000 to 100,000 male births. In addition, 46,XX males also exist and it is caused by translocation of Y material including sex determining region (SRY to the X chromosome during paternal meiosis. Formal cytogenetic analysis is necessary to make a definite diagnosis, and more obvious differences in physical features tend to be associated with increasing numbers of sex chromosomes. If the diagnosis is not made prenatally, 47,XXY males may present with a variety of subtle clinical signs that are age-related. In infancy, males with 47,XXY may have chromosomal evaluations done for hypospadias, small phallus or cryptorchidism, developmental delay. The school-aged child may present with language delay, learning disabilities, or behavioral problems. The older child or adolescent may be discovered during an endocrine evaluation for delayed or incomplete pubertal development with eunuchoid body habitus, gynecomastia, and small testes. Adults are often evaluated for infertility or breast malignancy. Androgen replacement therapy should begin at puberty, around age 12 years, in increasing dosage sufficient to maintain age appropriate serum concentrations of testosterone, estradiol, follicle stimulating hormone (FSH, and luteinizing hormone (LH. The effects on physical and cognitive development increase with the number of extra Xs, and each extra X is associated with an intelligence quotient (IQ decrease of approximately 15–16 points, with language most affected

  15. A de-novo interstitial microduplication involving 2p16.1-p15 and mirroring 2p16.1-p15 microdeletion syndrome: Clinical and molecular analysis.

    Science.gov (United States)

    Mimouni-Bloch, Aviva; Yeshaya, Josepha; Kahana, Sarit; Maya, Idit; Basel-Vanagaite, Lina

    2015-11-01

    Microdeletions of various sizes in the 2p16.1-p15 chromosomal region have been grouped together under the 2p16.1-p15 microdeletion syndrome. Children with this syndrome generally share certain features including microcephaly, developmental delay, facial dysmorphism, urogenital and skeletal abnormalities. We present a child with a de-novo interstitial 1665 kb duplication of 2p16.1-p15. Clinical features of this child are distinct from those of children with the 2p16.1-p15 microdeletion syndrome, specifically the head circumference which is within the normal range and mild intellectual disability with absence of autistic behaviors. Microduplications many times bear milder clinical phenotypes in comparison with corresponding microdeletion syndromes. Indeed, as compared to the microdeletion syndrome patients, the 2p16.1-p15 microduplication seems to have a milder cognitive effect and no effect on other body systems. Limited information available in genetic databases about cases with overlapping duplications indicates that they all have abnormal developmental phenotypes. The involvement of genes in this location including BCL11A, USP34 and PEX13, affecting fundamental developmental processes both within and outside the nervous system may explain the clinical features of the individual described in this report. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  16. Reciprocal duplication of the Williams-Beuren syndrome deletion on chromosome 7q11.23 is associated with schizophrenia.

    Science.gov (United States)

    Mulle, Jennifer Gladys; Pulver, Ann E; McGrath, John A; Wolyniec, Paula S; Dodd, Anne F; Cutler, David J; Sebat, Jonathan; Malhotra, Dheeraj; Nestadt, Gerald; Conrad, Donald F; Hurles, Matthew; Barnes, Chris P; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F; Gejman, Pablo V; Sanders, Alan R; Duan, Jubao; Mitchell, Adele A; Peter, Inga; Sklar, Pamela; O'Dushlaine, Colm T; Grozeva, Detelina; O'Donovan, Michael C; Owen, Michael J; Hultman, Christina M; Kähler, Anna K; Sullivan, Patrick F; Kirov, George; Warren, Stephen T

    2014-03-01

    Several copy number variants (CNVs) have been implicated as susceptibility factors for schizophrenia (SZ). Some of these same CNVs also increase risk for autism spectrum disorders, suggesting an etiologic overlap between these conditions. Recently, de novo duplications of a region on chromosome 7q11.23 were associated with autism spectrum disorders. The reciprocal deletion of this region causes Williams-Beuren syndrome. We assayed an Ashkenazi Jewish cohort of 554 SZ cases and 1014 controls for genome-wide CNV. An excess of large rare and de novo CNVs were observed, including a 1.4 Mb duplication on chromosome 7q11.23 identified in two unrelated patients. To test whether this 7q11.23 duplication is also associated with SZ, we obtained data for 14,387 SZ cases and 28,139 controls from seven additional studies with high-resolution genome-wide CNV detection. We performed a meta-analysis, correcting for study population of origin, to assess whether the duplication is associated with SZ. We found duplications at 7q11.23 in 11 of 14,387 SZ cases with only 1 in 28,139 control subjects (unadjusted odds ratio 21.52, 95% confidence interval: 3.13-922.6, p value 5.5 × 10(-5); adjusted odds ratio 10.8, 95% confidence interval: 1.46-79.62, p value .007). Of three SZ duplication carriers with detailed retrospective data, all showed social anxiety and language delay premorbid to SZ onset, consistent with both human studies and animal models of the 7q11.23 duplication. We have identified a new CNV associated with SZ. Reciprocal duplication of the Williams-Beuren syndrome deletion at chromosome 7q11.23 confers an approximately tenfold increase in risk for SZ. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Chromosome r(10(p15.3q26.12 in a newborn child: case report

    Directory of Open Access Journals (Sweden)

    Jonasson Jon

    2009-12-01

    Full Text Available Abstract Background Ring chromosome 10 is a rare cytogenetic finding. Of the less than 10 reported cases we have found in the literature, none was characterized using high-resolution microarray analysis. Ring chromosomes are frequently unstable due to sister chromatid exchanges and mitotic failures. When mosaicism is present, the interpretation of genotype-phenotype correlations becomes extremely difficult. Results We report on a newborn girl with growth retardation, microcephaly, congenital heart defects, dysmorphic features and psychomotor retardation. Karyotyping revealed a non-mosaic apparently stable ring chromosome 10 replacing one of the normal homologues in all analyzed metaphases. High-resolution oligonucleotide microarray analysis showed a de novo approximately 12.5 Mb terminal deletion 10q26.12 -> qter and a corresponding 285 kb terminal deletion of 10pter -> p15.3. Conclusion This case demonstrates that an increased nuchal translucency thickness detected by early ultrasonography should preferably lead to not only QF-PCR for the diagnosis of Down syndrome but also karyotyping. In the future, microarray analysis, which needs further evaluation, might become the method of choice. The clinical phenotype of our patient was in agreement with that of patients with a terminal 10q deletion. For the purpose of genotype-phenotype analysis, there seems to be no need for a "ring syndrome" concept.

  18. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  19. Familial deletion 18p syndrome: case report

    Directory of Open Access Journals (Sweden)

    Lemyre Emmanuelle

    2006-07-01

    Full Text Available Abstract Background Deletion 18p is a frequent deletion syndrome characterized by dysmorphic features, growth deficiencies, and mental retardation with a poorer verbal performance. Until now, five families have been described with limited clinical description. We report transmission of deletion 18p from a mother to her two daughters and review the previous cases. Case presentation The proband is 12 years old and has short stature, dysmorphic features and moderate mental retardation. Her sister is 9 years old and also has short stature and similar dysmorphic features. Her cognitive performance is within the borderline to mild mental retardation range. The mother also presents short stature. Psychological evaluation showed moderate mental retardation. Chromosome analysis from the sisters and their mother revealed the same chromosomal deletion: 46, XX, del(18(p11.2. Previous familial cases were consistent regarding the transmission of mental retardation. Our family differs in this regard with variable cognitive impairment and does not display poorer verbal than non-verbal abilities. An exclusive maternal transmission is observed throughout those families. Women with del(18p are fertile and seem to have a normal miscarriage rate. Conclusion Genetic counseling for these patients should take into account a greater range of cognitive outcome than previously reported.

  20. Production and identification of wheat - Agropyron cristatum (1.4P) alien translocation lines.

    Science.gov (United States)

    Liu, Wei-Hua; Luan, Yang; Wang, Jing-Chang; Wang, Xiao-Guang; Su, Jun-Ji; Zhang, Jin-Peng; Yang, Xin-Ming; Gao, Ai-Nong; Li, Li-Hui

    2010-06-01

    The P genome of Agropyron Gaertn., a wild relative of wheat, contains an abundance of desirable genes that can be utilized as genetic resources to improve wheat. In this study, wheat - Aegilops cylindrica Host gametocidal chromosome 2C addition lines were crossed with wheat - Agropyron cristatum (L.) Gaertn. disomic addition line accession II-21 with alien recombinant chromosome (1.4)P. We successfully induced wheat - A. cristatum alien chromosomal translocations for the first time. The frequency of translocation in the progeny was 3.75%, which was detected by molecular markers and genomic in situ hybridization (GISH). The translocation chromosomes were identified by dual-color GISH /fluorescence in situ hybridization (FISH). The P genomic DNA was used as probe to detect the (1.4)P chromosome fragment, and pHvG39, pAs1, or pSc119.2 repeated sequences were used as probes to identify wheat translocated chromosomes. The results showed that six types of translocations were identified in the three wheat - A. cristatum alien translocation lines, including the whole arm or terminal portion of a (1.4)P chromosome. The (1.4)P chromosome fragments were translocated to wheat chromosomes 1B, 2B, 5B, and 3D. The breakpoints were located at the centromeres of 1B and 2B, the pericentric locations of 5BS, and the terminals of 5BL and 3DS. In addition, we obtained 12 addition-deletion lines that contained alien A. cristatum chromosome (1.4)P in wheat background. All of these wheat - A. cristatum alien translocation lines and addition-deletion lines would be valuable for identifying A. cristatum chromosome (1.4)P-related genes and providing genetic resources and new germplasm accessions for the genetic improvement of wheat. The specific molecular markers of A. cristatum (1.4)P chromosome have been developed and used to track the (1.4)P chromatin.

  1. Oral abnormalities in the Ellis-van Creveld syndrome

    Directory of Open Access Journals (Sweden)

    Babaji Prashant

    2010-01-01

    Full Text Available Ellis-van Creveld (EvC syndrome is an autosomal recessive disorder, mainly affecting the ectodermal components such as, enamel, nail, and hair. The gene for EvC syndrome is located on chromosome 4p16. Patients with EvC syndrome characteristically presents with congenitally missing teeth, abnormal frenal attachment, microdontia, and hexadactyly.

  2. Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair.

    Science.gov (United States)

    Scassa, María E; Marazita, Mariela C; Ceruti, Julieta M; Carcagno, Abel L; Sirkin, Pablo F; González-Cid, Marcela; Pignataro, Omar P; Cánepa, Eduardo T

    2007-05-01

    Genome integrity and cell proliferation and survival are regulated by an intricate network of pathways that includes cell cycle checkpoints, DNA repair and recombination, and programmed cell death. It makes sense that there should be a coordinated regulation of these different processes, but the components of such mechanisms remain unknown. In this report, we demonstrate that p19INK4d expression enhances cell survival under genotoxic conditions. By using p19INK4d-overexpressing clones, we demonstrated that p19INK4d expression correlates with the cellular resistance to UV treatment with increased DNA repair activity against UV-induced lesions. On the contrary, cells transfected with p19INK4d antisense cDNA show reduced ability to repair DNA damage and increased sensitivity to genotoxic insult when compared with their p19INK4d-overexpressing counterparts. Consistent with these findings, our studies also show that p19INK4d-overexpressing cells present not only a minor accumulation of UV-induced chromosomal aberrations but a lower frequency of spontaneous chromosome abnormalities than p19INK4d-antisense cells. Lastly, we suggest that p19INK4d effects are dissociated from its role as CDK4/6 inhibitor. The results presented herein support a crucial role for p19INK4d in regulating genomic stability and overall cell viability under conditions of genotoxic stress. We propose that p19INK4d would belong to a protein network that would integrate DNA repair, apoptotic and checkpoint mechanisms in order to maintain the genomic integrity.

  3. Mosaic male fetus of Turner syndrome with partial chromosome Y: A case report.

    Science.gov (United States)

    Xue, Dan; Cao, Dong-Hua; Mu, Kai; Lv, Yuan; Yang, Jun

    2018-06-01

    Turner syndrome, characterized by the presence of a monosomy X cell line, is a common chromosomal disorder. Patients with Turner syndrome are usually phenotypically female, and male cases are rarely reported. Here, we report a fetus with a mosaic karyotype: mos 45,X/46,X,del(Y)(q11.21). The fetus was initially misdiagnosed as female with Turner syndrome by both noninvasive prenatal testing and cytogenetic analysis of amniotic fluid and was subsequently found to have male anatomy by antenatal ultrasonography at 24 weeks gestational age. Through single nucleotide polymorphism-array and fluorescence in situ hybridization testing, we found that there was a truncated Y chromosome with sex-determining region Y (SRY) present in some cells of the fetus, which caused the male features in the fetus. © 2018 Japan Society of Obstetrics and Gynecology.

  4. Painting of fourth and chromosome-wide regulation of the 4th chromosome in Drosophila melanogaster.

    Science.gov (United States)

    Johansson, Anna-Mia; Stenberg, Per; Bernhardsson, Carolina; Larsson, Jan

    2007-05-02

    Drosophila melanogaster exhibits two expression-regulating systems that target whole, specific chromosomes: the dosage compensation system whereby the male-specific lethal complex doubles transcription of genes on the male X-chromosome and the chromosome 4-specific protein Painting of fourth, POF. POF is the first example of an autosome-specific protein and its presence raises the question of the universality of chromosome-specific regulation. Here we show that POF and heterochromatin protein 1 (HP1) are involved in the global regulation of the 4th chromosome. Contrary to previous conclusions, Pof is not essential for survival of diplo-4th karyotype flies. However, Pof is essential for survival of haplo-4th individuals and expression of chromosome 4 genes in diplo-4th individuals is decreased in the absence of Pof. Mapping of POF using chromatin immunoprecipitation suggested that it binds within genes. Furthermore, we show that POF binding is dependent on heterochromatin and that POF and HP1 bind interdependently to the 4th chromosome. We propose a balancing mechanism involving POF and HP1 that provides a feedback system for fine-tuning expression status of genes on the 4th chromosome.

  5. Haplotype analysis and a novel allele-sharing method refines a chromosome 4p locus linked to bipolar affective disorder.

    Science.gov (United States)

    Le Hellard, Stephanie; Lee, Andrew J; Underwood, Sarah; Thomson, Pippa A; Morris, Stewart W; Torrance, Helen S; Anderson, Susan M; Adams, Richard R; Navarro, Pau; Christoforou, Andrea; Houlihan, Lorna M; Detera-Wadleigh, Sevilla; Owen, Michael J; Asherson, Philip; Muir, Walter J; Blackwood, Douglas H R; Wray, Naomi R; Porteous, David J; Evans, Kathryn L

    2007-03-15

    Bipolar affective disorder (BPAD) and schizophrenia (SCZ) are common conditions. Their causes are unknown, but they include a substantial genetic component. Previously, we described significant linkage of BPAD to a chromosome 4p locus within a large pedigree (F22). Others subsequently have found evidence for linkage of BPAD and SCZ to this region. We constructed high-resolution haplotypes for four linked families, calculated logarithm of the odds (LOD) scores, and developed a novel method to assess the extent of allele sharing within genes between the families. We describe an increase in the F22 LOD score for this region. Definition and comparison of the linked haplotypes allowed us to prioritize two subregions of 3.8 and 4.4 Mb. Analysis of the extent of allele sharing within these subregions identified 200 kb that shows increased allele sharing between families. Linkage of BPAD to chromosome 4p has been strengthened. Haplotype analysis in the additional linked families refined the 20-Mb linkage region. Development of a novel allele-sharing method allowed us to bridge the gap between conventional linkage and association studies. Description of a 200-kb region of increased allele sharing prioritizes this region, which contains two functional candidate genes for BPAD, SLC2A9, and WDR1, for subsequent studies.

  6. De novo case of a partial trisomy 4p and a partial monosomy 8p.

    Science.gov (United States)

    Skrlec, Ivana; Wagner, Jasenka; Pubeljić, Silvija; Heffer, Marija; Stipoljev, Feodora

    2014-03-01

    The extent of clinical expression in cases of segmental aneuploidy often varies depending on the size of the chromosomal region involved. Here we present clinical and cytogenetic findings in a 5-month old boy with a duplication of a chromosomal segment 4p16.1-->4pter and a deletion of a chromosomal segment 8p23.1-->8pter. His karyotype was determined by applying classical GTG banding and FISH method (WHCR region, centromere 4, centromere 8, telomere 8p) as 46,XY,der(8)t(4;8)(p16.1;p23.1).ish der(8)t(4;8)(D8S504-,WHCR+,D8Z2+)dn. Parents are not related and have normal karyotypes, indicating de novo origin. We have compared similarity of the clinical features in our proband to other patients carrying only a duplication of the distal part of 4p or a deletion of distal part of 8p or similar combination described in the literature.

  7. 4p16.1-p15.31 duplication and 4p terminal deletion in a 3-years old Chinese girl: Array-CGH, genotype-phenotype and neurological characterization.

    Science.gov (United States)

    Piccione, Maria; Salzano, Emanuela; Vecchio, Davide; Ferrara, Dante; Malacarne, Michela; Pierluigi, Mauro; Ferrara, Ines; Corsello, Giovanni

    2015-07-01

    Microscopically chromosome rearrangements of the short arm of chromosome 4 include the two known clinical entities: partial trisomy 4p and deletions of the Wolf-Hirschhorn critical regions 1 and 2 (WHSCR-1 and WHSCR-2, respectively), which cause cranio-facial anomalies, congenital malformations and developmental delay/intellectual disability. We report on clinical findings detected in a Chinese patient with a de novo 4p16.1-p15.32 duplication in association with a subtle 4p terminal deletion of 6 Mb in size. This unusual chromosome imbalance resulted in WHS classical phenotype, while clinical manifestations of 4p trisomy were practically absent. This observation suggests the hypothesis that haploinsufficiency of sensitive dosage genes with regulatory function placed in WHS critical region, is more pathogenic than concomitant 4p duplicated segment. Additionally clinical findings in our patient confirm a variable penetrance of major malformations and neurological features in Chinese children despite of WHS critical region's deletion. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  8. Is Apolipoprotein E4 an Important Risk Factor for Dementia in Persons with Down Syndrome?

    Science.gov (United States)

    Rohn, Troy T; McCarty, Katie L; Love, Julia E; Head, Elizabeth

    2014-12-08

    Down syndrome is one of the most common genetic causes of intellectual disability and is characterized by a number of behavioral as well as cognitive symptoms. Triplication of all or part of human chromosome 21 has been considered as the main cause of Down syndrome. Due to the location of the amyloid precursor protein on chromosome 21, many of the neuropathological features of early-onset Alzheimer's disease including senile plaques and neurofibrillary tangles are also present in Down syndrome patients who are either demented or nondemented. Significant advances in medical treatment have increased longevity in people with Down syndrome resulting in an increased population that may be subjected to many of the same risk factors as those with Alzheimer's disease. It is well established that harboring one or both apolipoprotein E4 alleles greatly increases the risk for Alzheimer's disease. However, whether apolipoprotein E4 contributes to an earlier onset of dementia or increased mortality in Down syndrome patients is still a matter of debate. The purpose of this mini review is to provide an updated assessment on apolipoprotein E4 status and risk potential of developing dementia and mortality associated with Down syndrome.

  9. Fluorescence in situ hybridization of TP53 for the detection of chromosome 17 abnormalities in myelodysplastic syndromes.

    Science.gov (United States)

    Sánchez-Castro, Judit; Marco-Betés, Víctor; Gómez-Arbonés, Xavier; García-Cerecedo, Tomás; López, Ricard; Talavera, Elisabeth; Fernández-Ruiz, Sara; Ademà, Vera; Marugan, Isabel; Luño, Elisa; Sanzo, Carmen; Vallespí, Teresa; Arenillas, Leonor; Marco Buades, Josefa; Batlle, Ana; Buño, Ismael; Martín Ramos, María Luisa; Blázquez Rios, Beatriz; Collado Nieto, Rosa; Vargas, Ma Teresa; González Martínez, Teresa; Sanz, Guillermo; Solé, Francesc

    2015-01-01

    Conventional G-banding cytogenetics (CC) detects chromosome 17 (chr17) abnormalities in 2% of patients with de novo myelodysplastic syndromes (MDS). We used CC and fluorescence in situ hybridization (FISH) (LSI p53/17p13.1) to assess deletion of 17p in 531 patients with de novo MDS from the Spanish Group of Hematological Cytogenetics. FISH detected - 17 or 17p abnormalities in 13 cases (2.6%) in whom no 17p abnormalities were revealed by CC: 0.9% of patients with a normal karyotype, 0% in non-informative cytogenetics, 50% of patients with a chr17 abnormality without loss of 17p and 4.7% of cases with an abnormal karyotype not involving chr17. Our results suggest that applying FISH of 17p13 to identify the number of copies of the TP53 gene could be beneficial in patients with a complex karyotype. We recommend using FISH of 17p13 in young patients with a normal karyotype or non-informative cytogenetics, and always in isolated del(17p).

  10. Twin Pregnancy Obtention of Patient with Nonmosaic Klinefelter’s Syndrome and His Wife with Chromosome 9 Inversion by ICSI Treatment

    OpenAIRE

    Yueyue Hu; Haiying Peng; Changjun Zhang

    2013-01-01

    A 24-year-old man was diagnosed with klinefelter’s syndrome (KS) and his wife was found to have an inversion on chromosome 9-46, XX, inv (9) (p11q21)- because of infertility. Intracytoplasmic sperm injection (ICSI) was performed for fertilization after fluorescence in-situ hybridization (FISH) was used to analyze the aneuploidy rate of the X and Y chromosomes of the ejaculated sperms of the patient, and 99 sperms were haploid among 100 sperms that were to be analyzed. A twin pregnancy was ach...

  11. [Diagnosis of a case with Williams-Beuren syndrome with nephrocalcinosis using chromosome microarray analysis].

    Science.gov (United States)

    Jin, S J; Liu, M; Long, W J; Luo, X P

    2016-12-02

    Objective: To explore the clinical phenotypes and the genetic cause for a boy with unexplained growth retardation, nephrocalcinosis, auditory anomalies and multi-organ/system developmental disorders. Method: Routine G-banding and chromosome microarray analysis were applied to a child with unexplained growth retardation, nephrocalcinosis, auditory anomalies and multi-organ/system developmental disorders treated in the Department of Pediatrics of Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology in September 2015 and his parents to conduct the chromosomal karyotype analysis and the whole genome scanning. Deleted genes were searched in the Decipher and NCBI databases, and their relationships with the clinical phenotypes were analyzed. Result: A six-month-old boy was refered to us because of unexplained growth retardation and feeding intolerance.The affected child presented with abnormal manifestation such as special face, umbilical hernia, growth retardation, hypothyroidism, congenital heart disease, right ear sensorineural deafness, hypercalcemia and nephrocalcinosis. The child's karyotype was 46, XY, 16qh + , and his parents' karyotypes were normal. Chromosome microarray analysis revealed a 1 436 kb deletion on the 7q11.23(72701098_74136633) region of the child. This region included 23 protein-coding genes, which were reported to be corresponding to Williams-Beuren syndrome and its certain clinical phenotypes. His parents' results of chromosome microarray analysis were normal. Conclusion: A boy with characteristic manifestation of Williams-Beuren syndrome and rare nephrocalcinosis was diagnosed using chromosome microarray analysis. The deletion on the 7q11.23 might be related to the clinical phenotypes of Williams-Beuren syndrome, yet further studies are needed.

  12. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F. (Harvard Medical School, Boston, MA (USA))

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid {beta} precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.

  13. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    International Nuclear Information System (INIS)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F.

    1988-01-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid β precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS

  14. Two unique patients with novel microdeletions in 4p16.3 that exclude the WHS critical regions: implications for critical region designation.

    Science.gov (United States)

    South, Sarah T; Bleyl, Steven B; Carey, John C

    2007-09-15

    Wolf-Hirschhorn syndrome (WHS) is characterized by growth delay, developmental delay, hypotonia, seizures, feeding difficulties, and characteristic facial features. Deletion of either of two critical regions (WHSCR and WHSCR-2) within chromosome band 4p16.3 has been proposed as necessary for the minimal clinical manifestations of WHS and controversy remains regarding their designation. We describe two patients with novel terminal microdeletions in 4p16.3 who lack the characteristic facial features but do show some of the more nonspecific manifestations of WHS. The first patient had a ring chromosome 4 with an intact 4q subtelomere and a terminal 4p microdeletion of approximately 1.27-1.46 Mb. This deletion was distal to both proposed critical regions. The second patient had a normal karyotype with a terminal 4p microdeletion of approximately 1.78 Mb. This deletion was distal to WHSCR and the breakpoint was near or within the known distal boundary for WHSCR-2. Both patients showed significant postnatal growth delay, mild developmental delays and feeding difficulties. Their facial features were not typical for WHS. The phenotype of the first patient may have been influenced by the presence of a ring chromosome. Seizures were absent in the first patient whereas the second patient had a complex seizure disorder. Characterization of these patients supports the hypothesis that a gene in WHSCR-2, LETM1, plays a direct role in seizure development, and demonstrates that components of the WHS phenotype can be seen with deletions distal to the known boundaries of the two proposed critical regions. These patients also emphasize the difficulty of mapping clinical manifestations common to many aneusomy syndromes. (c) 2007 Wiley-Liss, Inc.

  15. Chromosome number in Brazilian germplasm accessions of Paspalum hydrophilum, P. modestum and P. palustre (Gramineae; Paniceae

    Directory of Open Access Journals (Sweden)

    Pozzobon Marisa T.

    2003-01-01

    Full Text Available This paper compiles results of chromosome counts of Paspalum hydrophilum, P. modestum and P. palustre. Four Brazilian accessions of P. modestum have shown 2n = 2x = 20 chromosomes, a number already found in one accession from Argentina and in two from Brazil. Three other Brazilian accessions showed tetraploid level (2n = 4x = 40, which was previously unknown in this species. In P. hydrophilum, only one of the accessions analyzed presented tetraploid level, initially established for the species from plants collected in Argentina. Five additional accessions from Brazil showed the diploid number, previously detected in a single Brazilian population. A tetraploid cytotype was found in P. palustre, previously known as a diploid species. In addition to confirming the occurrence of distinct ploidy levels for all three species, the results establish the predominance of the diploid level in P. hydrophilum and P. modestum accessions collected in Brazil.

  16. [Application of chromosome microarray analysis for fetuses with multicystic dysplastic kidney].

    Science.gov (United States)

    Chen, Feifei; Lei, Tingying; Fu, Fang; Li, Ru; Zhang, Yongling; Jing, Xiangyi; Yang, Xin; Han, Jin; Zhen, Li; Pan, Min; Liao, Can

    2016-12-10

    To explore the genetic etiology of fetuses with multicystic dysplastic kidney (MCDK) by chromosome microarray analysis (CMA). Seventy-two fetuses with MCDK were analyzed with conventional cytogenetic technique, among which 30 fetuses with a normal karyotype were subjected to CMA analysis with Affymetrix CytoScan HD arrays by following the manufacturer's protocol. The data was analyzed with ChAS software. Conventional cytogenetic technique has revealed three fetuses (4.2%) with identifiable chromosomal aberrations. CMA analysis has detected pathogenic CNVs in 5 fetuses (16.7%), which included two well-known microdeletion or microduplication syndromes, i.e., 17q12 microdeletion syndrome and Williams-Beuren syndrome (WBS) and three submicroscopic imbalances at 4q35.2, 22q13.33, and 1p33. PEX26, FKBP6, TUBGCP6, ALG12, and CYP4A11 are likely the causative genes. CMA can identify the submicroscopic imbalances unidentifiable by conventional cytogenetic technique, and therefore has a significant role in prenatal diagnosis and genetic counseling. The detection rate of pathogenic CNVs in fetuses with MCDK was 16.7% by CMA. 17q12 microdeletion syndrome and WBS are associated with MCDK. Mutations of PEX26, FKBP6, TUBGCP6, ALG12, and CYP4A11 genes may be the causes for MCDK.

  17. Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity

    DEFF Research Database (Denmark)

    Belling, Kirstine González-Izarzugaza; Russo, Francesco; Jensen, Anders Boeck

    2017-01-01

    Klinefelter syndrome (KS) (47,XXY) is the most common male sex chromosome aneuploidy. Diagnosis and clinical supervision remain a challenge due to varying phenotypic presentation and insufficient characterization of the syndrome. Here we combine health data-driven epidemiology and molecular level...

  18. Reproductive outcome in 3 families with a satellited chromosome 4 with review of the literature.

    Science.gov (United States)

    Arn, P H; Younie, L; Russo, S; Zackowski, J L; Mankinen, C; Estabrooks, L

    1995-07-03

    We describe 3 families segregating for a translocation of the nucleolus organizer region (NOR) onto chromosome 4. Review of previously reported cases of translocations involving NOR and chromosome 4 shows that these translocations may be associated with variable reproductive outcomes. We provide evidence that imprinting is not the mechanism responsible for the variable reproductive outcomes in the case of satellited 4p chromosomes; this may offer indirect support for a ribosomal gene position effect. Translocated ribosomal genes may influence the expression of neighboring genes and could explain the variable phenotypes in individuals with satellited nonacrocentric chromosomes. We recommend that prenatal counseling of individuals with satellited nonacrocentric chromosomes should be cautious.

  19. The Huntington disease locus is most likely within 325 kilobases of the chromosome 4p telomere

    International Nuclear Information System (INIS)

    Doggett, N.A.; Cheng, J.F.; Smith, C.L.; Cantor, C.R.

    1989-01-01

    The genetic defect responsible for Huntington disease was originally localized near the tip of the short arm of chromosome 4 by genetic linkage to the locus D4S10. Several markers closer to Huntington disease have since been isolated, but these all appear to be proximal to the defect. A physical map that extends from the most distal of these loci, D4S90, to the telomere of chromosome 4 was constructed. This map identifies at least two CpG islands as markers for Huntington disease candidate genes and places the most likely location of the Huntington disease defect remarkably close (within 325 kilobases) to the telomere

  20. Chromosomal aberrations as etiological factors of intrauterine growth retardation

    Directory of Open Access Journals (Sweden)

    Petrović Bojana

    2008-01-01

    Full Text Available Background/Aim. Intrauterine growth retardation (IUGR is a pathological condition of pregnancy characterised by birth weight below the 10th centile. A number of fetal, placental and maternal causes can lead to IUGR; although, in most cases no specific causes can be identified. The aim of this study was to determine the part of chromosomal abnormalities in IUGR etiology. Methods. Fetal blood karyotype taken by cordocentesis from 168 fetuses with diagnosed IUGR was analyzed. Results. Chromosomal rearrangements both numerical and structural were detected in 14 cases (12.2%. Two cases were triploid. Patau syndrome, Edwards syndrome and Down syndrome were found in two cases each. There was one case of trisomy 7 (47, XY, +7 and one case of trisomy 16 (47, XX, +16; one translocation, 46, XY, t (2; 14(q23; q32 and a deletion 46, XYdel (12 (p12 as well as two cases of sex chromosomes abnormalities, 45, X (Turner syndrome and 47, XYY. Conclusion. These findings suggest that a consistent number of symmetrical IUGR cases (about 12% can be associated with chromosomal rearrangements. Chromosomal aberrations that cause IUGR are heterogeneous, aberration of autosomes, mostly autosomal trisomies, being the most common.

  1. Partial trisomy 16p in an adolescent with autistic disorder and Tourette`s syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hebebrand, J.; Martin, M.; Remschmidt, H. [Philipps-Univ., Marburg (Germany)] [and others

    1994-09-15

    A partial trisomy 16p was identified in a 14-year-old male adolescent with autistic disorder. He additionally showed complex motor and vocal phenomena, including some simple tics which had first appeared in childhood. Whereas these simple tics were of subclinical significance, an additional diagnosis of Tourette`s syndrome (TS) appears justified. The case report illustrates the diagnostic difficulties in assessing psychiatric symptomatology associated with both disorders, especially complex motor and vocal phenomena. The cytogenetic finding is discussed critically in the light of other chromosome abnormalities reported in both TS and autistic disorder. Chromosome 16p should be considered as a candidate region especially for autistic disorder. 21 refs.

  2. Wolfram syndrome 1 and Wolfram syndrome 2.

    Science.gov (United States)

    Rigoli, Luciana; Di Bella, Chiara

    2012-08-01

    Wolfram syndrome 1 (WS1) is an autosomal recessive disorder characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness (DI DM OA D syndrome) associated with other variable clinical manifestations. The causative gene for WS1 (WFS1) encoding wolframin maps to chromosome 4p16.1. Wolframin has an important function in maintaining the homeostasis of the endoplasmic reticulum (ER) in pancreatic β cells. Recently, another causative gene, CISD2, has been identified in patients with a type of Wolfram syndrome (WS2) resulting in early optic atrophy, diabetes mellitus, deafness, decreased lifespan, but not diabetes insipidus. The CISD2-encoded protein ERIS (endoplasmic reticulum intermembrane small protein) also localizes to ER, but does not interact directly with wolframin. ERIS maps to chromosome 4q22. Numerous studies have shown an interesting similarity between WFS1 and CISD2 genes. Experimental studies demonstrated that the Cisd2 knockout (Cisd2) mouse shows premature aging and typical symptoms of Wolfram syndrome. These researches provide interesting insight into the relation of neurodegenerative diseases, mitochondrial disorders, and autophagy and are useful for the pathophysiological understanding of both Wolfram syndrome and mitochondrial-mediated premature aging. The knowledge of WS1 and WS2 pathogenesis, and of the interactions between WFS1 and CISD2 genes, is useful for accurate diagnostic classification and for diagnosis of presymptomatic individuals.

  3. Mosaic maternal uniparental disomy of chromosome 15 in Prader-Willi syndrome: utility of genome-wide SNP array.

    Science.gov (United States)

    Izumi, Kosuke; Santani, Avni B; Deardorff, Matthew A; Feret, Holly A; Tischler, Tanya; Thiel, Brian D; Mulchandani, Surabhi; Stolle, Catherine A; Spinner, Nancy B; Zackai, Elaine H; Conlin, Laura K

    2013-01-01

    Prader-Willi syndrome is caused by the loss of paternal gene expression on 15q11.2-q13.2, and one of the mechanisms resulting in Prader-Willi syndrome phenotype is maternal uniparental disomy of chromosome 15. Various mechanisms including trisomy rescue, monosomy rescue, and post fertilization errors can lead to uniparental disomy, and its mechanism can be inferred from the pattern of uniparental hetero and isodisomy. Detection of a mosaic cell line provides a unique opportunity to understand the mechanism of uniparental disomy; however, mosaic uniparental disomy is a rare finding in patients with Prader-Willi syndrome. We report on two infants with Prader-Willi syndrome caused by mosaic maternal uniparental disomy 15. Patient 1 has mosaic uniparental isodisomy of the entire chromosome 15, and Patient 2 has mosaic uniparental mixed iso/heterodisomy 15. Genome-wide single-nucleotide polymorphism array was able to demonstrate the presence of chromosomally normal cell line in the Patient 1 and trisomic cell line in Patient 2, and provide the evidence that post-fertilization error and trisomy rescue as a mechanism of uniparental disomy in each case, respectively. Given its ability of detecting small percent mosaicism as well as its capability of identifying the loss of heterozygosity of chromosomal regions, genome-wide single-nucleotide polymorphism array should be utilized as an adjunct to the standard methylation analysis in the evaluation of Prader-Willi syndrome. Copyright © 2012 Wiley Periodicals, Inc.

  4. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome*

    Science.gov (United States)

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-01-01

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  5. First-trimester maternal serum human thyroid-stimulating hormone in chromosomally normal and Down syndrome pregnancies

    NARCIS (Netherlands)

    Pratt, JJ; de Wolf, BTHM; Mantingh, A

    Maternal serum human thyroid-stimulating hormone (TSH) levels were investigated in chromosomally normal and Down syndrome pregnancies to determine whether TSH can be used as a marker for Down syndrome in the first trimester. Measurements were conducted on stored serum samples collected from 23 Down

  6. Submicroscopic interstitial deletion of the X chromosome explains a complex genetic syndrome dominated by Norrie disease.

    Science.gov (United States)

    Gal, A; Wieringa, B; Smeets, D F; Bleeker-Wagemakers, L; Ropers, H H

    1986-01-01

    Norrie disease (ND), an X-linked recessive disorder, is characterized by congenital blindness followed by bulbar atrophy. We have examined a three-generation family in which ND is part of a complex X-linked syndrome with severe mental retardation, hypogonadism, growth disturbances, and increased susceptibility to infections as additional features. This syndrome is apparently due to an interstitial deletion, as evidenced by the failure of the L1.28 DNA probe (DXS7 locus, Xp11.3) to detect complementary DNA sequences on the defective X chromosome of an affected male and of several obligatory heterozygotes. Attempts to further define this deletion with other DNA probes from the proximal short arm of the X chromosome or by prometaphase chromosome analysis were unsuccessful.

  7. Reproductive outcome in 3 families with a satellited chromosome 4 with review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Arn, P.H.; Younie, L.; Russo, S. [Nemours Children`s Clinic, Jacksonville, FL (United States)] [and others

    1995-07-03

    We describe 3 families segregating for a translocation of the nucleolus organizer region (NOR) onto chromosome 4. Review of previously reported cases of translocations involving NOR and chromosome 4 shows that these translocations may be associated with variable reproductive outcomes. We provide evidence that imprinting is not the mechanism responsible for the variable reproductive outcomes in the case of satellited 4p chromosomes; this may offer indirect support for a ribosomal gene position effect. Translocated ribosomal genes may influence the expression of neighboring genes and could explain the variable phenotypes in individuals with satellited nonacrocentric chromosomes. We recommend that prenatal counseling of individuals with satellited nonacrocentric chromosomes should be cautious. 23 refs., 2 figs., 1 tab.

  8. WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma

    NARCIS (Netherlands)

    Stec, I.; Wright, T. J.; van Ommen, G. J.; de Boer, P. A.; van Haeringen, A.; Moorman, A. F.; Altherr, M. R.; den Dunnen, J. T.

    1998-01-01

    Wolf-Hirschhorn syndrome (WHS) is a malformation syndrome associated with a hemizygous deletion of the distal short arm of chromosome 4 (4p16.3). The smallest region of overlap between WHS patients, the WHS critical region, has been confined to 165 kb, of which the complete sequence is known. We

  9. Chromosomal break points in irradiated and ethyl methane sulphonate treated leucocytes of patients with Down syndrome

    International Nuclear Information System (INIS)

    Reeja, T.C.; Chandra, N.; Marimuthu, K.M.

    1993-01-01

    Frequencies of chromosomal damage in the peripheral leucocytes of patients with Down syndrome, on exposure to gamma rays (2Gy) or ethyl methane sulphonate (EMS, 1 x 10 -4 M), were assessed. Analysis of break points in the chromosomes of irradiated cells revealed a non-random occurrence. Six of the break points observed in EMS-treated cells were found to overlap with those recorded in irradiated cells. Thirteen break points observed were found to correlate with the location of cancer-specific break points and four of these coincided with the bands where oncogenes have been located. Two break points were localised to the same bands as that of known heritable fragile sites. (author). 17 refs., 2 figs., 3 tabs

  10. Usher syndrome type III (USH3) linked to chromosome 3q in an Italian family.

    Science.gov (United States)

    Gasparini, P; De Fazio, A; Croce, A I; Stanziale, P; Zelante, L

    1998-08-01

    We report an Italian family affected by Usher type III syndrome. Linkage study, performed using markers corresponding to the Usher loci already mapped, clearly showed linkage with markers on chromosome 3q24-25. Our data further support the presence of an Usher III locus on chromosome 3, as recently reported in a Finnish population.

  11. Usher syndrome type III (USH3) linked to chromosome 3q in an Italian family.

    OpenAIRE

    Gasparini, P; De Fazio, A; Croce, A I; Stanziale, P; Zelante, L

    1998-01-01

    We report an Italian family affected by Usher type III syndrome. Linkage study, performed using markers corresponding to the Usher loci already mapped, clearly showed linkage with markers on chromosome 3q24-25. Our data further support the presence of an Usher III locus on chromosome 3, as recently reported in a Finnish population.

  12. A Marfan syndrome-like phenotype caused by a neocentromeric supernumerary ring chromosome 15.

    Science.gov (United States)

    Quinonez, Shane C; Gelehrter, Thomas D; Uhlmann, Wendy R

    2017-01-01

    Small supernumerary marker chromosomes (sSMC) are abnormal chromosomes that cannot be characterized by standard banding cytogenetic techniques. A minority of sSMC contain a neocentromere, which is an ectopic centromere lacking the characteristic alpha-satellite DNA. The phenotypic manifestations of sSMC and neocentromeric sSMC are variable and range from severe intellectual disability and multiple congenital anomalies to a normal phenotype. Here we report a patient with a diagnosis of Marfan syndrome and infertility found to have an abnormal karyotype consisting of a chromosome 15 deletion and a ring-type sSMC likely stabilized by a neocentromere derived via a mechanism initially described by Barbara McClintock in 1938. Analysis of the sSMC identified that it contained the deleted chromosome 15 material and also one copy of FBN1, the gene responsible for Marfan syndrome. We propose that the patient's diagnosis arose from disruption of the FBN1 allele on the sSMC. To date, a total of 29 patients have been reported with an sSMC derived from a chromosomal deletion. We review these cases with a specific focus on the resultant phenotypes and note significant difference between this class of sSMC and other types of sSMC. Through this review we also identified a patient with a clinical diagnosis of neurofibromatosis type 1 who lacked a family history of the condition but was found to have a chromosome 17-derived sSMC that likely contained NF1 and caused the patient's disorder. We also review the genetic counseling implications and recommendations for a patient or family harboring an sSMC. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Deletions at chromosome regions 7q11.23 and 7q36 in a patient with Williams syndrome

    NARCIS (Netherlands)

    Wouters, C. H.; Meijers-Heijboer, H. J.; Eussen, B. J.; van der Heide, A. A.; van Luijk, R. B.; van Drunen, E.; Beverloo, B. B.; Visscher, F.; van Hemel, J. O.

    2001-01-01

    We report on a patient with Williams syndrome and a complex de novo chromosome rearrangement, including microdeletions at 7q11.23 and 7q36 and additional chromosomal material at 7q36. The nature of this additional material was elucidated by spectral karyotyping and first assigned to chromosome 22.

  14. Is early-onset microsatellite and chromosomally stable colorectal cancer a hallmark of a genetic susceptibility syndrome?

    Science.gov (United States)

    Kets, C M; van Krieken, J H J M; van Erp, P E J; Feuth, T; Jacobs, Y H A; Brunner, H G; Ligtenberg, M J L; Hoogerbrugge, N

    2008-02-15

    Most colorectal cancers show either microsatellite or chromosomal instability. A subset of colorectal cancers, especially those diagnosed at young age, is known to show neither of these forms of genetic instability and thus might have a distinct pathogenesis. Colorectal cancers diagnosed at young age are suggestive for hereditary predisposition. We investigate whether such early-onset microsatellite and chromosomally stable colorectal cancers are a hallmark of a genetic susceptibility syndrome. The ploidy status of microsatellite stable (familial) colorectal cancers of patients diagnosed before age 50 (n = 127) was analyzed in relation to the histopathological characteristics and family history. As a control the ploidy status of sporadic colorectal cancer, with normal staining of mismatch repair proteins, diagnosed at the age of 69 years or above (n = 70) was determined. A diploid DNA content was used as a marker for chromosomal stability. Within the group of patients with (familial) early onset microsatellite stable colorectal cancer the chromosomally stable tumors did not differ from chromosomally unstable tumors with respect to mean age at diagnosis, fulfillment of Amsterdam criteria or pathological characteristics. Segregation analysis did not reveal any family with microsatellite and chromosomally stable colorectal cancer in 2 relatives. The prevalence of microsatellite and chromosomally stable colorectal cancer was not significantly different for the early and late onset group (28 and 21%, respectively). We find no evidence that early-onset microsatellite and chromosomally stable colorectal cancer is a hallmark of a hereditary colorectal cancer syndrome. (c) 2007 Wiley-Liss, Inc.

  15. Assignment of the Nance-Horan syndrome to the distal short arm of the X chromosome.

    Science.gov (United States)

    Zhu, D; Alcorn, D M; Antonarakis, S E; Levin, L S; Huang, P C; Mitchell, T N; Warren, A C; Maumenee, I H

    1990-11-01

    There are three types of X-linked cataracts recorded in Mendelian Inheritance in Man (McKusick 1988): congenital total, with posterior sutural opacities in heterozygotes; congenital, with microcornea or slight microphthalmia; and the cataract-dental syndrome or Nance-Horan (NH) syndrome. To identify a DNA marker close to the gene responsible for the NH syndrome, linkage analysis on 36 members in a three-generation pedigree including seven affected males and nine carrier females was performed using 31 DNA markers. A LOD score of 1.662 at theta = 0.16 was obtained with probe 782 from locus DXS85 on Xp22.2-p22.3. Negative LOD scores were found at six loci on the short arm, one distal to DXS85, five proximal, and six probes spanning the long arm were highly negative. These results make the assignment of the locus for NH to the distal end of the short arm of the X chromosome likely.

  16. A Rare de novo Interstitial Duplication at 4p15.2 in a Boy with Severe Congenital Heart Defects, Limb Anomalies, Hypogonadism, and Global Developmental Delay.

    Science.gov (United States)

    Liang, Liyang; Xie, Yingjun; Shen, Yiping; Yin, Qibin; Yuan, Haiming

    2016-01-01

    Proximal 4p deletion syndrome is a relatively rare genetic condition characterized by dysmorphic facial features, limb anomalies, minor congenital heart defects, hypogonadism, cafe-au-lait spots, developmental delay, tall and thin habitus, and intellectual disability. At present, over 20 cases of this syndrome have been published. However, duplication of the same region in proximal 4p has never been reported. Here, we describe a 2-year-5-month-old boy with severe congenital heart defects, limb anomalies, hypogonadism, distinctive facial features, pre- and postnatal developmental delay, and mild cognitive impairments. A de novo 4.5-Mb interstitial duplication at 4p15.2p15.1 was detected by chromosomal microarray analysis. Next-generation sequencing was employed and confirmed the duplication, but revealed no additional pathogenic variants. Several candidate genes in this interval responsible for the complex clinical phenotype were identified, such as RBPJ, STIM2, CCKAR, and LGI2. The results suggest a novel contiguous gene duplication syndrome. © 2016 S. Karger AG, Basel.

  17. Molecular and clinical description of a girl with a 46,X,t(Y;4)(q11.2;p16)/45,X,der(4)t(Y;4)(q11.2;p16) karyotype and a small cryptic 4p subtelomeric deletion.

    Science.gov (United States)

    Zahed, Laila; Sismani, Carolina; Ioannides, M; Saleh, Monzer; Koumbaris, G; Kenj, Mazen; Abdallah, Amal; Ayyache, Maya; Patsalis, Philippos

    2008-04-01

    We report on a 13-year-old female with short stature, minimal axillary and pubic hair, no breast development, absence of uterus and ovaries, with the following karyotype on lymphocyte cultures: 46,X,t(Y;4)(q11.2;p16)[40]/45,X,der(4)t(Y;4)(q11.2;p16)[10]. Loss of the small derivative Y chromosome in 20% of the cells was also confirmed in skin fibroblast cultures. FISH analyses using Y centromere, SRY, subtelomere XpYp/XqYq, Y and 4 painting probes, confirmed the cytogenetic findings. High-resolution STS analyses using 40 markers covering the Y chromosome did not identify any deletion on the Y. However, de novo absence of the 4p subtelomeric region was noted by FISH, although this deletion was not revealed by Array-CGH at 1 Mb resolution, the last array clone being 0.35 or 1 Mb distal to the 4p FISH probe. The female phenotype of this patient must be due to the loss of the derivative Y chromosomes in some of her cells, especially the gonads, while the 4p subtelomeric deletion does not seem to contribute to her phenotype. Copyright 2008 Wiley-Liss, Inc.

  18. Increased chromosomal breakage in Tourette syndrome predicts the possibility of variable multiple gene involvement in spectrum phenotypes: Preliminary findings and hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Gericke, G.S.; Simonic, I.; Cloete, E.; Buckle, C. [Univ. of Pretoria (South Africa)] [and others

    1995-10-09

    Increased chromosomal breakage was found in 12 patients with DSM-IV Tourette syndrome (TS) as compared with 10 non-TS control individuals with respect to untreated, modified RPM1-, and BrdU treated lymphocyte cultures (P < 0.001 in each category). A hypothesis is proposed that a major TS gene is probably connected to genetic instability, and associated chromosomal marker sites may be indicative of the localization of secondary genes whose altered expression could be responsible for associated comorbid conditions. This concept implies that genes influencing higher brain functions may be situated at or near highly recombigenic areas allowing enhanced amplification, duplication and recombination following chromosomal strand breakage. Further studies on a larger sample size are required to confirm the findings relating to chromosomal breakage and to analyze the possible implications for a paradigmatic shift in linkage strategy for complex disorders by focusing on areas at or near unstable chromosomal marker sites. 32 refs., 1 tab.

  19. Duplication of 20p12.3 associated with familial Wolff-Parkinson-White syndrome.

    Science.gov (United States)

    Mills, Kimberly I; Anderson, Jacqueline; Levy, Philip T; Cole, F Sessions; Silva, Jennifer N A; Kulkarni, Shashikant; Shinawi, Marwan

    2013-01-01

    Wolff-Parkinson-White (WPW) syndrome is caused by preexcitation of the ventricular myocardium via an accessory pathway which increases the risk for paroxysmal supraventricular tachycardia. The condition is often sporadic and of unknown etiology in the majority of cases. Autosomal dominant inheritance and association with congenital heart defects or ventricular hypertrophy were described. Microdeletions of 20p12.3 have been associated with WPW syndrome with either cognitive dysfunction or Alagille syndrome. Here, we describe the association of 20p12.3 duplication with WPW syndrome in a patient who presented with non-immune hydrops. Her paternal uncle carries the duplication and has attention-deficit hyperactivity disorder and electrocardiographic findings consistent with WPW. The 769 kb duplication was detected by the Affymetrix Whole Genome-Human SNP Array 6.0 and encompasses two genes and the first two exons of a third gene. We discuss the potential role of the genes in the duplicated region in the pathogenesis of WPW and possible neurobehavioral abnormalities. Our data provide additional support for a significant role of 20p12.3 chromosomal rearrangements in the etiology of WPW syndrome. Copyright © 2012 Wiley Periodicals, Inc.

  20. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.

    Science.gov (United States)

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-08-14

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Paternal uniparental isodisomy of chromosome 11p15.5 within the pancreas causes isolated hyperinsulinaemic hypoglycaemia

    Directory of Open Access Journals (Sweden)

    Sarah E Flanagan

    2011-11-01

    Full Text Available BackgroundLoss of function mutations in the genes encoding the pancreatic β-cell ATP-sensitive potassium (KATP channel are identified in approximately 80% of patients with diazoxide-unresponsive hyperinsulinaemic-hypoglycaemia (HH. For a small number of patients HH can occur as part of a multisystem disease such as Beckwith-Wiedemann syndrome (BWS. In approximately 20% of patients, BWS results from chromosome 11 paternal uniparental disomy (UPD, which causes dysregulation of imprinted growth regulation genes at 11p15.5. There is a considerable range in the clinical features and phenotypic severity associated with BWS which is likely to be due to somatic mosaicism. The cause of HH in these patients is not known.Research Design and methodsWe undertook microsatellite analysis of 12 markers spanning chromosome 11p in two patients with severe HH and diffuse disease requiring a pancreatectomy. In both patients mutations in the KATP channel genes had not been identified. ResultsWe identified segmental paternal UPD in DNA extracted from pancreatic tissue in both patients. UPD was not observed in DNA extracted from the patient’s leukocytes or buccal samples. In both cases the UPD encompassed the differentially methylated region at chromosome 11p15.5. Despite this neither patient had any further features of BWS.ConclusionsPaternal UPD of the chromosome 11p15.5 differentially methylated region limited to the pancreatic tissue may represent a novel cause of isolated diazoxide unresponsive HH. Loss of heterozygosity studies should therefore be considered in all patients with severe HH who have undergone pancreatic surgery when KATP channel mutation(s have not been identified.

  2. Juvenile Moyamoya and Craniosynostosis in a Child with Deletion 1p32p31: Expanding the Clinical Spectrum of 1p32p31 Deletion Syndrome and a Review of the Literature

    Directory of Open Access Journals (Sweden)

    Paolo Prontera

    2017-09-01

    Full Text Available Moyamoya angiopathy (MA is a rare cerebrovascular disorder characterised by the progressive occlusion of the internal carotid artery. Its aetiology is uncertain, but a genetic background seems likely, given the high MA familial rate. To investigate the aetiology of craniosynostosis and juvenile moyamoya in a 14-year-old male patient, we performed an array-comparative genomic hybridisation revealing a de novo interstitial deletion of 8.5 Mb in chromosome region 1p32p31. The deletion involved 34 protein coding genes, including NF1A, whose haploinsufficiency is indicated as being mainly responsible for the 1p32-p31 chromosome deletion syndrome phenotype (OMIM 613735. Our patient also has a deleted FOXD3 of the FOX gene family of transcription factors, which plays an important role in neural crest cell growth and differentiation. As the murine FOXD3−/− model shows craniofacial anomalies and abnormal common carotid artery morphology, it can be hypothesised that FOXD3 is involved in the pathogenesis of the craniofacial and vascular defects observed in our patient. In support of our assumption, we found in the literature another patient with a syndromic form of MA who had a deletion involving another FOX gene (FOXC1. In addition to describing the clinical history of our patient, we have reviewed all of the available literature concerning other patients with a 1p32p31 deletion, including cases from the Decipher database, and we have also reviewed the genetic disorders associated with MA, which is a useful guide for the diagnosis of syndromic form of MA.

  3. Characterization and prognostic implication of 17 chromosome abnormalities in myelodysplastic syndrome.

    Science.gov (United States)

    Sánchez-Castro, Judit; Marco-Betés, Víctor; Gómez-Arbonés, Xavier; Arenillas, Leonor; Valcarcel, David; Vallespí, Teresa; Costa, Dolors; Nomdedeu, Benet; Jimenez, María José; Granada, Isabel; Grau, Javier; Ardanaz, María T; de la Serna, Javier; Carbonell, Félix; Cervera, José; Sierra, Adriana; Luño, Elisa; Cervero, Carlos J; Falantes, José; Calasanz, María J; González-Porrás, José R; Bailén, Alicia; Amigo, M Luz; Sanz, Guillermo; Solé, Francesc

    2013-07-01

    The prognosis of chromosome 17 (chr17) abnormalities in patients with primary myelodysplastic syndrome (MDS) remains unclear. The revised International Prognostic Scoring System (IPSS-R) includes these abnormalities within the intermediate cytogenetic risk group. This study assessed the impact on overall survival (OS) and risk of acute myeloid leukemia transformation (AMLt) of chr17 abnormalities in 88 patients with primary MDS. We have compared this group with 1346 patients with primary MDS and abnormal karyotype without chr17 involved. The alterations of chr17 should be considered within group of poor prognosis. The different types of alterations of chromosome 17 behave different prognosis. The study confirms the intermediate prognostic impact of the i(17q), as stated in IPSS-R. The results of the study, however, provide valuable new information on the prognostic impact of alterations of chromosome 17 in complex karyotypes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Mirror-symmetric duplicated chromosome 21q with minor proximal deletion, and with neocentromere in a child without the classical Down syndrome phenotype.

    Science.gov (United States)

    Barbi, G; Kennerknecht, I; Wöhr, G; Avramopoulos, D; Karadima, G; Petersen, M B

    2000-03-13

    We report on a mentally retarded child with multiple minor anomalies and an unusually rearranged chromosome 21. This der(21) chromosome has a deletion of 21p and of proximal 21q, whereas the main portion of 21q is duplicated leading to a mirror-symmetric appearance with the mirror axis at the breakpoint. The centromere is only characterized by a secondary constriction (with a centromeric index of a G chromosome) at an unexpected distal position, but fluorescence in situ hybridization (FISH) with either chromosome specific or with all human centromeres alpha satellite DNA shows no cross hybridization. Thus, the marker chromosome represents a further example of an "analphoid marker with neocentromere." Molecular analysis using polymorphic markers on chromosome 21 verified a very small monosomic segment of the proximal long arm of chromosome 21, and additionally trisomy of the remaining distal segment. Although trisomic for almost the entire 21q arm, our patient shows no classical Down syndrome phenotype, but only a few minor anomalies found in trisomy 21 and in monosomy of proximal 21q, respectively. Copyright 2000 Wiley-Liss, Inc.

  5. Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4.

    Science.gov (United States)

    Lee, Tong Geon; Lee, Yong Jin; Kim, Dae Yeon; Seo, Yong Weon

    2010-12-01

    Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35 Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.

  6. Prevalence of chromosomal abnormalities in Sri Lankan women with primary amenorrhea.

    Science.gov (United States)

    Samarakoon, Lasitha; Sirisena, Nirmala D; Wettasinghe, Kalum T; Kariyawasam, Kariyawasam Warnakulathanthrige Jayani C; Jayasekara, Rohan W; Dissanayake, Vajira H W

    2013-05-01

    Chromosomal abnormalities are implicated in the etiology of primary amenorrhea. The underlying chromosomal aberrations are varied and regional differences have been reported. The objective of this study is to describe the prevalence of various types of chromosomal abnormalities in Sri Lankan women with primary amenorrhea. Medical records of all patients diagnosed with primary amenorrhea referred for cytogenetic analysis to two genetic centers in Sri Lanka from January 2005 to December 2011 were reviewed. Chromosome culture and karyotyping was performed on peripheral blood samples obtained from each patient. Data were analyzed using standard descriptive statistics. Altogether 338 patients with primary amenorrhea were karyotyped and mean age at testing was 20.5 years. Numerical and structural chromosomal abnormalities were noted in 115 (34.0%) patients which included 45,X Turner syndrome (10.7%), Turner syndrome variants (13.9%), XY females (6.5%), 45,X/46,XY (0.9%), 46,XX/46,XY (0.6%), 47,XXX (0.3%), 47,XX,+ mar (0.3%), 46,X,i(X)(p10) (0.3%), 46,XX with SRY gene translocation on X chromosome (0.3%) and 46,XX,inv(7)(p10;q11.2) (0.3%). Short stature, absent secondary sexual characteristics, neck webbing, cubitus valgus and broad chest with widely spaced nipples were commonly seen in patients with Turner syndrome and variant forms. Neck webbing and absent secondary sexual characteristics were significantly associated with classical Turner syndrome than variant forms. A considerable proportion of women with primary amenorrhea had chromosomal abnormalities. Mean age at testing was late suggesting delay in referral for karyotyping. Early referral for cytogenetic evaluation is recommended for the identification of underlying chromosomal aberrations in women with primary amenorrhea. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  7. A novel growth hormone receptor gene deletion mutation in a patient with primary growth hormone insensitivity syndrome (Laron syndrome).

    Science.gov (United States)

    Yamamoto, Hiroyasu; Kouhara, Haruhiko; Iida, Keiji; Chihara, Kazuo; Kasayama, Soji

    2008-04-01

    Growth hormone (GH) insensitivity syndrome (Laron syndrome) is known to be caused by genetic disorders of the GH-IGF-1 axis. Although many mutations in the GH receptor have been identified, there have been only a few reports of deletions of the GH receptor gene. A Japanese adult female patient with Laron syndrome was subjected to chromosome analysis with basic G-banding and also with a high accuracy technique. Each exon of the GH receptor gene was amplified by means of PCR. Since this patient was diagnosed with osteoporosis, the effects of alendronate on bone mineral density (BMD) were also examined. The chromosome analysis with the high accuracy technique demonstrated a large deletion of the short arm in one allele of chromosome 5 from p11 to p13.1 [46, XX, del (5) (p11-p13.1)]. PCR amplification of exons of the GH receptor gene showed that only exons 2 and 3 were amplified. Low-dose IGF-1 administration (30microg/kg body weight) failed to increase her BMD, whereas alendronate administration resulted in an increase associated with a decrease in urinary deoxypyridinoline (DPD) and serum osteocalcin concentrations. The GH receptor gene of the patient was shown to lack exons 4-10. To the best of our knowledge, this is the third case report of Laron syndrome with large GH receptor deletion. Alendronate was effective for the enhancement of BMD.

  8. Genotype-Phenotype Characterization of Wolf-Hirschhorn Syndrome Confirmed by FISH: Case Reports

    Directory of Open Access Journals (Sweden)

    F. Sheth

    2012-01-01

    Full Text Available The Wolf-Hirschhorn syndrome (WHS is a multiple malformation and contiguous gene syndrome resulting from the deletion encompassing a 4p16.3 region. A microscopically visible terminal deletion on chromosome 4p (4p16→pter was detected in Case 1 with full blown features of WHS. The second case which had an interstitial microdeletion encompassing WHSC 1 and WHSC 2 genes at 4p16.3 presented with less striking clinical features of WHS and had an apparently “normal” karyotype. The severity of the clinical presentation was as a result of haploinsufficiency and interaction with surrounding genes as well as mutations in modifier genes located outside the WHSCR regions. The study emphasized that an individual with a strong clinical suspicion of chromosomal abnormality and a normal conventional cytogenetic study should be further investigated using molecular cytogenetic techniques such as fluorescence in situ hybridization (FISH or array-comparative genomic hybridization (a-CGH.

  9. Birth seasonality in Korean Prader-Willi syndrome with chromosome 15 microdeletion

    Directory of Open Access Journals (Sweden)

    Aram Yang

    2015-03-01

    Full Text Available PurposePrader-Willi syndrome (PWS is a well-known genetic disorder, and microdeletion on chromosome 15 is the most common causal mechanism. Several previous studies have suggested that various environmental factors might be related to the pathogenesis of microdeletion in PWS. In this study, we investigated birth seasonality in Korean PWS.MethodsA total of 211 PWS patients born from 1980 to 2014 were diagnosed by methylation polymerase chain reaction at Samsung Medical Center. Of the 211 patients, 138 were born from 2000-2013. Among them, the 74 patients of a deletion group and the 22 patients of a maternal uniparental disomy (UPD group were compared with general populations born from 2000 using the Walter and Elwood method and cosinor analysis.ResultsThere was no statistical significance in seasonal variation in births of the total 211 patients with PWS (χ2=7.2522, P=0.2982. However, a significant difference was found in the monthly variation between PWS with the deletion group and the at-risk general population (P<0.05. In the cosinor model, the peak month of birth for PWS patients in the deletion group was January, while the nadir occurred in July, with statistical significance (amplitude=0.23, phase=1.2, low point=7.2. The UPD group showed the peak birth month in spring; however, this result was not statistically significant (χ2=3.39, P=0.1836.ConclusionCorrelation with birth seasonality was identified in a deletion group of Korean PWS patients. Further studies are required to identify the mechanism related to seasonal effects of environmental factors on microdeletion on chromosome 15.

  10. Jackson-Weiss syndrome: Clinical and radiological findings in a large kindred and exclusion of the gene from 7p21 and 5qter

    Energy Technology Data Exchange (ETDEWEB)

    Ades, L.C.; Haan, E.A.; Mulley, J.C.; Senga, I.P.; Morris, L.L.; David, D.J. [Women`s and Children`s Hospital, North Adelaide (Australia)

    1994-06-01

    We describe the clinical and radiological manifestations of the Jackson-Weiss syndrome (JWS) in a large South Australian kindred. Radiological abnormalities not previously described in the hands include coned epiphyses, distal and middle phalangeal hypoplasia, and carpal bone malsegmentation. New radiological findings in the feet include coned epiphyses, hallux valgus, phalangeal, tarso-navicular and calcaneo-navicular fusions, and uniform absence of metatarsal fusions. Absence of linkage to eight markers along the short arm of chromosome 7 excluded allelian between JWS and Saethre-Chotzen syndrome at 7p21. No linkage was detected to D5S211, excluding allelism to another recently described cephalosyndactyly syndrome mapping to 5qter. 35 refs., 5 figs., 4 tabs.

  11. Chromosomal fragility syndrome and family history of radiosensitivity as indicators for radiotherapy dose modification

    International Nuclear Information System (INIS)

    Alsbeih, Ghazi; Story, Michael D.; Maor, Moshe H.; Geara, Fady B.; Brock, William A.

    2003-01-01

    Beside a few known radiosensitive syndromes, a patient's reaction to radiotherapy is difficult to predict. In this report we describe the management of a pediatric cancer patient presented with a family history of radiosensitivity and cancer proneness. Laboratory investigations revealed a chromosomal fragility syndrome and an increased cellular radiosensitivity in vitro. AT gene sequencing revealed no mutations. The patient was treated with reduced radiation doses to avoid the presumed increased risks of toxicity to normal tissues. The patient tolerated well the treatment with no significant acute or late radiation sequelae. Five years later, the patient remains both disease and complications free. While an accurate laboratory test for radiosensitivity is still lacking, assessments of chromosomal fragility, cell survival and clinical medicine will continue to be useful for a small number of patients

  12. Linkage of Usher syndrome type I gene (USH1B) to the long arm of chromosome 11.

    Science.gov (United States)

    Kimberling, W J; Möller, C G; Davenport, S; Priluck, I A; Beighton, P H; Greenberg, J; Reardon, W; Weston, M D; Kenyon, J B; Grunkemeyer, J A

    1992-12-01

    Usher syndrome is the most commonly recognized cause of combined visual and hearing loss in technologically developed countries. There are several different types and all are inherited in an autosomal recessive manner. There may be as many as five different genes responsible for at least two closely related phenotypes. The nature of the gene defects is unknown, and positional cloning strategies are being employed to identify the genes. This is a report of the localization of one gene for Usher syndrome type I to chromosome 11q, probably distal to marker D11S527. Another USH1 gene had been previously localized to chromosome 14q, and this second localization establishes the existence of a new and independent locus for Usher syndrome.

  13. Seizures as the first manifestation of chromosome 22q11.2 deletion syndrome in a 40-year old man: a case report

    OpenAIRE

    Tonelli, Adriano R; Kosuri, Kalyan; Wei, Sainan; Chick, Davoren

    2007-01-01

    Abstract Background The microdeletion of chromosome 22q11.2 is the most common human deletion syndrome. It typically presents early in life and is rarely considered in adult patients. As part of the manifestations of this condition, patients can have parathyroid glandular involvement ranging from hypocalcemic hypoparathyroidism to normocalcemia with normal parathryroid hormone levels. The first manifestation of the syndrome might be seizures due to profound hypocalcemia. Case presentation A 4...

  14. Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Directory of Open Access Journals (Sweden)

    Ritch Robert

    2004-06-01

    Full Text Available Abstract Background Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. Methods We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. Results Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1 probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. Conclusions Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss.

  15. Cytogenetic mapping of a novel locus for type II Waardenburg syndrome.

    Science.gov (United States)

    Selicorni, Angelo; Guerneri, Silvana; Ratti, Antonia; Pizzuti, Antonio

    2002-01-01

    An Italian family in which Waardenburg syndrome type II (WS2) segregates together with a der(8) chromosome from a (4p;8p) balanced translocation was studied. Cytogenetic analysis by painting and subtelomeric probe hybridization positioned the chromosome 8 breakpoint at p22-pter. Fluorescence in situ hybridization analysis with yeast artificial chromosomes from a contig spanning the 8p21-pter region refined the breakpoint in an interval of less than 170 kb between markers WI-3823 and D8S1819. The only cloned gene for WS2 is that for microphtalmia (MITF) on chromosome 3p. In this family, MITF mutations were excluded by sequencing the whole coding region. The 8p23 region may represent a third locus for WS2 (WS2C).

  16. Non-invasive prenatal cell-free fetal DNA testing for down syndrome and other chromosomal abnormalities

    Directory of Open Access Journals (Sweden)

    Darija Strah

    2015-12-01

    Full Text Available Background: Chorionic villus sampling and amniocentesis as definitive diagnostic procedures represent a gold standard for prenatal diagnosis of chromosomal abnormalities. The methods are invasive and lead to a miscarriage and fetal loss in approximately 0.5–1 %. Non-invasive prenatal DNA testing (NIPT is based on the analysis of cell-free fetal DNA from maternal blood. It represents a highly accurate screening test for detecting the most common fetal chromosomal abnormalities. In our study we present the results of NIPT testing in the Diagnostic Center Strah, Slovenia, over the last 3 years.Methods: In our study, 123 pregnant women from 11th to 18th week of pregnancy were included. All of them had First trimester assessment of risk for trisomy 21, done before NIPT testing.Results: 5 of total 6 high-risk NIPT cases (including 3 cases of Down syndrome and 2 cases of Klinefelter’s syndrome were confirmed by fetal karyotyping. One case–Edwards syndrome was false positive. Patau syndrome, triple X syndrome or Turner syndrome were not observed in any of the cases. Furthermore, there were no false negative cases reported. In general, NIPT testing had 100 % sensitivity (95 % confidence interval: 46.29 %–100.00 % and 98.95 % specificity (95 % confidence interval: 93.44 %–99.95 %. In determining Down syndrome alone, specificity (95 % confidence interval: 95.25 %- 100.00 % and sensitivity (95 % confidence interval: 31.00 %–100.00 % turned out to be 100 %. In 2015, the average turnaround time for analysis was 8.3 days from the day when the sample was taken. Repeated blood sampling was required in 2 cases (redraw rate = 1.6 %.Conclusions: Our results confirm that NIPT represents a fast, safe and highly accurate advanced screening test for most common chromosomal abnormalities. In current clinical practice, NIPT would significantly decrease the number of unnecessary invasive procedures and the rate of fetal

  17. Overlapping Numerical Cognition Impairments in Children with Chromosome 22q11.2 Deletion or Turner Syndromes

    Science.gov (United States)

    Simon, T. J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn, D. M.; Zackai, E. H.; Ross, J. L.

    2008-01-01

    Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor…

  18. [Familial febrile convulsions is supposed to link to human chromosome 19p13.3].

    Science.gov (United States)

    Qi, Y; Lü, J; Wu, X

    2001-01-10

    To localize the familial febrile convulsion (FC) genes on human chromosomes. For 63 FC pedigrees, tetranucleotide repeat markers D19S253 D19S395 and D19S591 on the short arm of chromosome 19, as well as dinucleotide repeat markers D8S84 and D8S85 on the long arm of chromosome 8 were genotyped. Transmission disequilibrium test (TDT) and Lod score calculation were carried out. The data were processed by PPAP software package. All the alleles in every locus of FC probands and normal controls were in Hardy-Weinburg balance. Transmission disequilibrium was found on D8S84, D19S395 and D19S591 in FC families. chi(2) values were 4.0, 5.124 and 7.364 separately. Each P value was < 0.05, and significantly meaningful. The two-point Lod scores between D8S84 and FC, D8S85 and FC, D19S253 and FC, D19S395 and FC, D19S591 and FC are 0.00002, 0.000017, 0.58, 1.53 and 1.42 respectively. The multi-point Lod score among markers on chromosome 8q and FC was 0.88, while Lod score among markers on chromosome 19p and FC reached 2.78. The results by both the non-parameter (TDT) and parameter (Lod score) methods were consistant on a whole. FC is linked with chromosome region 19p13.3, but not with chromosome 8q.

  19. Inversion of chromosome 7q22 and q36 as a sole abnormality presenting in myelodysplastic syndrome: a case report.

    Science.gov (United States)

    Kaneko, Hiroto; Shimura, Kazuho; Kuwahara, Saeko; Ohshiro, Muneo; Tsutsumi, Yasuhiko; Iwai, Toshiki; Horiike, Shigeo; Yokota, Shouhei; Ohkawara, Yasuo; Taniwaki, Masafumi

    2014-08-05

    Deletions of chromosome 7 are often detected in myelodysplastic syndrome. The most commonly deleted segments are clustered at band 7q22. A critical gene is therefore suggested to be located in this region. We report a patient with myelodysplastic syndrome whose marrow cells carried an inversion of 7q22 and q36 as a sole karyotypic abnormality. How this extremely rare chromosomal aberration contributes to the pathogenesis of myelodysplastic syndrome should be clarified by accumulating clinical data of such cases. A 74-year-old Japanese man presented with pancytopenia incidentally detected by routine medical check-up. His complete blood cell counts revealed that his white blood cells had decreased to 2100/mm3, neutrophils 940/mm3, red blood cells 320×104/mm3, hemoglobin 11.1g/dL, hematocrit 33.1%, and platelets 12.6×104/mm3. Bone marrow examination showed normal cellularity with nucleated cells of 9.4×104/mm3. The proportion of blasts was 4%. A morphological examination showed only basophilic stippling of erythroblasts which was seen as dysplasia. According to World Health Organization classification, the diagnosis was myelodysplastic syndrome-u. Karyotypic analysis showed 46,XY,inv(7)(q22q36) in all of 20 metaphases examined. Additional analysis revealed the karyotype of his lymphocytes was 46,XY. He is asymptomatic and cytopenia has slowly progressed. To the best of our knowledge, this karyotype from a clinical sample of de novo malignancies has never been documented although the identical karyotype from secondary myelodysplastic syndrome was reported. Despite the extremely low frequency, inversion of 7q22 appears to play a crucial role for myelodysplastic syndrome in this patient.

  20. Correlation between chromosome 9p21 locus deletion and prognosis in clinically localized prostate cancer.

    Science.gov (United States)

    Barros, Érika Aparecida Felix de; Pontes-Junior, José; Reis, Sabrina Thalita; Lima, Amanda Eunice Ramos; Souza, Isida C; Salgueiro, Jose Lucas; Fontes, Douglas; Dellê, Humberto; Coelho, Rafael Ferreira; Viana, Nayara Izabel; Leite, Kátia Ramos Moreira; Nahas, William C; Srougi, Miguel

    2017-05-04

    Some studies have reported that deletions at chromosome arm 9p occur frequently and represent a critical step in carcinogenesis of some neoplasms. Our aim was to evaluate the deletion of locus 9p21 and chromosomes 3, 7 and 17 in localized prostate cancer (PC) and correlate these alterations with prognostic factors and biochemical recurrence after surgery. We retrospectively evaluated surgical specimens from 111 patients with localized PC who underwent radical prostatectomy. Biochemical recurrence was defined as a prostate-specific antigen (PSA) >0.2 ng/mL and the mean postoperative follow-up was 123 months. The deletions were evaluated using fluorescence in situ hybridization with centromeric and locus-specific probes in a tissue microarray containing 2 samples from each patient. We correlated the occurrence of any deletion with pathological stage, Gleason score, ISUP grade group, PSA and biochemical recurrence. We observed a loss of any probe in only 8 patients (7.2%). The most common deletion was the loss of locus 9p21, which occurred in 6.4% of cases. Deletions of chromosomes 3, 7 and 17 were observed in 2.3%, 1.2% and 1.8% patients, respectively. There was no correlation between chromosome loss and Gleason score, ISUP, PSA or stage. Biochemical recurrence occurred in 83% cases involving 9p21 deletions. Loss of 9p21 locus was significantly associated with time to recurrence (p = 0.038). We found low rates of deletion in chromosomes 3, 7 and 17 and 9p21 locus. We observed that 9p21 locus deletion was associated with worse prognosis in localized PC treated by radical prostatectomy.

  1. A rare balanced nonrobertsonian translocation involving acrocentric chromosomes: Chromosome abnormality of t(13;15(p11.2;q22.1

    Directory of Open Access Journals (Sweden)

    Dalvi Rupa

    2016-01-01

    Full Text Available BACKGROUND: Balanced non-robertsonian translocation (RT, involving acrocentric chromosomes, is a rare event and only a few cases are reported. Most of the RTs are balanced involving acrocentric chromosomes with the breakpoints (q10;q10. MATERIALS AND METHODS: Chromosome analysis was performed as per standard procedure – Giemsa-trypsin banding with 500 band resolution was analyzed for chromosome identification. RESULTS: In the present study, we report a rare balanced non-RTs involving chromosomes 13 and 15 with cytogenetic finding of 46, XX, t(13;15(p11.2;q22.1. CONCLUSION: To the best of our knowledge, this is the first such report of an unusual non-RT of t(13:15 with (p11.2;q22.1 break points.

  2. Renal Cell Carcinoma With Chromosome 6p Amplification Including the TFEB Gene: A Novel Mechanism of Tumor Pathogenesis?

    Science.gov (United States)

    Williamson, Sean R; Grignon, David J; Cheng, Liang; Favazza, Laura; Gondim, Dibson D; Carskadon, Shannon; Gupta, Nilesh S; Chitale, Dhananjay A; Kalyana-Sundaram, Shanker; Palanisamy, Nallasivam

    2017-03-01

    Amplification of chromosome 6p has been implicated in aggressive behavior in several cancers, but has not been characterized in renal cell carcinoma (RCC). We identified 9 renal tumors with amplification of chromosome 6p including the TFEB gene, 3 by fluorescence in situ hybridization, and 6 from the Cancer Genome Atlas (TCGA) databases. Patients' ages were 28 to 78 years (median, 61 y). Most tumors were high stage (7/9 pT3a, 2/9 pN1). Using immunohistochemistry, 2/4 were positive for melanocytic markers and cathepsin K. Novel TFEB fusions were reported by TCGA in 2; however, due to a small composition of fusion transcripts compared with full-length transcripts (0.5/174 and 3.3/132 FPKM), we hypothesize that these represent secondary fusions due to amplification. Five specimens (4 TCGA, 1 fluorescence in situ hybridization) had concurrent chromosome 3p copy number loss or VHL deletion. However, these did not resemble clear cell RCC, had negative carbonic anhydrase IX labeling, lacked VHL mutation, and had papillary or unclassified histology (2/4 had gain of chromosome 7 or 17). One tumor each had somatic FH mutation and SMARCB1 mutation. Chromosome 6p amplification including TFEB is a previously unrecognized cytogenetic alteration in RCC, associated with heterogenous tubulopapillary eosinophilic and clear cell histology. The combined constellation of features does not fit cleanly into an existing tumor category (unclassified), most closely resembling papillary or translocation RCC. The tendency for high tumor stage, varied tubulopapillary morphology, and a subset with melanocytic marker positivity suggests the possibility of a unique tumor type, despite some variation in appearance and genetics.

  3. Co-segregation of Huntington disease and hereditary spastic paraplegia in 4 generations.

    Science.gov (United States)

    Panas, Marios; Karadima, Georgia; Kalfakis, Nikolaos; Vassilopoulos, Dimitris

    2011-07-01

    Huntington disease (HD) is an autosomal dominant neurodegenerative disease characterized by choreic hyperkinesias, cognitive decline, and psychiatric manifestations, caused by an increased number of CAG repeats in the IT15 gene on chromosome 4p16.3. Silver syndrome is a rare autosomal dominant form of complicated hereditary spastic paraplegia, characterized by lower limb spasticity in addition to amyotrophy of the small muscles of the hands. In addition to the previously identified locus SPG17 on chromosome 11q12-q14, a new locus (SPG38) on chromosome 4p16-p15 has been recently identified, a region that includes the HD gene. We present a Greek family with 5 members diagnosed with HD in 4 generations. All affected members also presented with clinical features of Silver syndrome showing severe spastic paraplegia and prominent atrophy of all small hand muscles bilaterally. None of the other family members showed features of either HD or spastic paraplegia. The reported coexistence of Silver syndrome with HD in 4 generations is not fortuitous, suggesting that these 2 distinct genetic disorders are in linkage disequilibrium. Although rare, it is reasonable to expect additional similar cases. Clinical neurologists should perhaps investigate this possibility in cases combining features of HD and involvement of the upper and lower motor neurons.

  4. Physical mapping of the Bloom syndrome region by the identification of YAC and P1 clones from human chromosome 15 band q26.1

    Energy Technology Data Exchange (ETDEWEB)

    Straughen, J.; Groden, J. [Univ. of Cincinnati College of Medicine, OH (United States); Ciocci, S. [New York Blood Center, NY (United States)] [and others

    1996-07-01

    The gene for Bloom syndrome (BLM) has been mapped to human chromosome 15 band q26.1 by homozygosity mapping. Further refinement of the location of BLM has relied upon linkage-disequilibrium mapping and somatic intragenic recombination. In combination with these mapping approaches and to identify novel DNA markers and probes for the BLM candidate region, a contiguous representation of the 2-Mb region that contains the BLM gene was generated and is presented here. YAC and P1 clones from the region have been identified and ordered by using previously available genetic markers in the region along with newly developed sequence-tagged sites from radiation-restriction map of the 2-Mb region that allowed estimation of the distance between polymorphic microsatellite loci is also reported. This map and the DNA markers derived from it were instrumental in the recent identification of the BLM gene. 25 refs., 3 figs., 3 tabs.

  5. Hepatic Malignancy in an Infant with Wolf-Hirschhorn Syndrome.

    Science.gov (United States)

    Rutter, Sara; Morotti, Raffaella A; Peterec, Steven; Gallagher, Patrick G

    2017-06-01

    Wolf-Hirschhorn syndrome (WHS) is a contiguous gene syndrome involving deletions of the chromosome 4p16 region associated with growth failure, characteristic craniofacial abnormalities, cardiac defects, and seizures. This report describes a six-month-old girl with WHS with growth failure and typical craniofacial features who died of complex congenital heart disease. Genetic studies revealed a 9.8 Mb chromosome 4p-terminal deletion. At autopsy, the liver was grossly unremarkable. Routine sampling and histologic examination revealed two hepatocellular nodular lesions with expanded cell plates and mild cytologic atypia. Immunohistochemical staining revealed these nodules were positive for glutamine synthetase and glypican 3, with increased Ki-67 signaling and diffuse CD34 expression in sinusoidal endothelium. These findings are consistent with hepatoblastoma or hepatocellular carcinoma. A possible association between WHS and hepatic malignancy may be an important consideration in the care and management of WHS patients.

  6. Understanding Chromosome Disorders and their Implications for Special Educators

    Directory of Open Access Journals (Sweden)

    Linda Gilmore

    2014-03-01

    Full Text Available More children are now being diagnosed with chromosome abnormalities. Some chromosome disorder syndromes are relatively well known; while others are so rare that there is only limited evidence about their likely impact on learning and development. For educators, a basic level of knowledge about chromosome abnormalities is important for understanding the literature and communicating with families and professionals. This paper describes chromosomes, and the numerical and structural anomalies that can occur, usually spontaneously during early cell division. Distinctive features of various chromosome syndromes are summarised before a discussion of the rare chromosome disorders that are labelled, not with a syndrome name, but simply by a description of the chromosome number, size and shape. Because of the potential within-group variability that characterises syndromes, and the scarcity of literature about the rare chromosome disorders, expectations for learning and development of individual students need to be based on the range of possible outcomes that may be achievable.

  7. Branchio-otic syndrome caused by a genomic rearrangement: clinical findings and molecular cytogenetic studies in a patient with a pericentric inversion of chromosome 8.

    Science.gov (United States)

    Schmidt, T; Bierhals, T; Kortüm, F; Bartels, I; Liehr, T; Burfeind, P; Shoukier, M; Frank, V; Bergmann, C; Kutsche, K

    2014-01-01

    Branchio-oto-renal (BOR) syndrome is an autosomal dominantly inherited developmental disorder, which is characterized by anomalies of the ears, the branchial arches and the kidneys. It is caused by mutations in the genes EYA1,SIX1 and SIX5. Genomic rearrangements of chromosome 8 affecting the EYA1 gene have also been described. Owing to this fact, methods for the identification of abnormal copy numbers such as multiplex ligation-dependent probe amplification (MLPA) have been introduced as routine laboratory techniques for molecular diagnostics of BOR syndrome. The advantages of these techniques are clear compared to standard cytogenetic and array approaches as well as Southern blot. MLPA detects deletions or duplications of a part or the entire gene of interest, but not balanced structural aberrations such as inversions and translocations. Consequently, disruption of a gene by a genomic rearrangement may escape detection by a molecular genetic analysis, although this gene interruption results in haploinsufficiency and, therefore, causes the disease. In a patient with clinical features of BOR syndrome, such as hearing loss, preauricular fistulas and facial dysmorphisms, but no renal anomalies, neither sequencing of the 3 genes linked to BOR syndrome nor array comparative genomic hybridization and MLPA were able to uncover a causative mutation. By routine cytogenetic analysis, we finally identified a pericentric inversion of chromosome 8 in the affected female. High-resolution multicolor banding confirmed the chromosome 8 inversion and narrowed down the karyotype to 46,XX,inv(8)(p22q13). By applying fluorescence in situ hybridization, we narrowed down both breakpoints on chromosome 8 and found the EYA1 gene in q13.3 to be directly disrupted. We conclude that standard karyotyping should not be neglected in the genetic diagnostics of BOR syndrome or other Mendelian disorders, particularly when molecular testing failed to detect any causative alteration in patients with

  8. LEOPARD syndrome is not linked to the Marfan syndrome and the Watson syndrome loci

    Energy Technology Data Exchange (ETDEWEB)

    Rass-Rothchild, A.: Abeliovitch, D.; Kornstein, A. [Tel Aviv Univ. (Israel)]|[Hebrew Univ., Jerusalem (Israel)

    1994-09-01

    The acronym LEOPARD stands for a syndromic association of Lentigines, Eletrocardiographic changes, Ocular hypertelorism, Pulmonic stenosis, Abnormal genitalia, Retardation of growth and sensorineural Deafness. Inheritance is autosomal dominant with high penetrance and variable expressivity. In 1990 Torok et al. reported on the association of LEOPARD and Marfan syndrome. In addition a clinical similarity (cardiac and cutaneous involvement) exists with the Watson syndrome (neurofibromatosis and pulmonic stenosis) which is linked to the marker D17S33 on chromosome 17. We studied possible linkage of LEOPARD syndrome to the Marfan syndrome locus on chromosome 15 (D15S1, MF13, and (TAAAA)n repeats) and to the NF-1 locus on chromosome 17 in a family with 9 cases of LEOPARD syndrome. Close linkage between LEOPARD syndrome and both the Marfan locus on chromosome 15 and the NF-1 locus on chromosome 17 was excluded (lod score <-2.0 through {theta} = 0.1).

  9. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Payne CM

    2011-05-01

    Full Text Available Claire M Payne, Cheray Crowley-Skillicorn, Carol Bernstein, Hana Holubec, Harris BernsteinDepartment of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USAAbstract: Chromosomal instability is a major pathway of sporadic colon carcinogenesis. Chromosome arm 1p appears to be one of the “hot spots” in the non-neoplastic mucosa that, when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs, the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds might affect processes leading to chromosomal deletions, and to the molecular and cellular pathways specifically altered by chromosome 1p loss.Keywords: chromosome 1p, colon carcinogenesis, molecular pathways, cellular pathways

  10. An integrated physical map of 210 markers assigned to the short arm of human chromosome 11

    NARCIS (Netherlands)

    Redeker, E.; Hoovers, J. M.; Alders, M.; van Moorsel, C. J.; Ivens, A. C.; Gregory, S.; Kalikin, L.; Bliek, J.; de Galan, L.; van den Bogaard, R.; Visser, J.; van der Voort, R.; Feinberg, A. P.; Little, P. F. R.; Westerveld, A.; Mannens, M.

    1994-01-01

    Using a panel of patient cell lines with chromosomal breakpoints, we constructed a physical map for the short arm of human chromosome 11. We focused on 11p15, a chromosome band harboring at least 25 known genes and associated with the Beckwith-Wiedemann syndrome, several childhood tumors, and

  11. No influence of parental origin of intact X chromosome and/or Y chromosome sequences on three-year height response to growth hormone therapy in Turner syndrome

    Directory of Open Access Journals (Sweden)

    Hye Jin Lee

    2014-09-01

    Full Text Available PurposeWhether parental origin of the intact X chromosome and/or the presence of Y chromosome sequences (Yseq play a role in three-year height response to growth hormone (GH were investigated.MethodsPaternal (Xp or maternal (Xm origin of X chromosome was assessed by microsatellite marker analysis and the presence of hidden Yseq was analyzed. The first-, second-, and third-year GH response was measured as a change in height z-score (Z_Ht in Turner syndrome (TS patients with 45,Xp (n=10, 45,Xm (n=15, and 45,X/46,X,+mar(Y (Xm_Yseq (n=8.ResultsThe mean baseline Z_Ht did not differ according to Xp or Xm origin, however the mean baseline Z_Ht was higher in the Xm_Yseq group than in Xm group, after adjusting for bone age delay and midparental Z_Ht (P=0.04. There was no difference in the height response to GH between the 3 groups. The height response to GH decreased progressively each year (P<0.001, such that the third-year increase in Z_Ht was not significant. This third-year decrease in treatment response was unaffected by Xp, Xm, and Xm_Yseq groups. Increasing GH dosage from the second to third-year of treatment positively correlated with the increase in Z_Ht (P=0.017.ConclusionThere was no evidence of X-linked imprinted genes and/or Yseq affecting height response to 3 years of GH therapy. Increasing GH dosages may help attenuate the decrease in third-year GH response in TS patients with 45,X and/or 46,X/+mar(Y.

  12. Widening the clinical spectrum of Pitt-Rogers-Danks/Wolf-Hirschhorn syndromes

    Directory of Open Access Journals (Sweden)

    Juliana F. Mazzeu

    2007-03-01

    Full Text Available Chromosomal rearrangements involving partial deletion of the short arm of chromosome 4 and partial duplication of the short arm of chromosome 8 have been described both in Pitt-Rogers-Danks syndrome (PRDS and Wolf-Hirschhorn syndrome (WHS, the former being considered a milder phenotype of the latter. We describe a patient with partial deletion of chromosome 4 and partial duplication of chromosome 8 documented by array-comparative genomic hybridization (Array-CGH. In addition to the typical features of PRDS, the patient exhibited some clinical signs (genital hypoplasia, radioulnar synostosis and mesomelic limb shortness infrequently, or never previously, reported in PRDS. These findings broaden the spectrum of anomalies generally associated with these syndromes.

  13. The Juberg-Marsidi syndrome maps to the proximal long arm of the X chromosome (Xq12-q21)

    Energy Technology Data Exchange (ETDEWEB)

    Saugier-Veber, P.; Abadie, V.; Turleau, C.; Munnich, A.; Lyonnet, S. (Hopital des Enfants Malades, Paris (France)); Moncla, A. (Centre de Genetique Medicale, Marseille (France)); Mathieu, M.; Piussan, C.; Mattei, J.F. (Centre Hospitalier et Universitaire, Amiens (France))

    1993-06-01

    Juberg-Marsidi syndrome (McKusick 309590) is a rare X-linked recessive condition characterized by severe mental retardation, growth failure, sensorineural deafness, and microgenitalism. Here the authors report on the genetic mapping of the Juberg-Marsidi gene to the proximal long arm of the X chromosome (Xq12-q21) by linkage to probe pRX214H1 at the DXS441 locus (Z = 3.24 at [theta] = .00). Multipoint linkage analysis placed the Juberg-Marsidi gene within the interval defined by the DXS159 and the DXYS1X loci in the Xq12-q21 region. These data provide evidence for the genetic distinction between Juberg-Marsidi syndrome and several other X-linked mental retardation syndromes that have hypogonadism and hypogenitalism and that have been localized previously. Finally, the mapping of the Juberg-Marsidi gene is of potential interest for reliable genetic counseling of at-risk women. 25 refs., 2 figs., 3 tabs.

  14. Examination of X chromosome markers in Rett syndrome: Exclusion mapping with a novel variation on multilocus linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, K.A.; Fill, C.P. (Baylor College of Medicine, Houston, TX (United States)); Terwililger, J.; Percy, A.K.; Zobhbi, H. (Columbia University, NY (United States)); DeGennaro, L.J.; Ott, J. (University of Massachusetts Medical School, Worcester (United States)); Anvret, M.; Martin-Gallardo, A. (National Institutes of Health, Bethesda, MD (United States))

    1992-02-01

    Rett syndrome is a neurologic disorder characterized by early normal development followed by regression, acquired deceleration of head growth, autism, ataxia, and sterotypic hand movements. The exclusive occurrence of the syndrome in females and the occurrence of a few familial cases with inheritance through maternal lines suggest that this disorder is most likely secondary to a mutation on the X chromosome. To address this hypothesis and to identify candidate regions for the Rett syndrome gene locus, genotypic analysis was performed in two families with maternally related affected half-sisters by using 63 DNA markers from the X chromosome. Nineteen of the loci studied were chosen for multipoint linkage analysis because they have been previously genetically mapped using a large number of meioses from reference families. Using the exclusion criterion of a lod score less than [minus]2, the authors were able to exclude the region between the Duchenne muscular dystrophy locus and the DXS456 locus. This region extends from Xp21.2 to Xq21-q23. The use of the multipoint linkage analysis approach outlined in this study should allow the exclusion of additional regions of the X chromosome as new markers are analyzed.

  15. Clinical effect of increasing doses of lenalidomide in high-risk myelodysplastic syndrome and acute myeloid leukemia with chromosome 5 abnormalities

    DEFF Research Database (Denmark)

    Möllgård, Lars; Saft, Leonie; Treppendahl, Marianne Bach

    2011-01-01

    Background Patients with chromosome 5 abnormalities and high-risk myelodysplastic syndromes or acute myeloid leukemia have a poor outcome. We hypothesized that increasing doses of lenalidomide may benefit this group of patients by inhibiting the tumor clone, as assessed by fluorescence in situ...... hybridization for del(5q31). DESIGN AND METHODS: Twenty-eight patients at diagnosis or with relapsed disease and not eligible for standard therapy (16 with acute myeloid leukemia, 12 with intermediate-risk 2 or high-risk myelodysplastic syndrome) were enrolled in this prospective phase II multicenter trial...... the 16 weeks of trial responded to treatment. Using the International Working Group criteria for acute myeloid leukemia and myelodysplastic syndrome the overall response rate in treated patients with acute myeloid leukemia was 20% (3/15), while that for patients with myelodysplastic syndrome was 36% (4...

  16. Mapping recessive ophthalmic diseases: linkage of the locus for Usher syndrome type II to a DNA marker on chromosome 1q.

    Science.gov (United States)

    Lewis, R A; Otterud, B; Stauffer, D; Lalouel, J M; Leppert, M

    1990-06-01

    Usher syndrome is a heterogeneous group of autosomal recessive disorders that combines variably severe congenital neurosensory hearing impairment with progressive night-blindness and visual loss similar to that in retinitis pigmentosa. Usher syndrome type I is distinguished by profound congenital (preverbal) deafness and retinal disease with onset in the first decade of life. Usher syndrome type II is characterized by partial hearing impairment and retinal dystrophy that occurs in late adolescence or early adulthood. The chromosomal assignment and the regional localization of the genetic mutation(s) causing the Usher syndromes are unknown. We analyzed a panel of polymorphic genomic markers for linkage to the disease gene among six families with Usher syndrome type I and 22 families with Usher syndrome type II. Significant linkage was established between Usher syndrome type II and the DNA marker locus THH33 (D1S81), which maps to chromosome 1q. The most likely location of the disease gene is at a map distance of 9 cM from THH33 (lod score 6.5). The same marker failed to show linkage in families segregating an allele for Usher syndrome type I. These data confirm the provisional assignment of the locus for Usher syndrome type II to the distal end of chromosome 1q and demonstrate that the clinical heterogeneity between Usher types I and II is caused by mutational events at different genetic loci. Regional localization has the potential to improve carrier detection and to provide antenatal diagnosis in families at risk for the disease.

  17. Anesthetic considerations for a pediatric patient with Wolf-Hirschhorn syndrome: a case report

    OpenAIRE

    Tsukamoto, Masanori; Yamanaka, Hitoshi; Yokoyama, Takeshi

    2017-01-01

    Wolf-Hirschhorn syndrome is a rare hereditary disease that results from a 4p chromosome deletion. Patients with this syndrome are characterized by craniofacial dysgenesis, seizures, growth delay, intellectual disability, and congenital heart disease. Although several cases have been reported, very little information is available on anesthetic management for patients with Wolf-Hirschhorn syndrome. We encountered a case requiring anesthetic management for a 2-year-old girl with Wolf-Hirschhorn ...

  18. Isolation of probes specific to human chromosomal region 6p21 from immunoselected irradiation-fusion gene transfer hybrids

    International Nuclear Information System (INIS)

    Ragoussis, J.; Jones, T.A.; Sheer, D.; Shrimpton, A.E.; Goodfellow, P.N.; Trowsdale, J.; Ziegler, A.

    1991-01-01

    A hybrid cell line (R21/B1) containing a truncated human chromosome 6 (6pter-6q21) and a human Y chromosome on a hamster background was irradiated and fused to A23 (TK-) or W3GH (HPRT-) hamster cells. Clones containing expressed HLA class I genes (4/40) were selected using monoclonal antibodies. These clones were recloned and analyzed with a panel of probes from the HLA region. One hybrid (4G6) contained the entire HLA complex. Two other hybrids (4J4 and 4H2) contained only the HLA class I region, while the fourth hybrid (5P9) contained HLA class I and III genes in addition to other genes located in the 6p21 chromosomal region. In situ hybridization showed that the hybrid cells contained more than one fragment of human DNA. Alu and LINE PCR products were derived from these cells and compared to each other as well as to products from two somatic cell hybrids having the 6p21 region in common. The PCR fragments were then screened on conventional Southern blots of the somatic cell hybrids to select a panel of novel probes encompassing the 6p21 region. In addition, the origin of the human DNA fragments in hybrid 4J4 was determined by regional mapping of PCR products

  19. Cytological and molecular studies of chromosomal radiosensitivity in Down Syndrome cells

    International Nuclear Information System (INIS)

    MacLaren, R.A.

    1988-01-01

    Molecular, cellular and cytogenetic studies were conducted to determine if altered levels of poly(ADP-ribose) polymerase, a DNA repair-related enzyme, is responsible for the reported formation of excess X-ray induced chromosome aberrations in cells derived from Down Syndrome (DS) patients. Nonstimulated lymphocytes from normal and DS subjects were pretreated with 3-aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase, for 30 minutes before exposure to X-rays and the levels of induced chromosome aberrations were determined in mitotic cells. DS lymphocytes exhibited significantly higher frequencies of chromosome aberrations in the presence of 3-aminobenzamide that normal lymphocytes. No difference was observed in the absence of 3-aminobenzamide. Additional studies were done using normal and DS lymphoblastoid cell lines which exhibited a similar response at the DNA level as the lymphocytes. Analysis of poly(ADP-ribose) polymerase activity based on incorporation of the substrate, NAD + , into acid insoluble materials, revealed that there was no significant difference in the ability to form poly (ADP-ribose) in the DS or normal cells. 3-aminobenzamide effectively inhibited poly(ADP-ribose) polymerase in both the normal and DS cells

  20. Severe neonatal marfan syndrome resulting from a De Novo 3-bp insertion into the fibrillin gene on chromosome 15

    Energy Technology Data Exchange (ETDEWEB)

    Milewicz, D.M.; Duvic, M. (Univ. of Texas Medical School, Houston, TX (United States))

    1994-03-01

    Severe neonatal Marfan syndrome has features of the Marfan syndrome and congenital contractural arachnodactyly present at birth, along with unique features such as loose, redundant skin and pulmonary emphysema. Since the Marfan syndrome and congenital contractural arachnodactyly are due to mutations in different genes, it has been uncertain whether neonatal Marfan syndrome is due to mutations in the fibrillin gene on chromosome 15 or in another gene. The authors studied an infant with severe neonatal Marfan syndrome. Dermal fibroblasts were metabolically labeled and found to secrete fibrillin inefficiently when compared with control cells. Reverse transcription and amplification of the proband's fibroblast RNA was used to identify a 3-bp insertion between nucleotides 480-481 or 481-482 of the fibrillin cDNA. The insertion maintains the reading frame of the protein and inserts a cysteine between amino acids 160 and 161 in an epidermal growth-factor-like motif of fibrillin. This 3-bp insertion was not found in the fibrillin gene in 70 unrelated, unaffected individuals and 11 unrelated individuals with the Maran syndrome. The authors conclude that neonatal Marfan syndrome is the result of mutations in the fibrillin gene on chromosome 15 and is part of the Marfan syndrome spectrum. 32 refs., 3 figs.

  1. Detection of 1p36 deletion by clinical exome-first diagnostic approach.

    Science.gov (United States)

    Watanabe, Miki; Hayabuchi, Yasunobu; Ono, Akemi; Naruto, Takuya; Horikawa, Hideaki; Kohmoto, Tomohiro; Masuda, Kiyoshi; Nakagawa, Ryuji; Ito, Hiromichi; Kagami, Shoji; Imoto, Issei

    2016-01-01

    Although chromosome 1p36 deletion syndrome is considered clinically recognizable based on characteristic features, the clinical manifestations of patients during infancy are often not consistent with those observed later in life. We report a 4-month-old girl who showed multiple congenital anomalies and developmental delay, but no clinical signs of syndromic disease caused by a terminal deletion in 1p36.32-p36.33 that was first identified by targeted-exome sequencing for molecular diagnosis.

  2. P190B RhoGAP Regulates Chromosome Segregation in Cancer Cells

    International Nuclear Information System (INIS)

    Hwang, Melissa; Peddibhotla, Sirisha; McHenry, Peter; Chang, Peggy; Yochum, Zachary; Park, Ko Un; Sears, James Cooper; Vargo-Gogola, Tracy

    2012-01-01

    Rho GTPases are overexpressed and hyperactivated in many cancers, including breast cancer. Rho proteins, as well as their regulators and effectors, have been implicated in mitosis, and their altered expression promotes mitotic defects and aneuploidy. Previously, we demonstrated that p190B Rho GTPase activating protein (RhoGAP) deficiency inhibits ErbB2-induced mammary tumor formation in mice. Here we describe a novel role for p190B as a regulator of mitosis. We found that p190B localized to centrosomes during interphase and mitosis, and that it is differentially phosphorylated during mitosis. Knockdown of p190B expression in MCF-7 and Hela cells increased the incidence of aberrant microtubule-kinetochore attachments at metaphase, lagging chromosomes at anaphase, and micronucleation, all of which are indicative of aneuploidy. Cell cycle analysis of p190B deficient MCF-7 cells revealed a significant increase in apoptotic cells with a concomitant decrease in cells in G1 and S phase, suggesting that p190B deficient cells die at the G1 to S transition. Chemical inhibition of the Rac GTPase during mitosis reduced the incidence of lagging chromosomes in p190B knockdown cells to levels detected in control cells, suggesting that aberrant Rac activity in the absence of p190B promotes chromosome segregation defects. Taken together, these data suggest that p190B regulates chromosome segregation and apoptosis in cancer cells. We propose that disruption of mitosis may be one mechanism by which p190B deficiency inhibits tumorigenesis

  3. P190B RhoGAP Regulates Chromosome Segregation in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Melissa [Department of Biochemistry and Molecular Biology and the Indiana University Simon Cancer Center, Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617 (United States); Peddibhotla, Sirisha [Department of Molecular and Human Genetics, Baylor College of Medicine, John P. McGovern Campus, NABS-0250, Houston, TX 77030 (United States); McHenry, Peter [Department of Biology, Southwestern Adventist University, 100 W. Hillcrest, Keene, TX 76059 (United States); Chang, Peggy; Yochum, Zachary; Park, Ko Un; Sears, James Cooper; Vargo-Gogola, Tracy, E-mail: vargo-gogola.1@nd.edu [Department of Biochemistry and Molecular Biology and the Indiana University Simon Cancer Center, Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617 (United States)

    2012-04-25

    Rho GTPases are overexpressed and hyperactivated in many cancers, including breast cancer. Rho proteins, as well as their regulators and effectors, have been implicated in mitosis, and their altered expression promotes mitotic defects and aneuploidy. Previously, we demonstrated that p190B Rho GTPase activating protein (RhoGAP) deficiency inhibits ErbB2-induced mammary tumor formation in mice. Here we describe a novel role for p190B as a regulator of mitosis. We found that p190B localized to centrosomes during interphase and mitosis, and that it is differentially phosphorylated during mitosis. Knockdown of p190B expression in MCF-7 and Hela cells increased the incidence of aberrant microtubule-kinetochore attachments at metaphase, lagging chromosomes at anaphase, and micronucleation, all of which are indicative of aneuploidy. Cell cycle analysis of p190B deficient MCF-7 cells revealed a significant increase in apoptotic cells with a concomitant decrease in cells in G1 and S phase, suggesting that p190B deficient cells die at the G1 to S transition. Chemical inhibition of the Rac GTPase during mitosis reduced the incidence of lagging chromosomes in p190B knockdown cells to levels detected in control cells, suggesting that aberrant Rac activity in the absence of p190B promotes chromosome segregation defects. Taken together, these data suggest that p190B regulates chromosome segregation and apoptosis in cancer cells. We propose that disruption of mitosis may be one mechanism by which p190B deficiency inhibits tumorigenesis.

  4. Abrupt evolution of Philadelphia chromosome-positive acute myeloid leukemia in myelodysplastic syndrome.

    Science.gov (United States)

    Fukunaga, Akiko; Sakoda, Hiroto; Iwamoto, Yoshihiro; Inano, Shojiro; Sueki, Yuki; Yanagida, Soshi; Arima, Nobuyoshi

    2013-03-01

    Myelodysplastic syndrome (MDS) is a clonal disorder arising from an alteration in multipotent stem cells, which lose the ability of normal proliferation and differentiation. Disease progression occurs in approximately 30% MDS cases. Specific chromosomal alterations seem responsible for each step in the evolution of acute myeloid leukemia (AML). Multiple genetic aberrations occur during the clonal evolution of MDS; however, few studies report the presence of the Philadelphia (Ph) chromosome. We report a rare case of Ph-positive AML, which evolved during the course of low-risk MDS. The patient, a 76-year-old man with mild leukocytopenia, was diagnosed with MDS, refractory neutropenia (RN). After 1.5 yr, his peripheral blood and bone marrow were suddenly occupied by immature basophils and myeloblasts, indicating the onset of AML. A bone marrow smear showed multilineage dysplasia, consistent with MDS evolution. Chromosomal analysis showed an additional t(9;22)(q34;q11) translocation. Because progression occurred concurrently with emergence of the Ph chromosome, we diagnosed this case as Ph-positive AML with basophilia arising from the clonal evolution of MDS. The patient was initially treated with nilotinib. A hematological response was soon achieved with disappearance of the Ph chromosome in the bone marrow. Emergence of Ph-positive AML in the course of low-risk MDS has rarely been reported. We report this case as a rare clinical course of MDS. © 2012 John Wiley & Sons A/S.

  5. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  6. A gene for late-onset fundus flavimaculatus with macular dystrophy maps to chromosome 1p13

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, S.; Rozet, J.M.; Bonneau, D.; Souied, E.; Camuzat, A.; Munnich, A.; Kaplan, J. [Hopital des Enfants Malades, Paris (France); Dufier, J.L. [Hopital Laeennec, Paris (France); Amalric, P. [Consultation d`Ophtalmologie, Albi (France); Weissenbach, J. [Genethon, Evry (France)

    1995-02-01

    Fundus flavimaculatus with macular dystrophy is an autosomal recessive disease responsible for a progressive loss of visual acuity in adulthood, with pigmentary changes of the macula, perimacular flecks, and atrophy of the retinal pigmentary epithelium. Since this condition shares several clinical features with Stargardt disease, which has been mapped to chromosome 1p21-p13, we tested the disease for linkage to chromosome 1p. We report the mapping of the disease locus to chromosome 1p13-p21, in the genetic interval defined by loci D1S435 and D1S415, in four multiplex families (maximum lod score 4.79 at recombination fraction 0 for probe AFM217xb2 at locus D1S435). Thus, despite differences in the age at onset, clinical course, and severity, fundus flavimaculatus with macular dystrophy and Stargardt disease are probably allelic disorders. This result supports the view that allelic mutations produce a continuum of macular dystrophies, with onset in early childhood to late adulthood. 16 refs., 3 figs., 1 tab.

  7. Molecular dissection of a contiguous gene syndrome: Frequent submicroscopic deletions, evolutionarily conserved sequences, and a hypomethylated island in the Miller-Dieker chromosome region

    International Nuclear Information System (INIS)

    Ledbetter, D.H.; Ledbetter, S.A.; vanTuinen, P.

    1989-01-01

    The Miller-Dieker syndrome (MDS), composed of characteristic facial abnormalities and a severe neuronal migration disorder affecting the cerebral cortex, is caused by visible or submicroscopic deletions of chromosome band 17p13. Twelve anonymous DNA markers were tested against a panel of somatic cell hybrids containing 17p deletions from seven MDS patients. All patients, including three with normal karyotypes, are deleted for a variable set of 5-12 markers. Two highly polymorphic VNTR (variable number of tandem repeats) probes, YNZ22 and YNH37, are codeleted in all patients tested and make molecular diagnosis for this disorder feasible. By pulsed-field gel electrophoresis, YNZ22 and YNH37 were shown to be within 30 kilobases (kb) of each other. Cosmid clones containing both VNTR sequences were identified, and restriction mapping showed them to be 100 kb were completely deleted in all patients, providing a minimum estimate of the size of the MDS critical region. A hypomethylated island and evolutionarily conserved sequences were identified within this 100-kb region, indications of the presence of one or more expressed sequences potentially involved in the pathophysiology of this disorder. The conserved sequences were mapped to mouse chromosome 11 by using mouse-rat somatic cell hybrids, extending the remarkable homology between human chromosome 17 and mouse chromosome 11 by 30 centimorgans, into the 17p telomere region

  8. International workshop on chromosome 3. Final report, April 15, 1991--April 14, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gemmill, R.M.

    1992-07-01

    The Second Workshop on Human Chromosome 3 was held on April 4--5, 1991 at Denver, Colorado. There were 43 participants representing 8 nations. The workshop participants reviewed the current state of the chromosome 3 map, both physical and genetic, and prepared lists of markers and cell lines to be made commonly available. These markers and cell lines should be incorporated into the mapping efforts of diverse groups to permit the integration of data and development of consensus maps at future workshops. Region specific efforts were described for sections of the chromosome harboring genes thought to be involved in certain diseases including Von Hippel-Lindau disease, 3p-syndrome, lung cancer and renal cancer. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  9. Frequent gene conversion events between the X and Y homologous chromosomal regions in primates

    Directory of Open Access Journals (Sweden)

    Hirai Hirohisa

    2010-07-01

    Full Text Available Abstract Background Mammalian sex-chromosomes originated from a pair of autosomes. A step-wise cessation of recombination is necessary for the proper maintenance of sex-determination and, consequently, generates a four strata structure on the X chromosome. Each stratum shows a specific per-site nucleotide sequence difference (p-distance between the X and Y chromosomes, depending on the time of recombination arrest. Stratum 4 covers the distal half of the human X chromosome short arm and the p-distance of the stratum is ~10%, on average. However, a 100-kb region, which includes KALX and VCX, in the middle of stratum 4 shows a significantly lower p-distance (1-5%, suggesting frequent sequence exchanges or gene conversions between the X and Y chromosomes in humans. To examine the evolutionary mechanism for this low p-distance region, sequences of a corresponding region including KALX/Y from seven species of non-human primates were analyzed. Results Phylogenetic analysis of this low p-distance region in humans and non-human primate species revealed that gene conversion like events have taken place at least ten times after the divergence of New World monkeys and Catarrhini (i.e., Old World monkeys and hominoids. A KALY-converted KALX allele in white-handed gibbons also suggests a possible recent gene conversion between the X and Y chromosomes. In these primate sequences, the proximal boundary of this low p-distance region is located in a LINE element shared between the X and Y chromosomes, suggesting the involvement of this element in frequent gene conversions. Together with a palindrome on the Y chromosome, a segmental palindrome structure on the X chromosome at the distal boundary near VCX, in humans and chimpanzees, may mediate frequent sequence exchanges between X and Y chromosomes. Conclusion Gene conversion events between the X and Y homologous regions have been suggested, mainly in humans. Here, we found frequent gene conversions in the

  10. Wolf-Hirschhorn syndrome (WHS): a history in pictures.

    Science.gov (United States)

    Battaglia, A; Carey, J C; Viskochil, D H; Cederholm, P; Opitz, J M

    2000-01-01

    The Wolf-Hirschhorn syndrome (WHS) is a well known chromosomal disorder, due to a deletion of distal chromosome 4p. The classical gestalt is striking and poses few diagnostic problems. However, due to the difficulty of detecting very small deletions by standard cytogenetics, diagnosis can be sometimes very difficult, particularly in older patients. In this paper we show the changes, occurring over time, in facial appearance of affected individuals, to improve insight into the evolution of the phenotype, and to increase its diagnostic potential.

  11. The effect of 3-aminobenzamide on X-ray induction of chromosome aberrations in Down syndrome lymphocytes

    International Nuclear Information System (INIS)

    McLaren, R.A.; Au, W.W.; Legator, M.S.

    1989-01-01

    Human lymphocytes from normal and Down syndrome (DS) subjects were examined to determine the effect of 3-aminobenzamide (3AB) on X-ray-induced chromosome aberrations. Lymphocytes were treated with 150 or 300 rad of X-rays in the presence of 3 mM 3AB for various times after irradiation, and then the cells were analyzed for the presence of chromosome aberrations in mitotic cells. 3-Aminobenzamide had no effect on the frequency of chromosome aberrations as a result of treatment with X-rays in the presence of 3AB. These observations indicate that DS lymphocytes are more sensitive to the inhibition of poly(ADP)ribose synthetase than normal lymphocytes. (author). 44 refs.; 3 tabs

  12. Severe Psychomotor Delay in a Severe Presentation of Cat-Eye Syndrome

    Directory of Open Access Journals (Sweden)

    Guillaume Jedraszak

    2015-01-01

    Full Text Available Cat-eye syndrome is a rare genetic syndrome of chromosomal origin. Individuals with cat-eye syndrome are characterized by the presence of preauricular pits and/or tags, anal atresia, and iris coloboma. Many reported cases also presented with variable congenital anomalies and intellectual disability. Most patients diagnosed with CES carry a small supernumerary bisatellited marker chromosome, resulting in partial tetrasomy of 22p-22q11.21. There are two types of small supernumerary marker chromosome, depending on the breakpoint site. In a very small proportion of cases, other cytogenetic anomalies are reportedly associated with the cat-eye syndrome phenotype. Here, we report a patient with cat-eye syndrome caused by a type 1 small supernumerary marker chromosome. The phenotype was atypical and included a severe developmental delay. The use of array comparative genomic hybridization ruled out the involvement of another chromosomal imbalance in the neurological phenotype. In the literature, only a few patients with cat-eye syndrome present with a severe developmental delay, and all of the latter carried an atypical partial trisomy 22 or an uncharacterized small supernumerary marker chromosome. Hence, this is the first report of a severe neurological phenotype in cat-eye syndrome with a typical type 1 small supernumerary marker chromosome. Our observation clearly complicates prognostic assessment, particularly when cat-eye syndrome is diagnosed prenatally.

  13. Russell-Silver syndrome

    Science.gov (United States)

    Silver-Russell syndrome; Silver syndrome; RSS; Russell-Silver syndrome ... One in 10 children with this syndrome has a problem involving chromosome 7. In other people with the syndrome, it may affect chromosome 11. Most of the time, it ...

  14. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    Science.gov (United States)

    Wong, Ling M.; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with…

  15. Chromosomes, cancer and radiosensitivity

    International Nuclear Information System (INIS)

    Samouhos, E.

    1983-01-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available

  16. [Maxillofacial and dental abnormalities in some multiple abnormality syndromes. "Cri du chat" syndrome, Wilms' tumor-aniridia syndrome; Sotos syndrome; Goldenhar syndrome].

    Science.gov (United States)

    Berio, A; Trucchi, R; Meliota, M

    1992-05-01

    The paper describes the maxillo-facial and dental anomalies observed in some chromosome and non-chromosome poly-malformative syndromes ("Cri du chat" syndrome; Wilms' tumour; Sotos' syndrome; Goldenhar's syndrome). The Authors emphasise the possibility of diagnosing these multiple deformity syndromes from maxillo-facial alterations in early infancy; anomalous tooth position and structure cal also be successfully treated immediately after the first appearance of teeth. This is a particularly promising field of pediatrics and preventive pediatric medicine.

  17. Gonadal sex chromosome complement in individuals with sex chromosomal and/or gonadal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, J.A.; Sanger, W.G.; Seemayer, T. [Univ. of Nebraska Medical Center, Omaha, NE (United States)] [and others

    1994-09-01

    Gonadal abnormalities are characteristically seen in patients with sex chromosomal aneuploidy. Morphologically these abnormalities can be variable and are hypothesized to be dependent on the sex chromosomal consititution of the gonad (independent of the chromosomal complement of other tissues, such as peripheral blood lymphocytes). In this study, the gonadal sex chromosome complement was evaluated for potential mosaicism and correlated with the histopathology from 5 patients with known sex chromosomal and/or gonadal disorders. FISH techniques using X and Y chromosome specific probes were performed on nuclei extracted from paraffin embedded tissue. Gonadal tissue obtained from case 1 (a true hemaphroditic newborn) consisted of ovotestes and epididymis (left side) and ovary with fallopian tube (right side). Cytogenetic and FISH studies performed on blood, ovotestes and ovary revealed an XX complement. Cytogenetic analysis of blood from case 2, a 4-year-old with suspected Turner syndrome revealed 45,X/46,X,del(Y)(q11.21). FISH analysis of the resected gonads (histologically = immature testes) confirmed an X/XY mosaic complement. Histologically, the gonadal tissue was testicular. Severe autolysis prohibited successful analysis in the 2 remaining cases. In summary, molecular cytogenetic evaluation of gonadal tissue from individuals with sex chromosomal and/or gonadal disorders did not reveal tissue-specific anomalies which could account for differences observed pathologically.

  18. Chromosome Studies in Patients with Polycythaemia Vera after Treatment with {sup 32}P

    Energy Technology Data Exchange (ETDEWEB)

    Millard, Rosemary E.; Kay, H. E.M.; Lawler, S. D. [Royal Marsden Hospital, London (United Kingdom)

    1969-11-15

    The chromosomes of bone-marrow cells and blood lymphocytes of forty-six patients with polycythaemia vera were analysed to trace the sequence of events leading to the development of bone-marrow failure or 'leukaemia'. All except one of the patients had received radiophosphorus ({sup 32}P). It might be expected that the yield of chromosomal aberrations of the two-break type (translocations etc.) from the low dose-rate beta radiation of {sup 32}P would be small. However, 'unstable' types of abnormality (dicentrics, fragments) and stable types (translocations, inversions, deletions) were observed in 6-25% of the blood lymphocytes; there was no evidence of clones of abnormal cells. In the majority of patients the bone marrow was predominantly normal diploid; occasional sporadic cells with 'stable' chromosomal abnormalities were seen in two-thirds of the cases, but 'unstable' aberrations were rare. In seven cases there were clones of cells characterised by deletions or translocations. All these chromosomal changes are probably radiation-induced. Clones of cells with a similar abnormality, an apparent deletion of one of the F-group chromosomes, were observed in the bone marrow in ten patients. Eight of these had received {sup 32}P and two busulphan. In two cases the clone appeared to develop after treatment. A similar anomaly has been reported in several cases of idiopathic sideroblastic anaemia who had not been irradiated. Progression into the leukaemic phase of the disease is associated in some cases with gross chromosomal abnormalities, such as shift of the stem line chromosome number and bizarre chromosome 'markers'. In other cases, some of whom have not been irradiated for several years, the chromosomal changes are less pronounced and may result from non-disjunctional gain of one or more chromosomes or chromosome loss. One case showed a step-by-step clonal evolution over a two-year period. None of the chromosomal abnormalities in the 'leukaemic' phase appear to be a

  19. Prader-Willi Syndrome due to an Unbalanced de novo Translocation t(15;19)(q12;p13.3).

    Science.gov (United States)

    Dang, Vy; Surampalli, Abhilasha; Manzardo, Ann M; Youn, Stephanie; Butler, Merlin G; Gold, June-Anne; Kimonis, Virginia E

    2016-01-01

    Prader-Willi syndrome (PWS) is a complex, multisystem genetic disorder characterized by endocrine, neurologic, and behavioral abnormalities. We report the first case of an unbalanced de novo reciprocal translocation of chromosomes 15 and 19, 45,XY,-15,der(19)t(15;19)(q12;p13.3), resulting in monosomy for the PWS critical chromosome region. Our patient had several typical features of PWS including infantile hypotonia, a poor suck and feeding difficulties, tantrums, skin picking, compulsions, small hands and feet, and food seeking, but not hypopigmentation, a micropenis, cryptorchidism or obesity as common findings seen in PWS at the time of examination at 6 years of age. He had seizures noted from 1 to 3 years of age and marked cognitive delay. High-resolution SNP microarray analysis identified an atypical PWS type I deletion in chromosome 15 involving the proximal breakpoint BP1. The deletion extended beyond the GABRB3 gene but was proximal to the usual distal breakpoint (BP3) within the 15q11q13 region, and GABRA5, GABRG3, and OCA2 genes were intact. No deletion of band 19p13.3 was detected; therefore, the patient was not at an increased risk of tumors from the Peutz-Jeghers syndrome associated with a deletion of the STK11 gene. © 2016 S. Karger AG, Basel.

  20. Geant4.10 simulation of geometric model for metaphase chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Rafat-Motavalli, L., E-mail: rafat@um.ac.ir; Miri-Hakimabad, H.; Bakhtiyari, E.

    2016-04-01

    In this paper, a geometric model of metaphase chromosome is explained. The model is constructed according to the packing ratio and dimension of the structure from nucleosome up to chromosome. A B-DNA base pair is used to construct 200 base pairs of nucleosomes. Each chromatin fiber loop, which is the unit of repeat, has 49,200 bp. This geometry is entered in Geant4.10 Monte Carlo simulation toolkit and can be extended to the whole metaphase chromosomes and any application in which a DNA geometrical model is needed. The chromosome base pairs, chromosome length, and relative length of chromosomes are calculated. The calculated relative length is compared to the relative length of human chromosomes.

  1. Geant4.10 simulation of geometric model for metaphase chromosome

    International Nuclear Information System (INIS)

    Rafat-Motavalli, L.; Miri-Hakimabad, H.; Bakhtiyari, E.

    2016-01-01

    In this paper, a geometric model of metaphase chromosome is explained. The model is constructed according to the packing ratio and dimension of the structure from nucleosome up to chromosome. A B-DNA base pair is used to construct 200 base pairs of nucleosomes. Each chromatin fiber loop, which is the unit of repeat, has 49,200 bp. This geometry is entered in Geant4.10 Monte Carlo simulation toolkit and can be extended to the whole metaphase chromosomes and any application in which a DNA geometrical model is needed. The chromosome base pairs, chromosome length, and relative length of chromosomes are calculated. The calculated relative length is compared to the relative length of human chromosomes.

  2. A 380-kb Duplication in 7p22.3 Encompassing the LFNG Gene in a Boy with Asperger Syndrome

    NARCIS (Netherlands)

    Vulto-van Silfhout, A.T.; de Brouwer, A.F.; de Leeuw, N.; Obihara, C.C.; Brunner, H.G.; Vries, L.B.A. de

    2012-01-01

    De novo genomic aberrations are considered an important cause of autism spectrum disorders. We describe a de novo 380-kb gain in band p22.3 of chromosome 7 in a patient with Asperger syndrome. This duplicated region contains 9 genes including the LNFG gene that is an important regulator of NOTCH

  3. A de novo 11p12-p15.4 duplication in a patient with pharmacoresistant epilepsy, mental retardation, and dysmorphisms.

    Science.gov (United States)

    Coppola, Antonietta; Striano, Pasquale; Gimelli, Stefania; Ciampa, Clotilde; Santulli, Lia; Caranci, Ferdinando; Zuffardi, Orsetta; Gimelli, Giorgio; Striano, Salvatore; Zara, Federico

    2010-03-01

    We report a 22-year-old male patient with pharmacoresistant epilepsy, mental retardation and dysmorphisms. Standard cytogenetic analysis revealed a de novo interstitial duplication of the short arm of chromosome 11 (11p). High density array-CGH analysis showed that the rearrangement spans about 35Mb on chromosome 11p12-p15.4. Duplications of 11p are rare and usually involve the distal part of the chromosome arm (11p15), being not associated with epilepsy, whereas our patient showed a unique epileptic phenotype associated with mental retardation and dysmorphic features. The role of some rearranged genes in epilepsy pathogenesis in this patient is also discussed.

  4. Chromosomal Instability and Molecular Defects in Induced Pluripotent Stem Cells from Nijmegen Breakage Syndrome Patients

    Directory of Open Access Journals (Sweden)

    Tomer Halevy

    2016-08-01

    Full Text Available Nijmegen breakage syndrome (NBS results from the absence of the NBS1 protein, responsible for detection of DNA double-strand breaks (DSBs. NBS is characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Here, we show successful reprogramming of NBS fibroblasts into induced pluripotent stem cells (NBS-iPSCs. Our data suggest a strong selection for karyotypically normal fibroblasts to go through the reprogramming process. NBS-iPSCs then acquire numerous chromosomal aberrations and show a delayed response to DSB induction. Furthermore, NBS-iPSCs display slower growth, mitotic inhibition, a reduced apoptotic response to stress, and abnormal cell-cycle-related gene expression. Importantly, NBS neural progenitor cells (NBS-NPCs show downregulation of neural developmental genes, which seems to be mediated by P53. Our results demonstrate the importance of NBS1 in early human development, shed light on the molecular mechanisms underlying this severe syndrome, and further expand our knowledge of the genomic stress cells experience during the reprogramming process.

  5. A Rare Chromosome 3 Imbalance and Its Clinical Implications

    Directory of Open Access Journals (Sweden)

    Karen Sims

    2012-01-01

    Full Text Available The duplication of chromosome 3q is a rare disorder with varying chromosomal breakpoints and consequently symptoms. Even rarer is the unbalanced outcome from a parental inv(3 resulting in duplicated 3q and a deletion of 3p. Molecular karyotyping should aid in precisely determining the length and breakpoints of the 3q+/3p− so as to better understand a child’s future development and needs. We report a case of an infant male with a 57.5 Mb duplication from 3q23-qter. This patient also has an accompanying 1.7 Mb deletion of 3p26.3. The duplicated segment in this patient encompasses the known critical region of 3q26.3-q27, which is implicated in the previously reported 3q dup syndrome; however, the accompanying 3p26.3 deletion is smaller than the previously reported cases. The clinical phenotype of this patient relates to previously reported cases of 3q+ that may suggest that the accompanying 1.7 Mb heterozygous deletion is not clinically relevant. Taken together, our data has refined the location and extent of the chromosome 3 imbalance, which will aid in better understanding the molecular underpinning of the 3q syndrome.

  6. Chromosome 13 dementia syndromes as models of neurodegeneration

    DEFF Research Database (Denmark)

    Ghiso, J.; Revesz, T.; Holton, J.

    2001-01-01

    Two hereditary conditions, familial British dementia (FBD) and familial Danish dementia (FDD), are associated with amyloid deposition in the central nervous system and neurodegeneration. The two amyloid proteins, ABri and ADan, are degradation products of the same precursor molecule BriPP bearing......-terminus. Neurofibrillary tangles containing the classical paired helical filaments as well as neuritic components in many instances co-localize with the amyloid deposits. In both disorders, the pattern of hyperphosphorylatedtau immunoreactivity is almost indistinguishable from that seen in Alzheimer's disease....... These issues argue for the primary importance of the amyloid deposits in the mechanism(s) of neuronal cell loss. We propose FBD and FDD, the chromosome 13 dementia syndromes, as models to study the molecular basis of neurofibrillary degeneration, cell death and amyloid formation in the brain....

  7. Chromosomal investigations in patients with mental retardation and/or congenital malformations

    Directory of Open Access Journals (Sweden)

    Santos C.B.

    2000-01-01

    Full Text Available We investigated the chromosomal constitution of patients with mental retardation and/or congenital malformations in order to determine genetic causes for such disturbances. The GTG and CBG banding patterns were studied using phytohemagglutinin M-stimulated lymphocytes cultured from peripheral blood. Among 98 individuals with mental retardation and/or congenital malformations who were analyzed there were 12 cases of Down's syndrome, two of Edward's syndrome, one of Patau's syndrome, five of Turner's syndrome, two of Klinefelter's syndrome, one of "cri-du-chat" syndrome, one case of a balanced translocation between chromosomes 13 and 14, one case of a derivative chromosome and one of a marker chromosome. We found abnormal chromosomes in 26% of the patients, 82% of which were numerical abnormalities, with the remaining 18% being structural variants. We conclude that patients with mental retardation and/or congenital malformations should be routinely karyotyped.

  8. P chromosomes involved in intergenomic rearrangements of ...

    Indian Academy of Sciences (India)

    2014-04-08

    Apr 8, 2014 ... [Wang Q., Han H., Gao A., Yang X. and Li L. 2014 P chromosomes ... Y, were affected predominantly by ecological factors and altitude in nine populations of Kengyilia thoroldiana (Wang et al. 2012). To investigate the effects of different altitudes on .... AB51 0LX, UK) for improving the article linguistically.

  9. Case report: cytogenetic and molecular analysis of proximal interstitial deletion of 4p, review of the literature and comparison with wolf-hirschhorn syndrome.

    Science.gov (United States)

    Bailey, Nathanael G; South, Sarah T; Hummel, Marybeth; Wenger, Sharon L

    2010-01-01

    We report on a two-year-old female with a de novo proximal interstitial deletion of the short arm of chromosome 4 and a tetralogy of Fallot malformation. The patient had a karyotype of 46,XX,del(4)(p14p15.33) that was further characterized by array comparative genomic hybridization (aCGH). Phenotypic abnormalities for our patient are compared with those of previously reported patients with similar proximal 4p deletions as well as more distal deletions. The functions of genes that are deleted within this segment are reviewed.

  10. Concurrent Van der Woude syndrome and Turner syndrome: A case report.

    Science.gov (United States)

    Los, Evan; Baines, Hayley; Guttmann-Bauman, Ines

    2017-01-01

    Most cases of Van der Woude syndrome are caused by a mutation to interferon regulatory factor 6 on chromosome 1. Turner syndrome is caused by complete or partial absence of the second sex chromosome in girls. We describe a unique case of the two syndromes occurring concurrently though apparently independently in a girl with Van der Woude syndrome diagnosed at birth and Turner syndrome at 14 years 9 months. Short stature was initially misattributed to Van der Woude syndrome and pituitary insufficiency associated with clefts before correctly diagnosing Turner syndrome. We discuss the prevalence of delayed diagnosis of Turner syndrome, the rarity of reports of concurrent autosomal chromosome mutation and sex chromosome deletion, as well as the need to consider the diagnosis of Turner syndrome in all girls with short stature regardless of prior medical history.

  11. Comparative mapping in the beige-satin region of mouse chromosome 13

    Energy Technology Data Exchange (ETDEWEB)

    Perou, C.M.; Pryor, R.; Kaplan, J. [Univ. of Utah School of Medicine, Salt Lake City, UT (United States)] [and others

    1997-01-15

    The proximal end of mouse chromosome (Chr) 13 contains regions conserved on human chromosomes 1q42-q44, 6p23-p21, and 7p22-p13. This region also contains mutations that may be models for human disease, including beige (human Chediak-Higashi syndrome). An interspecific backcross of SB/Le and Mus spretus mice was used to generate a molecular genetic linkage map of mouse chromosome 13 with an emphasis on the proximal region including beige (bg) and satin (sa). This map provides the gene order of the two phenotypic markers bg and sa relative to restriction fragment length polymorphisms and simple sequence length polymorphisms in 131 backcross animals. In parallel, we have created a physical map of the region using Nidogen (Nid) as a molecular starting point for cloning a YAC contig that was used to identify the beige gene. The physical map provides the fine-structure order of genes and anonymous DNA fragments that was not resolved by the genetic linkage mapping. The results show that the bg region of mouse Chr 13 is highly conserved on human Chr 1q42-q44 and provide a starting point for a complete functional analysis of the entire bg-sa interval. 37 refs., 4 figs., 1 tab.

  12. Startling mosaicism of the Y-chromosome and tandem duplication of the SRY and DAZ genes in patients with Turner Syndrome.

    Directory of Open Access Journals (Sweden)

    Sanjay Premi

    Full Text Available Presence of the human Y-chromosome in females with Turner Syndrome (TS enhances the risk of development of gonadoblastoma besides causing several other phenotypic abnormalities. In the present study, we have analyzed the Y chromosome in 15 clinically diagnosed Turner Syndrome (TS patients and detected high level of mosaicisms ranging from 45,XO:46,XY = 100:0% in 4; 45,XO:46,XY:46XX = 4:94:2 in 8; and 45,XO:46,XY:46XX = 50:30:20 cells in 3 TS patients, unlike previous reports showing 5-8% cells with Y- material. Also, no ring, marker or di-centric Y was observed in any of the cases. Of the two TS patients having intact Y chromosome in >85% cells, one was exceptionally tall. Both the patients were positive for SRY, DAZ, CDY1, DBY, UTY and AZFa, b and c specific STSs. Real Time PCR and FISH demonstrated tandem duplication/multiplication of the SRY and DAZ genes. At sequence level, the SRY was normal in 8 TS patients while the remaining 7 showed either absence of this gene or known and novel mutations within and outside of the HMG box. SNV/SFV analysis showed normal four copies of the DAZ genes in these 8 patients. All the TS patients showed aplastic uterus with no ovaries and no symptom of gonadoblastoma. Present study demonstrates new types of polymorphisms indicating that no two TS patients have identical genotype-phenotype. Thus, a comprehensive analysis of more number of samples is warranted to uncover consensus on the loci affected, to be able to use them as potential diagnostic markers.

  13. Epigenotype-phenotype correlations in Silver-Russell syndrome

    NARCIS (Netherlands)

    Wakeling, E. L.; Amero, S. Abu; Alders, M.; Bliek, J.; Forsythe, E.; Kumar, S.; Lim, D. H.; Macdonald, F.; Mackay, D. J.; Maher, E. R.; Moore, G. E.; Poole, R. L.; Price, S. M.; Tangeraas, T.; Turner, C. L. S.; van Haelst, M. M.; Willoughby, C.; Temple, I. K.; Cobben, J. M.

    2010-01-01

    Silver-Russell syndrome (SRS) is characterised by intrauterine growth restriction, poor postnatal growth, relative macrocephaly, triangular face and asymmetry. Maternal uniparental disomy (mUPD) of chromosome 7 and hypomethylation of the imprinting control region (ICR) 1 on chromosome 11p15 are

  14. MECHANISMS IN ENDOCRINOLOGY: Aberrations of the X chromosome as cause of male infertility.

    Science.gov (United States)

    Röpke, Albrecht; Tüttelmann, Frank

    2017-11-01

    Male infertility is most commonly caused by spermatogenetic failure, clinically noted as oligo- or a-zoospermia. Today, in approximately 20% of azoospermic patients, a causal genetic defect can be identified. The most frequent genetic causes of azoospermia (or severe oligozoospermia) are Klinefelter syndrome (47,XXY), structural chromosomal abnormalities and Y-chromosomal microdeletions. Consistent with Ohno's law, the human X chromosome is the most stable of all the chromosomes, but contrary to Ohno's law, the X chromosome is loaded with regions of acquired, rapidly evolving genes, which are of special interest because they are predominantly expressed in the testis. Therefore, it is not surprising that the X chromosome, considered as the female counterpart of the male-associated Y chromosome, may actually play an essential role in male infertility and sperm production. This is supported by the recent description of a significantly increased copy number variation (CNV) burden on both sex chromosomes in infertile men and point mutations in X-chromosomal genes responsible for male infertility. Thus, the X chromosome seems to be frequently affected in infertile male patients. Four principal X-chromosomal aberrations have been identified so far: (1) aneuploidy of the X chromosome as found in Klinefelter syndrome (47,XXY or mosaicism for additional X chromosomes). (2) Translocations involving the X chromosome, e.g. nonsyndromic 46,XX testicular disorders of sex development (XX-male syndrome) or X-autosome translocations. (3) CNVs affecting the X chromosome. (4) Point mutations disrupting X-chromosomal genes. All these are reviewed herein and assessed concerning their importance for the clinical routine diagnostic workup of the infertile male as well as their potential to shape research on spermatogenic failure in the next years. © 2017 European Society of Endocrinology.

  15. Partial monosomy Xq(Xq23 --> qter) and trisomy 4p(4p15.33 --> pter) in a woman with intractable focal epilepsy, borderline intellectual functioning, and dysmorphic features.

    Science.gov (United States)

    Bartocci, Arnaldo; Striano, Pasquale; Mancardi, Maria Margherita; Fichera, Marco; Castiglia, Lucia; Galesi, Ornella; Michelucci, Roberto; Elia, Maurizio

    2008-06-01

    Studies of epilepsy associated with chromosomal abnormalities may provide information about clinical and EEG phenotypes and possibly to identify new epilepsy genes. We describe a female patient with intractable focal epilepsy, borderline intellectual functioning, and facial dysmorphisms, in whom genetic study (i.e., karyotype and array-CGH analysis) revealed a distal trisomy 4p and distal monosomy Xq. Although any genetic hypothesis remains speculative, several genes are located in the 4p chromosome segment involved in the rearrangement, some of which may be related to epilepsy.

  16. Editorial: X-chromosome-linked Kallmann's syndrome: Pathology at the molecular level

    Energy Technology Data Exchange (ETDEWEB)

    Prager, D.; Braunstein, G.D. (Cedars-Sinai Medical Center, Los Angeles, CA (United States))

    1993-04-01

    Kallmann's syndrome or olfactogenital dysplasia refers to a disorder characterized by hypogonadotropic hypogonadism and anosmia or hyposmia which can occur sporadically or in a familial setting. Originally described in 1856, the first familial cases were reported by Kallmann et al., in 1944. Based on segregation analysis of multiple families, three modes of transmission have been documented: X-linked, autosomal dominant with variable penetrance, and autosomal recessive. Kallmann's syndrome occurs in less than 1 in 10,000 male births, with a 5-fold excess of affected males to females, suggesting that the X-linked form is the most frequent. By genetic linkage analysis the X-linked form of Kallmann's syndrome was localized to Xp22.3. This was confirmed by the description of patients with contiguous gene syndromes due to deletions of various portions of the distal short arm of the X-chromosome. Such patients present with complex phenotypes characterized by a combination of Kallmann's syndrome with X-linked icthyosis due to steroid sulfatase deficiency, chondrodysplasia punctata, short stature, and mental retardation. DNA analysis has identified and mapped the genes responsible for these disorders. 10 refs., 1 fig., 1 tab.

  17. Joint multi-population analysis for genetic linkage of bipolar disorder or "wellness" to chromosome 4p.

    Science.gov (United States)

    Visscher, P M; Haley, C S; Ewald, H; Mors, O; Egeland, J; Thiel, B; Ginns, E; Muir, W; Blackwood, D H

    2005-02-05

    To test the hypothesis that the same genetic loci confer susceptibility to, or protection from, disease in different populations, and that a combined analysis would improve the map resolution of a common susceptibility locus, we analyzed data from three studies that had reported linkage to bipolar disorder in a small region on chromosome 4p. Data sets comprised phenotypic information and genetic marker data on Scottish, Danish, and USA extended pedigrees. Across the three data sets, 913 individuals appeared in the pedigrees, 462 were classified, either as unaffected (323) or affected (139) with unipolar or bipolar disorder. A consensus linkage map was created from 14 microsatellite markers in a 33 cM region. Phenotypic and genetic data were analyzed using a variance component (VC) and allele sharing method. All previously reported elevated test statistics in the region were confirmed with one or both analysis methods, indicating the presence of one or more susceptibility genes to bipolar disorder in the three populations in the studied chromosome segment. When the results from both the VC and allele sharing method were considered, there was strong evidence for a susceptibility locus in the data from Scotland, some evidence in the data from Denmark and relatively less evidence in the data from the USA. The test statistics from the Scottish data set dominated the test statistics from the other studies, and no improved map resolution for a putative genetic locus underlying susceptibility in all three studies was obtained. Studies reporting linkage to the same region require careful scrutiny and preferably joint or meta analysis on the same basis in order to ensure that the results are truly comparable. (c) 2004 Wiley-Liss, Inc.

  18. Immune complex-mediated autoimmunity in a patient With Smith-Magenis syndrome (del 17p11.2).

    Science.gov (United States)

    Yang, Jianying; Chandrasekharappa, Settara C; Vilboux, Thierry; Smith, Ann C M; Peterson, Erik J

    2014-08-01

    Smith-Magenis syndrome (SMS) is a sporadic congenital disorder involving multiple organ systems caused by chromosome 17p11.2 deletions. Smith-Magenis syndrome features craniofacial and skeletal anomalies, cognitive impairment, and neurobehavioral abnormalities. In addition, some SMS patients may exhibit hypogammaglobulinemia. We report the first case of SMS-associated autoimmunity in a woman who presented with adult onset of multiple autoimmune disorders, including systemic lupus erythematosus, antiphospholipid antibody syndrome, and autoimmune hepatitis. Molecular analysis using single-nucleotide polymorphism array confirmed a de novo 3.8-Mb deletion (breakpoints, chr17: 16,660,721-20,417,975), resulting in haploinsufficiency for TACI (transmembrane activator and CAML interactor). Our data are consistent with potential loss of function for the BAFF (B cell-activating factor) receptor TACI as a contributing factor to human autoimmune phenomena.

  19. A genetic linkage map of the chromosome 4 short arm

    Energy Technology Data Exchange (ETDEWEB)

    Locke, P.A.; MacDonald, M.E.; Srinidhi, J.; Tanzi, R.E.; Haines, J.L. (Massachusetts General Hospital, Boston (United States)); Gilliam, T.C. (Columbia Univ., New York, NY (United States)); Conneally, P.M. (Indiana Univ. Medical Center, Indianapolis (United States)); Wexler, N.S. (Columbia Univ., New York, NY (United States) Hereditary Disease Foundation, Santa Monica, CA (United States)); Gusella, J.F. (Massachusetts General Hospital, Boston (United States) Harvard Univ., Boston, MA (United States))

    1993-01-01

    The authors have generated an 18-interval contiguous genetic linkage map of human chromosome 4 spanning the entire short arm and proximal long arm. Fifty-seven polymorphisms, representing 42 loci, were analyzed in the Venezuelan reference pedigree. The markers included seven genes (ADRA2C, ALB, GABRB1, GC, HOX7, IDUA, QDPR), one pseudogene (RAF1P1), and 34 anonymous DNA loci. Four loci were represented by microsatellite polymorphisms and one (GC) was expressed as a protein polymorphism. The remainder were genotyped based on restriction fragment length polymorphism. The sex-averaged map covered 123 cM. Significant differences in sex-specific rates of recombination were observed only in the pericentromeric and proximal long arm regions, but these contributed to different overall map lengths of 115 cM in males and 138 cM in females. This map provides 19 reference points along chromosome 4 that will be particularly useful in anchoring and seeding physical mapping studies and in aiding in disease studies. 26 refs., 1 fig., 1 tab.

  20. USH1H, a novel locus for type I Usher syndrome, maps to chromosome 15q22-23.

    Science.gov (United States)

    Ahmed, Z M; Riazuddin, S; Khan, S N; Friedman, P L; Riazuddin, S; Friedman, T B

    2009-01-01

    Usher syndrome (USH) is a hereditary disorder associated with sensorineural hearing impairment, progressive loss of vision attributable to retinitis pigmentosa (RP) and variable vestibular function. Three clinical types have been described with type I (USH1) being the most severe. To date, six USH1 loci have been reported. We ascertained two large Pakistani consanguineous families segregating profound hearing loss, vestibular dysfunction, and RP, the defining features of USH1. In these families, we excluded linkage of USH to the 11 known USH loci and subsequently performed a genome-wide linkage screen. We found a novel USH1 locus designated USH1H that mapped to chromosome 15q22-23 in a 4.92-cM interval. This locus overlaps the non-syndromic deafness locus DFNB48 raising the possibility that the two disorders may be caused by allelic mutations.

  1. Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing’s syndrome

    Science.gov (United States)

    Lecoq, Anne-Lise; Stratakis, Constantine A.; Viengchareun, Say; Chaligné, Ronan; Tosca, Lucie; Hage, Mirella; Berthon, Annabel; Faucz, Fabio R.; Hanna, Patrick; Boyer, Hadrien-Gaël; Servant, Nicolas; Salenave, Sylvie; Tachdjian, Gérard; Adam, Clovis; Benhamo, Vanessa; Clauser, Eric; Guiochon-Mantel, Anne; Young, Jacques; Lombès, Marc; Bourdeau, Isabelle; Maiter, Dominique; Tabarin, Antoine; Bertherat, Jérôme; Lefebvre, Hervé; Louiset, Estelle; Lacroix, André; Bouligand, Jérôme; Kamenický, Peter

    2017-01-01

    GIP-dependent Cushing’s syndrome is caused by ectopic expression of glucose-dependent insulinotropic polypeptide receptor (GIPR) in cortisol-producing adrenal adenomas or in bilateral macronodular adrenal hyperplasias. Molecular mechanisms leading to ectopic GIPR expression in adrenal tissue are not known. Here we performed molecular analyses on adrenocortical adenomas and bilateral macronodular adrenal hyperplasias obtained from 14 patients with GIP-dependent adrenal Cushing’s syndrome and one patient with GIP-dependent aldosteronism. GIPR expression in all adenoma and hyperplasia samples occurred through transcriptional activation of a single allele of the GIPR gene. While no abnormality was detected in proximal GIPR promoter methylation, we identified somatic duplications in chromosome region 19q13.32 containing the GIPR locus in the adrenocortical lesions derived from 3 patients. In 2 adenoma samples, the duplicated 19q13.32 region was rearranged with other chromosome regions, whereas a single tissue sample with hyperplasia had a 19q duplication only. We demonstrated that juxtaposition with cis-acting regulatory sequences such as glucocorticoid response elements in the newly identified genomic environment drives abnormal expression of the translocated GIPR allele in adenoma cells. Altogether, our results provide insight into the molecular pathogenesis of GIP-dependent Cushing’s syndrome, occurring through monoallelic transcriptional activation of GIPR driven in some adrenal lesions by structural variations. PMID:28931750

  2. Novel QTL at chromosome 6p22 for alcohol consumption: Implications for the genetic liability of alcohol use disorders

    Science.gov (United States)

    Kos, Mark Z.; Glahn, David C.; Carless, Melanie A.; Olvera, Rene; McKay, D. Reese; Quillen, Ellen E.; Gelernter, Joel; Chen, Xiang-Ding; Deng, Hong-Wen; Kent, Jack W.; Dyer, Thomas D.; Göring, Harald H.H.; Curran, Joanne E.; Duggirala, Ravi; Blangero, John; Almasy, Laura

    2014-01-01

    Linkage studies of alcoholism have implicated several chromosome regions, leading to the successful identification of susceptibility genes, including ADH4 and GABRA2 on chromosome 4. Quantitative endophenotypes that are potentially closer to gene action than clinical endpoints offer a means of obtaining more refined linkage signals of genes that predispose alcohol use disorders (AUD). In this study we examine a self-reported measure of the maximum number of drinks consumed in a 24-hour period (abbreviated Max Drinks), a significantly heritable phenotype (h2 = 0.32 ± 0.05; P = 4.61 × 10−14) with a strong genetic correlation with AUD (ρg = 0.99 ± 0.13) for the San Antonio Family Study (n = 1,203). Genome-wide SNPs were analyzed using variance components linkage methods in the program SOLAR, revealing a novel, genome-wide significant QTL (LOD = 4.17; P = 5.85 × 10−6) for Max Drinks at chromosome 6p22.3, a region with a number of compelling candidate genes implicated in neuronal function and psychiatric illness. Joint analysis of Max Drinks and AUD status shows that the QTL has a significant non-zero effect on diagnosis (P = 4.04 × 10−3), accounting for 8.6% of the total variation. Significant SNP associations for Max Drinks were also identified at the linkage region, including one, rs7761213 (P = 2.14 × 10−4), obtained for an independent sample of Chinese families. Thus, our study identifies a potential risk locus for AUD at 6p22.3, with significant pleiotropic effects on the heaviness of alcohol consumption that may not be population specific. PMID:24692236

  3. Algorithm for sorting chromosomal aberrations

    DEFF Research Database (Denmark)

    Vogel, Ida; Lund, Najaaraq; Rasmussen, Steen

    2018-01-01

    Prenatal diagnostic methods and screening procedures change rapidly in these years. Years ago only karyotyping was performed prenatally, and we monitored only Down syndrome(1) . Since then the diagnostic possibilities have increased to QF-PCR, FISH, MLPA and chromosomal microarray.......Prenatal diagnostic methods and screening procedures change rapidly in these years. Years ago only karyotyping was performed prenatally, and we monitored only Down syndrome(1) . Since then the diagnostic possibilities have increased to QF-PCR, FISH, MLPA and chromosomal microarray....

  4. Paternal isodisomy of chromosome 6 in association with a maternal supernumerary marker chromosome (6)

    Energy Technology Data Exchange (ETDEWEB)

    James, R.S.; Crolla, J.A.; Sitch, F.L. [Salisbury District Hospital, Wiltshire (United Kingdom)] [and others

    1994-09-01

    Uniparental disomy may arise by a number of different mechanisms of aneuploidy correction. A population that has been identified as being at increased risk of aneuploidy are those individuals bearing supernumerary marker chromosomes (SMCs). There have been a number of cases reported of trisomy 21 in association with bi-satellited marker chromosomes have described two individuals with small inv dup (15) markers. One had paternal isodisomy of chromosome 15 and Angelman syndrome. The other had maternal heterodisomy (15) and Prader-Willi syndrome. At the Wessex Regional Genetics Laboratory we have conducted a search for uniparental disomy of the normal homologues of the chromosomes from which SMCs originated. Our study population consists of 39 probands with SMCs originating from a number of different autosomes, including 17 with SMCs of chromosome 15 origin. Using PCR amplification of microsatellite repeat sequences located distal to the regions included in the SMCs we have determined the parental origin of the two normal homologues in each case. We have identified paternal isodisomy of chromosome 6 in a female child with a supernumerary marker ring chromosome 6 in approximately 70% of peripheral blood lymphocytes. The marker was found to be of maternal origin. This is the second case of paternal isodisomy of chromosome 6 to be reported, and the first in association with a SMC resulting in a partial trisomy for a portion of the short arm of chromosome 6. In spite of this, the patient appears to be functioning appropriately for her age.

  5. A novel syndrome of abnormal striatum and congenital cataract: evidence for linkage to chromosomes 11.

    Science.gov (United States)

    Al-Owain, M; Al-Zahrani, J; Al-Bakheet, A; Abudheim, N; Al-Younes, B; Aldhalaan, H; Al-Zaidan, H; Colak, D; Almohaileb, F; Abouzied, M E; Al-Fadhli, F; Meyer, B; Kaya, N

    2013-09-01

    We report a consanguineous family of three girls and one boy affected with a novel syndrome involving the lens and the basal ganglia. The phenotype is strikingly similar between affected siblings with cognitive impairment, attention deficit hyperactivity disorder (ADHD), microcephaly, growth retardation, congenital cataract, and dystonia. The magnetic resonance imaging showed unusual pattern of swelling of the caudate heads and thinning of the putamina with severe degree of hypometabolism on the [18F] deoxyglucose positron emission tomography. Furthermore, the clinical assessment provides the evidence that the neurological phenotype is very slowly progressive. We utilized the 10K single-nucleotide polymorphism (SNP) microarray genotyping for linkage analysis. Genome-wide scan indicated a 45.9-Mb region with a 4.2353 logarithm of the odds score on chromosome 11. Affymetrix genome-wide human SNP array 6.0 assay did not show any gross chromosomal abnormality. Targeted sequencing of two candidate genes within the linkage interval (PAX6 and B3GALTL) as well as mtDNA genome sequencing did not reveal any putative mutations. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Genetics Home Reference: Potocki-Lupski syndrome

    Science.gov (United States)

    ... cause the disorder. Most cases of Potocki-Lupski syndrome result from a new (de novo) chromosomal duplication and occur in people with ... or Free article on PubMed Central Treadwell-Deering DE, ... of the Potocki-Lupski syndrome (duplication 17p11.2). J Dev Behav Pediatr. 2010 ...

  7. Cytogenomic Integrative Network Analysis of the Critical Region Associated with Wolf-Hirschhorn Syndrome

    Directory of Open Access Journals (Sweden)

    Thiago Corrêa

    2018-01-01

    Full Text Available Deletions in the 4p16.3 region are associated with Wolf-Hirschhorn syndrome (WHS, a contiguous gene deletion syndrome involving variable size deletions. In this study, we perform a cytogenomic integrative analysis combining classical cytogenetic methods, fluorescence in situ hybridization (FISH, chromosomal microarray analysis (CMA, and systems biology strategies, to establish the cytogenomic profile involving the 4p16.3 critical region and suggest WHS-related intracellular cell signaling cascades. The cytogenetic and clinical patient profiles were evaluated. We characterized 12 terminal deletions, one interstitial deletion, two ring chromosomes, and one classical translocation 4;8. CMA allowed delineation of the deletions, which ranged from 3.7 to 25.6 Mb with breakpoints from 4p16.3 to 4p15.33. Furthermore, the smallest region of overlapping (SRO encompassed seven genes in a terminal region of 330 kb in the 4p16.3 region, suggesting a region of susceptibility to convulsions and microcephaly. Therefore, molecular interaction networks and topological analysis were performed to understand these WHS-related symptoms. Our results suggest that specific cell signaling pathways including dopamine receptor, NAD+ nucleosidase activity, and fibroblast growth factor-activated receptor activity are associated with the diverse pathological WHS phenotypes and their symptoms. Additionally, we identified 29 hub-bottlenecks (H-B nodes with a major role in WHS.

  8. RFLPs for ATP1BL1 (. beta. subunit Na sup + /K sup + ATPase pseudogene) on chromosome 4

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, C.; Shull, M. (Univ. of Iowa Hospitals, Iowa City (USA)); Lingrel, J.B.; Murray, J.C.; Lane, L.K. (Univ. of Cincinnati College of Medicine, OH (USA))

    1989-11-11

    {beta}51-1(1.4) contains a 1.4kb EcoRI fragment, free of repetitive elements, from the {beta} subunit Na{sup +}/K{sup +} ATPase pseudogene (ATP1BL1). The vector is pUG18. EcoRI identifies 2 allelic bands of 7.0 and 14.0 kb. KpnI identifies 2 allelic bands of 19.0 and 23.0 kb. The probe was localized to chromosome 4 by linkage to chromosome 4 markers (D4S35, KIT) and somatic cell hybrid analysis. Co-dominant segregation was shown in 32 and 16 CEPH families for EcoRI and KpnI respectively.

  9. Chromosomal localization of the gonadotropin-releasing hormone receptor gene to human chromosome 4q13. 1-q21. 1 and mouse chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.B.; Dushkin, H.; Beier, D.R.; Chin, W.W. (Harvard Medical School, Boston, MA (United States)); Altherr, M.R. (Los Alamos National Lab., NM (United States))

    1994-04-01

    The gonadotropin-releasing hormone receptor (GRHR) is a G-protein-coupled receptor on the cell surface of pituitary gonadotropes, where it serves to transduce signals from the extracellular ligand, the hypothalamic factor gonadotropin-releasing hormone, and to modulate the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. The authors have localized the GRHR gene to the q13.1-q21.1 region of the human chromosome 4 using mapping panels of human/rodent somatic cell hybrids containing different human chromosomes or different regions of human chromosome 4. Furthermore, using linkage analysis of single-strand conformational polymorphisms, the murine GRHR gene was localized to mouse chromosome 5, linked to the endogenous retroviral marker Pmv-11. This is consistent with the evolutionary conservation of homology between these two regions, as has been previously suggested from comparative mapping of several other loci. The localization of the GRHR gene may be useful in the study of disorders of reproduction. 22 refs., 2 figs.

  10. Marfan syndrome is closely linked to a marker on chromosome 15q1. 5 r arrow q2. 1

    Energy Technology Data Exchange (ETDEWEB)

    Tsipouras, P.; Sarfarazi, M.; Devi, A. (Univ. of Connecticut Health Center, Farmington (United States)); Weiffenbach, B. (Collaborative Research, Inc., Waltham, MA (United States)); Boxer, M. (Ninewells Hospital and Medical School, Dundee (Scotland))

    1991-05-15

    Marfan syndrome is a systemic disorder of the connective tissue inherited as an autosomal dominant trait. The disorder imparts significant morbidity and martality. The etiology of the disorder remains elusive. A recent study localized the gene for Marfan syndrome on chromosome 15. The authors present data showing that marker D15S48 is genetically linked to Marfan syndrome. Pairwise linkage analysis gave a maximum lod (logarithm of odds) score of Z = 11.78 at {theta} = 0.02. Furthermore our data suggest that the Marfan syndrome locus is possibly flanked on either side by D15S48 and D15S49.

  11. Chromosomal rearrangements in Tourette syndrome

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Debes, Nanette Mol; Hjermind, Lena E

    2013-01-01

    , and identification of susceptibility genes through linkage and association studies has been complicated due to inherent difficulties such as no clear mode of inheritance, genetic heterogeneity, and apparently incomplete penetrance. Positional cloning through mapping of disease-related chromosome rearrangements has...... been an efficient tool for the cloning of disease genes in several Mendelian disorders and in a number of complex disorders. Through cytogenetic investigation of 205 TS patients, we identified three possibly disease-associated chromosome rearrangements rendering this approach relevant in chasing TS...

  12. [Familial Wolfram syndrome].

    Science.gov (United States)

    Bessahraoui, M; Paquis, V; Rouzier, C; Bouziane-Nedjadi, K; Naceur, M; Niar, S; Zennaki, A; Boudraa, G; Touhami, M

    2014-11-01

    Wolfram syndrome (WS) is a rare autosomal recessive progressive neurodegenerative disorder, and it is mainly characterized by the presence of diabetes mellitus and optic atrophy. Other symptoms such as diabetes insipidus, deafness, and psychiatric disorders are less frequent. The WFS1 gene, responsible for the disease and encoding for a transmembrane protein called wolframin, was localized in 1998 on chromosome 4p16. In this report, we present a familial observation of Wolfram syndrome (parents and three children). The propositus was a 6-year-old girl with diabetes mellitus and progressive visual loss. Her family history showed a brother with diabetes mellitus, optic atrophy, and deafness since childhood and a sister with diabetes mellitus, optic atrophy, and bilateral hydronephrosis. Thus, association of these familial and personal symptoms is highly suggestive of Wolfram syndrome. The diagnosis was confirmed by molecular analysis (biology), which showed the presence of WFS1 homozygous mutations c.1113G>A (p.Trp371*) in the three siblings and a heterozygote mutation in the parents. Our observation has demonstrated that pediatricians should be aware of the possibility of Wolfram syndrome when diagnosing optic atrophy in diabetic children. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Interdependency and phosphorylation of KIF4 and condensin I are essential for organization of chromosome scaffold.

    Directory of Open Access Journals (Sweden)

    Rawin Poonperm

    Full Text Available Kinesin family member 4 (KIF4 and condensins I and II are essential chromosomal proteins for chromosome organization by locating primarily to the chromosome scaffold. However, the mechanism of how KIF4 and condensins localize to the chromosome scaffold is poorly understood. Here, we demonstrate a close relationship between the chromosome localization of KIF4 and condensin I, but not condensin II, and show that KIF4 and condensin I assist each other for stable scaffold formation by forming a stable complex. Moreover, phosphorylation of KIF4 and condensin I by Aurora B and polo-like kinase 1 (Plk1 is important for KIF4 and condensin I localization to the chromosome. Aurora B activity facilitates the targeting of KIF4 and condensin I to the chromosome, whereas Plk1 activity promotes the dissociation of these proteins from the chromosome. Thus, the interdependency between KIF4 and condensin I, and their phosphorylation states play important roles in chromosome scaffold organization during mitosis.

  14. Interdependency and phosphorylation of KIF4 and condensin I are essential for organization of chromosome scaffold.

    Science.gov (United States)

    Poonperm, Rawin; Takata, Hideaki; Uchiyama, Susumu; Fukui, Kiichi

    2017-01-01

    Kinesin family member 4 (KIF4) and condensins I and II are essential chromosomal proteins for chromosome organization by locating primarily to the chromosome scaffold. However, the mechanism of how KIF4 and condensins localize to the chromosome scaffold is poorly understood. Here, we demonstrate a close relationship between the chromosome localization of KIF4 and condensin I, but not condensin II, and show that KIF4 and condensin I assist each other for stable scaffold formation by forming a stable complex. Moreover, phosphorylation of KIF4 and condensin I by Aurora B and polo-like kinase 1 (Plk1) is important for KIF4 and condensin I localization to the chromosome. Aurora B activity facilitates the targeting of KIF4 and condensin I to the chromosome, whereas Plk1 activity promotes the dissociation of these proteins from the chromosome. Thus, the interdependency between KIF4 and condensin I, and their phosphorylation states play important roles in chromosome scaffold organization during mitosis.

  15. Chromosome fragility in Freemartin cattle

    Directory of Open Access Journals (Sweden)

    V. Barbieri

    2010-04-01

    Full Text Available The aim of the present study was to verify chromosome fragility in freemartin cattle using chromosome aberration (CA and sister chromatid exchange (SCE tests. A total of eighteen co-twins were investigated. Fourteen animals were identified as cytogenetically chimeric (2n=60, XX/XY while 4 were classified as normal. Freemartin cattle showed a higher percentage of aneuploid cells (18.64% and highly significant statistical differences (P < 0.001 in mean values of gaps (4.53 ± 2.05, chromatid breaks (0.26 ± 0.51, and significant statistical differences (P < 0.005 in mean values of chromosome breaks (0.12 ± 0.43 when compared to 10 control animals from single births (aneuploid cells, 11.20%; gaps, 2.01 ± 1.42; chromatid breaks, 0.05 ± 0.22; chromosome breaks, 0.02 ± 0.14.

  16. A Fine Physical Map of the Rice Chromosome 4

    Science.gov (United States)

    Zhao, Qiang; Zhang, Yu; Cheng, Zhukuan; Chen, Mingsheng; Wang, Shengyue; Feng, Qi; Huang, Yucheng; Li, Ying; Tang, Yesheng; Zhou, Bo; Chen, Zhehua; Yu, Shuliang; Zhu, Jingjie; Hu, Xin; Mu, Jie; Ying, Kai; Hao, Pei; Zhang, Lei; Lu, Yiqi; Zhang, Lei S.; Liu, Yilei; Yu, Zhen; Fan, Danlin; Weng, Qijun; Chen, Ling; Lu, Tingting; Liu, Xiaohui; Jia, Peixin; Sun, Tongguo; Wu, Yongrui; Zhang, Yujun; Lu, Ying; Li, Can; Wang, Rong; Lei, Haiyan; Li, Tao; Hu, Hao; Wu, Mei; Zhang, Runquan; Guan, Jianping; Zhu, Jia; Fu, Gang; Gu, Minghong; Hong, Guofan; Xue, Yongbiao; Wing, Rod; Jiang, Jiming; Han, Bin

    2002-01-01

    As part of an international effort to completely sequence the rice genome, we have produced a fine bacterial artificial chromosome (BAC)-based physical map of the Oryza sativa japonica Nipponbare chromosome 4 through an integration of 114 sequenced BAC clones from a taxonomically related subspecies O. sativa indica Guangluai 4 and 182 RFLP and 407 expressed sequence tag (EST) markers with the fingerprinted data of the Nipponbare genome. The map consists of 11 contigs with a total length of 34.5 Mb covering 94% of the estimated chromosome size (36.8 Mb). BAC clones corresponding to telomeres, as well as to the centromere position, were determined by BAC-pachytene chromosome fluorescence in situ hybridization (FISH). This gave rise to an estimated length ratio of 5.13 for the long arm and 2.9 for the short arm (on the basis of the physical map), which indicates that the short arm is a highly condensed one. The FISH analysis and physical mapping also showed that the short arm and the pericentromeric region of the long arm are rich in heterochromatin, which occupied 45% of the chromosome, indicating that this chromosome is likely very difficult to sequence. To our knowledge, this map provides the first example of a rapid and reliable physical mapping on the basis of the integration of the data from two taxonomically related subspecies. [The following individuals and institutions kindly provided reagents, samples, or unpublished information as indicated in the paper: S. McCouch, T. Sasaki, and Monsanto.] PMID:11997348

  17. Amifostine Protection Against Mitomycin-induced Chromosomal Breakage in Fanconi Anaemia Lymphocytes

    Directory of Open Access Journals (Sweden)

    Miriam T. P. Lopes

    2008-08-01

    Full Text Available Fanconi anaemia (FA is a rare genetic chromosomal instability syndrome caused by impairment of DNA repair and reactive oxygen species (ROS imbalance. This disease is also related to bone marrow failure and cancer. Treatment of these complications with radiation and alkylating agents may enhance chromosomal breakage. We have evaluated the effect of amifostine (AMF on basal and mitomycin C (MMC-induced chromosomal breakage in FA blood cells using the micronucleus assay. The basal micronuclei count was higher among FA patients than healthy subjects. Pre-treatment with AMF significantly inhibited micronucleation induced by MMC in healthy subjects (23.4 ± 4.0 – MMC vs 12.3 ± 2.9 – AMF →MMC MN/1000CB, p < 0.01, one way ANOVA as well as in FA patients (80.0 ± 5.8 – MMC vs 40.1 ± 5.8 – AMF →MMC MN/1000CB, p < 0.01, ANOVA. Release of ROS by peripheral blood mononuclear cells treated with AMF →MMC and measured by chemoluminometry showed that AMF-protection was statistically higher among FA patients than in healthy individuals. Based on these results we suggest that AMF prevents chromosomal breakage induced by MMC, probably by its antioxidant effect.

  18. Microarray and FISH-based genotype-phenotype analysis of 22 Japanese patients with Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Shimizu, Kenji; Wakui, Keiko; Kosho, Tomoki; Okamoto, Nobuhiko; Mizuno, Seiji; Itomi, Kazuya; Hattori, Shigeto; Nishio, Kimio; Samura, Osamu; Kobayashi, Yoshiyuki; Kako, Yuko; Arai, Takashi; Tsutomu, Oh-ishi; Kawame, Hiroshi; Narumi, Yoko; Ohashi, Hirofumi; Fukushima, Yoshimitsu

    2014-03-01

    Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome of the distal 4p chromosome, characterized by craniofacial features, growth impairment, intellectual disability, and seizures. Although genotype-phenotype correlation studies have previously been published, several important issues remain to be elucidated including seizure severity. We present detailed clinical and molecular-cytogenetic findings from a microarray and fluorescence in situ hybridization (FISH)-based genotype-phenotype analysis of 22 Japanese WHS patients, the first large non-Western series. 4p deletions were terminal in 20 patients and interstitial in two, with deletion sizes ranging from 2.06 to 29.42 Mb. The new Wolf-Hirschhorn syndrome critical region (WHSCR2) was deleted in all cases, and duplication of other chromosomal regions occurred in four. Complex mosaicism was identified in two cases: two different 4p terminal deletions; a simple 4p terminal deletion and an unbalanced translocation with the same 4p breakpoint. Seizures began in infancy in 33% (2/6) of cases with small (6 Mb). Status epilepticus occurred in 17% (1/6) with small deletions and in 87% (13/15) with larger deletions. Renal hypoplasia or dysplasia and structural ocular anomalies were more prevalent in those with larger deletions. A new susceptible region for seizure occurrence is suggested between 0.76 and 1.3 Mb from 4 pter, encompassing CTBP1 and CPLX1, and distal to the previously-supposed candidate gene LETM1. The usefulness of bromide therapy for seizures and additional clinical features including hypercholesterolemia are also described. © 2013 Wiley Periodicals, Inc.

  19. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells.

    Science.gov (United States)

    Sato, Hiroshi; Kato, Hiroki; Yamaza, Haruyoshi; Masuda, Keiji; Nguyen, Huong Thi Nguyen; Pham, Thanh Thi Mai; Han, Xu; Hirofuji, Yuta; Nonaka, Kazuaki

    2017-01-01

    Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk) gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV). Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  20. Constitutional 11q14-q22 chromosome deletion syndrome in a child with neuroblastoma MYCN single copy.

    Science.gov (United States)

    Passariello, Annalisa; De Brasi, Daniele; Defferrari, Raffaella; Genesio, Rita; Tufano, Maria; Mazzocco, Katia; Capasso, Maria; Migliorati, Roberta; Martinsson, Tommy; Siani, Paolo; Nitsch, Lucio; Tonini, Gian Paolo

    2013-11-01

    Constitutional 11q deletion is a chromosome imbalance possibly found in MCA/MR patients analyzed for chromosomal anomalies. Its role in determining the phenotype depends on extension and position of deleted region. Loss of heterozygosity of 11q (region 11q23) is also associated with neuroblastoma, the most frequent extra cranial cancer in children. It represents one of the most frequent cytogenetic abnormalities observed in the tumor of patients with high-risk disease even if germline deletion of 11q in neuroblastoma is rare. Hereby, we describe a 18 months old girl presenting with trigonocephaly and dysmorphic facial features, including hypotelorism, broad depressed nasal bridge, micrognathia, synophrys, epicanthal folds, and with a stage 4 neuroblastoma without MYCN amplification, carrying a germline 11q deletion (11q14.1-q22.3), outside from Jacobsen syndrome and from neuroblastoma 11q critical regions. The role of 11q deletion in determining the clinical phenotype and its association with neuroblastoma development in the patient are discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Noonan's Syndrome and Autoimmune Thyroiditis

    Science.gov (United States)

    Vesterhus, Per; Aarskog, Dagfinn

    1973-01-01

    Thyroid abnormalities were studies in seven boys and three girls, 4- to 17-years-old, with Noonan's syndrome, characterized by mental retardation, ocular anomalies (wide spaced eyes, drooped eye lids, or strabismus), heart lesions, characteristics of Turner's syndrome, and normal karyotypes (chromosome arrangement). (MC)

  2. Genetic Aspects of Preeclampsia and the HELLP Syndrome

    Science.gov (United States)

    Mortensen, Jan Helge; Nagy, Bálint

    2014-01-01

    Both preeclampsia and the HELLP syndrome have their origin in the placenta. The aim of this study is to review genetic factors involved in development of preeclampsia and the HELLP syndrome using literature search in PubMed. A familial cohort links chromosomes 2q, 5q, and 13q to preeclampsia. The chromosome 12q is coupled with the HELLP syndrome. The STOX1 gene, the ERAP1 and 2 genes, the syncytin envelope gene, and the −670 Fas receptor polymorphisms are involved in the development of preeclampsia. The ACVR2A gene on chromosome 2q22 is also implicated. The toll-like receptor-4 (TLR-4) and factor V Leiden mutation participate both in development of preeclampsia and the HELLP syndrome. Carriers of the TT and the CC genotype of the MTHFR C677T polymorphism seem to have an increased risk of the HELLP syndrome. The placental levels of VEGF mRNA are reduced both in women with preeclampsia and in women with the HELLP syndrome. The BclI polymorphism is engaged in development of the HELLP syndrome but not in development of severe preeclampsia. The ACE I/D polymorphism affects uteroplacental and umbilical artery blood flows in women with preeclampsia. In women with preeclampsia and the HELLP syndrome several genes in the placenta are deregulated. Preeclampsia and the HELLP syndrome are multiplex genetic diseases. PMID:24991435

  3. Rapidly progressive renal disease as part of Wolfram syndrome in a large inbred Turkish family due to a novel WFS1 mutation (p.Leu511Pro).

    Science.gov (United States)

    Yuca, Sevil Ari; Rendtorff, Nanna Dahl; Boulahbel, Houda; Lodahl, Marianne; Tranebjærg, Lisbeth; Cesur, Yasar; Dogan, Murat; Yilmaz, Cahide; Akgun, Cihangir; Acikgoz, Mehmet

    2012-01-01

    Wolfram syndrome, also named "DIDMOAD" (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness), is an inherited association of juvenile-onset diabetes mellitus and optic atrophy as key diagnostic criteria. Renal tract abnormalities and neurodegenerative disorder may occur in the third and fourth decade. The wolframin gene, WFS1, associated with this syndrome, is located on chromosome 4p16.1. Many mutations have been described since the identification of WFS1 as the cause of Wolfram syndrome. We identified a new homozygous WFS1 mutation (c.1532T>C; p.Leu511Pro) causing Wolfram syndrome in a large inbred Turkish family. The patients showed early onset of IDDM, diabetes insipidus, optic atrophy, sensorineural hearing impairment and very rapid progression to renal failure before age 12 in three females. Ectopic expression of the wolframin mutant in HEK cells results in greatly reduced levels of protein expression compared to wild-type wolframin, strongly supporting that this mutation is disease-causing. The mutation showed perfect segregation with disease in the family, characterized by early and severe clinical manifestations. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Genetics of syndromic and non-syndromic mitral valve prolapse.

    Science.gov (United States)

    Le Tourneau, Thierry; Mérot, Jean; Rimbert, Antoine; Le Scouarnec, Solena; Probst, Vincent; Le Marec, Hervé; Levine, Robert A; Schott, Jean-Jacques

    2018-01-19

    Mitral valve prolapse (MVP) is a common condition that affects 2%-3% of the general population. MVP is thought to include syndromic forms such as Marfan syndrome and non-syndromic MVP, which is the most frequent form. Myxomatous degeneration and fibroelastic deficiency (FED) are regarded as two different forms of non-syndromic MVP. While FED is still considered a degenerative disease associated with ageing, frequent familial clustering has been demonstrated for myxomatous MVP. Familial and genetic studies led to the recognition of reduced penetrance and large phenotypic variability, and to the identification of prodromal or atypical forms as a part of the complex spectrum of the disease. Whereas autosomal dominant mode is the common inheritance pattern, an X linked form of non-syndromic MVP was recognised initially, related to Filamin-A gene, encoding for a cytoskeleton protein involved in mechanotransduction. This identification allowed a comprehensive description of a new subtype of MVP with a unique association of leaflet prolapse and paradoxical restricted motion in diastole. In autosomal dominant forms, three loci have been mapped to chromosomes 16p11-p12, 11p15.4 and 13q31-32. Although deciphering the underlying genetic defects is still a work in progress, DCHS1 mutations have been identified (11p15.4) in typical myxomatous disease, highlighting new molecular pathways and pathophysiological mechanisms leading to the development of MVP. Finally, a large international genome-wide association study demonstrated the implication of frequent variants in MVP development and opened new directions for future research. Hence, this review focuses on phenotypic, genetic and pathophysiological aspects of MVP. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. De novo deletion of chromosome 11q12.3 in monozygotic twins affected by Poland Syndrome.

    Science.gov (United States)

    Vaccari, Carlotta Maria; Romanini, Maria Victoria; Musante, Ilaria; Tassano, Elisa; Gimelli, Stefania; Divizia, Maria Teresa; Torre, Michele; Morovic, Carmen Gloria; Lerone, Margherita; Ravazzolo, Roberto; Puliti, Aldamaria

    2014-05-30

    Poland Syndrome (PS) is a rare disorder characterized by hypoplasia/aplasia of the pectoralis major muscle, variably associated with thoracic and upper limb anomalies. Familial recurrence has been reported indicating that PS could have a genetic basis, though the genetic mechanisms underlying PS development are still unknown. Here we describe a couple of monozygotic (MZ) twin girls, both presenting with Poland Syndrome. They carry a de novo heterozygous 126 Kbp deletion at chromosome 11q12.3 involving 5 genes, four of which, namely HRASLS5, RARRES3, HRASLS2, and PLA2G16, encode proteins that regulate cellular growth, differentiation, and apoptosis, mainly through Ras-mediated signaling pathways. Phenotype concordance between the monozygotic twin probands provides evidence supporting the genetic control of PS. As genes controlling cell growth and differentiation may be related to morphological defects originating during development, we postulate that the observed chromosome deletion could be causative of the phenotype observed in the twin girls and the deleted genes could play a role in PS development.

  6. Angelman syndrome associated with an inversion of chromosome 15q11.2q24.3

    Energy Technology Data Exchange (ETDEWEB)

    Greger, V.; Knoll, J.H.M.; Wagstaff, J.; Lalande, M. [and others

    1997-03-01

    Angelman syndrome (AS) most frequently results from large ({ge}5 Mb) de novo deletions of chromosome 15q11-q13. The deletions are exclusively of maternal origin, and a few cases of paternal uniparental disomy of chromosome 15 have been reported. The latter finding indicates that AS is caused by the absence of a maternal contribution to the imprinted 15q11-q13 region. Failure to inherit a paternal 15q11-q13 contribution results in the clinically distinct disorder of Prader-Willi syndrome. Cases of AS resulting from translocations or pericentric inversions have been observed to be associated with deletions, and there have been no confirmed reports of balanced rearrangements in AS. We report the first such case involving a paracentric inversion with a breakpoint located {approximately}25 kb proximal to the reference marker D15S10. This inversion has been inherited from a phenotypically normal mother. No deletion is evident by molecular analysis in this case, by use of cloned fragments mapped to within {approximately}1 kb of the inversion breakpoint. Several hypotheses are discussed to explain the relationship between the inversion and the AS phenotype. 47 refs., 3 figs.

  7. Chromosome fragility at FRAXA in human cleavage stage embryos at risk for fragile X syndrome.

    Science.gov (United States)

    Verdyck, Pieter; Berckmoes, Veerle; De Vos, Anick; Verpoest, Willem; Liebaers, Inge; Bonduelle, Maryse; De Rycke, Martine

    2015-10-01

    Fragile X syndrome (FXS), the most common inherited intellectual disability syndrome, is caused by expansion and hypermethylation of the CGG repeat in the 5' UTR of the FMR1 gene. This expanded repeat, also known as the rare fragile site FRAXA, causes X chromosome fragility in cultured cells from patients but only when induced by perturbing pyrimidine synthesis. We performed preimplantation genetic diagnosis (PGD) on 595 blastomeres biopsied from 442 cleavage stage embryos at risk for FXS using short tandem repeat (STR) markers. In six blastomeres, from five embryos an incomplete haplotype was observed with loss of all alleles telomeric to the CGG repeat. In all five embryos, the incomplete haplotype corresponded to the haplotype carrying the CGG repeat expansion. Subsequent analysis of additional blastomeres from three embryos by array comparative genomic hybridization (aCGH) confirmed the presence of a terminal deletion with a breakpoint close to the CGG repeat in two blastomeres from one embryo. A blastomere from another embryo showed the complementary duplication. We conclude that a CGG repeat expansion at FRAXA causes X chromosome fragility in early human IVF embryos at risk for FXS. © 2015 Wiley Periodicals, Inc.

  8. Meiotic and pedigree segregation analyses in carriers of t(4;8)(p16;p23.1) differing in localization of breakpoint positions at 4p subband 4p16.3 and 4p16.1.

    Science.gov (United States)

    Midro, Alina T; Zollino, Marcella; Wiland, Ewa; Panasiuk, Barbara; Iwanowski, Piotr S; Murdolo, Marina; Śmigiel, Robert; Sąsiadek, Maria; Pilch, Jacek; Kurpisz, Maciej

    2016-02-01

    The purpose of this study was to compare meiotic segregation in sperm cells from two carriers with t(4;8)(p16;p23.1) reciprocal chromosome translocations (RCTs), differing in localization of the breakpoint positions at the 4p subband-namely, 4p16.3 (carrier 1) and 4p16.1 (carrier 2)-and to compare data of the pedigree analyses performed by direct method. Three-color fluorescent in situ hybridization (FISH) on sperm cells and FISH mapping for the evaluation of the breakpoint positions, data from pedigrees, and direct segregation analysis of the pedigrees were performed. Similar proportions of normal/balanced and unbalanced sperm cells were found in both carriers. The most common was an alternate type of segregation (about 52 % and about 48 %, respectively). Unbalanced adjacent I and adjacent II karyotypes were found in similar proportions about 15 %. The direct segregation analysis (following Stengel-Rutkowski) of the pedigree of carriers of t(4;8)(p16.1;p23.1) was performed and results were compared with the data of the pedigree segregation analysis obtained earlier through the indirect method. The probability of live-born progeny with unbalanced karyotype for carriers of t(4;8)(p16.1;p23.1) was moderately high at 18.8 %-comparable to the value obtained using the indirect method for the same carriership, which was 12 %. This was, however, markedly lower than the value of 41.2 % obtained through the pedigree segregation indirect analysis estimated for carriers of t(4;8)(p16.3;p23.1), perhaps due to the unique composition of genes present within the 4p16.1-4p 16.3 region. Revealed differences in pedigree segregation analysis did not correspond to the very similar profile of meiotic segregation patterns presented by carrier 1 and carrier 2. Most probably, such discordances may be due to differences in embryo survival rates arising from different genetic backgrounds.

  9. Loss of heterozygosity on chromosome 11p15.5 and relapse in hepatoblastomas.

    Science.gov (United States)

    Chitragar, S; Iyer, V K; Agarwala, S; Gupta, S D; Sharma, A; Wari, M N

    2011-01-01

    IGF2 is a tumor suppressor gene at locus 11p15. Many hepatoblastomas have loss of heterozygosity (LOH) at this locus. Earlier studies have not demonstrated any association between LOH and prognosis. Aim of the study was to evaluate the prognostic significance of LOH at 11p15.5 in hepatoblastomas. DNA was isolated from normal liver and tumor tissue in 20 patients with hepatoblastoma. PCR was performed and cases were classified as LOH present, absent or non-informative. Patients' follow-up data was analyzed using Fischer's exact test and Kaplan-Meier survival analysis for relapse-free survival (RFS) in relation to LOH. Ethical clearance was obtained from the institutional ethics board. All cases were informative for at least one microsatellite marker used. 4 of the 20 cases (20%) had LOH at 11p15.5. One patient died in the immediate postoperative period. 5 of 19 patients relapsed (26%). Of 4 patients who had LOH, 3 (75%) relapsed, the time to relapse being 7, 7 and 9 months, respectively. Of the 15 cases without LOH, 2 (13.3%) relapsed. 4 patients had mixed epithelial and mesenchymal histology; 3 of them had LOH. The 2 groups with and without LOH were well matched. The RFS for patients with LOH (n=4) was 13% (mean survival time [MST]: 8.7 months; 95CI 6.7-10.7), while the RFS for cases without LOH (n=15) was 75% (MST: 100.7 months; 95CI 74.5-126.8). Mixed epithelial and mesenchymal histology is more frequently associated with LOH on chromosome 11p15.5 than pure epithelial histology. LOH on chromosome 11p15.5 is associated with a significantly increased incidence of relapse and a significantly shorter relapse-free survival in patients with hepatoblastoma. The risk of relapse is higher and the RFS lower both in standard-risk and high-risk patients with hepatoblastoma if they demonstrate the presence of LOH at 11p15.5. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Ellis-van Creveld Syndrome

    Directory of Open Access Journals (Sweden)

    K Rajendra

    2010-01-01

    Full Text Available Ellis-van Creveld syndrome also known as chondroectodermal dysplasia is a rare genetic disorder of the skeletal dysplasia type, first described by Richard WS Ellis and Simon van Creveld in 1940. The syndrome manifests with several skeletal anomalies, oral mucosal and dental anomalies, congenital cardiac defects, nail dysplasia and polydactyly of one or both limbs. It is caused by mutation of EVC1 and EVC2 genes located in a head-to-head configuration on chromosome 4p16, which has been identified as the causative. The EVC phenotype is variable and affects multiple organs. The presence of oral mucosal and dental alterations, like the presence of numerous frenulum, oligodontia, bellshaped anterior teeth, hypoplastic erupted teeth with high-caries index, will confirm the diagnosis of Ellis-van Creveld syndrome and hence its importance to dentists.

  11. Chromosome and genome size variation in Luzula (Juncaceae), a genus with holocentric chromosomes

    Czech Academy of Sciences Publication Activity Database

    Bozek, M.; Leitch, A. R.; Leitch, I. J.; Záveská Drábková, Lenka; Kuta, E.

    2012-01-01

    Roč. 170, č. 4 (2012), s. 529-541 ISSN 0024-4074 R&D Projects: GA ČR GP206/07/P147 Institutional support: RVO:67985939 Keywords : chromosomal evolution * endopolyploidy * holokinetic chromosome * karyotype evolution * tetraploides * centromeres * TRNF intergenic spacer Subject RIV: EF - Botanics Impact factor: 2.589, year: 2012

  12. Ellis van creveld syndrome with unusual association of essential infantile esotropia

    Directory of Open Access Journals (Sweden)

    D Das

    2010-01-01

    Full Text Available Ellis-van Creveld syndrome is a rare short-limbed disproportionate dwarfism characterized by postaxial polydactyly, several skeletal, oral mucosal and dental anomalies, nail dysplasia and in 50-60% cases of congenital cardiac defects. It is an autosomal recessive disorder with mutations of the EVC1 and EVC2 genes located on chromosome 4p16. Patients with this syndrome usually have a high mortality in early life due to cardiorespiratory problems. We present the case of a six- month-old female infant with Ellis-van Creveld syndrome - essential infantile esotropia, which has been infrequently documented in the literature.

  13. Fetal chromosome analysis

    DEFF Research Database (Denmark)

    Philip, J; Tabor, A; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  14. Frequency of primary amenorrhea due to chromosomal aberration

    International Nuclear Information System (INIS)

    Jabbar, S.

    2004-01-01

    Objective: To find out the frequency of primary amenorrhea due to chromosomal aberration and the different options available for management. Subjects and Methods: All patients with primary amenorrhea due to chromosomal aberrations were included in study. Patient's detailed history, general physical examination, presence or absence of secondary sexual characteristics, abdominal and pelvic examination finding were noted. Targeted investigations, including ultrasound, hormonal assay, buccal smear and karyotyping results were recorded. The management options were individually tailored with focus n psychological management. Results: Eighteen patients out of 30,000 patients were diagnosed as having primary amenorrhea. Six had primary amenorrhea due to chromosomal aberrations with the frequency of 0.02%. The age at presentation was 20 years and above in 50%. The most common cause was Turner's syndrome seen in 4 out of 6. The presenting symptoms were delay in onset of menstruation in 05 patients and primary infertility in 01 patient. Conclusion: Primary amenorrhea due to chromosomal aberration is an uncommon condition requiring an early and accurate diagnosis. Turner's syndrome is a relatively common cause of this condition. Management should be multi-disciplinary and individualized according to the patient's age and symptom at presentation. Psychological management is very important and counselling throughout treatment is recommended. (author)

  15. Unusual 4p16.3 deletions suggest an additional chromosome region for the Wolf-Hirschhorn syndrome-associated seizures disorder

    NARCIS (Netherlands)

    Zollino, M.; Orteschi, D.; Ruiter, M.; Pfundt, R.P.; Steindl, K.; Cafiero, C.; Ricciardi, S.; Contaldo, I.; Chieffo, D.; Ranalli, D.; Acquafondata, C.; Murdolo, M.; Marangi, G.; Asaro, A.; Battaglia, D.

    2014-01-01

    OBJECTIVE: Seizure disorder is one of the most relevant clinical manifestations in Wolf-Hirschhorn syndrome (WHS) and it acts as independent prognostic factor for the severity of intellectual disability (ID). LETM1, encoding a mitochondrial protein playing a role in K(+) /H(+) exchange and in Ca(2+)

  16. Clinical, chromosomal and endocrine studies for congenital adrenal hyperplasia

    International Nuclear Information System (INIS)

    Soliman, S.E.; Shousha, M.; Hafez, M.

    2006-01-01

    Severe forms of congenital adrenal hyperplasia are potentially fatal if unrecognized and untreated. The aim of this study was to clarify the clinical presentation together with the chromosomal and laboratory associations in this syndrome. Twenty four patients diagnosed as congenital adrenal hyperplasia were referred from Children's Hospital, Cairo University, Egypt, for hormonal and chromosomal workup. The age ranged from eight months to 19 years with mean age of 3.18 years. Twenty two patients were diagnosed as classic congenital adrenal hyperplasia (CAH) syndrome. Severe salt wasting form was present in ten patients whereas simple virilisation was the presenting manifestation in twelve patients. Two patients presented as late onset congenital adrenal hyperplasia (LOCAH). The sex of rearing was female in 18 cases and male in six cases. Genitography and sonography confirmed the presence of female internal organs in all cases. Advanced bone age was evident by radiographic studies. Although the karyotyping was 46,XX in all cases, the diagnosed correct sex was delayed in six cases. Serum concentrations of 17-hydroxyprogesterone (17.OH.P), dehydroepiandrosterone sulfate (DHEAS), delta, 4-androstenedione (D4A), testosterone (T) and 11-deoxycortisol were all elevated as compared to controls. It was found that the adrenal androgens DHEAS, D4A and T were more elevated in salt losers when compared to simple virilising patients. However, this difference was statistically non-significant. The present study demonstrates that the clinical examination and laboratory investigations are necessary for the early detection and treatment of these cases to avoid major medical and psychological problems for the patients and their parents

  17. Clinical, Chromosomal and Endocrine Studies for Congenital Adrenal Hyperplasia

    International Nuclear Information System (INIS)

    Shousha, M.A.; Somaya, E.T.; Attia, M.

    2007-01-01

    Several forms of congenital adrenal hyperplasia are potentially fatal if unrecognized and untreated. The aim of this study is to throw light on the clinical presentation together with chromosomal and laboratory associations in this syndrome. Twenty four patients diagnosed as congenital adrenal hyperplasia were referred from the Diabetic Endocrine Metabolic Pediatric Unit [DEMPU], Children's Hospital, Cairo University for hormonal and chromosomal workup. Twenty two patients were diagnosed as classic congenital adrenal hyperplasia (CAH) syndrome. Sever salt wasting form was present in ten patients whereas simple virilization was the presenting manifestation in twelve patients. Two patients presented as late onset congenital adrenal hyperplasia (LOCAH). The mean age was 3.18 years, ranging from eight months to 19 years. The sex of rearing was Female in 18 cases and male in six cases. Genitography and sonography confirmed the presence of female internal organs in all cases. Advanced bone age was evident by radiographic studies. Although the karyotyping was (46,XX) in all cases, the correct sex diagnosis was delayed in 6 cases. Serum concentrations of 17-hydroxyprogesterone (17.OH.P); Dehydroepiandrosterone sulfate (DHEAS); Delta,4-androstenedione (D 4 A); Testosterone and 11-deoxycortisol were all elevated in relation to controls. We found that the adrenal androgens DHEAS, delta 4A, and T were more elevated in salt losers when compared to simple virilizing patients. However, this difference was not of statistical significance. The present study demonstrates that clinical examination and laboratory investigations are necessary for early detection and treatment of hese cases to avoid major medical and psychological problems for the patients and their parents.

  18. Atrioventricular canal defect and associated genetic disorders: new insights into polydactyly syndromes

    Directory of Open Access Journals (Sweden)

    M. Cristina Digilio

    2011-07-01

    Full Text Available Atrioventricular canal defect (AVCD is a common congenital heart defect (CHD, representing 7.4% of all cardiac malformations, considered secondary to an extracellular matrix anomaly. The AVCD is associated with extracardiac defects in about 75% of the cases. In this review we analyzed different syndromic AVCDs, in particular those associated with polydactyly disorders, which show remarkable genotype-phenotype correlations. Chromo - some imbalances more frequently associated with AVCD include Down syndrome, deletion 8p23 and deletion 3p25, while mendelian disorders include Noonan syndrome and related RASopathies, several polydactyly syndromes, CHARGE and 3C (cranio-cerebello-cardiac syndrome. The complete form of AVCD is prevalent in patients with chromosomal imbalances. Additional cardiac defects are found in patients affected by chromosomal imbalances different from Down syndrome. Left-sided obstructive lesions are prevalently found in patients with RASopathies. Patients with deletion 8p23 often display AVCD with tetralogy of Fallot or with pulmonary valve stenosis. Tetralogy of Fallot is the only additional cardiac defect found in patients with Down syndrome and AVCD. On the other hand, the association of AVCD and tetralogy of Fallot is also quite characteristic of CHARGE and 3C syndromes. Heterotaxia defects, including common atrium and anomalous pulmonary venous return, occur in patients with AVCD associated with polydactyly syndromes (Ellis-van Creveld, short rib polydactyly, oral-facial-digital, Bardet-Biedl, and Smith-Lemli-Opitz syndromes. The initial clinical evidence of anatomic similarities between AVCD and heterotaxia in polydactyly syndromes was corroborated and explained by experimental studies in transgenic mice. These investigations have suggested the involvement of the Sonic Hedgehog pathway in syndromes with postaxial polydactyly and heterotaxia, and ciliary dysfunction was detected as pathomechanism for these disorders

  19. Partial 2p deletion in a girl with a complex chromosome rearrangement involving chromosomes 2, 6, 11, and 21.

    OpenAIRE

    Young, R S; Medrano, M A; Hansen, K L

    1985-01-01

    We describe the clinical and cytogenetic findings of a 9 1/2 month old girl with a complex chromosome rearrangement resulting in a probable deletion of band 2p14. She does not resemble other reported cases of del(2p).

  20. Molecular cytogenetic characterization of two Turner syndrome patients with mosaic ring X chromosome.

    Science.gov (United States)

    Chauhan, Pooja; Jaiswal, Sushil Kumar; Lakhotia, Anjali Rani; Rai, Amit Kumar

    2016-09-01

    In the present study, we reported two cases of TS with mosaic ring X chromosome showing common clinical characteristics of TS like growth retardation and ovarian dysfunction. The purpose of the present study was to cytogenetically characterize both cases. Whole blood culture and G-banding were performed for karyotyping the cases following standard protocol. Origin of the ring chromosome and degree of mosaicism were further determined by fluorescence in situ hybridization (FISH). Breakpoints and loss of genetic material in formation of different ring X chromosomes r (X) in cases were determined with the help of cytogenetic microarray. Cases 1 and 2 with ring chromosome were cytogenetically characterized as 45, X [114]/46Xr (X) (p22.11q21.32) [116] and 45, X [170]/46, Xr (X) (p22.2q21.33) [92], respectively. Sizes of these ring X chromosomes were found to be ~75 and ~95 Mb in cases 1 and 2, respectively, using visual estimation as part of cytogenetic observation. In both cases, we observed breakpoints on Xq chromosome were within relatively narrow region between Xq21.33 and Xq22.1 compared to regions in previously reported cases associated with ovarian dysgenesis. Our observation agrees with the fact that despite of large heterogeneity, severity of the cases with intact X-inactive specific transcript (XIST) is dependent on degree of mosaicism and extent of Xq deletion having crucial genes involved directly or indirectly in various physiological involving ovarian cyclicity.

  1. Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy

    DEFF Research Database (Denmark)

    Ottesen, Anne-Marie; Aksglaede, Lise; Garn, Inger

    2010-01-01

    Tall stature and eunuchoid body proportions characterize patients with 47,XXY Klinefelter syndrome, whereas patients with 45,X Turner syndrome are characterized by impaired growth. Growth is relatively well characterized in these two syndromes, while few studies describe the growth of patients wi......,XXXX (n = 13), and -1.0 (-3.5 to -0.8) in 49,XXXXX (n = 3). Height increased with an increasing number of extra X or Y chromosomes, except in males with five, and in females with four or five sex chromosomes, consistent with a nonlinear effect on height....

  2. Wolf–Hirschhorn syndrome – a case report

    Directory of Open Access Journals (Sweden)

    Halyna Bulak

    2017-06-01

    Full Text Available Wolf–Hirschhorn syndrome is a severe genetic condition that affects many systems of the human body. The genetic mechanism is based on the deletion of the distal portion of the short arm of chromosome 4 (4p. Individuals affected by the syndrome have a special phenotype: wide bridge of the nose, widely spaced eyes, micrognathia, microcephaly, growth retardation, cryptorchidism, heart defects, hearing loss and severe intellectual disability. The patient from our case report was hospitalised at the Lviv City Children’s Hospital at the age of six hours in a severe condition, with distinctive features of a genetic syndrome, which was connected with intraventricular haemorrhage. At the age of three months, he showed delayed physical and neurocognitive development and a characteristic appearance, which led to a specialist consultation to diagnose the genetic disease. This time, on the basis of clinical, laboratory and instrumental findings, the boy was diagnosed with Wolf–Hirschhorn syndrome.

  3. A major QTL controlling deep rooting on rice chromosome 4.

    Science.gov (United States)

    Uga, Yusaku; Yamamoto, Eiji; Kanno, Noriko; Kawai, Sawako; Mizubayashi, Tatsumi; Fukuoka, Shuichi

    2013-10-24

    Drought is the most serious abiotic stress that hinders rice production under rainfed conditions. Breeding for deep rooting is a promising strategy to improve the root system architecture in shallow-rooting rice cultivars to avoid drought stress. We analysed the quantitative trait loci (QTLs) for the ratio of deep rooting (RDR) in three F₂ mapping populations derived from crosses between each of three shallow-rooting varieties ('ARC5955', 'Pinulupot1', and 'Tupa729') and a deep-rooting variety, 'Kinandang Patong'. In total, we detected five RDR QTLs on chromosomes 2, 4, and 6. In all three populations, QTLs on chromosome 4 were found to be located at similar positions; they explained from 32.0% to 56.6% of the total RDR phenotypic variance. This suggests that one or more key genetic factors controlling the root growth angle in rice is located in this region of chromosome 4.

  4. Chromosome Conformation Capture on Chip (4C)

    DEFF Research Database (Denmark)

    Leblanc, Benjamin Olivier; Comet, Itys; Bantignies, Frédéric

    2016-01-01

    4C methods are useful to investigate dependencies between regulatory mechanisms and chromatin structures by revealing the frequency of chromatin contacts between a locus of interest and remote sequences on the chromosome. In this chapter we describe a protocol for the data analysis of microarray-...

  5. [Analysis of genetics mechanism for the phenotypic diversity in a patient carrying a rare ring chromosome 9].

    Science.gov (United States)

    Qin, Shengfang; Wang, Xueyan; Li, Yunxing; Wei, Ping; Chen, Chun; Zeng, Lan

    2016-02-01

    To explore the genetics mechanism for the phenotypic variability in a patient carrying a rare ring chromosome 9. The karyotype of the patient was analyzed with cytogenetics method. Presence of sex chromosome was confirmed with fluorescence in situ hybridization. The SRY gene was subjected to PCR amplification and direct sequencing. Potential deletion and duplication were detected with array-based comparative genomic hybridization (array-CGH). The karyotype of the patient has comprised 6 types of cell lines containing a ring chromosome 9. The SRY gene sequence was normal. By array-CGH, the patient has carried a hemizygous deletion at 9p24.3-p23 (174 201-9 721 761) encompassing 30 genes from Online Mendelian Inheritance in Man. The phenotypic variability of the 9p deletion syndrome in conjunct with ring chromosome 9 may be attributable to multiple factors including loss of chromosomal material, insufficient dosage of genes, instability of ring chromosome, and pattern of inheritance.

  6. Genomic regulatory landscapes and chromosomal rearrangements

    DEFF Research Database (Denmark)

    Ladegaard, Elisabete L Engenheiro

    2008-01-01

    The main objectives of the PhD study are to identify and characterise chromosomal rearrangements within evolutionarily conserved regulatory landscapes around genes involved in the regulation of transcription and/or development (trans-dev genes). A frequent feature of trans-dev genes is that they ......The main objectives of the PhD study are to identify and characterise chromosomal rearrangements within evolutionarily conserved regulatory landscapes around genes involved in the regulation of transcription and/or development (trans-dev genes). A frequent feature of trans-dev genes...... the complex spatio-temporal expression of the associated trans-dev gene. Rare chromosomal breakpoints that disrupt the integrity of these regulatory landscapes may be used as a tool, not only to make genotype-phenotype associations, but also to link the associated phenotype with the position and tissue...... specificity of the individual CNEs. In this PhD study I have studied several chromosomal rearrangements with breakpoints in the vicinity of trans-dev genes. This included chromosomal rearrangements compatible with known phenotype-genotype associations (Rieger syndrome-PITX2, Mowat-Wilson syndrome-ZEB2...

  7. Myeloid- and lymphoid-specific breakpoint cluster regions in chromosome band 13q14 in acute leukemia.

    Science.gov (United States)

    Coignet, L J; Lima, C S; Min, T; Streubel, B; Swansbury, J; Telford, N; Swanton, S; Bowen, A; Nagai, M; Catovsky, D; Fonatsch, C; Dyer, M J

    1999-07-01

    Abnormalities of chromosome band 13q14 occur in hematologic malignancies of all lineages and at all stages of differentiation. Unlike other chromosomal translocations, which are usually specific for a given lineage, the chromosomal translocation t(12;13)(p12;q14) has been observed in both B-cell and T-cell precursor acute lymphoblastic leukemia (BCP-, TCP-ALL), in differentiated and undifferentiated acute myeloblastic leukemia (AML), and in chronic myeloid leukemia (CML) at progression to blast crisis. The nature of these translocations and their pathologic consequences remain unknown. To begin to define the gene(s) involved on chromosome 13, we have performed fluorescence in situ hybridization (FISH) using a panel of YACs from the region, on a series of 10 cases of acute leukemia with t(12;13)(p12;q14) and 1 case each with "variant" translocations including t(12;13)(q21;q14), t(10;13)(q24;q14) and t(9;13)(p21;q14). In 8/13 cases/cell lines, the 13q14 break fell within a single 1.4 Mb CEPH MegaYAC. This YAC fell immediately telomeric of the forkhead (FKHR) gene, which is disrupted in the t(2;13)(q35;q14) seen in pediatric alveolar rhabdomyosarcoma. Seven of the 8 cases with breaks in this YAC were AML. In 4/13 cases, the 13q14 break fell within a 1.7-Mb YAC located about 3 Mb telomeric of the retinoblastoma (RB1) gene: all 4 cases were ALL. One case of myelodysplastic syndrome exhibited a break within 13q12, adjacent to the BRCA2 gene. These data indicate the presence of myeloid- and lymphoid-specific breakpoint cluster regions within chromosome band 13q14 in acute leukemia.

  8. A ScaI RFLP demonstrated for the GRO gene on chromosome 4

    Energy Technology Data Exchange (ETDEWEB)

    Beck, J.S.; Murray, J.C. (Univ. of Iowa Hospitals, Iowa City (USA)); Sager, R. (Dana Farber Cancer Institute, Boston, MA (USA))

    1989-11-11

    TC870 is a 0.85 kb fragment running from the EcoRI site 200 pb from the 5{prime} end of the human cDNA subcloned into the EcoRI site of pGEM3. ScaI detects a polymorphism with two variable bands of 19 kb and 16 kb. One strong constant band (14 kb) and two fainter constant bands (5 kb and 3 kb) are also present. The polymorphism type is unknown. GRO has been localized to 4q13-4q21 by somatic cell hybrid analysis and in situ hybridization. Codominant segregation and Hardy-Weinberg equilibrium demonstrated in 20 CEPH families. The probe also was assigned to chromosome 4 with significant linkage to ALB, GC, INP10, MT2P1. GRO may be the same gene as MGSA.

  9. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Sato

    2017-01-01

    Full Text Available Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV. Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  10. Telomere-mediated chromosomal instability triggers TLR4 induced inflammation and death in mice.

    Directory of Open Access Journals (Sweden)

    Rabindra N Bhattacharjee

    Full Text Available BACKGROUND: Telomeres are essential to maintain chromosomal stability. Cells derived from mice lacking telomerase RNA component (mTERC-/- mice display elevated telomere-mediated chromosome instability. Age-dependent telomere shortening and associated chromosome instability reduce the capacity to respond to cellular stress occurring during inflammation and cancer. Inflammation is one of the important risk factors in cancer progression. Controlled innate immune responses mediated by Toll-like receptors (TLR are required for host defense against infection. Our aim was to understand the role of chromosome/genome instability in the initiation and maintenance of inflammation. METHODOLOGY/PRINCIPAL FINDINGS: We examined the function of TLR4 in telomerase deficient mTERC-/- mice harbouring chromosome instability which did not develop any overt immunological disorder in pathogen-free condition or any form of cancers at this stage. Chromosome instability was measured in metaphase spreads prepared from wildtype (mTERC+/+, mTERC+/- and mTERC-/- mouse splenocytes. Peritoneal and/or bone marrow-derived macrophages were used to examine the responses of TLR4 by their ability to produce inflammatory mediators TNFalpha and IL6. Our results demonstrate that TLR4 is highly up-regulated in the immune cells derived from telomerase-null (mTERC-/- mice and lipopolysaccharide, a natural ligand for TLR4 stabilises NF-kappaB binding to its promoter by down-regulating ATF-3 in mTERC-/- macrophages. CONCLUSIONS/SIGNIFICANCE: Our findings implied that background chromosome instability in the cellular level stabilises the action of TLR4-induced NF-kappaB action and sensitises cells to produce excess pro-inflammatory mediators. Chromosome/genomic instability data raises optimism for controlling inflammation by non-toxic TLR antagonists among high-risk groups.

  11. Blepharophimosis and mental retardation (BMR) phenotypes caused by chromosomal rearrangements: description in a boy with partial trisomy 10q and monosomy 4q and review of the literature.

    Science.gov (United States)

    Bartholdi, Deborah; Toelle, Sandra P; Steiner, Bernhard; Boltshauser, Eugen; Schinzel, Albert; Riegel, Mariluce

    2008-01-01

    Blepharophimosis is a rare congenital anomaly of the palpebral fissure which is often associated with mental retardation and additional malformations. We report on a boy with blepharophimosis, ptosis and severe mental retardation carrying an unbalanced 4;10 translocation with terminal duplication of 10q [dup(10)(q25.1-->qter)] and monosomy of a small terminal segment of chromosome 4q [del(4)(34.3-->qter)]. Detailed clinical examination and review of the literature showed that the phenotype of the patient was mainly determined by the dup(10q). This paper reviews the chromosomal aberrations associated with BMR (blepharophimosis mental retardation) phenotypes. Searching different databases and reviewing the literature revealed 14 microscopically visible aberrations (among them UPD(14)pat) and two submicroscopic rearrangements causing blepharophimosis and mental retardation (BMR) syndrome. Some of these rearrangements-like the terminal dup(10q) identified in our patient or interstitial del(2q)-are associated with clearly defined phenotypes and can be well distinguished from each other on basis of clinical examination. This paper should assist clinicians and cytogeneticists when evaluating patients with BMR syndrome.

  12. Prader-Willi syndrome due to an unbalanced de novo translocation [t(15;19)(q12;p13.3)

    Science.gov (United States)

    Dang, Vy; Surampalli, Abhilasha; Manzardo, Ann M; Youn, Stephanie; Butler, Merlin G; Gold, June-Anne; Kimonis, Virginia

    2018-01-01

    Background and Aims Prader-Willi syndrome (PWS) is a complex, multisystem genetic disorder characterized by endocrine, neurologic and behavioral abnormalities. We report the first case of an unbalanced de-novo reciprocal translocation of chromosome 15 and 19: 45,XY,-15, der (19)t(15;19)(q12;p13.3) resulting in monosomy for the PWS chromosome critical region. We performed high resolution SNP microarray to characterize the breakpoints. Case report Our patient had several typical features for PWS including infantile hypotonia, a poor suck and feeding difficulties, tantrums, skin picking, compulsions, small hands and feet and food seeking but not hypopigmentation, a micropenis, cryptorchidism or obesity as common findings seen in PWS at the time of examination at 6 years of age. He had seizures noted from 1 to 3 years of age and marked cognitive delay. Results High resolution SNP microarray analysis identified an atypical PWS Type I deletion of chromosome 15 involving proximal breakpoint BP1. The deletion extended beyond the GABRB3 gene but was proximal to the usual distal breakpoint (BP3) within the 15q11-q13 region and GABRA5, GABRG3 and OCA2 genes were intact. Conclusion We report a case with atypical features for PWS associated with an unbalanced de-novo reciprocal translocation resulting in monosomy for the 15q11.1–15q12 with intact GABRA5, GABRG3 and OCA2 genes. No deletion of 19p13.3 band was detected therefore the patient was not at an increased risk of tumors from Peutz-Jeghers syndrome associated with a deletion of the STK11 gene. PMID:27894106

  13. A novel locus for Usher syndrome type I, USH1G, maps to chromosome 17q24-25.

    Science.gov (United States)

    Mustapha, Mirna; Chouery, Eliane; Torchard-Pagnez, Delphine; Nouaille, Sylvie; Khrais, Awni; Sayegh, Fouad N; Mégarbané, André; Loiselet, Jacques; Lathrop, Mark; Petit, Christine; Weil, Dominique

    2002-04-01

    Usher syndrome (USH) is an autosomal recessive disorder associated with sensorineural hearing impairment and progressive visual loss attributable to retinitis pigmentosa. This syndrome is both clinically and genetically heterogeneous. Three clinical types have been described of which type I (USH1) is the most severe. Six USH1 loci have been identified. We report a Palestinian consanguineous family from Jordan with three affected children. In view of the combination of profound hearing loss, vestibular dysfunction, and retinitis pigmentosa in the patients, we classified the disease as USH1. Linkage analysis excluded the involvement of any of the known USH1 loci. A genome-wide screening allowed us to map this novel locus, USH1G, in a 23-cM interval on chromosome 17q24-25. The USH1G interval overlaps the intervals for two dominant forms of isolated hearing loss, namely DFNA20 and DFNA26. Since several examples have been reported of syndromic and isolated forms of deafness being allelic, USH1G, DFNA20, and DFNA26 might result from alterations of the same gene. Finally, a mouse mutant, jackson shaker ( js), with deafness and circling behavior has been mapped to the murine homologous region on chromosome 11.

  14. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model.

    Directory of Open Access Journals (Sweden)

    Lucie Šedová

    Full Text Available Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16 and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx into the genomic background of the spontaneously hypertensive rat (SHR strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference and diastolic (10-15 mmHg difference blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001. The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1. Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic

  15. Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16

    Science.gov (United States)

    Cordell, Heather J.; Bentham, Jamie; Topf, Ana; Zelenika, Diana; Heath, Simon; Mamasoula, Chrysovalanto; Cosgrove, Catherine; Blue, Gillian; Granados-Riveron, Javier; Setchfield, Kerry; Thornborough, Chris; Breckpot, Jeroen; Soemedi, Rachel; Martin, Ruairidh; Rahman, Thahira J.; Hall, Darroch; van Engelen, Klaartje; Moorman, Antoon F.M.; Zwinderman, Aelko H; Barnett, Phil; Koopmann, Tamara T.; Adriaens, Michiel E.; Varro, Andras; George, Alfred L.; dos Remedios, Christobal; Bishopric, Nanette H.; Bezzina, Connie R.; O’Sullivan, John; Gewillig, Marc; Bu’Lock, Frances A.; Winlaw, David; Bhattacharya, Shoumo; Devriendt, Koen; Brook, J. David; Mulder, Barbara J.M.; Mital, Seema; Postma, Alex V.; Lathrop, G. Mark; Farrall, Martin; Goodship, Judith A.; Keavney, Bernard D.

    2013-01-01

    We carried out a genome-wide association study (GWAS) of congenital heart disease (CHD). Our discovery cohort comprised 1,995 CHD cases and 5,159 controls, and included patients from each of the three major clinical CHD categories (septal, obstructive and cyanotic defects). When all CHD phenotypes were considered together, no regions achieved genome-wide significant association. However, a region on chromosome 4p16, adjacent to the MSX1 and STX18 genes, was associated (P=9.5×10−7) with the risk of ostium secundum atrial septal defect (ASD) in the discovery cohort (N=340 cases), and this was replicated in a further 417 ASD cases and 2520 controls (replication P=5.0×10−5; OR in replication cohort 1.40 [95% CI 1.19-1.65]; combined P=2.6×10−10). Genotype accounted for ~9% of the population attributable risk of ASD. PMID:23708191

  16. The Social Behavioral Phenotype in Boys and Girls with an Extra X Chromosome (Klinefelter Syndrome and Trisomy X): A Comparison with Autism Spectrum Disorder

    Science.gov (United States)

    van Rijn, Sophie; Stockmann, Lex; Borghgraef, Martine; Bruining, Hilgo; van Ravenswaaij-Arts, Conny; Govaerts, Lutgarde; Hansson, Kerstin; Swaab, Hanna

    2014-01-01

    The present study aimed to gain more insight in the social behavioral phenotype, and related autistic symptomatology, of children with an extra X chromosome in comparison to children with ASD. Participants included 60 children with an extra X chromosome (34 boys with Klinefelter syndrome and 26 girls with Trisomy X), 58 children with ASD and 106…

  17. Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation.

    Directory of Open Access Journals (Sweden)

    Pooja Singhmar

    Full Text Available Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

  18. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  19. DEVELOPMENTAL FOLLOW-UP OF A FEMALE INFANT WITH RECOMBINANT DOWN SYNDROME UP TO THREE AND A HALF YEARS

    Directory of Open Access Journals (Sweden)

    Darija Strah

    2018-02-01

    Full Text Available Background: Recombinant Down Syndrome with partial duplication of the long arm of chromosome 21 represents a rare form of partial trisomy 21. The cause is mostly chromosome rearrangement- pericentric inversion of maternal or paternal homologous chromosome 21 and duplication of Down syndrome critical region p11.1q22.1, resulting in a child with phenotypical signs of classical Down syndrome with psychomotorical developmental delay. Methods: We describe a Down sydrome female infant with partial trisomy of chromosome 21. Ultra- sound screening for Down syndrome in the first trimester of pregnancy determined high risk for chromosomal abnormality. Amniocentesis showed normal prenatal karyotype. After birth a female infant started to show symptoms and signs, typical for classical Down syndrome. Postnatal karyotype revealed pericentric inversion and duplication of one chro- mosome 21 of maternal origin in the p11.1q22.1 region. The follow up of female infant up to three and a half years shows signs of psychomotorical delay with no structural defects. Therefore her developmental amelioration is less expressed compared to classical Down syndrome. Conclusions: Developmental follow up of a girl with partial trisomy 21 reveals a lot of similarities with the development of children with classical trisomy 21, but less expressed: facial gestalt, short statue, hypotonia and intellectual disabilities. Global developmental delay in spite of developmental treatment grows more and more evidently.

  20. Two cases of partial trisomy 4p and partial trisomy 14q.

    Science.gov (United States)

    Kim, Yeo-Hyang; Kim, Heung-Sik; Ryoo, Nam-Hee; Ha, Jung-Sook

    2013-01-01

    We present clinical and cytogenetic data on 2 cases of partial trisomy 4p and partial trisomy 14q. Both patients had an extra der(14)t(4;14)(p15.31;q12) chromosome due to a 3:1 segregation from a balanced translocation carrier mother. Array analyses indicated that their chromosomal breakpoints were similar, but there was no relationship between the 2 families. Both patients showed prominent growth retardation and psychomotor developmental delay. Other phenotypic manifestations were generally mild and variable; for example, patient 1 had a short palpebral fissure and low-set ears whereas patient 2 had a round face, asymmetric eyes, small ears, a short neck, finger/toe abnormalities, and behavioral problems.

  1. Exceptional Complex Chromosomal Rearrangements in Three Generations

    Directory of Open Access Journals (Sweden)

    Hannie Kartapradja

    2015-01-01

    Full Text Available We report an exceptional complex chromosomal rearrangement (CCR found in three individuals in a family that involves 4 chromosomes with 5 breakpoints. The CCR was ascertained in a phenotypically abnormal newborn with additional chromosomal material on the short arm of chromosome 4. Maternal karyotyping indicated that the mother carried an apparently balanced CCR involving chromosomes 4, 6, 11, and 18. Maternal transmission of the derivative chromosome 4 resulted in partial trisomy for chromosomes 6q and 18q and a partial monosomy of chromosome 4p in the proband. Further family studies found that the maternal grandmother carried the same apparently balanced CCR as the proband’s mother, which was confirmed using the whole chromosome painting (WCP FISH. High resolution whole genome microarray analysis of DNA from the proband’s mother found no evidence for copy number imbalance in the vicinity of the CCR translocation breakpoints, or elsewhere in the genome, providing evidence that the mother’s and grandmother’s CCRs were balanced at a molecular level. This structural rearrangement can be categorized as an exceptional CCR due to its complexity and is a rare example of an exceptional CCR being transmitted in balanced and/or unbalanced form across three generations.

  2. Marfan syndrome masked by Down syndrome?

    NARCIS (Netherlands)

    Vis, J.C.; Engelen, K. van; Timmermans, J.; Hamel, B.C.J.; Mulder, B.J.

    2009-01-01

    Down syndrome is the most common chromosomal abnormality. A simultaneous occurrence with Marfan syndrome is extremely rare. We present a case of a 28-year-old female with Down syndrome and a mutation in the fibrillin-1 gene. The patient showed strikingly few manifestations of Marfan syndrome.

  3. A patient with de-novo partial deletion of Xp (p11.4-pter) and partial duplication of 22q (q11.2-qter).

    Science.gov (United States)

    Armour, Christine M; McGowan-Jordan, Jean; Lawrence, Sarah E; Bouchard, Amélie; Basik, Mark; Allanson, Judith E

    2008-01-01

    We report on a girl with partial deletion of Xp and partial duplication of 22q. Family studies demonstrate that both the patient's mother and her nonidentical twin sister carry the corresponding balanced translocation; 46,X,t(X;22)(p11.4;q11.2). This girl has developmental delay, microcephaly, mild dysmorphisms and hearing loss but otherwise shows few of the features described in individuals with duplications of the long arm of chromosome 22. She does manifest characteristics, such as short stature and biochemical evidence of ovarian failure, which are seen in partial or complete Xp deletions and Turner's syndrome.

  4. Prenatal diagnosis of Wolf-Hirschhorn syndrome confirmed by comparative genomic hybridization array: report of two cases and review of the literature

    Directory of Open Access Journals (Sweden)

    Sifakis Stavros

    2012-02-01

    Full Text Available Abstract Wolf-Hirschhorn syndrome (WHS is a well known genetic condition caused by a partial deletion of the short arm of chromosome 4. The great variability in the extent of the 4p deletion and the possible contribution of additional genetic rearrangements lead to a wide spectrum of clinical manifestations. The majority of the reports of prenatally diagnosed WHS cases are associated with large 4p deletions identified by conventional chromosome analysis; however, the widespread clinical use of novel molecular techniques such as array comparative genomic hybridization (a-CGH has increased the detection rate of submicroscopic chromosomal aberrations associated with WHS phenotype. We provide a report of two fetuses with WHS presenting with intrauterine growth restriction as an isolated finding or combined with oligohydramnios and abnormal Doppler waveform in umbilical artery and uterine arteries. Standard karyotyping demonstrated a deletion on chromosome 4 in both cases [del(4(p15.33 and del(4(p15.31, respectively] and further application of a-CGH confirmed the diagnosis and offered a precise characterization of the genetic defect. A detailed review of the currently available literature on the prenatal diagnostic approach of WHS in terms of fetal sonographic assessment and molecular cytogenetic investigation is also provided.

  5. Allelic loss of the short arm of chromosome 4 in neuroblastoma suggests a novel tumour suppressor gene locus

    NARCIS (Netherlands)

    Caron, H.; van Sluis, P.; Buschman, R.; Pereira do Tanque, R.; Maes, P.; Beks, L.; de Kraker, J.; Voûte, P. A.; Vergnaud, G.; Westerveld, A.; Slater, R.; Versteeg, R.

    1996-01-01

    Neuroblastoma is a childhood neural crest tumour, genetically characterized by frequent deletions of the short arm of chromosome 1 and amplification of N-myc. Here we report the first evidence for a neuroblastoma tumour suppressor locus on 4pter. Cytogenetically we demonstrated rearrangements of 4p

  6. A 1.7-Mb YAC contig around the human BDNF gene (11p13): integration of the physical, genetic, and cytogenetic maps in relation to WAGR syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, M.F.; Martin, A.; Houlgatte, R. [Genetique Moleculaire et Biologie du Development, Villejuif (France)] [and others

    1994-11-01

    WAGR (Wilms tumor, aniridia, genito-urinary abnormalities, mental retardation) syndrome in humans is associated with deletions of the 11p13 region. The brain-derived neurotrophic factor (BDNF) gene maps to this region, and its deletion seems to contribute to the severity of the patient`s mental retardation. Yeast artificial chromosomes (YACs) carrying the BDNF gene have been isolated and characterized. Localization of two known exons of this gene leads to a minimal estimation of its size of about 40 kb. Chimerism of the BDNF YACs has been investigated by fluorescence in situ hybridization and chromosome assignment on somatic cell hybrids. Using the BDNF gene, YAC end sequence tagged sites (STS), and Genethon microsatellite markers, the authors constructed a 1.7-Mb contig and refined the cytogenetic map at 11p13. The resulting integrated physical, genetic, and cytogenetic map constitutes a resource for the characterization of genes that may be involved in the WAGR syndrome. 42 refs., 2 figs., 3 tabs.

  7. No significant effect of monosomy for distal 21q22. 3 on the Down syndrom phenotype in mirror' duplications of chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Pangalos, C.; Prieur, M.; Rethore, M.O.; Lejeune, J. (Institut de Progenese, Paris (France)); Theophile, D.; Sinet, P.M.; Chettouh, Z.; Delabar, J.M. (Hopital Necker Enfants Malades, Paris (France)); Marks, A. (Univ. of Toronto, Ontario (Canada)); Stamboulieh-Abazis, D. (Diagnostic Genetic Center, Athens (Greece)); Verellen, C. (Centre de Genetique Humaine, Brussels (Belgium))

    1992-12-01

    Three Down syndrome patients for whom karyotypic analysis showed a mirror' (reverse tandem) duplication of chromosome 21 were studied by phenotypic, cytogenetic, and molecular methods. On high-resolution R-banding analysis performed in two cases, the size of the fusion 21q22.3 band was apparently less than twice the size of the normal 21q22.3, suggesting a partial deletion of distal 21q. The evaluation of eight chromosome 21 single-copy sequences of the 21q22 region - namely, SOD1, D21S15, D21S42, CRYA1, PFKL, CD18, COL6A1, and S100B - by a slot blot method showed in all three cases a partial deletion of 21q22.3 and partial monosomy. The translocation breakpoints were different in each patient, and in two cases the rearranged chromosome was found to be asymmetrical. The molecular definition of the monosomy 21 in each patient was, respectively, COL6A1-S100B, CD18-S100B, and PFKL-S100B. DNA polymorphism analysis indicated in all cases a homozygosity of the duplicated material. The duplicated region was maternal in two patients and paternal in one patient. These data suggest that the reverse tandem chromosomes did not result from a telomeric fusion between chromosomes 21 but from a translocation between sister chromatids. The phenotypes of these patients did not differ significantly from that of individuals with full trisomy 21, except in one case with large ears with an unfolded helix. The fact that monosomy of distal 21q22.3 in these patients resulted in a phenotype very similar to Down syndrome suggests that the duplication of the genes located in this part of chromosome 21 is not necessary for the pathogenesis of the Down syndrome features observed in these patients, including most of the facial and hand features, muscular hypotonia, cardiopathy of the Fallot tetralogy type, and part of the mental retardation. 54 refs., 5 figs., 3 tabs.

  8. [The Relationship Study between Expressions of P2X5 Receptor and Deficiency-cold Syndrome/Deficiency-heat Syndrome at Various Ambient Temperatures].

    Science.gov (United States)

    Yang, Li-ping; Yu, Hong-jie; Huang, Rui; Li, Xin-min; Zhan, Xiang-hong; Hou, Jun-lin

    2015-05-01

    To detect the expression of the peripheral blood P2X5 receptor at various ambient temperatures, and to explore its relationship with deficiency-cold syndrome and deficiency-heat syndrome. Subjects were selected by questionnaire and expert diagnosis, and assigned to the normal control group, the deficiency-cold syndrome group, and the deficiency-heat syndrome group, 20 in each group. 5 mL venous blood was collected at room temperature (25 °C) and cold temperature (-4-5 °C) respectively. Then the expression of P2X5 receptor was relatively quantified by real-time fluorescence quantitative PCR, and compared at room temperature and cold temperature respectively. The expression of P2X5 receptor in deficiency-cold syndrome and deficiency-heat syndrome groups was lower than that in the normal control group at room temperature (P cold temperature in the deficiency-cold syndrome group than in the normal control group (P receptor showed no difference in all groups at two different temperatures (P > 0.05). The expression of P2X5 receptor was different in different syndrome groups at various ambient temperatures. Ambient temperatures had insignificant effect on the expression of P2X5 receptor of the population with the same syndrome.

  9. Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome.

    Science.gov (United States)

    Helm, Benjamin M; Willer, Jason R; Sadeghpour, Azita; Golzio, Christelle; Crouch, Eric; Vergano, Samantha Schrier; Katsanis, Nicholas; Davis, Erica E

    2017-07-19

    The ciliopathies represent an umbrella group of >50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic challenge, in part due to significant genetic and phenotypic heterogeneity and variability. We consulted a pediatric case from asymptomatic, non-consanguineous parents who presented as a suspected ciliopathy due to a constellation of retinal, renal, and skeletal findings. Although clinical panel sequencing of genes implicated in nephrotic syndromes yielded no likely causal mutation, an oligo-SNP microarray identified a ~20-Mb region of homozygosity, with no altered gene dosage, on chromosome 16p13. Intersection of the proband's phenotypes with known disease genes within the homozygous region yielded a single candidate, IFT140, encoding a retrograde intraflagellar transport protein implicated previously in several ciliopathies, including the phenotypically overlapping Mainzer-Saldino syndrome (MZSDS). Sanger sequencing yielded a maternally inherited homozygous c.634G>A; p.Gly212Arg mutation altering the exon 6 splice donor site. Functional studies in cells from the proband showed that the locus produced two transcripts: a majority message containing a mis-splicing event that caused a premature termination codon and a minority message homozygous for the p.Gly212Arg allele. Zebrafish in vivo complementation studies of the latter transcript demonstrated a loss of function effect. Finally, we conducted post-hoc trio-based whole exome sequencing studies to (a) test the possibility of other causal loci in the proband and (b) explain the Mendelian error of segregation for the IFT140 mutation. We show that the proband harbors a chromosome 16 maternal heterodisomy, with segmental isodisomy at 16p13, likely due to a meiosis I error in the maternal gamete. Using clinical phenotyping

  10. Blau syndrome-associated mutations in exon 4 of the caspase activating recruitment domain 15 (CARD 15) gene are not found in ethnic Danes with sarcoidosis

    DEFF Research Database (Denmark)

    Milman, Nils; Nielsen, Finn Cilius; Hviid, Thomas Vauvert F

    2007-01-01

    BACKGROUND: Distinct mutations of the caspase activating recruitment domain 15 (CARD15) gene (also known as nucleotide-binding oligomerisation domain protein 2) on chromosome 16q are associated with the chronic granulomatous disease called Blau syndrome. Sarcoidosis is a systemic granulomatous...... disease, which has features in common with Blau syndrome. AIM: The aim of this study was to evaluate whether ethnic Danes with sarcoidosis have CARD15 mutations associated with Blau syndrome. METHODS: Analysis of exon 4 of the CARD15 gene containing mutations associated with Blau syndrome was performed...

  11. Seizures as the first manifestation of chromosome 22q11.2 deletion syndrome in a 40-year old man: a case report

    Directory of Open Access Journals (Sweden)

    Tonelli Adriano R

    2007-12-01

    Full Text Available Abstract Background The microdeletion of chromosome 22q11.2 is the most common human deletion syndrome. It typically presents early in life and is rarely considered in adult patients. As part of the manifestations of this condition, patients can have parathyroid glandular involvement ranging from hypocalcemic hypoparathyroidism to normocalcemia with normal parathryroid hormone levels. The first manifestation of the syndrome might be seizures due to profound hypocalcemia. Case presentation A 40-year-old man without significant past medical history presented with a new-onset generalized tonic-clonic seizure. He had no personal history of hypocalcemia or seizures. Physical examination was remarkable for short stature, hypertelorism, prominent forehead and nasal voice. His initial laboratory examination showed hypocalcemia (Calcium 5.2 mg/dl and Calcium ionized 0.69 mmol/l with hypoparathyroidism (Parathyroid hormone intact Conclusion Microdeletion of chromosome 22q11.2 is among the most clinically variable syndromes, with more than 180 features associated with the deletion. It has a variable phenotypical expression, requiring a high level of awareness for its early diagnosis. Seizures, related to marked hypocalcemia due to idiopathic hypoparathyroidism, might be the presenting feature in an adult patient with this syndrome.

  12. Clinical effect of increasing doses of lenalidomide in high-risk myelodysplastic syndrome and acute myeloid leukemia with chromosome 5 abnormalities

    DEFF Research Database (Denmark)

    Möllgård, Lars; Saft, Leonie; Treppendahl, Marianne Bach

    2011-01-01

    Patients with chromosome 5 abnormalities and high-risk myelodysplastic syndromes or acute myeloid leukemia have a poor outcome. We hypothesized that increasing doses of lenalidomide may benefit this group of patients by inhibiting the tumor clone, as assessed by fluorescence in situ hybridization...

  13. Development of T. aestivum L.-H. californicum alien chromosome lines and assignment of homoeologous groups of Hordeum californicum chromosomes.

    Science.gov (United States)

    Fang, Yuhui; Yuan, Jingya; Wang, Zhangjun; Wang, Haiyan; Xiao, Jin; Yang, Zhixi; Zhang, Ruiqi; Qi, Zengjun; Xu, Weigang; Hu, Lin; Wang, Xiu-E

    2014-08-20

    Hordeum californicum (2n = 2x = 14, HH) is resistant to several wheat diseases and tolerant to lower nitrogen. In this study, a molecular karyotype of H. californicum chromosomes in the Triticum aestivum L. cv. Chinese Spring (CS)-H. californicum amphidiploid (2n = 6x = 56, AABBDDHH) was established. By genomic in situ hybridization (GISH) and multicolor fluorescent in situ hybridization (FISH) using repetitive DNA clones (pTa71, pTa794 and pSc119.2) as probes, the H. californicum chromosomes could be differentiated from each other and from the wheat chromosomes unequivocally. Based on molecular karyotype and marker analyses, 12 wheat-alien chromosome lines, including four disomic addition lines (DAH1, DAH3, DAH5 and DAH6), five telosomic addition lines (MtH7L, MtH1S, MtH1L, DtH6S and DtH6L), one multiple addition line involving H. californicum chromosome H2, one disomic substitution line (DSH4) and one translocation line (TH7S/1BL), were identified from the progenies derived from the crosses of CS-H. californicum amphidiploid with common wheat varieties. A total of 482 EST (expressed sequence tag) or SSR (simple sequence repeat) markers specific for individual H. californicum chromosomes were identified, and 47, 50, 45, 49, 21, 51 and 40 markers were assigned to chromosomes H1, H2, H3, H4, H5, H6 and H7, respectively. According to the chromosome allocation of these markers, chromosomes H2, H3, H4, H5, and H7 of H. californicum have relationship with wheat homoeologous groups 5, 2, 6, 3, and 1, and hence could be designated as 5H(c), 2H(c), 6H(c), 3H(c) and 1H(c), respectively. The chromosomes H1 and H6 were designated as 7H(c) and 4H(c), respectively, by referring to SSR markers located on rye chromosomes. Copyright © 2014 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  14. Working Memory Impairments in Chromosome 22q11.2 Deletion Syndrome: The Roles of Anxiety and Stress Physiology

    Science.gov (United States)

    Sanders, Ashley F.; Hobbs, Diana A.; Stephenson, David D.; Laird, Robert D.; Beaton, Elliott A.

    2017-01-01

    Stress and anxiety have a negative impact on working memory systems by competing for executive resources and attention. Broad memory deficits, anxiety, and elevated stress have been reported in individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS). We investigated anxiety and physiological stress reactivity in relation to visuospatial…

  15. Late-onset Stargardt-like macular dystrophy maps to chromosome 1p13

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, J.; Gerber, S.; Rozet, J.M. [Hopital des Enfants Malades, Paris (France)] [and others

    1994-09-01

    Stargardt`s disease (MIM 248200), originally described in 1909, is an autosomal recessive condition of childhood, characterized by a sudden and bilateral loss of central vision. Typically, it has an early onset (7 to 12 years), a rapidly progressive course and a poor final outcome. The central area of the retina (macula) displays pigmentary changes in a ring form with depigmentation and atrophy of the retinal pigmentary epithelium (RPE). Perimacular yellowish spots, termed fundus flavimaculatus, are observed in a high percentage of patients. We have recently reported the genetic mapping of Stargardt`s disease to chromosome 1p13. On the other hand, considering that fundus flavimaculatus (MIM 230100) is another form of fleck fundus disease, with a Stargardt-like retinal aspect but with a late-onset and a more progressive course, we decided to test the hypothesis of allelism between typical Stargardt`s disease and late-onset autosomal recessive fundus flavimaculatus. Significant pairwise lod scores were obtained in each of four multiplex families (11 affected individuals, 12 relatives) with four markers of the 1p13 region (Z = 4.79, 4.64, 3.07, 3.16 at loci D1S435, D1S424, D1S236, and D1S415, respectively at {theta} = 0). Multipoint analysis showed that the best estimate for location of the disease gene is between D1S424 and D1S236 (maximum lod score of 5.20) as also observed in Stargardt`s disease. Our results are consistent with the location of the gene responsible of the late-onset Stargardt-like macular dystrophy in the 1p13 region and raise the hypothesis of either allelic mutational events or contiguous genes in this chromosomal region. The question of possible relationship with some age-related macular dystrophies in now open to debate.

  16. Pallister Killian syndrome: unusual significant postnatal overgrowth in a girl with otherwise typical presentation.

    Science.gov (United States)

    Frković, Sanda Huljev; Durisević, Ivana Tonković; Trcić, Ruzica Lasan; Sarnavka, Vladimir; Gornik, Kristina Crkvenac; Muzinić, Dubravka; Letica, Ljiljana; Barić, Ivo; Begović, Davor

    2010-03-01

    Pallister Killian syndrome (PKS) is a rare genetic disorder caused by tetrasomy of the short arm of chromosome 12, revealed usually in mosaic distribution of an extra i (12) (p10) chromosome in fibroblasts. The syndrome presents with a recognizable pattern of findings including pigmentary skin changes, coarse face, high forehead, sparse anterior scalp hair, hypertelorism, seizures and progressive psychomotor developmental delay. It was first described independently by Pallister in 1977 and by Killian and Teschler-Nikola in 1981. We report a case of 21 month old girl with PKS and significant overgrowth. Cytogenetic analysis was performed using the GTG banding technique. The karyotype of cultured lymphocytes was normal. The karyotype from skin fibroblasts was established as mosaic tetrasomy of 12p 47,XX,+i (12) (p10)/46,XX. The origin of the extra marker chromosome was determinated by fluorescence in situ hybridization with chromosome 12 specific DNA probes confirming that supernumerary marker is chromosome i (12p) in 68% of cells. Despite the excessive postnatal growth we found low serum growth hormone levels and reduced response to pharmacological stimulation test. This is also the first report of a postnatal patient in our country.

  17. Mapping of the human APOB gene to chromosome 2p and demonstration of a two-allele restriction fragment length polymorphism

    International Nuclear Information System (INIS)

    Huang, L.; Miller, D.A.; Bruns, G.A.P.; Breslow, J.L.

    1986-01-01

    ApoB is a large glycoprotein with an apparent molecular mass of 550 kDa on NaDodSO 4 /PAGE. Recently, apoB cDNA clones have been isolated from an expression library made with mRNA from a human hepatoma cell line. These clones, which were all 1.5-1.6 kilobases (kb) long and corresponded to the 3' end of apoB mRNA, were used to demonstrate that hepatic apoB mRNA is ≅ 22 kb long. In the current report, a probe derived from one of these cDNA clones, pB8, was used for in situ hybridization experiments to map the human gene for apoB, APOB, to the distal half of the short arm of chromosome 2. This probe was also used to analyze somatic cell hybrids and, in agreement with the in situ hybridization studies, concordancy was demonstrated with chromosome 2. In addition, two hybrids with chromosome 2 translocations that contain only the short arm reacted with the pB8 probe. A third hybrid with a complex rearrangement of chromosome 2, which deleted an interstitial region and the tip of the short arm of chromosome 2, did not react. These data indicate that APOB maps to either 2p21-p23 or 2p24-pter. In further studies, DNA from normal individuals, digested with the restriction endonuclease EcoRI and subjected to Southern blot analysis with the pB8 probe, revealed a two-allele restriction fragment length polymorphism (RFLP). The mapping studies provide the means for understanding the relationship of the APOB locus to others in the human genome, whereas the demonstration of an APOB RFLP increases their ability to assess the role of this locus in determining plasma lipoprotein levels

  18. Mapping of the gene encoding the. beta. -amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, D.; Gardiner, K.; Kao, F.T.; Tanzi, R.; Watkins, P.; Gusella, J.F. (Eleanor Roosevelt Institute for Cancer Research, Denver, CO (USA))

    1988-11-01

    The gene encoding the {beta}-amyloid precursor protein has been assigned to human chromosome 21, as has a gene responsible for at least some cases of familial Alzheimer disease. Linkage studies strongly suggest that the {beta}-amyloid precursor protein and the product corresponding to familial Alzheimer disease are from two genes, or at least that several million base pairs of DNA separate the markers. The precise location of the {beta}-amyloid precursor protein gene on chromosome 21 has not yet been determined. Here the authors show, by using a somatic-cell/hybrid-cell mapping panel, in situ hybridization, and transverse-alternating-field electrophoresis, that the {beta}-amyloid precursor protein gene is located on chromosome 21 very near the 21q21/21q/22 border and probably within the region of chromosome 21 that, when trisomic, results in Down syndrome.

  19. Genotype/phenotype analysis in a male patient with partial trisomy 4p and monosomy 20q due to maternal reciprocal translocation (4;20): A case report.

    Science.gov (United States)

    Wu, Dong; Zhang, Hui; Hou, Qiaofang; Wang, Hongdan; Wang, Tao; Liao, Shixiu

    2017-11-01

    Translocations are the most frequent structural aberration in the human genome. Carriers of balanced chromosome rearrangement exhibit an increased risk of abortion and/or a chromosomally‑unbalanced child. The present study reported a clinical and cytogenetic analysis of a child who exhibited typical trisomy 4p and monosomy 20q features, including intellectual disability, delayed speech, tall stature, seizures and facial dysmorphism. The karyotype of the proband exhibited 46, XY, add(20) (q13.3). The karyotype of the mother indicated a balanced translocation karyotype: 46, XX, t(4;20) (p15.2;q13.1). The array‑based comparative genomic hybridization (aCGH) analysis identified partial trisomy of the short arm of chromosome 4 and partial monosomy of distal 20q in the proband due to maternal balanced reciprocal translocation 4;20. The analysis of genotype/phenotype correlation demonstrated that fibroblast growth factor receptor 3 and msh homeobox 1 may be the important genes for 4p duplication, and that potassium voltage‑gated channel subfamily Q member 2, myelin transcription factor 1 and cholinergic receptor nicotinic α4 subunit may be the important genes for 20q deletion. To the best of our knowledge, the present study was the first to report an unbalanced translocation involving chromosomes 4p and 20q. The present study additionally demonstrated that aCGH analysis is able to reliably detect unbalanced submicroscopic chromosomal aberrations.

  20. Aarskog syndrome

    Science.gov (United States)

    Aarskog disease; Aarskog-Scott syndrome; AAS; Faciodigitogenital syndrome; Gaciogenital dysplasia ... Aarskog syndrome is a genetic disorder that is linked to the X chromosome. It affects mainly males, but females ...

  1. A simple screening method for detection of Klinefelter syndrome and other X-chromosome aneuploidies based on copy number of the androgen receptor gene

    DEFF Research Database (Denmark)

    Ottesen, A M; Garn, I D; Aksglaede, L

    2007-01-01

    Due to the high prevalence and variable phenotype of patients with Klinefelter syndrome, there is a need for a robust and rapid screening method allowing early diagnosis. Here, we report on the development and detailed clinical validation of a quantitative real-time PCR (qPCR)-based method...... of the copy number assessment of the androgen receptor (AR) gene, located to Xq11.2-q12. We analysed samples from 50 individuals, including a healthy male and female controls and patients with Klinefelter syndrome (47,XXY; 48,XXXY) (n = 28), mosaicisms (46,XX/47,XXY/48XXYY; 45,X/46,XY) (n = 3), other sex......-gene expression. The XIST-expression based assay was correct in only 29/36 samples (81%). Our findings demonstrated that the AR-qPCR technique is a simple and reliable screening method for diagnosis of patients with Klinefelter syndrome or other chromosomal disorders involving an aberrant number of X-chromosomes....

  2. Familial isolated clubfoot is associated with recurrent chromosome 17q23.1q23.2 microduplications containing TBX4.

    Science.gov (United States)

    Alvarado, David M; Aferol, Hyuliya; McCall, Kevin; Huang, Jason B; Techy, Matthew; Buchan, Jillian; Cady, Janet; Gonzales, Patrick R; Dobbs, Matthew B; Gurnett, Christina A

    2010-07-09

    Clubfoot is a common musculoskeletal birth defect for which few causative genes have been identified. To identify the genes responsible for isolated clubfoot, we screened for genomic copy-number variants with the Affymetrix Genome-wide Human SNP Array 6.0. A recurrent chromosome 17q23.1q23.2 microduplication was identified in 3 of 66 probands with familial isolated clubfoot. The chromosome 17q23.1q23.2 microduplication segregated with autosomal-dominant clubfoot in all three families but with reduced penetrance. Mild short stature was common and one female had developmental hip dysplasia. Subtle skeletal abnormalities consisted of broad and shortened metatarsals and calcanei, small distal tibial epiphyses, and thickened ischia. Several skeletal features were opposite to those described in the reciprocal chromosome 17q23.1q23.2 microdeletion syndrome associated with developmental delay and cardiac and limb abnormalities. Of note, during our study, we also identified a microdeletion at the locus in a sibling pair with isolated clubfoot. The chromosome 17q23.1q23.2 region contains the T-box transcription factor TBX4, a likely target of the bicoid-related transcription factor PITX1 previously implicated in clubfoot etiology. Our result suggests that this chromosome 17q23.1q23.2 microduplication is a relatively common cause of familial isolated clubfoot and provides strong evidence linking clubfoot etiology to abnormal early limb development. Copyright 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Nance-Horan syndrome: a contiguous gene syndrome involving deletion of the amelogenin gene? A case report and molecular analysis.

    Science.gov (United States)

    Franco, E; Hodgson, S; Lench, N; Roberts, G J

    1995-03-01

    A case of Nance-Horan syndrome in a male is presented, with some features of the condition in his carrier mother and her mother. It is proposed that Nance-Horan syndrome might be a contiguous gene syndrome mapping to chromosome Xp21.2-p22.3. The proband had congenital cataract microphthalmia and dental abnormalities including screwdriver shaped incisors and evidence of enamel pitting hypoplasia. The region Xp21.2-p22.3 also contains the tooth enamel protein gene, amelogenin (AMGX). Using molecular genetic techniques, we have shown that there is no evidence that the AMGX gene is deleted in this case of the Nance-Horan syndrome.

  4. Characterizing genetic syndromes involved in cancer and radiogenic cancer risk

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P; Doerffer, K

    1998-01-01

    The COG project 2806A (1995), reviewed the On-line Mendelian Inheritance in Man (OMIM) database of genetic syndromes to identify those syndromes, genes, and DNA sequences implicated in some way in the cancer process, and especially in radiogenic cancer risk. The current report describes a recent update of the survey in light of two years of further progress in the Human Genome project, and is intended to supply a comprehensive list of those genetic syndromes, genes, DNA sequences and map locations that define genes likely to be involved in cancer risk. Of the 8203 syndromes in OMIM in 1997 June, 814 are associated, even if marginally, with cancer. Of the 814 syndromes so linked, 672 have been mapped to a chromosome, and 476 have been mapped to a chromosome and had a DNA sequence associated with their messenger RNA (or cDNA) sequences. In addition, 35 syndromes have sequences not associated with map locations, and the remaining 107 have neither been mapped nor sequenced. We supply the list of the various genetic syndromes sorted by chromosome location and by OMIM descriptor, together with all the associated but unmapped and unsequenced syndromes. (author) 1 tab., 4 figs.

  5. Cytogenetic abnormalities in a series of 1,029 patients with primary myelodysplastic syndromes: a report from the US with a focus on some undefined single chromosomal abnormalities.

    Science.gov (United States)

    Pozdnyakova, Olga; Miron, Patricia M; Tang, Guilin; Walter, Otto; Raza, Azra; Woda, Bruce; Wang, Sa A

    2008-12-15

    Conventional karyotype has an established role in myelodysplastic syndrome (MDS) and is included in the International Prognostic Scoring System (IPSS) for patient risk stratification and treatment selection. Although some chromosomal abnormalities have been well characterized, the significance of several miscellaneous, infrequent, single chromosomal abnormalities remains to be defined. In addition, the emerging therapeutic agents may change the natural course of disease in patients with MDS and the cytogenetic impact on risk stratification. Clinicopathologic data were retrieved on 1029 patients who had a diagnosis of primary MDS and had available cytogenetic data (karyotype) on file. Cytogenetic abnormalities were identified in 458 patients (45%) and occurred most frequently in patients who had refractory anemia with excess blasts (62%). Overall, the 3 cytogenetic risk groups defined by the IPSS -- good, intermediate, and poor -- effectively stratified the patients' overall survival (OS) (64 months, 31 months, and 12 months, respectively; P < .001). With the exception of gain of chromosome 8, single cytogenetic abnormalities within the intermediate group were extremely infrequent in the series but demonstrated variable OS ranging from 10 months for patients who had isochromosome (17q) to 69 months for patients who had deletion of 12p [del(12p)], suggesting different prognostic significance. In the poor cytogenetic risk group, patients with isolated del(7q) and derivative (1;7)(q10;p10) had a significantly better median OS than patients who had either loss of chromosome 7 or a complex karyotype (P < .05). The current data generated from a large cohort of patients with primary MDS indicated that some specific cytogenetic abnormalities carry different risk than their IPSS cytogenetic risk-group assignment, especially in the new treatment era. Because of the extreme low frequency, additional combined studies are needed to better categorize some rare single cytogenetic

  6. Molecular diagnostic of the philadelphia chromosome

    International Nuclear Information System (INIS)

    Campos Rudin, M.; Cuenca Berger, P.; Gutierrez Espeleta, G.; Jimenez Cruz, G.; Montero Umana, C.; Vazquez Castillo, L.; Ramon Ortiz, M.

    1998-01-01

    The importance that has to confirm the presence or absence of the chromosome Philadelphia in the diagnostic and follow up of the patient affected with chronic myeloid leukemia and other leukemia. It is considered necessary to implement the molecular diagnostic in Costa Rica. They studied 32 patient affected by Chronic Myeloid Leukemia, 7 by other Myeloproliferative Chronic Disorders and 2 by Myelodysplastic Syndrome. It utilized the sound Trans probe-1 (Oncogene Science, Inc), which was marked with radioactivity ( 32 P) or chemiluminescence (digoxigenin). Of the 32 cases affected by L mc, in 28 it was possible to carry out the molecular analysis detecting the characteristic translocation of the chromosome Philadelphia among the Mbcr/c-ABL genes in 21 (75%) of the patients, in 7 (25%) the rearrangement was not found. In seven of the nine affected by other sufferings it was possible to obtain results, 3 that turned out to be positive for the rearrangement among Mbcr/c-ABL and 4 normal. In all the cases, they obtained results marking the sound with radioactivity. However, they tested the marks with digoxigenin in seven of the patients, as an methodological alternative for the laboratories that lacks the requirements to work with radiation. The results obtained were identical. (S. Grainger) [es

  7. De novo complex intra chromosomal rearrangement after ICSI: characterisation by BACs micro array-CGH

    Directory of Open Access Journals (Sweden)

    Quimsiyeh Mazin

    2008-12-01

    Full Text Available Abstract Background In routine Assisted Reproductive Technology (ART men with severe oligozoospermia or azoospermia should be informed about the risk of de novo congenital or chromosomal abnormalities in ICSI program. Also the benefits of preimplantation or prenatal genetic diagnosis practice need to be explained to the couple. Methods From a routine ICSI attempt, using ejaculated sperm from male with severe oligozoospermia and having normal karyotype, a 30 years old pregnant woman was referred to prenatal diagnosis in the 17th week for bichorionic biamniotic twin gestation. Amniocentesis was performed because of the detection of an increased foetal nuchal translucency for one of the fetus by the sonographic examination during the 12th week of gestation (WG. Chromosome and DNA studies of the fetus were realized on cultured amniocytes Results Conventional, molecular cytogenetic and microarray CGH experiments allowed us to conclude that the fetus had a de novo pericentromeric inversion associated with a duplication of the 9p22.1-p24 chromosomal region, 46,XY,invdup(9(p22.1p24 [arrCGH 9p22.1p24 (RP11-130C19 → RP11-87O1x3]. As containing the critical 9p22 region, our case is in coincidence with the general phenotype features of the partial trisomy 9p syndrome with major growth retardation, microcephaly and microretrognathia. Conclusion This de novo complex chromosome rearrangement illustrates the possible risk of chromosome or gene defects in ICSI program and the contribution of array-CGH for mapping rapidly de novo chromosomal imbalance.

  8. Pericentric inversion of chromosome 11 (p14.3q21) associated with developmental delays, hypopigmented skin lesions and abnormal brain MRI findings - a new case report

    Energy Technology Data Exchange (ETDEWEB)

    Zachor, D.A.; Lofton, M. [Univ. of Alabama, Birmingham (United States)

    1994-09-01

    We report 3 year old male, referred for evaluation of developmental delays. Pregnancy was complicated by oligohydramnios, proteinuria and prematurity. Medical history revealed: bilateral inguinal hernia, small scrotal sac, undescended testes, developmental delays and behavioral problems. The child had: microcephaly, facial dysmorphic features, single palmar creases, hypopigmented skin lesions of variable size, intermittent exotropia and small retracted testes. Neurological examination was normal. Cognitive level was at the average range with mild delay in his adaptive behavior. Expressive language delays and severe articulation disorder were noted, as well as clumsiness, poor control and precision of gross and fine motor skills. Chromosomal analysis of peripheral leukocytes indicated that one of the number 11 chromosomes had undergone a pericentric inversion with breakpoints on the short (p) arm at band p14.3 and the long (q) arm at band q21. An MRI of the brain showed mild delay in myelinization pattern of white matter. Chromosome 11 inversion in other sites was associated with Beckwith-Wiedemann syndrome and several malignancies. To our knowledge this is the first description of inv(11)(p14.3q21) that is associated with microcephaly, dysmorphic features, hypopigmented skin lesions and speech delay. This inversion may disrupt the expression of the involved genes. However, additional cases with the same cytogenetic anomaly are needed to explore the phenotypic significance of this disorder.

  9. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21

    DEFF Research Database (Denmark)

    McGinniss, M J; Kazazian, H H; Stetten, G

    1992-01-01

    We studied the mechanism of ring chromosome 21 (r(21)) formation in 13 patients (11 unique r(21)s), consisting of 7 from five families with familial r(21) and 6 with de novo r(21). The copy number of chromosome 21 sequences in the rings of these patients was determined by quantitative dosage......), resulting in deletion of varying amounts of 21q22.1 to 21qter. The data from one individual who had a Down syndrome phenotype were consistent with asymmetric breakage and reunion of 21q sequences from an intermediate isochromosome or Robertsonian translocation chromosome as reported by Wong et al. Another......). The phenotype of patients correlated well with the extent of deletion or duplication of chromosome 21 sequences. These data demonstrate three mechanisms of r(21) formation and show that the phenotype of r(21) patients varies with the extent of chromosome 21 monosomy or trisomy....

  10. First Case Report of Prader–Willi-Like Syndrome in Colombia

    Directory of Open Access Journals (Sweden)

    Estephania Candelo

    2018-03-01

    Full Text Available Background: Prader–Willi-like syndrome (PWLS is believed to be caused by a variety of disruptions in genetic pathways both inside and outside of the genetic region implicated in PWS. By definition, PWLS does not demonstrate mutations in the 15q11–q13 region itself. It is a rare disorder whose clinical hallmarks include hypotonia, obesity, short extremities, and delayed development. This syndrome has been described in patients with 1p, 2p, 3p, 6q, and 9q chromosome abnormalities and in cases with maternal uniparental disomy of chromosome 14 and fragile X syndrome.Case presentation: In the present report, we describe a 9-year-old Colombian patient who demonstrated features of PWS and was ultimately diagnosed with PWLS after genetic analysis revealed a 14.97 Mb deletion of 6q16.1–q21.Conclusions: This is the first reported case of PWLS in Colombia and represents one of the largest documented 6q21 deletions.

  11. First Case Report of Prader-Willi-Like Syndrome in Colombia.

    Science.gov (United States)

    Candelo, Estephania; Feinstein, Max M; Ramirez-Montaño, Diana; Gomez, Juan F; Pachajoa, Harry

    2018-01-01

    Background: Prader-Willi-like syndrome (PWLS) is believed to be caused by a variety of disruptions in genetic pathways both inside and outside of the genetic region implicated in PWS. By definition, PWLS does not demonstrate mutations in the 15q11-q13 region itself. It is a rare disorder whose clinical hallmarks include hypotonia, obesity, short extremities, and delayed development. This syndrome has been described in patients with 1p, 2p, 3p, 6q, and 9q chromosome abnormalities and in cases with maternal uniparental disomy of chromosome 14 and fragile X syndrome. Case presentation: In the present report, we describe a 9-year-old Colombian patient who demonstrated features of PWS and was ultimately diagnosed with PWLS after genetic analysis revealed a 14.97 Mb deletion of 6q16.1-q21. Conclusions: This is the first reported case of PWLS in Colombia and represents one of the largest documented 6q21 deletions.

  12. A study on the chromosomal aberration in T. astivum VAR.CHUANFU No.1 to No.4 and 4037

    International Nuclear Information System (INIS)

    Xu Liyuan; Xuan Pu; Qu Shihong; Yin Chunrong; Guo Yuanlin

    1996-01-01

    Wheat variety Chuanfu No.1 had been bred from Chuanyu No.5 by 32 P induction. Chuanfu No.2 to No.4 and 4037 had been bred by 60 Co γ ray induction. The chromosome constitution changed a little with Chuanfu No.1 compared with Mianyang 19. There were differences with one pair of chromosomes between Chuanfu No.2 and Chuanfu No.1 and between Chuanfu No.2 and Mianyang 19. In the hybrid F 1 of 4037 and Mianyang 19 one quadrivalents formed in many meiosis. In the hybrid F 1 or Chuanfu No.2 and 4037, one qudrivalent, one trivalent, 2 univalent or 4 univalent formed in different meiosis. 4037 was a strain of translocation. Several chromosomes changed among 2882 and several varieties. The powdery mildew resistance of 4037 was controlled by one gene which showed additive effect and was induced by 60 Co γ-ray

  13. Chromosome 15 structural abnormalities: effect on IGF1R gene expression and function

    Directory of Open Access Journals (Sweden)

    Rossella Cannarella

    2017-09-01

    Full Text Available Insulin-like growth factor 1 receptor (IGF1R, mapping on the 15q26.3 chromosome, is required for normal embryonic and postnatal growth. The aim of the present study was to evaluate the IGF1R gene expression and function in three unrelated patients with chromosome 15 structural abnormalities. We report two male patients with the smallest 15q26.3 chromosome duplication described so far, and a female patient with ring chromosome 15 syndrome. Patient one, with a 568 kb pure duplication, had overgrowth, developmental delay, mental and psychomotor retardation, obesity, cryptorchidism, borderline low testis volume, severe oligoasthenoteratozoospermia and gynecomastia. We found a 1.8-fold increase in the IGF1R mRNA and a 1.3-fold increase in the IGF1R protein expression (P < 0.05. Patient two, with a 650 kb impure duplication, showed overgrowth, developmental delay, mild mental retardation, precocious puberty, low testicular volume and severe oligoasthenoteratozoospermia. The IGF1R mRNA and protein expression was similar to that of the control. Patient three, with a 46,XX r(15 (p10q26.2 karyotype, displayed intrauterine growth retardation, developmental delay, mental and psychomotor retardation. We found a <0.5-fold decrease in the IGF1R mRNA expression and an undetectable IGF1R activity. After reviewing the previously 96 published cases of chromosome 15q duplication, we found that neurological disorders, congenital cardiac defects, typical facial traits and gonadal abnormalities are the prominent features in patients with chromosome 15q duplication. Interestingly, patients with 15q deletion syndrome display similar features. We speculate that both the increased and decreased IGF1R gene expression may play a role in the etiology of neurological and gonadal disorders.

  14. Recurrent RECQL4 Imbalance and Increased Gene Expression Levels Are Associated with Structural Chromosomal Instability in Sporadic Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Georges Maire

    2009-03-01

    Full Text Available Osteosarcoma (OS is an aggressive bone tumor with complex abnormal karyotypes and a highly unstable genome, exhibiting both numerical- and structural-chromosomal instability (N- and S-CIN. Chromosomal rearrangements and genomic imbalances affecting 8q24 are frequent in OS. RECQL4 gene maps to this cytoband and encodes a putative helicase involved in the fidelity of DNA replication and repair. This protective genomic function of the protein is relevant because often patients with Rothmund-Thomson syndrome have constitutional mutations of RECQL4 and carry a very high risk of developing OS. To determine the relative level of expression of RECQL4 in OS, 18 sporadic tumors were studied by reverse transcription–polymerase chain reaction. All tumors overexpressed RECQL4 in comparison to control osteoblasts, and fluorescence in situ hybridization analysis of tumor DNA showed that expression levels were strongly copy number–dependent. Relative N- and S-CIN levels were determined by classifying copy number transitions within array comparative genomic hybridization profiles and by enumerating the frequency of break-apart fluorescence in situ hybridization within 8q24 using region-specific and control probes. Although there was no evidence that disruption of 8q24 in OS led to an elevated expression of RECQL4, there was a marked association between increased overall levels of S-CIN, determined by copy number transition frequency and higher levels of RECQL4.

  15. Psychoeducational Implications of Sex Chromosome Anomalies

    Science.gov (United States)

    Wodrich, David L.; Tarbox, Jennifer

    2008-01-01

    Numerous anomalies involving the sex chromosomes (X or Y) have been documented and their impact on development, learning, and behavior studied. This article reviews three of these disorders, Turner syndrome, Klinefelter syndrome, and Lesch-Nyhan disease. Each of these three is associated with one or more selective impairments or behavioral…

  16. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    International Nuclear Information System (INIS)

    Ejima, Yosuke

    1988-01-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G 0 or G 1 phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases. (author)

  17. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Ejima, Yosuke; Ikushima, Takaji (ed.)

    1988-07-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G/sub 0/ or G/sub 1/ phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases.

  18. Down Syndrome: General Information. Fact Sheet Number 4 = El Sindrome de Down: Informacion General. Fact Sheet Number 15.

    Science.gov (United States)

    Interstate Research Associates, McLean, VA.

    This fact sheet on Down Syndrome is offered in both English and Spanish. First it provides a definition and description of this syndrome, noting its etiology in a chromosomal abnormality. Incidence figures are then given. Typical characteristics of people with Down Syndrome are listed. Commonly associated health-related problems are noted,…

  19. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A

    Czech Academy of Sciences Publication Activity Database

    Balcárková, Barbora; Frenkel, Z.; Škopová, Monika; Abrouk, Michael; Kumar, A.; Chao, S.; Kianian, S. F.; Akhunov, E.; Korol, A.; Doležel, Jaroslav; Valárik, Miroslav

    2017-01-01

    Roč. 7, JAN 10 (2017), č. článku 2063. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * bread wheat * high-density * agronomic traits * tetraploid wheat * hexaploid wheat * polyploid wheat * genetic maps * genomes * recombination * endosperm radiation hybrid panel * radiation hybrid map * wheat chromosome 4A * chromosome deletion bin map * Triticum aestivum * SNP iSelect array Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  20. DEMONSTRATION OF THE GENUINE ISO-12P CHARACTER OF THE STANDARD MARKER CHROMOSOME OF TESTICULAR GERM-CELL TUMORS AND IDENTIFICATION OF FURTHER CHROMOSOME-12 ABERRATIONS BY COMPETITIVE INSITU HYBRIDIZATION

    NARCIS (Netherlands)

    SUIJKERBUIJK, RF; VANDEVEEN, AY; VANECHTEN, J; BUYS, CHCM; DEJONG, B; OOSTERHUIS, JW; WARBURTON, DA; CASSIMAN, JJ; SCHONK, D; VANKESSEL, AG

    The recently developed competitive in situ hybridization (CISH) strategy was applied to the analysis of chromosome 12 aberrations in testicular germ cell tumors (TGCTs). DNAs from two rodent-human somatic cell hybrids, containing either a normal chromosome 12 or the p arm of chromosome 12 as their

  1. Identification of Two Candidate Tumor Suppressor Genes on Chromosome 17p13.3: Assessment of Their Roles in Breast and Ovarian Carcinogenesis

    National Research Council Canada - National Science Library

    Godwin, Andrew

    1998-01-01

    .... To date, we have found that: (1) OVCA2 is a new gene residing in a chromosomal region which is frequently lost in breast, brain, colon, ovarian tumors, acute myeloid leukemia and myelodysplastic syndromes, (2...

  2. Oligonephronia and Wolf-Hirschhorn syndrome: A further observation.

    Science.gov (United States)

    Gatto, Antonio; Ferrara, Pietro; Leoni, Chiara; Onesimo, Roberta; Zollino, Marcella; Emma, Francesco; Zampino, Giuseppe

    2018-02-01

    Wolf-Hirschhorn syndrome (WHS) is a rare chromosomal disorder caused by a partial deletion of chromosome 4 (4p16.3p16.2). We describe a case of a male 9 years old children with WHS proteinuria and hypertension. Laboratory data showed creatinine 1.05 mg/dl, GFR 65.9 ml/min/1.73 m 2 , cholesterol 280 mg/dl, triglyceride 125 mg/dl with electrolytes in the normal range. Urine collection showed protein 2.72 g/L with a urine protein/creatinine ratio (U P /U Cr ratio) of 4.2 and diuresis of 1,100 ml. Renal ultrasound showed reduced kidney dimensions with diffusely hyperechogenic cortex and poorly visualized pyramids. Renal biopsy showed oligonephronia with focal segmental glomerulosclerosis associated with initial tubulointerstitial sclerotic atrophy. The child began therapy with Angiotensin-converting enzyme inhibitors (ACE-inhibitors) to reduce proteinuria and progression of chronic kidney disease. In the literature the anomalies of number of glomeruli oligonephronia and oligomeganephronia (OMN) are described in two forms, one without any associated anomalies, sporadic, and solitary and the other with one or more anomalies. Our review of the literature shows that the pathogenesis of this anomaly is unknown but the role of chromosome 4 is very relevant. Many cases of OMN are associated with anomalies on this chromosome, in the literature cases series we observed this association in 14/48 cases (29.2%) and in 7 of these 14 cases with WHS. Our case and the review of literature demonstrate how periodic urinalysis and renal ultrasound monitoring is recommended in patients affected by WHS and the renal biopsy must be performed when there is the onset of proteinuria. © 2017 Wiley Periodicals, Inc.

  3. Genetic epidemiology of Down syndrome in Iran

    OpenAIRE

    Manoochehr Shariati

    2005-01-01

    Down syndrome is the most common autosomal abnormality and occurs in approximately 1 per 700 live births. Down syndrome accounts for about one third of all moderate and sever mental handicaps in school-aged children. To reveal genetic epidemiology of Down syndrome, 545 karyotypes of referred cases to the author were evaluated. The frequencies of three cytogenetic variants of Down syndrome were trisomy 21 (77.5%), mosaicism (18%) and chromosomal translocation (4.5%). Male to female ratio was 1...

  4. Haplotype frequency distribution for 7 microsatellites in chromosome 8 and 11 in relation to the metabolic syndrome in four ethnic groups: Tehran Lipid and Glucose Study.

    Science.gov (United States)

    Daneshpour, Maryam Sadat; Hosseinzadeh, Nima; Zarkesh, Maryam; Azizi, Fereidoun

    2012-03-01

    Different variants of haplotype frequencies may lead to various frequencies of the same variants in individuals with drug resistance and disease susceptibility at the population level. In this study, the haplotype frequencies of 4 STR loci including the D8S1132, D8S1779, D8S514 and D8S1743, and 3 STR loci including D11S1304, D11S1998 and D11S934 were investigated in 563 individuals of four Iranian ethnic groups in the capital city of Iran, Tehran. One hundred thirty subjects had the metabolic syndrome. Haplotype frequencies of all markers were calculated. There were significant differences in the haplotype frequencies in short and long alleles between the metabolic affected subjects and controls. In addition, haplotype frequencies were significant in the four ethnic groups in both chromosomes 8 and 11. Our findings show a relation between the short allele of D8S1743 in all related haplotype frequencies of subjects with metabolic syndrome. These findings may require more studies of some candidate genes, including the lipoprotein lipase gene, in this chromosomal region. Copyright © 2011. Published by Elsevier B.V.

  5. Assignment of genes to chromosome 4 of the River buffalo with a panel of buffalo-hamster hybrid cells.

    Science.gov (United States)

    Nahas, S M; Hondt, H A; Othman, O S; Bosma, A A; Haan, N A

    1993-01-12

    To identify the river buffalo chromosome carrying the genes coding for GAPD, TPI1, and LDHB, karyotypic examination was carried out on 14 buffalo-hamster hybrid clones previously tested for presence of this syntenic group. In cattle, this group (U3) has been assigned to chromosome 5, which is assumed to be homologous to the long arm of buffalo chromosome 4. Chromosome 4 was present in all five clones expressing the three enzymes, and absent in all seven negative clones, indicating that in the buffalo GAPD, TPI1, and LDHB are located on chromosome 4. One clone, expressing GAPD and TPI1, but not LDHB, was found to carry a translocation between hamster marker chromosome M(2) and buffalo 4q1 → 4qter. In another clone, expressing LDHB, but not GAPD and TPI1, chromosome 4 was absent, while a very small, unidentifiable acrocentric was present. These observations suggest that LDHB is located in the proximal part of 4q1, and that GAPD and TPI1 are located more distally, in 4q1 → 4q2. ZUSAMMENFASSUNG: Lokalisierung von Genen auf Chromosom 4 des Flußbüffels durch Büffel-Hamster-Hybridzellen Zur Identifikation von Flußbüffelchromosomen mit Genen für GAPD, TPI1 und LDHB wurden Karyotypenbestimmungen an 14 Büffel-Hamster-Hybridklonen durchgeführt, die vorher auf Anwesenheit der betreffenden synthenischen Gruppen geprüft worden waren. Bei Rindern wird diese Gruppe (U3) dem Chromosom 5 zugeordnet, welches als homolog mit dem langen Arm des Büffelchromosoms 4 betrachtet wird. Chromosom 4 war in allen fünf Klonen, die die drei Enzyme exprimiert haben, vorhanden und fehlte in allen sieben negativen klonen, so daß angenommen werden kann, daß sich bei Büffeln GAPD, TPI1 und LDHB auf Chromosom 4 befinden. Bei einem Klon, der GAPD und TPI1, aber nicht LDHB zeigte, wurde eine Translokation zwischen dem Hamstermarkerchromosom M2 und Büffel 4q1 → 4qter gefunden. Im einem anderen Klon, der LDHB, nicht aber GAPD und TPI1 zeigte, war Chromosom 4 nicht vorhanden, wohl aber

  6. Microsatellite alteration and immunohistochemical expression profile of chromosome 9p21 in patients with sporadic renal cell carcinoma following surgical resection

    International Nuclear Information System (INIS)

    El-Mokadem, Ismail; Lim, Alison; Kidd, Thomas; Garret, Katherine; Pratt, Norman; Batty, David; Fleming, Stewart; Nabi, Ghulam

    2016-01-01

    Long-term prognostic significance of loss of heterozygosity on chromosome 9p21 for localized renal cell carcinoma following surgery remains unreported. The study assessed the frequency of deletions of different loci of chromosome 9p along with immunohistochemical profile of proteins in surgically resected renal cancer tissue and correlated this with long-term outcomes. DNA was extracted from renal tumours and corresponding normal kidney tissues in prospectively collected samples of 108 patients who underwent surgical resection for clinically localized disease between January 2001 and December 2005, providing a minimum of 9 years follow-up for each participant. After checking quality of DNA, amplified by PCR, loss of heterozygosity (LOH) on chromosome 9p was assessed using 6 microsatellite markers in 77 clear cell carcinoma. Only 5 of the markers showed LOH (D9S1814, D9S916, D9S974, D9S942, and D9S171). Protein expression of p15(INK4b), p16(INK4a), p14(ARF), CAIX, and adipose related protein (ADFP) were demonstrated by immunostaining in normal and cancer tissues. Loss of heterozygosity for microsatellite analysis was correlated with tumour characteristics, recurrence free, cancer specific, and overall survival, including significance of immunohistochemical profile of protein expressions. The main deletion was found at loci telomeric to CDKN2A region at D9S916. There was a significant correlation between frequency of LOH stage (p = 0.005) and metastases (p = 0.006) suggesting a higher LOH for advanced and aggressive renal cell carcinoma. Most commonly observed LOH in the 3 markers: D9S916, D9S974, and D9S942 were associated with poor survival, and were statistically significant on multivariate analysis. Immunohistochemical expression of p14, p15, and p16 proteins were either low or absent in cancer tissue compared to normal. Loss of heterozygosity of p921 chromosome is associated with aggressive tumours, and predicts cancer specific or recurrence free survival on

  7. Repair of x-ray induced chromosomal damage in trisomy 2- and normal diploid lymphocytes

    International Nuclear Information System (INIS)

    Countryman, P.I.; Heddle, J.A.; Crawford, E.

    1977-01-01

    The frequency of chromosomal aberrations produced by x-rays is greater in lymphocytes cultured from trisomy 21 patients (Down's syndrome) than from normal diploid donors. This increase, which can be detected by a micronucleus assay for chromosomal damage, was postulated by us to result from a defect in the rejoining system which repairs chromosomal breaks. The postulated defect would result in a longer rejoining time, therapy permitting more movement of broken ends and thus enhancing the frequency of exchanges. To test this possibility, the time required for the rejoining (repair) of chromosome breaks was measured in lymphocytes from five Down's syndrome (four trisomy 21 and one D/G translocation partial trisomy 21) donors, from a monosomy 21 donor, and from five diploid donors. The rejoining time was reduced in the Down's syndrome lymphocytes in comparison to the normal diploid and monosomy 21 lymphocytes. Thus the repair of chromosome breaks, far from being defective as evidenced by a longer rejoining time in Down's syndrome cells, occurred more rapidly than in normal cells

  8. Deletion of 1p36 as a primary chromosomal aberration in intestinal tumorigenesis

    DEFF Research Database (Denmark)

    Bardi, G; Pandis, N; Fenger, C

    1993-01-01

    rearrangements were found that led to loss of genetic material from 1p. In three of the cases, the deletion was restricted to the 1p36 band; the rest had lost larger 1p segments. The rearrangement of chromosome 1 was the sole karyotypic anomaly in three adenomas, all with mild or moderate dysplasia...

  9. Sex chromosome aneuploidy in cytogenetic findings of referral patients from south of Iran

    Directory of Open Access Journals (Sweden)

    Najmeh Jouyan

    2012-01-01

    Full Text Available Background: Chromosome abnormality (CA including Sex chromosomes abnormality (SCAs is one of the most important causes of disordered sexual development and infertility. SCAs formed by numerical or structural alteration in X and Y chromosomes, are the most frequently CA encountered at both prenatal diagnosis and at birth. Objective: This study describes cytogenetic findings of cases suspected with CA referred for cytogenetic study. Materials and Methods: Blood samples of 4151 patients referred for cytogenetic analysis were cultured for chromosome preparation. Karyotypes were prepared for all samples and G-Banded chromosomes were analyzed using x100 objective lens. Sex chromosome aneuploidy cases were analyzed and categorized in two groups of Turners and Klinefelter’s syndrome (KFS. Results: Out of 230 (5.54% cases with chromosomally abnormal karyotype, 122 (30% cases suspected of sexual disorder showed SCA including 46% Turner’s syndrome, 46% KFS and the remaining other sex chromosome abnormalities. The frequency of classic and mosaic form of Turner’s syndrome was 33% and 67%, this was 55% and 45% for KFS, respectively. Conclusion: This study shows a relatively high sex chromosome abnormality in this region and provides cytogenetic data to assist clinicians and genetic counselors to determine the priority of requesting cytogenetic study. Differences between results from various reports can be due to different genetic background or ethnicity.

  10. X-chromosome gene dosage as a determinant of impaired pre and postnatal growth and adult height in Turner syndrome.

    Science.gov (United States)

    Fiot, Elodie; Zenaty, Delphine; Boizeau, Priscilla; Haigneré, Jeremy; Dos Santos, Sophie; Léger, Juliane

    2016-03-01

    Short stature is a key aspect of the phenotype of patients with Turner syndrome (TS). SHOX haploinsufficiency is responsible for about two-thirds of the height deficit. The aim was to investigate the effect of X-chromosome gene dosage on anthropometric parameters at birth, spontaneous height, and adult height (AH) after growth hormone (GH) treatment. We conducted a national observational multicenter study. Birth parameter SDS for gestational age, height, and AH before and after GH treatment respectively, and height deficit with respect to target height (SDS) were classified by karyotype subgroup in a cohort of 1501 patients with TS: 45,X (36%), isoXq (19%), 45,X/46,XX (15%), XrX (7%), presence of Y (6%), or other karyotypes (17%). Birth weight, length (P<0.0001), and head circumference (P<0.001), height and height deficit with respect to target height (SDS) before GH treatment, at a median age of 8.8 (5.3-11.8) years and after adjustment for age and correction for multiple testing (P<0.0001), and AH deficit with respect to target height at a median age of 19.3 (18.0-21.8) years and with additional adjustment for dose and duration of GH treatment (P=0.006), were significantly associated with karyotype subgroup. Growth retardation tended to be more severe in patients with XrX, isoXq, and, to a lesser extent, 45,X karyotypes than in patients with 45,X/46,XX karyotypes or a Y chromosome. These data suggest that haploinsufficiency for an unknown Xp gene increases the risk of fetal and postnatal growth deficit and short AH with respect to target height after GH therapy. © 2016 European Society of Endocrinology.

  11. A novel syndrome of paediatric cataract, dysmorphism, ectodermal features, and developmental delay in Australian Aboriginal family maps to 1p35.3-p36.32

    Directory of Open Access Journals (Sweden)

    Gecz Jozef

    2010-11-01

    Full Text Available Abstract Background A novel phenotype consisting of cataract, mental retardation, erythematous skin rash and facial dysmorphism was recently described in an extended pedigree of Australian Aboriginal descent. Large scale chromosomal re-arrangements had previously been ruled out. We have conducted a genome-wide scan to map the linkage region in this family. Methods Genome-wide linkage analysis using Single Nucleotide Polymorphism (SNP markers on the Affymetrix 10K SNP array was conducted and analysed using MERLIN. Three positional candidate genes (ZBTB17, EPHA2 and EPHB2 were sequenced to screen for segregating mutations. Results Under a fully penetrant, dominant model, the locus for this unique phenotype was mapped to chromosome 1p35.3-p36.32 with a maximum LOD score of 2.41. The critical region spans 48.7 cM between markers rs966321 and rs1441834 and encompasses 527 transcripts from 364 annotated genes. No coding mutations were identified in three positional candidate genes EPHA2, EPHB2 or ZBTB17. The region overlaps with a previously reported region for Volkmann cataract and the phenotype has similarity to that reported for 1p36 monosomy. Conclusions The gene for this syndrome is located in a 25.6 Mb region on 1p35.3-p36.32. The known cataract gene in this region (EPHA2 does not harbour mutations in this family, suggesting that at least one additional gene for cataract is present in this region.

  12. Physical mapping of chromosome 8p22 markers and their homozygous deletion in a metastatic prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bova, G.S.; Pin, S.S.; Isaacs, W.B. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)]|[Brady Urological Institute, Baltimore, MD (United States)] [and others

    1996-07-01

    Numerous studies have implicated the short arm of chromosome 8 as the site of one or more tumor suppressor genes inactivated in carcinogenesis of the prostate, colon, lung, and liver. Previously, we identified a homozygous deletion on chromosome 8p22 in a metastatic prostate cancer. To map this homozygous deletion physically, long-range restriction mapping was performed using yeast artificial chromosomes (YACs) spanning approximately 2 Mb of chromosome band 8p22. Subcloned genomic DNA and cDNA probes isolated by hybrid capture from these YACs were mapped in relation to one another, reinforcing map integrity. Mapped single-copy probes from the region were then applied to DNA isolated from a metastatic prostate cancer containing a chromosome 8p22 homozygous deletion and indicated that its deletion spans 730-970 kb. Candidate genes PRLTS (PDGF-receptor {beta}-like tumor suppressor) and CTSB (cathepsin B) are located outside the region of homozygous deletion. Genethon marker D8S549 is located approximately at the center of this region of homozygous deletion. Two new microsatellite polymorphisms, D8S1991 and D8S1992, also located within the region of homozygous deletion on chromosome 8p22, are described. Physical mapping places cosmid CI8-2644 telomeric to MSR (macrophage scavenger receptor), the reverse of a previously published map, altering the interpretation of published deletion studies. This work should prove helpful in the identification of candidate tumor suppressor genes in this region. 47 refs., 5 figs., 1 tab.

  13. Expression of the p16{sup INK4a} tumor suppressor gene in rodent lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Swafford, D.S.; Tesfaigzi, J.; Belinsky, S.A.

    1995-12-01

    Aberrations on the short arm of chromosome 9 are among the earliest genetic changes in human cancer. p16{sup INK4a} is a candidate tumor suppressor gene that lies within human 9p21, a chromosome region associated with frequent loss of heterozygosity in human lung tumors. The p16{sup INK4a} protein functions as an inhibitor of cyclin D{sub 1}-dependent kinases that phosphorylate the retinoblastoma (Rb) tumor suppressor gene product enabling cell-cycle progression. Thus, overexpression of cyclin D{sub 1}, mutation of cyclin-dependent kinase genes, or loss of p16{sup INK4a} function, can all result in functional inactivation of Rb. Inactivation of Rb by mutation or deletion can result in an increase in p16{sup INK4a} transcription, suggesting that an increased p16{sup INK4a} expression in a tumor cell signals dysfunction of the pathway. The p16{sup (INK4a)} gene, unlike some tumor suppressor genes, is rarely inactivated by mutation. Instead, the expression of this gene is suppressed in some human cancers by hypermethylation of the CpG island within the first exon or by homozygous deletion: 686. Chromosome losses have been observed at 9p21 syntenic loci in tumors of the mouse and rat, two species often used as animal models for pulmonary carcinogenesis. Expression of p16{sup INK4a} is lost in some mouse tumor cell lines, often due to homozygous deletion. These observations indicate that p16{sup INK4a} dysfunction may play a role in the development of neoplasia in rodents as well as humans. The purpose of the current investigation was to define the extent to which p16{sup INK4a} dysfunction contributes to the development of rodent lung tumors and to determine the mechanism of inactivation of the gene. There is no evidence to suggest a loss of function of the p16{sup INK4a} tumor suppressor gene in these primary murine lung tumors by mutation, deletion, or methylation.

  14. Hereditary syndromes associated with the congenital heart diseases in Azerbaijan

    Directory of Open Access Journals (Sweden)

    N. A. Gadzhieva

    2018-01-01

    Full Text Available This article is devoted to the study of the incidence and structure of the genetic syndromes associated with congenital heart diseases in Azerbaijan. The results of observation of 430 children with congenital heart diseases, which have been stayed in the Child Department of Scientific Surgery Center named after Academician M.A. Topchubashov during 2010-2015 period, have been analyzed. It was demonstrated that the incidence of the chromosomal and monogenic pathological conditions is 6.5±1.2% (28 children among the above population. The chromosomal syndromes were diagnosed in 20 (4.7±1.0% children, monogenic ones – in 8 (1.9+0.7% children. The chromosomal pathological condition was mostly presented with the Down’s syndrome (in 12 patents. As to the monogenic syndromes, it was mostly the heterotoxic syndrome (4 children. These data testify that in spite of the multifactorial genesis of the most of the congenital heart diseases and role of the unfavorable factors of the antenatal period, the genetic component influences with a great importance upon the prevalence rate of the malformations. 

  15. Genetics Home Reference: distal 18q deletion syndrome

    Science.gov (United States)

    ... 18q deletion syndrome chromosome 18q monosomy chromosome 18q- syndrome De Grouchy syndrome del(18q) syndrome monosomy 18q Related Information How ... MS, Tienari PJ, Wirtavuori KO, Valanne LK. 18q-syndrome: brain MRI shows poor differentiation of gray and white matter on ... RL, Hale DE, Rose SR, Leach RJ, Cody JD. The spectrum ...

  16. The change of chromosome aberration rate for peripheral blood lymphocytes after injection of colloidal chromic phosphate 32P into rabbit knee joint cavities

    International Nuclear Information System (INIS)

    Gao Yijun; Dong Qirong

    2007-01-01

    Objective: To study the impact on the chromosome aberration rate for peripheral blood lymphocytes after injecting colloidal chromic phosphate 32 P into knee joint cavities of rabbit models of rheumatoid arthritis. Methods: Nine rabbits were divided into three groups randomly. Three rabbits in group A were for normal comparison and three rabbits in group B for model comparison. One week after the three rabbits in group C have been induced as models, 44.4 MBq colloidal chromic phosphate 32 P was injected into the right knee joint cavity. In all of the three groups blood samples were taken from the ear-rim veins upon two months after the nuclein injection in group C. For group C, a blood sampling three days before and after the nuclein injection was conducted. After cultivation, examination and comparison of the changes in lymphocytes chromosome aberration rate were conducted during the interim division in different groups. Results: No obvious twin-centromere in the lymphocytes chromosome of peripheral blood was observed in all three groups. No distinct differences was observed (P>0.05) in comparison of fragment rates. No twin-centromere was discovered in lymphocytes chromosome in peripheral blood, and no obvious difference (P>0.05) in fragment rates at all scheduled time in group C. Conclusion: After injecting colloidal chromic phosphate 32 P in lab test dosages into articular cavities, the fluctuation of lymph cell chromosome aberration rate in peripheral blood of the rabbit is within the normal range, which proves that radioisotope synovectomy is a safe treatment method. (authors)

  17. Mosaicism for r(X and der(Xdel(X(p11.23dup(X(p11.21p11.22 provides insight into the possible mechanism of rearrangement

    Directory of Open Access Journals (Sweden)

    Fang Ping

    2008-07-01

    Full Text Available Abstract We report a patient with a unique and complex cytogenetic abnormality involving mosaicism for a small ring X and deleted Xp derivative chromosome with tandem duplication at the break point. The patient presented with failure to thrive, muscular hypotonia, and minor facial anatomic anomalies, all concerning for Turner syndrome. Brain MRI revealed mild thinning of the corpus callosum, an apparent decrease in ventricular white matter volume, and an asymmetric myelination pattern. Array comparative genome hybridization analysis revealed mosaicism for the X chromosome, deletion of the short arm of an X chromosome, and a duplication of chromosome region Xp11.21-p11.22. G-banded chromosome and FISH analyses revealed three abnormal cell lines: 46,X,der(Xdel(X(p11.23dup(X(p11.21p11.22/46,X,r(X(q11.1q13.1/45,X. The small ring X chromosome was estimated to be 5.2 Mb in size and encompassed the centromere and Xq pericentromeric region. X chromosome inactivation (XCI studies demonstrated a skewed pattern suggesting that the ring X remained active, likely contributing to the observed clinical features of brain dysmyelination. We hypothesize that a prezygotic asymmetric crossing over within a loop formed during meiosis in an X chromosome with a paracentric inversion resulted in an intermediate dicentric chromosome. An uneven breakage of the dicentric chromosome in the early postzygotic period might have resulted in the formation of one cell line with the X chromosome carrying a terminal deletion and pericentromeric duplication of the short arm and the second cell line with the X chromosome carrying a complete deletion of Xp. The cell line carrying the deletion of Xp could have then stabilized through self-circularization and formation of the ring X chromosome.

  18. Structural rearrangements of chromosome 15 satellites resulting in Prader-Willi syndrome suggest a complex mechanism for uniparental disomy

    Energy Technology Data Exchange (ETDEWEB)

    Toth-Fijel, S.; Gunter, K.; Olson, S. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1994-09-01

    We report two cases of PWS in which there was abnormal meiosis I segregation of chromosome 15 following a rare translocation event between the heteromorphic satellite regions of chromosomes 14 and 15 and an apparent meiotic recombination in the unstable region of 15q11.2. PWS and normal appearing chromosomes in case one prompted a chromosome 15 origin analysis. PCR analysis indicated maternal isodisomy for the long arm of chromosome. However, only one chromosome 15 had short arm heteromorphisms consistent with either paternal or maternal inheritance. VNTR DNA analysis and heteromorphism data suggest that a maternal de novo translocation between chromosome 14 and 15 occurred prior to meiosis I. This was followed by recombination between D15Z1 and D15S11 and subsequent meiosis I nondisjunction. Proband and maternal karyotype display a distamycin A-DAPI positive region on the chromosome 14 homolog involved in the translocation. Fluorescent in situ hybridization (FISH) analyses of ONCOR probes D15S11, SNRPN, D15S11 and GABRB 3 were normal, consistent with the molecular data. Case two received a Robertsonian translocation t(14;15)(p13;p13) of maternal origin. Chromosome analysis revealed a meiosis I error producing UPD. FISH analysis of the proband and parents showed normal hybridization of ONCOR probes D15Z1, D15S11, SNRPN, D15S10 and GABRB3. In both cases the PWS probands received a structurally altered chromosome 15 that had rearranged with chromosome 14 prior to meiosis. If proper meiotic segregation is dependent on the resolution of chiasmata and/or the binding to chromosome-specific spindle fibers, then it may be possible that rearrangements of pericentric or unstable regions of the genome disrupt normal disjunction and lead to uniparental disomy.

  19. Potencial evocado auditivo tardio relacionado a eventos (P300 na síndrome de Down Late auditory event-related evoked potential (P300 in Down's syndrome patients

    Directory of Open Access Journals (Sweden)

    Carla Patrícia Hernandez Alves Ribeiro César

    2010-04-01

    Full Text Available A síndrome de Down é causada pela trissomia do cromossomo 21 e está associada com alteração do processamento auditivo, distúrbio de aprendizagem e, provavelmente, início precoce de Doença de Alzheimer. OBJETIVO: Avaliar as latências e amplitudes do potencial evocado auditivo tardio relacionado a eventos (P300 e suas alterações em indivíduos jovens adultos com síndrome de Down. MATERIAL E MÉTODO: Estudo de caso prospectivo. Latências e amplitudes do P300 foram avaliadas em 17 indivíduos com síndrome de Down e 34 indivíduos sadios. RESULTADOS: Foram identificadas latências do P300 (N1, P2, N2 e P3 prolongadas e amplitude N2 - P3 diminuída nos indivíduos com síndrome de Down quando comparados ao grupo controle. CONCLUSÃO: Em indivíduos jovens adultos com síndrome de Down ocorre aumento das latências N1, P2, N2 e P3, e diminuição significativa da amplitude N2-P3 do potencial evocado auditivo tardio relacionado a eventos (P300, sugerindo prejuízo da integração da área de associação auditiva com as áreas corticais e subcorticais do sistema nervoso central.Down syndrome is caused by a trisomy of chromosome 21 and is associated with central auditory processing deficit, learning disability and, probably, early-onset Alzheimer's disease. AIM: to evaluate the latencies and amplitudes of evoked late auditory potential related to P300 events and their changes in young adults with Down's syndrome. MATERIALS AND METHODS: Prospective case study. P300 test latency and amplitudes were evaluated in 17 individuals with Down's syndrome and 34 healthy individuals. RESULTS The P300 latency (N1, P2, N2 and P3 was longer and the N2-P3 amplitude was lower in individuals with Down syndrome when compared to those in the control group. CONCLUSION: In young adults with Down syndrome, N1, P2, N2 and P3 latencies of late auditory evoked potential related to P300 events were prolonged, and N2 - P3 amplitudes were significantly reduced

  20. Truncated ALK derived from chromosomal translocation t(2;5)(p23;q35) binds to the SH3 domain of p85-PI3K.

    Science.gov (United States)

    Polgar, Doris; Leisser, Christina; Maier, Susanne; Strasser, Stephan; Rüger, Beate; Dettke, Markus; Khorchide, Maya; Simonitsch, Ingrid; Cerni, Christa; Krupitza, Georg

    2005-02-15

    The chromosomal translocation t(2;5)(p23;q35) is associated with "Anaplastic large cell lymphomas" (ALCL), a Non Hodgkin Lymphoma occurring in childhood. The fusion of the tyrosine kinase gene-ALK (anaplastic lymphoma kinase) on chromosome 2p23 to the NPM (nucleophosmin/B23) gene on chromosome 5q35 results in a 80 kDa chimeric protein, which activates the "survival" kinase PI3K. However, the binding mechanism between truncated ALK and PI3K is poorly understood. Therefore, we attempted to elucidate the molecular interaction between ALK and the regulatory p85 subunit of PI3K. Here we provide evidence that the truncated ALK homodimer binds to the SH3 domain of p85. This finding may be useful for the development of a new target-specific intervention.

  1. Williams Syndrome and 15q Duplication: Coincidence versus Association.

    Science.gov (United States)

    Khokhar, Aditi; Agarwal, Swashti; Perez-Colon, Sheila

    2017-01-01

    Williams syndrome is a multisystem disorder caused by contiguous gene deletion in 7q11.23, commonly associated with distinctive facial features, supravalvular aortic stenosis, short stature, idiopathic hypercalcemia, developmental delay, joint laxity, and a friendly personality. The clinical features of 15q11q13 duplication syndrome include autism, mental retardation, ataxia, seizures, developmental delay, and behavioral problems. We report a rare case of a girl with genetically confirmed Williams syndrome and coexisting 15q duplication syndrome. The patient underwent treatment for central precocious puberty and later presented with primary amenorrhea. The karyotype revealed 47,XX,+mar. FISH analysis for the marker chromosome showed partial trisomy/tetrasomy for proximal chromosome 15q (15p13q13). FISH using an ELN -specific probe demonstrated a deletion in the Williams syndrome critical region in 7q11.23. To our knowledge, a coexistence of Williams syndrome and 15q duplication syndrome has not been reported in the literature. Our patient had early pubertal development, which has been described in some patients with Williams syndrome. However, years later after discontinuing gonadotropin-releasing hormone analogue treatment, she developed primary amenorrhea.

  2. 11p Microdeletion including WT1 but not PAX6, presenting with cataract, mental retardation, genital abnormalities and seizures: a case report

    Directory of Open Access Journals (Sweden)

    Baekgaard Peter

    2009-02-01

    Full Text Available Abstract WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities and mental retardation and Potocki-Shaffer syndrome are rare contiguous gene deletion syndromes caused by deletions of the 11p14-p12 chromosome region. We present a patient with mental retardation, unilateral cataract, bilateral ptosis, genital abnormalities, seizures and a dysmorphic face. Cytogenetic analysis showed a deletion on 11p that was further characterized using FISH and MLPA analyses. The deletion (11p13-p12 located in the area between the deletions associated with the WAGR and Potocki-Shaffer syndromes had a maximum size of 8.5 Mb and encompasses 44 genes. Deletion of WT1 explains the genital abnormalities observed. As PAX6 was intact the cataract observed cannot be explained by a deletion of this gene. Seizures have been described in Potocki-Shaffer syndrome while mental retardation has been described in both WAGR and Potocki-Shaffer syndrome. Characterization of this patient contributes further to elucidate the function of the genes in the 11p14-p12 chromosome region.

  3. Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division

    Science.gov (United States)

    Storlazzi, Aurora; Tessé, Sophie; Gargano, Silvana; James, Françoise; Kleckner, Nancy; Zickler, Denise

    2003-01-01

    Chromosomal processes related to formation and function of meiotic chiasmata have been analyzed in Sordaria macrospora. Double-strand breaks (DSBs), programmed or γ-rays-induced, are found to promote four major events beyond recombination and accompanying synaptonemal complex formation: (1) juxtaposition of homologs from long-distance interactions to close presynaptic coalignment at midleptotene; (2) structural destabilization of chromosomes at leptotene/zygotene, including sister axis separation and fracturing, as revealed in a mutant altered in the conserved, axis-associated cohesin-related protein Spo76/Pds5p; (3) exit from the bouquet stage, with accompanying global chromosome movements, at zygotene/pachytene (bouquet stage exit is further found to be a cell-wide regulatory transition and DSB transesterase Spo11p is suggested to have a new noncatalytic role in this transition); (4) normal occurrence of both meiotic divisions, including normal sister separation. Functional interactions between DSBs and the spo76-1 mutation suggest that Spo76/Pds5p opposes local destabilization of axes at developing chiasma sites and raise the possibility of a regulatory mechanism that directly monitors the presence of chiasmata at metaphase I. Local chromosome remodeling at DSB sites appears to trigger an entire cascade of chromosome movements, morphogenetic changes, and regulatory effects that are superimposed upon a foundation of DSB-independent processes. PMID:14563680

  4. Chromosome break points of T-lymphocytes from atomic bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Kamada, Nanao; Kuramoto, Atsushi; Ohkita, Takeshi

    1980-01-01

    Chromosome break points of T-lymphocytes were investigated for 9 atomic bomb survivors estimated to be irradiated with 100 - 630 red. Chromosome aberration was found in 199 cells out of 678 cells investigated, with non-random distribution. The types of the chromosome aberration were, transfer: 56%, deficit: 38%, additional abnormality 3%, and reverse: 2%. High and low incidence of chromosome aberrations were observed at the chromosome numbers of 22, 21, and 13, and 11, 12, and 4, respectively. The aberration numbers per arm were high in 22q, 21q, and 18p and low in 11q, 5p, and 12q. For the distribution of aberration number within a chromosome, 50.7% was observed at the terminal portion and 73% was at the pale band appeared by Q-partial-stain method, suggesting the non-random distribution. The incidence of aberration number in 22q was statistically significant (P 1 chromosome in chronic myelocytic leukemia. The non-random distribution of chromosome break points seemed to reflect the selection effect since irradiation. (Nakanishi, T.)

  5. Chromosome mosaicism in hypomelanosis of Ito.

    Science.gov (United States)

    Ritter, C L; Steele, M W; Wenger, S L; Cohen, B A

    1990-01-01

    Our finding of chromosome mosaicism with a ring 22 in a retarded black boy with hypomelanosis of Ito prompted a review of this "syndrome." Most patients have a variety of non-dermal defects, particularly those affecting CNS function. Among karyotyped patients, most are chromosome mosaics of one sort or another. Hypomelanosis of Ito turns out to be a causable non-specific phenotype, i.e., a clinical marker for chromosome mosaicism of all different types in individuals with a dark enough skin to show lighter patches. Consequently, cytogenetic evaluation is indicated in all patients with this skin finding.

  6. Auditory function in the Tc1 mouse model of down syndrome suggests a limited region of human chromosome 21 involved in otitis media.

    Directory of Open Access Journals (Sweden)

    Stephanie Kuhn

    Full Text Available Down syndrome is one of the most common congenital disorders leading to a wide range of health problems in humans, including frequent otitis media. The Tc1 mouse carries a significant part of human chromosome 21 (Hsa21 in addition to the full set of mouse chromosomes and shares many phenotypes observed in humans affected by Down syndrome with trisomy of chromosome 21. However, it is unknown whether Tc1 mice exhibit a hearing phenotype and might thus represent a good model for understanding the hearing loss that is common in Down syndrome. In this study we carried out a structural and functional assessment of hearing in Tc1 mice. Auditory brainstem response (ABR measurements in Tc1 mice showed normal thresholds compared to littermate controls and ABR waveform latencies and amplitudes were equivalent to controls. The gross anatomy of the middle and inner ears was also similar between Tc1 and control mice. The physiological properties of cochlear sensory receptors (inner and outer hair cells: IHCs and OHCs were investigated using single-cell patch clamp recordings from the acutely dissected cochleae. Adult Tc1 IHCs exhibited normal resting membrane potentials and expressed all K(+ currents characteristic of control hair cells. However, the size of the large conductance (BK Ca(2+ activated K(+ current (I(K,f, which enables rapid voltage responses essential for accurate sound encoding, was increased in Tc1 IHCs. All physiological properties investigated in OHCs were indistinguishable between the two genotypes. The normal functional hearing and the gross structural anatomy of the middle and inner ears in the Tc1 mouse contrast to that observed in the Ts65Dn model of Down syndrome which shows otitis media. Genes that are trisomic in Ts65Dn but disomic in Tc1 may predispose to otitis media when an additional copy is active.

  7. A unique genomic sequence in the Wolf-Hirschhorn syndrome [WHS] region of humans is conserved in the great apes.

    Science.gov (United States)

    Tarzami, S T; Kringstein, A M; Conte, R A; Verma, R S

    1996-10-01

    The Wolf-Hirschhorn syndrome (WHS) is caused by a partial deletion in the short arm of chromosome 4 band 16.3 (4p 16.3). A unique-sequence human DNA probe (39 kb) localized within this region has been used to search for sequence homology in the apes' equivalent chromosome 3 by FISH-technique. The WHS loci are conserved in higher primates at the expected position. Nevertheless, a control probe, which detects alphoid sequences of the pericentromeric region of humans, is diverged in chimpanzee, gorilla, and orangutan. The conservation of WHS loci and divergence of DNA alphoid sequences have further added to the controversy concerning human descent.

  8. Survey of familial glioma and role of germline p16INK4A/p14ARF and p53 mutation

    DEFF Research Database (Denmark)

    Robertson, Lindsay B; Armstrong, Georgina N; Olver, Bianca D

    2010-01-01

    There is increasing recognition of familial propensity to glioma as a distinct clinical entity beyond a few rare syndromes; however its genetic basis is poorly understood. The role of p16(INK4A)/p14(ARF) and p53 mutations in sporadic glioma provides a strong rationale for investigating germline m...

  9. The incidence of chromosome abnormalities in neonates with structural heart disease.

    Science.gov (United States)

    Dykes, John C; Al-mousily, Mohammad F; Abuchaibe, Eda-Cristina; Silva, Jennifer N; Zadinsky, Jennifer; Duarte, Daniel; Welch, Elizabeth

    2016-04-01

    This study was conducted to determine the prevalence of chromosomal anomalies in newborns with structural heart disease admitted to the cardiac intensive care unit (CICU) at Nicklaus Children's Hospital (NCH). A retrospective review identified newborns age 30 days or less admitted to NCH CICU between 2004 and 2010. Patients with structural heart disease who required admission to our CICU and received karyotype or karyotype and fluorescent in situ hybridization (FISH) testing were included in the study. All patients were examined for the presence of dysmorphic features. Four hundred and eighty-two patients met the criteria for the study; 405 (84%) received both karyotype and FISH. Chromosome abnormalities were present in 86 (17.8%) patients. Syndromes accounted for 20 (5.1%) of those with normal chromosomes. Dysmorphic features were seen in 79.1% of patients with abnormal chromosomes and 25.5% of those with normal chromosomes. All patients with syndromes were dysmorphic. Race and gender did not significantly affect the incidence of genetic abnormalities. Chromosome abnormalities, including syndromes, are prevalent in newborns with congenital heart disease. Further research is needed to evaluate the utility of cytogenetic screening in all children with congenital heart disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Further delineation of the Nijmegen breakage syndrome

    International Nuclear Information System (INIS)

    Taalman, R.D.; Hustinx, T.W.; Weemaes, C.M.; Seemanova, E.; Schmidt, A.; Passarge, E.; Scheres, J.M.

    1989-01-01

    We report on five independent families with a chromosome instability disorder that earlier had been called the Nijmegen breakage syndrome (NBS). These families, two from the Netherlands and three from Czechoslovakia, had a total of eight patients, five of whom are still alive. The main clinical manifestations were microcephaly, short stature, a ''bird-like'' face, immunological defects involving both the humoral and cellular system. In four of the five living patients it has been possible to study the chromosomes of cultured lymphocytes. The basic karyotype in these patients were normal, but in 17% to 35% of the metaphases rearrangements were found, preferentially involving chromosomes 7 and/or 14 at the sites 7p13, 7q34, and 14q11. The chromosomes of all five living patients were very sensitive to ionizing radiation. In addition, the DNA synthesis in their cultured lymphocytes and fibroblasts was more resistant to X-rays than in cells from controls. The NBS shares a number of important features with ataxia telangiectasia (AT). Both syndromes are characterized by the occurrence of typical rearrangements of chromosomes 7 and/or 14, cellular and chromosomal hypersensitivity to X-irradiation, radioresistance of DNA replication and immunodeficiency. However, there are also obvious differences: NBS patients have microcephaly but neither ataxia nor telangiectasia, and in contrast to the situation in AT the alpha-fetoprotein level in their serum is normal

  11. A paternally transmitted complex chromosomal rearrangement (CCR) involving chromosomes 2, 6, and 18 includes eight breakpoints and five insertional translocations (ITs) through three generations.

    Science.gov (United States)

    Gruchy, Nicolas; Barreau, Morgane; Kessler, Ketty; Gourdier, Dominique; Leporrier, Nathalie

    2010-01-01

    Complex chromosomal rearrangements (CCRs) are uncommon and mainly occur de novo. We report here on a familial CCR involving chromosomes 2, 6, and 18. The propositus is a boy first referred because of growth delays, hypotonia, and facial anomalies, suggestive of deletion 18q syndrome. However, a cytogenetic family study disclosed a balanced CCR in three generations, which was detailed by FISH using BAC clones, and consisted of eight breakpoints with five insertional translocations (ITs). The propositus had a cryptic 18q deletion and a 6p duplication. Paternal transmission of this CCR was observed through three generations without meiotic recombination. Our investigation allowed us to provide porosities counseling and management of prenatal diagnosis for propositus cousin who carries this particular CCR.

  12. [Gene mutation and clinical phenotype analysis of patients with Noonan syndrome and hypertrophic cardiomyopathy].

    Science.gov (United States)

    Liu, X H; Ding, W W; Han, L; Liu, X R; Xiao, Y Y; Yang, J; Mo, Y

    2017-10-02

    Objective: To analyze the gene mutations and clinical features of patients with Noonan syndrome and hypertrophic cardiomyopathy. Method: Determined the mutation domain in five cases diagnosed with Noonan syndrome and hypertrophic cardiomyopathy and identified the relationship between the mutant domain and hypertrophic cardiomyopathy by searching relevant articles in pubmed database. Result: Three mutant genes (PTPN11 gene in chromosome 12, RIT1 gene in chromosome 1 and RAF1 gene in chromosome 3) in five cases all had been reported to be related to hypertrophic cardiomyopathy. The reported hypertrophic cardiomyopathy relevant genes MYPN, MYH6 and MYBP3 had also been found in case 1 and 2. Patients with same gene mutation had different clinical manifestations. Both case 4 and 5 had RAF1 mutation (c.770C>T). However, case 4 had special face, low IQ, mild pulmonary artery stenosis, and only mild ventricular hypertrophy. Conclusion: Noonan syndrome is a genetic heterogeneity disease. Our study identified specific gene mutations that could result in Noonan syndrome with hypertrophic cardiomyopathy through molecular biology methods. The results emphasize the importance of gene detection in the management of Noonan syndrome.

  13. Gene p63: In ectrodactyly-ectodermal dysplasia clefting, ankyloblepharon-ectodermal dysplasia, Rapp-Hodgkin syndrome.

    Science.gov (United States)

    van Straten, Cornelia; Butow, Kurt-W

    2013-01-01

    An analysis was made of three different syndromes associated with p63 gene mutations, known as ectrodactyly-ectodermal dysplasia-clefting syndrome (EEC), ankyloblepharon-ectodermal dysplasia clefting syndrome (AEC or Hay-Wells) and Rapp-Hodgkin syndrome (RHS). The postoperative complications associated with their cleft reconstructions were also evaluated. Extensive demographic information, in particular of the clinical appearances, associated malformations, and the types and complications of the reconstructive surgical procedures, were recorded of these syndromic cases occurring in a database of 3621 facial cleft deformity patients. The data was analyzed using the Microsoft Excel program. A total of 10 (0.28%) cases of p63 associated syndromes were recorded: EEC (6), RHS (3), and AEC (1). The following clinical cleft appearances were noted - EEC = 6: CLA 1 -right side unilateral (female); CLAP 4 - right side (1) + left side (1) unilateral (male + female); bilateral (2) (males); hPsP 1 (female) (divided in 3 Black, 2 White, 1 Indian); RHS = 3: CLAP 2 (White males); hPsP 1 (White female); AEC = 1: CLAP bilateral (White male). Other features of the syndromes were: skin, hand, foot, tooth, hair and nail involvement, and light sensitivity. Postoperative complications included: (i) stenosis of nasal opening, especially after reconstruction of the bilateral cleft lip and the columella lengthening (2 cases), (ii) premaxilla-prolabium fusion (2 cases), (iii) repeated occurrence of oro-nasal fistula in the hard palate (4 cases), and (iv) dysgnathial development of midfacial structures (3 cases). Three different p63 associated syndromes (EEC, AEC, and RHS) were diagnosed (0.27% of the total facial cleft deformities database). The majority of the cases presented with a bilateral CLAP in males only. A number of females and males had unilateral CLA. The hPsP-cleft was recorded in females only. The associated ectodermal component most probably had a profoundly negative influence

  14. The first 4p euchromatic variant in a healthy carrier having an unusual reproductive history.

    Science.gov (United States)

    Rodríguez, L; Zollino, M; Mansilla, E; Martínez-Fernández, M L; Pérez, P; Murdolo, M; Martínez-Frías, M L

    2007-05-01

    We report on the molecular cytogenetics studies in a healthy couple who had had three pregnancies which ended in a termination of pregnancy (TOP). In two of them, prenatal sonogram showed fetal dwarfism and in the third one, a chromosome alteration was found in the amniocentesis. A previous pregnancy ended in a healthy girl. A high-resolution G-band karyotype (550-850 bands), together with Fluorescence in situ Hybridization (FISH) techniques, detected in the father a 4p interstitial euchromatic duplication. This chromosome duplication appears to be a previously undescribed euchromatic variant (EV). We discuss the possibility that the 4p paternal EV could be involved in the clinical and genetic findings of the three TOPs.

  15. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    Directory of Open Access Journals (Sweden)

    Iva Simeonova

    2013-06-01

    Full Text Available Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53Δ31, a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis, hallmarks of syndromes caused by short telomeres. Indeed, p53Δ31/Δ31 mice had short telomeres and other phenotypic traits associated with the telomere disease dyskeratosis congenita and its severe variant the Hoyeraal-Hreidarsson syndrome. Heterozygous p53+/Δ31 mice were only mildly affected, but decreased levels of Mdm4, a negative regulator of p53, led to a dramatic aggravation of their symptoms. Importantly, several genes involved in telomere metabolism were downregulated in p53Δ31/Δ31 cells, including Dyskerin, Rtel1, and Tinf2, which are mutated in dyskeratosis congenita, and Terf1, which is implicated in aplastic anemia. Together, these data reveal that a truncating mutation can activate p53 and that p53 plays a major role in the regulation of telomere metabolism.

  16. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture.

    Science.gov (United States)

    Darrow, Emily M; Huntley, Miriam H; Dudchenko, Olga; Stamenova, Elena K; Durand, Neva C; Sun, Zhuo; Huang, Su-Chen; Sanborn, Adrian L; Machol, Ido; Shamim, Muhammad; Seberg, Andrew P; Lander, Eric S; Chadwick, Brian P; Aiden, Erez Lieberman

    2016-08-02

    During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the "Barr body." Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called "superdomains," such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called "superloops." DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.

  17. Hypomorphic Temperature-Sensitive Alleles of NSDHL Cause CK Syndrome

    OpenAIRE

    McLarren, Keith W.; Severson, Tesa M.; du Souich, Christèle; Stockton, David W.; Kratz, Lisa E.; Cunningham, David; Hendson, Glenda; Morin, Ryan D.; Wu, Diane; Paul, Jessica E.; An, Jianghong; Nelson, Tanya N.; Chou, Athena; DeBarber, Andrea E.; Merkens, Louise S.

    2010-01-01

    CK syndrome (CKS) is an X-linked recessive intellectual disability syndrome characterized by dysmorphism, cortical brain malformations, and an asthenic build. Through an X chromosome single-nucleotide variant scan in the first reported family, we identified linkage to a 5 Mb region on Xq28. Sequencing of this region detected a segregating 3 bp deletion (c.696_698del [p.Lys232del]) in exon 7 of NAD(P) dependent steroid dehydrogenase-like (NSDHL), a gene that encodes an enzyme in the cholestero...

  18. Marker chromosome 21 identified by microdissection and FISH

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Palmer, C.G. [Indiana Univ. School of Medicine, Indianapolis, IN (United States); Rubinstein, J. [Univ. Affiliated Cincinnati Center for Developmental Disorders, OH (United States)] [and others

    1995-03-27

    A child without Down`s syndrome but with developmental delay, short stature, and autistic behavior was found to be mosaic 46,XX/47,XX,+mar(21) de novo. The marker was a small ring or dot-like chromosome. Microdissection of the marker was performed. The dissected fragments were biotinylated with sequence-independent PCR as a probe pool for fluorescence in situ hybridization (FISH). FISH results suggested an acrocentric origin of the marker. Subsequent FISH with {alpha}-satellite DNA probes for acrocentric chromosomes and chromosome-specific 21 and 22 painting probes confirmed its origin from chromosome 21. 14 refs., 3 figs.

  19. A Sensitive and Specific Diagnostic Panel to Distinguish Diffuse Astrocytoma from Astrocytosis: Chromosome 7 Gain with Mutant Isocitrate Dehydrogenase 1 and p53

    Science.gov (United States)

    Camelo-Piragua, Sandra; Jansen, Michael; Ganguly, Aniruddha; Kim, J. ChulMin; Cosper, Arjola K.; Dias-Santagata, Dora; Nutt, Catherine L.; Iafrate, A. John; Louis, David N.

    2011-01-01

    One of the major challenges of surgical neuropathology is the distinction of diffuse astrocytoma (World Health Organization [WHO] grade II) from astrocytosis. The most commonly used ancillary tool to solve this problem is p53 immunohistochemistry (IHC), but this is neither sensitive nor specific. Isocitrate dehydrogenase 1 (IDH1) mutations are common in lower grade gliomas, with most causing a specific amino acid change (R132H) that can be detected with a monoclonal antibody. IDH2 mutations are rare, but also occur in gliomas. In addition, gains of chromosome 7 are common in gliomas. In this study we assessed the status of p53, IDH1/2 and chromosome 7 to determine the most useful panel to distinguish astrocytoma from astrocytosis. We studied biopsy specimens from 21 WHO grade II diffuse astrocytomas and 20 reactive conditions. The single most sensitive test to identify astrocytoma is fluorescence in situ hybridization (FISH) for chromosome 7 gain (76.2%). The combination of p53 and mutant IDH1 IHC provides a higher sensitivity (71.4%) than either test alone (47.8%); this combination offers a practical initial approach for the surgical pathologist. The best overall sensitivity (95%) is achieved when FISH for chromosome 7 gain is added to the p53-mutant IDH1 IHC panel. PMID:21343879

  20. Psychotic disorder and its characteristics in sex chromosome aneuploidies

    Directory of Open Access Journals (Sweden)

    Annapia Verri

    2009-09-01

    Full Text Available Sex chromosome anomalies have been associated with psychoses. We report a patient with XYY chromosome anomaly who developed a paranoid psychosis. The second case deal with a 51-year-old woman affected by Turner Syndrome and Psychotic Disorder, with a prevalent somatic and sexual focus.

  1. HPV type-related chromosomal profiles in high-grade cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Bierkens Mariska

    2012-01-01

    Full Text Available Abstract Background The development of cervical cancer and its high-grade precursor lesions (Cervical Intraepithelial Neoplasia grade 2/3 [CIN2/3] result from a persistent infection with high-risk human papillomavirus (hrHPV types and the accumulation of (epigenetic host cell aberrations. Epidemiological studies have demonstrated variable CIN2/3 and cancer risks between different hrHPV types. Recent genomic profiling studies revealed substantial heterogeneity in the chromosomal aberrations detected in morphologically indistinguishable CIN2/3 suggestive of varying cancer risk. The current study aimed to investigate whether CIN2/3 with different hrHPV types vary with respect to their chromosomal profiles, both in terms of the number of aberrations and chromosomal loci affected. Methods Chromosomal profiles were determined of 43 p16INK4a-immunopositive CIN2/3 of women with long-term hrHPV infection (≥ 5 years. Sixteen lesions harboured HPV16, 3 HPV18, 14 HPV31, 1 HPV33, 4 HPV45, 1 HPV51, 2 HPV52 and 2 HPV58. Results Unsupervised hierarchical clustering analysis of the chromosomal profiles revealed two major clusters, characterised by either few or multiple chromosomal aberrations, respectively. A majority of 87.5% of lesions with HPV16 were in the cluster with relatively few aberrations, whereas no such unbalanced distribution was seen for lesions harbouring other hrHPV types. Analysis of the two most prevalent types (HPV16 and HPV31 in this data set revealed a three-fold increase in the number of losses in lesions with HPV31 compared to HPV16-positive lesions. In particular, losses at chromosomes 2q, 4p, 4q, 6p, 6q, 8q & 17p and gain at 1p & 1q were significantly more frequent in HPV31-positive lesions (FDR Conclusions Chromosomal aberrations in CIN2/3 are at least in part related to the hrHPV type present. The relatively low number of chromosomal aberrations observed in HPV16-positive CIN2/3 suggests that the development of these lesions is

  2. Multiple ocular abnormalities associated with trisomy 4p.

    Science.gov (United States)

    Hong, Samin; Kang, Sung Yong; Seong, Gong Je; Shin, Joo Youn; Kim, Chan Yun

    2008-01-01

    Ocular features associated with trisomy 4p have rarely been described. The authors have experienced multiple ocular abnormalities (bilateral cataracts, posterior synechiae, and posterior segment changes) associated with this chromosomal abnormality. It was presumed that these intraocular findings might be associated with the previous inflammatory process. In the current case, the patient recovered some useful vision after surgical removal of cataracts and intraocular lens implantations in both eyes. A detailed ophthalmic examination for patients with the autosomal imbalance is recom-mended.

  3. Frequency of WT1 and 11p15 constitutional aberrations and phenotypic correlation in childhood Wilms tumour patients

    NARCIS (Netherlands)

    Segers, H.; Kersseboom, R.; Alders, M.; Pieters, R.; Wagner, A.; van den Heuvel-Eibrink, M. M.

    2012-01-01

    Introduction: In 9-17% of Wilms tumour patients a predisposing syndrome is present, in particular WT1-associated syndromes and overgrowth syndromes. Constitutional WT1 mutations or epigenetic changes on chromosome 11p15 have also been described in Wilms tumour patients without phenotypic

  4. Short Bi-Iliac Distance in Prenatal Ullrich-Turner Syndrome

    DEFF Research Database (Denmark)

    Hartling, Ulla B.; Hansen, Birgit Fischer; Keeling, Jean W.

    2002-01-01

    prenatal; Ullrich-Turner syndrome; pelvis; iliac bone; vertebral column; X chromosome; anthropometry; radiography......prenatal; Ullrich-Turner syndrome; pelvis; iliac bone; vertebral column; X chromosome; anthropometry; radiography...

  5. The effects of exposure to different clastogens on the pattern of chromosomal aberrations detected by FISH whole chromosome painting in occupationally exposed individuals

    International Nuclear Information System (INIS)

    Beskid, O.; Dusek, Z.; Solansky, I.; Sram, R.J.

    2006-01-01

    The pattern of chromosomal aberrations (CA) was studied by fluorescence in situ hybridization (FISH) technique (whole chromosomes 1 and 4 painting) in workers occupationally exposed to any of the four following conditions: acrylonitrile (ACN), ethyl benzene (EB), carcinogenic polycyclic aromatic hydrocarbons (c-PAHs), and irradiation in nuclear power plants (NPP), respectively. Decrease in the relative frequency of translocations was observed in EB group, and an increase in reciprocal translocations in ACN and NPP-exposed groups. An increase in a relative number of insertions was registered under all four conditions (significant at ACN, EB, c-PAHs, quasisignificant at NPP-exposed groups). Significant differences in the percentage of lymphocytes with aberrations on chromosome 1 (58.8 ± 32.7%, versus 73.8 ± 33.6% in the controls, P G /100) increased with age (P G /100 (P < 0.05), but did not affect the pattern of chromosomal aberrations. Our results seem to indicate that different carcinogens may induce a different pattern of chromosomal aberrations

  6. Phenotypic Variations in Wolfhirschhorn Syndrome

    Directory of Open Access Journals (Sweden)

    E. Sukarova-Angelovska

    2014-06-01

    Full Text Available Wolf-Hirschhorn syndrome (WHS is a rare chromosomal disorder caused by terminal deletion of the short arm of chromosome 4. The clinical picture includes growth retardation, severe mental retardation, characteristic “Greek helmet” like face, seizures and midline defects in the brain, heart, palate and genitalia. Recently-used molecular techniques increase the number of diagnosed cases due to the detection of smaller deletions. The severity of the clinical presentation is variable depending on the haploinsufficiency of genes in a deleted region.

  7. Virus evolution reveals an exclusive role for LEDGF/p75 in chromosomal tethering of HIV.

    Directory of Open Access Journals (Sweden)

    Anneleen Hombrouck

    2007-03-01

    Full Text Available Retroviruses by definition insert their viral genome into the host cell chromosome. Although the key player of retroviral integration is viral integrase, a role for cellular cofactors has been proposed. Lentiviral integrases use the cellular protein LEDGF/p75 to tether the preintegration complex to the chromosome, although the existence of alternative host proteins substituting for the function of LEDGF/p75 in integration has been proposed. Truncation mutants of LEDGF/p75 lacking the chromosome attachment site strongly inhibit HIV replication by competition for the interaction with integrase. In an attempt to select HIV strains that can overcome the inhibition, we now have used T-cell lines that stably express a C-terminal fragment of LEDGF/p75. Despite resistance development, the affinity of integrase for LEDGF/p75 is reduced and replication kinetics in human primary T cells is impaired. Detection of the integrase mutations A128T and E170G at key positions in the LEDGF/p75-integrase interface provides in vivo evidence for previously reported crystallographic data. Moreover, the complementary inhibition by LEDGF/p75 knockdown and mutagenesis at the integrase-LEDGF/p75 interface points to the incapability of HIV to circumvent LEDGF/p75 function during proviral integration. Altogether, the data provide a striking example of the power of viral molecular evolution. The results underline the importance of the LEDGF/p75 HIV-1 interplay as target for innovative antiviral therapy. Moreover, the role of LEDGF/p75 in targeting integration will stimulate research on strategies to direct gene therapy vectors into safe landing sites.

  8. Genomic expression analysis of rat chromosome 4 for skeletal traits at femoral neck

    OpenAIRE

    Alam, Imranul; Sun, Qiwei; Liu, Lixiang; Koller, Daniel L.; Liu, Yunlong; Edenberg, Howard J.; Econs, Michael J.; Foroud, Tatiana; Turner, Charles H.

    2008-01-01

    Hip fracture is the most devastating osteoporotic fracture type with significant morbidity and mortality. Several studies in humans and animal models identified chromosomal regions linked to hip size and bone mass. Previously, we identified that the region of 4q21-q41 on rat chromosome (Chr) 4 harbors multiple femoral neck quantitative trait loci (QTLs) in inbred Fischer 344 (F344) and Lewis (LEW) rats. The purpose of this study is to identify the candidate genes for femoral neck structure an...

  9. Transmission of chromosomal and instability via a chromosome irradiated with ionizing radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji; Tanabe, Masateru; Shiraishi, Kazunori; Oshimura, Mitsuo

    2010-01-01

    We examined the stability of the transferred chromosome in 5 and 12 microcell hybrids including unirradiated human chromosomes 6 and 8, respectively, and 6 and 19 microcell hybrids including 4 Gy-irradiated human chromosomes 6 and 8, respectively. The transferred chromosome was structurally stable in most microcell hybrids transferred with the unirradiated chromosomes 6 and 8. In contrast, the 4 Gy-irradiated human chromosomes were unstable in 3 out of 6 hybrids (50%) with chromosome 6 and 3 out of 19 hybrids (16%) with chromosome 8, showing multiple aberrations in high frequencies (35∼98%). To know the cause of delayed chromosomal instability, intrachromosomal rearrangements of the human chromosome is investigated by subtelomere FISH in 17 microcell hybrids transferred with chromosomes 6 and 8. We found frequent intrachromosomal in 7 microcell hybrids (41%). However, no clear correlation was observed between the intrachromosomal rearrangements and the induction of delayed chromosomal instability by ionizing radiation

  10. Anesthetic considerations for a pediatric patient with Wolf-Hirschhorn syndrome: a case report.

    Science.gov (United States)

    Tsukamoto, Masanori; Yamanaka, Hitoshi; Yokoyama, Takeshi

    2017-09-01

    Wolf-Hirschhorn syndrome is a rare hereditary disease that results from a 4p chromosome deletion. Patients with this syndrome are characterized by craniofacial dysgenesis, seizures, growth delay, intellectual disability, and congenital heart disease. Although several cases have been reported, very little information is available on anesthetic management for patients with Wolf-Hirschhorn syndrome. We encountered a case requiring anesthetic management for a 2-year-old girl with Wolf-Hirschhorn syndrome. The selection of an appropriately sized tracheal tube and maintaining intraoperatively stable hemodynamics might be critical problems for anesthetic management. In patients with short stature, the tracheal tube size may differ from what may be predicted based on age. The appropriate size ( internal diameter ) of tracheal tubes for children has been investigated. Congenital heart disease is frequently associated with Wolf-Hirschhorn syndrome. Depending on the degree and type of heart disease, careful monitoring of hemodynamics is important.

  11. Influence of X chromosome and hormones on human brain development: a magnetic resonance imaging and proton magnetic resonance spectroscopy study of Turner syndrome

    NARCIS (Netherlands)

    Cutter, William J.; Daly, Eileen M.; Robertson, Dene M. W.; Chitnis, Xavier A.; van Amelsvoort, Therese A. M. J.; Simmons, Andrew; Ng, Virginia W. K.; Williams, Benjamin S.; Shaw, Phillip; Conway, Gerard S.; Skuse, David H.; Collier, David A.; Craig, Michael; Murphy, Declan G. M.

    2006-01-01

    Women with Turner syndrome (TS; 45,X) lack a normal second X chromosome, and many are prescribed exogenous sex and growth hormones (GH). Hence, they allow us an opportunity to investigate genetic and endocrine influences on brain development. We examined brain anatomy and metabolism in 27 adult

  12. Klinefelter syndrome and its association with male infertility

    Directory of Open Access Journals (Sweden)

    V Ramakrishnan

    2014-03-01

    Full Text Available Klinefelter's syndrome is the most common genetic disorder in which there is at least one extra X chromosome. Males normally have an X chromosome and a Y chromosome (XY. But males who have Klinefelter syndrome have an extra X chromosome (XXY, giving them a total of 47 instead of the normal 46 chromosomes. Sex chromosome abnormalities are more frequently associated with male infertility. The prevalence of XXYs has risen from 1.09 to 1.72 per 1 000 male births. A patient attended to fertility and genetic clinic, during the clinical diagnosis we found the following complaints of loss of secondary sexual characteristics and infertility. Physical examination revealed breast development, thin built, small size testes, and absence of beard and pubic hairs. Karyotype and biochemical analysis were performed to detect chromosomal abnormality as well as hormonal level to confirm the diagnosis of Klinefelter's syndrome. Chromosomal analysis of the peripheral blood lymphocytes demonstrated the constitutional karyotype of 47, XXY. Using karyotype the presence of extra X chromosome was confirmed, supporting the cytogenetic finding. The 47, XXY syndrome is relatively uncommon and can be missed clinically because of its variable clinical presentations. Accurate diagnosis of this constitutional karyotype provides a valuable aid in the counselling and early management of the patients who undertake fertility evaluation.

  13. 1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency

    Directory of Open Access Journals (Sweden)

    Natália Duarte Linhares

    Full Text Available Abstract Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS, we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients.

  14. Wolfram syndrome (diabetes insipidus, diabetes, optic atrophy, and deafness): clinical and genetic study.

    Science.gov (United States)

    d'Annunzio, Giuseppe; Minuto, Nicola; D'Amato, Elena; de Toni, Teresa; Lombardo, Fortunato; Pasquali, Lorenzo; Lorini, Renata

    2008-09-01

    Wolfram syndrome is an autosomal recessive neurodegenerative disorder characterized by diabetes insipidus, diabetes (nonautoimmune), optic atrophy, and deafness (a set of conditions referred to as DIDMOAD). The WFS1 gene is located on the short arm of chromosome 4. Wolfram syndrome prevalence is 1 in 770,000 live births, with a 1 in 354 carrier frequency. We evaluated six Italian children from five unrelated families. Genetic analysis for Wolfram syndrome was performed by PCR amplification and direct sequencing. Mutation screening revealed five distinct variants, one novel mutation (c.1346C>T; p.T449I) and four previously described, all located in exon 8. Phenotype-genotype correlation is difficult, and the same mutation gives very different phenotypes. Severely inactivating mutations result in a more severe phenotype than mildly inactivating ones. Clinical follow-up showed the progressive syndrome's seriousness.

  15. Evidence for an association between non-syndromic cleft lip with or without cleft palate and a gene located on the long arm of chromosome 4

    Energy Technology Data Exchange (ETDEWEB)

    Healey, S.C.; Chenevix-Trench, G. [Queensland Institute of Medical Research, Brisbane (Australia); Mitchell, L.E. [Saint Louis Univ., MO (United States)

    1994-09-01

    Evidence of linkage has been reported for non-syndromic cleft lip with or without cleft palate (CL{+-}P) and two markers (D4S175 and D4S192) in the region 4q25-4q31.3. The linkage evidence comes from a single Caucasian pedigree with multiple cases of CL{+-}P in five generations. High-density pedigrees are, however, atypical of CL{+-}P and linkage evidence obtained from such a family may not be relevant to the majority of CL{+-}P families. We have, therefore, examined the association of CL{+-}P with both D4S175 and D4S192 in 95 unrelated CL{+-}P patients and 161 unselected controls. There was no evidence for an association between D4S175 and CL{+-}P in these data. There was, however, a significant association between D4S192 and CL{+-}P ({chi}{sup 2}{sub 4}=15.5,P=0.006), and the genotypic distribution was significantly heterogeneous between CL{+-}P patients and controls (P=0.025). Comparison of each of the four most common alleles (i.e A87, A89, A91 and A95), to all other alleles combined, indicated that A87 was significantly less common (OR=0.56,95% C.I. 0.34-0.90), and A95 was significantly more common (OR=1.88,95% C.I. 1.03-3.43) among the CL{+-}P patients than the controls. Although of only borderline significance, A89 also appeared to be more common among patients than controls (OR=1.43,95% C.I. 0.99-2.60). Hence, it appears that genetic variation at a CL{+-}P susceptibility locus (CSL) linked to D4S192 may be associated with both increased and decreased risk of CL{+-}P. In combination, A89 and A95 are significantly more common in CL{+-}P patients than in controls (OR=1.80;95% C.I. 1.24-2.60) and account for a risk ratio of 1.08 in the first degree relatives of CL{+-}P patients. These results provide further evidence for the presence of a CSL in the region 4q25-4q31.1, and indicate that the putative CSL is located closer to D4S192 than to D4S175.

  16. Genetic Analysis of 'PAX6-Negative' Individuals with Aniridia or Gillespie Syndrome

    DEFF Research Database (Denmark)

    Ansari, Morad; Rainger, Jacqueline; Hanson, Isabel M

    2016-01-01

    We report molecular genetic analysis of 42 affected individuals referred with a diagnosis of aniridia who previously screened as negative for intragenic PAX6 mutations. Of these 42, the diagnoses were 31 individuals with aniridia and 11 individuals referred with a diagnosis of Gillespie syndrome......) to PAX6 and one within a gene desert 5' (telomeric) to PITX2. Sequence analysis of the FOXC1 and PITX2 coding regions identified two plausibly pathogenic de novo FOXC1 missense mutations (p.Pro79Thr and p.Leu101Pro). No intragenic mutations were detected in PITX2. FISH mapping in an individual...... with Gillespie-like syndrome with an apparently balanced X;11 reciprocal translocation revealed disruption of a gene at each breakpoint: ARHGAP6 on the X chromosome and PHF21A on chromosome 11. In the other individuals with Gillespie syndrome no mutations were identified in either of these genes, or in HCCS...

  17. Genome-first approach diagnosed Cabezas syndrome via novel CUL4B mutation detection.

    Science.gov (United States)

    Okamoto, Nobuhiko; Watanabe, Miki; Naruto, Takuya; Matsuda, Keiko; Kohmoto, Tomohiro; Saito, Masako; Masuda, Kiyoshi; Imoto, Issei

    2017-01-01

    Cabezas syndrome is a syndromic form of X-linked intellectual disability primarily characterized by a short stature, hypogonadism and abnormal gait, with other variable features resulting from mutations in the CUL4B gene. Here, we report a clinically undiagnosed 5-year-old male with severe intellectual disability. A genome-first approach using targeted exome sequencing identified a novel nonsense mutation [NM_003588.3:c.2698G>T, p.(Glu900*)] in the last coding exon of CUL4B , thus diagnosing this patient with Cabezas syndrome.

  18. Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14, and 21: implications for recombination between nonhomologues and Robertsonian translocations

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K H; Vissel, B; Brown, R; Filby, R G; Earle, E

    1988-02-25

    The authors report a new subfamily of alpha satellite DNA (pTRA-2) which is found on all the human acrocentric chromosomes. The alphoid nature of the cloned DNA was established by partial sequencing. Southern analysis of restriction enzyme-digested DNA fragments from mouse/human hybrid cells containing only human chromosome 21 showed that the predominant higher-order repeating unit for pTRA-2 is a 3.9 kb structure. Analysis of a consensus in situ hybridization profile derived from 13 normal individuals revealed the localization of 73% of all centromeric autoradiographic grains over the five acrocentric chromosomes, with the following distribution: 20.4%, 21.5%, 17.1%, 7.3% and 6.5% on chromosomes 13, 14, 21, 15 and 22 respectively. An average of 1.4% of grains was found on the centromere of each of the remaining 19 nonacrocentric chromosomes. These results indicate the presence of a common subfamily of alpha satellite DNA on the five acrocentric chromosomes and suggest an evolutionary process consistent with recombination exchange of sequences between the nonhomologues. The results further suggests that such exchanges are more selective for chromosomes 13, 14 and 21 than for chromosomes 15 and 22. The possible role of centromeric alpha satellite DNA in the aetiology of 13q14q and 14q21q Robertsonian translocation involving the common and nonrandom association of chromosomes 13 and 14, and 14 and 21 is discussed.

  19. Characterization of a complex rearrangement involving duplication and deletion of 9p in an infant with craniofacial dysmorphism and cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Di Bartolo Daniel L

    2012-07-01

    Full Text Available Abstract Partial duplication and partial deletion of the short arm of chromosome 9 have each been reported in the literature as clinically recognizable syndromes. We present clinical, cytogenetic, and molecular findings on a five-week-old female infant with concomitant duplication and terminal deletion of the short arm of chromosome 9. To our knowledge ten such cases have previously been reported. Conventional cytogenetic analysis identified additional material on chromosome 9 at band p23. FISH analysis aided in determining the additional material consisted of an inverted duplication with a terminal deletion of the short arm. Microarray analysis confirmed this interpretation and further characterized the abnormality as a duplication of about 32.7 Mb, from 9p23 to 9p11.2, and a terminal deletion of about 11.5 Mb, from 9p24.3 to 9p23. The infant displayed characteristic features of Duplication 9p Syndrome (hypotonia, bulbous nose, single transverse palmar crease, cranial anomalies, as well as features associated with Deletion 9p Syndrome (flat nasal bridge, long philtrum, cardiac anomalies despite the deletion being distal to the reported critical region for this syndrome. This case suggests that there are genes or regulatory elements that lie outside of the reported critical region responsible for certain phenotypic features associated with Deletion 9p Syndrome. It also underscores the importance of utilizing array technology to precisely define abnormalities involving the short arm of 9p in order to further refine genotype/phenotype associations and to identify additional cases of duplication/deletion.

  20. Chromosomal translocation in a mongoloid male child and his normal mother

    Directory of Open Access Journals (Sweden)

    Willy Beçak

    1963-09-01

    Full Text Available The presence of a translocation 21/13-15 is related in 46 chromosomes, karyotypes of a mongoloid male child (Down's syndrome. The abnormal chromosome was transmitted by the mother of the patient. The possible deficiency of translocated chromosome 21 and the possible origin of the anomaly in the family was discussed and the presence of a markedly large Y chromosome in the karyotypes of the patient as in those of his father was also noted.

  1. Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. METHODOLOGY/PRINCIPAL FINDINGS: Octoploid triticale was derived from common wheat T. aestivum L. 'Mianyang11'×rye S. cereale L. 'Kustro' and some progeny were obtained by the controlled backcrossing of triticale with 'Mianyang11' followed by self-fertilization. Genomic in situ hybridization (GISH using rye genomic DNA and fluorescence in situ hybridization (FISH using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in 'Mianyang11'. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. CONCLUSIONS/SIGNIFICANCE: These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat.

  2. Molecular Mechanisms and Diagnosis of Chromosome 22q11.2 Rearrangements

    Science.gov (United States)

    Emanuel, Beverly S.

    2008-01-01

    Several recurrent, constitutional genomic disorders are present on chromosome 22q. These include the translocations and deletions associated with DiGeorge and velocardiofacial syndrome and the translocations that give rise to the recurrent t(11;22) supernumerary der(22) syndrome (Emanuel syndrome). The rearrangement breakpoints on 22q cluster…

  3. Genetics of Beckwith-Wiedemann syndrome-associated tumors: common genetic pathways

    NARCIS (Netherlands)

    Steenman, M.; Westerveld, A.; Mannens, M.

    2000-01-01

    A specific subset of solid childhood tumors-Wilms' tumor, adrenocortical carcinoma, rhabdomyosarcoma, and hepatoblastoma-is characterized by its association with Beckwith-Wiedemann syndrome. Genetic abnormalities found in these tumors affect the same chromosome region (11p15), which has been

  4. A new case of Beckwith-Wiedemann syndrome with an 11p15 duplication of paternal origin [46,XY,-21,+der(21), t(11;21)(p15.2;q22.3)pat].

    Science.gov (United States)

    Krajewska-Walasek, M; Gutkowska, A; Mospinek-Krasnopolska, M; Chrzanowska, K

    1996-01-01

    We present a new case of 11p15 duplication (trisomy 11p15) in a boy (46,XY,-21,+der(21), t(11;21)(p15.2;q22.3)] suffering from Beckwith-Wiedemann syndrome (BWS), whose phenotypically normal father carries a balanced translocation between chromosomes 11 and 21[46,XY, t(11;21)(p15.2;q22.3)]. The paternal grandmother has the same balanced translocation and is also clinically normal. BWS was suspected when the boy was 6 months old because of gigantism, macroglossia, visceromegaly, ear lobe creases and abdominal distention. Apart from the characteristic BWS phenotype, the boy has other features which are almost exclusively observed in 11p trisomy (high forehead with frontal upsweep of hair, wide central nose bridge, slightly beaked nose, chubby cheeks and severe mental retardation). So far, at least eight cases of 11p15 duplication have been described as patients with BWS. In six of these, the duplication was due to inheritance of a translocated or rearranged paternal chromosome. This was also the case in our patient. In the two other previously published cases, the 11p15 duplications were de novo, but in one of these, DNA analysis has subsequently shown that the duplication was of paternal origin. We discuss our observations in relation to the above-mentioned previous cases of 11p15 duplication and the possible role of genomic imprinting in the etiology of BWS.

  5. Rett Syndrome.

    Science.gov (United States)

    Culbert, Linda A.

    This pamphlet reviews the historical process involved in initially recognizing Rett Syndrome as a specific disorder in girls. Its etiology is unknown, but studies have considered factors as hyperammonemia, a two-step mutation, a fragile X chromosome, metabolic disorder, environmental causation, dopamine deficiency, and an inactive X chromosome.…

  6. Epilepsy in a child with Wolf-Hirschhorn syndrome

    Directory of Open Access Journals (Sweden)

    Radlović Nedeljko

    2011-01-01

    Full Text Available Introduction. Wolf-Hirschhorn syndrome (WHS is a rare chromosomal disorder characterized by facial dismorphy, multiple congenital anomalies, delayed psychomotor development and pharmaco-resistant epilepsy. Case Outline. We present a 5-year-old girl with severe delay in growth and development, microcephaly, mild facial dismorphy and epilepsy. The pregnancy was complicated by intrauterine growth retardation. Generalized muscle hypotonia was observed at birth. First seizures started at age of 9 months as unilateral convulsive status epilepticus (SE, sometimes with bilateral generalization. Seizures were often triggered by fever and were resistant to antiepileptic treatment. Introduction of lamotrigine and valproate therapy led to complete seizure control at the age of 33 months. Electroencephalographic (EEG finding was typical at the beginning. After transitory improvement between age four and five years, epileptiform EEG activity appeared again at the age of five years, without observed clinical seizures. Magnetic resonance imaging showed diffuse brain atrophy and delay in myelination. Using Multiplex ligation-dependent probe amplification (MLPA method, we disclosed heterozygote microdeletation of the distal part of the short arm of chromosome 4 (4p16. Conclusion. We present a clinical course of epilepsy in a patient with Wolf-Hirschhorn syndrome. The diagnosis was verified by modern molecular technique. This is the first molecular characterization of a patient with WHS performed in our country.

  7. Preimplantation diagnosis of repeated miscarriage due to chromosomal translocations using metaphase chromosomes of a blastomere biopsied from 4- to 6-cell-stage embryos.

    Science.gov (United States)

    Tanaka, Atsushi; Nagayoshi, Motoi; Awata, Shoichiro; Mawatari, Yoshifumi; Tanaka, Izumi; Kusunoki, Hiroshi

    2004-01-01

    To evaluate the safety and accuracy of karyotyping the blastomere chromosomes at metaphase in the natural cell cycle for preimplantation diagnosis. A pilot study. A private infertility clinic and a university laboratory. Eleven patients undergoing IVF and preimplantation diagnosis. Intact human embryos at the 4- to 6-cell stage and human-mouse heterokaryons were cultured and checked hourly for disappearance of the nuclear envelope. After it disappeared, the metaphase chromosomes were analyzed by fluorescence in situ hybridization. Percentage of analyzable metaphase plates and safety and accuracy of the method. The success rate of electrofusion to form human-mouse heterokaryons was 87.1% (27/31), and analyzable chromosomes were obtained from 77.4% (24/31) of the heterokaryons. On the other hand, disappearance of the nuclear envelope occurred in 89.5% (17/19) of the human embryos and it began earlier than that in the heterokaryons. Analyzable chromosomes were obtained and their translocation sites were identified in all blastomeres biopsied from the 17 embryos. After the biopsy, 67.0% of the embryos could develop to the blastocyst stage. The natural cell cycle method reported herein requires frequent observation, but it is safe, with no artificial effects on the chromosomes and without loss of or damage to blastomeres, which occurred with the electrofusion method. Using the natural cell cycle method, we could perform preimplantation diagnosis with nearly 100% accuracy.

  8. Parent-of-origin effects in Turner Syndrome patients

    OpenAIRE

    Wang, Jada; Styers, Marshall; Sayres, Melissa Wilson

    2015-01-01

    Turner Syndrome patients have a single X chromosome, without a partner, X or Y. It has been suggested that the inheritance of the maternal X or paternal X may affect the severity of Turner Syndrome, as well as the incidence of mental disorders in Turner Syndrome individuals. Parental imprinting on the X chromosome may lead to different phenotypic variations in Turner Syndrome patients. In this project, we conduct an analysis of the current state of research on Turner Syndrome, and review the ...

  9. Case Report - Le syndrome de Cri du Chat : A propos d'une ...

    African Journals Online (AJOL)

    Le syndrome du Cri du Chat (Cri du Chat syndrome, CdCS) est une anomalie chromosomique résultant d'une délétion de taille variable de l'extrémité du bras court du chromosome 5 (5p), incluant une région critique située en p15.2. Il représente une des délétions chromosomiques les plus fréquentes, son incidence dans ...

  10. Neuropeptide Y receptor genes on human chromosome 4q31-q32 map to conserved linkage groups on mouse chromosomes 3 and 8

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, C.M.; Frankel, W.N. [Jackson Lab., Bar Harbor, ME (United States); Richards, J.E. [Univ. of Michigan Medical School, Ann Arbor, MI (United States)] [and others

    1997-05-01

    Npy1r and Npy2r, the genes encoding mouse type 1 and type 2 neuropeptide Y receptors, have been mapped by interspecific backcross analysis. Previous studies have localized the human genes encoding these receptors to chromosome 4q31-q32. We have now assigned Npy1r and Npy2r to conserved linkage groups on mouse Chr 8 and Chr 3, respectively, which correspond to the distal region of human chromosome 4q. Using yeast artificial chromosomes, we have estimated the distance between the human genes to be approximately 6 cM. Although ancient tandem duplication events may account for some closely spaced G-protein-coupled receptor genes, the large genetic distance between the human type 1 and type 2 neuropeptide Y receptor genes raises questions about whether this mechanism accounts for their proximity. 20 refs., 1 fig.

  11. Hypoparathyroidism, sensorineural deafness, and renal dysgenesis syndrome with a mutation

    Directory of Open Access Journals (Sweden)

    Yong Suk Shim

    2015-03-01

    Full Text Available Hypoparathyroidism, sensorineural deafness, and renal dysgenesis syndrome is an autosomal dominant disease caused by mutations in the GATA3 gene on chromosome 10p15. We identified a patient diagnosed with hypoparathyroidism who also had a family history of hypoparathyroidism and sensorineural deafness, present in the father. The patient was subsequently diagnosed and found to be a heterozygote for an insertion mutation c.255_256ins4 (GTGC in exon 2 of GATA3. His father was also confirmed to have the same mutation in GATA3.

  12. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    Science.gov (United States)

    Huang, S F; Xiao, S; Renshaw, A A; Loughlin, K R; Hudson, T J; Fletcher, J A

    1996-11-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  13. Chromosomal locations of three human nuclear genes (RPSM12, TUFM, and AFG3L1) specifying putative components of the mitochondrial gene expression apparatus.

    Science.gov (United States)

    Shah, Z H; Migliosi, V; Miller, S C; Wang, A; Friedman, T B; Jacobs, H T

    1998-03-15

    We have mapped the chromosomal locations of three human nuclear genes for putative components of the apparatus of mitochondrial gene expression, using a combination of in situ hybridization and interspecies hybrid mapping. The genes RPMS12 (mitoribosomal protein S12, a conserved protein component of the mitoribosomal accuracy center), TUFM (mitochondrial elongation factor EF-Tu), and AFG3L1 (similar to the yeast genes Afg3 and Rca1 involved in the turnover of mistranslated or misfolded mtDNA-encoded polypeptides) were initially characterized by a combination of database sequence analysis, PCR, cloning, and DNA sequencing. RPMS12 maps to chromosome 19q13.1, close to the previously mapped gene for autosomal dominant hearing loss DFNA4. The TUFM gene is located on chromosome 16p11.2, with a putative pseudogene or variant (TUFML) located very close to the centromere of chromosome 17. AFG3L1 is located on chromosome 16q24, very close to the telomere. By virtue of their inferred functions in mitochondria, these genes should be regarded as candidates of disorders sharing features with mitochondrial disease syndromes, such as sensorineural deafness, diabetes, and retinopathy.

  14. Possible linkage of non-syndromic cleft lip and palate to the MSX1 homebox gene on chromosome 4p

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Walczak, C.; Erickson, R.P.

    1994-09-01

    The MSX1 (HOX7) gene has been shown recently to cause cleft palate in a mouse model deficient for its product. Several features of this mouse model make the human homolog of this gene an excellent candidate for non-syndromic cleft palate. We tested this hypothesis by linkage studies in two large multiplex human families using a microsatellite marker in the human MSX1 gene. A LOD score of 1.7 was obtained maximizing at a recombination fraction of 0.09. Computer simulation power calculations using the program SIMLINK indicated that a LOD score this large is expected to occur only about 1/200 times by chance alone for a marker locus with comparable informativeness if unlinked to the disease gene. This suggestive finding is being followed up by attempts to recruit and study additional families and by DNA sequence analyses of the MSX1 gene in these families and other cleft lip and/or cleft palate subjects and these further results will also be reported.

  15. Diagnostic radiation and chromosome aberrations

    International Nuclear Information System (INIS)

    Patil, S.R.; Hecht, F.; Lubs, H.A.; Kimberling, W.; Brown, J.; Gerald, P.S.; Summitt, R.L.

    1977-01-01

    Some evidence is presented suggesting that diagnostic X-rays may be important in the origin of a new chromosomal abnormality other than Down syndrome. Chromosome analyses have been carried out on 4342 children, seven or eight years old. Maternal diagnostic irradiation in the year before conception and up to third lunar month of the index pregnancy was recorded, before the chromosome study began, together with a large amount of family and clinical data. Information on X-ray exposure was supplied by the mothers, s o radiation dosage could not be estimated. 21 children (including a pair of twins and a pair of siblings) born to 19 mothers had chromosomal aberrations. The mothers of six children with inherited translocations, rearrangements and XYY karyotypes were excluded, and 3 (23%) of the remaining 13 mothers had received abdominal and pelvic X-ray exposures. In the whole sample, however, only 6% of the mothers had diagnostic irradiation. Two of these mothers, aged sixteen and twenty, gave birth to a child each with de-novo autosomal translocations, and the third mother, aged thirty-two, had a child with a complex mosaicism involving one X chromosome. Although the sample size of the mothers with chromosomally abnormal children is small, the results are significant. (U.K.)

  16. Diagnostic radiation and chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Patil, S R; Hecht, F [Dept. of Pediatrics, Child Development and Rehabilitation Center, Univ. of Oregon Health Sciences Center, Portland, Oregon (USA); Lubs, H A; Kimberling, W; Brown, J; Gerald, P S; Summitt, R L

    1977-01-15

    Some evidence is presented suggesting that diagnostic X-rays may be important in the origin of a new chromosomal abnormality other than Down syndrome. Chromosome analyses have been carried out on 4342 children, seven or eight years old. Maternal diagnostic irradiation in the year before conception and up to third lunar month of the index pregnancy was recorded, before the chromosome study began, together with a large amount of family and clinical data. Information on X-ray exposure was supplied by the mothers, so radiation dosage could not be estimated. 21 children (including a pair of twins and a pair of siblings) born to 19 mothers had chromosomal aberrations. The mothers of six children with inherited translocations, rearrangements and XYY karyotypes were excluded, and 3 (23%) of the remaining 13 mothers had received abdominal and pelvic X-ray exposures. In the whole sample, however, only 6% of the mothers had diagnostic irradiation. Two of these mothers, aged sixteen and twenty, gave birth to a child each with de-novo autosomal translocations, and the third mother, aged thirty-two, had a child with a complex mosaicism involving one X chromosome. Although the sample size of the mothers with chromosomally abnormal children is small, the results are significant.

  17. Genomic expression analysis of rat chromosome 4 for skeletal traits at femoral neck.

    Science.gov (United States)

    Alam, Imranul; Sun, Qiwei; Liu, Lixiang; Koller, Daniel L; Liu, Yunlong; Edenberg, Howard J; Econs, Michael J; Foroud, Tatiana; Turner, Charles H

    2008-10-08

    Hip fracture is the most devastating osteoporotic fracture type with significant morbidity and mortality. Several studies in humans and animal models identified chromosomal regions linked to hip size and bone mass. Previously, we identified that the region of 4q21-q41 on rat chromosome (Chr) 4 harbors multiple femoral neck quantitative trait loci (QTLs) in inbred Fischer 344 (F344) and Lewis (LEW) rats. The purpose of this study is to identify the candidate genes for femoral neck structure and density by correlating gene expression in the proximal femur with the femoral neck phenotypes linked to the QTLs on Chr 4. RNA was extracted from proximal femora of 4-wk-old rats from F344 and LEW strains, and two other strains, Copenhagen 2331 and Dark Agouti, were used as a negative control. Microarray analysis was performed using Affymetrix Rat Genome 230 2.0 arrays. A total of 99 genes in the 4q21-q41 region were differentially expressed (P level of the gene in that strain. A total of 18 candidate genes were strongly correlated (r(2) > 0.50) with femoral neck width and prioritized for further analysis. Quantitative PCR analysis confirmed 14 of 18 of the candidate genes. Ingenuity pathway analysis revealed several direct or indirect relationships among the candidate genes related to angiogenesis (VEGF), bone growth (FGF2), bone formation (IGF2 and IGF2BP3), and resorption (TNF). This study provides a shortened list of genetic determinants of skeletal traits at the hip and may lead to novel approaches for prevention and treatment of hip fracture.

  18. Nance-Horan syndrome: linkage analysis in 4 families refines localization in Xp22.31-p22.13 region.

    Science.gov (United States)

    Toutain, A; Ronce, N; Dessay, B; Robb, L; Francannet, C; Le Merrer, M; Briard, M L; Kaplan, J; Moraine, C

    1997-02-01

    Nance-Horan syndrome (NHS) is an X-linked disease characterized by severe congenital cataract with microcornea, distinctive dental findings, evocative facial features and mental impairment in some cases. Previous linkage studies have placed the NHS gene in a large region from DXS143 (Xp22.31) to DXS451 (Xp22.13). To refine this localization further, we have performed linkage analysis in four families. As the maximum expected Lod score is reached in each family for several markers in the Xp22.31-p22.13 region and linkage to the rest of the X chromosome can be excluded, our study shows that NHS is a genetically homogeneous condition. An overall maximum two-point Lod score of 9.36 (theta = 0.00) is obtained with two closely linked markers taken together. DXS207 and DXS1053 in Xp22.2. Recombinant haplotypes indicate that the NHS gene lies between DXS85 and DXS1226. Multipoint analysis yield a maximum Lod score of 9.45 with the support interval spanning a 15-cM region that includes DXS16 and DXS1229/365. The deletion map of the Xp22.3-Xp21.3 region suggests that the phenotypic variability of NHS is not related to gross rearrangement of sequences of varying size but rather to allelic mutations in a single gene, presumably located proximal to DXS16 and distal to DXS1226. Comparison with the map position of the mouse Xcat mutation supports the location of the NHS gene between the GRPR and PDHA1 genes in Xp22.2.

  19. Assignment of the gene for human tetranectin (TNA) to chromosome 3p22-->p21.3 by somatic cell hybrid mapping

    DEFF Research Database (Denmark)

    Durkin, M E; Naylor, S L; Albrechtsen, R

    1997-01-01

    Tetranectin is a plasminogen-binding protein that is induced during the mineralization phase of osteogenesis. By screening a human chromosome 3 somatic cell hybrid mapping panel, we have localized the human tetranectin gene (TNA) to 3p22-->p21.3, which is distinct from the loci of two human...

  20. Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines

    Science.gov (United States)

    Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang

    2013-01-01

    Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213

  1. Chromosome radiosensitivity and kinetics of proliferation of peripheral lymphocytes in individuals with aneuploid karyotype

    Energy Technology Data Exchange (ETDEWEB)

    Konecna, H; Kalina, I; Ondrussekova, A

    1988-08-01

    Experimentally investigated was the radiosensitivity of chromosomes and the kinetics of the proliferation of peripheral lymphocytes in patients with aneuploid (DS and TS) and normal karyotype irradiated in vitro in the G/sub o/ stage of the cell cycle. Trisomic lymphocytes were found to proliferate more rapidly in the in vitro culture and to be more sensitive than diploid cell populations. In monosomic lymphocytes in Turner syndrome patients, the proliferation and incidence of chromosomal abberations was similar to the disomic lines in Down's syndrome patients and in Turner syndrome patients, and to that found in persons with a normal karyotype. The results of the experiment show that there is a relationship between the proliferation rate of peripheral lymphocytes cultures in vitro and the radiosensivity of chromosomes. (author). 1 tab., 3 figs., 11 refs.

  2. Chromosome radiosensitivity and kinetics of proliferation of peripheral lymphocytes in individuals with aneuploid karyotype

    International Nuclear Information System (INIS)

    Konecna, H.; Kalina, I.; Ondrussekova, A.

    1988-01-01

    Experimentally investigated was the radiosensitivity of chromosomes and the kinetics of the proliferation of peripheral lymphocytes in patients with aneuploid (DS and TS) and normal karyotype irradiated in vitro in the G o stage of the cell cycle. Trisomic lymphocytes were found to proliferate more rapidly in the in vitro culture and to be more sensitive than diploid cell populations. In monosomic lymphocytes in Turner syndrome patients, the proliferation and incidence of chromosomal abberations was similar to the disomic lines in Down's syndrome patients and in Turner syndrome patients, and to that found in persons with a normal karyotype. The results of the experiment show that there is a relationship between the proliferation rate of peripheral lymphocytes cultures in vitro and the radiosensivity of chromosomes. (author). 1 tab., 3 figs., 11 refs

  3. 35-Year Follow-Up of a Case of Ring Chromosome 2

    DEFF Research Database (Denmark)

    Sarri, Catherine; Douzgou, Sofia; Kontos, Haris

    2015-01-01

    Côté et al. [1981] suggested that ring chromosomes with or without deletions share a common pattern of phenotypic anomalies, regardless of which chromosome is involved. The phenotype of this 'general ring syndrome' consists of growth failure without malformations, few or no minor anomalies, and m...

  4. Clinical features of SMARCA2 duplication overlap with Coffin-Siris syndrome.

    Science.gov (United States)

    Miyake, Noriko; Abdel-Salam, Ghada; Yamagata, Takanori; Eid, Maha M; Osaka, Hitoshi; Okamoto, Nobuhiko; Mohamed, Amal M; Ikeda, Takahiro; Afifi, Hanan H; Piard, Juliette; van Maldergem, Lionel; Mizuguchi, Takeshi; Miyatake, Satoko; Tsurusaki, Yoshinori; Matsumoto, Naomichi

    2016-10-01

    Coffin-Siris syndrome is a rare congenital malformation and intellectual disability syndrome. Mutations in at least seven genes have been identified. Here, we performed copy number analysis in 37 patients with features of CSS in whom no causative mutations were identified by exome sequencing. We identified a patient with a 9p24.3-p22.2 duplication and another patient with the chromosome der(6)t(6;9)(p25;p21)mat. Both patients share a duplicated 15.8-Mb region containing 46 protein coding genes, including SMARCA2. Dominant negative effects of SMARCA2 mutations may contribute to Nicolaides-Baraitser syndrome. We conclude that their features better resemble Coffin-Siris syndrome, rather than Nicolaides-Baraitser syndrome and that these features likely arise from SMARCA2 over-dosage. Pure 9p duplications (not caused by unbalanced translocations) are rare. Copy number analysis in patients with features that overlap with Coffin-Siris syndrome is recommended to further determine their genetic aspects. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Clonal Evolution and Clinical Significance of Copy Number Neutral Loss of Heterozygosity of Chromosome Arm 6p in Acquired Aplastic Anemia

    Science.gov (United States)

    Betensky, Marisol; Babushok, Daria; Roth, Jacquelyn J.; Mason, Philip J; Biegel, Jaclyn A.; Busse, Tracy M; Li, Yimei; Lind, Curt; Papazoglou, Anna; Monos, Dimitri; Podsakoff, Gregory; Bessler, Monica; Olson, Timothy S.

    2015-01-01

    Acquired aplastic anemia (aAA) results from the T cell-mediated autoimmune destruction of hematopoietic stem cells. Factors predicting response to immune suppression therapy (IST) or development of myelodysplastic syndrome (MDS) are beginning to be elucidated. Our recent data suggest most patients with aAA treated with IST develop clonal somatic genetic alterations in hematopoietic cells. One frequent acquired abnormality is copy-number neutral loss of heterozygosity on chromosome 6p (6p CN-LOH) involving the human leukocyte antigen (HLA) locus. We hypothesized that because 6p CN-LOH clones may arise from selective pressure to escape immune surveillance through deletion of HLA alleles, the development of 6p CN-LOH may affect response to IST. We used single nucleotide polymorphism array genotyping and targeted next-generation sequencing of HLA alleles to assess frequency of 6p CN-LOH, identity of HLA alleles lost through 6p CN-LOH, and impact of 6p CN-LOH on response to IST. 6p CN-LOH clones were present in 11.3% of patients, remained stable over time, and were not associated with development of MDS-defining cytogenetic abnormalities. Notably, no patient with 6p CN-LOH treated with IST achieved a complete response. In summary, clonal 6p CN-LOH in aAA defines a unique subgroup of patients that may provide insights into hematopoietic clonal evolution. PMID:26702937

  6. Evidence for an asthma risk locus on chromosome Xp: a replication linkage study

    DEFF Research Database (Denmark)

    Brasch-Andersen, C; Møller, M U; Haagerup, A

    2008-01-01

    replication sample as used in the present study. The aim of the study was to replicate linkage to candidate regions for asthma in an independent Danish sample. METHODS: We performed a replication study investigating linkage to candidate regions for asthma on chromosomes 1p36.31-p36.21, 5q15-q23.2, 6p24.3-p22...... studies have been carried out the results are still conflicting and call for replication experiments. A Danish genome-wide scan has prior reported evidence for candidate regions for asthma susceptibility genes on chromosomes 1p, 5q, 6p, 12q and Xp. Linkage to chromosome 12q was later confirmed in the same.......3, and Xp22.31-p11.4 using additional markers in an independent set of 136 Danish asthmatic sib pair families. RESULTS: Nonparametric multipoint linkage analyses yielded suggestive evidence for linkage to asthma to chromosome Xp21.2 (MLS 2.92) but failed to replicate linkage to chromosomes 1p36.31-p36.21, 5...

  7. Genetics Home Reference: Turner syndrome

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions Turner syndrome Turner syndrome Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Turner syndrome is a chromosomal condition that affects development in ...

  8. Maternal Plasma and Amniotic Fluid Chemokines Screening in Fetal Down Syndrome

    Directory of Open Access Journals (Sweden)

    Piotr Laudanski

    2014-01-01

    Full Text Available Objective. Chemokines exert different inflammatory responses which can potentially be related to certain fetal chromosomal abnormalities. The aim of the study was to determine the concentration of selected chemokines in plasma and amniotic fluid of women with fetal Down syndrome. Method. Out of 171 amniocentesis, we had 7 patients with confirmed fetal Down syndrome (15th–18th weeks of gestation. For the purpose of our control, we chose 14 women without confirmed chromosomal aberration. To assess the concentration of chemokines in the blood plasma and amniotic fluid, we used a protein macroarray, which allows the simultaneous determination of 40 chemokines per sample. Results. We showed significant decrease in the concentration of 4 chemokines, HCC-4, IL-28A, IL-31, and MCP-2, and increase in the concentration of CXCL7 (NAP-2 in plasma of women with fetal Down syndrome. Furthermore, we showed decrease in concentration of 3 chemokines, ITAC, MCP-3, MIF, and increase in concentration of 4 chemokines, IP-10, MPIF-1, CXCL7, and 6Ckine, in amniotic fluid of women with fetal Down syndrome. Conclusion. On the basis of our findings, our hypothesis is that the chemokines may play role in the pathogenesis of Down syndrome. Defining their potential as biochemical markers of Down syndrome requires further investigation on larger group of patients.

  9. Hallermann-Streiff syndrome associated with small cerebellum, endocrinopathy and increased chromosomal breakage.

    Science.gov (United States)

    Hou, J W

    2003-07-01

    Hallermann-Streiff syndrome (HSS) is a rare clinic entity of unknown aetiology. Further clinical and metabolic-genetic evaluations are indicated. A 2-mo-old female baby presented with ocular abnormalities and severe failure to thrive since birth. The clinical features were compatible with the diagnosis of HSS. Further imaging, metabolic and cytogenetic examinations were performed. Features characteristic of HSS were dyscephaly with mandibular and nasal cartilage hypoplasia, microphthalmia, bilateral cataracts with congenital glaucoma, natal teeth and proportionate dwarfism. Rare anomalies such as choanal atresia and small cerebellum, very low insulin-like growth factor I level, hypothyroidism, generalized organic aciduria were also noticed. An increased chromosomal breakage rate is suggestive of the existence of some DNA repair defects in HSS patients. The associated anomalies in this patient may broaden the clinical spectrum of HSS. Underlying conditions of organic aciduria, growth factor deficiency and impaired DNA repair are likely to contribute to the progeria-like facies, congenital cataracts and growth failure.

  10. Comparative Genomic Hybridization of Human Malignant Gliomas Reveals Multiple Amplification Sites and Nonrandom Chromosomal Gains and Losses

    Science.gov (United States)

    Schròck, Evelin; Thiel, Gundula; Lozanova, Tanka; du Manoir, Stanislas; Meffert, Marie-Christine; Jauch, Anna; Speicher, Michael R.; Nürnberg, Peter; Vogel, Siegfried; Janisch, Werner; Donis-Keller, Helen; Ried, Thomas; Witkowski, Regine; Cremer, Thomas

    1994-01-01

    Nine human malignant gliomas (2 astrocytomas grade III and 7 glioblastomas) were analyzed using comparative genomic hybridization (CGH). In addition to the amplification of the EGFR gene at 7p12 in 4 of 9 cases, six new amplification sites were mapped to 1q32, 4q12, 7q21.1, 7q21.2-3, 12p, and 22q12. Nonrandom chromosomal gains and losses were identified with overrepresentation of chromosome 7 and underrepresentation of chromosome 10 as the most frequent events (1 of 2 astrocytomas, 7 of 7 glioblastomas). Gain of a part or the whole chromosome 19 and losses of chromosome bands 9pter-23 and 22q13 were detected each in five cases. Loss of chromosome band 17p13 and gain of chromosome 20 were revealed each in three cases. The validity of the CGH data was confirmed using interphase cytogenetics with YAC clones, chromosome painting in tumor metaphase spreads, and DNA fingerprinting. A comparison of CGH data with the results of chromosome banding analyses indicates that metaphase spreads accessible in primary tumor cell cultures may not represent the clones predominant in the tumor tissue ImagesFigure 1Figure 4Figure 6 PMID:8203461

  11. PARTIAL TRISOMY 4p AND PARTIAL MONOSOMY 13q: CASE REPORT AND A LITERATURE REVIEW.

    Science.gov (United States)

    Puvabanditsin, S; Herrera-Garcia, G; Gengel, N; Hussein, K; February, M; Mayne, J; Mehta, R

    2016-01-01

    We report on a term first born dichorionic-diamniotic twin with deletion of the distal long arm of chromosome 13, partial trisomy of the short arm of chromosome 4, intrauterine growth retardation, and multiple anomalies including microcephaly, colpocephaly, absent corpus callosum, bulbous tip of the nose, large and low set ears, macroglossia, thin upper lip, double outlet right ventricle, atria/ventricular septal defect, cleft mitral valve, pulmonary stenosis, single umbilical artery, multicystic dysplastic left kidney, sacral dimple, anterior displacement of anus, simian creases, abnormal thumb (congenital clasped thumb), overlapping toes, and congenital hypothyroidism. This is the first report of a patient with partial trisomy 4p and partial monosomy 13q.

  12. Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma

    Directory of Open Access Journals (Sweden)

    Kushner Brian

    2009-02-01

    Full Text Available Abstract Background Neuroblastoma (NB tumours have the highest incidence of spontaneous remission, especially among the stage 4s NB subgroup affecting infants. Clinical distinction of stage 4s from lethal stage 4 can be difficult, but critical for therapeutic decisions. The aim of this study was to investigate chromosomal alterations and differential gene expression amongst infant disseminated NB subgroups. Methods Thirty-five NB tumours from patients diagnosed at Results All stage 4s patients underwent spontaneous remission, only 48% stage 4 patients survived despite combined modality therapy. Stage 4 tumours were 90% near-diploid/tetraploid, 44% MYCN amplified, 77% had 1p LOH (50% 1p36, 23% 11q and/or 14q LOH (27% and 47% had 17q gain. Stage 4s were 90% near-triploid, none MYCN amplified and LOH was restricted to 11q. Initial comparison analyses between stage 4s and 4 P P = 0.0054, 91% with higher expression in stage 4. Less definite expression profiles were observed between stage 4s and 4 P P = 0.005 was maintained. Distinct gene expression profiles but no significant association with specific chromosomal region localization was observed between stage 4s and stage 4 Conclusion Specific chromosomal aberrations are associated with distinct gene expression profiles which characterize spontaneously regressing or aggressive infant NB, providing the biological basis for the distinct clinical behaviour.

  13. The eXtroardinarY Babies Study: Natural History of Health and Neurodevelopment in Infants and Young Children With Sex Chromosome Trisomy

    Science.gov (United States)

    2018-01-10

    Klinefelter Syndrome; Trisomy X; XYY Syndrome; XXXY and XXXXY Syndrome; Xxyy Syndrome; Xyyy Syndrome; Xxxx Syndrome; Xxxxx Syndrome; Xxxyy Syndrome; Xxyyy Syndrome; Xyyyy Syndrome; Male With Sex Chromosome Mosaicism

  14. Prader-Willi-like phenotypes: a systematic review of their chromosomal abnormalities.

    Science.gov (United States)

    Rocha, C F; Paiva, C L A

    2014-03-31

    Prader-Willi syndrome (PWS) is caused by the lack of expression of genes located on paternal chromosome 15q11-q13. This lack of gene expression may be due to a deletion in this chromosomal segment, to maternal uniparental disomy of chromosome 15, or to a defect in the imprinting center on 15q11-q13. PWS is characterized by hypotonia during the neonatal stage and in childhood, accompanied by a delay in neuropsychomotor development. Overeating, obesity, and mental deficiency arise later on. The syndrome has a clinical overlap with other diseases, which makes it difficult to accurately diagnose. The purpose of this article is to review the Prader-Willi-like phenotype in the scientific literature from 2000 to 2013, i.e., to review the cases of PWS caused by chromosomal abnormalities different from those found on chromosome 15. A search was carried out using the "National Center for Biotechnology Information" (www.pubmed.com) and "Scientific Electronic Library Online (www.scielo.br) databases and combinations of key words such as "Prader-Willi-like phenotype" and "Prader-Willi syndrome phenotype". Editorials, letters, reviews, and guidelines were excluded. Articles chosen contained descriptions of patients diagnosed with the PWS phenotype but who were negative for alterations on 15q11-q13. Our search found 643 articles about PWS, but only 14 of these matched with the Prader-Willi-like phenotype and with the selected years of publication (2000-2013). If two or more articles reported the same chromosomal alterations for Prader-Willi-like phenotype, the most recent was chosen. Twelve articles of 14 were case reports and 2 reported series of cases.

  15. Diagnostic yield by supplementing prenatal metaphase karyotyping with MLPA for microdeletion syndromes and subtelomere imbalances

    DEFF Research Database (Denmark)

    Kjaergaard, S; Sundberg, K; Jørgensen, F S

    2010-01-01

    The aim of the study was to retrospectively assess the relevance of using multiplex ligation-dependent probe amplification (MLPA) for detection of selected microdeletion syndromes (22q11, Prader-Willi/Angelman, Miller-Dieker, Smith-Magenis, 1p-, Williams), the reciprocal microduplication syndrome...... and imbalance at the subtelomere regions of chromosomes in a routine prenatal setting....

  16. Chromosomal organization and segregation in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Isabelle Vallet-Gely

    2013-05-01

    Full Text Available The study of chromosomal organization and segregation in a handful of bacteria has revealed surprising variety in the mechanisms mediating such fundamental processes. In this study, we further emphasized this diversity by revealing an original organization of the Pseudomonas aeruginosa chromosome. We analyzed the localization of 20 chromosomal markers and several components of the replication machinery in this important opportunistic γ-proteobacteria pathogen. This technique allowed us to show that the 6.3 Mb unique circular chromosome of P. aeruginosa is globally oriented from the old pole of the cell to the division plane/new pole along the oriC-dif axis. The replication machinery is positioned at mid-cell, and the chromosomal loci from oriC to dif are moved sequentially to mid-cell prior to replication. The two chromosomal copies are subsequently segregated at their final subcellular destination in the two halves of the cell. We identified two regions in which markers localize at similar positions, suggesting a bias in the distribution of chromosomal regions in the cell. The first region encompasses 1.4 Mb surrounding oriC, where loci are positioned around the 0.2/0.8 relative cell length upon segregation. The second region contains at least 800 kb surrounding dif, where loci show an extensive colocalization step following replication. We also showed that disrupting the ParABS system is very detrimental in P. aeruginosa. Possible mechanisms responsible for the coordinated chromosomal segregation process and for the presence of large distinctive regions are discussed.

  17. Confirmation that RIPK4 mutations cause not only Bartsocas-Papas syndrome but also CHAND syndrome.

    Science.gov (United States)

    Busa, Tiffany; Jeraiby, Mohammed; Clémenson, Alix; Manouvrier, Sylvie; Granados, Viviana; Philip, Nicole; Touraine, Renaud

    2017-11-01

    CHAND syndrome is an autosomal recessive disorder characterized by curly hair, ankyloblepharon, and nail dysplasia. Only few patients were reported to date. A homozygous RIPK4 mutation was recently identified by homozygosity mapping and whole exome sequencing in three patients from an expanded consanguineous kindred with a clinical diagnosis of CHAND syndrome. RIPK4 was previously known to be implicated in Bartsocas-Papas syndrome, the autosomal recessive form of popliteal pterygium syndrome. We report here two cases of RIPK4 homozygous mutations in a fetus with severe Bartsocas-Papas syndrome and a patient with CHAND syndrome. The patient with CHAND syndrome harbored the same mutation as the one identified in the family previously reported. We thus confirm the implication of RIPK4 gene in CHAND syndrome in addition to Bartsocas-Papas syndrome and discuss genotype/phenotype correlations. © 2017 Wiley Periodicals, Inc.

  18. Mosaic Turner syndrome and hyperinsulinaemic hypoglycaemia

    DEFF Research Database (Denmark)

    Alkhayyat, H.; Christesen, Henrik Thybo; Steer, J.

    2006-01-01

    BACKGROUND: A common and well recognised feature of Turner's syndrome (partial or total monosomy X) is impaired glucose tolerance or type 2 diabetes mellitus. A small percentage of patients with Turner's syndrome have a complex mosaic karyotype with atypical clinical features and mental retardation....... METHODS/PATIENT: We report the first case of a child with a complex mosaic Turner genotype and hyperinsulinaemic hypoglycaemia responsive to diazoxide therapy. RESULTS: Cytogenetic analysis showed four cell lines: one with 45,X; the others with an additional small ring chromosome, a small marker...... chromosome, and both the ring and marker chromosomes, respectively. FISH studies showed the abnormal chromosomes to originate from an X. The X inactivation locus (XIST) was present in the ring, but not in the marker chromosome. CONCLUSIONS: The recognition of hypoglycaemia in children with atypical Turner...

  19. PREVALENCE OF Y CHROMOSOME MICRODELETIONS IN IRANIAN INFERTILE MEN

    Directory of Open Access Journals (Sweden)

    F. Akbari Asbagh

    2003-07-01

    Full Text Available This study was designed to determine the frequency of Y chromosome AZF (Azoospermia Factor subregions, microdeletions in patients with idiopathic nonobstructive azoospermia and severe oligozoospermia. Subjects included 40 men who had been referred to infertility clinics for assisted reproduction, 37 were azoospermic and 3 had severe oligospermia. Medical history and physical exam revealed no evidence of infection, obstruction of seminal tract, endocrine failure or chromosomal anomalies. Hormonal study was performed for all patients. Twenty six men had biopsies of the testes including 11 patients with hypospermatogenesis, 9 patients with maturation arrest, 4 patients with sertoli cell only syndrome and 2 patients with tubular sclerosis. In 14 men who did not have a testicular biopsy multiple, epididymal and testicular sperm aspirations under anesthesia failed and testicular sperm extraction was subsequently performed for ICSI. DNA was isolated from blood samples. Polymerase chain reaction (PCR amplification of 11 loci spanning the AZFa, AZFb and AZFc subregions of the Y chromosome using sY81, sY83, sY127, sY130, sY131, sY147, sY149, sY157, sY158, sY254 and sY276 was performed. Microdeletions of the Y chromosome were found in two of the patients (5%, who had azoospermia. Deletions were restricted to DAZ (deleted in azoospermia locus in AZFc subregion. One of the patients had a history of cryptorchidism and the second had undergone a left side varicocelectomy. Testicular pathology showed sertoli cell only syndrome in both of them. Our experience adds to the current logic that men with azoospermia or severe oligospermia should be evaluated for Yq11 microdeletions before deciding to operate varicoceles or else scheduling them for assisted reproductive techniques.

  20. Fine Mapping Suggests that the Goat Polled Intersex Syndrome and the Human Blepharophimosis Ptosis Epicanthus Syndrome Map to a 100-kb Homologous Region

    OpenAIRE

    Schibler, Laurent; Cribiu, Edmond P.; Oustry-Vaiman, Anne; Furet, Jean-Pierre; Vaiman, Daniel

    2000-01-01

    To clone the goat Polled Intersex Syndrome (PIS) gene(s), a chromosome walk was performed from six entry points at 1q43. This enabled 91 BACs to be recovered from a recently constructed goat BAC library. Six BAC contigs of goat chromosome 1q43 (ICC1–ICC6) were thus constructed covering altogether 4.5 Mb. A total of 37 microsatellite sequences were isolated from this 4.5-Mb region (16 in this study), of which 33 were genotyped and mapped. ICC3 (1500 kb) was shown by genetic analysis to encompa...

  1. Csm4, in collaboration with Ndj1, mediates telomere-led chromosome dynamics and recombination during yeast meiosis.

    Directory of Open Access Journals (Sweden)

    Jennifer J Wanat

    2008-09-01

    Full Text Available Chromosome movements are a general feature of mid-prophase of meiosis. In budding yeast, meiotic chromosomes exhibit dynamic movements, led by nuclear envelope (NE-associated telomeres, throughout the zygotene and pachytene stages. Zygotene motion underlies the global tendency for colocalization of NE-associated chromosome ends in a "bouquet." In this study, we identify Csm4 as a new molecular participant in these processes and show that, unlike the two previously identified components, Ndj1 and Mps3, Csm4 is not required for meiosis-specific telomere/NE association. Instead, it acts to couple telomere/NE ensembles to a force generation mechanism. Mutants lacking Csm4 and/or Ndj1 display the following closely related phenotypes: (i elevated crossover (CO frequencies and decreased CO interference without abrogation of normal pathways; (ii delayed progression of recombination, and recombination-coupled chromosome morphogenesis, with resulting delays in the MI division; and (iii nondisjunction of homologs at the MI division for some reason other than absence of (the obligatory CO(s. The recombination effects are discussed in the context of a model where the underlying defect is chromosome movement, the absence of which results in persistence of inappropriate chromosome relationships that, in turn, results in the observed mutant phenotypes.

  2. 38 CFR 4.88a - Chronic fatigue syndrome.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Chronic fatigue syndrome. 4.88a Section 4.88a Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE... Deficiencies § 4.88a Chronic fatigue syndrome. (a) For VA purposes, the diagnosis of chronic fatigue syndrome...

  3. Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae)

    Science.gov (United States)

    Suárez, Pablo; Boeris, Juan M.; Blasco-Zúñiga, Ailin; Barbero, Gastón; Gomes, Anderson; Gazoni, Thiago; Costa, William; Nagamachi, Cleusa Y.; Rivera, Miryan; Parise-Maltempi, Patricia P.; Wiley, John E.; Pieczarka, Julio C.; Haddad, Celio F. B.; Faivovich, Julián; Baldo, Diego

    2018-01-01

    The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46) and H. alytolylax (FN = 38), with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p), H. palmeri (4q), and H. larinopygion (1p). Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns) for their impact on the taxonomy and karyotype evolution in Cophomantini. PMID:29444174

  4. Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae.

    Directory of Open Access Journals (Sweden)

    Juan M Ferro

    Full Text Available The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46 and H. alytolylax (FN = 38, with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p, H. palmeri (4q, and H. larinopygion (1p. Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns for their impact on the taxonomy and karyotype evolution in Cophomantini.

  5. [Molecular cytogenetic analysis of a case with ring chromosome 3 syndrome].

    Science.gov (United States)

    Zhang, Kaihui; Song, Fengling; Zhang, Dongdong; Zhang, Haiyan; Wang, Ying; Dong, Rui; Zhang, Yufeng; Liu, Yi; Gai, Zhongtao

    2016-12-10

    To investigate the genetic cause for a child with developmental delay and congenital heart disease through molecular cytogenetic analysis. G-banded karyotyping and chromosomal microarray analysis (CMA) were performed for the patient and his parents. The proband's karyotype was detected as ring chromosome 3, and a 3q26.3-25.3 deletion encompassing 45 genes has been found with CMA. Testing of both parents was normal. Clinical phenotype of the patient with ring chromosome 3 mainly depends on the involved genes. It is necessary to combine CMA and karyotyping for the diagnosis of ring chromosome, as CMA can provide more accurate information for variations of the genome.

  6. Relatives with opposite chromosome constitutions, rec(10)dup(10p)inv(10)(p15.1q26.12) and rec(10)dup(10q)inv(10)(p15.1q26.12), due to a familial pericentric inversion.

    Science.gov (United States)

    Ciuladaite, Zivile; Preiksaitiene, Egle; Utkus, Algirdas; Kučinskas, Vaidutis

    2014-01-01

    Large pericentric inversions in chromosome 10 are rare chromosomal aberrations with only few cases of familial inheritance. Such chromosomal rearrangements may lead to production of unbalanced gametes. As a result of a recombination event in the inversion loop, 2 recombinants with duplicated and deficient chromosome segments, including the regions distal to the inversion, may be produced. We report on 2 relatives in a family with opposite terminal chromosomal rearrangements of chromosome 10, i.e. rec(10)dup(10p)inv(10) and rec(10)dup(10q)inv(10), due to familial pericentric inversion inv(10)(p15.1q26.12). Based on array-CGH results, we characterized the exact genomic regions involved and compared the clinical features of both patients with previous reports on similar pericentric inversions and regional differences within 10p and 10q. The fact that both products of recombination are viable indicates a potentially high recurrence risk of unbalanced offspring. This report of unbalanced rearrangements in chromosome 10 in 2 generations confirms the importance of screening for terminal imbalances in patients with idiopathic intellectual disability by molecular cytogenetic techniques such as FISH, MLPA or microarrays. It also underlines the necessity for FISH to define structural characteristics of such cryptic intrachromosomal rearrangements and the underlying cytogenetic mechanisms. © 2014 S. Karger AG, Basel.

  7. Frequency of chromosomal aberrations in a group of patients carriers of gonosomopathies

    International Nuclear Information System (INIS)

    Quesada Dorta, Marlen; Bello Alvarez, Daisy; Gonzalez Fernandez, Pedro

    2004-01-01

    This paper was aimed at determining the frequency of chromosomal aberrations in a group of patients carriers of gonosomopathies and at relating in each case the meaning of the different chromosomal aberrations found to the patients' clinical diagnosis. 656 patients with presumptive diagnosis of gonosomopathies from different hospital institutions of the country that were received at the molecular genetics laboratory of Hermanos Ameijeiras Clinical and Surgical Hospital from 1982 to 2001, were studied. Of the total of patients with presumptive diagnosis of gonosomopathies, in 32.7 % (215/656) the clinical diagnosis was confirmed by the cytogenetic study. The chromosomal study was conducted by using G band techniques. The chromosomal rearrangements found were classified into 4 groups. The group of numerical gonosomopathies showed the highest frequency with 110 patients, accounting for 51 % of the total. It was followed by the group of numerical and structural alterations (mosaics) with 59 patients (27.0), the inversions of sex with 24 patients (12.0), and the group of structural gonosomopathies with 22 patients (10.0) The most common chromosomal aberrations were the numerical gonosomopathies (Turner and Klinefelter's syndrome). The chromosomal study in these patients is a very important diagnostic value indicator for the therapeutical conduct to be followed in every case

  8. Loss of chromosome 1p/19q in oligodendroglial tumors: refinement of chromosomal critical regions and evaluation of internexin immunostaining as a surrogate marker.

    LENUS (Irish Health Repository)

    Buckley, Patrick G

    2011-03-01

    Loss of chromosome 1p\\/19q in oligodendrogliomas represents a powerful predictor of good prognosis. Expression of internexin (INA), a neuronal specific intermediate filament protein, has recently been proposed as a surrogate marker for 1p\\/19q deletion based on the high degree of correlation between both parameters in oligodendrogliomas. The aim of this study was to assess further the diagnostic utility of INA expression in a set of genetically well-characterized oligodendrogliomas. On the basis of a conservative approach for copy number determination, using both comparative genomic hybridization and fluorescent in situ hybridization, INA expression as a surrogate marker for 1p\\/19q loss had both reduced specificity (80%) and sensitivity (79%) compared with respective values of 86% and 96% reported in the previous report. The histologic interpretation and diagnostic value of INA expression in oligodendrogliomas should therefore be assessed with greater caution when compared with 1p\\/19q DNA copy number analysis. In addition, DNA copy number aberrations of chromosomes 10, 16, and 17 were detected exclusively in 1p\\/19q codeleted samples, suggesting that other regions of the genome may contribute to the 1p\\/19q-deleted tumor phenotype inthese samples.

  9. Chromosomal instability and the abrogated G2/M arrest in x-irradiated myelodysplastic syndrome cells

    International Nuclear Information System (INIS)

    Ban, S.; Sudo, H.; Saegusa, K.; Sagara, M.; Imai, T.; Kimura, A.

    2003-01-01

    A preliminary epidemiological study demonstrated that myelodysplastic syndrome (MDS) has an excess relative risk per sievert of 13 in atomic bomb survivors in Hiroshima. MDS is the only other radiogenic blood disease apart from leukemia. Clinically, MDS involves dysplastic hematopoiesis and an increased risk of leukemic transformation. Because it is uncertain whether MDS pathogenesis affects lymphoid progenitor cells as well as myeloid progenitor cells, we investigated the karyotypes of bone marrow cells and the micronucleus (MN) frequency in peripheral T lymphocytes of twenty- three atomic bomb survivors with MDS and five normal individuals. Aneuploidy was observed in 10 of 23 patients. Chromosome aberrations were observed in 3 of 12 patients with mild symptoms, and six of 11 patients of severe symptoms. The spontaneous- and X-ray-induced-MN frequencies were significantly higher in MDS patients than in normal individuals. Interestingly, radiation sensitivity increased along with the severity of MDS clinical subtypes. Because many of the patients in this study had not been exposed to chemo- or radiation- therapy, their unusual radiosensitivity may be related to their chromosomal or genomic instability. Immortalized lymphoid cell lines were established from B-lymphocytes infected with Epstein-Barr virus in vitro. The abrogation of radiation-induced-G2/M arrest was observed in 10 of 12 MDS-B lymphoid cell lines, but not in the normal B lymphoid cell lines. Our data suggest that the control of chromosomal stability is impaired in pluripotent stem cells of MDS patients, and that the abrogated G2/M arrest may be involved in the pathophysiology of disease progression and the high radiation sensitivity of patients

  10. Survivin and chromosome instability induced by X-irradiation

    International Nuclear Information System (INIS)

    Shen Bo; Ju Guizhi; Liu Yang

    2006-01-01

    Objective: To explore the biological effect of survivin on chromosome instability induced by X-ray irradiation. Methods: Immunocytochemistry was used to detect the expression of sutvivin in HeLa cells. Carrier pSUPER-SVV was transfected into HeLa cells to interfere the expression of survivin. Flow cytometry assay was applied to detect the occurrence of polyploid at 0 h, 4 h, 12 h, and 48 h after the HeLa cells transfected with pSUPER-SVV and irradiated with 4 Gy X-rays irradiation, and compared with the group irradiated with 4 Gy X-rays but no transfection. Results: The expression of survivin was down-regulated by transfecting with small hair RNA, its depression rate was estimated to be about 32.16% at 48 h after transfection. The occurrence of polyploid giant cells was higher in the 4 Gy X-ray irradiated group at 48 h after the irradiation than the control groups (P<0.001). Being expression of survivin interfered, the occurrence at 12 h or 48 h after irradiation, however, was about two times higher than that in the control group. Conclusion: X-ray irradiation can induce chromosome instability in HeLa cells and the effect could be enhanced by interfering the expression of surviving. It was suggested that survivin plays an important role in maintaining the stability of chromosome. (authors)

  11. Structural and functional organization of the HF.10 human zinc finger gene (ZNF35) located on chromosome 3p21-p22

    DEFF Research Database (Denmark)

    Lanfrancone, L; Pengue, G; Pandolfi, P P

    1992-01-01

    We report the structural and functional characterization of the HF.10 zinc finger gene (ZNF35) in normal human cells, as well as a processed pseudogene. The HF.10 gene spans about 13 kb and it is interrupted by three introns. All 11 zinc finger DNA-binding domains are contiguously encoded within...... and partial nucleotide sequencing of the HF.10 pseudogene indicated that it has arisen by retroposition of spliced HF.10 mRNA. In situ hybridization experiments revealed that both the functional locus and the pseudogene map to chromosome 3p21p22, a region that is frequently deleted in small cell lung...... and renal carcinomas. Hybridization of the HF.10 gene and the HF.10 pseudogene DNA probes to metaphases from a small cell lung carcinoma cell line with the 3p deletion revealed that both loci are part of the deleted chromosome region....

  12. Association analysis of the chromosome 4p-located G protein-coupled receptor 78 (GPR78) gene in bipolar affective disorder and schizophrenia.

    Science.gov (United States)

    Underwood, S L; Christoforou, A; Thomson, P A; Wray, N R; Tenesa, A; Whittaker, J; Adams, R A; Le Hellard, S; Morris, S W; Blackwood, D H R; Muir, W J; Porteous, D J; Evans, K L

    2006-04-01

    The orphan G protein-coupled receptor 78 (GPR78) gene lies within a region of chromosome 4p where we have previously shown linkage to bipolar affective disorder (BPAD) in a large Scottish family. GPR78 was screened for single-nucleotide polymorphisms (SNPs) and a linkage disequilibrium map was constructed. Six tagging SNPs were selected and tested for association on a sample of 377 BPAD, 392 schizophrenia (SCZ) and 470 control individuals. Using standard chi(2) statistics and a backwards logistic regression approach to adjust for the effect of sex, SNP rs1282, located approximately 3 kb upstream of the coding region, was identified as a potentially important variant in SCZ (chi(2) P=0.044; LRT P=0.065). When the analysis was restricted to females, the strength of association increased to an uncorrected allele P-value of 0.015 (odds ratios (OR)=1.688, 95% confidence intervals (CI): 1.104-2.581) and uncorrected genotype P-value of 0.015 (OR=5.991, 95% CI: 1.545-23.232). Under the recessive model, the genotype P-value improved further to 0.005 (OR=5.618, 95% CI: 1.460-21.617) and remained significant after correcting for multiple testing (P=0.017). No single-marker association was detected in the SCZ males, in the BPAD individuals or with any other SNP. Haplotype analysis of the case-control samples revealed several global and individual haplotypes, with P-values <0.05, all but one of which contained SNP rs1282. After correcting for multiple testing, two haplotypes remained significant in both the female BPAD individuals (P=0.038 and 0.032) and in the full sample of affected female individuals (P=0.044 and 0.033). Our results provide preliminary evidence for the involvement of GPR78 in susceptibility to BPAD and SCZ in the Scottish population. Molecular Psychiatry (2006) 11, 384-394. doi:10.1038/sj.mp.4001786; published online 3 January 2006.

  13. Exclusion of linkage between cleft lip with or without cleft palate and markers on chromosomes 4 and 6

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, S.H. [Univ. of Virginia, Charlottesville, VA (United States); Malcolm, S.; Winter, R. [Institute of Child Health, London (United Kingdom)] [and others

    1996-01-01

    Nonsyndromic cleft lip with or without associate cleft palate (CLP) is a common craniofacial defect, occurring in {approximately}1/1,000 live births. While the defect generally occurs sporadically, multiplex families have been reported. Segregation analyses have demonstrated that, in some families, CLP is inherited as an autosomal dominant/codominant disorder with low penetrance. Several clefting loci have been proposed on multiple chromosomes, including 6p24, 4q, and 19q13.1. Association studies and linkage studies suggested a locus that mapped to 6p24. We were unable to confirm this in a linkage study of 12 multigenerational families. A subsequent linkage study by Carinci et al., however, found evidence for linkage to this region in 14 of 21 clefting families. Additionally, Davies et al. studied the chromosomes of three individuals with cleft lip and palate, all of whom had a rearrangement involving 6p24. Their investigation supported a locus at 6p24. Carinci et al. reported that the most likely position for a clefting locus was at D6S89, which is centromeric to EDN1. This is in contrast to the findings of Davies et al., who suggested a placement telomeric to EDN1. F13A, which had been implicated in the initial association studies, is telomeric to EDN1. Thus, the region between F13A and D6S89 encompasses the regions proposed by both Davies et al. and Carinci et al. A second clefting locus, at 4q, was proposed by Beiraghi et al., who studied a single multigenerational family by linkage analysis. Their data suggested a locus near D4S175 and D4S192. 10 refs., 1 tab.

  14. Small supernumerary marker chromosome causing partial trisomy 6p in a child with craniosynostosis.

    Science.gov (United States)

    Villa, Olaya; Del Campo, Miguel; Salido, Marta; Gener, Blanca; Astier, Laura; Del Valle, Jesús; Gallastegui, Fátima; Pérez-Jurado, Luis A; Solé, Francesc

    2007-05-15

    We report on a child with a small supernumerary marker chromosome (sSMC) causing partial trisomy 6p. The child showed a phenotype consisting of neonatal craniosynostosis, microcephaly, and borderline developmental delay. By molecular techniques the sSMC has been shown to contain approximately 16 Mb of genomic DNA from 6p21.1 to 6cen, being de novo and of maternal origin.

  15. Case Report: Sjogren-Larsson Syndrome: Two Cases from One Family

    Directory of Open Access Journals (Sweden)

    Parvaneh Karim-Zadeh

    2006-04-01

    Full Text Available Sjogren–Larsson Syndrome (SLS is an autosomal recessive disorder characterized by generalized Ichthyosis, mental retardation, spastic diplegia or tetraplegia and epilepsy. This is a rare syndrome that caused by mutation in the ALDH3A2 gene, on chromosome 17p11.2. That encodes fatty aldehyde dehydrogenase (FAIDH, an enzyme that catalyzes the oxidation of medium – long chain aldehydes derived from lipid metabolism. Neuroimaging (MRI shows retardation of myelination and a mild myelin deficit. Proton Magnetic Resonance Spectroscopy (MRS shows the peak of lipids that accumulate because of fatty alchohols. We report two cases that they are siblings from relative parents. The Brother is 4 years old and his sister is 3 years old. , The clinical findings are developmental delay, mental retardation, spastic Tetraplegia and refractory seizure. The most important finding in these two siblings was generalized Icthyosis. MRI showed hyper signality in white matter and MRS showed the peak of accumulated lipids that confirmed the diagnosis of "Sjogren-Larsson Syndrome".

  16. An estimation of the prevalence of genomic disorders using chromosomal microarray data.

    Science.gov (United States)

    Gillentine, Madelyn A; Lupo, Philip J; Stankiewicz, Pawel; Schaaf, Christian P

    2018-04-24

    Multiple genomic disorders result from recurrent deletions or duplications between low copy repeat (LCR) clusters, mediated by nonallelic homologous recombination. These copy number variants (CNVs) often exhibit variable expressivity and/or incomplete penetrance. However, the population prevalence of many genomic disorders has not been estimated accurately. A subset of genomic disorders similarly characterized by CNVs between LCRs have been studied epidemiologically, including Williams-Beuren syndrome (7q11.23), Smith-Magenis syndrome (17p11.2), velocardiofacial syndrome (22q11.21), Prader-Willi/Angelman syndromes (15q11.2q12), 17q12 deletion syndrome, and Charcot-Marie-Tooth neuropathy type 1/hereditary neuropathy with liability to pressure palsy (PMP22, 17q11.2). We have generated a method to estimate prevalence of highly penetrant genomic disorders by (1) leveraging epidemiological data for genomic disorders with previously reported prevalence estimates, (2) obtaining chromosomal microarray data on genomic disorders from a large medical genetics clinic; and (3) utilizing these in a linear regression model to determine the prevalence of this syndromic copy number change among the general population. Using our algorithm, the prevalence for five clinically relevant recurrent genomic disorders: 1q21.1 microdeletion (1/6882 live births) and microduplication syndromes (1/6309), 15q13.3 microdeletion syndrome (1/5525), and 16p11.2 microdeletion (1/3021) and microduplication syndromes (1/4216), were determined. These findings will inform epidemiological strategies for evaluating those conditions, and our method may be useful to evaluate the prevalence of other highly penetrant genomic disorders.